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Chapter 1

Introduction

The object of this thesis is the analysis on a metric measure space (V,d, )
built on the nodes V of an infinite homogeneous tree of order ¢ 4+ 1 endowed
with the usual distance d and a weighted counting measure p that takes into
account the special levelled structure of the tree and is defined by the formula

/Vfdu = fx)g"™,

eV

where ¢ is a suitable level function on the tree.

The space (V,d, 1) exhibits a number of interesting properties. For example,
it has exponential growth at infinity, namely

M(B(x,r)) ~ '@ g VeeV,r>0,

where B(z,r) denotes the ball centred at a vertex x of radius r. Thus the
doubling property is not satisfied, namely

lim M(B(x, 27’))

Jm ,u(B(x,r)) =400 Ve eV.

Due to the lack of the doubling property, the classical Calderéon—Zygmund
theory developed on spaces of homogeneous type in the second half of the
20th century [Ste93] does not apply to this setting. It is then significant
to construct a new Calderon-Zygmund theory adapted to this space. To
this extent we discuss the abstract Calderon—Zygmund theory introduced by
Hebisch and Steger in [HS03] and we show that it can be applied in the
setting described above. In particular, such theory can be used to study
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4 CHAPTER 1. INTRODUCTION

boundedness properties of singular integrals related to a Laplacian operator
L which acts on a function f : )V — C as follows:

L) = f@) - 7= 3

q
2\/6 yeV:d(z,y)=1

Ly)—L(z)
2

fy) Ve e V.

The Laplacian £ turns out to be bounded on LP(V, u), for p € [1, 0], self-
adjoint on L*(V, i) and its L2-spectrum is [0, 2].

We are able to define suitable linear operators X;, j = 0,..., ¢, which play
the role of first derivatives of functions in this setting, in such a way that

1 q
L=_—— X:X;.
2(q+1)jzO 7

Following the sketch of the proof given in [HS03] we show that the singular
integral operators Xj£_1/2, j=0,...,q, are of weak-type (1, 1) and bounded
on LP(V,u) for 1 < p < 2. This are the analogue of the classical Riesz
transforms in this setting. The LP-boundedness of such operators for p > 2
is an open problem, on which we are still working.

As a future developement, we are also interested in the definition of suitable
Hardy and BMO spaces adapted to this setting: these are function spaces
which turn out to be good substitute for L! and L* in the study of bound-
edness of singular integral operators. Due again to the lack of the doubling
property, the classical theory of Hardy spaces [Ste93] cannot be used here.
We also show that (V, d, ) does not satisfy the isoperimetric property (which
we define basing on [HLWO06)), i.e. it does not exist a positive constant C'
such that for every bounded set A

p(Ar) = Cp(A),

where Ay = {x € A:d(z, A°) < 1}. The isoperimetric property was a key
ingredient for the recent theory of Hardy spaces developed in [CMMO09] for
metric spaces, possibly of exponential volume growth. So also that theory
cannot be applied here. We shall try to construct a new Hardy-BMO theory
using the sets which appear in the Calderéon—Zygmund theory in the spirit
of [Val09].



Chapter 2

Preliminaries

In this chapter we present some preliminaries that will be useful in the follow-
ing. First we introduce LP-weak spaces and review their main properties. In
this way we build the setting for the main topic of the section, interpolation
theory, that we meet in the form of the Marcinkiewicz interpolation theorem.
We end the chapter with an introduction to functional calculus, focusing on
continuous functional calculus.

2.1 [P-weak spaces and interpolation

LP-weak spaces are spaces of function larger than Lebesgue spaces LP that
can often be used as substitutes to LP when studying the boundedness of
operators. In this way, thanks to interpolation theory techniques, the prob-
lem is often simplified. For these reasons the subject is fundamental for our
work and we will broadly exploit the results presented in this section. For
this part the exposition is based on Chapter 1 of the book by L. Grafakos
[Gra08].

2.1.1 The distribution function

Let X be a measurable space and p a positive, not necessarily finite, measure
on X.



6 CHAPTER 2. PRELIMINARIES

Definition 2.1.1. The function spaces LP(X, ) are defined as follows:

0<p<oo, LP(X,u)={f:X—C pu—measurable s.t.
[ 1P < o0}
X

p=oo, L¥X,u)={f:X —C pu— measurable s.t.
AB > 0:pu({z:|f(z)| > B}) =0}.

Two functions f, g are considered equal if they are equal p-almost everywhere,
lLe.
p({reX: f(zx) #g(x)}) =0.

Definition 2.1.2. The L? quasinorm is defined as follows:

o<p<m7nmmmm=(/uuwm0ﬁ
X
p=o, = = E{B > 0: u({a: |f(@)] > BY) = 0}.

Proposition 2.1.1. If 1 < p < oo, then the Minkowski’s inequality holds,
i.e. we have:

1f + gllrcen < N llee e + 119lle -
It can be shown that LP(X, u) are normed Banach spaces.

If 0 < p < 1, Minkowski’s inequality does not hold but the following inequal-
ity holds:

1-p
1f + gllzresn <277 (1fllzreen + lgllzecem) -

It can be shown that LP(X, ) are quasinormed Banach spaces.

Definition 2.1.3. Let f be a measurable function on X. The distribution
function of f is the function d; : [0,00) — [0, 00) defined as:

de(a) =p({z e X : |f(z)| > a}) Va>0.

The distribution function d; provides information about the size of f but
not about its local behavior. Note that d; is a decreasing function of o (not
necessarily strictly decreasing).

Proposition 2.1.2. Let f and g be measurable functions on (X, ). Then
for all a, 8 > 0 we have:
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L lg| <|flp—ae = dy <dy;
2. deg(a) = dg(i%) Vee C\{0};
3. dyyg(a+B) < dj(a) +dy(B);
4. dyg(aB) < ds(a) +d,(B).

It is possible to express the LP norm of f in terms of its distribution function
dy, as stated in the following proposition.

Proposition 2.1.3. Let f be in LP(X, u) for 0 < p < oco. Then we have the
following characterization of the L? norm of f:

T / o?1d; () do

Proof. We proceed by direct computation:

p/ ap_ldf(a)da:p/ ozp_l/xx{mzf(x)ba}d,u(x) do
0 0

|f (@)l
:// pa?~'da du(x) by Fubini theorem
x Jo

- [ 1r@rduta)

- ||f||Lp (X,p)"

2.1.2 [P-weak spaces

Definition 2.1.4. If 0 < p < oo, then the weak LP-space is the set of all
p-measurable functions f such that the quantity:

154

HfHLPoo—lnf{C>O ds(a )<J Va>0}
1
w20}

is finite.

If p = 0o, then the weak L*>-space is by definition L (X, u).
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The weak LP spaces are denoted by L»*(X, ). Two functions in LP*°(X, u)
are considered equal if they are equal p-a.e.

Proposition 2.1.4. Properties of || - || ..

i) Vk € C\{0} = [[kfl[zooe = |K[I[ llroe,

1
i) [[f +gllzree < ¢ (1fllir + [lgllLre) where ¢, = max(2,27),

iti) ||fllzpe =0 = f=0 p-ae.

In view of 1),ii),iii) LP* is a quasinormed linear space for 0 < p < occ.

Weak L? spaces are larger than usual LP spaces, as illustrated in the following
proposition.

Proposition 2.1.5. For 0 < p < oo, it holds:
VieLP(X,p) o fllee < IS llzv,

hence
LP(X, ) C LP(X, ).
Proof. Let f € LP(X, u). For every a > 0 we have:

wrdyle) < [ (@) P

{z:|f(z)|>a}
< / 1 (@)Pdy
X

= |l fIz»
so that )
Va >0, adi(a)? < ||fllw-

This implies that
1

| fl|Lp.ce = sup {adf(aﬁ o> 0} < [ f]l e-
Il

We observe that the inclusion LP(X, u) C LP*°(X, u) is strict. For example:
if X = R™ and pu = |- | is the Lebesgue measure, then the function h(x) =

|z| "7 satisfies:
h ¢ LP(R", 1) but h € LP*°(R", p) with ||h||pr.co@n )y = vn = |Brn(0,1)].

The following proposition provides a first glimpse at interpolation.
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Proposition 2.1.6. Let 0 < p < ¢ < oo, f € LP™(X, ) N L2>®(X, p).
Then:

fel"(X,u) Vrst.p<r<g

and
11 11
R4
T T e P
I < (2 + =) I 11

Proof. We first consider the case ¢ < oo.
We know that

oo < (ML= Wliaz) s

af

Observe that

[ Ml CUMM)'

— o’ <
ar as [ 1/ e

We set
<||f [ oo>
[palymee
Now we can evaluate the L™ norm of f for p < r < ¢ by means of Proposition
2.1.3:

nm;@mzrl o'y (a)do

[e'¢) q
<r [Tar (wmmmnﬂmm)d
0 oP q

B
=r/ Tl%ﬂmmm+r/ o f|%, o da
0 B

Note that the first integral converges since »—p > 0 while the second integral
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converges since r — ¢ < 0. So we can proceed:

B
HMMW)Zﬁ (WWMM)TQ
HNMM(WNMN Hﬂmm U1~
_ wmmmyﬁ?NNMm> () 5 (17 )5
= (W) () 5;;wm3m> (1) 5
=( T—+_¢)wﬂ&m> (1) 5

r—=p g

12 0 S

Now we pass to the case ¢ = oo

We know that d¢(ar) = 0 for a > || f|| oo (x,p), thus:
e =7 [0 dsta)da
£l oo
= r/ oty (a)da
0

W
sT/ | fI e do
0

2.1.3 Interpolation
Definition 2.1.5. Consider two measure spaces (X, u), (Y, v).
e Bounded operators T that map LP(X, ) — L4(Y,v) are called of strong

type (p,q).
e Bounded operators T that map LP(X,u) — L2*°(Y,v) are called of
weak type (p, q).
We can make the following useful classification:

Definition 2.1.6. Let (X, u), (Y,v) be two measure spaces. Consider the
linear space U and the set V:



2.1. LY-WEAK SPACES AND INTERPOLATION 11

U=A{f:(X,u) = C,f measurable}
V ={f:(Y,v) —» C, f measurable and finite a.e.} .

T:U — V is called:

e linear, if Vf,g e U, VA € C
T(f+9)=T(f)+T(g) and T(Af)=AIT(f),

e sublinear, if Vf,g € U, VA € C

T+ 9| <|TNHI+1T(g)  and  [TAS)] = AT(f)],

e quasilinear, if Vf,g € U, VA € C
T(f+9)| < K(T(N)+1T(9)]) and [T =[MT(f)
for some constant K > 0.

Theorem 2.1.7 (Marcinkiewic interpolation theorem). Let (X, u), (Y,v) be
two measure spaces and 0 < py < p; < 0.

Let T be a sublinear operator such that
T:LP(X)+ LP(X) — {measurable functions on Y}.
Assume that Ay, Ay > 0 such that:

170wy < Aollf limxy  VF € LP(X),
I meery < Aillflmixy VF € ZP(X).

Then ¥p such that py < p < p; and ¥f € LP(X) we have:

IT(F) ey < Allfllzex)

l — —
whereA:2< P4 P )pAg’o PLAP P

p—Ppo pi—p
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Proof. We first consider the case p; < 0.
Fix f € LP(X) and a > 0.

We split f = f§ + f{, where f§ € LP°(X) and f* € LP*(X). The splitting is
obtained by cutting |f| at height da for some da to be determined later.

Set:

() = f(z) for |f(x)| > d«
0 0 for | f(z)| < 6o’
iy {10 for @) < b
! 0 for |f(z)| > da

Observe that:

o f§ (the unbounded part of f) is in LP°(X), indeed:

51 = [ 1
|f1>bex
:/ |FIP| 1P Pdp
|f1>bex
< (0a)” (| fIIZs
since py < p and then |f[Po7P < (Ja)Po~P.

e [ (the bounded part of f) is in LP*(X), indeed:

21 = [ 1
|f1<6a
:/ |FIPIFIPPdp
|f|<de
< (8a)” Pl fI e
since p < p; and then |f[P*77 < (Ja )PP,

By the sublinearity property of 7"
T < 1T+ 1T

which implies that for every a > 0

{z1T(f) (@) > o} € {z  |T(f5) (@) > §} U{z  |T(f{)(2)] > §}
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because Va such that o < |T'(f)(z)] < |T(f§)(z)| + |T(f{*)(x)| one of the
following occurs:

and |T(f7")(x)] > a = [T(f5)(x)] or
and [T(f")(x)] > a = |T(fg)(x)] = 5.

R |2

Therefore
dr(p) (@) < drgig)(5) + drge) (3)-
Since f§ is in LPo, T'(f§') is in LPo>° and

1
|T(f5) | roce = sup{vdr(sey ()P0, v > 0} < Aol fo || o

1T o,
)P0
(2)

Similarly, since fi* is in LP*, T'(f{*) is in LP»* and:

so that dp(se)(5) <

|T(f1) || rrce = sup{ydppoy(y)Pr,y > 0}

T () o1 00

(2)"

so that dp(se)(5) <

Then:

T [e% P(;2 - T o Plpl’oo
are ) < TSR~ | ITC)IE

(5)" (5)"

AISO 1171
< —w 151 + 7 1712
(%) (%)
(2Aq)P0 (2A41)P

= flx podu—i——/ f(z)|Prdp.
L /mm' (@) e LG
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In this way we obtain:

1T = [ @ driga)da
0

_p(QAO)pO/ ozp_loz_po/ | f(z)[Podpu dov
0 [fI>6a
—|—p(2A1)p1/ ozp_lofpl/ |f(z) [P dp do
0 |f1<éc
f(@)]
—pa) [ [T dad
b 0

T p24,) / @) / P dadp
X Ls@)

Notice that the first integral converges since p > py = —1+(p—po) > —1
while the second integral converges since p < py = —1+(p—p1) < —L
Then:

P24
— Do 519 Po
p(24, )P p—p1
2R @i
Ag)Po A
—p (PR L PR i

p—po PP pp—p oPP

I < / F@) P ()P dy

We pick 6 > 0 such that:
1

)pP—Po

(2A40)P°

— (2A1)p1 opr—p

and obtain the thesis.
We consider now the case p; = oo.

We write as before:

_ @) for [f(z)] > va
i = {o for |(@)] < 0.
_ @) for [f(z)] < ya
fi(@) = {0 for |f(z)| > va.

As in the previous case, one can verify that:
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e f& (the unbounded part of f) is in LP°(X).
e f (the bounded part of f)isin L>°(X) by definition and || f{*||z~ < ~va.

By assumption 7" is bounded from L*(X) to L>®(Y) (since L = L)
and: o

1T = < Al fifllz= < Ava =5
provided we choose v = (24;)7!
It follows that:

u ([T (@) > 23) = 0.
Therefore (exploiting the sublinearity property of 7" as in the previous case):
dr(p)() < drise)(5) + drre)(5) = drg) (5)-

By assumption 7" maps LP(X) to LP>*>°(Y) and we know that:

T f PQ,o© « [e]]
drgey(a) < LU0 o (o e < Aoll 2 L.

oPo
It follows that

T .
dr(rey(5) < %

Apo ”fO ”LPO 9Po

()™
(2Ap)P0

=-— | f(@)[Pdp
are /f|>va

with v = (24;)7!. Finally we obtain:
IT(HIE, = » / o7 dp () da

o
Sp/o o dr(g5(5)dx

o0 Po
p [T B[ p@duda
0 Qv If>59

>34,

IA

2A11f ()]
=pa® [ 1@ [ e dady
0

P24, (240 .
- mEAS / (@) Pdu

_ p(2A1)P7P0(2A0)P°
P —Do

A1z
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This proves the theorem with constant

» )
P—Do

2.2 Continuous functional calculus

Continuous functional calculus aims to make sense of the expression f(A)
for each self-adjoint operator A on a Hilbert space H and each continuous
function f € C(0(A)), where o(A) denotes the spectrum of A. For this
section we refer the reader to the book by Reed and Simon [RS80], which we
follow in our description.

First, let P be a polynomial in C[z] and A a self-adjoint operator on a Hilbert
space H. Suppose

We define P(A) € B(H) (where B(H) is the space of bounded linear opera-

tors on H) as:
N

P(A) =) a,A"

n=0
where AY =7 and A" =A- A1 VYn>1.

To extend this definition to all continuous functions we must first prove two
lemmas.

Lemma 2.2.1. Let P(z) = Zgzo a,z" € Clz] and P(A) = ZnN:O a, A" €
B(H).
Then:
o(P(A)) ={P\): A€a(A)}.
Proof. e First we prove that A € 0(A) = P(\) € o(P(A)).
Let XA € o(A).

z = \is aroot of P(z) — P(\) so we can write:

P(z) = P(2) = P(A) = (2 = M)Q(2)
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where A is not a root for Q(z). Then:
P(A) = P(A) — P(\)I = (A— A)Q(A).
By hypothesis A € 0(A) which means that (A — AI) is not invertible.
So also P(A) — P(A\)! is not invertible, that is P(\) € o(P(A)).
e Now we prove that u € o(P(A)) = p = P(\) with A € o(A).
Let u € o(P(A)).
Let A1, Aa, ..., A, be the roots of P(z) = P(z) — u, that is:

Then

A

P(A)=P(A) — ul =a(A—=MI)(A—=XI)...(A=\.1).
If \i ¢ 0(A), Vi: 1 <i<nthen P(A) — p is invertible as:
(P(A) —pu) P =a (A= ) (A=) . (A=)t
while by hypothesis u € o(P(A)), that is P(A) — ul is not invertible.
So we conclude that for some 4 it holds \; € o(A), i.e. p = P()\;) with
i € o(A).
[

Lemma 2.2.2. Let A be a bounded self-adjoint operator on a Hilbert space
H.
Then:
I1P(A) sy = sup [P(A)].
A€o (A)

Proof.
1P B = 1P(A)*P(A)]
= [I[(PP)(A)]] since P(A)" = (P)(A)

= sup )
Xea((PP)(A))

= sup |(PP)())]
A€o (A)

2
_ ( sup |P<A>|) .
A€o (A)
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The third equality follows from the fact that || T[] = r(T) = sup,c, () [A| VT self-adjoint

where r(T') denotes the spectral ray of T' and because (PP) has real coeffi-
cients, so (PP(A)) is self-adjoint. O

Lemma 2.2.2 shows that, given A self-adjoint on H, the function ¢ : P(o(A))
B(H) defined by ¢(P) = P(A) is linear and bounded.

Polynomials on o(A) are dense in C(c(A)) and B(H) is a Banach space.
Then ¢ admits an unique bounded linear extension ¢ : C(o(A)) — B(H).

We write f(A) = ¢(f) to emphasize the dependence on A. Now we have all
the necessary ingredients to prove the following theorem.

Ileocay -

Theorem 2.2.3. Let A be a self-adjoint operator on a Hilbert space H.

Then there is a unique map ¢ : C(c(A)) — B(H) with the following proper-
ties:

a) ¢ is an algebraic x-homomorphism, that is:

b) ¢ is continuous, that is, |6(f)l|sm) < Cllf|l.

¢) Let f be the function f(x) = z. Then ¢(f) = A.
Moreover ¢ has the additional properties:

4) If A = X0, then 6(f)v = F(\)o.

e) o(6(f) = {F(N) : A € o(A)}.

£) I >0, then 6(f) > 0.

9) 16 ey = 1 /]l

Proof. The uniqueness of ¢ follows from the previous considerations observ-
ing that a) and ¢) imply that ¢(P) = P(A) for all polynomials P.

So the only candidate for ¢ is the extension of gg described before. Indeed,
¢ coincides with ¢ on polynomials so by continuity it agrees with its unique
extension on all C'(c(A)).
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For the existence of ¢ we must prove that the extension of ¢ (which we denote
with ¢) satisfies properties a) — g).

First we observe that ¢ satisfies a) — g) for all polynomials, because ¢ does.

This can be shown by direct computation. Take p, ¢ polynomials and \ € C.
Then:

a)

=
s
=
I
)
=
s
~—

=1 by definition.
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b) and g) follow from Lemma 2.2.2.
¢) is true by definition.
d)

e) follows from lemma 2.2.1.

f) can be shown directly for all f € C(c(A)). Let f € C(a(A)), f > 0.
f>0 = f=g* with greal, g € C(c(A)).

Thus

z, p(g9)p(g) )

= (=,
= (¢(9), (g)x)
=ll¢(g)z]* =0 Vx e H.

Then ¢ satisfies a) — g) for all continuous functions on o(A) by continuity.
As an example we check d) and g).
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Let f € C(c(A)), f = lim, s p, for some sequence of polynomials {p,, },.
d)

¢(f) = o( lim p,)
— lim 6(py)
= lim o(pn)

= fm pn(4).

Then

o(f)0 = (lim p,(4)) v

n—oo

= lim (p,(A)¥)
= hm (Pn (M)

n—o0

= (lim pu(V)) ¥

n—oo

= F(M)Y.

leCH e = llo( lim pa)l[sem,)
= | lim é(pn) | By
= nlgglo 16(pa) | By
= lim ”anoo
n—oo
= || im pp||e
n—oo

= [/ lloo-
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Chapter 3

Abstract Calderén—Zygmund
theory

Calderén-Zygmund theory was first developed in the middle of the 20th
century: its initial setting was the euclidean space R™ endowed with the
euclidean distance and the Lebesgue measure. Since then a lot of effort has
been made in order to extend the theory to the setting of abstract metric
measure spaces, the key aspect being to identify the essential properties which
provide the foundation of the theory. Omne of the main results consisted
in discovering that a sufficient condition to have the Calderén—Zygmund
property is the doubling property of the measure. While this result provided
a unified solution to the quest for extension for a wide class of spaces, it
also revealed a route for further exploration on spaces lacking the doubling
property. This is the case for the infinite homogeneous tree which is the
subject of the analysis of our work, as it does not exhibit nor the doubling nor
the isoperimetric property. It is then significant to investigate the Calderéon—
Zygmund property for this space and to this extent in this chapter we study
the abstract theory proposed by Hebisch and Steger in [HS03].

Troughout we adopt the usual convention that C' stands for a positive con-
stant, whose precise value varies from occurrence to occurrence.

23
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3.1 Abstract Calderon—Zygmund property

Definition 3.1.1. We say that a metric measure space (M,d, ) has the
Calder6n-Zygmund property if there exists a positive constant C' such that:

[FArY
p(M)

f admits a decomposition of the form

f=Zfi+g (3.1)

Vfe L' (M, u), YA >C (A>0if (M) = o0)

such that there exist sets ();, numbers r; and points z; satisfying the following
properties:

1. f; = 0 outside @,

2. [y fidp=0 Vi,

3. Q; C B(z;,Cr;) Vi,

4o, u(@Q) < OB where @ = {2 € M 2 d(,Q)) < 1.},

5. 22 Millraryy < C U
6. [g] <CA

The sets @; are called Calderén—Zygmund sets and the decomposition (3.1)
is called the Calderén—Zygmund decomposition of f at level A.

Since g = f — ), f; we have that:

HQHLl(M,;L) = Hf - Zfz

LY (M)

>k
g LY(M,p)

<Mz argy + D Wfillarse

< Wl prary + C N piiar,y by property 5)
<N Al

<A lprgary +

(M,p)
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that is
||9||L1(M,#) < ||fHL1(M,,u) : (3:2)
Moreover, from Property 6. it follows that
g€ LOO(M7 :u) and HgHLOO(M,;L) S CA. (33)
Then from the Marcinkiewic interpolation Theorem 2.1.7 it holds that
€ LY (M,
9 OO( BN
g € L>(M, )

ge L' (M) Vrst. l1<r<oo and |g

T r r—1
Lr(M,p) < r—1 Hg”Ll(M,u) HgHLOO(M,,u) :
In particular, for r = 2 we have:
2
N9l z2ar 0 < 219l 1 ar o 191 o a0
<2C" || fllp1(ary CA for 3.2 and 3.3

e
= C"M fll prar
that is
2
191 z20ar,y < C M Fllproar - (3.4)

3.2 Abstract Calderé6n—Zygmund theorem

Given a measurable function k(x,y) locally integrable on M x M, K denotes
the integral operator with kernel k defined Vf € C.(M) as:

(K f)(x) = /M B, o) f@)duly),  for = ¢ supp f.

This integral is well defined at least for compactly supported functions f.
Theorem 3.2.1. Consider (M, d, i) with the Calderén—Zygmund property.

Suppose that T is a linear operator which is bounded on L*(M, i) and admits
a locally integrable kernel k(x,y) that satisfies the condition:

sup sup / (2, y) — k(a, 2)ldu(z) < oo (3.5)
Qi y,2€Q; J(QF)°

where the supremum is taken over all Calderon—Zygmund sets (Q;. Then T
extends from L'(M,u) N L*(M, p) to a bounded operator from L'(M,u) to
LY>°(M, p) and on LP(M, 1), for all p € (1,2].
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Remark If T is a linear operator bounded on L?(M, ;1) such that
T: LX(M, ) — L*(M, p)
T = Z K, with K, integral operator with kernel &,

nez

such that for appropriate constants C' > 0, 0 < ¢ < 1, a > 0, b > 0 the
following conditions are satisfied:

i /M a2 )] (1 + €z, y))dp(x) < C Wy e M,

) [ ha(e9) = (o 2)ldu(o) < (3,2 Vs €.

then T' satisfies the hypothesis 3.5 of Theorem 3.2.1. These conditions are
formulated by Hebisch and Steger and they are more convenient to verify,
even if less intuitive. For this reason we prefer the following formulation of

Theorem 3.2.1.

Theorem 3.2.2. Consider (M,d, i) with the Calderon—Zygmund property.

Suppose that T is a linear bounded operator on L*(M,u) such that T =
> nez Kn with K, integral operator with kernel k, such that for appropriate
constants C' > 0, 0 < c < 1, a > 0, b > 0 the following conditions are
satisfied:

) [ )+ ) du() < C vy €, (3.
M
ii)/ k(@ y) = kal@, 2)|du(z) < C(d(y,2))" Vy,2€e M. (3.7)
M
Then T is of weak type (1,1) and bounded on LP(M, ) for every 1 < p < 2,
i.e.:
T:LYM,p) — LY°(M, ) s bounded

T:LP(M,p) — LP(M, ) is bounded for 1 <p < 2.

Before proving Theorem 3.2.2 we state and prove two lemmas.

Lemma 3.2.3. Let f;, Q;, ri, x;, QF as in Definition 5.1.1.

Then there exists a positive constant C' such that for every i:

S @) < il

neZ:.ctr;>1
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Proof. We first estimate

L, s =

< / / ea )11 () i) )

/M (2, 9) fi(9)dn(y) | dia()

/ " |kn (2, )| fi(y)|du(y)dp(z)  since supp f; C @, for 1)

Qi
/ / () 1) () da ()
i v (QF)°

~ [ 1w ( / \kn<x,y>|du<x>) du(y)
Qi (@)

= [ Flosas s1p /(Q M ldnte).

By definition points in (QF)¢ have distance > r; from each point in @);. Then
the points x with d(x,y) > r; from a fixed y € @), are a superset of (QF)¢. So
we can proceed with the inequalities:

J @) < Wil s [ o))
(@7)° )

yeQz (@

2

< il S0 / e (2, )| dp(2)

YEQ; Jx:d(x,y)>r;

< [1Filprgaa SUD / e (. )| ()
yeM Jp:d(zy)>r;

<@ Wl [ kel )t
z:d(x,y)>r;

yeM

<C(c"r)™" HfiHLl(Mm for 3.6.

where we have used the fact that (%ﬂ(’:y)) >1 Va:d(z,y) >r. By
summing over all indices n such that c"r; > 1 we get:

3 / Kol @dp(@) < C il pany S ()

neZictri21 neZ:c"r;>1

:CHfiHLl(M,u)Ti_a Z (c")™

neZ:.cr; >1
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We have that:

log(ri)]

m=[Togte)

Indeed, c™r; > 1 < —mlog(c) + log(r;) > 0 where log(c) < 0 because

€ (0,1). So the sum is over integer numbers m > llog(” We can express
og(c) *

such numbers as m = k + [l;gg(” | with k£ € N, so we obtain:

+oo

neZ:cr; >1 m:]'lfg((”))1
og(c

. +00 " k+|_log(7"i)-|
=, E (c ) log(c)

k=0

log(rz
= ZDQ<C E
k=0

log(r;i) 1
< () o
1—co

log(r;
— praglogle)e logg((3>> 1

‘ 1—co
_ T'—aealog(ri) 1
! 1—co
1

_—a..a
— i Til—c“
1

1 —co’

since c* < 1

In conclusion:

1
> K@) < Wil

neZ:c*r; >1 (@)°
<N fill prarpy -

Lemma 3.2.4. Let f;, Q;, ri, x;, Q) as in Definition 5.1.1.
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Then there exists a positive constant C' such that for every i:

/ Ko fi(@)ldu(2) < C il prcan-

neZ:cnr; <1

Proof. We first estimate:

| 1@t /’/ A 9) iy du()‘du()

We have that fQ fily)du(y) = 0 by Property 2. so k,(z, ;) fQi fily)du(y) =
[, k o, Fn(@, 2:) fi(y)dp(y) = 0 and we can proceed with the inequalities:

'/ (. 9) )y ‘du /\/ A(.9) — kal, 7)) fily)d ()‘du(fv)
< /M [ 10a(e) = b ) i) )t
-/ | | 1tnta) = kol ) 150 (o))

- /Qi f:(y)] </ (2, ) —kn(x,xi)!du(x)) dp(y)

[ 11ty sup ([ o) = bzl duto) ) dut)

< ”fiHLl(M,M) suCI; C (c"d(y,mi))b for 3.7
yeQ;

< HfiHLl(M,,u) Cl(cnﬁ')b-

Where the last inequality follows from the fact that x; € Q;, y € @; and from
property 3) Q; C B(z;, Cr;) so it holds d(y, z;) < Cr;. Now we can compute

> K@) < 3 Wl O

nel:cnr; <1 neZ:c'r; <1
b b
= fill rary C70 D (D)™
neZ:c’r; <1
We have that:
—+00

neZl:.ctr; <1 e Lflog((ri)JJrl
log(c
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Indeed, ¢"r; < 1 < nlog(c) + log(r;) < 0 where log(c) < 0 because ¢ €

log(r;)

(0,1). So the sum is over integer numbers n > — . We can express such

log(c)
numbers as n = L—%J + 1+ k with £ € N, so we obtain:
— () T 1

D S

log(r;
n=|- loi((g)) J+1

b log(r;)
T blog(c) _%
= 1 &° ()
7’? —b
1 —cbt
1
1=
In conclusion:
1
> K@) < Uil O
M C

nel:cnr; <1
< C"fill prary -

O

Proof of Theorem 3.2.2. By hypothesis T : L*(M,pu) — L*(M, p) is linear
bounded, i.e. T is strong-type (2,2) and then it is also weak-type (2, 2).

Thanks to the Marcinkiewic interpolation theorem it is sufficient to show
that 7" is weak-type (1,1) to conclude the proof.

Let us take f € L*(M, u).

We fix A > 0. Then either A < C'02t000 op ) > oVl where C s the
constant appearing in the Calderén—Zygmund property 3.1.1.

L1 (M,p)

We consider first the case A > 0 and A < C”f”u(M)

dry(N) =p({z € M :Tf(x) > A})
< pu(M)
_ Wl
- A
and so
CU N e ar

Mry(A) S Clfllpiar YA 0<A< (M)
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HfHLl(M,H)

Now we consider the case A > C
w(M)

Since (M,d, ) has the Calderén—Zygmund property, for such A and f €
LY(M, p) we have a decomposition f =Y, f; + g which satisfies Properties
1-6 in Definition 3.1.1.

We define the sets:
E={zxeM: Z|K fi(@)] > 3},

=UQ;:

where QF are the sets associated to the Calderéon-Zygmund decomposition
of f at level \.

We have that:
w(E\ Ep) < > Ko filx)| dp()

E\E, n,

< /(El) S 1Ko fi@)] du()

n,i

_ Z /W Z Ko fi(2)| dp()

— K, fi(x)|du(zr) since Ef = )
;/ns@;)c;' fi(@)] dp() (](@)

< Z /(Qf)c Z K fil()] dpa(x)

since [,(Q%)° C (QF)° Vj so we can enlarge the domain by integrating each
> [ K fi| over the respective (QF)¢ D ,(Q%)°. So

—ME\E1<Z<Z/ Ko filz Idu()>

< Z Cllfilliaryy  for Lemmas 3.2.3 and 3.2.4

<O fill prgany

<cC [/l z2ar,y  from Property 5) of Definition 3.1.1

< CNFlprearyy -
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So: ,
C N e ar

W(B\E) £ —

(3.8)

Now we claim that
p({x € M:TF@)| > N} < p({o € M: [Tg(@)]| > 3}) + u(E).  (3.9)

Indeed, consider z € M : |T'f(x)| > A. Then, since f = > f; + g and T is
linear:

A< |Tf(x Zsz )+ Tg(x)

ZK filz

< |Tg(x)| + Z Ko fi(

< |Tg(x)| +

Then one of the following occurs:

Ty ()| >

o>~

and Z\K filx)| > A= |Tg(x)| or

2>

Tg(x)| <3 and Z|Kfl ) > A= |Tg(x)| = 3.

So we have shown that

{w€M:|Tf(z)| >N} C {z e M:|Tg(x)| > 2}U{x e M : Zu(nﬁ )| > 2},

which proves Claim 3.9. Then we can proceed with the estimate of the
distribution function of T'f.

p(fo € M2 |TH@)| > AD) < p({r € M: [Tg(a)] > 3}) + p(B)

~ 2
< 4C HgHL?(M,,u)

= 2 + u(Er) + p(E\ Er).

The last inequality is justified by the following: we have shown that g €
L*(M, 1) (see 3.4) and by hypothesis T : L*(M, u) — L*(M, u) C L>*(M, p)
is bounded. So T'g € L**°(M, 1) and ||Tg|| 2. (ar) < [ T°9] 2201,y Then:

ITgll7200 (a1, = SUP{¥*drg(7) : v > 0}
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HTQH%ZOO(M,M)
A 2
(2)
2
_ ATl s
= 2
< 40”9”%2(1\@)
—_— AZ .

- dTg(%) <

(3.10)

Moreover,
We can now proceed with the estimate above applying 3.4 e 3.8:

A 2
4C HgHLQ(M,p)

p({x € M:|Tf()] > \}) < + u(E) + p(E\ Ey)

4C\|QHQL2(MH) 2C" ”fHLl(M,u)
s —w el r——

CX I ar S (@ 20" 1 f Il s
S )\2 ( 7“)_|_ : M(Qz)+ )\ W)
_ ANz o N ClA N ar N 2C" ([ Wl 2 (ar
- A A A

"
< Wl

In this way we have shown that

Arr(A) < C" | Fllpaaryy YA >

We can now conclude the proof:

HTfHLLOO(M,u) = SUP{Ade()\) PA> O} < CNYHJCHLI(M,M) )

thus 7' is of weak type (1,1). ]
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Chapter 4

Weighted homogeneous trees

In this chapter we introduce the infinite homogeneous tree and we describe
how it can be equipped with suitable distance and measure. We study the
properties of the corresponding metric measure space (V,d, i), such as the
lack of the doubling property. These properties motivate the need for the
abstract Calderén—Zygmund theory presented in Chapter 3, which will be
applied to the tree in the next chapter. We also introduce various operators
over (V,d, i), including laplacian operators, which will be studied in Chapter
6.

4.1 The infinite homogeneous tree T’

Definition 4.1.1. An infinite homogeneous tree of order ¢ + 1 is a graph
T = (V,€), where V denotes the set of vertices and € denotes the set of
edges, with the following properties:

e T is connected and acyclic;

e cach vertex has exactly ¢ + 1 neighbours.

On V we can define the distance d(z,y) between two vertices x and y as the
length of the shortest path between x and y. We also fix an infinite geodesic
g in T, that is a connected subset g C V such that:

e for each element v € g there are exactly two neighbours of v in g;

e for every couple (u,v) of elements in g, the shortest path joining u and
v is contained in g.

35
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Figure 4.1: A representation of the infinite homogeneous tree of order 3.

We define a mapping N : g — Z such that:
[N(z) = N(y)| = d(z,y) Vayeg. (4.1)
This corresponds to the choice of an origin o € g (the only vertex for which

N(o) = 0) and an orientation for g; in this way we obtain a numeration of
the vertices in g.

We define the level function [ : V — Z as:
l(z) = N(z") — d(z,2")

where 2’ is the only vertex in g such that d(x,z’) = min{d(x, z) : z € g}.
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Figure 4.2: Representation of a portion of T with ¢ =3

Let p be the measure on T defined by the formula:

/v Fdu=3" f@)d@. (4.2)

ey

Then p is a weighted counting measure:

e the weight of a vertex depends only on its level;

e the weight associated to a certain level is given by ¢ times the weight
of the level immediately underneath (note that for each vertex in the
higher level there are ¢ vertices on the lower level).

4.2 Laplacian operators on T’

We denote by C'(V) the space of complex valued functions defined on the
nodes of the infinite homogeneous tree, that is:

COV)={f:V—C}.



38 CHAPTER 4. WEIGHTED HOMOGENEOUS TREES

weights g levels
2

Figure 4.3: Representation of the measure pu (¢ = 3)

Consider a function f € C(V).
Definition 4.2.1. We define the operator A by the formula:

(Af)(rﬂ)=% S
yeV:d(z,y)=1

Uy)=l(z)
2

f(y) Vo e V. (4.3)

We observe that the difference between levels of vertices involved in the sum
defining (Af)(z) can be either +1 or —1. In particular:

) — iy = {1 Tordust one neighbour of 4
—lz) =
! —1 for ¢ neighbours of

This implies that Vx € V

ly)—i(=)

g = 1 for just one neighbour of x
V4
More precisely, we define the sets of vertices:

Vi) ={y eV d(z,y) =1, l(y) = () + 1},

% for ¢ neighbours of z
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Vie)={yeV:dxy =1, l(y) =I(x)—1}.

We call V*(z) the set of parents of x (there is only one parent for every x)
and we call V'~ (z) the set of children of = (every vertex has ¢ children).

Then we can express (Af)(x) as follows:

Z fly Z fly Vo e V.

y€V+ (z) yEV (z)

In this way we see that (Af)(x) is a weighted average of the values f(y) on
the neighborhood of x: the value of f on the neighbor on the upper level has
weight % while the values of f on each one of the ¢ neighbors on the lower
level have weight i, so that each level contributes for a weight of %

N =
—

O N
-

N

=

X

weights

NI
—
>
-
N
R

Representation of the action of A (¢ = 3)

4.2.1 Properties of the operator A

Proposition 4.2.1. The operator A satisfies the following properties:

i) A: L'V, ) — L*(V, ) is a bounded linear operator of norm 1;
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i) A: L*(V,pu) — L*°(V, ) is a bounded linear operator and [|A| g e (1)) <
L;

iii) A: LP(V,pu) — LP(V, ) is a bounded linear operator for 1 < p < oo
and || Al gpo ) < 15

iv) A e B(L*(V,u)) is self-adjoint on L?(V, u1).

Proof. We first prove ). Take f € L*(V, u). Then:

147l = S IAF@IEO =S 15 S s+ (- X fw) | |4
Y zeV yeV+(z) q yeV—(z)
SN EDY |f<y>|+21 > f(y)) ¢
€V yeV+(z) q yeV~ ()
- > +2iz > 15w)ld®
z€V yeV+(z q z€V yeV—(x)
) z LR M) WL
yeY eV - er €V (y)
=§Z|f Z ql(”)+ Zlf > Y
yey eV~ yEV zeV+(y)
=>_Ifwl |5 Z PRI o q
yey zEV rEVJr
ONINE Z i Loy o
yey mEV I€V+(y)
1 1 1
:Z|f(?/)|ql(y) B Z §+2_q Z q
yey eV~ zeV+(y)
ZZIf(y)Iq“y)< g+ 5 1)
yey
=> £ ¢V
yey

= Al -
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Note that [[Al| 1y )1,y = 1, indeed if we repeat the steps with f positive
the inequality becomes an equality.

We now prove (ii): Let us consider f € L>(V, u), that is sup,.y, | f(x)] < M
for some M > 0. Then:

|Af(x Zf Zf

y€V+ (z) yEV (z)

=§ ) rf<y>\+2i > 17w

yev+(z) 1 ev—(a)

S oM+ 2i >
yeV+(z) 4 yeV = ()

1 1
2 2q

This proves (ii). Property (iii) follows by the Marcinkiewicz interpolation
theorem 2.1.7.

To prove (iv), let f,g € L*(V, pn):

(Af,9) 2o = D> (AN (@)g(x)g"™

eV
=213 LY A LS s | ) s@e
zeY y€V+(x) yEV (=)
SN STTETENS S o) R TETE
z€V yeVt(x :EEV yeV—(z)
) z ST LS S
yeVY zeV - yev z€V*(y)
— Zf ¢ ( _x + Zf 5 Z g(x)
yey yev zeVH(y)
—Zf z(y)( Z g(z QL Z g(z)
yeY zeV+(y) z€V~(y)
— Z fly (y U(y)
yey

= <f7 A9>L2(V,,u) )
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]

4.2.2 The spectrum of the operator A

It follows from the previous results that the L?(V, i) spectrum of A is real
and lies in [—1, 1]. In this section we prove a more precise statement.

Definition 4.2.2. For every f € C(V) we define the operator L by:

(LhH) = D fl)

y:d(z,y)=1

The following relationship between the operators A and L holds.
Proposition 4.2.2. For A and L as defined before it holds the following:

I I
2\/qq2A = Lq2 (4.4)

!
where ¢2 denotes the multiplication operator defined for every f € C(V) by:

L €3]
(@2 f)(x) =q 2 f(x).

Proof.
LN = S @)

yid(z,y)=1
W(y)

= Y g2 fy)

y:d(z,y)=1
(z) (z)—

= > ¢+ > T A

yeVt(z) yeV—(x)

I(z)
gt [vi Yt~ 3 fw)

yev+(x) Va5

—ova s (1Y W Y W)

yeV+(z) yeV—(x)
(z)
—2ig T Af()
— 2 (q%A) ()(@).
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We observe the following interesting fact.

Proposition 4.2.3.

BN |~

q2 : L*(V, ) — L*(V, #)

is a surjective linear isometry, where # denotes the counting measure.

Then L?(V, ) and L*(V, #) are isometrically isomorphic.
Proof.
Let f € L*(V, ).

I
Then q2 f € L*(V, #) since

l o)
Hq2f“%2(v,#) = Z q 2 f(x)
€Y

=D 1f@)Pq™

ey

I(x) 2

= £ 1220)-

l
This shows that ¢2 is a linear isometry (and so it is injective).

l
Moreover, ¢2 is surjective. To prove it we define the operator

@) — @) =a T @)

I
for every f € C(V) and show that ¢~2 : L?(V,#) — L*(V, ) is again a

linear isometry.

DO |~

v

!
Let f € L2(V,#). Then ¢ 2 f € L*(V, 1), indeed

_L _U=z)
g 2f||%2(v,u) = Z q 2 f(x)
eV

=Y If@P

zeV

= 1 f 12200

! !
Finally, given f € L2(V,#), f is the image of ¢~ 2 f € L*(V, ) through ¢2:

L L
q2 (q_’zf) =f
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l l
S0 ¢2 is surjective and ¢~ 2 is its inverse operator. O

Going back to the spectrum of A, we can prove the following.
Proposition 4.2.4. The L?(V, 1) spectrum of A is precisely:
o(A)=[-1,1]. (4.5)

Proof. We can exploit the relationship (4.4) between A and L to compute
o(A) given o(L).

We write (4.4) in the form:
1 L L
A= —— (q_QLq+2)
2\/q

A€ o(L)< L— A isnot invertible

and observe that

1 L L
& ——q 2(L—X)q"2 isnot invertible

2\/q
! (‘LL +3 )J) is not invertibl
& —=\q 2Lg 2 — 1S not 1nvertible
2\/q
A
< A— ——1 is not invertible
2\/q
& A € o(A)
— co(A).
2\/q

The LP spectrum of the laplacian L = I — q%lL is known in literature (we
refer to [FTP83]). In particular for the L? spectrum we have that:

o(L) = [L =~(0),1+~(0)]

where v is the function defined by the formula:
1

q2

V(z) = i1 (6% +q77).
So:
_ 2y4q 2\/4q
o(L) = 1_q—|—1’1+q+1
= o(L) = [-2/4,2/4]
=o(A)=[-1,1].
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4.2.3 The Laplacian £

Definition 4.2.3. On the infinite homogeneous tree T' = (V, £) with measure
1 and distance d we define the laplacian £ as

L=1-A.

For each vertex x € V we can fix a labeling of the neighbors of = in such a
way that the father of x is labelled with 0 and the children of = are labeled
with j for j =1,... q.

In the following we denote by v;(z), j =0,...,q the j neighbor of x.

Definition 4.2.4. We define the linear operators X;, j = 0,...,¢ which
take a function f € C'(V) and give the functions X f defined by:

(X)) = fv;(@)) = f(2) . (4.6)
X, f can be thought as a "first derivative' of the function f.

Definition 4.2.5. For every function f € C'(V) we also define the gradient
V f by the formula:

(VH@) = > fy)-f@)] VzeV. (4.7)

yeVid(z,y)=1

We notice that: .
VI(x) =) 1Xf(@)].
§=0

We now show that there is an interesting link between laplacian and gradient
on the tree, since they can both be expressed in terms of the operators X.

First of all, we compute the adjoint operators of X;, 7 =0,...,q.

(X,f.9) =Y (X f)(x)g(w)g"™

eV

=3 (Fvy(a)) — f(@) 9@ .

eV

We must distinguish the cases:
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e j=0,ie. vj(x)is the father of z.

(Xof,g) = > (f(vo(w) = f(x)) g(x)g"™

eV

= Z f(vo(z l(m Z flz
zey zeV

=2 2 )= 2 F@)g@)d®
z€V yeV+(z) z€VY

=2 Z F@g@)d =3 fa
yeV zeV—(y) z€Y

=2 Z S ¢ =D f
yeV zeV— ey

= ZZf(y)g o
yey j=1 yey

=> ) (é > g(vi() g(?J)) g
yey 7=1

=> I (% 9(v;(y)) — g(y)>q“y)
yey j=1

This shows that:

That is:
Xp==-) X (4.8)
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o j#0,ie v;j(z)isa child of z. To treat this case it is useful to define
the set of vertices y which are the j* child of their father:

F={yeV:y=u)}

(Xf,9) = Y (Fvi(@) = f(2)) g(w)g"™

eV

= flv(=) Zf

eV eV

=" fW)gwe®)d ™™ =" fy)g(y)

yeF; yey

=2 (qg vo(y))xr; (y) = @) 4w

yey

- Z fly qg vo(y )XFj(y) — g(y))ql(y)

yey

= (}.Xj9)

where x; is the characteristic function of the set F}.

This shows that:
(X79)(x) = qg(vo())xF,(7) — g(x) for j#0. (4.9)

We are now in the position to show the relationship between the Laplacian
L and the operators X; which we introduced before.

Proposition 4.2.5. Let A and X; be as previously defined. We have that:

1 q
L=1-A= > XX (4.10)
=0

Proof. First we compute X7 X; for j = 0,...,q. As before we distinguish
two cases.

1< 1 <
xix- (130) 0= 1y
j=1
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so we have to compute the composition X; X, for all j # 0.
((X;X0)f) () = (Xof)(v;(2)) = (Xof)(x)
= f(wo(vj(x))) = f(vj(x)) — flvo(x)) + f(x)
= f(@) = f(vj(x)) = fvo(x)) + f(a).
Then we have:
1 q

(X Xo)f) () = = > (f(x) = f(vj(x)) = flvo(x)) + f(x))

g

.« j#0.

((X5X)f) (z) = a(X; f) (wo(@))xr, (=) = (X;f) ()
= q (f(v;(vo(x)) = f(vo(2))) xr; (%) — f(v
= q f(@)xr (x) — ¢ f(vo(x))xF (z) —

Then we have:
q

> ((X7X)f) (@) = Z (@ f(@)xr, (@) = a f(vo(x))xr, (x) — f(vj(x)) + f(2))

Jj=1

=2qf(x) — qf (vo(x Zf vi(x

=2qf(x) — 2q (%f(vo(:lr)) + 2_1q Z f(“j(@))

=2q((I = A)f) ().

Summing up, we have:
Z (X5X5)f) (2) =2((T = A)f) (x) +2q (T = A)f) ()
g+ 1) (I = A)f) ().
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4.3 Properties of the metric measure space

(V,d, u)

4.3.1 The measure of spheres and balls

In this section we shall compute the pg-measure of the sphere S,.(xg) of radius
r centered in xy € V defined by:

Sr(xo) ={z €V :d(x,x9) =71}
and of the ball B,(zg) of radius r centered in zq € V defined by:

B, (zo) ={x eV :d(z,z0) <r}.

Let wg € V with I(z9) = I. To compute u(S:(0)) = > ,cv.diary)=r '@ we
have to count how many vertices with distance r from xy are contained in V
for every level.

First we give a useful definition.

Definition 4.3.1. We say that y lies above x if

I(r) = U(y) — d(z,y).

In this case we also say that x lies below y.

Now fix g and r > 0 and denote by [ the level of 5. We can see that:

e there are 0 vertices z s.t. d(z,x¢) = r at level [(x) >+ 7.

e there is exactly 1 vertex z s.t. d(z,x¢) = r at level [(x) =1+ 7.

This is the vertex that one reaches starting from xo and moving for r
times to the vertex above the current one.

e there are (¢ — 1) vertices = s.t. d(x,x0) = r at level [(x) = (I +71) — 2.

These are the vertices that can be reached from zy moving r — 1 times
to the only vertex above the current one (reaching level (I4r)—1) and
then taking one step down to a child node not already visited (there
are ¢ — 1 such nodes).
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Figure 4.4: In this example, with ¢ = 3, y lies above z; and below z, while
it lies nor above nor below of zs.
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e there are q(q — 1) vertices z s.t. d(z,x¢) = r at level [(x) = (I+71) — 4.

These are the vertices that can be reached from xy moving r — 2 times
to the only vertex above the current one (reaching level (I + r) — 2),
then taking one step down to a child node not already visited (there

are ¢ — 1 such nodes) and finally another step down to any of the ¢
children.

e there are ¢" vertices x s.t. d(z,z9) = r at level l[(z) =1 —1r.

These are the vertices that one reaches by moving r steps down starting
from z( (every time there are ¢ possible choices for the child node).

levels

Figure 4.5: Representation of one element of the sphere S,.(z) for every level
(¢g=3and r =4)
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In general, if we denote with n, ., (L) the number of vertices with distance r
from zg and level L we have:

;

1 it L=1I01+4r

(q—1¢" if L=>1I+r—-2)—2k=(I+7r)—2(k+1)
Mo (L) = with k=0,1,...,7r —2

q if L=1—-r

0 otherwise.

Therefore, for r > 2:

pSao)) = S @

l+r
= Z Ny 2 (L)qL
L=l—r
r—2
_ qr+l—r + ql—i-r + Z(q . 1)qkq(l+r—2)—2k
k=0
r—2
¢+ D)+ (g-1)g" ) ¢*
k=0
1= ()

so we see that the formula found for » > 2 holds also for r = 1.

We notice that u(S,(z9)) depends on the level of the center x.
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For example, if I(xo) =1 = 0:

1(Sr(z0)) = ¢ (14 q) = #5,(z0),

i.e. the py-measure of the sphere coincides with its counting measure.

Now, to compute p(B,(xg)) we can exploit the fact that B, (x¢) is the union
of the disjoint spheres with radius from 0 to r and obtain:

T

u(Br(w0)) = pl(So(0)) + Y _ 1S (o))

J=1

=q¢ +> ¢ (1+q)

=1

= (1 +(1 +Q)iqj‘1>

J=1

=4 <1+(1+q)rz:qk>
=q (1+(1+q)11_qr)

—q
B z<1—q+1+q—q’"—q’"+1>
=q
l—gq
_ l2_qr_qr+1
l—gq
_ lqr+l+qr_2
g—1

4.3.2 The doubling property

We notice that u(B,(xg)) grows exponentially with respect to the radius r.

Definition 4.3.2 (Doubling Property). A metric measure space (X, p,v) is
said to be doubling if:

3C > 0s.t. v(Ba(x9)) < Cv(B,(x0)) Vr >0, Vay € X. (4.11)

Conversely, we say that (X, p, ) is not doubling if AC' > 0 satisfying (4.11).
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An example of doubling metric measure space is Euclidean n-dimensional
space endowed with the Lebesgue measure. In that case:

)\(BQT(.I'())) = (27“)”31(%0) S 2”7’”31(1’0) = 2”)\(Br($0>)
so 4.11 is verified by C' = 2™.

Proposition 4.3.1. The space (V,d, i) is not doubling.

Proof. Recall that
qr+1 + qr )
B, =g —=
1(B, (o)) = q q—1
The doubling property 4.11 implies that 3C' > 0 such that:

1 Bar(20))
(B, (70))

We show that this is not possible by computing:

<C Vr>0,Vryge.

1 q2r+l+q2r_2

. i(Bay (o)) . q—1
lim ————% = lim ——————
r—00 /j,(BT(QL’(])) r—00 ql%
¢ (g+1) -2

m
¢ |(a+1) - Z]

= lim
. e+ ) -5
= lim ¢" - lim —————-
r—00 r—00 (q —+ 1) — q_’“

]

We observe that the counting measure (V,d, #) is not doubling too, as one
_ qr+l+qr_2

can see repeating the preceding proof with #(B,(x¢)) P

This is due to the fact that in both cases the measure of the ball increases
exponentially with respect to its radius.

We can define a weaker condition which is satisfied by these spaces.
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Definition 4.3.3 (Locally doubling property). A metric measure space (X, p, v/)
is said to be locally doubling if:

VR >0,3Cgr >0 s.t. v(Ba(z9)) < Crr(B(x9)) Vr <R, Vxy € X.

(4.12)
Proposition 4.3.2. The space (V,d, i) is locally doubling.
Proof. Fix R > 0 and consider r < R.
2r+1 2r
¢ 4T =2
Boy(0)) = ¢
1(Bar(20)) = ¢ -1
2r4+1 2'r72
— ¢ = S A
- r+1lpqgr—2 .
q qfql q 1
2R+1 4 2R_9
l—q qt% qr+1 + qr -9
>dq qR+1+qR—2 q— 1
q—1
r+1 T 2
_ 4 +q Ch
qg—1
= (B (0))Cr
with Cg = q:;iig?:; = ’L ((%}f(foo)))) > 0 not depending on .
[

The same property holds for the counting measure. In both cases this is due

to the fact that the ratio % does not depend on the center of the ball

xo but only on the radius r.

4.3.3 The isoperimetric property

We now study another relevant property that links measure and metrics.
It is expressed by the following definition which captures the fact that the
region close to the boundary of a set A gives a significant contribution to the
measure of A.

Let (X, p,v) be a metric measure space.

For any subset A C X and each k € R* we denote:
Ap={r €A pla, A% < k}
AF ={x e A:p(x, A°) > k}.
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Definition 4.3.4 (Isoperimetric property). The metric measure space (X, p, v/)
has the isoperimetric property if

ko, C € RT  such that VA C X bounded open set it holds

Definition 4.13 is the standard way to express such concept in the context of
metric measure spaces. However we show that it is not the most suitable for
the present case, since it is trivially false for every measure when the distance
is discrete (i.e. it assumes only integer values).

Proposition 4.3.3. The space (V,d, 1) has not the isoperimetric property
(4.13).

Proof. We show that the converse of 4.13 is true, i.e.
Vko,VC' >0 dA C X bounded open set and Jk < kg such that

v(Ag) < Ckv(A). (4.14)

Indeed, it is sufficient to take k < 1 arbitrarily if kg > 1 or k = k—; if kg <1
and we have that A, = (), since there are no points in A with distance less

than 1 from A°. Then, since p(0)) = 0 (4.14) is satisfied. O

Proof of Proposition 4.3.3 does not rely on specific feature of d and u: we
just used the general fact that p(0) = 0 (which is true for every measure) and
that every vertex that does not belong to a set A C V has distance not less
that 1 from everyone of its point (which is true for every discrete distance on

V).

So Property (4.13) does not express a link between d and p and does not
provide any insight.

For this reason it is convenient to introduce a new definition that express
the same concept as 4.13 but is adapted to a discrete setting. The following
definition refers to [HLWO06].

Definition 4.3.5 (Isoperimetric property - discrete case). The metric mea-
sure space (X, p,v) with discrete distance p has the discrete isoperimetric
property if

3C € R"™  such that YA C X bounded set it holds

v(Ar) > Crv(A). (4.15)
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In Definition 4.3.5 we compare the measure of A with the measure of the
boundary of A (that is the set of vertices of A that have a neighbor in A° or,
in other words, that have distance equal to 1 from A€).

The fact that (V,d, 1) has not the isoperimetric property 4.3.5 is now more
interesting since it is not trivial.

Proposition 4.3.4. The space (V,d, ) has not the discrete isoperimetric
property 4.3.5.

Proof. We show that the converse of (4.15) is true, i.e.

VC >0 3JA C X bounded set such that
v(Ay)
v(A)

In particular, we show that for every C' > 0 we can find an admissible
trapezoid satisfying 4.16.

<C. (4.16)

Admissible trapezoids will be formally introduced in Definition 5.1.1 and
deeply investigated in the next chapter since they are fundamental in the
construction of the Calderén-Zygmund theory for the tree. For the moment
we just need to consider an admissible trapezoid as a set of vertices

R ={x €V :xlies below zg, h < l(zg) — l(z) < 2h}

for given xr and h = h(R).

The boundary of R is made of the two bases of R, that is the set of vertices
in R with level equal to [(xg) — h or I(zg) — 2h + 1. More formally, we can
define

br={z € R:l(z) =1l(zg) — h}
BR:{ZL‘ERIZ(I) ZZ(IR)—Qh—f-l}
and we have that
Al = BRUbR.

We will show that u(R) = h(R)¢"®®) (see 5.1) and that each level of a
trapezoid has measure equal to the measure of the root xp, i.e.

,U(BR) — q2h71ql(33R)72h+1 — ql(a:R)
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since in By there are ¢"~! vertices and each of them has level I(zg) —2h+1,
while in by there are ¢ vertices and each of them has level I(zg) — h. Then

p(AY _ pBa) + )
1(A) 1(A)
qu(ﬂCR)
= e
__2

- hWR)’

We can make this ratio arbitrary small by choosing a trapezoid of appropriate
height:

fi(A1) 2
M(A)<C < hR)> <.

C
That trapezoid plays the role of A in 4.16 and the proof is concluded. m

We underline that Proposition 4.3.4 is not trivial as 4.3.3 was. To show that
we give an example of a family of sets A C V for which the property 4.3.5 is
satisfied.

Example We set A = B,(z). The boundary of A is A} = S,(z¢).Then:

(A1) p(Si(x0))
1w(A)  p(Br(x0))
¢ (14q)

1 g™t +q"—2
qg—1

r—1

2 q
— —1 _—
(q )qr+1+qr_2

-1 ¢
¢ ¢(l+q) =2
-1
¢ q(+q)
(-1 1
¢ (1+4q)
(¢—1)
q
So for every ball A = B, (x¢) it holds

(Ar) . _(g—1)
(A) >(C with C = .

5




Chapter 5

Calder6n—Zygmund theory for
the weighted tree

In their work [HS03], Hebish and Steger outline the proof of a covering lemma
for the weighted tree, based on the introduction of a family of sets called
admissible trapezoids, thus showing that the tree possessess the abstract
Calderén—Zygmund property described in Chapter 3. We develope in great
detail their proof and also the one concerning the weak-type (1, 1) bounded-
ness of the maximal function M introduced therein.

5.1 Admissible trapezoids

Definition 5.1.1. R C V is an admissible trapezoid if and only if one of the
following occurs:

e R={zg} with zx € V, that is R consists of a single vertex ;
e drp € V, dh € N such that

R={x €V :xlies below zr,h < l(xg) — l(z) < 2h}.

We set h(R) =1 in the first case and h(R) = h in the second case. In both
cases we will refer to £ as the root node of the trapezoid.

59
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1(x)=1(xq)+2h(R) -1

| “ M M |

I ( + 2 h (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( CCCCCCCCOEOOEC OO CCCCCCCCCCCCCCCCCCC ey

Representation of an admissible trapezoid with h(R) =2 (¢ = 3)

For an admissible trapezoid R, h(R) can be interpreted as the height of the
trapezoid and coincides with the number of levels spanned by R.

Definition 5.1.2. We call width of the trapezoid R the quantity

w(R) = ¢,

It holds that:
u(R) = h(R)q“™ = h(R)w(R). (5.1)

To prove this we distinguish two cases:

e R = {xg}, that is R consists of a single vertex. In this case:

= qu(z) _ ql(l“R) _ h(R)ql(l“R)_

T€ER
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e R is not a degenerate trapezoid. In this case:

h

or)-
n(B) =) ¢ = Z

z€R =l(zg)—2h+1 zeR:l(x)=l
—h

l(zr)
_ Z qlql(zR)_l

I=l(zr)—2h+1

Z(IR)—h
_ ql(xR)

I=l(xR)—2h+1
= ¢'@R) (I(xg) — h — (I(xg) — 2h + 1) + 1)
- ql(wR)h — ql(wR)h<R)'

Definition 5.1.3. Let R be an admissible trapezoid. We define its envelope
R as follows:

e if R consists of a single vertex, then R = R;

e otherwise

h
R= {x €V :z lies below zp, = <l(zg) — l(z) < 4h}.

2

Proposition 5.1.1. Let R be an admissible trapezoid. Then it holds:

u(R) < 4u(R).

Proof. As usual, we distinguish between the degenerate and non-degenerate
case.

e If R consists of a single vertex R = {zz} then R = R = {2z} and

R) = ¢ = h(R)¢""" = u(R) < 4u(R).

zeR



62CHAPTER 5. CALDERON-ZYGMUND THEORY FOR THE WEIGHTED TREE

>
B

/
/ A\ I(xg)+2h—1
/

/ \ I1(xz)+4h—1

I(xg)+4h

Figure 5.1: Representation of the envelope R (green) of the admissible trape-
zoid R (red) when h = h(R) = 2
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e In the non degenerate case

h
lier) -2 )
TUEDWEEED VA WY
z€R I=l(zg)—4h+1 zeRil(x)=I
llar)—2] ler)—2]
I=l(zg)—4h+1 I=1(z)—4h+1

= ¢! (Ll(zr) — %] — (I(zg) —4h + 1) + 1)
< ¢ (I(xp) — & — U(zg) + 4h)

< (¢"“"h) (4 - 3)

< 4u(R).

Proposition 5.1.2. Let R; and Ry be two admissible trapezoids. If
Rl N RQ 7£ @ and U}(Rl) Z w(Rg) s

then 3
Ry C R;.

Proof. We distinguish four cases:

e 1) both R; and R, consist of a single vertex;
e 2) Ry is composed of a single vertex, while Ry is not;
[ ]

Ry is composed of a single vertex, while R; is not;

3)
e 4) nor R; neither Ry is composed of a single vertex.

Case 1): In this case
Ry ={zg,},Ry = {xr,} .
Thus,
RINRy#0 = =25, = Ry=R =R,
— Ry, C R;.

Case 2): This case is inconsistent with the hypothesis.

63
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Ry = {xg, }, let xg, be the root node of Ry. Then
w(Ry) = M) > ') —w(Ry) = l(xg,) > l(zg,)

:>£BR1¢R2 — RlﬂR2:®.
Therefore this case cannot happen.

Case 3): In this case Ry = {xp, }.

R1

R2

Let xg, be the root node of R;.

RlﬁRQ%w — l‘RZGRl — RQCRlCRl.

Case 4)
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\\\

Let xp, and zg, be the two root nodes of R; and Rs, respectively. Then

w(R1> = ql(le) > ql(zRQ) = w<R2) = Z(IRI) > l('rR2)'

If xR, were not below xg,, then it would hold Ry N Ry = () (since all vertices
of Ry lie below zg, and all vertices of Ry lie below xg,). This means that
TR, is below zp, and so is every vertex of Ry. In the following we denote

hl = h(Rl) and hg = h(Rg)

Ry ={x €V :xbelow xg, ,h1 <l(zg,) —Il(z) <2hy}
={x €V :xbelow zg, ,l(zg,) — 2h; < l(x) <l(xg,)— M},

Ry ={x €V :x below xp,,hs <l(xg,) —l(x) < 2hy}
={x €V :a below zg,,l(zg,) — 2hs < l(x) < (xg,) — ha}.

Let & € Ry N Ry # 0. Then, since (Z) satisfies both sets of inequalities we
obtain the following constraints:

I(zp,) — 2hs +1 < [
l((L‘Rl) — 2h1 +1 S l(

=>

=
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These last inequalities can be interpreted in the following way. For the in-
tersection R; N Ry not to be empty

e the lower base of Ry cannot be higher than the highest base of Ry,

e the higher base of Ry cannot be lower than the lowest base of R;.
Let x € Ry. Then

e z lies below zp, ==z lies below zp,,

o hy <l(zg,) —l(z) < 2hy — 1.

To conclude that # € Ry we must estimate the quantity I(zg,) — I(z).

lzg,) —U(x) = [l(zr,) — Uzr,)] + [l(zr,) — ()]
< [2hy — hy — 1] + [2hy — 1]
< 2[2hy — hy — 1] + [2hy — 1]
= dhy — 2hy — 24 2hy — 1

=4hy — 3 < 4h;.
lzr,) —U(z) = [l(zr,) — Uzry)] + [l(zR,) — ()]
Z [hl 2h2 + ] [hQ]
> % [hy — 2hg + 1] + [hs]
- hq 1 hy
=3t37 7

Summing up,

h
71 <l(zp)—1l(zr) <4hy Vre R,

— Rs CR~1.
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5.2 The maximal function M

Definition 5.2.1. We define the maximal function M as follows:

Mf(x) = sup p(R)7' Y |f(y)ld'™

R:x€R yeR

where f € C(V) and the supremum is taken over all admissible trapezoids R
containing .

Theorem 5.2.1. The mazimal function M is of weak-type (1,1).

Proof. Let f € L*(V, ) and A > 0.
Define Sy as the family of all admissible trapezoids R such that

ST1f(@)]g" @ > Au(R).

zER

Since Sy is countable, we can introduce an ordering in Sy.
All trapezoids in Sy have:

e bounded measure:

1 1
VRE S, u(R)< X 1f(y)|d'™ < 1 [FAIATSE
z€ER
e bounded width:
p(R 1
VRE So w(R) = < ulR) < 5 Wl

So it is possible to choose in Sy a trapezoid Ry of largest width (in case of
ties, we choose that trapezoid of largest width which occurs earliest in the
ordering).

Then we proceed inductively:

e S;. is the family of all admissible trapezoids R € 5; disjointed from
Ro, ceey R“

e R, is the trapezoid of largest width in S;;; which occurs earliest in
the ordering.
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Let R € S, that is R satisfies Y, _p [f(2)|¢"® > Au(R). Then by construc-
tion R intersects some R; with w(R;) > w(R).

Indeed, there exists a number j € {0,1,2,...} such that R € S; and R ¢
Sjt1, i.e. in the previous construction there exists a step j in which one of
the following occurs:

1. either R is the trapezoid of largest width that occurs earliest in the
ordering, and then R is selected and R; = R, so that RN R; # () for

1=7
2. either R isn’t the trapezoid of largest width that occurs earliest in the

ordering and it intersects ;. Then R will not be present in S; Vi > j+1
and RN R; # ) for i = j.

To assure that there is some j with the stated property it is sufficient to
avoid that Sy can contain an infinite number of trapezoids with the same
width that do not intersect each other.

If this were true, it could happen that for some step k in the construction
the set Sy contains an infinite number of trapezoids {17, T5, ... } all with the
same width equal to the maximum width in Sy and all disjoint with respect
to each other and to R.

Then it would hold:
R, =13 andTiGSkH Vi>1
Rk+1 = T2 and ﬂ € Sk+2 Vi > 2
Rk+2 =Ty and T; € Sk+3 Vi >3

and in this case, if w(R) < w(t;), nor 1. nor 2. would ever happen.
This possibility is excluded observing that:

S uR) <5303 1 @ld <

i TER;

1 o1
< XZ |f ()| = 3 Ml < oo,

ey

while if there was among the R;’s an infinite number of trapezoids with

constant width w -
S u(R) = Y=o
i n=1
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Summing up,
VR € Sy, Ji:RNR;#0and w(R;) > w(R).

By proposition 5.1.2, this implies R C R;.

and it follows from what we have just seen that for every trapezoid R € Sy,
RCFE.

Then it holds that:

We put:

(Mf)(x) <\ Vxé¢FE.

Indeed:
(Mf)(z) = sup u(R)" ) |f(W)ld™.

R:z€R yeR

For every admissible trapezoid R containing = € E°, R ¢ Sy. Indeed, if there
was an admissible trapezoid R € Sy such that x € R, then we would have
x € R C E but by hypothesis z ¢ E.

So,
Vo e B, (Mf)(x)= sup p(R) D |fW)ldY
R¢So:x€R yER
< sup  p(R)TAp(R) <\
R¢S()::E€R
Moreover:

. - AN 22w
p(E) = p (U Ri) < Z:u(Ri) < 4;/1(&) <S—

This shows that M f € L»*°(V, ), because:

1M fll oy = it {0 das (V) < ;}
with
Ay () = pfa - (M )(@) > A}

and we have that
{z:(Mf)(z) >} CFE
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since Vo € E¢, (M f)(z) < A
> 4151
LY,
dap(A) < p(E) < %
—= M fllprecy < 41w
= M is of weak-type (1,1).

5.3 The Calderé6n—Zygmund property for the
tree

We pass now to the proof of the main theorem of this chapter.

Theorem 5.3.1. The space (V,d, p) has the Calderon-Zygmund property.

Proof. In the following we use the same notation used in the proof of 5.2.1.

Take f € L'(V, ) and A > 0. Consider the sets R; and R; constructed as in
the proof of Theorem 5.2.1. To construct the functions f; of the Calderén—
Zygmund decomposition 3.1 of f at the level A we first define auxiliary sets
U; and functions h; as follows:

Ui :Rz_ 79
j<i
i) = flz) zeU
0 z¢U;

It holds that: .
Z |ha () ¢'™) < 6gApu(R;).

eV

Indeed it is possible to find three admissible trapezoids P;, P, P; with the
following properties:

o w(P) >w(R;) for k=1,2,3 ;
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L] RICP1UP2UP3
For example, for P;, P,, P; one can take the trapezoids obtained in the fol-
lowing way.

Py, P», P; are admissible trapezoids with the same root equal to the only
parent vertex of x;, the root of R;, which we denote by x,.

l(z,) =l(z;)+1 =  w(P) >w(R;) fork=1,273.

We denote hy the height of P for £ = 1,2,3 and h the height of R; and
observe that P, contains all vertices  below x, such that:

We want that the union of P, covers R@-, which contains all vertices  below
x; such that

<I(z;) —l(z) < 4h

| >

so we require that:

e P, covers the higher part of R;:

In this way P, covers Ry at least from level (measured with respect to
the root z;) % to h;

e P, covers the middle part of RZ
hey = h+ 1.

In this way P, covers él from level (measured with respect to the root
x;) h to 2h + 1;

e P5 covers the lower part of RZ

In this way P, covers R from level (measured with respect to the root
x;) 2h to 4h + 1.
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By construction R, C PLUPU P

To show that p(Py) < 2qu(R;) for k =1,2,3 it is sufficient to make a check
for Py since it is the largest one: all P have the same width w(P;) = ¢/
while 7(Py) = hy = 2h +1 > h(P,) for k = 1,2 and VA > 1.

So we compute:

p(Ps) = w(Ps)h(Ps) = ") (20 + 1) = 2qu(Ry) + ¢/
Wzs)—[5] W)~ 2]

p(R) = > R S

I=l(x;)—4h+1 g€ R;:l(z)=l I=I(z;)—4h+1
Uwi) _ (s h
= ¢ = ¢ (ah—1- 3] +1

B {%hql(“’i) if h even
§hql( ) — iql( ) if h odd

~J 2u(Ry) if h even
| L(Ry) — 1M if hoodd

When A is even:

T

2qp(R;) = Tqu(R;).

Then

1(Ps) < 2qu(R;)

& 2qu(R;) + ¢' Ut < Tqu(Ry)
& ¢ < Bgu(R;)

& ¢'") < 5u(R;) = 5¢'"h

1
& = < h true because h > 1.

When A is odd:

T

2qu(R;) = Tqu(R;) — ¢+
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Then

p(Ps) < 2qu(R;)

& 2qu(R;) + ¢ < Tqu(Ry) — ¢/t
& 24" < 5qu(Ry)

& 2¢'"") < 5u(R;) = 5¢'“h

2
& 5 < h true because h > 1.

For trapezoids P, with the previous properties we have that:

ST hi(@)ld' @ < (P k=1,2,3.

zePy,

Indeed:

e if P is such that
S (@) = (P

zePy

then by definition P, € Sy with w(P;) > w(R;). For what already
shown, Py intersects some R; with w(R;) > w(FP;) > w(R;) and so
Jj <i: P,NR; # 0 and then P, C R;.

This implies that:
hi =0on Pk

because U; = R; — | .}%j and so P, NU; = 0.

j<t

e conversely, if P is such that

> 1f@)]g" ) < Au(Py)

rePy

then

D ()| < T f(@)]d" ) < Au(Py).

z€P) T€Py

So in both cases we have > _p, |hi(7)|¢"® < Au(Py).
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Consequently, since supp(h;) C U; € R; C (PLU Py U Ps):

D (@) g™ <30 (i) lg'

k=1 x€P;

<> Mu(Pr)

3
<> N2qu(R)
k=1
= 6gA\u(R;)

as stated.

Now we put:

ey
Qz = Ria
h(R;)
ry = 4 3

x; € R; chosen arbitrarily .

Then the following conditions hold by definition:

o f=g+>,f
e f;, =0 outside Q; .
Indeed:

supp f; C (supp h; Usupp xr,) C (U; UR;) C R, = Q;.

Indeed, starting from an arbitrary vertex x; € R; it is possible to reach
every other vertex in R; passing through at most [(4h — 1) —0]2 =
8h — 2 edges, going up (i.e. moving to the only node above the current
one) at most 4h — 1 times and the down (i.e. moving to a child node
of the current one) at most 4h — 1 times.
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So if we center in z; a ball of radius 8h we cover R; because all vertex z
that can be reached as just described have distance d(z,z;) < 8h—2 <
8h.

° fv fidpu =0, i.e. f; is a zero-mean function.

Indeed:

/ fidp = fidp
v Qi

Jidp
R;
T
= [hi(w) (Z hi(y)q ) (]g )) e
xeéi yey H ?
T
= Z hz’(l’)ql(w) - (Z hi(y l(y)> Z XIZ}:(Z )) ¢@
z€R yeY €R; Sl
ze( R UJ<’LR ) yeV
=D h =3 hi(y)d¥ =0,
zelU; yeU;

where for the first integral we have used the fact that supph; C U; =
R U <1R - R while for the second one we expoited the fact that

R; CR and [ Xg,(v)dp(z) = [ xr,(2)dp(r) = p(R).

o 1(QF) <2u(Qs)

where

To show that, we observe that the only way of “going out” of R; is



76CHAPTER 5. CALDERON-ZYGMUND THEORY FOR THE WEIGHTED TREE

passing through the bases of trapezoid R;, that we can define as:

b= {x € Ri:l(x) =l(vg,) — [g]}’

B:{meéi:zu):um)—z;hﬂ}.

So
{r eV dx Q) <r}= {x eV:xe ]%ﬂ/d(x,b) <r;Vd(z,B) < TZ}.
More precisely,

— the nodes z that are above R; and have dinstance d(x,b) < r; are
the nodes above R; with level

1(b) < I(z) < () + 7,

o) < Uan) — 2]+ 5] 1
§l(xRi)—g+%+1—1:

— the nodes x that lie below R; and have d(z, B) < r; are the nodes
below R; with level

1(2) > (zp) — 4h+1 — ((%1 _ 1)

h

zm&)—zm—%—wg
1

—l(a;Ri)—{thl.

So Q7 is a (non admissible) trapezoid containing nodes below x g, hav-
ing level [ satisfying the constraint:

h 17
TS lan) —l< Th-1
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which means it contains at most %h —1-— % +1= %h = 4h levels.

Each level has measure equal to u({zg,}) = ¢"®#), then the measure
of Q) satisfies:

1(QF) < 4hg'™r) < (Th — 1)¢"™m) < 20(Q;)

since

N Thq'@r;) if h even I
2(03) = 2u( ) — > (Th — 1)¢"@ro) |
Qi) = 2p(R) {(m ~1)g'@r)  ifhodd ( )

> Q@ <Z2u Q) —2Zu
< QZ@ <8Zp

8l
- A
= o (e “”) ol
<Z</]hydu+ :cezvh deu)

<Z</[h’d,u+2|h g )
xey
— 22/ \hildp =
i %
23" [ 11idn
i YU
<9 / =20l
= Z 1fill vy < 20w -

e The function g is bounded.

To show that, we observe that
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— g = f outside E = |, R;.

Indeed, 5

If x ¢ E = x ¢ supph; Vi then

i< Rj D supp h;.

o(w) = fla) = 3 file) =

where xg, () = 0 because R; C R;so x ¢ R; Vi = x ¢ R; Vi.

— 9= (Do @) (@) 225 on E =, R,

Indeed E = |, R, = \U; Ui where the R; are not necessarily dis-
joint while the U; are disjoint by construction.

Then if x € E, x belongs exactly to one of the U; which we denote
by U;. We have:

oy Jo viti
hi(@) {f(x) ifi=1

and then

= flz) - Z (hz(x) - [Z hi(?/)ql(y)
= 1)~ Ii(e) + 3 (Z hi<y>ql<y>> an)

— . i(y) | XE: ()
= (shoe) 523

— |g(x)] < X outside E.
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Indeed, if = ¢ E:

l9(x)] = |/ ()]
< B I w)lg

yeER
< sup u(R)™Y  |f(y)|d™
o 0 1)

= (Mf)(z) <A

where R = {z} with u(R) = ¢"® is an admissible trapezoid.

— sup,cp |g(x)] < 24gA.
Indeed,

zel zel p

su T su ; Hy) X (%)
plg(x)| <sup|> (%:hz(y)q ) (R

::Sup

where the second inequality follow from the fact that the R; are
disjoint and the function to be evaluated is constant on each R;.

The previous considerations about g show that ¢ is bounded, more
precisely:
de: g < e

for example, one can take ¢ = 24q.
Summing up, we have proved that Vf € L'(V,u) and VA > 0 it exists a

decomposition of f that satisfies the properties 1) to 6) of the definition
3.1.1.

This concludes the proof of the theorem. ]
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Chapter 6

Main results

Calderén—Zygmund theory developed in previous chapters can be used to
study boundedness properties of some integral operators. In particular we are
interested in operators related to the Laplacian £ on the infinite homogeneous
tree, namely spectral multipliers of £ and Riesz transform.

6.1 Spectral multipliers

From the functional calculus recalled in Section 2.2 and for the self-adjointness
property of the Laplacian £ proved in Chapter 4, we know that H(L) is a
bounded linear operator on L?(V, i) for every continuous function H defined
on the spectrum (L) = [0,2]. In this section we present conditions on the
function H which guarantee that H is an LP-spectral multiplier for the Lapla-
cian for p € (1,00), i.e. that the restriction of H(L) to LP(V, u) N L2(V, i)
can be extended to a bounded operator on LP(V, ) for 1 < p < oo, and that
H(L) is a weak type (1,1) operator.

The main result is stated in Theorem 6.1.5 and is obtained as an application
of the abstract Calderén—Zygmund Theorem 3.2.2 in the context of the tree.
Before stating it and giving its proof, we need some preliminary results.

81
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6.1.1 Preliminary results

Let F be a real function with support supp F C [0,2). By [FTP83] and
[HS03] we know that F'(L£) is an integral operator with kernel

F(L)(xz,y) = Re <K(x, Y) /0” F(1 — cos §)e?@¥)p(8) sin 9d9> (6.1)

= Re (K (z,y)Er(d(z,y))) (6.2)
where
K,y =q¢ & 0, (6.3)
n(0) = . (e_if_ %ew> : (6.4)
Ep(k) = /0 ' F(1 — cos0)e™n(6) sin 6do (6.5)

forz,y e V;keN, 0 €0,7).
Definition 6.1.1. For s > 0, the Sobolev space H® is defined by:
H® = {F :[0,7) = C: Z |F(k)[(1+ k) < oo}
kEZ
where

Bk = % /0 " (et

We denote by || - || g+ the norm on H® defined by

£

e = (kaw T rkn%) -

kEZ

Lemma 6.1.1. Let s > 0, m € N such that m > s. Let a < b, ¢ < d fized
constants.

Suppose that ¢ : R — R is in C™ and is an increasing function such that
o(c) < a, ¢(d) > b, ¢ > 0. Then there is a positive constant C' depending
only on a,b,¢,d, 5, || |1, |8l such that

[£"0 ¢

s < C|F|

s VF with supp F' C [a,b].
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Definition 6.1.2. For ¢t > 0 and H : R — C, we define the dilation operator
D; by the following formula:

(D,H)(\) = H(t\)  VAER.

Lemma 6.1.2. Fize € (0,1]. If s > 3 + ¢ then there is a constant C > 0
such that for each integer n € N and for each function F': R — C such that

supp F' C [272"71 27272 " [0, 2] (6.6)
it holds
D Ep(E)|(1+ E)(1+27"k) < C|| D20 F|| (6.7)
k=0

> IEp(k)|(1+27"k) < C27"||Dy-2u Fllge (6.8)
k=0

> |Ep(k+1) = Ep(k)|(1 4 k)(1+27"k) < C27"| Do-2uFllgs . (6.9)
k=0

Proof. We define G as:
G(z) = (Dy2nF)(z) = F(27%z) Vo eR

that is
F(z) = (Dy2nG) (x) = G(2*"1) Vr € R.

We consider formula 6.5 and we observe that 1 —cos € is monotone increasing
over [0,7]. Moreover:

1 —cos(27") = 2sin?(27"7 1)
S 2(271171)2 — 272n71 )

Then by 6.6, F'(1 — cos#) = 0 in the interval (0,27"). Similarly:
1 — cos(27"m) > min(272""2 2).

Then by 6.6, F/(1 —cosf) = 0 in the interval (27", 7). Then we can restrict
the integral in 6.5 to (27,27 ") and perform the change of variables t = 2"0
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to obtain

o

2-
/ F(1 — cos 0)en () sin 6db
2 n

n

/ F(1 —cos(27"t))e™ "*p(27"t) sin(27"¢)27"dt
2”

F(2sin®(27"71))e "y (27"t) sin(27"t)dt

o
= / G227 sin?(27"7 1)) e (27t sin(27"t)dt

1
_ 2 2n H ztmdt

- / H(t)e'™dt , (6.10)

1

where we have introduced

k=2"m +l with 0 < [ < 27, (6.11)
Ui(t) = 2 12" sin(27 ") (27, (6.12)
H(t ) = (22”+1 sin?(27"7 1)), (6.13)
Hy(t) = H(t)pi(t) . (6.14)

We now claim that ¢; and its derivatives are bounded by a constant that
does not depend on n,[,t in [0, 7.

Now we verify the claim for ;.

()] = 2% sin(27"2) n(27"1))

n —MN 2
<2 <2 t)ﬂ-|e—i2—”t _ %eﬂ—”t

2
71'(1—%)
2
1—

<t

<

Q=

For the derivatives of ¢; the proof is similar.

We also claim that the function ¢, (t) := 22"*!sin*(27""'t), t € [0, 7] and all
its derivatives are bounded by a constant that does not depend on n. Indeed,
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|9 (1) = 22" sin?(27"7 1)
t2  x?
R
and similarly for all derivatives of ¢,.

This implies that
|nllcs <C <0 VjeN

with C not depending on n.

Moreover |¢/| is bounded from below by a positive constant independent of
n on the set ¢, (supp G), where supp G C [3,4]. Indeed, if t € ¢, (supp G),
then

1
22n+1 Sin2(2_n_1t) Z 5 — 2—1
— sin?(27" ) > 272
— 27" >gin(2" ) > 27!

which implies that ¢ > 1. Moreover,
22n+1 Sin2(27’nflt) S 4 — 22
:> Sin2(2_n_1t) S 22—2n—1 — 21—2n

1 1
— sin(27") <272 <272 forn > 1.

This implies that 27771t <
Thus:

1
7 = arcsin(272).
¢! ()| = 221 2sin(27" 1) cos(27 )27
= 2" cos(27" M) sin(27" 1)
19—n—1
Z 2n+12—§_
1 3
> ontloT59 "2 — 975 > (.
Then ||%|| 1 is bounded by a constant that does not depend on n.

It is now possible to apply Lemma 6.1.1 to conclude that:

| Hl| g < C||H || gzs ||| m
:CHGoqﬁnHHs
< G (6.15)
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Then:

i |Ep(k)|[(14+k)(1+27"k) =

2"—1 oo
= |[Er(2"m + D[(1+2"m +1)(1 +m + 27") .
=0 m=0

We notice that:

(1+2"m+1)=2"(m+2""(1+1))
< 2"(m+1).

(I+m+2") < (1+m+27"(2"-1))F
=14+m+1-27")
=24+m-2"")°

(24 m)"

(2+2m)°

2°(m + 1)°

2(m+ 1)<

IA A

IN

Then by applying Cauchy-Schwarz inequality in the inner sum we get:

2"—1 o
Z|EF (LR A +27k) =Y [Ep(2"m + D) (m + 1)2"(m + 1)°2
=0 m=0
2" -1 o
=21 N | Ep(2'm + )| (m + 1)
=0 m=0
1 1
2n—1 o) 2 [es) 2
<27y (Z(\EF(zan)y(Hm)S)?) (Z(1+m)2(”65)> .
=0 m=0 m=0

The last sum converges since s > % +es02(1+e—s) < —1. Using 6.10 and
6.15 we get:
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iwp(k)yu + k) (1+27"k)
k=0

2" —1 00
< 02n+1 Z (Z (2—2n
=0 =0
on 1

< 02n+12—2n Z Hﬁl’

e
=0

< C27"H 2" — D)||G| s

= C||G| ws

= C||Dy-2n F|| g1

This proves (6.7). The proof of (6.8) is similar:

<2y (Z<|EF<2”m+z>|<1 +m>s>2)

=0 m=0

2" —1 o)

ey (S (o
=0 m=0

2n71

<27 ||H)|
=0

<027 (2" —1)||G]

== C2inHD2—2nFHHs 5

~

IN

Hs

HS

where we applied 6.10 and 6.15.

/17r F[l(t)e“mdt‘ (1+ m)5> 2) :

/17r f[l(t)eitmdt‘ (1+ m)5> 2) :

o0

> (1 +m)H

m=0

1

|

87



38 CHAPTER 6. MAIN RESULTS

We now pass to 6.9. First we compute:

Ep(k+1)— Ep(k)

— 2n/ G(22n+1 Sin2(27n71t>)77(27nt) sin(2*”t) |:ei(k+1)2—"t . 6ik2‘”t:| dt
1

_ o / [G(22”+1 sin?(27"1))n(27") sm(z—nt)eik?*"t] (eﬂ*"t - 1) dt
1

which implies

\Ep(k+1) — Ep(k)| < sup ( 2t 1]) |Ep(k)]
te(1,m)

< 27"m|Er(k)|.

In conclusion we apply 6.8 to deduce that:

i |Ep(k+1) — Ep(k)|(1+ k)(1 +27"k)"
k=0

<2n i |Ep(k)|(1+ k) (1 + 27"k)°

< C27"||Dy-2n F|

Hs -

O

Lemma 6.1.3. Take y,z € V such that d(y,z) =1 and I(z) = l(y) — 1, and
let k € N. Then:

1 k=0
Y K(x,y)g'™ = { {_1 L i E e 0. (6.16)
z:d(z,y)=k 2+ T( o ) Zf > 07
> IK(zy) - K(z,2)|¢"™ < 1; (6.17)
z:d(z,y)=k
1
> VK (2,y)d™ < q— . (6.18)
z:d(x,y)=k

Proof. We first prove 6.16.

. W) —dEy) g,
> K@yd™= > ¢ 2 ¢¥

z:d(z,y)=k z:d(z,y)=k

Z —U(y)+l(x)—k
= q 2 .

z:d(z,y)=k
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Keeping in mind the characterization of the nodes of the sphere Si(y) ex-
plained in Section 4.3.1, we split the sum in three components according to
their level:

> K(x,y)d® =

z:d(x,y)=k

The last equality holds for £k — 1 > 1 ie. &k > 2. When k£ = 1 direct
computation shows that 6.16 equals 2 so the result is still valid. When k£ =0
the only term in the sum appearing in 6.16 is for z = y and K (y, y)¢'™® = 1.

We now prove 6.17. First we show that if x does not lie below z, then
K(z,y) = K(z,2).

Let suppose x does not lie below z.

—l(z)=l(z)—d(z,z)
2

K(SL’,Z)I(]

*(l(y)*l)*l(;)*(d(z,y)Jrl)

—ly)—l(z)—d(=,y)
2

= K(z,y).

Then we have that:

Y. Ky~ K(z,2)ld@ = >, K (2,y) — K(z,2)]q""

z:d(x,y)=k z:d(x,y)=k, x below z

Z —ly)+l(z)—d(z,y) —Uz)+l(z)—d(z,z)
= q 2 — q 2

z:d(x,y)=k, x below z
_ k=11, —k—k —k+1—k+1
=q¢" g —q |

where the last equality is due to the fact that:

lz)—Uy) =—k, l(z)=1lz)=—k+1, l(z)=Iy —1
dz,y) =k, d(z,z)=k—1.
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It follows that:

Z 1K (z,y) — K(z,2)|¢"™ = ¢" " ¢ — ¢ 22
‘r:d(xﬁl/):k
= qk_1—2k|1 _ q+2|
= ¢ FH1 - ¢
¢° =1
]
¢ -1
q2

IN

<1

IA

if k>1.

If £ = 0, the sum in 6.17 consist of just one term and we can compute it
explicitly:

Uy)=U(z)—=d(y,z)
2

1K (y,y) — K(y,2)|¢'™ = |1 — ¢

In conclusion, we prove 6.18. We recall that
VK ()= > |K(w,y) = K(z,y)] .
w:d(w,z)=1

We have to distinguish two cases. To this aim we adopt the following nota-
tion: we label vertices in the neighborhood of z in such a way that wy is the
father of x and wy, ..., w, are the children of x.

Case 1): d(wy,y) < d(z,y), i.e. y can be reached from z going up. In this
case we have:

—l(y) =H(wg)—d(y,wq)
2

K(wo,y) =¢q
~ ()= (U2)+ 1)~ (d(y,2)~1)
= 2
—1(y) = U2)—d(.y)
= 2 = ]:((.’lj7 y) .
In the same case, if we consider a neighbor w # wy.
— 1)~ Uw) = d(y,w)
K(w,y) =q 2

*l(y)*(l(z)*3)*(d(yyz)+1)

—ly)=l(z)—=d(=,y)
2

= K(z,y).
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So in Case 1) we have that

V. K(z,y) =0.

Case 2): d(wg,y) > d(x,y), i.e. y can be reached from x going down. We
denote by w* the child of x such that d(w*,y) < d(x,y). In this case we
have:

—l(y) —l(w*) —d(y,w™)
2

k
K(w*,y) =q
— ()= () =1) — (d(y,z) 1)
— 2
—l(y)=l(z)—d(z,y)
g B S L)
=q 2 = qK(v,y),
—(y)—l(wg)—d(y,wq)
K<w07 y) =4q
g ((VEUEIERSEICTURAERY
DM@ —d@y) ]

In the same case, if we consider a neighbor w # w*, wy we have that:

—l(y)—l(w)—d(y,w)
K(w,y) =q 2
—l(y)—(U(x)—1)—(d(y,x)+1)
— 2
—l(y)—l(z)—d(=z,y)
=q 2 = K(z,y).

Summing up, in Case 2) we have:

VLK () = |K(w*,y) - K(z,9)] + K (w0, y) — K(z,y)
ZWMQ%y%—K@£M+W$K@w)—K@MM

=@—nK@wwur—§me

=wa@—$»

In the sum over x : d(z,y) = k appearing in 6.18, V, K (x,y) # 0 only if y
lies below z: this happens for a single node & with I(2) = l(y) + k. Then we



92 CHAPTER 6. MAIN RESULTS

have:

> VLK (,y)|d" = VoK (&, y)d™
z:d(z,y)=k

) 1
= K(&,y)(q¢ - g)ql(y”k

—1(y) = U(&) —d(y,&) 1
2 (g —=)g'@+*

721(y)27k7k l(y)-i—k(

=q q q—=)=q——.

This concludes the proof.
m

Lemma 6.1.4. Fiz e € (0,1]. If s > 3 4 ¢ then there is a constant C > 0
such that for each integer n € N and for each function F' such that

supp F' C [272"71 27221 N[0, 2]
it holds

D IF(L)(x,y) = F(L)(w,2)|q"™ < C27"d(y, 2)|| Dy-an F s 5 (6.19)

Y IFL) (@, y)|(1 - 27"d(w,9)) "™ < C|| Dy-an F s ; (6.20)

D NVLF(L) (@, )1 —27"d(x, )¢ < C27"|| Dy-an F

xT

. (6.21)

Proof. We start proving 6.19. It is sufficient to prove it for F' real. Moreover
it is sufficient to study the case d(y, z) = 1. Indeed, suppose that 6.19 holds
for points whose distance is 1. For y and z having distance greater than 1
we can denote by 7 the only path joining y and z having length d(y, 2):

Y= (Y = 00,01, .., V() = 2).
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Then we can write:

Since d(vj,v;41) = 1 we can apply 6.19 to each term obtaining:

d(y,z)—1
Y P (L) (w,y) = F(L)(w,2)ld"™ < Y C27"|[DyonF o
T 7=0

= C27"d(y, 2)||Dy-2n F|

Hs-

Lastly we can assume that [(z) = l(y) — 1. Indeed, if we have I(z) = I(y) + 1
it is sufficient to exchange the roles of z and y, since 6.19 is symmetric with
respect to this swap.



94 CHAPTER 6. MAIN RESULTS

We can now prove the claim for y, 2 € V s.t. d(y, 2) = 1, I(z) = I(y) — 1.
Z\F(L‘)(a:, y) — F(L)(z, 2)|¢@ =
- Z |Re (K (x,y)Er(d(z,y))) — Re (K (z, 2) Ep(d(z, 2)))| ¢®
= Z |Re (K (2,9) Er(d(x, ) = K (x, 2) Ep(d(z, 2)))| ¢'®
- Z K (2, y)Er(d(z,y)) — K (2, 2)Ep(d(z, 2))| ¢@

<Y K (z,y)Ep(d(e,y)) = K(x, 2) Er(d(z,y)+

+ K(z,2)Ep(d(z,y)) — K(z, 2) Ep(d(x, Z>>|ql(x)
- Z \K (x,y) — K(x,2)||Er(d(z,y))|¢ @+

+ Z K(z,2)|Ep(d(z,y)) — Ep(d(z, 2))|¢'@

=51 + 5.

We estimate the two terms 57 and Sy separately.
Z K(z,2)||Ep(d(z,y))lq""
z,y)=

z:d(z,y)=k

|Er (k)] ( > K (xy) - K, Z)ff“”) :
We can apply 6.17 to the quantity in brackets, to obtain:
S1 <> |Ep(k)

k=0

< S 1EI0 + 2k

<C2

The last inequality is due to 6.8.
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To estimate Sy we observe that if d(x,y) = k then d(x,z) = k + 1 (since
d(y,z) = 1). Then:

since

|Er(d(z,y)) — Er(d(z, 2))| <
< |Er(k) — Er(k+1)| + |Er(k) — Er(k —1)|,

the left hand side is equal to exactly one of the terms on the right hand

side and the other one is positive. We formally put Fr(—1) = Er(0) so that
the inequality holds also for k£ = 0.

Sy =

<

Z Z K(x,z)|Ep(d(z,y)) — EF(d(I7z>>|ql(z)
k=0 z:d(z,y)=k

o0

(|Ep(k+1) = Ep(k)| +|Ep(k — 1) — Ep(k)]) > K(z,2)¢'"".
k=0 w:d(z,y)=k

We can apply 6.16 to the last factor, oberving that 2+q;—1(k5— 1) <2+4k-1=
14 k. So we obtain:

S

< S Er(k 4 1)~ B4R+ S 1 Er(k— 1) — Ep(b](1+ k)

< i |Ep(k+1) — Ep(k)|(1+ k) + i |Ep(k — 1) — Ep(k)|(1 + k)

=Y |Bp(k+1) = Ep(k)|(1+ k) + Y |Ep(j +1) — Er(j)|(2+j)

Jj=0

= |Ep(k+1) — Ep(k)|(1+ k) + 2 |Ep(j+1) — Er(j)(1 +)

J=0

- 3i Ep(k +1) — Ep(k)|(1+ k)

<3 |Ep(k+1) = Ep(k)|(1+ k) (1 +27"k)°
k=0
< C27"||Dy-2n F|

Hs

where the last inequality follows applying 6.9. This concludes the proof of

6.19.
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We pass now to the proof of 6.20.

D IF(L) (@ y)l(L =27 d(w, 9))¢" ™ <

= Z K (2, y) Er(d(z, y))|(1 — 27 "d(z, )¢

N Z Z (z,y)|Er(k)|(1 — 27"k)¢"®

k=0 z:d(z,y)=k

—S BBl -2 Y K

z:d(z,y)=k

We can apply 6.16 to the last factor. We get:

Z\F (z,9)|(1 = 27"d(z,y))¢"® <Z\EF (1 = 27"k) (1 + k)

S C||D272nF|

Hsy

where the last inequality follows from 6.7.

Lastly we prove 6.21.

ZIV F(L)(z,y)|(1 —27"d(z,y))q"") <
<> Y K(w,y)Er(d(w,y)) = K(z,y)Ep(d(z,y))|(1 — 27"d(2,y))¢"™

z  w:d(w,zr)=1

=> " > |K(w.y)Er(dw,y) — K(w,y)Ep(d(z,y))+

z wid(w,x)=1
+ K(w’ y)EF(d(xu y)) - K(ZL’, y)EF(d(xv y)>|(1 - Q_nd(x7 y))eql(z)
=Y > |K(wy)llErd(w,y)) - Er(d,y)|(1 -2 "d(z,y))q""+

z  wid(w,z)=1

> > IK(U%Z/) — K(z,y)l|Bp(d(z,9))|(1 - 27"d(z,y))¢""

Tz wid(w,z)=

=29+ 2.
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We consider the two terms individually.

= Z |K(w7y)

~ K, 9)|Br(da, )| (1 — 27d(r, )"

:Z Z | K (w,y) — K(x,y)| | |Er(d(

2, y)|(1 —27"d(z,y)) ¢
w:d(w,z)=1

=Y > VuK(2,9)¢" | Ep(k)|(1 - 27"k

k=0 z:d(z,y)=k

<(g- 3) S 1ER(R)|(1 = 277k

<C2

where the last inequality is due to 6.8 |

Now we consider the second term.

=> > | K (w, y)|| Er(d(w, y))

, d(w,y)) — Ep(k)|(1 — 27"k)¢"™
d(z,y)=k w:d(w,z)=1
Since d(w, y) is either k4 1 or k — 1, we can make the following estimation

i (|[Ep(k+1) — Ep(k)| + |Er(k — 1) — Ep(k)|) (1 —27"k)x
k=0

XY K@yl

z:d(z,y)=k w:d(w,z)=1
We evaluate separately the term in round brackets
oD K (wy)|dW =
z:d(z,y)=k w:d(w,z)=1

R R ~ 1 R
S (gt DE @)@ + @ (<q LK (3, y) + K (8 y) + LK (0, y>)
z:d(z,y)=k,x#£% q
< Z (2 + DK (z,y)¢'@

z:d(z,y)=k
<(2¢+1)(1+k),



98 CHAPTER 6. MAIN RESULTS

where in the last inequality we exploited 6.16 and again & denotes the single
node with d(z,y) = k and () = l(y) + k. We can go back to Xs:

%, < 3 Bk + 1) — Er(R)I(1+ B)(1 - 2K+
+ ci Ep(k — 1) — En(k)|(1+k)(1 — 27%)" .

The first sum is less than C27"||Dy-2n F'|| s thanks to 6.9. For the second
sum we change the index k = k + 1 (then we drop the tilde):

C’Z|EF — Ep(k+ 1|2+ kA —-2"(k+1))
< CZ|EF — Ep(k+1D)2(1 + k)2(1 —27"k)°
—CZ\EF — Ep(k+ |1+ k)1 —27"k)°.

In conclusion:

g Ci |Ep(k) — Ep(k + D|(1+ k)(1 — 27k)°

22 S CanHDg—an]

S 02_n||D272nF| Hs

where the last inequality follows from 6.9. This concludes the proof. O

6.1.2 Spectral multipliers theorem

Given a continuous H : [0,2) — C the spectral theorem allows us to define
the operator H (L) which is bounded on L?(V, p).

Definition 6.1.3. H is called an LP-spectral multiplier for £, with p €
(1,00), if H(L) extends to a bounded operator on LP(V, 1), i.e. the restriction
H(L)psnr2 of the operator H(L) : L*(V, ) — L*(V, i) can be extended to a
bounded operator on LP(V, u).

Definition 6.1.4. Let H be a function with supp H C [0,2). H satisfies a
Mikhlin-Hérmander condition of order s if

sup |(D:H)|| gs < o0 (6.22)
>

for some ¢ € C([3,4]), ¢ # 0.
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Remark: let ¢; and ¢, be any two functions in C2°([3, 4]). If condition 6.22
is satisfied for ¢y, then it is satisfied also for ¢,.

In particular, we can fix ¢ € C2°([3,4]) such that ¢ = ¢* with ¢» € C°([3,4])

and such that
—+o00

Ve>0 ) ¢2x) =1

n=—oo
We are now ready to state the main theorem of this section.

Theorem 6.1.5. Let H be a continuous function with supp H C [0,2) which
satisfies a Mikhlin-Hordmander condition of order s for some s > % Then
H is an LP-spectral multiplier for the Laplacian L for 1 < p < oo and H(L)
is a weak type (1,1) operator.

Proof. We can represent H as:

H(z) = ( > ¢(22”f€)> H(z)

n=—oo

“+oo

= > ¢(2"x)H(x)

n=—oo

= Z Gn(z)

where we have defined G,,(r) = ¢(2*"z)H (z).
We observe that:

supp¢ C [L,4] ¢ supp Doz C [272071 272012,
Then we have:
supp Gy, C supp H N supp Doznp C [0,2) N [27277 1, 272042,
For n < 0, 272""1 > 2, 50 in this case:
0,2) N[22, 2 =

and G, (z) =0, V.

So the representation obtained for H can be reduced to:

H(z) = Gn(x).
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It follows that the operator H (L) admits the representation:

= Z Gn(£)

where G,,(L£) is an integral operator whose kernel admits a representation of
the kind described in 6.2. We show that G, (L) satisfies the hypothesis of
Theorem 3.2.2. By hypothesis

ds > 2 sup |(D:H) || s < 0.
>

Moreover:
Dy-2nGp(z) = G, (277"7)
= ¢(x)H(27*"z)
= (Da-2n H) () ().
So it holds:

Js> 32 ||Dy-20Gyllgs = ||(Da-20H) || g < C < 0.

We set € € (0, 1] such that s > ‘%’ + e. We can apply Lemma 6.1.4 (using G,
in the role of F ) to obtain:

ZlG (14 27"d(z,y))¢"™ < C||Dy-20Gy|

HS_

where the last constant is independent on n. Then the first assumption 3.6 of
Theorem 3.2.2 is satisfied. Similarly, the second assumption 3.7 of Theorem
3.2.2 follows from 6.19. Thus H(L) extends to an operator of weak type
(1,1) and bounded on LP(V,pu), 1 < p < 2.

The result for p > 2 follows by duality. In particular, we can proceed similarly
to prove that the adjoint operator H(L)* = H(L) extends to an operator of
weak type (1,1) and bounded on LP(V, ), 1 < p < 2. Then the transpose
operator H(L)! = H(L) = H(L) is bounded on L¥ | p/ > 2.

]

6.2 The Riesz transform

As another application of the abstract Calderén—Zygmund Theorem 3.2.2 we
study the boundedness of the Riesz transform operator V.£~/2, which is the
analogue of the classical Riesz transform in this setting.
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Theorem 6.2.1. The Riesz transform operator VL2 is of weak type (1,1)
and bounded on LP(V, ) for 1 <p <2 .

Proof. We represent the function \[ as follows:
1N 92
B i
22n
— Z Vi, (t

where again we have fixed ¢ € Cso([%,él]) such that ¢ = ¢? with ¢ €
C2([3,4]) and such that

“+o00

Ve>0 ) ¢2Mx) =1.

n=—oo

We now write (L)~ 3 = Yo Un(L) = >, Vi (L)W, (L). Each of the opera-
tors U, (L), V., (L), W, (L) is an integral operator and the respective kernels
Un(L)(z,9), Vi (L) (x,y), W, (L) (z,y) admit a representation as the one given
for F'(L)(z,y) in 6.2.

We make some preliminary estimates:

VS > 0, ||D272nUn|

e < 02 (6.23)

Indeed:
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Then we can compute:

HDQ—QnUnHHs == HQnUOHHs

= 2"[|Uo|| 1+
t
= 2n||ﬂ)| s < C2"
Vit
since % € C([3,4]) and so ﬁ\/? € H°.
[ ]
Vs > 0, ||D272nVn| Hs — 2nC. (624)
Indeed,
()
D272nVn( ) — 2—2nt
P(t)
= 2" —= =2"V,(¢t).
\/E 0( )
Then we have:
HDQ—QnVn’ Hs — HQ"%‘ Hs — 2nC
[ ]
Vs > 0, ||D2—2an| Hs = ||WO| Hs = C. (625)
Indeed,

Dy Wi(t) = w(t) = Wol2).

Using 6.21 we obtain:

DIV ValL) (@, p)ld D <3|V ValL) (@, y)| (1427 d(x, y)) ¢

< 027" Dy-2aV, || s
=C2""C =C, (6.26)

where we have used 6.24 and the last constant does not depend on n. Then
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for Vo Un(L)(z,y) = [, Vo Va(L)(x, w) Wy (w, y)dp(w) we have:
ZWU = VoUn(£)(, 2)|q' =

g//mwm@mwmmWwwwommwwmm
= [ 19000 )W), ) = WD), 2) dp(w)dn(w)
=/mmmWw4mwmw(/mnmwmmmﬂww

SG?/mmmxww )ﬂw (w, ) — Wy (L) (w, 2)]dp(w)

S CQind(y, Z)HD2—2TLWnHHs
< C27d(y, 2).

where in the last two steps we have used 6.26, 6.19, 6.25.

This shows that the second assumption 3.7 of Theorem 3.2.2 is satisfied by
VU, (L). The first assumption 3.6 is satisfied as a direct consequence of 6.21
and 6.23, which upon the substitution £’ — U, give:

D VU (L)(@, 9)|(1 - 27"d(w, )¢ < C2° (6.27)

) <C. (6.28)

This concludes the proof. ]
Previous result can be reformulated for the operators X jﬁ_l/ 245=0,...,q,

i.e. in terms of directional derivatives instead of the gradient.

Theorem 6.2.2. The operator X;L£7/? if of weak type (1,1) and bounded
on LP(V,p) for 1 <p <2,

Proof. We prove that the restriction of X;£7Y2 to LP(V, ) N L*(V, i) can
be extended to a bounded operator on LP(V, u). The other part of the claim
can be proved similarly.

We take a function f € LP(V,u) and consider a sequence f,, n € N of
functions in LP(V, ) N L?(V, 1) converging to f, i.e.:

| fo = fllepew,) = 0, when n — oo
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The sequence X jﬁ_l/ 2 f,, converges in LP(V, ). Indeed consider m,l > n:

IXL7Y2 f = XL fnll ooy = IXGLT2(fr = fo) oo
< VL2 (fy = fu)llo
< |\IVLY2Nfi = Fnllzr o

where the last quantity tends to zero when n — oo since V£~/2 is bounded
on LP and f, is a Cauchy sequence.

Then X;L£7Y/2f is the LP(V, i) function defined as
X;L7V2f = lim X;L7Y2f, .
n—oo

This is a good definition since the limit does not depend on the choice of the
sequence f,. Indeed, consider another sequence g,, n € N of functions in
LP(V,u) N LAV, 1) converging to f.

HXjﬁilﬂfn - Xjﬁil/anHLp(V,u) = HXjﬁil/Q(fn - gn)HLT’(V,,u)
< Hv£71/2(fn - gn)HLP(V,u)
< NVL 1 fn = gull Lo -

The last quantity tends to zero when n — oo since || fn, — gn||zr(v ) tends to

zero, so that:
lim X;£7V2f, = lim X;£7%g,.
n—oo

n—oo

Moreover:

IX5L7 2 flliawn = | B XG L7 Fall v
= lm 167 Fullr )
< lim [[VLY2 foll o
< i 9L 2 ol
= VL2 Jim Fullzrv
= 1VLT 2 o)

and then X;£~? is bounded on LP(V, 1) and its LP-norm is bounded by the
LP-norm of VL 1/2. O
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