
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Matematica

Tesi di Laurea Magistrale

Analysis on
weighted homogeneous trees

Relatore
Candidato

Maria Vallarino
Laura Arditti

Anno Accademico 2017-2018





Contents

1 Introduction 3

2 Preliminaries 5
2.1 Lp-weak spaces and interpolation . . . . . . . . . . . . . . . . 5

2.1.1 The distribution function . . . . . . . . . . . . . . . . . 5
2.1.2 Lp-weak spaces . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Continuous functional calculus . . . . . . . . . . . . . . . . . . 16

3 Abstract Calderón–Zygmund theory 23
3.1 Abstract Calderon–Zygmund property . . . . . . . . . . . . . 24
3.2 Abstract Calderón–Zygmund theorem . . . . . . . . . . . . . . 25

4 Weighted homogeneous trees 35
4.1 The infinite homogeneous tree T . . . . . . . . . . . . . . . . . 35
4.2 Laplacian operators on T . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Properties of the operator A . . . . . . . . . . . . . . . 39
4.2.2 The spectrum of the operator A . . . . . . . . . . . . . 42
4.2.3 The Laplacian L . . . . . . . . . . . . . . . . . . . . . 45

4.3 Properties of the metric measure space (V , d, µ) . . . . . . . . 49
4.3.1 The measure of spheres and balls . . . . . . . . . . . . 49
4.3.2 The doubling property . . . . . . . . . . . . . . . . . . 53
4.3.3 The isoperimetric property . . . . . . . . . . . . . . . . 55

1



5 Calderón–Zygmund theory for the weighted tree 59
5.1 Admissible trapezoids . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 The maximal function M . . . . . . . . . . . . . . . . . . . . . 67
5.3 The Calderón–Zygmund property for the tree . . . . . . . . . 70

6 Main results 81
6.1 Spectral multipliers . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Preliminary results . . . . . . . . . . . . . . . . . . . . 82
6.1.2 Spectral multipliers theorem . . . . . . . . . . . . . . . 98

6.2 The Riesz transform . . . . . . . . . . . . . . . . . . . . . . . 100



Chapter 1

Introduction

The object of this thesis is the analysis on a metric measure space (V , d, µ)
built on the nodes V of an infinite homogeneous tree of order q + 1 endowed
with the usual distance d and a weighted counting measure µ that takes into
account the special levelled structure of the tree and is defined by the formula∫

V
fdµ =

∑
x∈V

f(x)q`(x) ,

where ` is a suitable level function on the tree.
The space (V , d, µ) exhibits a number of interesting properties. For example,
it has exponential growth at infinity, namely

µ
(
B(x, r)

)
∼ q`(x) qr ∀x ∈ V , r > 0 ,

where B(x, r) denotes the ball centred at a vertex x of radius r. Thus the
doubling property is not satisfied, namely

lim
r→+∞

µ
(
B(x, 2r)

)
µ
(
B(x, r)

) = +∞ ∀x ∈ V .

Due to the lack of the doubling property, the classical Calderón–Zygmund
theory developed on spaces of homogeneous type in the second half of the
20th century [Ste93] does not apply to this setting. It is then significant
to construct a new Calderón–Zygmund theory adapted to this space. To
this extent we discuss the abstract Calderón–Zygmund theory introduced by
Hebisch and Steger in [HS03] and we show that it can be applied in the
setting described above. In particular, such theory can be used to study
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4 CHAPTER 1. INTRODUCTION

boundedness properties of singular integrals related to a Laplacian operator
L which acts on a function f : V → C as follows:

Lf(x) = f(x)− 1

2
√
q

∑
y∈V:d(x,y)=1

q
`(y)−`(x)

2 f(y) ∀x ∈ V .

The Laplacian L turns out to be bounded on Lp(V , µ), for p ∈ [1,∞], self-
adjoint on L2(V , µ) and its L2-spectrum is [0, 2].
We are able to define suitable linear operators Xj, j = 0, . . . , q, which play
the role of first derivatives of functions in this setting, in such a way that

L =
1

2(q + 1)

q∑
j=0

X∗
jXj.

Following the sketch of the proof given in [HS03] we show that the singular
integral operators XjL−1/2, j = 0, . . . , q, are of weak-type (1, 1) and bounded
on Lp(V , µ) for 1 < p ≤ 2. This are the analogue of the classical Riesz
transforms in this setting. The Lp-boundedness of such operators for p > 2
is an open problem, on which we are still working.

As a future developement, we are also interested in the definition of suitable
Hardy and BMO spaces adapted to this setting: these are function spaces
which turn out to be good substitute for L1 and L∞ in the study of bound-
edness of singular integral operators. Due again to the lack of the doubling
property, the classical theory of Hardy spaces [Ste93] cannot be used here.
We also show that (V , d, µ) does not satisfy the isoperimetric property (which
we define basing on [HLW06]), i.e. it does not exist a positive constant C
such that for every bounded set A

µ(A1) ≥ Cµ(A) ,

where A1 = {x ∈ A : d(x,Ac) ≤ 1}. The isoperimetric property was a key
ingredient for the recent theory of Hardy spaces developed in [CMM09] for
metric spaces, possibly of exponential volume growth. So also that theory
cannot be applied here. We shall try to construct a new Hardy-BMO theory
using the sets which appear in the Calderón–Zygmund theory in the spirit
of [Val09].



Chapter 2

Preliminaries

In this chapter we present some preliminaries that will be useful in the follow-
ing. First we introduce Lp-weak spaces and review their main properties. In
this way we build the setting for the main topic of the section, interpolation
theory, that we meet in the form of the Marcinkiewicz interpolation theorem.
We end the chapter with an introduction to functional calculus, focusing on
continuous functional calculus.

2.1 Lp-weak spaces and interpolation

Lp-weak spaces are spaces of function larger than Lebesgue spaces Lp that
can often be used as substitutes to Lp when studying the boundedness of
operators. In this way, thanks to interpolation theory techniques, the prob-
lem is often simplified. For these reasons the subject is fundamental for our
work and we will broadly exploit the results presented in this section. For
this part the exposition is based on Chapter 1 of the book by L. Grafakos
[Gra08].

2.1.1 The distribution function

Let X be a measurable space and µ a positive, not necessarily finite, measure
on X.

5



6 CHAPTER 2. PRELIMINARIES

Definition 2.1.1. The function spaces Lp(X,µ) are defined as follows:

0 < p <∞, Lp(X,µ) = {f : X → C µ−measurable s.t.∫
X

|f |pdµ < +∞},

p = ∞, L∞(X,µ) = {f : X → C µ−measurable s.t.

∃B > 0 : µ ({x : |f(x)| > B}) = 0}.

Two functions f, g are considered equal if they are equal µ-almost everywhere,
i.e.:

µ ({x ∈ X : f(x) 6= g(x)}) = 0.

Definition 2.1.2. The Lp quasinorm is defined as follows:

0 < p <∞, ‖f‖Lp(X,µ) =

(∫
X

|f(x)|pdµ
)1

p

,

p = ∞, ‖f‖L∞(X,µ) = inf{B > 0 : µ ({x : |f(x)| > B}) = 0}.

Proposition 2.1.1. If 1 ≤ p ≤ ∞, then the Minkowski’s inequality holds,
i.e. we have:

‖f + g‖Lp(X,µ) ≤ ‖f‖Lp(X,µ) + ‖g‖Lp(X,µ).

It can be shown that Lp(X,µ) are normed Banach spaces.
If 0 < p < 1, Minkowski’s inequality does not hold but the following inequal-
ity holds:

‖f + g‖Lp(X,µ) ≤ 2
1−p
p
(
‖f‖Lp(X,µ) + ‖g‖Lp(X,µ)

)
.

It can be shown that Lp(X,µ) are quasinormed Banach spaces.

Definition 2.1.3. Let f be a measurable function on X. The distribution
function of f is the function df : [0,∞) → [0,∞) defined as:

df (α) = µ ({x ∈ X : |f(x)| > α}) ∀α > 0 .

The distribution function df provides information about the size of f but
not about its local behavior. Note that df is a decreasing function of α (not
necessarily strictly decreasing).

Proposition 2.1.2. Let f and g be measurable functions on (X,µ). Then
for all α, β > 0 we have:
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1. |g| ≤ |f |µ− a.e. =⇒ dg ≤ df ;

2. dcf (α) = df (
α
|c|) ∀c ∈ C \ {0};

3. df+g(α + β) ≤ df (α) + dg(β);

4. dfg(αβ) ≤ df (α) + dg(β).

It is possible to express the Lp norm of f in terms of its distribution function
df , as stated in the following proposition.

Proposition 2.1.3. Let f be in Lp(X,µ) for 0 < p <∞. Then we have the
following characterization of the Lp norm of f :

‖f‖pLp(X,µ) = p

∫ ∞

0

αp−1df (α)dα.

Proof. We proceed by direct computation:

p

∫ ∞

0

αp−1df (α)dα = p

∫ ∞

0

αp−1

∫
X

χ{x:|f(x)|>α}dµ(x) dα

=

∫
X

∫ |f(x)|

0

pαp−1dα dµ(x) by Fubini theorem

=

∫
X

|f(x)|pdµ(x)

= ‖f‖pLp(X,µ).

2.1.2 Lp-weak spaces

Definition 2.1.4. If 0 < p < ∞, then the weak Lp-space is the set of all
µ-measurable functions f such that the quantity:

‖f‖Lp,∞ = inf

{
c > 0 : df (α) ≤

cp

αp
∀α > 0

}
= sup

{
γdf (γ)

1
p : γ > 0

}
is finite.
If p = ∞, then the weak L∞-space is by definition L∞(X,µ).
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The weak Lp spaces are denoted by Lp,∞(X,µ). Two functions in Lp,∞(X,µ)
are considered equal if they are equal µ-a.e.
Proposition 2.1.4. Properties of ‖ · ‖Lp,∞ .

i) ∀k ∈ C \ {0} : ‖kf‖Lp,∞ = |k|‖f‖Lp,∞ ,

ii) ‖f + g‖Lp,∞ ≤ cp (‖f‖Lp,∞ + ‖g‖Lp,∞) where cp = max(2, 2
1
p ),

iii) ‖f‖Lp,∞ = 0 =⇒ f = 0 µ-a.e.

In view of i),ii),iii) Lp,∞ is a quasinormed linear space for 0 < p <∞.
Weak Lp spaces are larger than usual Lp spaces, as illustrated in the following
proposition.
Proposition 2.1.5. For 0 < p <∞, it holds:

∀f ∈ Lp(X,µ) : ‖f‖Lp,∞ ≤ ‖f‖Lp ,

hence
Lp(X,µ) ⊂ Lp,∞(X,µ).

Proof. Let f ∈ Lp(X,µ). For every α > 0 we have:

αpdf (α) ≤
∫
{x:|f(x)|>α}

|f(x)|pdµ

≤
∫
X

|f(x)|pdµ

= ‖f‖pLp ,

so that
∀α > 0, αdf (α)

1
p ≤ ‖f‖Lp .

This implies that

‖f‖Lp,∞ = sup

{
αdf (α)

1
p : α > 0

}
≤ ‖f‖Lp .

We observe that the inclusion Lp(X,µ) ⊂ Lp,∞(X,µ) is strict. For example:
if X = Rn and µ = | · | is the Lebesgue measure, then the function h(x) =

|x|−
n
p satisfies:

h /∈ Lp(Rn, µ) but h ∈ Lp,∞(Rn, µ) with ‖h‖Lp,∞(Rn,µ) = νn = |BRn(0, 1)|.
The following proposition provides a first glimpse at interpolation.
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Proposition 2.1.6. Let 0 < p < q ≤ ∞, f ∈ Lp,∞(X,µ) ∩ Lq,∞(X,µ).
Then:

f ∈ Lr(X,µ) ∀r s.t. p < r < q

and

‖f‖Lr ≤
(

r

r − p
+

r

q − r

)1
r

‖f‖

1
r
−
1
q

1
p
−
1
q

Lp,∞ ‖f‖

1
p
−
1
r

1
p
−
1
q

Lq,∞ .

Proof. We first consider the case q <∞.
We know that

df (α) ≤ min

(
‖f‖pLp,∞

αp
,
‖f‖qLq,∞

αq

)
∀α > 0 .

Observe that

‖f‖pLp,∞

αp
≤ ‖f‖qLq,∞

αq
⇐⇒ αq−p ≤ ‖f‖qLq,∞

‖f‖pLp,∞
⇐⇒ α ≤

(
‖f‖qLq,∞

‖f‖pLp,∞

) 1
q−p

.

We set

B =

(
‖f‖qLq,∞

‖f‖pLp,∞

) 1
q−p

.

Now we can evaluate the Lr norm of f for p < r < q by means of Proposition
2.1.3:

‖f‖rLr(X,µ) = r

∫ ∞

0

αr−1df (α)dα

≤ r

∫ ∞

0

αr−1min

(
‖f‖pLp,∞

αp
,
‖f‖qLq,∞

αq

)
dα

= r

∫ B

0

αr−1−p‖f‖pLp,∞dα + r

∫ ∞

B

αr−1−q‖f‖qLq,∞dα.

Note that the first integral converges since r−p > 0 while the second integral
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converges since r − q < 0. So we can proceed:

‖f‖rLr(X,µ) ≤
r

r − p
‖f‖pLp,∞Br−p +

r

q − r
‖f‖qLq,∞Br−q

=
r

r − p
‖f‖pLp,∞

(
‖f‖qLq,∞

‖f‖pLp,∞

) r−p
q−p

+
r

q − r
‖f‖qLq,∞

(
‖f‖qLq,∞

‖f‖pLp,∞

) r−q
q−p

=
r

r − p
(‖f‖pLp,∞)1−

r−p
q−p (‖f‖qLq,∞)

r−p
q−p +

r

q − r
(‖f‖qLq,∞)1+

r−q
q−p (‖f‖pLp,∞)

q−r
q−p

=
r

r − p
(‖f‖pLp,∞)

q−r
q−p (‖f‖qLq,∞)

r−p
q−p +

r

q − r
(‖f‖qLq,∞)

r−p
q−p (‖f‖pLp,∞)

q−r
q−p

=

(
r

r − p
+

r

q − r

)
(‖f‖qLq,∞)

r−p
q−p (‖f‖pLp,∞)

q−r
q−p .

Now we pass to the case q = ∞.
We know that df (α) = 0 for α > ‖f‖L∞(X,µ), thus:

‖f‖rLr(X,µ) = r

∫ ∞

0

αr−1df (α)dα

= r

∫ ‖f‖L∞

0

αr−1df (α)dα

≤ r

∫ ‖f‖L∞

0

αr−1α−p‖f‖pLp,∞dα

=
r

r − p
‖f‖pLp,∞‖f‖r−p

L∞ .

2.1.3 Interpolation

Definition 2.1.5. Consider two measure spaces (X,µ), (Y, ν).

• Bounded operators T that map Lp(X,µ) → Lq(Y, ν) are called of strong
type (p, q).

• Bounded operators T that map Lp(X,µ) → Lq,∞(Y, ν) are called of
weak type (p, q).

We can make the following useful classification:

Definition 2.1.6. Let (X,µ), (Y, ν) be two measure spaces. Consider the
linear space U and the set V :
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U = {f : (X,µ) → C , f measurable}
V = {f : (Y, ν) → C , f measurable and finite a.e.} .

T : U → V is called:

• linear, if ∀f, g ∈ U , ∀λ ∈ C

T (f + g) = T (f) + T (g) and T (λf) = λT (f),

• sublinear, if ∀f, g ∈ U , ∀λ ∈ C

|T (f + g)| ≤ |T (f)|+ |T (g)| and |T (λf)| = |λ||T (f)|,

• quasilinear, if ∀f, g ∈ U , ∀λ ∈ C

|T (f + g)| ≤ K (|T (f)|+ |T (g)|) and |T (λf)| = |λ||T (f)|

for some constant K > 0.

Theorem 2.1.7 (Marcinkiewic interpolation theorem). Let (X,µ), (Y, ν) be
two measure spaces and 0 < p0 < p1 ≤ ∞.
Let T be a sublinear operator such that

T : Lp0(X) + Lp1(X) → {measurable functions on Y }.

Assume that ∃A0, A1 > 0 such that:

‖T (f)‖Lp0,∞(Y ) ≤ A0‖f‖Lp0 (X) ∀f ∈ Lp0(X),

‖T (f)‖Lp1,∞(Y ) ≤ A1‖f‖Lp1 (X) ∀f ∈ Lp1(X).

Then ∀p such that p0 < p < p1 and ∀f ∈ Lp(X) we have:

‖T (f)‖Lp(Y ) ≤ A‖f‖Lp(X)

where A = 2
(

p
p−p0

+ p
p1−p

)1
p
A

1
p
−

1
p1

1
p0

−
1
p1

0 A

1
p0

−
1
p

1
p0

−
1
p1

1 .
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Proof. We first consider the case p1 <∞.
Fix f ∈ Lp(X) and α > 0.
We split f = fα

0 + fα
1 , where fα

0 ∈ Lp0(X) and fα
1 ∈ Lp1(X). The splitting is

obtained by cutting |f | at height δα for some δα to be determined later.
Set:

fα
0 (x) =

{
f(x) for |f(x)| > δα

0 for |f(x)| ≤ δα
,

fα
1 (x) =

{
f(x) for |f(x)| ≤ δα

0 for |f(x)| > δα
.

Observe that:

• fα
0 (the unbounded part of f) is in Lp0(X), indeed:

‖fα
0 ‖

p0
Lp0 =

∫
|f |>δα

|f |p0dµ

=

∫
|f |>δα

|f |p|f |p0−pdµ

≤ (δα)p0−p‖f‖pLp

since p0 < p and then |f |p0−p ≤ (δα)p0−p.

• fα
1 (the bounded part of f) is in Lp1(X), indeed:

‖fα
1 ‖

p1
Lp1 =

∫
|f |≤δα

|f |p1dµ

=

∫
|f |≤δα

|f |p|f |p1−pdµ

≤ (δα)p1−p‖f‖pLp

since p < p1 and then |f |p1−p ≤ (δα)p1−p.

By the sublinearity property of T :

|T (f)| ≤ |T (fα
0 )|+ |T (fα

1 )|

which implies that for every α > 0

{x : |T (f)(x)| > α} ⊆
{
x : |T (fα

0 )(x)| > α
2

}
∪
{
x : |T (fα

1 )(x)| > α
2

}



2.1. LP -WEAK SPACES AND INTERPOLATION 13

because ∀x such that α < |T (f)(x)| ≤ |T (fα
0 )(x)| + |T (fα

1 )(x)| one of the
following occurs:

|T (fα
0 )(x)| > α

2
and |T (fα

1 )(x)| > α− |T (fα
0 )(x)| or

|T (fα
0 )(x)| ≤ α

2
and |T (fα

1 )(x)| > α− |T (fα
0 )(x)| ≥ α

2
.

Therefore

dT (f)(α) ≤ dT (fα
0 )(

α
2
) + dT (fα

1 )(
α
2
).

Since fα
0 is in Lp0 , T (fα

0 ) is in Lp0,∞ and

‖T (fα
0 )‖Lp0,∞ = sup{γdT (fα

0 )(γ)
1
p0 , γ > 0} ≤ A0‖fα

0 ‖Lp0 ,

so that dT (fα
0 )(

α
2
) ≤ ‖T (fα

0 )‖p0
Lp0,∞(

α
2

)p0 .

Similarly, since fα
1 is in Lp1 , T (fα

1 ) is in Lp1,∞ and:

‖T (fα
1 )‖Lp1,∞ = sup{γdT (fα

1 )(γ)
1
p1 , γ > 0}

so that dT (fα
1 )(

α
2
) ≤ ‖T (fα

1 )‖p1
Lp1,∞(

α
2

)p1 .

Then:

dT (f)(α) ≤
‖T (fα

0 )‖
p0
Lp0,∞(

α
2

)p0 +
‖T (fα

1 )‖
p1
Lp1,∞(

α
2

)p1
≤ Ap0

0(
α
2

)p0 ‖fα
0 ‖

p0
Lp0 +

Ap1
1(

α
2

)p1 ‖fα
1 ‖

p1
Lp1

=
(2A0)

p0

αp0

∫
|f |>δα

|f(x)|p0dµ+
(2A1)

p1

αp1

∫
|f |≤δα

|f(x)|p1dµ.
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In this way we obtain:

‖T (f)‖pLp = p

∫ ∞

0

αp−1dT (f)(α)dα

≤ p(2A0)
p0

∫ ∞

0

αp−1α−p0

∫
|f |>δα

|f(x)|p0dµ dα

+ p(2A1)
p1

∫ ∞

0

αp−1α−p1

∫
|f |≤δα

|f(x)|p1dµ dα

= p(2A0)
p0

∫
X

|f(x)|p0
∫ 1

δ
|f(x)|

0

αp−1−p0dα dµ

+ p(2A1)
p1

∫
X

|f(x)|p1
∫ ∞

1
δ
|f(x)|

αp−1−p1dα dµ.

Notice that the first integral converges since p > p0 =⇒ −1+(p−p0) > −1
while the second integral converges since p < p1 =⇒ −1 + (p − p1) < −1.
Then:

‖T (f)‖pLp ≤
p(2A0)

p0

p− p0

1

δp−p0

∫
X

|f(x)|p0|f(x)|p−p0dµ

+
p(2A1)

p1

p1 − p

1

δp−p1

∫
X

|f(x)|p1|f(x)|p−p1dµ

= p

(
p(2A0)

p0

p− p0

1

δp−p0
+
p(2A1)

p1

p1 − p

1

δp−p1

)
‖f‖pLp .

We pick δ > 0 such that:

(2A0)
p0

1

δp−p0
= (2A1)

p1δp1−p

and obtain the thesis.
We consider now the case p1 = ∞.
We write as before:

fα
0 (x) =

{
f(x) for |f(x)| > γα

0 for |f(x)| ≤ γα ,

fα
1 (x) =

{
f(x) for |f(x)| ≤ γα

0 for |f(x)| > γα .

As in the previous case, one can verify that:
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• fα
0 (the unbounded part of f) is in Lp0(X).

• fα
1 (the bounded part of f) is in L∞(X) by definition and ‖fα

1 ‖L∞ ≤ γα.

By assumption T is bounded from L∞(X) to L∞(Y ) (since L∞,∞ = L∞)
and:

‖T (fα
1 )‖L∞ ≤ A1‖fα

1 ‖L∞ ≤ A1γα =
α

2
provided we choose γ = (2A1)

−1.
It follows that:

µ
(
{x : |T (fα

1 )(x)| > α
2
}
)
= 0.

Therefore (exploiting the sublinearity property of T as in the previous case):

dT (f)(α) ≤ dT (fα
0 )(

α
2
) + dT (fα

1 )(
α
2
) = dT (fα

0 )(
α
2
).

By assumption T maps Lp0(X) to Lp0,∞(Y ) and we know that:

dT (fα
0 )(α) ≤

‖T (fα
0 )‖

p0
Lp0,∞

αp0
and ‖T (fα

0 )‖Lp0,∞ ≤ A0‖fα
0 ‖Lp0 .

It follows that

dT (fα
0 )(

α
2
) ≤ ‖T (fα

0 )‖
p0
Lp0,∞(

α
2

)p0
≤ Ap0

0

‖fα
0 ‖

p0
Lp0

(α)p0
2p0

=
(2A0)

p0

αp0

∫
|f |>γα

|f(x)|p0dµ

with γ = (2A1)
−1. Finally we obtain:

‖T (f)‖pLp = p

∫ ∞

0

αp−1dT (f)(α)dα

≤ p

∫ ∞

0

αp−1dT (fα
0 )(

α
2
)dα

≤ p

∫ ∞

0

αp−1 (2A0)
p0

αp0

∫
|f |> α

2A1

|f(x)|p0dµdα

= p(2A0)
p0

∫
X

|f(x)|p0
∫ 2A1|f(x)|

0

αp−p0−1dαdµ

=
p(2A1)

p−p0(2A0)
p0

p− p0

∫
X

|f(x)|pdµ

=
p(2A1)

p−p0(2A0)
p0

p− p0
‖f‖pLp .
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This proves the theorem with constant

A = 2

(
p

p− p0

)1
p

A
1−p0

p
1 A

p0
p
0 .

2.2 Continuous functional calculus

Continuous functional calculus aims to make sense of the expression f(A)
for each self-adjoint operator A on a Hilbert space H and each continuous
function f ∈ C(σ(A)), where σ(A) denotes the spectrum of A. For this
section we refer the reader to the book by Reed and Simon [RS80], which we
follow in our description.
First, let P be a polynomial in C[z] and A a self-adjoint operator on a Hilbert
space H. Suppose

P (z) =
N∑

n=0

anz
n.

We define P (A) ∈ B(H) (where B(H) is the space of bounded linear opera-
tors on H) as:

P (A) =
N∑

n=0

anA
n

where A0 = I and An = A · An−1 ∀n ≥ 1.
To extend this definition to all continuous functions we must first prove two
lemmas.

Lemma 2.2.1. Let P (z) =
∑N

n=0 anz
n ∈ C[z] and P (A) =

∑N
n=0 anA

n ∈
B(H).
Then:

σ(P (A)) = {P (λ) : λ ∈ σ(A)} .

Proof. • First we prove that λ ∈ σ(A) =⇒ P (λ) ∈ σ(P (A)).
Let λ ∈ σ(A).
z = λ is a root of P (z)− P (λ) so we can write:

P̃ (z) = P (z)− P (λ) = (z − λ)Q(z)
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where λ is not a root for Q(z). Then:

P̃ (A) = P (A)− P (λ)I = (A− λI)Q(A).

By hypothesis λ ∈ σ(A) which means that (A − λI) is not invertible.
So also P (A)− P (λ)I is not invertible, that is P (λ) ∈ σ(P (A)).

• Now we prove that µ ∈ σ(P (A)) =⇒ µ = P (λ) with λ ∈ σ(A).
Let µ ∈ σ(P (A)).
Let λ1, λ2, . . . , λn be the roots of P̂ (z) = P (z)− µ, that is:

P̂ (z) = P (z)− µ = a(z − λ1)(z − λ2) . . . (z − λn)

Then

P̂ (A) = P (A)− µI = a(A− λ1I)(A− λ2I) . . . (A− λnI).

If λi /∈ σ(A), ∀i : 1 < i < n then P (A)− µ is invertible as:

(P (A)− µI)−1 = a−1(A− λ1)
−1(A− λ2)

−1 . . . (A− λn)
−1

while by hypothesis µ ∈ σ(P (A)), that is P (A)− µI is not invertible.
So we conclude that for some i it holds λi ∈ σ(A), i.e. µ = P (λi) with
λi ∈ σ(A).

Lemma 2.2.2. Let A be a bounded self-adjoint operator on a Hilbert space
H.
Then:

‖P (A)‖B(H) = sup
λ∈σ(A)

|P (λ)|.

Proof.

‖P (A)‖2B(H) = ‖P (A)∗P (A)‖
= ‖(P̄P )(A)‖ since P (A)∗ = (P̄ )(A)

= sup
λ∈σ((P̄P )(A))

|λ|

= sup
λ∈σ(A)

|(P̄P )(λ)|

=

(
sup

λ∈σ(A)

|P (λ)|

)2

.
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The third equality follows from the fact that ‖T‖ = r(T ) = supλ∈σ(T ) |λ| ∀T self-adjoint
where r(T ) denotes the spectral ray of T and because (P̄P ) has real coeffi-
cients, so (P̄P (A)) is self-adjoint.

Lemma 2.2.2 shows that, givenA self-adjoint onH, the function φ̃ : P(σ(A))‖·‖C(σ(A))
→

B(H) defined by φ̃(P ) = P (A) is linear and bounded.
Polynomials on σ(A) are dense in C(σ(A)) and B(H) is a Banach space.
Then φ̃ admits an unique bounded linear extension φ : C(σ(A)) → B(H).
We write f(A) = φ(f) to emphasize the dependence on A. Now we have all
the necessary ingredients to prove the following theorem.

Theorem 2.2.3. Let A be a self-adjoint operator on a Hilbert space H.
Then there is a unique map φ : C(σ(A)) → B(H) with the following proper-
ties:

a) φ is an algebraic ∗-homomorphism, that is:

• φ(fg) = φ(f)φ(g),
• φ(λf) = λφ(f),
• φ(1) = I ,
• φ(f̄) = φ(f)∗.

b) φ is continuous, that is, ‖φ(f)‖B(H) ≤ C‖f‖∞.

c) Let f be the function f(x) = x. Then φ(f) = A.

Moreover φ has the additional properties:

d) If Aψ = λψ, then φ(f)ψ = f(λ)ψ.

e) σ(φ(f)) = {f(λ) : λ ∈ σ(A)}.

f) If f ≥ 0, then φ(f) ≥ 0.

g) ‖φ(f)‖B(H) = ‖f‖∞.

Proof. The uniqueness of φ follows from the previous considerations observ-
ing that a) and c) imply that φ(P ) = P (A) for all polynomials P .
So the only candidate for φ is the extension of φ̃ described before. Indeed,
φ coincides with φ̃ on polynomials so by continuity it agrees with its unique
extension on all C(σ(A)).
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For the existence of φ we must prove that the extension of φ̃ (which we denote
with φ) satisfies properties a)− g).
First we observe that φ satisfies a)− g) for all polynomials, because φ̃ does.
This can be shown by direct computation. Take p, q polynomials and λ ∈ C.
Then:
a)

φ̃(p · q) = (p · q)(A)

=

(
N∑

n=0

anz
n ·

M∑
n=0

bnz
n

)
(A)

=

(
N+M∑
n=0

(
n∑

k=0

akbn−k

)
zn

)
(A)

=
N+M∑
n=0

(
n∑

k=0

akbn−k

)
An

=
N∑

n=0

anA
n ·

M∑
n=0

bnA
n

= p(A)q(A)

= φ̃(p)φ̃(q).

φ̃(λp) = (λp)(A)

= λp(A)

= λφ̃(p).

φ̃(1) = A0

= I by definition.
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φ̃(p̄) = p̄(A)

=
N∑

n=0

ānA
n

=

(
N∑

n=0

anA
n

)∗

= p(A)∗

= φ̃(p)∗.

b) and g) follow from Lemma 2.2.2.
c) is true by definition.
d)

φ̃(p)ψ = p(A)ψ

=

(
N∑

n=0

anA
n

)
ψ

=
N∑

n=0

an(A
nψ)

=
N∑

n=0

anλ
nψ

= p(λ)ψ.

e) follows from lemma 2.2.1.
f) can be shown directly for all f ∈ C(σ(A)). Let f ∈ C(σ(A)), f ≥ 0.

f ≥ 0 =⇒ f = g2 with g real, g ∈ C(σ(A)).

Thus
φ(f) = φ(g2) = φ(g · ḡ) = φ(g)φ(g)∗

(x, φ(f)x) = (x, φ(g)φ(g)∗x)

= (φ(g)x, φ(g)x)

= ‖φ(g)x‖2 ≥ 0 ∀x ∈ H.

Then φ satisfies a) − g) for all continuous functions on σ(A) by continuity.
As an example we check d) and g).
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Let f ∈ C(σ(A)), f = limn→∞ pn for some sequence of polynomials {pn}n.
d)

φ(f) = φ( lim
n→∞

pn)

= lim
n→∞

φ(pn)

= lim
n→∞

φ̃(pn)

= lim
n→∞

pn(A).

Then

φ(f)ψ =
(
lim
n→∞

pn(A)
)
ψ

= lim
n→∞

(pn(A)ψ)

= lim
n→∞

(pn(λ)ψ)

=
(
lim
n→∞

pn(λ)
)
ψ

= f(λ)ψ.

g)

‖φ(f)‖B(H) = ‖φ( lim
n→∞

pn)‖B(H)

= ‖ lim
n→∞

φ(pn)‖B(H)

= lim
n→∞

‖φ̃(pn)‖B(H)

= lim
n→∞

‖pn‖∞

= ‖ lim
n→∞

pn‖∞

= ‖f‖∞.
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Chapter 3

Abstract Calderón–Zygmund
theory

Calderón–Zygmund theory was first developed in the middle of the 20th
century: its initial setting was the euclidean space Rn endowed with the
euclidean distance and the Lebesgue measure. Since then a lot of effort has
been made in order to extend the theory to the setting of abstract metric
measure spaces, the key aspect being to identify the essential properties which
provide the foundation of the theory. One of the main results consisted
in discovering that a sufficient condition to have the Calderón–Zygmund
property is the doubling property of the measure. While this result provided
a unified solution to the quest for extension for a wide class of spaces, it
also revealed a route for further exploration on spaces lacking the doubling
property. This is the case for the infinite homogeneous tree which is the
subject of the analysis of our work, as it does not exhibit nor the doubling nor
the isoperimetric property. It is then significant to investigate the Calderón–
Zygmund property for this space and to this extent in this chapter we study
the abstract theory proposed by Hebisch and Steger in [HS03].
Troughout we adopt the usual convention that C stands for a positive con-
stant, whose precise value varies from occurrence to occurrence.

23
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3.1 Abstract Calderon–Zygmund property

Definition 3.1.1. We say that a metric measure space (M,d, µ) has the
Calderón–Zygmund property if there exists a positive constant C such that:

∀f ∈ L1(M,µ), ∀λ > C
‖f‖L1(M,µ)

µ(M)
(λ > 0 if µ(M) = ∞)

f admits a decomposition of the form

f =
∑
i

fi + g (3.1)

such that there exist sets Qi, numbers ri and points xi satisfying the following
properties:

1. fi = 0 outside Qi,

2.
∫
M
fidµ = 0 ∀i,

3. Qi ⊂ B(xi, Cri) ∀i,

4.
∑

i µ(Q
∗
i ) ≤ C

‖f‖L1(M,µ)

λ
where Q∗

i = {x ∈M : d(x,Qi) < ri},

5.
∑

i ‖fi‖L1(M,µ) ≤ C ‖f‖L1(M,µ),

6. |g| ≤ Cλ.

The sets Qi are called Calderón–Zygmund sets and the decomposition (3.1)
is called the Calderón–Zygmund decomposition of f at level λ.
Since g = f −

∑
i fi we have that:

‖g‖L1(M,µ) =

∥∥∥∥∥f −
∑
i

fi

∥∥∥∥∥
L1(M,µ)

≤ ‖f‖L1(M,µ) +

∥∥∥∥∥∑
i

fi

∥∥∥∥∥
L1(M,µ)

≤ ‖f‖L1(M,µ) +
∑
i

‖fi‖L1(M,µ)

≤ ‖f‖L1(M,µ) + C ‖f‖L1(M,µ) by property 5)
≤ C ′ ‖f‖L1(M,µ)
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that is
‖g‖L1(M,µ) ≤ C ′ ‖f‖L1(M,µ) . (3.2)

Moreover, from Property 6. it follows that

g ∈ L∞(M,µ) and ‖g‖L∞(M,µ) ≤ Cλ. (3.3)

Then from the Marcinkiewic interpolation Theorem 2.1.7 it holds that{
g ∈ L1(M,µ)

g ∈ L∞(M,µ)
=⇒

g ∈ Lr(M,µ) ∀r s.t. 1 < r <∞ and ‖g‖rLr(M,µ) ≤
r

r − 1
‖g‖L1(M,µ) ‖g‖

r−1
L∞(M,µ) .

In particular, for r = 2 we have:

‖g‖2L2(M,µ) ≤ 2 ‖g‖L1(M,µ) ‖g‖L∞(M,µ)

≤ 2C ′ ‖f‖L1(M,µ)Cλ for 3.2 and 3.3
= C ′′λ ‖f‖L1(M,µ)

that is
‖g‖2L2(M,µ) ≤ C ′′λ ‖f‖L1(M,µ) . (3.4)

3.2 Abstract Calderón–Zygmund theorem

Given a measurable function k(x, y) locally integrable on M ×M , K denotes
the integral operator with kernel k defined ∀f ∈ Cc(M) as:

(Kf)(x) =

∫
M

k(x, y)f(y)dµ(y) , for x /∈ supp f.

This integral is well defined at least for compactly supported functions f .
Theorem 3.2.1. Consider (M,d, µ) with the Calderón–Zygmund property.
Suppose that T is a linear operator which is bounded on L2(M,µ) and admits
a locally integrable kernel k(x, y) that satisfies the condition:

sup
Qi

sup
y,z∈Qi

∫
(Q∗

i )
c

|k(x, y)− k(x, z)|dµ(x) <∞ (3.5)

where the supremum is taken over all Calderón–Zygmund sets Qi. Then T
extends from L1(M,µ) ∩ L2(M,µ) to a bounded operator from L1(M,µ) to
L1,∞(M,µ) and on Lp(M,µ), for all p ∈ (1, 2].
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Remark If T is a linear operator bounded on L2(M,µ) such that

T : L2(M,µ) → L2(M,µ)

T =
∑
n∈Z

Kn with Kn integral operator with kernel kn

such that for appropriate constants C > 0, 0 < c < 1, a > 0, b > 0 the
following conditions are satisfied:

i)
∫
M

|kn(x, y)|(1 + cnd(x, y))adµ(x) ≤ C ∀y ∈M ,

ii)
∫
M

|kn(x, y)− kn(x, z)|dµ(x) ≤ C(cnd(y, z))b ∀y, z ∈M ,

then T satisfies the hypothesis 3.5 of Theorem 3.2.1. These conditions are
formulated by Hebisch and Steger and they are more convenient to verify,
even if less intuitive. For this reason we prefer the following formulation of
Theorem 3.2.1.

Theorem 3.2.2. Consider (M,d, µ) with the Calderón–Zygmund property.
Suppose that T is a linear bounded operator on L2(M,µ) such that T =∑

n∈ZKn with Kn integral operator with kernel kn such that for appropriate
constants C > 0, 0 < c < 1, a > 0, b > 0 the following conditions are
satisfied:

i)
∫
M

|kn(x, y)|(1 + cnd(x, y))adµ(x) ≤ C ∀y ∈M , (3.6)

ii)
∫
M

|kn(x, y)− kn(x, z)|dµ(x) ≤ C(cnd(y, z))b ∀y, z ∈M . (3.7)

Then T is of weak type (1, 1) and bounded on Lp(M,µ) for every 1 < p ≤ 2,
i.e.:

T : L1(M,µ) → L1,∞(M,µ) is bounded
T : Lp(M,µ) → Lp(M,µ) is bounded for 1 < p ≤ 2 .

Before proving Theorem 3.2.2 we state and prove two lemmas.

Lemma 3.2.3. Let fi, Qi, ri, xi, Q∗
i as in Definition 3.1.1.

Then there exists a positive constant C such that for every i:∑
n∈Z:cnri≥1

∫
(Q∗

i )
c

|Knfi(x)|dµ(x) ≤ C ‖fi‖L1(M,µ) .
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Proof. We first estimate∫
(Q∗

i )
c

|Knfi(x)|dµ(x) =
∫
(Q∗

i )
c

∣∣∣∣∫
M

kn(x, y)fi(y)dµ(y)

∣∣∣∣ dµ(x)
≤
∫
(Q∗

i )
c

∫
M

|kn(x, y)||fi(y)|dµ(y)dµ(x)

=

∫
(Q∗

i )
c

∫
Qi

|kn(x, y)||fi(y)|dµ(y)dµ(x) since supp fi ⊆ Qi for 1)

=

∫
Qi

∫
(Q∗

i )
c

|kn(x, y)||fi(y)|dµ(x)dµ(y)

=

∫
Qi

|fi(y)|

(∫
(Q∗

i )
c

|kn(x, y)|dµ(x)

)
dµ(y)

= ‖fi‖L1(M,µ) sup
y∈Qi

∫
(Q∗

i )
c

|kn(x, y)|dµ(x).

By definition points in (Q∗
i )

c have distance ≥ ri from each point in Qi. Then
the points x with d(x, y) ≥ ri from a fixed y ∈ Qi are a superset of (Q∗

i )
c. So

we can proceed with the inequalities:∫
(Q∗

i )
c

|Knfi(x)|dµ(x) ≤ ‖fi‖L1(M,µ) sup
y∈Qi

∫
(Q∗

i )
c

|kn(x, y)|dµ(x)

≤ ‖fi‖L1(M,µ) sup
y∈Qi

∫
x:d(x,y)≥ri

|kn(x, y)|dµ(x)

≤ ‖fi‖L1(M,µ) sup
y∈M

∫
x:d(x,y)≥ri

|kn(x, y)|dµ(x)

≤ (cnri)
−a ‖fi‖L1(M,µ) sup

y∈M

∫
x:d(x,y)≥ri

|kn(x, y)|(1 + cnd(x, y))adµ(x)

≤ C(cnri)
−a ‖fi‖L1(M,µ) for 3.6.

where we have used the fact that
(

1+cnd(x,y)
cnri

)a
> 1 ∀x : d(x, y) ≥ ri. By

summing over all indices n such that cnri ≥ 1 we get:∑
n∈Z:cnri≥1

∫
(Q∗

i )
c

|Knfi|(x)dµ(x) ≤ C ‖fi‖L1(M,µ)

∑
n∈Z:cnri≥1

(cnri)
−a

= C ‖fi‖L1(M,µ) r
−a
i

∑
n∈Z:cnri≥1

(ca)−n.
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We have that:

r−a
i

∑
n∈Z:cnri≥1

(ca)−n = r−a
i

∑
m∈Z:c−mri≥1

(ca)m

= r−a
i

+∞∑
m=d log(ri)

log(c)
e

(ca)m.

Indeed, c−mri ≥ 1 ⇔ −mlog(c) + log(ri) ≥ 0 where log(c) < 0 because
c ∈ (0, 1). So the sum is over integer numbers m ≥ log(ri)

log(c)
. We can express

such numbers as m = k + d log(ri)
log(c)

e with k ∈ N, so we obtain:

r−a
i

∑
n∈Z:cnri≥1

(ca)−n = r−a
i

+∞∑
m=d log(ri)

log(c)
e

(ca)m

= r−a
i

+∞∑
k=0

(ca)k+d log(ri)

log(c)
e

= r−a
i (ca)d

log(ri)

log(c)
e
+∞∑
k=0

(ca)k

≤ r−a
i (ca)

log(ri)

log(c)
1

1− ca
since ca < 1

= r−a
i elog(c)a

log(ri)

log(c)
1

1− ca

= r−a
i ealog(ri)

1

1− ca

= r−a
i rai

1

1− ca

=
1

1− ca
.

In conclusion:∑
n∈Z:cnri≥1

∫
(Q∗

i )
c

|Knfi|(x)dµ(x) ≤ C ‖fi‖L1(M,µ)

1

1− ca

≤ C ′ ‖fi‖L1(M,µ) .

Lemma 3.2.4. Let fi, Qi, ri, xi, Q∗
i as in Definition 3.1.1.
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Then there exists a positive constant C such that for every i:∑
n∈Z:cnri<1

∫
M

|Knfi(x)|dµ(x) ≤ C ‖fi‖L1(M,µ) .

Proof. We first estimate:∫
M

|Knfi(x)|dµ(x) =
∫
M

∣∣∣∣∫
Qi

kn(x, y)fi(y)dµ(y)

∣∣∣∣ dµ(x).
We have that

∫
Qi
fi(y)dµ(y) = 0 by Property 2. so kn(x, xi)

∫
Qi
fi(y)dµ(y) =∫

Qi
kn(x, xi)fi(y)dµ(y) = 0 and we can proceed with the inequalities:∫

M

∣∣∣∣∫
Qi

kn(x, y)fi(y)dµ(y)

∣∣∣∣ dµ(x) = ∫
M

∣∣∣∣∫
Qi

(kn(x, y)− kn(x, xi)) fi(y)dµ(y)

∣∣∣∣ dµ(x)
≤
∫
M

∫
Qi

|(kn(x, y)− kn(x, xi))| |fi(y)|dµ(y)dµ(x)

=

∫
Qi

∫
M

|(kn(x, y)− kn(x, xi))| |fi(y)|dµ(x)dµ(y)

=

∫
Qi

|fi(y)|
(∫

M

|kn(x, y)− kn(x, xi)| dµ(x)
)
dµ(y)

≤
∫
Qi

|fi(y)| sup
y∈Qi

(∫
M

|kn(x, y)− kn(x, xi)| dµ(x)
)
dµ(y)

≤ ‖fi‖L1(M,µ) sup
y∈Qi

C (cnd(y, xi))
b for 3.7

≤ ‖fi‖L1(M,µ)C
′(cnri)

b.

Where the last inequality follows from the fact that xi ∈ Qi, y ∈ Qi and from
property 3) Qi ⊂ B(xi, Cri) so it holds d(y, xi) ≤ Cri. Now we can compute∑

n∈Z:cnri<1

∫
M

|Knfi|(x)dµ(x) ≤
∑

n∈Z:cnri<1

‖fi‖L1(M,µ)C
′(cnri)

b

= ‖fi‖L1(M,µ)C
′rbi

∑
n∈Z:cnri<1

(cb)n.

We have that:

rbi
∑

n∈Z:cnri<1

(cb)n = rbi

+∞∑
n=b− log(ri)

log(c)
c+1

(cb)n.
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Indeed, cnri < 1 ⇔ nlog(c) + log(ri) < 0 where log(c) < 0 because c ∈
(0, 1). So the sum is over integer numbers n > − log(ri)

log(c)
. We can express such

numbers as n = b− log(ri)
log(c)

c+ 1 + k with k ∈ N, so we obtain:

rbi

+∞∑
n=b− log(ri)

log(c)
c+1

(cb)n = rbi
(cb)b−

log(ri)

log(c)
c+1

1− cb

≤ rbi
1− cb

e
blog(c)

(
− log(ri)

logc

)

=
rbi

1− cb
r−b
i

=
1

1− cb
.

In conclusion: ∑
n∈Z:cnri<1

∫
M

|Knfi|(x)dµ(x) ≤ ‖fi‖L1(M,µ)C
′ 1

1− cb

≤ C ′′ ‖fi‖L1(M,µ) .

Proof of Theorem 3.2.2. By hypothesis T : L2(M,µ) → L2(M,µ) is linear
bounded, i.e. T is strong-type (2, 2) and then it is also weak-type (2, 2).
Thanks to the Marcinkiewic interpolation theorem it is sufficient to show
that T is weak-type (1, 1) to conclude the proof.
Let us take f ∈ L1(M,µ).

We fix λ > 0. Then either λ ≤ C
‖f‖L1(M,µ)

µ(M)
or λ > C

‖f‖L1(M,µ)

µ(M)
, where C is the

constant appearing in the Calderón–Zygmund property 3.1.1.

We consider first the case λ > 0 and λ ≤ C
‖f‖L1(M,µ)

µ(M)
.

dTf (λ) = µ ({x ∈M : Tf(x) > λ})
≤ µ(M)

≤
C ‖f‖L1(M,µ)

λ

and so
λdTf (λ) ≤ C ‖f‖L1(M,µ) ∀λ : 0 < λ ≤

C ‖f‖L1(M,µ)

µ(M)
.
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Now we consider the case λ > C
‖f‖L1(M,µ)

µ(M)
.

Since (M,d, µ) has the Calderón–Zygmund property, for such λ and f ∈
L1(M,µ) we have a decomposition f =

∑
i fi + g which satisfies Properties

1–6 in Definition 3.1.1.
We define the sets:

E = {x ∈M :
∑
n,i

|Knfi(x)| > λ
2
},

E1 =
⋃
i

Q∗
i ,

where Q∗
i are the sets associated to the Calderón–Zygmund decomposition

of f at level λ.
We have that:

λ

2
µ(E \ E1) ≤

∫
E\E1

∑
n,i

|Knfi(x)| dµ(x)

≤
∫
(E1)c

∑
n,i

|Knfi(x)| dµ(x)

=
∑
i

∫
(E1)c

∑
n

|Knfi(x)| dµ(x)

=
∑
i

∫
⋂

s(Q
∗
s)

c

∑
n

|Knfi(x)| dµ(x) since Ec
1 =

⋂
s

(Q∗
s)

c

≤
∑
i

∫
(Q∗

i )
c

∑
n

|Knfi(x)| dµ(x)

since
⋂

s(Q
∗
s)

c ⊂ (Q∗
j)

c ∀j so we can enlarge the domain by integrating each∑
n |Knfi| over the respective (Q∗

i )
c ⊃

⋂
s(Q

∗
s)

c. So

λ

2
µ(E \ E1) ≤

∑
i

(∑
n

∫
(Q∗

i )
c

|Knfi(x)| dµ(x)

)
≤
∑
i

C ‖fi‖L1(M,µ) for Lemmas 3.2.3 and 3.2.4

≤ C
∑
i

‖fi‖L1(M,µ)

≤ CC̃ ‖f‖L1(M,µ) from Property 5) of Definition 3.1.1
≤ C ′ ‖f‖L1(M,µ) .
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So:
µ(E \ E1) ≤

2C ′ ‖f‖L1(M,µ)

λ
. (3.8)

Now we claim that

µ ({x ∈M : |Tf(x)| > λ}) ≤ µ
(
{x ∈M : |Tg(x)| > λ

2
}
)
+ µ(E). (3.9)

Indeed, consider x ∈ M : |Tf(x)| > λ. Then, since f =
∑

i fi + g and T is
linear:

λ < |Tf(x)| =

∣∣∣∣∣∑
i

Tfi(x) + Tg(x)

∣∣∣∣∣
≤ |Tg(x)|+

∣∣∣∣∣∑
i,n

Knfi(x)

∣∣∣∣∣
≤ |Tg(x)|+

∑
i,n

|Knfi(x)|.

Then one of the following occurs:

|Tg(x)| > λ
2

and
∑
i,n

|Knfi(x)| > λ− |Tg(x)| or

|Tg(x)| ≤ λ
2

and
∑
i,n

|Knfi(x)| > λ− |Tg(x)| ≥ λ
2
.

So we have shown that

{x ∈M : |Tf(x)| > λ} ⊂ {x ∈M : |Tg(x)| > λ
2
}∪{x ∈M :

∑
i,n

|Knfi(x)| > λ
2
} ,

which proves Claim 3.9. Then we can proceed with the estimate of the
distribution function of Tf .

µ ({x ∈M : |Tf(x)| > λ}) ≤ µ
(
{x ∈M : |Tg(x)| > λ

2
}
)
+ µ(E)

≤
4C̄ ‖g‖2L2(M,µ)

λ2
+ µ(E1) + µ(E \ E1).

The last inequality is justified by the following: we have shown that g ∈
L2(M,µ) (see 3.4) and by hypothesis T : L2(M,µ) → L2(M,µ) ⊂ L2,∞(M,µ)
is bounded. So Tg ∈ L2,∞(M,µ) and ‖Tg‖L2,∞(M,µ) ≤ ‖Tg‖L2(M,µ). Then:

‖Tg‖2L2,∞(M,µ) = sup{γ2dTg(γ) : γ > 0}
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=⇒ dTg(
λ
2
) ≤

‖Tg‖2L2,∞(M,µ)(
λ
2

)2
≤

4‖Tg‖2L2(M,µ)

λ2

≤
4C̄‖g‖2L2(M,µ)

λ2
. (3.10)

Moreover,

E ⊂ (E ∪ E1) = E1 ∪ (E \ E1) =⇒ µ(E) ≤ µ(E1) + µ(E \ E1).

We can now proceed with the estimate above applying 3.4 e 3.8:

µ ({x ∈M : |Tf(x)| > λ}) ≤
4C̄ ‖g‖2L2(M,µ)

λ2
+ µ(E1) + µ(E \ E1)

≤
4C̄ ‖g‖2L2(M,µ)

λ2
+ µ

(⋃
i

Q∗
i

)
+

2C ′ ‖f‖L1(M,µ)

λ

≤
C ′′λ ‖f‖L1(M,µ)

λ2
+
∑
i

µ(Q∗
i ) +

2C ′ ‖f‖L1(M,µ)

λ

≤
C ′′ ‖f‖L1(M,µ)

λ
+
C ‖f‖L1(M,µ)

λ
+

2C ′ ‖f‖L1(M,µ)

λ

≤
C ′′′ ‖f‖L1(M,µ)

λ
.

In this way we have shown that

λdTf (λ) ≤ C ′′′ ‖f‖L1(M,µ) ∀λ >
C ‖f‖L1(M,µ)

µ(M)
.

We can now conclude the proof:

‖Tf‖L1,∞(M,µ) = sup{λdTf (λ) : λ > 0} ≤ C̃‖f‖L1(M,µ) ,

thus T is of weak type (1, 1).
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Chapter 4

Weighted homogeneous trees

In this chapter we introduce the infinite homogeneous tree and we describe
how it can be equipped with suitable distance and measure. We study the
properties of the corresponding metric measure space (V , d, µ), such as the
lack of the doubling property. These properties motivate the need for the
abstract Calderón–Zygmund theory presented in Chapter 3, which will be
applied to the tree in the next chapter. We also introduce various operators
over (V , d, µ), including laplacian operators, which will be studied in Chapter
6.

4.1 The infinite homogeneous tree T

Definition 4.1.1. An infinite homogeneous tree of order q + 1 is a graph
T = (V , E), where V denotes the set of vertices and E denotes the set of
edges, with the following properties:

• T is connected and acyclic;

• each vertex has exactly q + 1 neighbours.

On V we can define the distance d(x, y) between two vertices x and y as the
length of the shortest path between x and y. We also fix an infinite geodesic
g in T , that is a connected subset g ⊂ V such that:

• for each element v ∈ g there are exactly two neighbours of v in g;

• for every couple (u, v) of elements in g, the shortest path joining u and
v is contained in g.

35
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Figure 4.1: A representation of the infinite homogeneous tree of order 3.

We define a mapping N : g → Z such that:

|N(x)−N(y)| = d(x, y) ∀x, y ∈ g . (4.1)

This corresponds to the choice of an origin o ∈ g (the only vertex for which
N(o) = 0) and an orientation for g; in this way we obtain a numeration of
the vertices in g.
We define the level function l : V → Z as:

l(x) = N(x′)− d(x, x′)

where x′ is the only vertex in g such that d(x, x′) = min{d(x, z) : z ∈ g}.
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g
+

-

. . .
. . .

. . .
. . .

Figure 4.2: Representation of a portion of T with q = 3

Let µ be the measure on T defined by the formula:∫
V
f dµ =

∑
x∈V

f(x)ql(x). (4.2)

Then µ is a weighted counting measure:

• the weight of a vertex depends only on its level;

• the weight associated to a certain level is given by q times the weight
of the level immediately underneath (note that for each vertex in the
higher level there are q vertices on the lower level).

4.2 Laplacian operators on T

We denote by C(V) the space of complex valued functions defined on the
nodes of the infinite homogeneous tree, that is:

C(V) = {f : V → C} .
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g
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levelsweights
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o

Figure 4.3: Representation of the measure µ (q = 3)

Consider a function f ∈ C(V).

Definition 4.2.1. We define the operator A by the formula:

(Af)(x) =
1

2
√
q

∑
y∈V:d(x,y)=1

q
l(y)−l(x)

2 f(y) ∀x ∈ V . (4.3)

We observe that the difference between levels of vertices involved in the sum
defining (Af)(x) can be either +1 or −1. In particular:

l(y)− l(x) =

{
+1 for just one neighbour of x
−1 for q neighbours of x

This implies that ∀x ∈ V

q
l(y)−l(x)

2

√
q

=

{
1 for just one neighbour of x
1
q

for q neighbours of x

More precisely, we define the sets of vertices:

V +(x) = {y ∈ V : d(x, y) = 1 , l(y) = l(x) + 1} ,
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V −(x) = {y ∈ V : d(x, y) = 1 , l(y) = l(x)− 1} .

We call V +(x) the set of parents of x (there is only one parent for every x)
and we call V −(x) the set of children of x (every vertex has q children).
Then we can express (Af)(x) as follows:

(Af)(x) =
1

2

∑
y∈V +(x)

f(y) +
1

2

1

q

∑
y∈V −(x)

f(y)

 ∀x ∈ V .

In this way we see that (Af)(x) is a weighted average of the values f(y) on
the neighborhood of x: the value of f on the neighbor on the upper level has
weight 1

2
while the values of f on each one of the q neighbors on the lower

level have weight 1
2q

, so that each level contributes for a weight of 1
2
.

{
{

1
2

1
2
1
2

1
2q

1
2q

1
2q

1
2 }

}
weights

V +(x)

V -(x)

x

Representation of the action of A (q = 3)

4.2.1 Properties of the operator A

Proposition 4.2.1. The operator A satisfies the following properties:

i) A : L1(V , µ) → L1(V , µ) is a bounded linear operator of norm 1;
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ii) A : L∞(V , µ) → L∞(V , µ) is a bounded linear operator and ‖A‖B(L∞(V,µ)) ≤
1;

iii) A : Lp(V , µ) → Lp(V , µ) is a bounded linear operator for 1 < p < ∞
and ‖A‖B(Lp(V,µ)) ≤ 1;

iv) A ∈ B(L2(V , µ)) is self-adjoint on L2(V , µ).

Proof. We first prove i). Take f ∈ L1(V , µ). Then:

‖Af‖L1(V,µ) =
∑
x∈V

|Af(x)| ql(x) =
∑
x∈V

∣∣∣∣∣∣12
∑

y∈V +(x)

f(y) +
1

2

1

q

∑
y∈V −(x)

f(y)

∣∣∣∣∣∣ ql(x)
≤
∑
x∈V

1

2

∑
y∈V +(x)

|f(y)|+ 1

2q

∑
y∈V −(x)

|f(y)|

 ql(x)

=
1

2

∑
x∈V

∑
y∈V +(x)

|f(y)| ql(x) + 1

2q

∑
x∈V

∑
y∈V −(x)

|f(y)| ql(x)

=
1

2

∑
y∈V

∑
x∈V −(y)

|f(y)| ql(x) + 1

2q

∑
y∈V

∑
x∈V +(y)

|f(y)| ql(x)

=
1

2

∑
y∈V

|f(y)|
∑

x∈V −(y)

ql(x) +
1

2q

∑
y∈V

|f(y)|
∑

x∈V +(y)

ql(x)

=
∑
y∈V

|f(y)|

1

2

∑
x∈V −(y)

ql(x) +
1

2q

∑
x∈V +(y)

ql(x)


=
∑
y∈V

|f(y)|

1

2

∑
x∈V −(y)

ql(y)−1 +
1

2q

∑
x∈V +(y)

ql(y)+1


=
∑
y∈V

|f(y)| ql(y)
1

2

∑
x∈V −(y)

1

q
+

1

2q

∑
x∈V +(y)

q


=
∑
y∈V

|f(y)| ql(y)
(

1

2q
q +

1

2
1

)
=
∑
y∈V

|f(y)| ql(y)

= ‖f‖L1(V,µ) .
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Note that ‖A‖L1(V,µ)→L1(V,µ) = 1, indeed if we repeat the steps with f positive
the inequality becomes an equality.
We now prove (ii): Let us consider f ∈ L∞(V , µ), that is supx∈V |f(x)| ≤M
for some M > 0. Then:

|Af(x)| =

∣∣∣∣∣∣12
∑

y∈V +(x)

f(y) +
1

2

1

q

∑
y∈V −(x)

f(y)

∣∣∣∣∣∣
=

1

2

∑
y∈V +(x)

|f(y)|+ 1

2q

∑
y∈V −(x)

|f(y)|

=
1

2

∑
y∈V +(x)

M +
1

2q

∑
y∈V −(x)

M

=
1

2
1M +

1

2q
qM =M .

This proves (ii). Property (iii) follows by the Marcinkiewicz interpolation
theorem 2.1.7.
To prove (iv), let f, g ∈ L2(V , µ):

〈Af, g〉L2(V,µ) =
∑
x∈V

(Af)(x)g(x)ql(x)

=
∑
x∈V

1

2

∑
y∈V +(x)

f(y) +
1

2

1

q

∑
y∈V −(x)

f(y)

 g(x)ql(x)

=
1

2

∑
x∈V

∑
y∈V +(x)

f(y)g(x)ql(x) +
1

2q

∑
x∈V

∑
y∈V −(x)

f(y)g(x)ql(x)

=
1

2

∑
y∈V

∑
x∈V −(y)

f(y)g(x)ql(y)−1 +
1

2q

∑
y∈V

∑
x∈V +(y)

f(y)g(x)ql(y)+1

=
∑
y∈V

f(y)ql(y)

 1

2q

∑
x∈V −(y)

g(x)

+
∑
y∈V

f(y)ql(y)

1

2

∑
x∈V +(y)

g(x)


=
∑
y∈V

f(y)ql(y)

1

2

∑
x∈V +(y)

g(x) +
1

2q

∑
x∈V −(y)

g(x)


=
∑
y∈V

f(y)(Ag)(y)ql(y)

= 〈f, Ag〉L2(V,µ) .
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4.2.2 The spectrum of the operator A

It follows from the previous results that the L2(V , µ) spectrum of A is real
and lies in [−1, 1]. In this section we prove a more precise statement.
Definition 4.2.2. For every f ∈ C(V) we define the operator L by:

(Lf)(x) =
∑

y:d(x,y)=1

f(y)

The following relationship between the operators A and L holds.
Proposition 4.2.2. For A and L as defined before it holds the following:

2
√
q q

l
2A = Lq

l
2 (4.4)

where q
l
2 denotes the multiplication operator defined for every f ∈ C(V) by:

(q
l
2f)(x) = q

l(x)
2 f(x).

Proof.

(Lq
l
2 )(f)(x) =

∑
y:d(x,y)=1

(q
l
2f)(y)

=
∑

y:d(x,y)=1

q
l(y)
2 f(y)

=
∑

y∈V +(x)

q
l(x)+1

2 f(y) +
∑

y∈V −(x)

q
l(x)−1

2 f(y)

= q
l(x)
2

√
q
∑

y∈V +(x)

f(y) +
1
√
q

∑
y∈V −(x)

f(y)


= 2

√
q q

l(x)
2

1

2

∑
y∈V +(x)

f(y) +
1

2q

∑
y∈V −(x)

f(y)


= 2

√
qq

l(x)
2 Af(x)

= 2
√
q

(
q
l
2A

)
(f)(x).
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We observe the following interesting fact.

Proposition 4.2.3.

q
l
2 : L2(V , µ) −→ L2(V ,#)

is a surjective linear isometry, where # denotes the counting measure.
Then L2(V , µ) and L2(V ,#) are isometrically isomorphic.

Proof.

Let f ∈ L2(V , µ).

Then q
l
2f ∈ L2(V ,#) since

‖q
l
2f‖2L2(V,#) =

∑
x∈V

∣∣∣∣q l(x)2 f(x)

∣∣∣∣2
=
∑
x∈V

|f(x)|2ql(x)

= ‖f‖2L2(V,µ).

This shows that q
l
2 is a linear isometry (and so it is injective).

Moreover, q
l
2 is surjective. To prove it we define the operator

q−
l
2 : f(x) −→ (q−

l
2f)(x) = q−

l(x)
2 f(x)

for every f ∈ C(V) and show that q−
l
2 : L2(V ,#) −→ L2(V , µ) is again a

linear isometry.

Let f ∈ L2(V ,#). Then q−
l
2f ∈ L2(V , µ), indeed

‖q−
l
2f‖2L2(V,µ) =

∑
x∈V

∣∣∣∣q− l(x)
2 f(x)

∣∣∣∣2 ql(x)
=
∑
x∈V

|f(x)|2

= ‖f‖2L2(V,#).

Finally, given f ∈ L2(V ,#), f is the image of q−
l
2f ∈ L2(V , µ) through q

l
2 :

q
l
2

(
q−

l
2f

)
= f
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so q
l
2 is surjective and q−

l
2 is its inverse operator.

Going back to the spectrum of A, we can prove the following.
Proposition 4.2.4. The L2(V , µ) spectrum of A is precisely:

σ(A) = [−1, 1]. (4.5)

Proof. We can exploit the relationship (4.4) between A and L to compute
σ(A) given σ(L).
We write (4.4) in the form:

A =
1

2
√
q

(
q−

l
2Lq+

l
2

)
and observe that

λ ∈ σ(L) ⇔ L− λI is not invertible

⇔ 1

2
√
q
q−

l
2 (L− λI) q+

l
2 is not invertible

⇔ 1

2
√
q

(
q−

l
2 L q+

l
2 − λI

)
is not invertible

⇔ A− λ

2
√
q
I is not invertible

⇔ λ

2
√
q
∈ σ(A).

The Lp spectrum of the laplacian L = I − 1
q+1

L is known in literature (we
refer to [FTP83]). In particular for the L2 spectrum we have that:

σ(L) = [1− γ(0), 1 + γ(0)]

where γ is the function defined by the formula:

γ(z) =
q
1
2

q + 1

(
qiz + q−iz

)
.

So:

σ(L) =
[
1−

2
√
q

q + 1
, 1 +

2
√
q

q + 1

]
⇒ σ(L) = [−2

√
q, 2

√
q]

⇒ σ(A) = [−1, 1] .
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4.2.3 The Laplacian L

Definition 4.2.3. On the infinite homogeneous tree T = (V , E) with measure
µ and distance d we define the laplacian L as

L = I − A.

For each vertex x ∈ V we can fix a labeling of the neighbors of x in such a
way that the father of x is labelled with 0 and the children of x are labeled
with j for j = 1, . . . , q.
In the following we denote by vj(x), j = 0, . . . , q the jth neighbor of x.

Definition 4.2.4. We define the linear operators Xj, j = 0, . . . , q which
take a function f ∈ C(V) and give the functions Xjf defined by:

(Xjf)(x) = f(vj(x))− f(x) . (4.6)

Xjf can be thought as a "first derivative" of the function f .

Definition 4.2.5. For every function f ∈ C(V) we also define the gradient
Of by the formula:

(Of)(x) =
∑

y∈V:d(x,y)=1

|f(y)− f(x)| ∀x ∈ V . (4.7)

We notice that:

Of(x) =
q∑

j=0

|Xjf(x)| .

We now show that there is an interesting link between laplacian and gradient
on the tree, since they can both be expressed in terms of the operators Xj.
First of all, we compute the adjoint operators of Xj, j = 0, . . . , q.

〈Xjf, g〉 =
∑
x∈V

(Xjf)(x)g(x)q
l(x)

=
∑
x∈V

(f(vj(x))− f(x)) g(x)ql(x).

We must distinguish the cases:
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• j = 0, i.e. vj(x) is the father of x.

〈X0f, g〉 =
∑
x∈V

(f(v0(x))− f(x)) g(x)ql(x)

=
∑
x∈V

f(v0(x))g(x)q
l(x) −

∑
x∈V

f(x)g(x)ql(x)

=
∑
x∈V

∑
y∈V +(x)

f(y)g(x)ql(x) −
∑
x∈V

f(x)g(x)ql(x)

=
∑
y∈V

∑
x∈V −(y)

f(y)g(x)ql(x) −
∑
x∈V

f(x)g(x)ql(x)

=
∑
y∈V

∑
x∈V −(y)

f(y)g(x)ql(y)−1 −
∑
x∈V

f(x)g(x)ql(x)

=
∑
y∈V

q∑
j=1

f(y)g(vj(y))q
l(y)−1 −

∑
y∈V

f(y)g(y)ql(y)

=
∑
y∈V

f(y)

(
1

q

q∑
j=1

g(vj(y))− g(y)

)
ql(y)

=
∑
y∈V

f(y)

(
1

q

q∑
j=1

g(vj(y))− g(y)

)
ql(y)

= 〈f,X∗
0g〉 .

This shows that:

(X∗
0g)(x) =

1

q

q∑
j=1

g(vj(x))− g(x)

=
1

q

q∑
j=1

(Xjg) (x)

=

(
1

q

q∑
j=1

Xjg

)
(x).

That is:

X∗
0 =

1

q

q∑
j=1

Xj. (4.8)
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• j 6= 0, i.e. vj(x) is a child of x. To treat this case it is useful to define
the set of vertices y which are the jth child of their father:

Fj = {y ∈ V : y = vj(v0(y))} .

〈Xjf, g〉 =
∑
x∈V

(f(vj(x))− f(x)) g(x)ql(x)

=
∑
x∈V

f(vj(x))g(x)q
l(x) −

∑
x∈V

f(x)g(x)ql(x)

=
∑
y∈Fj

f(y)g(v0(y))q
l(y)+1 −

∑
y∈V

f(y)g(y)ql(y)

=
∑
y∈V

f(y)
(
q g(v0(y))χFj

(y)− g(y)
)
ql(y)

=
∑
y∈V

f(y)
(
q g(v0(y))χFj

(y)− g(y)
)
ql(y)

=
〈
f,X∗

j g
〉

where χFj
is the characteristic function of the set Fj.

This shows that:

(X∗
j g)(x) = q g(v0(x))χFj

(x)− g(x) for j 6= 0. (4.9)

We are now in the position to show the relationship between the Laplacian
L and the operators Xj which we introduced before.

Proposition 4.2.5. Let A and Xj be as previously defined. We have that:

L = I − A =
1

2(q + 1)

q∑
j=0

X∗
jXj. (4.10)

Proof. First we compute X∗
jXj for j = 0, . . . , q. As before we distinguish

two cases.

• j = 0:

X∗
0X0 =

(
1

q

q∑
j=1

Xj

)
X0 =

1

q

q∑
j=1

XjX0
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so we have to compute the composition XjX0 for all j 6= 0.
((XjX0)f) (x) = (X0f)(vj(x))− (X0f)(x)

= f(v0(vj(x)))− f(vj(x))− f(v0(x)) + f(x)

= f(x)− f(vj(x))− f(v0(x)) + f(x).

Then we have:

((X∗
0X0)f) (x) =

1

q

q∑
j=1

(f(x)− f(vj(x))− f(v0(x)) + f(x))

= 2f(x)− f(v0(x))−
1

q

q∑
j=1

f(vj(x))

= 2

(
f(x)− 1

2
f(v0(x))−

1

2q

q∑
j=1

f(vj(x))

)
= 2 ((I − A)f) (x).

• j 6= 0.

(
(X∗

jXj)f
)
(x) = q(Xjf)(v0(x))χFj

(x)− (Xjf)(x)

= q (f(vj(v0(x))− f(v0(x)))χFj
(x)− f(vj(x)) + f(x)

= q f(x)χFj
(x)− q f(v0(x))χFj

(x)− f(vj(x)) + f(x).

Then we have:
q∑

j=1

(
(X∗

jXj)f
)
(x) =

q∑
j=1

(
q f(x)χFj

(x)− q f(v0(x))χFj
(x)− f(vj(x)) + f(x)

)
= 2qf(x)− qf(v0(x))−

q∑
j=1

f(vj(x))

= 2qf(x)− 2q

(
1

2
f(v0(x)) +

1

2q

q∑
j=1

f(vj(x))

)
= 2q ((I − A)f) (x).

Summing up, we have:
q∑

j=0

(
(X∗

jXj)f
)
(x) = 2 ((I − A)f) (x) + 2q ((I − A)f) (x)

= 2(q + 1) ((I − A)f) (x).
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4.3 Properties of the metric measure space
(V , d, µ)

4.3.1 The measure of spheres and balls

In this section we shall compute the µ-measure of the sphere Sr(x0) of radius
r centered in x0 ∈ V defined by:

Sr(x0) = {x ∈ V : d(x, x0) = r}

and of the ball Br(x0) of radius r centered in x0 ∈ V defined by:

Br(x0) = {x ∈ V : d(x, x0) ≤ r} .

Let x0 ∈ V with l(x0) = l. To compute µ(Sr(x0)) =
∑

x∈V:d(x,x0)=r q
l(x) we

have to count how many vertices with distance r from x0 are contained in V
for every level.
First we give a useful definition.

Definition 4.3.1. We say that y lies above x if

l(x) = l(y)− d(x, y).

In this case we also say that x lies below y.

Now fix x0 and r > 0 and denote by l the level of x0. We can see that:

• there are 0 vertices x s.t. d(x, x0) = r at level l(x) > l + r.

• there is exactly 1 vertex x s.t. d(x, x0) = r at level l(x) = l + r.

This is the vertex that one reaches starting from x0 and moving for r
times to the vertex above the current one.

• there are (q − 1) vertices x s.t. d(x, x0) = r at level l(x) = (l + r)− 2.

These are the vertices that can be reached from x0 moving r− 1 times
to the only vertex above the current one (reaching level (l+r)−1) and
then taking one step down to a child node not already visited (there
are q − 1 such nodes).
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. . .
. . .

. . .
. . .

+

-

y

z

x
1

x
2

Figure 4.4: In this example, with q = 3, y lies above x1 and below z, while
it lies nor above nor below of x2.
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• there are q(q− 1) vertices x s.t. d(x, x0) = r at level l(x) = (l+ r)− 4.

These are the vertices that can be reached from x0 moving r− 2 times
to the only vertex above the current one (reaching level (l + r) − 2),
then taking one step down to a child node not already visited (there
are q − 1 such nodes) and finally another step down to any of the q
children.
...

• there are qr vertices x s.t. d(x, x0) = r at level l(x) = l − r.

These are the vertices that one reaches by moving r steps down starting
from x0 (every time there are q possible choices for the child node).

l+r

(l+r )−2

l

(l+r )−6

l−r

x
0

levels

Figure 4.5: Representation of one element of the sphere Sr(x0) for every level
(q = 3 and r = 4)
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In general, if we denote with nr,x0(L) the number of vertices with distance r
from x0 and level L we have:

nr,x0(L) =



1 if L = l + r

(q − 1)qk if L = (l + r − 2)− 2k = (l + r)− 2(k + 1)

with k = 0, 1, . . . , r − 2

qr if L = l − r

0 otherwise.

Therefore, for r ≥ 2:

µ(Sr(x0)) =
∑

x∈V:d(x,x0)=r

ql(x)

=
l+r∑

L=l−r

nr,x0(L)q
L

= qr+l−r + ql+r +
r−2∑
k=0

(q − 1)qkq(l+r−2)−2k

= ql(qr + 1) + (q − 1)ql+r−2

r−2∑
k=0

q−k

= ql(qr + 1) + (q − 1)ql+r−2
1− (1

q
)r−1

1− 1
q

= ql(qr + 1) + (q − 1)ql+r−21− q(1−r)

q − 1
q

= ql(qr + 1) + q(l+r−1)(1− q(1−r))

= ql(qr + 1) + q(l+r−1) − ql

= ql(qr + 1 + q(r−1) − 1)

= ql+r−1(1 + q).

For r = 0 and r = 1 we can compute directly:

µ(S0(x0)) = ql,

µ(S1(x0)) = ql(1 + q),

so we see that the formula found for r ≥ 2 holds also for r = 1.
We notice that µ(Sr(x0)) depends on the level of the center x0.
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For example, if l(x0) = l = 0:

µ(Sr(x0)) = qr−1(1 + q) = #Sr(x0),

i.e. the µ-measure of the sphere coincides with its counting measure.
Now, to compute µ(Br(x0)) we can exploit the fact that Br(x0) is the union
of the disjoint spheres with radius from 0 to r and obtain:

µ(Br(x0)) = µ(S0(x0)) +
r∑

j=1

µ(Sj(x0))

= ql +
r∑

j=1

ql+j−1(1 + q)

= ql

(
1 + (1 + q)

r∑
j=1

qj−1

)

= ql

(
1 + (1 + q)

r−1∑
k=0

qk

)

= ql
(
1 + (1 + q)

1− qr

1− q

)
= ql

(
1− q + 1 + q − qr − qr+1

1− q

)
= ql

2− qr − qr+1

1− q

= ql
qr+1 + qr − 2

q − 1
.

4.3.2 The doubling property

We notice that µ(Br(x0)) grows exponentially with respect to the radius r.

Definition 4.3.2 (Doubling Property). A metric measure space (X, ρ, ν) is
said to be doubling if:

∃C > 0 s.t. ν(B2r(x0)) ≤ Cν(Br(x0)) ∀r ≥ 0, ∀x0 ∈ X. (4.11)

Conversely, we say that (X, ρ, ν) is not doubling if @C > 0 satisfying (4.11).
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An example of doubling metric measure space is Euclidean n-dimensional
space endowed with the Lebesgue measure. In that case:

λ(B2r(x0)) = (2r)nB1(x0) ≤ 2nrnB1(x0) = 2nλ(Br(x0))

so 4.11 is verified by C = 2n.

Proposition 4.3.1. The space (V , d, µ) is not doubling.

Proof. Recall that

µ(Br(x0)) = ql
qr+1 + qr − 2

q − 1
.

The doubling property 4.11 implies that ∃C > 0 such that:

µ(B2r(x0))

µ(Br(x0))
≤ C ∀r > 0,∀x0 ∈ V .

We show that this is not possible by computing:

lim
r→∞

µ(B2r(x0))

µ(Br(x0))
= lim

r→∞

ql q2r+1+q2r−2
q−1

ql qr+1+qr−2
q−1

= lim
r→∞

q2r(q + 1)− 2

qr(q + 1)− 2

= lim
r→∞

q2r
[
(q + 1)− 2

q2r

]
qr
[
(q + 1)− 2

qr

]
= lim

r→∞
qr · lim

r→∞

(q + 1)− 2
q2r

(q + 1)− 2
qr

= lim
r→∞

qr = ∞.

We observe that the counting measure (V , d,#) is not doubling too, as one
can see repeating the preceding proof with #(Br(x0)) =

qr+1+qr−2
q−1

.
This is due to the fact that in both cases the measure of the ball increases
exponentially with respect to its radius.
We can define a weaker condition which is satisfied by these spaces.



4.3. PROPERTIES OF THE METRIC MEASURE SPACE (V , D, µ) 55

Definition 4.3.3 (Locally doubling property). A metric measure space (X, ρ, ν)
is said to be locally doubling if:

∀R > 0 ,∃CR > 0 s.t. ν(B2r(x0)) ≤ CRν(Br(x0)) ∀r ≤ R, ∀x0 ∈ X.
(4.12)

Proposition 4.3.2. The space (V , d, µ) is locally doubling.

Proof. Fix R > 0 and consider r ≤ R.

µ(B2r(x0)) = ql
q2r+1 + q2r − 2

q − 1

= ql
q2r+1+q2r−2

q−1

qr+1+qr−2
q−1

qr+1 + qr − 2

q − 1

≤ ql
q2R+1+q2R−2

q−1

qR+1+qR−2
q−1

qr+1 + qr − 2

q − 1

= ql
qr+1 + qr − 2

q − 1
CR

= µ(Br(x0))CR.

with CR = q2R+1+q2R−2
qR+1+qR−2

= µ(B2R(x0))
µ(BR(x0))

> 0 not depending on x0.

The same property holds for the counting measure. In both cases this is due
to the fact that the ratio µ(B2r(x0))

µ(Br(x0))
does not depend on the center of the ball

x0 but only on the radius r.

4.3.3 The isoperimetric property

We now study another relevant property that links measure and metrics.
It is expressed by the following definition which captures the fact that the
region close to the boundary of a set A gives a significant contribution to the
measure of A.
Let (X, ρ, ν) be a metric measure space.
For any subset A ⊂ X and each k ∈ R+ we denote:

Ak = {x ∈ A : ρ(x,Ac) ≤ k}
Ak = {x ∈ A : ρ(x,Ac) > k} .
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Definition 4.3.4 (Isoperimetric property). The metric measure space (X, ρ, ν)
has the isoperimetric property if

∃k0, C ∈ R+ such that ∀A ⊂ X bounded open set it holds

ν(Ak) ≥ Ckν(A) ∀k ∈ (0, k0]. (4.13)

Definition 4.13 is the standard way to express such concept in the context of
metric measure spaces. However we show that it is not the most suitable for
the present case, since it is trivially false for every measure when the distance
is discrete (i.e. it assumes only integer values).

Proposition 4.3.3. The space (V , d, µ) has not the isoperimetric property
(4.13).

Proof. We show that the converse of 4.13 is true, i.e.

∀k0,∀C > 0 ∃A ⊂ X bounded open set and ∃k ≤ k0 such that

ν(Ak) < Ckν(A). (4.14)
Indeed, it is sufficient to take k < 1 arbitrarily if k0 ≥ 1 or k = k0

2
if k0 < 1

and we have that Ak = ∅, since there are no points in A with distance less
than 1 from Ac. Then, since µ(∅) = 0 (4.14) is satisfied.

Proof of Proposition 4.3.3 does not rely on specific feature of d and µ: we
just used the general fact that µ(∅) = 0 (which is true for every measure) and
that every vertex that does not belong to a set Ac ⊂ V has distance not less
that 1 from everyone of its point (which is true for every discrete distance on
V).
So Property (4.13) does not express a link between d and µ and does not
provide any insight.
For this reason it is convenient to introduce a new definition that express
the same concept as 4.13 but is adapted to a discrete setting. The following
definition refers to [HLW06].

Definition 4.3.5 (Isoperimetric property - discrete case). The metric mea-
sure space (X, ρ, ν) with discrete distance ρ has the discrete isoperimetric
property if

∃C ∈ R+ such that ∀A ⊂ X bounded set it holds

ν(A1) ≥ Cν(A). (4.15)
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In Definition 4.3.5 we compare the measure of A with the measure of the
boundary of A (that is the set of vertices of A that have a neighbor in Ac or,
in other words, that have distance equal to 1 from Ac).
The fact that (V , d, µ) has not the isoperimetric property 4.3.5 is now more
interesting since it is not trivial.

Proposition 4.3.4. The space (V , d, µ) has not the discrete isoperimetric
property 4.3.5.

Proof. We show that the converse of (4.15) is true, i.e.

∀C > 0 ∃A ⊂ X bounded set such that

ν(A1)

ν(A)
< C. (4.16)

In particular, we show that for every C > 0 we can find an admissible
trapezoid satisfying 4.16.
Admissible trapezoids will be formally introduced in Definition 5.1.1 and
deeply investigated in the next chapter since they are fundamental in the
construction of the Calderón–Zygmund theory for the tree. For the moment
we just need to consider an admissible trapezoid as a set of vertices

R = {x ∈ V : x lies below xR, h ≤ l(xR)− l(x) < 2h}

for given xR and h = h(R).
The boundary of R is made of the two bases of R, that is the set of vertices
in R with level equal to l(xR)− h or l(xR)− 2h+ 1. More formally, we can
define

bR = {x ∈ R : l(x) = l(xR)− h}
BR = {x ∈ R : l(x) = l(xR)− 2h+ 1}

and we have that
A1 = BR ∪ bR.

We will show that µ(R) = h(R)ql(xR) (see 5.1) and that each level of a
trapezoid has measure equal to the measure of the root xR, i.e.

µ(BR) = q2h−1ql(xR)−2h+1 = ql(xR)

µ(bR) = qhql(xR)−h = ql(xR)
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since in BR there are q2h−1 vertices and each of them has level l(xR)−2h+1,
while in bR there are qh vertices and each of them has level l(xR)− h. Then

µ(A1)

µ(A)
=
µ(BR) + µ(bR)

µ(A)

=
2ql(xR)

h(R)ql(xR)

=
2

h(R)
.

We can make this ratio arbitrary small by choosing a trapezoid of appropriate
height:

µ(A1)

µ(A)
< C ⇔ h(R) >

2

C
.

That trapezoid plays the role of A in 4.16 and the proof is concluded.

We underline that Proposition 4.3.4 is not trivial as 4.3.3 was. To show that
we give an example of a family of sets A ⊂ V for which the property 4.3.5 is
satisfied.
Example We set A = Br(x0). The boundary of A is A1 = Sr(x0).Then:

µ(A1)

µ(A)
=
µ(Sr(x0))

µ(Br(x0))

=
ql+r−1(1 + q)

ql qr+1+qr−2
q−1

= (q2 − 1)
qr−1

qr+1 + qr − 2

=
(q2 − 1)

q

qr

qr(1 + q)− 2

≥ (q2 − 1)

q

qr

qr(1 + q)

=
(q2 − 1)

q

1

(1 + q)

=
(q − 1)

q

So for every ball A = Br(x0) it holds
µ(A1)

µ(A)
≥ C with C =

(q − 1)

q
.



Chapter 5

Calderón–Zygmund theory for
the weighted tree

In their work [HS03], Hebish and Steger outline the proof of a covering lemma
for the weighted tree, based on the introduction of a family of sets called
admissible trapezoids, thus showing that the tree possessess the abstract
Calderón–Zygmund property described in Chapter 3. We develope in great
detail their proof and also the one concerning the weak-type (1, 1) bounded-
ness of the maximal function M introduced therein.

5.1 Admissible trapezoids

Definition 5.1.1. R ⊂ V is an admissible trapezoid if and only if one of the
following occurs:

• R = {xR} with xR ∈ V , that is R consists of a single vertex ;

• ∃xR ∈ V , ∃h ∈ N+ such that

R = {x ∈ V : x lies below xR , h ≤ l(xR)− l(x) < 2h} .

We set h(R) = 1 in the first case and h(R) = h in the second case. In both
cases we will refer to xR as the root node of the trapezoid.

59
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x
R

l(x)=l(xR)+h (R)

l(x)=l(xR)+2h(R)

l(x)=l (xR)+2h(R)−1

{h(R)

Representation of an admissible trapezoid with h(R) = 2 (q = 3)

For an admissible trapezoid R, h(R) can be interpreted as the height of the
trapezoid and coincides with the number of levels spanned by R.

Definition 5.1.2. We call width of the trapezoid R the quantity

w(R) = ql(xR).

It holds that:
µ(R) = h(R)ql(xR) = h(R)w(R). (5.1)

To prove this we distinguish two cases:

• R = {xR}, that is R consists of a single vertex. In this case:

µ(R) =
∑
x∈R

ql(x) = ql(xR) = h(R)ql(xR).
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• R is not a degenerate trapezoid. In this case:

µ(R) =
∑
x∈R

ql(x) =

l(xR)−h∑
l=l(xR)−2h+1

∑
x∈R:l(x)=l

ql

=

l(xR)−h∑
l=l(xR)−2h+1

qlql(xR)−l

=

l(xR)−h∑
l=l(xR)−2h+1

ql(xR)

= ql(xR) (l(xR)− h− (l(xR)− 2h+ 1) + 1)

= ql(xR)h = ql(xR)h(R).

Definition 5.1.3. Let R be an admissible trapezoid. We define its envelope
R̃ as follows:

• if R consists of a single vertex, then R̃ = R;

• otherwise

R̃ =

{
x ∈ V : x lies below xR ,

h

2
≤ l(xR)− l(x) < 4h

}
.

Proposition 5.1.1. Let R be an admissible trapezoid. Then it holds:

µ(R̃) ≤ 4µ(R).

Proof. As usual, we distinguish between the degenerate and non-degenerate
case.

• If R consists of a single vertex R = {xR} then R̃ = R = {xR} and

µ(R̃) =
∑
x∈R̃

ql(x) = h(R)ql(xR) = µ(R) ≤ 4µ(R).
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x
R

l(xR)

l(xR)+
h
2

l(xR)+h

l(xR)+2h−1

l(xR)+4h−1

l(xR)+4h

l(xR)+2h

Figure 5.1: Representation of the envelope R̃ (green) of the admissible trape-
zoid R (red) when h = h(R) = 2
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• In the non degenerate case

µ(R̃) =
∑
x∈R̃

ql(x) =

bl(xR)−h
2
c∑

l=l(xR)−4h+1

∑
x∈R̃:l(x)=l

ql

=

bl(xR)−h
2
c∑

l=l(xR)−4h+1

qlql(xR)−l =

bl(xR)−h
2
c∑

l=l(xR)−4h+1

ql(xR)

= ql(xR)
(
bl(xR)− h

2
c − (l(xR)− 4h+ 1) + 1

)
≤ ql(xR)

(
l(xR)− h

2
− l(xR) + 4h

)
≤
(
ql(xR)h

)
(4− 1

2
)

≤ 4µ(R).

Proposition 5.1.2. Let R1 and R2 be two admissible trapezoids. If

R1 ∩R2 6= ∅ and w(R1) ≥ w(R2) ,

then
R2 ⊂ R̃1.

Proof. We distinguish four cases:

• 1) both R1 and R2 consist of a single vertex;

• 2) R1 is composed of a single vertex, while R2 is not;

• 3) R2 is composed of a single vertex, while R1 is not;

• 4) nor R1 neither R2 is composed of a single vertex.

Case 1): In this case

R1 = {xR1} , R2 = {xR2} .

Thus,

R1 ∩R2 6= ∅ =⇒ xR1 = xR2 =⇒ R2 = R1 = R̃1

=⇒ R2 ⊂ R̃1.

Case 2): This case is inconsistent with the hypothesis.
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x
R2

x
R1

R1 = {xR1}, let xR2 be the root node of R2. Then

w(R1) = ql(xR1
) ≥ ql(xR2

) = w(R2) =⇒ l(xR1) ≥ l(xR2)

=⇒ xR1 /∈ R2 =⇒ R1 ∩R2 = ∅.
Therefore this case cannot happen.
Case 3): In this case R2 = {xR2}.

x
R2

x
R1

Let xR1 be the root node of R1.

R1 ∩R2 6= ∅ =⇒ xR2 ∈ R1 =⇒ R2 ⊂ R1 ⊂ R̃1.

Case 4)
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x
R2

X
R1

Let xR1 and xR2 be the two root nodes of R1 and R2, respectively. Then

w(R1) = ql(xR1
) ≥ ql(xR2

) = w(R2) =⇒ l(xR1) ≥ l(xR2).

If xR2 were not below xR1 , then it would hold R1 ∩R2 = ∅ (since all vertices
of R1 lie below xR1 and all vertices of R2 lie below xR2). This means that
xR2 is below xR1 and so is every vertex of R2. In the following we denote
h1 = h(R1) and h2 = h(R2).

R1 = {x ∈ V : x below xR1 , h1 ≤ l(xR1)− l(x) < 2h1}
= {x ∈ V : x below xR1 , l(xR1)− 2h1 < l(x) ≤ l(xR1)− h1} ,

R2 = {x ∈ V : x below xR2 , h2 ≤ l(xR2)− l(x) < 2h2}
= {x ∈ V : x below xR2 , l(xR2)− 2h2 < l(x) ≤ l(xR2)− h2} .

Let x̂ ∈ R1 ∩ R2 6= ∅. Then, since l(x̂) satisfies both sets of inequalities we
obtain the following constraints:{

l(xR2)− 2h2 + 1 ≤ l(x̂) ≤ l(xR1)− h1

l(xR1)− 2h1 + 1 ≤ l(x̂) ≤ l(xR2)− h2

=⇒

{
l(xR1)− l(xR2) ≥ h1 − 2h2 + 1

l(xR1)− l(xR2) ≤ 2h1 − h2 − 1 .
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These last inequalities can be interpreted in the following way. For the in-
tersection R1 ∩R2 not to be empty

• the lower base of R2 cannot be higher than the highest base of R1,

• the higher base of R2 cannot be lower than the lowest base of R1.

Let x ∈ R2. Then

• x lies below xR2 =⇒ x lies below xR1 ,

• h2 ≤ l(xR2)− l(x) ≤ 2h2 − 1.

To conclude that x ∈ R̃1 we must estimate the quantity l(xR1)− l(x).

l(xR1)− l(x) = [l(xR1)− l(xR2)] + [l(xR2)− l(x)]

≤ [2h1 − h2 − 1] + [2h2 − 1]

≤ 2 [2h1 − h2 − 1] + [2h2 − 1]

= 4h1 − 2h2 − 2 + 2h2 − 1

= 4h1 − 3 < 4h1.

l(xR1)− l(x) = [l(xR1)− l(xR2)] + [l(xR2)− l(x)]

≥ [h1 − 2h2 + 1] + [h2]

≥ 1

2
[h1 − 2h2 + 1] + [h2]

=
h1
2

+
1

2
>
h1
2
.

Summing up,
h1
2

≤ l(xR1)− l(x) < 4h1 ∀x ∈ R2

=⇒ R2 ⊂ R̃1.
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5.2 The maximal function M

Definition 5.2.1. We define the maximal function M as follows:

Mf(x) = sup
R:x∈R

µ(R)−1
∑
y∈R

|f(y)|ql(y)

where f ∈ C(V) and the supremum is taken over all admissible trapezoids R
containing x.

Theorem 5.2.1. The maximal function M is of weak-type (1, 1).

Proof. Let f ∈ L1(V , µ) and λ > 0.
Define S0 as the family of all admissible trapezoids R such that∑

x∈R

|f(x)|ql(x) ≥ λµ(R).

Since S0 is countable, we can introduce an ordering in S0.
All trapezoids in S0 have:

• bounded measure:

∀R ∈ S0, µ(R) ≤ 1

λ

∑
x∈R

|f(y)|ql(y) ≤ 1

λ
‖f‖L1(V,µ) ;

• bounded width:

∀R ∈ S0, w(R) =
µ(R)

h(R)
≤ µ(R) ≤ 1

λ
‖f‖L1(V,µ) .

So it is possible to choose in S0 a trapezoid R0 of largest width (in case of
ties, we choose that trapezoid of largest width which occurs earliest in the
ordering).
Then we proceed inductively:

• Si+1 is the family of all admissible trapezoids R ∈ Si disjointed from
R0, . . . , Ri;

• Ri+1 is the trapezoid of largest width in Si+1 which occurs earliest in
the ordering.
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Let R ∈ S0, that is R satisfies
∑

x∈R |f(x)|ql(x) ≥ λµ(R). Then by construc-
tion R intersects some Ri with w(Ri) ≥ w(R).
Indeed, there exists a number j ∈ {0, 1, 2, . . . } such that R ∈ Sj and R /∈
Sj+1, i.e. in the previous construction there exists a step j in which one of
the following occurs:

1. either R is the trapezoid of largest width that occurs earliest in the
ordering, and then R is selected and Rj = R, so that R ∩ Ri 6= ∅ for
i = j

2. either R isn’t the trapezoid of largest width that occurs earliest in the
ordering and it intersectsRj. ThenR will not be present in Si ∀i ≥ j+1
and R ∩Ri 6= ∅ for i = j.

To assure that there is some j with the stated property it is sufficient to
avoid that S0 can contain an infinite number of trapezoids with the same
width that do not intersect each other.
If this were true, it could happen that for some step k in the construction
the set Sk contains an infinite number of trapezoids {T1, T2, . . . } all with the
same width equal to the maximum width in Sk and all disjoint with respect
to each other and to R.
Then it would hold:

Rk = T1 and Ti ∈ Sk+1 ∀i > 1

Rk+1 = T2 and Ti ∈ Sk+2 ∀i > 2

Rk+2 = T3 and Ti ∈ Sk+3 ∀i > 3

...

and in this case, if w(R) < w(ti), nor 1. nor 2. would ever happen.
This possibility is excluded observing that:∑

i

µ(Ri) ≤
1

λ

∑
i

∑
x∈Ri

|f(x)|ql(x) ≤

≤ 1

λ

∑
x∈V

|f(x)|ql(x) = 1

λ
‖f‖L1(V,µ) <∞ ,

while if there was among the Ri’s an infinite number of trapezoids with
constant width w ∑

i

µ(Ri) ≥
∞∑
n=1

w = ∞.
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Summing up,

∀R ∈ S0, ∃i : R ∩Ri 6= ∅ and w(Ri) ≥ w(R).

By proposition 5.1.2, this implies R ⊂ R̃i.
We put:

E :=
⋃
i

R̃i

and it follows from what we have just seen that for every trapezoid R ∈ S0,
R ⊂ E.
Then it holds that:

(Mf)(x) ≤ λ ∀x /∈ E.

Indeed:
(Mf)(x) = sup

R:x∈R
µ(R)−1

∑
y∈R

|f(y)|ql(y).

For every admissible trapezoid R containing x ∈ Ec, R /∈ S0. Indeed, if there
was an admissible trapezoid R ∈ S0 such that x ∈ R, then we would have
x ∈ R ⊂ E but by hypothesis x /∈ E.
So,

∀x ∈ Ec, (Mf)(x) = sup
R/∈S0:x∈R

µ(R)−1
∑
y∈R

|f(y)|ql(y)

≤ sup
R/∈S0:x∈R

µ(R)−1λµ(R) ≤ λ.

Moreover:

µ(E) = µ

(⋃
i

R̃i

)
≤
∑
i

µ(R̃i) ≤ 4
∑
i

µ(Ri) ≤
4 ‖f‖L1(V,µ)

λ
.

This shows that Mf ∈ L1,∞(V , µ), because:

‖Mf‖L1,∞(V,µ) = inf
{
c > 0 : dMf (λ) ≤

c

λ

}
with

dMf (λ) = µ{x : (Mf)(x) > λ}

and we have that
{x : (Mf)(x) > λ} ⊂ E
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since ∀x ∈ Ec, (Mf)(x) ≤ λ.
So:

dMf (λ) ≤ µ(E) ≤
4 ‖f‖L1(V,µ)

λ

=⇒ ‖Mf‖L1,∞(V,µ) ≤ 4 ‖f‖L1(V,µ)

=⇒ M is of weak-type (1, 1).

5.3 The Calderón–Zygmund property for the
tree

We pass now to the proof of the main theorem of this chapter.

Theorem 5.3.1. The space (V , d, µ) has the Calderón–Zygmund property.

Proof. In the following we use the same notation used in the proof of 5.2.1.
Take f ∈ L1(V , µ) and λ > 0. Consider the sets Ri and R̃i constructed as in
the proof of Theorem 5.2.1. To construct the functions fi of the Calderón–
Zygmund decomposition 3.1 of f at the level λ we first define auxiliary sets
Ui and functions hi as follows:

Ui := R̃i −
⋃
j<i

R̃j,

hi(x) :=

{
f(x) x ∈ Ui

0 x /∈ Ui

.

It holds that: ∑
x∈V

|hi(x)|ql(x) ≤ 6qλµ(R̃i).

Indeed it is possible to find three admissible trapezoids P1, P2, P3 with the
following properties:

• w(Pk) > w(Ri) for k = 1, 2, 3 ;

• µ(Pk) ≤ 2qµ(R̃i) for k = 1, 2, 3 ;
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• R̃i ⊂ P1 ∪ P2 ∪ P3.

For example, for P1, P2, P3 one can take the trapezoids obtained in the fol-
lowing way.
P1, P2, P3 are admissible trapezoids with the same root equal to the only
parent vertex of xi, the root of Ri, which we denote by xv.

l(xv) = l(xi) + 1 =⇒ w(Pk) > w(Ri) for k = 1, 2, 3 .

We denote hk the height of Pk for k = 1, 2, 3 and h the height of Ri and
observe that Pk contains all vertices x below xv such that:

hk ≤ l(xv)− l(x) < 2hk ⇔ hk − 1 ≤ l(xi)− l(x) < 2hk − 1.

We want that the union of Pk covers R̃i, which contains all vertices x below
xi such that

h

2
≤ l(xi)− l(x) < 4h

so we require that:

• P1 covers the higher part of R̃i:

h1 = bh
2
c+ 1.

In this way P1 covers R̃1 at least from level (measured with respect to
the root xi) h

2
to h;

• P2 covers the middle part of R̃i:

h2 = h+ 1.

In this way P2 covers R̃1 from level (measured with respect to the root
xi) h to 2h+ 1;

• P3 covers the lower part of R̃i:

h3 = 2h+ 1.

In this way P2 covers R̃1 from level (measured with respect to the root
xi) 2h to 4h+ 1.
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By construction R̃i ⊂ P1 ∪ P2 ∪ P3.
To show that µ(Pk) ≤ 2qµ(R̃i) for k = 1, 2, 3 it is sufficient to make a check
for P3 since it is the largest one: all Pk have the same width w(Pk) = ql(xv)

while h(P3) = h3 = 2h+ 1 ≥ h(Pk) for k = 1, 2 and ∀h ≥ 1.
So we compute:

µ(P3) = w(P3)h(P3) = ql(xi)+1(2h+ 1) = 2qµ(Ri) + ql(xi)+1

µ(R̃i) =

l(xi)−dh
2
e∑

l=l(xi)−4h+1

∑
x∈R̃i:l(x)=l

ql =

l(xi)−dh
2
e∑

l=l(xi)−4h+1

ql(xi)−lql

=

l(xi)−dh
2
e∑

l=l(xi)−4h+1

ql(xi) = ql(xi)

(
4h− 1− dh

2
e+ 1

)

=

{
7
2
hql(xi) if h even

7
2
hql(xi) − 1

2
ql(xi) if h odd

=

{
7
2
µ(Ri) if h even

7
2
µ(Ri)− 1

2
ql(xi) if h odd

.

When h is even:

2qµ(R̃i) = 7qµ(Ri).

Then

µ(P3) ≤ 2qµ(R̃i)

⇔ 2qµ(Ri) + ql(xi)+1 ≤ 7qµ(Ri)

⇔ ql(xi)+1 ≤ 5qµ(Ri)

⇔ ql(xi) ≤ 5µ(Ri) = 5ql(xi)h

⇔ 1

5
≤ h true because h ≥ 1.

When h is odd:

2qµ(R̃i) = 7qµ(Ri)− ql(xi)+1.
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Then

µ(P3) ≤ 2qµ(R̃i)

⇔ 2qµ(Ri) + ql(xi)+1 ≤ 7qµ(Ri)− ql(xi)+1

⇔ 2ql(xi)+1 ≤ 5qµ(Ri)

⇔ 2ql(xi) ≤ 5µ(Ri) = 5ql(xi)h

⇔ 2

5
≤ h true because h ≥ 1.

For trapezoids Pk with the previous properties we have that:∑
x∈Pk

|hi(x)|ql(x) ≤ λµ(Pk) k = 1, 2, 3.

Indeed:

• if Pk is such that ∑
x∈Pk

|f(x)|ql(x) ≥ λµ(Pk)

then by definition Pk ∈ S0 with w(Pk) > w(Ri). For what already
shown, Pk intersects some Rj with w(Rj) ≥ w(Pk) > w(Ri) and so
∃j < i : Pk ∩Rj 6= ∅ and then Pk ⊂ R̃j.

This implies that:
hi = 0 on Pk

because Ui = R̃i −
⋃

j<i R̃j and so Pk ∩ Ui = ∅.

• conversely, if Pk is such that∑
x∈Pk

|f(x)|ql(x) < λµ(Pk)

then ∑
x∈Pk

|hi(x)|ql(x) ≤
∑
x∈Pk

|f(x)|ql(x) ≤ λµ(Pk).

So in both cases we have
∑

x∈Pk
|hi(x)|ql(x) ≤ λµ(Pk).
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Consequently, since supp(hi) ⊂ Ui ⊂ R̃i ⊂ (P1 ∪ P2 ∪ P3):

∑
x

|hi(x)|ql(x) ≤
3∑

k=1

∑
x∈Pk

|hi(x)|ql(x)

≤
3∑

k=1

λµ(Pk)

≤
3∑

k=1

λ2qµ(R̃i)

= 6qλµ(R̃i)

as stated.
Now we put:

fi = hi −

(∑
x∈V

hi(x)q
l(x)

)
χRi

µ(Ri)
,

g = f −
∑
i

fi,

Qi = R̃i,

ri =
h(Ri)

4
,

xi ∈ Ri chosen arbitrarily .

Then the following conditions hold by definition:

• f = g +
∑

i fi.

• fi = 0 outside Qi .
Indeed:

supp fi ⊂ (supphi ∪ suppχRi
) ⊂ (Ui ∪Ri) ⊂ R̃i = Qi.

• Qi ⊂ B(xi, 32ri) ⇔ R̃i ⊂ B(xi, 8h(Ri)).
Indeed, starting from an arbitrary vertex xi ∈ R̃i it is possible to reach
every other vertex in R̃i passing through at most [(4h− 1)− 0] 2 =
8h− 2 edges, going up (i.e. moving to the only node above the current
one) at most 4h − 1 times and the down (i.e. moving to a child node
of the current one) at most 4h− 1 times.
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So if we center in xi a ball of radius 8h we cover R̃i because all vertex x
that can be reached as just described have distance d(x, xi) ≤ 8h−2 <
8h.

•
∫
V fidµ = 0, i.e. fi is a zero-mean function.

Indeed:

∫
V
fidµ =

∫
Qi

fidµ

=

∫
R̃i

fidµ

=
∑
x∈R̃i

[
hi(x)−

(∑
y∈V

hi(y)q
l(y)

)
χRi

(x)

µ(Ri)

]
ql(x)

=
∑
x∈R̃i

hi(x)q
l(x) −

(∑
y∈V

hi(y)q
l(y)

)∑
x∈R̃i

χRi
(x)

µ(Ri)
ql(x)

=
∑

x∈(R̃i−∪j<iR̃j)

hi(x)q
l(x) −

∑
y∈V

hi(y)q
l(y)

=
∑
x∈Ui

hi(x)q
l(x) −

∑
y∈Ui

hi(y)q
l(y) = 0 ,

where for the first integral we have used the fact that supphi ⊂ Ui =
R̃i − ∪j<iR̃j ⊂ R̃i while for the second one we expoited the fact that
Ri ⊂ R̃i and

∫
R̃i
χRi

(x)dµ(x) =
∫
Ri
χRi

(x)dµ(x) = µ(Ri).

• µ(Q∗
i ) ≤ 2µ(Qi)

where

Q∗
i = {x ∈ V : d(x,Qi) < ri}

=

{
x ∈ V : d(x, R̃i) <

h(Ri)

4

}
=

{
x ∈ V : d(x, R̃i) ≤ dh(Ri)

4
e − 1

}
.

To show that, we observe that the only way of “going out” of R̃i is
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passing through the bases of trapezoid R̃i, that we can define as:

b =

{
x ∈ R̃i : l(x) = l(xRi

)− dh
2
e
}
,

B =
{
x ∈ R̃i : l(x) = l(xRi

)− 4h+ 1
}
.

So

{x ∈ V : d(x,Qi) < ri} =
{
x ∈ V : x ∈ R̃i ∨ d(x, b) < ri ∨ d(x,B) < ri

}
.

More precisely,

– the nodes x that are above R̃i and have dinstance d(x, b) < ri are
the nodes above R̃i with level

l(b) < l(x) < l(b) + ri,

l(x) ≤ l(xRi
)− dh

2
e+ dh

4
e − 1

≤ l(xRi
)− h

2
+
h

4
+ 1− 1 =

= l(xRi
)− h

4
.

– the nodes x that lie below R̃i and have d(x,B) < ri are the nodes
below R̃i with level

l(x) ≥ l(xRi
)− 4h+ 1−

(
dh
4
e − 1

)
= l(xRi

)− 4h− dh
4
e+ 2

≥ l(xRi
)− 4h− h

4
− 1 + 2

= l(xRi
)− 17

4
h+ 1.

So Q∗
i is a (non admissible) trapezoid containing nodes below xRi

hav-
ing level l satisfying the constraint:

h

4
≤ l(xRi

)− l ≤ 17

4
h− 1
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which means it contains at most 17
4
h− 1− h

4
+ 1 = 16

4
h = 4h levels.

Each level has measure equal to µ({xRi
}) = ql(xRi

), then the measure
of Q∗

i satisfies:

µ(Q∗
i ) ≤ 4hql(xRi

) ≤ (7h− 1)ql(xRi
) ≤ 2µ(Qi) ,

since

2µ(Qi) = 2µ(R̃i) =

{
7hql(xRi

) if h even
(7h− 1)ql(xRi

) if h odd
≥ (7h− 1)ql(xRi

) .

• ∑
i

µ(Q∗
i ) ≤

∑
i

2µ(Qi) = 2
∑
i

µ(R̃i)

≤ 2
∑
i

4µ(Ri) ≤ 8
∑
i

µ(Ri)

≤
8 ‖f‖L1(V,µ)

λ
.

• ∑
i

∫
V
|fi|dµ =

∑
i

∫
V

∣∣∣∣∣hi −
(∑

x∈V

hi(x)q
l(x)

)
χRi

µ(Ri)

∣∣∣∣∣ dµ
≤
∑
i

(∫
V
|hi|dµ+

∣∣∣∣∣∑
x∈V

hi(x)q
l(x)

∣∣∣∣∣
∫
V

|χRi
|

µ(Ri)
dµ

)

≤
∑
i

(∫
V
|hi|dµ+

∑
x∈V

|hi(x)|ql(x)
)

= 2
∑
i

∫
V
|hi|dµ =

= 2
∑
i

∫
Ui

|f |dµ

≤ 2

∫
V
|f | = 2 ‖f‖L1(V,µ)

=⇒
∑
i

‖fi‖L1(V,µ) ≤ 2 ‖f‖L1(V,µ) .

• The function g is bounded.
To show that, we observe that
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– g = f outside E =
⋃

i R̃i.
Indeed,
E =

⋃
i R̃i =

⋃
i Ui where Ui = R̃i −

⋃
j<i R̃j ⊃ supphi.

If x /∈ E =⇒ x /∈ supphi ∀i then

g(x) = f(x)−
∑
i

fi(x) =

= f(x)−
∑
i

(
hi(x)−

[∑
y

hi(y)q
l(y)

]
χRi

(x)

µ(Ri)

)
= f(x)

where χRi
(x) = 0 because Ri ⊂ R̃i so x /∈ R̃i ∀i =⇒ x /∈ Ri ∀i.

– g =
∑

i

(∑
x∈V hi(x)q

l(x)
) χRi

µ(Ri)
on E =

⋃
i R̃i.

Indeed E =
⋃

i R̃i =
⋃

i Ui where the R̃i are not necessarily dis-
joint while the Ui are disjoint by construction.
Then if x ∈ E, x belongs exactly to one of the Ui which we denote
by Uī. We have:

hi(x) =

{
0 ∀i 6= ī

f(x) if i = ī

and then

g(x) = f(x)−
∑
i

fi(x)

= f(x)−
∑
i

(
hi(x)−

[∑
y

hi(y)q
l(y)

]
χRi

(x)

µ(Ri)

)

= f(x)− hī(x) +
∑
i

(∑
y

hi(y)q
l(y)

)
χRi

(x)

µ(Ri)

=
∑
i

(∑
y

hi(y)q
l(y)

)
χRi

(x)

µ(Ri)
.

– |g(x)| ≤ λ outside E.
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Indeed, if x /∈ E:

|g(x)| = |f(x)|

≤ µ(R̄)−1
∑
y∈R̄

|f(y)|ql(y)

≤ sup
R:x∈R

µ(R)−1
∑
y∈R

|f(y)|ql(y)

= (Mf)(x) ≤ λ

where R̄ = {x} with µ(R̄) = ql(x) is an admissible trapezoid.
– supx∈E |g(x)| ≤ 24qλ.

Indeed,

sup
x∈E

|g(x)| ≤ sup
x∈E

∣∣∣∣∣∑
i

(∑
y

hi(y)q
l(y)

)
χRi

(x)

µ(Ri)

∣∣∣∣∣
= sup

i

∣∣∣∣∣
∑

y hi(y)q
l(y)

µ(Ri)

∣∣∣∣∣
≤ sup

i

∑
y |hi(y)|ql(y)

µ(Ri)

≤ sup
i

6qλµ(R̃i)

µ(Ri)

≤ sup
i

6qλ4µ(Ri)

µ(Ri)
= 24qλ.

where the second inequality follow from the fact that the Ri are
disjoint and the function to be evaluated is constant on each Ri.

The previous considerations about g show that g is bounded, more
precisely:

∃c : |g| ≤ cλ

for example, one can take c = 24q.

Summing up, we have proved that ∀f ∈ L1(V , µ) and ∀λ > 0 it exists a
decomposition of f that satisfies the properties 1) to 6) of the definition
3.1.1.
This concludes the proof of the theorem.
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Chapter 6

Main results

Calderón–Zygmund theory developed in previous chapters can be used to
study boundedness properties of some integral operators. In particular we are
interested in operators related to the Laplacian L on the infinite homogeneous
tree, namely spectral multipliers of L and Riesz transform.

6.1 Spectral multipliers

From the functional calculus recalled in Section 2.2 and for the self-adjointness
property of the Laplacian L proved in Chapter 4, we know that H(L) is a
bounded linear operator on L2(V , µ) for every continuous function H defined
on the spectrum σ(L) = [0, 2]. In this section we present conditions on the
function H which guarantee that H is an Lp-spectral multiplier for the Lapla-
cian for p ∈ (1,∞), i.e. that the restriction of H(L) to Lp(V , µ) ∩ L2(V , µ)
can be extended to a bounded operator on Lp(V , µ) for 1 < p <∞, and that
H(L) is a weak type (1, 1) operator.
The main result is stated in Theorem 6.1.5 and is obtained as an application
of the abstract Calderón–Zygmund Theorem 3.2.2 in the context of the tree.
Before stating it and giving its proof, we need some preliminary results.
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6.1.1 Preliminary results

Let F be a real function with support suppF ⊂ [0, 2). By [FTP83] and
[HS03] we know that F (L) is an integral operator with kernel

F (L)(x, y) = Re

(
K(x, y)

∫ π

0

F (1− cos θ)eiθd(x,y)η(θ) sin θdθ

)
(6.1)

= Re (K(x, y)EF (d(x, y))) (6.2)

where

K(x, y) = q
−l(x)−l(y)−d(x,y)

2 , (6.3)

η(θ) =
2

πi
(
e−iθ − 1

q
eiθ
) , (6.4)

EF (k) =

∫ π

0

F (1− cos θ)eiθkη(θ) sin θdθ , (6.5)

for x, y ∈ V , k ∈ N, θ ∈ [0, π) .

Definition 6.1.1. For s ≥ 0, the Sobolev space Hs is defined by:

Hs =

{
F : [0, π) → C :

∑
k∈Z

|F̂ (k)|2(1 + |k|)2s <∞

}

where
F̂ (k) =

1√
π

∫ π

0

F (t)eitkdt .

We denote by ‖ · ‖Hs the norm on Hs defined by

‖F‖Hs =

(∑
k∈Z

|F̂ (k)|2(1 + |k|)2s
)1

2

.

Lemma 6.1.1. Let s ≥ 0, m ∈ N such that m ≥ s. Let a < b, c < d fixed
constants.
Suppose that φ : R → R is in Cm and is an increasing function such that
φ(c) < a, φ(d) > b, φ′ > 0. Then there is a positive constant C depending
only on a, b, c, d, s, ‖ 1

φ′‖L∞ , ‖φ‖Cm such that

‖F ◦ φ‖Hs ≤ C‖F‖Hs ∀F with suppF ⊂ [a, b] .
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Definition 6.1.2. For t > 0 and H : R → C, we define the dilation operator
Dt by the following formula:

(DtH)(λ) = H(tλ) ∀λ ∈ R .

Lemma 6.1.2. Fix ε ∈ (0, 1]. If s > 3
2
+ ε then there is a constant C > 0

such that for each integer n ∈ N and for each function F : R → C such that

suppF ⊂ [2−2n−1, 2−2n+2] ∩ [0, 2] (6.6)

it holds

∞∑
k=0

|EF (k)|(1 + k)(1 + 2−nk)ε ≤ C‖D2−2nF‖Hs (6.7)

∞∑
k=0

|EF (k)|(1 + 2−nk)ε ≤ C2−n‖D2−2nF‖Hs (6.8)

∞∑
k=0

|EF (k + 1)− EF (k)|(1 + k)(1 + 2−nk)ε ≤ C2−n‖D2−2nF‖Hs . (6.9)

Proof. We define G as:

G(x) = (D2−2nF ) (x) = F (2−2nx) ∀x ∈ R

that is
F (x) = (D22nG) (x) = G(22nx) ∀x ∈ R.

We consider formula 6.5 and we observe that 1−cos θ is monotone increasing
over [0, π]. Moreover:

1− cos(2−n) = 2 sin2(2−n−1)

≤ 2(2−n−1)2 = 2−2n−1 .

Then by 6.6, F (1− cos θ) = 0 in the interval (0, 2−n). Similarly:

1− cos(2−nπ) ≥ min(2−2n+2, 2) .

Then by 6.6, F (1− cos θ) = 0 in the interval (2−nπ, π). Then we can restrict
the integral in 6.5 to (2−n, 2−nπ) and perform the change of variables t = 2nθ
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to obtain

EF (k) =

∫ 2−nπ

2−n

F (1− cos θ)eiθkη(θ) sin θdθ

=

∫ π

1

F (1− cos(2−nt))ei2
−ntkη(2−nt) sin(2−nt)2−ndt

= 2−n

∫ π

1

F (2 sin2(2−n−1t))ei2
−ntkη(2−nt) sin(2−nt)dt

= 2−n

∫ π

1

G(22n+1 sin2(2−n−1t))ei2
−ntkη(2−nt) sin(2−nt)dt

= 2−2n

∫ π

1

H(t)ψl(t)e
itmdt

= 2−2n

∫ π

1

H̃l(t)e
itmdt , (6.10)

where we have introduced

k = 2nm+ l with 0 ≤ l < 2n , (6.11)
ψl(t) = ei2

−ntl2n sin(2−nt)η(2−nt) , (6.12)
H(t) = G(22n+1 sin2(2−n−1t)) , (6.13)

H̃l(t) = H(t)ψl(t) . (6.14)

We now claim that ψl and its derivatives are bounded by a constant that
does not depend on n, l, t in [0, π].
Now we verify the claim for ψl.

|ψl(t)| = 2n sin(2−nt)|η(2−nt)|

≤ 2n(2−nt)
2

π|e−i2−nt − 1
q
ei2−nt|

≤ t
2

π(1− 1
q
)

≤ 2

1− 1
q

.

For the derivatives of ψl the proof is similar.
We also claim that the function φn(t) := 22n+1 sin2(2−n−1t), t ∈ [0, π] and all
its derivatives are bounded by a constant that does not depend on n. Indeed,
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|φn(t)| = 22n+1 sin2(2−n−1t)

≤ 22n+1(2−n−1t)2

=
t2

2
≤ π2

2
,

and similarly for all derivatives of φn.
This implies that

‖φn‖Cj ≤ C <∞ ∀j ∈ N
with C not depending on n.
Moreover |φ′

n| is bounded from below by a positive constant independent of
n on the set φ−1

n (suppG), where suppG ⊂ [1
2
, 4]. Indeed, if t ∈ φ−1

n (suppG),
then

22n+1 sin2(2−n−1t) ≥ 1

2
= 2−1

=⇒ sin2(2−n−1t) ≥ 2−2n−2

=⇒ 2−n−1t ≥ sin(2−n−1t) ≥ 2−n−1

which implies that t ≥ 1. Moreover,
22n+1 sin2(2−n−1t) ≤ 4 = 22

=⇒ sin2(2−n−1t) ≤ 22−2n−1 = 21−2n

=⇒ sin(2−n−1t) ≤ 2−n+
1
2 ≤ 2−

1
2 for n ≥ 1.

This implies that 2−n−1t ≤ π
4
= arcsin(2−

1
2 ).

Thus:
|φ′

n(t)| = 22n+12 sin(2−n−1t) cos(2−n−1t)2−n−1

= 2n+1 cos(2−n−1t) sin(2−n−1t)

≥ 2n+12−
1
2
2−n−1

2

≥ 2n+12−
1
22−n−2 = 2−

3
2 > 0 .

Then ‖ 1
φ′‖L∞ is bounded by a constant that does not depend on n.

It is now possible to apply Lemma 6.1.1 to conclude that:
‖H̃l‖Hs ≤ C‖H‖Hs‖ψl‖Cm

= C‖G ◦ φn‖Hs

≤ C‖G‖Hs . (6.15)
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Then:

∞∑
k=0

|EF (k)|(1 + k)(1 + 2−nk)ε =

=
2n−1∑
l=0

∞∑
m=0

|EF (2
nm+ l)|(1 + 2nm+ l)(1 +m+ 2−nl)ε.

We notice that:

(1 + 2nm+ l) = 2n(m+ 2−n(1 + l))

≤ 2n(m+ 1).

(1 +m+ 2−nl)ε ≤ (1 +m+ 2−n(2n − 1))ε

= (1 +m+ 1− 2−n)ε

= (2 +m− 2−n)ε

≤ (2 +m)ε

≤ (2 + 2m)ε

= 2ε(m+ 1)ε

≤ 2(m+ 1)ε.

Then by applying Cauchy-Schwarz inequality in the inner sum we get:

∞∑
k=0

|EF (k)|(1 + k)(1 + 2−nk)ε =
2n−1∑
l=0

∞∑
m=0

|EF (2
nm+ l)|(m+ 1)2n(m+ 1)ε2

= 2n+1

2n−1∑
l=0

∞∑
m=0

|EF (2
nm+ l)|(m+ 1)1+ε

≤ 2n+1

2n−1∑
l=0

(
∞∑

m=0

(|EF (2
nm+ l)|(1 +m)s)2

)1
2
(

∞∑
m=0

(1 +m)2(1+ε−s)

)1
2

.

The last sum converges since s > 3
2
+ ε so 2(1 + ε− s) < −1. Using 6.10 and

6.15 we get:
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∞∑
k=0

|EF (k)|(1 + k)(1 + 2−nk)ε

≤ C2n+1

2n−1∑
l=0

(
∞∑

m=0

(
2−2n

∣∣∣∣∫ π

1

H̃l(t)e
itmdt

∣∣∣∣ (1 +m)s
)2
)1

2

≤ C2n+12−2n

2n−1∑
l=0

‖H̃l‖Hs

≤ C2−n+1(2n − 1)‖G‖Hs

= C‖G‖Hs

= C‖D2−2nF‖Hs .

This proves (6.7). The proof of (6.8) is similar:

∞∑
k=0

|EF (k)|(1 + 2−nk)ε ≤
2n−1∑
l=0

∞∑
m=0

|EF (2
nm+ l)|(m+ 1)ε2

= 2
2n−1∑
l=0

∞∑
m=0

|EF (2
nm+ l)|(m+ 1)ε

≤ 2
2n−1∑
l=0

(
∞∑

m=0

(|EF (2
nm+ l)|(1 +m)s)2

)1
2
(

∞∑
m=0

(1 +m)2(ε−s)

)1
2

≤ C
2n−1∑
l=0

(
∞∑

m=0

(
2−2n

∣∣∣∣∫ π

1

H̃l(t)e
itmdt

∣∣∣∣ (1 +m)s
)2
)1

2

≤ C2−2n

2n−1∑
l=0

‖H̃l‖Hs

≤ C2−2n(2n − 1)‖G‖Hs

≤ C2−n‖G‖Hs

= C2−n‖D2−2nF‖Hs ,

where we applied 6.10 and 6.15.
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We now pass to 6.9. First we compute:

EF (k + 1)− EF (k)

= 2−n

∫ π

1

G(22n+1 sin2(2−n−1t))η(2−nt) sin(2−nt)
[
ei(k+1)2−nt − eik2

−nt
]
dt

= 2−n

∫ π

1

[
G(22n+1 sin2(2−n−1t))η(2−nt) sin(2−nt)eik2

−nt
] (
ei2

−nt − 1
)
dt

which implies

|EF (k + 1)− EF (k)| ≤ sup
t∈(1,π)

(∣∣∣ei2−nt − 1
∣∣∣) |EF (k)|

≤ 2−nπ|EF (k)| .

In conclusion we apply 6.8 to deduce that:
∞∑
k=0

|EF (k + 1)− EF (k)|(1 + k)(1 + 2−nk)ε

≤ 2−nπ

∞∑
k=0

|EF (k)|(1 + k)(1 + 2−nk)ε

≤ C2−n‖D2−2nF‖Hs .

Lemma 6.1.3. Take y, z ∈ V such that d(y, z) = 1 and l(z) = l(y)− 1, and
let k ∈ N. Then:∑

x:d(x,y)=k

K(x, y)ql(x) =

{
1 if k = 0

2 + q−1
q
(k − 1) if k > 0 ;

(6.16)

∑
x:d(x,y)=k

|K(x, y)−K(x, z)|ql(x) < 1 ; (6.17)

∑
x:d(x,y)=k

|OxK(x, y)|ql(x) ≤ q − 1

q
. (6.18)

Proof. We first prove 6.16.∑
x:d(x,y)=k

K(x, y)ql(x) =
∑

x:d(x,y)=k

q
−l(y)−l(x)−d(x,y)

2 ql(x)

=
∑

x:d(x,y)=k

q
−l(y)+l(x)−k

2 .
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Keeping in mind the characterization of the nodes of the sphere Sk(y) ex-
plained in Section 4.3.1, we split the sum in three components according to
their level:∑

x:d(x,y)=k

K(x, y)ql(x) =

= qkq
−k−k

2 +

(
k−1∑
p=1

(q − 1)qk−p−1q
2p−k−k

2

)
+ q

2k−k−k
2

= 1 +
q − 1

q

(
k−1∑
p=1

1

)
+ 1

= 2 +
q − 1

q
(k − 1).

The last equality holds for k − 1 ≥ 1 i.e. k ≥ 2. When k = 1 direct
computation shows that 6.16 equals 2 so the result is still valid. When k = 0
the only term in the sum appearing in 6.16 is for x = y and K(y, y)ql(y) = 1.
We now prove 6.17. First we show that if x does not lie below z, then
K(x, y) = K(x, z).
Let suppose x does not lie below z.

K(x, z) = q
−l(z)−l(x)−d(x,z)

2

= q
−(l(y)−1)−l(x)−(d(x,y)+1)

2

= q
−l(y)−l(x)−d(x,y)

2 = K(x, y).

Then we have that:∑
x:d(x,y)=k

|K(x, y)−K(x, z)|ql(x) =
∑

x:d(x,y)=k, x below z

|K(x, y)−K(x, z)|ql(x)

=
∑

x:d(x,y)=k, x below z

∣∣∣q−l(y)+l(x)−d(x,y)
2 − q

−l(z)+l(x)−d(x,z)
2

∣∣∣
= qk−1

∣∣q−k−k − q−k+1−k+1
∣∣

where the last equality is due to the fact that:

l(x)− l(y) = −k, l(x)− l(z) = −k + 1, l(z) = l(y)− 1

d(x, y) = k, d(x, z) = k − 1.
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It follows that:∑
x:d(x,y)=k

|K(x, y)−K(x, z)|ql(x) = qk−1
∣∣q−2k − q−2k+2

∣∣
= qk−1−2k|1− q+2|
= q−k−1|1− q+2|

≤ q2 − 1

qk+1

≤ q2 − 1

q2
< 1

if k ≥ 1.
If k = 0, the sum in 6.17 consist of just one term and we can compute it
explicitly:

|K(y, y)−K(y, z)|ql(y) =
∣∣∣1− q

l(y)−l(z)−d(y,z)
2

∣∣∣
=
∣∣∣1− q

1−1
2

∣∣∣
= 0 < 1 .

In conclusion, we prove 6.18. We recall that

OxK(x, y) =
∑

w:d(w,x)=1

|K(w, y)−K(x, y)| .

We have to distinguish two cases. To this aim we adopt the following nota-
tion: we label vertices in the neighborhood of x in such a way that w0 is the
father of x and w1, . . . , wq are the children of x.
Case 1): d(w0, y) < d(x, y), i.e. y can be reached from x going up. In this
case we have:

K(w0, y) = q
−l(y)−l(w0)−d(y,w0)

2

= q
−l(y)−(l(x)+1)−(d(y,x)−1)

2

= q
−l(y)−l(x)−d(x,y)

2 = K(x, y) .

In the same case, if we consider a neighbor w 6= w0.

K(w, y) = q
−l(y)−l(w)−d(y,w)

2

= q
−l(y)−(l(x)−1)−(d(y,x)+1)

2

= q
−l(y)−l(x)−d(x,y)

2 = K(x, y) .
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So in Case 1) we have that

OxK(x, y) = 0.

Case 2): d(w0, y) > d(x, y), i.e. y can be reached from x going down. We
denote by w∗ the child of x such that d(w∗, y) < d(x, y). In this case we
have:

K(w∗, y) = q
−l(y)−l(w∗)−d(y,w∗)

2

= q
−l(y)−(l(x)−1)−(d(y,x)−1)

2

= q1+
−l(y)−l(x)−d(x,y)

2 = qK(x, y) ,

K(w0, y) = q
−l(y)−l(w0)−d(y,w0)

2

= q
−l(y)−(l(x)+1)−(d(y,x)+1)

2

= q−1+
−l(y)−l(x)−d(x,y)

2 =
1

q
K(x, y) .

In the same case, if we consider a neighbor w 6= w∗, w0 we have that:

K(w, y) = q
−l(y)−l(w)−d(y,w)

2

= q
−l(y)−(l(x)−1)−(d(y,x)+1)

2

= q
−l(y)−l(x)−d(x,y)

2 = K(x, y) .

Summing up, in Case 2) we have:

OxK(x, y) = |K(w∗, y)−K(x, y)|+ |K(w0, y)−K(x, y)|

= |qK(x, y)−K(x, y)|+ |1
q
K(x, y)−K(x, y)|

= (q − 1)K(x, y) + (1− 1

q
)K(x, y)

= K(x, y)(q − 1

q
).

In the sum over x : d(x, y) = k appearing in 6.18, OxK(x, y) 6= 0 only if y
lies below x: this happens for a single node x̂ with l(x̂) = l(y) + k. Then we
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have:

∑
x:d(x,y)=k

|OxK(x, y)|ql(x) = OxK(x̂, y)ql(x̂)

= K(x̂, y)(q − 1

q
)ql(y)+k

= q
−l(y)−l(x̂)−d(y,x̂)

2 (q − 1

q
)ql(y)+k

= q
−2l(y)−k−k

2 ql(y)+k(q − 1

q
) = q − 1

q
.

This concludes the proof.

Lemma 6.1.4. Fix ε ∈ (0, 1]. If s > 3
2
+ ε then there is a constant C > 0

such that for each integer n ∈ N and for each function F such that

suppF ⊂ [2−2n−1, 2−2n+2] ∩ [0, 2]

it holds

∑
x

|F (L)(x, y)− F (L)(x, z)|ql(x) ≤ C2−nd(y, z)‖D2−2nF‖Hs ; (6.19)∑
x

|F (L)(x, y)|(1− 2−nd(x, y))εql(x) ≤ C‖D2−2nF‖Hs ; (6.20)∑
x

|OxF (L)(x, y)|(1− 2−nd(x, y))εql(x) ≤ C2−n‖D2−2nF‖Hs . (6.21)

Proof. We start proving 6.19. It is sufficient to prove it for F real. Moreover
it is sufficient to study the case d(y, z) = 1. Indeed, suppose that 6.19 holds
for points whose distance is 1. For y and z having distance greater than 1
we can denote by γ the only path joining y and z having length d(y, z):

γ = (y = v0, v1, . . . , vd(y,z) = z).
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Then we can write:

∑
x

|F (L)(x, y)− F (L)(x, z)|ql(x) =

=
∑
x

∣∣∣∣∣∣
d(y,z)−1∑

j=0

F (L)(x, vj)− F (L)(x, vj+1)

∣∣∣∣∣∣ ql(x)
≤
∑
x

d(y,z)−1∑
j=0

|F (L)(x, vj)− F (L)(x, vj+1)| ql(x)

=

d(y,z)−1∑
j=0

∑
x

|F (L)(x, vj)− F (L)(x, vj+1)| ql(x) .

Since d(vj, vj+1) = 1 we can apply 6.19 to each term obtaining:

∑
x

|F (L)(x, y)− F (L)(x, z)|ql(x) ≤
d(y,z)−1∑

j=0

C2−n‖D2−2nF‖Hs

= C2−nd(y, z)‖D2−2nF‖Hs .

Lastly we can assume that l(z) = l(y)− 1. Indeed, if we have l(z) = l(y) + 1
it is sufficient to exchange the roles of z and y, since 6.19 is symmetric with
respect to this swap.
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We can now prove the claim for y, z ∈ V s.t. d(y, z) = 1, l(z) = l(y)− 1.∑
x

|F (L)(x, y)− F (L)(x, z)|ql(x) =

=
∑
x

|Re (K(x, y)EF (d(x, y)))−Re (K(x, z)EF (d(x, z)))| ql(x)

=
∑
x

|Re (K(x, y)EF (d(x, y))−K(x, z)EF (d(x, z)))| ql(x)

≤
∑
x

|K(x, y)EF (d(x, y))−K(x, z)EF (d(x, z))| ql(x)

≤
∑
x

|K(x, y)EF (d(x, y))−K(x, z)EF (d(x, y))+

+K(x, z)EF (d(x, y))−K(x, z)EF (d(x, z))|ql(x)

=
∑
x

|K(x, y)−K(x, z)||EF (d(x, y))|ql(x)+

+
∑
x

K(x, z)|EF (d(x, y))− EF (d(x, z))|ql(x)

= S1 + S2.

We estimate the two terms S1 and S2 separately.

S1 =
∞∑
k=0

∑
x:d(x,y)=k

|K(x, y)−K(x, z)||EF (d(x, y))|ql(x)

=
∞∑
k=0

|EF (k)|

 ∑
x:d(x,y)=k

|K(x, y)−K(x, z)|ql(x)
 .

We can apply 6.17 to the quantity in brackets, to obtain:

S1 ≤
∞∑
k=0

|EF (k)|

≤
∞∑
k=0

|EF (k)|(1 + 2−nk)ε

≤ C2−n‖D2−2nF‖Hs .

The last inequality is due to 6.8.
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To estimate S2 we observe that if d(x, y) = k then d(x, z) = k ± 1 (since
d(y, z) = 1). Then:

|EF (d(x, y))− EF (d(x, z))| ≤
≤ |EF (k)− EF (k + 1)|+ |EF (k)− EF (k − 1)| ,

since the left hand side is equal to exactly one of the terms on the right hand
side and the other one is positive. We formally put EF (−1) = EF (0) so that
the inequality holds also for k = 0.

S2 =
∞∑
k=0

∑
x:d(x,y)=k

K(x, z)|EF (d(x, y))− EF (d(x, z))|ql(x)

≤
∞∑
k=0

(|EF (k + 1)− EF (k)|+ |EF (k − 1)− EF (k)|)
∑

x:d(x,y)=k

K(x, z)ql(x) .

We can apply 6.16 to the last factor, oberving that 2+ q−1
q
(k−1) ≤ 2+k−1 =

1 + k. So we obtain:

S2 ≤
∞∑
k=0

|EF (k + 1)− EF (k)|(1 + k) +
∞∑
k=0

|EF (k − 1)− EF (k)|(1 + k)

≤
∞∑
k=0

|EF (k + 1)− EF (k)|(1 + k) +
∞∑
k=1

|EF (k − 1)− EF (k)|(1 + k)

=
∞∑
k=0

|EF (k + 1)− EF (k)|(1 + k) +
∞∑
j=0

|EF (j + 1)− EF (j)|(2 + j)

=
∞∑
k=0

|EF (k + 1)− EF (k)|(1 + k) + 2
∞∑
j=0

|EF (j + 1)− EF (j)|(1 + j)

= 3
∞∑
k=0

|EF (k + 1)− EF (k)|(1 + k)

≤ 3
∞∑
k=0

|EF (k + 1)− EF (k)|(1 + k)(1 + 2−nk)ε

≤ C2−n‖D2−2nF‖Hs ,

where the last inequality follows applying 6.9. This concludes the proof of
6.19.
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We pass now to the proof of 6.20.

∑
x

|F (L)(x, y)|(1− 2−nd(x, y))εql(x) ≤

≤
∑
x

|K(x, y)EF (d(x, y))|(1− 2−nd(x, y))εql(x)

=
∞∑
k=0

∑
x:d(x,y)=k

K(x, y)|EF (k)|(1− 2−nk)εql(x)

=
∞∑
k=0

|EF (k)|(1− 2−nk)ε
∑

x:d(x,y)=k

K(x, y)ql(x) .

We can apply 6.16 to the last factor. We get:

∑
x

|F (L)(x, y)|(1− 2−nd(x, y))εql(x) ≤
∞∑
k=0

|EF (k)|(1− 2−nk)ε(1 + k)

≤ C‖D2−2nF‖Hs ,

where the last inequality follows from 6.7.
Lastly we prove 6.21.

∑
x

|OxF (L)(x, y)|(1− 2−nd(x, y))εql(x) ≤

≤
∑
x

∑
w:d(w,x)=1

|K(w, y)EF (d(w, y))−K(x, y)EF (d(x, y))|(1− 2−nd(x, y))εql(x)

=
∑
x

∑
w:d(w,x)=1

|K(w, y)EF (d(w, y))−K(w, y)EF (d(x, y))+

+K(w, y)EF (d(x, y))−K(x, y)EF (d(x, y))|(1− 2−nd(x, y))εql(x)

=
∑
x

∑
w:d(w,x)=1

|K(w, y)||EF (d(w, y))− EF (d(x, y))|(1− 2−nd(x, y))εql(x)+

∑
x

∑
w:d(w,x)=1

|K(w, y)−K(x, y)||EF (d(x, y))|(1− 2−nd(x, y))εql(x)

= Σ2 + Σ1.
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We consider the two terms individually.

Σ1 =
∑
x

∑
w:d(w,x)=1

|K(w, y)−K(x, y)||EF (d(x, y))|(1− 2−nd(x, y))εql(x)

=
∑
x

 ∑
w:d(w,x)=1

|K(w, y)−K(x, y)|

 |EF (d(x, y))|(1− 2−nd(x, y))εql(x)

=
∞∑
k=0

∑
x:d(x,y)=k

OxK(x, y)ql(x)|EF (k)|(1− 2−nk)ε

≤ (q − 1

q
)

∞∑
k=0

|EF (k)|(1− 2−nk)ε

≤ C2−n‖D2−2nF‖Hs

where the last inequality is due to 6.8 ,
Now we consider the second term.

Σ2 =
∞∑
k=0

∑
x:d(x,y)=k

∑
w:d(w,x)=1

|K(w, y)||EF (d(w, y))− EF (k)|(1− 2−nk)εql(x) .

Since d(w, y) is either k + 1 or k − 1, we can make the following estimation:

Σ2 ≤
∞∑
k=0

(|EF (k + 1)− EF (k)|+ |EF (k − 1)− EF (k)|) (1− 2−nk)ε×

×

 ∑
x:d(x,y)=k

∑
w:d(w,x)=1

|K(w, y)|ql(x)
 .

We evaluate separately the term in round brackets:∑
x:d(x,y)=k

∑
w:d(w,x)=1

|K(w, y)|ql(x) =

=
∑

x:d(x,y)=k,x 6=x̂

(q + 1)K(x, y)ql(x) + ql(x̂)
(
(q − 1)K(x̂, y) + qK(x̂, y) +

1

q
K(x̂, y)

)
≤

∑
x:d(x,y)=k

(2q + 1)K(x, y)ql(x)

≤ (2q + 1)(1 + k) ,
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where in the last inequality we exploited 6.16 and again x̂ denotes the single
node with d(x̂, y) = k and l(x̂) = l(y) + k. We can go back to Σ2:

Σ2 ≤ C

∞∑
k=0

|EF (k + 1)− EF (k)|(1 + k)(1− 2−nk)ε+

+ C
∞∑
k=0

|EF (k − 1)− EF (k)|(1 + k)(1− 2−nk)ε .

The first sum is less than C2−n‖D2−2nF‖Hs thanks to 6.9. For the second
sum we change the index k̃ = k + 1 (then we drop the tilde):

C
∞∑
k=0

|EF (k)− EF (k + 1)|(2 + k)(1− 2−n(k + 1))ε

≤ C

∞∑
k=0

|EF (k)− EF (k + 1)|2(1 + k)2(1− 2−nk)ε

= C
∞∑
k=0

|EF (k)− EF (k + 1)|(1 + k)(1− 2−nk)ε .

In conclusion:

Σ2 ≤ C2−n‖D2−2nF‖Hs + C
∞∑
k=0

|EF (k)− EF (k + 1)|(1 + k)(1− 2−nk)ε

≤ C2−n‖D2−2nF‖Hs ,

where the last inequality follows from 6.9. This concludes the proof.

6.1.2 Spectral multipliers theorem

Given a continuous H : [0, 2) → C the spectral theorem allows us to define
the operator H(L) which is bounded on L2(V , µ).
Definition 6.1.3. H is called an Lp-spectral multiplier for L, with p ∈
(1,∞), ifH(L) extends to a bounded operator on Lp(V , µ), i.e. the restriction
H(L)Lp∩L2 of the operator H(L) : L2(V , µ) → L2(V , µ) can be extended to a
bounded operator on Lp(V , µ).
Definition 6.1.4. Let H be a function with suppH ⊂ [0, 2). H satisfies a
Mikhlin-Hörmander condition of order s if

sup
t>0

‖(DtH)φ‖Hs <∞ (6.22)

for some φ ∈ C∞
c ([1

2
, 4]), φ 6= 0.
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Remark: let φ1 and φ2 be any two functions in C∞
c ([1

2
, 4]). If condition 6.22

is satisfied for φ1, then it is satisfied also for φ2.
In particular, we can fix φ ∈ C∞

c ([1
2
, 4]) such that φ = ψ2 with ψ ∈ C∞

c ([1
2
, 4])

and such that

∀x > 0
+∞∑

n=−∞

φ(22nx) = 1.

We are now ready to state the main theorem of this section.

Theorem 6.1.5. Let H be a continuous function with suppH ⊂ [0, 2) which
satisfies a Mikhlin-Hördmander condition of order s for some s > 3

2
. Then

H is an Lp-spectral multiplier for the Laplacian L for 1 < p <∞ and H(L)
is a weak type (1, 1) operator.

Proof. We can represent H as:

H(x) =

(
+∞∑

n=−∞

φ(22nx)

)
H(x)

=
+∞∑

n=−∞

φ(22nx)H(x)

=
+∞∑

n=−∞

Gn(x)

where we have defined Gn(x) = φ(22nx)H(x).
We observe that:

suppφ ⊂ [1
2
, 4] ↔ suppD22nφ ⊂ [2−2n−1, 2−2n+2].

Then we have:

suppGn ⊂ suppH ∩ suppD22nφ ⊂ [0, 2) ∩ [2−2n−1, 2−2n+2].

For n < 0, 2−2n−1 ≥ 2, so in this case:

[0, 2) ∩ [2−2n−1, 2−2n+2] = ∅

and Gn(x) = 0, ∀x.
So the representation obtained for H can be reduced to:

H(x) =
∞∑
n=0

Gn(x).
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It follows that the operator H(L) admits the representation:

H(L) =
∞∑
n=0

Gn(L).

where Gn(L) is an integral operator whose kernel admits a representation of
the kind described in 6.2. We show that Gn(L) satisfies the hypothesis of
Theorem 3.2.2. By hypothesis

∃s > 3
2
: sup

t>0
‖(DtH)φ‖Hs <∞.

Moreover:
D2−2nGn(x) = Gn(2

−2nx)

= φ(x)H(2−2nx)

= (D2−2nH)(x)φ(x) .

So it holds:

∃s > 3
2
: ‖D2−2nGn‖Hs = ‖(D2−2nH)φ‖Hs ≤ C <∞.

We set ε ∈ (0, 1] such that s > 3
2
+ ε. We can apply Lemma 6.1.4 (using Gn

in the role of F ) to obtain:∑
x

|Gn(L)(x, y)|(1 + 2−nd(x, y))εql(x) ≤ C‖D2−2nGn‖Hs ≤ C

where the last constant is independent on n. Then the first assumption 3.6 of
Theorem 3.2.2 is satisfied. Similarly, the second assumption 3.7 of Theorem
3.2.2 follows from 6.19. Thus H(L) extends to an operator of weak type
(1, 1) and bounded on Lp(V , µ), 1 < p ≤ 2.
The result for p > 2 follows by duality. In particular, we can proceed similarly
to prove that the adjoint operator H(L)∗ = H̄(L) extends to an operator of
weak type (1, 1) and bounded on Lp(V , µ), 1 < p ≤ 2. Then the transpose
operator H̄(L)t = ¯̄H(L) = H(L) is bounded on Lp′ , p′ > 2.

6.2 The Riesz transform

As another application of the abstract Calderón–Zygmund Theorem 3.2.2 we
study the boundedness of the Riesz transform operator OL−1/2, which is the
analogue of the classical Riesz transform in this setting.
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Theorem 6.2.1. The Riesz transform operator OL−1/2 is of weak type (1, 1)
and bounded on Lp(V , µ) for 1 < p ≤ 2 .

Proof. We represent the function 1√
t

as follows:

1√
t
=
∑
n

φ(22nt)√
t

=
∑
n

Un(t)

=
∑
n

ψ(22nt)√
t

ψ(22nt)

=
∑
n

Vn(t)Wn(t).

where again we have fixed φ ∈ C∞
c ([1

2
, 4]) such that φ = ψ2 with ψ ∈

C∞
c ([1

2
, 4]) and such that

∀x > 0
+∞∑

n=−∞

φ(22nx) = 1.

We now write (L)−
1
2 =

∑
n Un(L) =

∑
n Vn(L)Wn(L). Each of the opera-

tors Un(L), Vn(L),Wn(L) is an integral operator and the respective kernels
Un(L)(x, y), Vn(L)(x, y),Wn(L)(x, y) admit a representation as the one given
for F (L)(x, y) in 6.2.
We make some preliminary estimates:

•
∀s > 0, ‖D2−2nUn‖Hs ≤ C2n . (6.23)

Indeed:

D2−2nUn(t) =
φ(t)√
2−2nt

=
φ(t)

2−n
√
t

= 2n
φ(t)√
t
= 2nU0(t) .
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Then we can compute:

‖D2−2nUn‖Hs = ‖2nU0‖Hs

= 2n‖U0‖Hs

= 2n‖φ(t)√
t
‖Hs ≤ C2n

since φ(t)√
t
∈ C∞

c ([1
2
, 4]) and so φ(t)√

t
∈ Hs.

•
∀s > 0, ‖D2−2nVn‖Hs = 2nC . (6.24)

Indeed,

D2−2nVn(t) =
ψ(t)√
2−2nt

= 2n
ψ(t)√
t

= 2nV0(t) .

Then we have:

‖D2−2nVn‖Hs = ‖2nV0‖Hs = 2nC .

•
∀s > 0, ‖D2−2nWn‖Hs = ‖W0‖Hs = C . (6.25)

Indeed,
D2−2nWn(t) = ψ(t) = W0(t).

Using 6.21 we obtain:∑
x

|OxVn(L)(x, y)|ql(x) ≤
∑
x

|OxVn(L)(x, y)|(1 + 2−nd(x, y))εql(x)

≤ C2−n‖D2−2nVn‖Hs

= C2−n2nC = C , (6.26)

where we have used 6.24 and the last constant does not depend on n. Then
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for OxUn(L)(x, y) =
∫
V OxVn(L)(x,w)Wn(w, y)dµ(w) we have:∑

x

|OxUn(L)(x, y)− OxUn(L)(x, z)|ql(x) =

≤
∫ ∫

|OxVn(L)(x,w)||Wn(L)(w, y)−Wn(L)(w, z)|dµ(w)dµ(x)

=

∫ ∫
|OxVn(L)(x,w)||Wn(L)(w, y)−Wn(L)(w, z)|dµ(x)dµ(w)

=

∫
|Wn(L)(w, y)−Wn(L)(w, z)|

(∫
|OxVn(L)(x,w)|dµ(x)

)
dµ(w)

≤
(
sup
w

∫
|OxVn(L)(x,w)|dµ(x)

)∫
|Wn(L)(w, y)−Wn(L)(w, z)|dµ(w)

≤ C2−nd(y, z)‖D2−2nWn‖Hs

≤ C2−nd(y, z).

where in the last two steps we have used 6.26, 6.19, 6.25.
This shows that the second assumption 3.7 of Theorem 3.2.2 is satisfied by
OUn(L). The first assumption 3.6 is satisfied as a direct consequence of 6.21
and 6.23, which upon the substitution F → Un give:∑

x

|OxUn(L)(x, y)|(1− 2−nd(x, y))εql(x) ≤ C2−n‖D2−2nUn‖Hs (6.27)

≤ C . (6.28)

This concludes the proof.

Previous result can be reformulated for the operators XjL−1/2, j = 0, . . . , q,
i.e. in terms of directional derivatives instead of the gradient.

Theorem 6.2.2. The operator XjL−1/2 if of weak type (1, 1) and bounded
on Lp(V , µ) for 1 < p ≤ 2.

Proof. We prove that the restriction of XjL−1/2 to Lp(V , µ) ∩ L2(V , µ) can
be extended to a bounded operator on Lp(V , µ). The other part of the claim
can be proved similarly.
We take a function f ∈ Lp(V , µ) and consider a sequence fn, n ∈ N of
functions in Lp(V , µ) ∩ L2(V , µ) converging to f , i.e.:

‖fn − f‖Lp(V,µ) → 0, when n→ ∞ .
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The sequence XjL−1/2fn converges in Lp(V , µ). Indeed consider m, l > n:

‖XjL−1/2fl −XjL−1/2fm‖Lp(V,µ) = ‖XjL−1/2(fl − fm)‖Lp(V,µ)

≤ ‖OL−1/2(fl − fm)‖Lp(V,µ)

≤ ‖OL−1/2‖‖fl − fm‖Lp(V,µ)

where the last quantity tends to zero when n→ ∞ since OL−1/2 is bounded
on Lp and fn is a Cauchy sequence.
Then XjL−1/2f is the Lp(V , µ) function defined as

XjL−1/2f = lim
n→∞

XjL−1/2fn .

This is a good definition since the limit does not depend on the choice of the
sequence fn. Indeed, consider another sequence gn, n ∈ N of functions in
Lp(V , µ) ∩ L2(V , µ) converging to f .

‖XjL−1/2fn −XjL−1/2gn‖Lp(V,µ) = ‖XjL−1/2(fn − gn)‖Lp(V,µ)

≤ ‖OL−1/2(fn − gn)‖Lp(V,µ)

≤ ‖OL−1/2‖‖fn − gn‖Lp(V,µ) .

The last quantity tends to zero when n→ ∞ since ‖fn − gn‖Lp(V,µ) tends to
zero, so that:

lim
n→∞

XjL−1/2fn = lim
n→∞

XjL−1/2gn .

Moreover:

‖XjL−1/2f‖Lp(V,µ) = ‖ lim
n→∞

XjL−1/2fn‖Lp(V,µ)

= lim
n→∞

‖XjL−1/2fn‖Lp(V,µ)

≤ lim
n→∞

‖OL−1/2fn‖Lp(V,µ)

≤ lim
n→∞

‖OL−1/2‖‖fn‖Lp(V,µ)

= ‖OL−1/2‖‖ lim
n→∞

fn‖Lp(V,µ)

= ‖OL−1/2‖‖f‖Lp(V,µ)

and then XjL−1/2 is bounded on Lp(V , µ) and its Lp-norm is bounded by the
Lp-norm of OL−1/2.
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