
POLITECNICO DI TORINO

I Facoltá di Ingegneria

Corso di Laurea Magistrale in Ingegneria Civile

Tesi di Laurea Magistrale

Proper generalized decomposition
applied to solid mechanics problems

Author
Giuseppe D’Ettorre

Supervisors:
Prof. dr. ir. Rosario Ceravolo

Politecnico di Torino,
Prof. dr. ir. Geert Degrande

KU Leuven
Assistant:

Ir. Pieter Reumers
KU Leuven

2018

Proper generalized decomposition method
applied to solid mechanics problems

Giuseppe D’Ettorre

Thesis submitted for the degree of
Master of Science in Civil

Engineering, option Structural
Engineering

Thesis supervisor:
Prof. dr. ir. Geert Degrande

Assessors:
Prof. dr. ir. Karl Meerbergen

Ir. Pieter Reumers

Mentor:
Ir. Pieter Reumers

Academic year 2017 – 2018

© Copyright KU Leuven

Without written permission of the thesis supervisor and the author it is forbidden
to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publication
should be addressed to Faculteit Ingenieurswetenschappen, Kasteelpark Arenberg 1
bus 2200, B-3001 Heverlee, +32-16-321350.

A written permission of the thesis supervisor is also required to use the methods, prod-
ucts, schematics and programmes described in this work for industrial or commercial
use, and for submitting this publication in scientific contests.

Preface

First of all, I would like to express my sincere gratefulness to my promotor prof.
Geert Degrande for his kind support and excellent supervision. I would like to thank
Ir. Pieter Reumers for his guidance and support and prof. Rosario Ceravolo for his
disponibility. They inspired my interest on this topic and provided lots of instruction.
I would also like to thank prof. Karl Meerbergen and the Structural Mechanics
Section of KU Leuven. I spent almost a year in Leuven and I am lucky to have spent
this year in this historical university.
Finally, I owe my thanks to my beloved family who supported me during this
unforgettable year.

Giuseppe D’Ettorre

1

Contents

List of Figures 5
Listings 7
1 Introduction 11

1.1 Proper generalized decomposition method 11
1.1.1 PGD algorithm . 13

1.2 PGD applications . 14
1.2.1 Palpation of the liver . 14
1.2.2 Water agitation: Mataró harbor (Spain) 16
1.2.3 Parametric model of a thermal process 18
1.2.4 Structural mechanics applications 19

1.3 Goals of this MSc thesis . 20
1.4 Organization of the text . 20

2 The finite element method 23
2.1 Introduction . 23
2.2 General solution of solid mechanics problems 24

2.2.1 Problem geometry . 24
2.2.2 Weighted residual method: Galerkin approach 25

2.3 Mathematical formulation of solid mechanics problems 26
2.3.1 Weighted residual method applied to solid mechanics problems 28

3 Boundary conditions as extra problem dimension 31
3.1 Introduction . 31
3.2 The load position as extra parameter of the problem 31

3.2.1 Computation of R (x) assuming S (s) is known 33
3.2.2 Computation of S (s) assuming R (x) is known 36

3.3 Numerical integration: Gaussian quadrature rules 37
3.4 Geometry . 38
3.5 Results . 39

3.5.1 Off-line phase results . 39
3.5.2 On-line phase results . 41

4 Material parameter as extra problem dimension 45

3

Contents

4.1 Introduction . 45
4.2 The Poisson’s ratio as extra parameter of the problem 45

4.2.1 Computation of R(x) assuming P (ν) is known 46
4.2.2 Computation of P (ν) assuming R(x) is known 49

4.3 Implentation in Matlab: Gaussian quadrature rules 51
4.3.1 First approach of implementation 51
4.3.2 Second approach of implementation 53

4.4 Geometry . 55
4.5 Results . 55

4.5.1 Off-line phase results . 56
4.5.2 On-line phase results . 59

5 Conclusions and future works 61
5.1 Conclusive remarks . 61
5.2 Recommendations for further research 62

Bibliography 63
A PGD code for load position 65
B PGD code for Poisson’s ratio 75

B.1 First approach of implementation . 75
B.2 Second approach of implementation 86

4

List of Figures

1.1 Finite element model for the human liver [12]. 15
1.2 (a) Interactive palpation of a liver, (b) Use of haptic device in the on-line

phase [12]. 15
1.3 Mataró harbor: wave amplification for the particular case ω = 0.61rad/s

and θ = 194.5. It shows the spatial FEM (left column), PGD with 2000
nonlinear iterations (middle column) and PGD with 400 nonlinear
iterations (right column) [11]. 16

1.4 Barcelona harbor: problem statement. Spatial domain with values of the
absorbing coefficient α on the boundary and and contour of the
bathymetry [11]. 17

1.5 Barcelona harbor: wave-height in different harbor areas. In particular:
short waves with (0.61, 1.08π) (left), mid waves with (0.55, 1.24π)
(middle) and long waves with (0.42, 1.08π) (right). The spatial FEM
solution (top) and the PG PGD interpolated solution (bottom) with
1500 PGD-projected terms (8000 solves) are shown [11]. 18

1.6 Thermal process consisting of two heating devices located on the die
walls [8]. 18

1.7 Online phase: the user is able to choose the temperatures θ1 and θ2 and
get in real time the temperature in any point of the system [8]. 19

1.8 (a) Web implementation of the algorithm. It represents a linear elastic
beam, (b) Implementation on a html file with javascript. It represents
the response of a cantilever beam [5]. 20

2.1 (a)Solid, (b) FE mesh, (c) Extraction of one particular element [13]. . . 23
2.2 Displacement and force (stress, traction) boundary conditions for the

plane stress problem [13]. 25

3.1 (a) Linear triangular element, (b) Shape function N e
1 of a triangular

element. 38
3.2 FE mesh of the beam. 39
3.3 Spatial modes: (a) Spatial mode F1, (b) Spatial mode F2, (c) Spatial

mode F3, (d) Spatial mode F10. 40

5

List of Figures

3.4 Load modes: (a) Load mode G1, (b) Load mode G2, (c) Load mode G3,
(d) Load mode G10. 40

3.5 Relative errors for varying iterations. 41
3.6 Example of two loaded points and evalutaion of the displacement in the

node 2. 41
3.7 Deformed shapes due to the unit load. Note that the scaling is equal for

both deformations. 42
3.8 Beam loaded in node 3. Displacement evaluated in node 3 and 71. . . . 42

4.1 Function RTK(ν)R . 52
4.2 Function RTK(ν)F1 . 52
4.3 Poisson’s modes: (a) Poisson’s mode G1, (b) Poisson’s mode G2, (c)

Poisson’s mode G3, (d) Poisson’s mode G8. 56
4.4 Relative errors using the first and the second approach of implementation. 57
4.5 CPU time per iterations using the first and the second approach. 58

6

Listings

A.1 Off-line phase code for the load position problem. 65
A.2 On-line phase code for the load position problem. 68
A.3 Matlab code for the enrichment function. 70
A.4 Matlab code for the function M2. 72
B.1 Off-line phase code for the Poisson’s ratio problem (first approach). . 75
B.2 On-line phase code for the Poisson’s ratio problem (first approach). . 78
B.3 Element stiffness matrix used to compute the LHS of equation (4.16). 79
B.4 Element stiffness matrix used to compute the RHS of equation (4.16). 81
B.5 LHS of equation (4.23). 83
B.6 RHS of equation (4.23). 85
B.7 Off-line phase code for the Poisson’s ratio problem (second approach). 86
B.8 On-line phase code for the Poisson’s ratio problem (second approach). 89
B.9 Matlab code for the enrichment function. 90
B.10 Matlab code for the function M1. 92
B.11 Matlab code for the function matrixR1. 93
B.12 Matlab code for the function sourceR1. 94
B.13 Matlab code for the function matrixP1. 95
B.14 Matlab code for the function sourceP1. 96

7

Abstract

Despite the progressive improvements in terms of simulation capabilities and tech-
niques as well, some engineering problems remain very expensive from a computational
point of view. Many techniques were developed in the last decades in order to cir-
cumvent the computational costs issue, such as the proper orthogonal decomposition
(POD). In this thesis another technique called proper generalized decomposition
method (PGD method) is analysed as an alternative and incredible reduced order
modelling (ROM) technique. The PGD method is based on the assumption of
separability of the solution and it has demonstrated its capability of solving mul-
tidimensional problems. The PGD method leads to two main steps: the off-line
phase and the on-line phase. The PGD method involves in an iterative procedure
where the enrichment functions are determined by a fixed-point alogorithm. The
novelty of the PGD method is that there is no a priori knowledge of the solution
required as in the POD method. It permits to compute, once and for all, a meta
model that includes all the possible solutions where model parameters can be set as
extra problem dimensions. For that, the off-line phase leads to a vademecum and the
on-line phase uses the results from the first step to obtain in real time the response of
the FE model under a particular combination of model parameters. In this thesis the
PGD method is applied to static solid mechanics problems considering the boundary
conditions and material parameters as extra problem dimensions, in particular the
load position and the Poisson’s ratio. The PGD method has been implemented in the
StaBIL framework which is a Matlab toolbox created by the Structural Mechanics
Section of KU Leuven. In these applications, the PGD method has demonstrated its
power since it leads a very low computation time and so achievable even on average
performance platforms.

9

Chapter

1
Introduction

Models in engineering and science describe complex systems using a large number
of variables and parameters. The goal of model order reduction is to use different
techniques to reduce the number of variables and thus to reduce the computational
cost and to achieve fast-response for real-time simulations. The model reduction is
based on the dimension reduction of the discretized solution space of the governing
partial differential equations and the parametric space to be explored. This thesis will
discuss a recently introduced model order reduction technique: the proper generalized
decomposition method (PGD method) applied to solid mechanics problems. The
PGD method is a dimensionality reduction algorithm. Solving decoupled problems is
computationally much less expensive than solving multidimensional problems. This
new simulation technique has been proposed recently by researches of the University
of Zaragoza (Spain) [2].

1.1 Proper generalized decomposition method
The proper generalized decomposition method is based on the assumption of a
separated form of the unknown field variables and it has demostrated its capabilities
in dealing with high dimensional problems overcoming the strong limitations of
classical approaches. The method allows the introduction of several material or
geometrical parameters as extra problem dimensions. In the PGD method the
problem is solved only once in order to obtain a general solution that includes all
the possible solutions for every parameter affecting the solution. For that the PGD
method leads a sort a computational vademecum. Under this consideration, the real
time simulation is immediately available even for complex scenarios.
The PGD method is based on two steps:

• off-line phase

• on-line phase

Combining these steps, the solution can be obtained. In the first step the general
PGD solution is obtained while the second step uses the results from the first step in
order to show in real time the response, for instance the displacement of a cantilever

11

1. Introduction

beam under a varying load position or for varying Poisson’s ratio. Furthermore,
when the solution is computed in the off-line phase, it can be uploaded in devices
like smartphones, tablets or any digital platform.
The reduction made by the PGD method makes it possible to solve multidimensional
models efficiently by means of treating parameters as extra coordinates. The main
novelty of the PGD method is the construction of a sum of separated functions a
priori, without any prior knowledge of the solution, using an iterative scheme.
Considere a PDE of a given problem, in general the solution depends on different
parameters m. Assuming that at iteration n of the procedure the convergence is
reached, the general form of the solution un up to iteration n is:

un
(
x, t, p1, p2,, pm

)
'

n∑
i=1

Fi (x) · Ti (t) · P 1
i

(
p1
)
· · Pmi (pm) (1.1)

where the functions Fi , Ti , Pmi are in principle unknown and x , t , pmi represent
the parameters affecting the solution which are defined in a general domain Ωi of
moderate dimension Ωi ⊂ Rd. Note that the choice of an appropriate truncation
level n depends on the level of accuracy.
Equation (1.1) introduces many extra coordinates, e.g. the spatial coordinate, the
time coordinate and other coordinates pmi , thus the dimensionality of the resulting
model increases. However, the PGD method allows to treat these problems advanta-
geously. It is an iterative method that allows to compute the unknown functions by
implementing a loop until convergence. The PGD method will be applied to solid
mechanics by using a fixed point algorithm that usually provides very good results
problems [2, 4].
The PGD method, unlike many other model order reduction techiques, does not
need preliminar experiments or statistical treatment like the Proper Orthogonal
Decomposition (POD) method. The POD method uses so-called snapshots that
are empirical realizations of the problem under different parameter values of the
considered problem. The PGD method results in a generalization of the POD method,
which is the classical approach in reduced-order modelling. Once the off-line phase is
completed, it allows the user to change the parameters during the simulation and
see the results in real-time.
Many problems in science and engineering are defined in high-dimensional spaces
and this introduces difficulties in a context of mesh-based techniques such as finite
differences, finite volumes or finite elements. Indeed, the curse of dimensionality
increases the computation time: the solution has to be recomputed for every com-
bination of parameters. However, from an implementation point of view, the PGD
method has a clear barrier to entry and it could appear complex to implement.
Simulation of real engineering problems as simple physical equations becomes a task
of hours, indeed a simple but efficient example is the Schrodinger equation. A nice
statement about it has been made by R.B. Laughlin: "no computer existing, or
that will ever exist, can break this barrier because it is a catastrophe of dimension"
[10]. The implementation of augmented learning strategies for simple or complex
engineering or physical problems is very interesting but at the same time incredibly

12

1.1. Proper generalized decomposition method

challenging. So the possibility of solving them by using handheld platforms seems
out of reach.
In conclusion, traditional simulation-based engineering sciences make use of static
data. The word static data means that inputs, like the parameters defining the
problems, cannot be changed during the simulation like in a classic finite element
software. Nowadays there is an interesting link between the simulation tools and
external dynamic data for real-time simulation and that is why these applications are
becoming more frequent. The Dynamic Data Driven Application System (DDDAS)
constitutes one of the most applications of simulation-based engineering sciences [16].

1.1.1 PGD algorithm

A typical solver for a general PGD method is a fixed point scheme. The basic idea is
to compute each of the terms in equation (1.1) one at a time assuming the others
are known until reaching convergence of the procedure considering a given tolerance.
In general, a PGD solver performs in several steps that depend on the number of
functions to be determined. Typically, the main loop is the search for modes which
is controlled by the choice of specific maximum number of modes n. The word
modes is used to describe the outputs of the PGD implementation which can be
the mechanical modes for the spatial coordinate x or the extra modes for the extra
coordinates pmi . The stopping criterion has been defined introducing the norm of the
displacements between interations n and n− 1.
The PGD method is an iterative procedure and it is expected that the contribution of
the following iterations to the solution becomes smaller and smaller when n increases.
Within the main loop, there are several iterations called n, and the loop is controlled by
a stopping criterion which compares the given tolerance TOL, typically TOL = 10−3,
with the solution of two consecutive iterations:

|un − un−1|
|un−1|

< TOL (1.2)

To ensure the end of the iterative procedure, a maximum iteration number nmaxiter
is also specified. In this thesis the fixed point algorithm has been used since it
gives very good results. In numerical analysis, fixed point iteration is a method of
computing iterated functions. In more detail, given a function f defined on the real
numbers with real values and given a point x0 in the domain of f , the fixed point
algorithm is:

xn+1 = f(xn) with n = 0, 1, 2, ... (1.3)

which leads to the sequence of successive approximations x0, x1, x2,... by fixed point
method. Finally, the convergence is checked by equation (1.2).
A typical PGD algorithm involves the following code. In particular: n is the iteration
number, TOL is the tolerance, nmaxiter is the maximum iterations number, erroriter
is the relative error up to iteration n and Exitflag is an integer that is a code for
the reason the solver halted its iterations. In general positive Exitflag corresponds
to successful outcomes.

13

1. Introduction

Algorithm 1 Typical PGD algorithm
Result: Functions to approximate the solution.
Create spatial mesh and parametric mesh for the model
Initialise F and Pm

Specify the input n, TOL, nmaxiter
while erroriter > TOL & n < nmaxiter do

Initialise Fi and P
m
i

while ExitF lag > TOL do
Solve the spatial function Fi

for j = 1 to m do
Solve the extra function Pmi

end
end
Evaluate and update the amplitude erroriter
Check the convergence:

|un − un−1|
|un−1|

< TOL

Save the amplitude erroriter, functions Fi and Pmi into vademecum
end

1.2 PGD applications

Recently, an experiment by MIT showed that Ethiopian children were able to learn to
read by themselves with the aid of tablets specially equipped [17]. Thus the augmented
learning has emerged as a new way to adapt the environment to the learner. The
use of devices permit benefits like portability, interactivity and sociability [15].
As described this technique features the separated representation of the solution, so
that the relationship between the solution complexity scale and the dimension of
solution space is reduced from exponentially to linearly [2].
The power of the PGD method is demonstrated in many different fields, such as
structural analysis, structural optimization, computational rheology, computational
fluid dynamics, heat transfer and surgery applications as well [4]. One of the first
works proposed by F.Chinesta and his coworkers was the polymer modeling problem
[1].

1.2.1 Palpation of the liver

An interesting PGD application lies in the field of virtual surgery training, for
instance, surgery planning. This constitutes a third generation of surgery simulators
[12]. The liver is the biggest gland in the human body, after the skin. Its FE model
has been obtained from a mesh composed of 8559 nodes and 10519 tetrahedra. Figure

14

1.2. PGD applications

1.1 shows the finite element model for the human liver from two different points of
view.

Figure 1.1: Finite element model for the human liver [12].

The liver is connected to the diaphragm by the coronary ligament so it seems
reasonable to assume it to be constrained at the posterior face by the rest of the
organs, while the anterior face is accessible to the surgeon. Even if the assumed
boundary conditions are not strictly correct from a physiological point of view, the
main goal of the authors was to show that the model can be solved under real-time
constraints with reasonable accuracy. The details on the the mechanical parameters
of the liver were not very accurate. The authors used a Young’s modulus of 160 kPa
and Poisson’s ratio of 0.48, corresponding to a nearly incompressible material. The
boundary Γ where the load can be located is a surface and it includes 2009 of the
8559 nodes of the model. The model’s solution was decomposed by a total of k = 167
functional pairs Xk

j (x) ·Yk
j (p), where the function X is the spatial function and so it

includes the three components of the displacements for each node, while the function
Y is the additional function that depends only on the extra coordinate: the load
position p. The solution provided by the method agrees well with the reference finite
element solutions obtained by employing full-Newton-Raphson iterative schemes.
The computed solution can be stored in a compact form so that is possible to use

(a) (b)

Figure 1.2: (a) Interactive palpation of a liver, (b) Use of haptic device in the
on-line phase [12].

15

1. Introduction

it on devices such as smartphones and tablets. Figure 1.2 shows the online phase
where the finite element model for the human liver is uploaded and the user is able
to touch the liver with an haptic device. This application leads to so-called simulator
of third generation.

1.2.2 Water agitation: Mataró harbor (Spain)

Solving the Helmohltz equation for a large number of input variables in a heteroge-
neous and unbounded domain represents a challange due to the particular structure
of the Helmholtz operator and the sensitivity of the solution to small variations of
the data. In this application, the authors have considered a reduced order model
to determine the wave propagation in every part of the domain for any incoming
wave direction and frequency [11]. The original problem involves an exponential
growth of degrees of freedom (the so-called curse of dimensionality) when using
standard mesh-based discretization techniques. For that a reduced order model can
circumvent this critical difficulty and solve the problem in an intrusive way with the
same accuracy of a FEM, but with less computational effort.
In this section the water agitation in Mataró harbor, located in the norther part of
Barcelona is studied. In this problem, the number of reflected waves increase and so
the problem from the computational point of view is hard. Using the PGD method,
the solution is fully parameterized with space, frequency and incoming direction,
so that the solution depends on several parameters u(x, y, ω, θ). Its approximated

Figure 1.3: Mataró harbor: wave amplification for the particular case ω = 0.61rad/s
and θ = 194.5. It shows the spatial FEM (left column), PGD with 2000 nonlinear
iterations (middle column) and PGD with 400 nonlinear iterations (right column)

[11].

16

1.2. PGD applications

solution, called un, can be written in separated representation as:

un(x, y, ω, θ) =
n∑
i=1

Fi
1(x, y)Fi

2(ω, θ) (1.4)

therefore the solution is splitted in two dimensions.

Incidents waves are in accordance with observations in the region: ω ∈ [0.39, 0.63]
(from 10s to 16s of wave period) and θ ∈ [1.05π, 3π/2]. The model has been built using
15 757 nodes for (x, y) and 50× 50 nodes for (ω, θ). In this case the computational
cost of the offline phase is determined by the number of spatial problems and so
the number of iterations needed for the convergence. Actually the authors remark a
drastic increase of the computational cost to reach an engineering accuracy in the
areas where a lot of reflections are involved. Figure 1.3 shows the wave amplification
for an unfavorable propagation case and the spatial computation with FE method is
used as a reference.
Finally, a drastic increase on the computational cost is observed to reach an engineer-
ing accuracy in the area where a lot of reflections are involved. The exterior harbor
region requires a total of 400 nonlinear iterations, at least 5 times more are required
to capture the wave amplification in the interior region, since there are much more
reflective areas [11]. A similar problem has been solved for the Barcelona harbor. In
this case the geometry is more complex since the size of the harbor is bigger. The
model has been built using 2 × 105 nodes for (x, y) and 100 × 50 nodes for (ω, θ).
Figure 1.4 shows the problem statement and figure 1.5 shows a particular solution
for a particular combination of ω and θ.

Figure 1.4: Barcelona harbor: problem statement. Spatial domain with values of
the absorbing coefficient α on the boundary and and contour of the bathymetry [11].

17

1. Introduction

Figure 1.5: Barcelona harbor: wave-height in different harbor areas. In particular:
short waves with (0.61, 1.08π) (left), mid waves with (0.55, 1.24π) (middle) and long
waves with (0.42, 1.08π) (right). The spatial FEM solution (top) and the PG PGD
interpolated solution (bottom) with 1500 PGD-projected terms (8000 solves) are

shown [11].

1.2.3 Parametric model of a thermal process
The PGD method has been applied to generate a parametric model of a material
flowing in a heated die [8]. The 2D thermal process is sketched in figure 1.6. The
thermal flow is assumed with a velocity v inside a die Ω of length L and width H.
The die is composed of two heating devices of length L1 and L2, whose temperature
θ1 and θ2 can change within an interval [θmin, θmax].

Figure 1.6: Thermal process consisting of two heating devices located on the die
walls [8].

18

1.2. PGD applications

The steady temperature field u(x, θ1, θ2) in any point of the die can be obtained from
the solution of the 2D heat transfer equation that involves advection and diffusion
mechanics. The velocity has been assumed unidirectional. The heat transfer equation
looks like:

ρc(v∂u
∂x

) = k∆u (1.5)

where k is the thermal conductivity, ρ is the density and c is the specific heat. In
this example the extra coordinates considered by the authors are the temperatures
θ1 and θ2, but other parameters such as ρ, k and c can be set as extra parameters as
well. The problem is multimensional and the solution depends on several parameters
u(x, y, θ1, θ2). Considering a separeted representation of temperature field, the
solution can be written as:

u(x, y, θ1, θ2) =
n∑
i=1

Fi(x, y)Θ1
i (θ1)Θ2

i (θ2) (1.6)

Applying the PGD method to this problem results in three steps where the functions
Fi, Θ1

i and Θ2
i are determined iteratively. Finally, the user can choose in the online

phase any value of the temperature and obtain in real-time the response, in this case
the temperature in any point of the wall. Figure 1.7 shows that the user can upload
the meta-model on devices as smartphones or tablets.

Figure 1.7: Online phase: the user is able to choose the temperatures θ1 and θ2
and get in real time the temperature in any point of the system [8].

1.2.4 Structural mechanics applications
Recently, the PGD method has been applied to structural mechanics problems. One
of these application, for instance, is the study of a cracked plate where the extra
parameters are the thickness B of the plate and the Poisson’s ratio ν [9]. The user is
able to choose these parameters and obtain in real time the solution u(x, y, z, B, ν).
Another interesting application is the field of structural dynamics. In this example,
the model order reduction of initial and boundary value problems is a particularly
challenging task. Indeed, the initial conditions such as displacement and velocity
can have a large number of values. For that it should be parameterized in a proper

19

1. Introduction

way [5]. The execution of the program produces a window with the tip displacement
and the user can play with the mouse and see the static displacements of the beam
under a unit load applied at the upper surface. Figure 1.8 shows the finite element
model and the PGD program uploaded on a tablet. The user is able to move the
point of application of the load and see the beam displacements in real time. More
applications are avaiable on the University of Zaragoza website [14].

(a) (b)

Figure 1.8: (a) Web implementation of the algorithm. It represents a linear elastic
beam, (b) Implementation on a html file with javascript. It represents the response

of a cantilever beam [5].

1.3 Goals of this MSc thesis
In this MSc thesis, the PGD method will be applied to static solid mechanics
problems. The application of this approach is very interesting since it is possible
to obtain the solution, for instance the displacements, in real time. Introducing
extra problem dimensions in the model, a parametric problem is obtained. The extra
parameters considered in this thesis are the load position and the Poisson’s ratio. The
numerical integrations of all the necessary mathematical formulations that describe
the problem, within the PGD framework, have been performed in StaBIL, a Matlab
toolbox realized by the Structural Mechanics Section of KU Leuven.
For the first problem, the resulting model is a beam displayed on the screen and
the user is able to choose the load position by clicking on the beam surface and
obtain in real time the beam configuration for varying load positions. The second
problem shows the capability of the program to display several beam configurations
for varying Poisson’s values. In this case, the user is able to choose the Poisson’s
ratio digiting on the keyboard the desidered value.

1.4 Organization of the text
This work applies the PGD method to static solid mechanics problems. In particular,
the PGD method considering the load position acting on the beam and the Poisson’s
ratio as extra parameters. In order to find similarities with the FE method, the FE
solution has been provided using StaBIL.

20

1.4. Organization of the text

• Chapter 1 gives a general introduction to the PGD method with some of its
applications. In particular the PGD method as third generation of the so called
Reduced Order Models (ROM) and the description of the two main steps is
given: off-line phase and on-line phase. Further the goals of the thesis and the
structure of the text are explained.

• Chapter 2 gives the FE formulations considering a static solid mechanics
problems. Starting from the PDEs of a 3D solid continuum, the strong and the
weak form of the problem introducing the discretization using the FE approach
are derived. Finally, the definition of the stiffness matrix K and the external
load vector f .

• Chapter 3 analyzes the first application of the PGD method applied to solid
mechanics problem considering the load position as extra parameter. The load
is supposed acting on the surface of a clamped beam. In the spirit of the PGD
method the solution of the problem is expressed with a separeted representation
considering two functions: the first one depends on the spatial coordinate x
and the second one on the load position s. The load position’s domain can
be expressed by a linear domain using 1D elements. After implementation in
Matlab, the PGD solution has been compared with the FE solution found with
StaBIL.

• Chapter 4 analyzes another challenging problem using the PGD method where
the Poisson’s ratio is considered as extra parameter of the problem. In this
case the solution in separated representation is expressed by two functions:
the first one depends on the spatial coordinate x and the second one depends
on the Poisson’s ratio ν. The Poisson’s domain can be expressed by linear
domain using 1D elements. All the numerical integrations has been performed
in Matlab and in order to find similarities, the PGD solution has been compared
with the FE solution found with StaBIL.

• Chapter 5 makes final conclusions on the thesis and shows some detected issues.
Moreover, possible future works and future development are suggested.

21

Chapter

2
The finite element method

2.1 Introduction
The finite element method (FEM) is used for the numerical solution of differential
equations [6]. From a mathematical point of view, a problem is often decribed by
differential equations. For solid mechanics problems, the entire structure is composed
of several small elements and these elements are connected at points called nodes. The
assembly of the elements is called a model. The particular arrangement of elements is
called the finite element mesh (figure 2.1). The system of equations is discretized and

Figure 2.1: (a)Solid, (b) FE mesh, (c) Extraction of one particular element [13].

solved for the unkown nodal field variables. The field quantity over the entire domain
is thus approximated element by element. The FEM solution is not exact, but it
can be improved using a finer mesh. The modeling step leads to a mathematical
problem in order to represent a physical problem. A model can be devised after the
physical nature of the problem has been understood. A geometric model becomes a
mathematical model when its behavior is described by selected differential equations
and boundary conditions. It is very important to remark that finite element analysis
is a simulation and not reality and is applied to the mathematical problem. The
matemathical model is an idealization where the geometry, material proprieties, loads
and boundary conditions are simplified.
The field is discretized because the equations are discretized using the shape functions.
The entire continuous field is represented by a piecewise continuous field defined by
a finite number of nodal quantities and simple interpolation within each element.
Introducing this approximative model two types of errors have now been introduced:

23

2. The finite element method

modelling errors and discretization errors. The first can be reduced by improving the
model and the second error can be reduced using more elements. Also the numerical
integration introduces numerical error since it is not exact.
The essence of the finite element method is approximation by piecewise interpolation
of a field quantity. A polynomial interpolation is often used. In the general case, it
is possible to write the solution of the problem by interpolating the nodal values of
the variable field with interpolation functions. In order to define the approximation
of a field variable , it is important to define the degrees of freedom of the problem.
These are entities that govern the spatial variation of the field.
Finally performing a finite element analysis involves the following steps:

• Preprocessing: Input data describes geometry, material propreties, loads, and
boundary conditions. Software can automatically prepare much of the FE mesh
but the element type and mesh should be provided.

• Numerical analysis: The software generates system of matrices, such as the
stiffness matrix for the static analysis of a problem. The equilibrium equation
KU = P is solved in order to determine the values of the field quantities U at
the nodes of the FE mesh.

• Postprocessing: The FEM solution and quantities derived from it are graphically
displayed. For instance, the evalutation of strains/stresses from the nodal
displacements is possible.

2.2 General solution of solid mechanics problems
In this chapter the weighted residual method is applied to derive the solutions of
general solid mechanics. There are two main steps:

1. Description of the PDE of the problem and its equivalent integral expression

2. Discretizing the governing equations using the shape functions

2.2.1 Problem geometry
The problem is defined on a physical domain Ω in the space R3 and its boundary is
a closed curve Γ. The boundary Γ (figure 2.2) is divided in two parts that do not
overlap:

• the Dirichlet boundary Γu
u− ū = 0 (2.1)

• the Neumann boundary Γt
t− t̄ = 0 (2.2)

The Dirichlet boundary conditions impose displacement restrictions ū, while the
Neumann boundary conditions impose traction restrictions t̄.

24

2.2. General solution of solid mechanics problems

Figure 2.2: Displacement and force (stress, traction) boundary conditions for the
plane stress problem [13].

2.2.2 Weighted residual method: Galerkin approach
The weighted residual method is a method developed to obtain an approximate
solution to the differential equations describing the problem [6]. The differential
equation can be written in the general form as:

A (Φ) = L (Φ) + f (x) = 0 (2.3)

where Φ (x) is the unknown field variable and f (x) is a known function. L denotes
the differential operator involving spatial derivative of Φ, which specifies the actual
form of the differential equation. The weighted residual form method involves two
major steps. In the first step, an approximate solution based on the general behaviour
of the dependent variable is assumed. The assumed solution is selected so that it
satisfies the boundary conditions for Φ:

B (Φ) = M (Φ) + t (x) = 0 (2.4)

The boundary conditions include prescriptions of displacements or trections on the
surface of a body. In general a distributed load can act in the tangential or normal
direction. On any boundary (including one not perpendicular to a coordinate axis)
normal and tangential loads can be expressed as surface tractions, which are forces
per unit of surface area.

Let Ψ (x) ≈ Φ (x) be an approximate solution to the differential equation 2.3. When
Ψ (x) is substituted in the differential equation, it is unlikely that the equation is
satisfied. So, we obtain:

A (Ψ) = L (Ψ) + f 6= 0 in Ω (2.5)

B (Ψ) = M (Ψ) + t 6= 0 on Γ (2.6)

Multiplying equations (2.5) and (2.6) by an arbitrary weight function w (x) and
integrating over the domain Ω and boundary Γ we obtain:∫

Ω
w [L (Ψ) + f] dΩ +

∫
Γ
w [M (Ψ) + t] dΓ 6= 0 (2.7)

25

2. The finite element method

Since the assumed solution is only approximate, it does not in general satisfy the
differential equation and hence result in an error called residual. The residual is then
minimized over the entire solution domain to obtain a good approximation of the
solution. The second step is to solve the system of equations resulting from the first
step subject to the prescribed boundary conditions to yield the approximate solution.
In the Galerkin version of the weighted residual form, the shape functions for the
displacements and the virtual displacement fields are the same. And so the weight
function is:

wi = Ni i = 1, 2, ..., n (2.8)
The approximation is then:

Ψ ≈ Ψ̂ = N1u1 +N2u2 + ... =
n∑
i=1

Niui = Nu (2.9)

In this expression N1, N2, ..., Nn are n indipendent functions of x,y and z. The
unknowns coefficients u1, u2,...,un have to be determined in order to obtain a best
solution.

2.3 Mathematical formulation of solid mechanics problems
This section analyzes a 3D solid mechanics problem using the FEM.
Let σij be the stress and εij the strain, where i is the direction of the stress/strain
and j the normal direction. The equilibrium equations along x-direction, y direction
and z-direction are:

∂σxx
∂x

+ ∂σyx
∂y

+ ∂σzx
∂z

+ ρbx = 0 (2.10)

∂σxy
∂x

+ ∂σyy
∂y

+ ∂σzy
∂z

+ ρby = 0 (2.11)

∂σxz
∂x

+ ∂σyz
∂y

+ ∂σzz
∂z

+ ρbz = 0 (2.12)

In matrix-vector notation:


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x




σxx
σyy
σzz
σyx
σzy
σxz


+ ρ


bx
by
bz

 = 0 (2.13)

Or in a short form:
LTσ + ρb = 0 (2.14)

where b are the body forces defined per unit volume, positive when acting in positive
coordinate directions, and ρ is the material density.

The two boundary conditions considered are:

26

2.3. Mathematical formulation of solid mechanics problems

• Neumann BC: imposed traction on Γt

tx = σxxnx + σyxny + σzxnz = t̄x

ty = σxynx + σyyny + σzynz = t̄y

tz = σxznx + σyzny + σzznz = t̄z (2.15)

• Dirichlet BC: imposed displacement on Γu

ux − ūx = 0
uy − ūy = 0
uz − ūz = 0 (2.16)

The strain-displacement relations describe how a body deforms:

εxx = ∂ux
∂x

(2.17)

εyy = ∂uy
∂y

(2.18)

εzz = ∂uz
∂z

(2.19)

εxy = 1
2

(
∂ux
∂y

+ ∂uy
∂x

)
(2.20)

εyz = 1
2

(
∂uy
∂z

+ ∂uz
∂y

)
(2.21)

εzx = 1
2

(
∂uz
∂x

+ ∂ux
∂z

)
(2.22)

γxy = 2εxy γyz = 2εyz γzx = 2εzx (2.23)

In matrix-vector notation, the strain-displacement relations are:


εxx
εyy
εzz
γxy
γyz
γzx


=


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x


T

ux
uy
uz

 (2.24)

or:
ε = Lu (2.25)

The constitutive relation is defined as:

σ = Dε (2.26)

27

2. The finite element method

where the constitutive matrix for a 3D solid is:

D =



2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


(2.27)

where the Lamé constants are:

µ = E

2(1 + ν) (2.28)

λ = νE

(1 + ν)(1− 2ν) (2.29)

In case of 2D plane strain the constitutive matrix D is:

D = E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2

 (2.30)

In case of 2D plane stress the constitutive matrix D is:

D = E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (2.31)

where E is the Young’s modulus and ν is the Poisson’s ratio.

2.3.1 Weighted residual method applied to solid mechanics problems
In order to derive the strong form of the problem, the equilibrium equations and
mechanical boundary conditions can be written in the weighted residual form. The
principle of virtual work is used in this section to derive the stiffness matrix and
the load vector associated to the problem. The virtual displacements δux , δuy and
δuz are any displacement fields taht satisfies kinematic boundary conditions. The
displacement field is admissible and for this reason does not violate compatibility
boundary conditions. The weighted residual form is:

∫
Ω

[(
∂σxx
∂x

+ ∂σyx
∂y

+ ∂σzx
∂z

+ ρbx

)
δux +

(
∂σxy
∂x

+ ∂σyy
∂y

+ ∂σzy
∂z

+ ρby

)
δuy

+
(
∂σxz
∂x

+ ∂σyz
∂y

+ ∂σzz
∂z

+ ρbz

)
δuz

]
dΩ−

∫
Γt

[(
tx − t̄x

)
δux +

(
ty − t̄y

)
δuy

+
(
tz − t̄z

)
δuz

]
dΓ = 0 (2.32)

28

2.3. Mathematical formulation of solid mechanics problems

In matrix-vector notation:∫
Ω

δuT(LTσ + ρb)dΩ +
∫
Γt

δuT(t− t̄)dΓ = 0 (2.33)

where:
δu =

{
δux δuy δuz

}T
(2.34)

Integrating by part the first term and applying Gauss’s theorem:∫
Ω

∂σxx
∂x

δuxdΩ =
∫
Ω

∂(σxxδux)
∂x

dΩ−
∫
Ω

σxx
∂δux
∂x

dΩ

=
∫
Γt

σxxδuxnxdΓ−
∫
Ω

σxx
∂δux
∂x

dΩ (2.35)

For all terms, this results in:∫
Ω

[σxxδεxx + σyyδεyy + σzzδεzz + σyxδγxy + σzyδγyz + σxzδγzx] dΩ

−
∫
Ω

ρ [bxδux + byδuy + bzδuz] dΩ−
∫
Γt

[(σxxnx + σxyny + σxznz) δux

+ (σxynx + σyyny + σzynz) δuy + (σxznx + σyzny + σzznz) δuz] dΓ

+
∫
Γt

[(
tx − t̄x

)
δux +

(
ty − t̄y

)
δuy +

(
tz − t̄z

)
δuz

]
dΓ = 0 (2.36)

In matrix notation this is written as:∫
Ω

δεTσdΩ =
∫
Ω

δuTρbdΩ +
∫
Γt

δuTt̄dΓ (2.37)

Equation (2.37) represents the virtual work equation.
Let the displacement field u be interpolated over an element by:

u = Nu (2.38)

where N contains the shape functions related to spatial coordinates. The nodal
values of the displacement field are denoted as u.

The constitutive law leads to:
ε = Bu (2.39)

where B is called the strain-displacement matrix that includes the first derivative of
the shape functions.
Replacing the equations (2.38) and (2.39) in equation (2.37) leads to:

δuT
∫
Ω

(LN)T DLNdΩu = δuT
∫
Ω

NTρbdΩ + δuT
∫
Γt

NTt̄dΓ (2.40)

29

2. The finite element method

δuT
∫
Ω

BTDBdΩu = δuT
∫
Ω

NTρbdΩ + δuT
∫
Γt

NTt̄dΓ (2.41)

Equation (2.41) must hold for any admissible virtual displacement δu. Therefore:∫
Ω

BTDBdΩ

u =
∫
Ω

NTρbdΩ +
∫
Γt

NTt̄dΓ (2.42)

Equation (2.42) yields:
Ku = f (2.43)

where the stiffness matrix is:

K =
∫
Ω

BTDBdΩ (2.44)

and the external load vector f includes the body forces and the external load:

f =
∫
Ω

NTρbdΩ +
∫
Γt

NTt̄dΓ (2.45)

The stiffness matrix K is a matrix with dimensions ndof × ndof , the external load
vector is a vector ndof×1 and the nodal values u is a vector ndof×1, where ndof is the
number of the degree of freedom of a mechanical system is the number of indipendent
parameters that define its configuration, thus considering solid mechanics problems
the degrees of freedom of the problem are the unrestrained displacements of each node.

30

Chapter

3
Boundary conditions as extra problem
dimension

3.1 Introduction
This chapter introduces a parametric problem where the load position is considered
as an extra parameter of the problem. The load position domain is assumed linear
and so it is discretized assuming 1D elements. The PGD method revealed an
impressive ability to solve problems just considering parameters as new dimension of
the considered problem, thus it leads a sort of parametric phase space [3]. Therefore
the parametric problems constitute the most interesting application of the PGD
method.

3.2 The load position as extra parameter of the problem
The problem of a moving unit load along a beam leads to the influence line problem
that is a graphical representation of a field at a given point of a considered structure
when the load is applied at different positions. In order to study the problem for
varying load position by applying the PGD method a cantilever beam has been
considered. The goal is to obtain a sort of response surface in which by varying the
load position, the response of the beam is provided in real time. In this case the
response is the deformed configuration of the beam [5].
The PGD authors first had considered the problem as non separable. So that the
number of modes needed to express the solution is so big, that no gain is obtained
by applying any kind of model reduction technique and therefore it is better to
simply simulate it in a straighforward manner, by finite element methods or any
other numerical technique [2].
In this chapter, a clamped beam is considered with a moving load acting on the
beam surface. Using the PGD method and considering the load position s as extra
dimension in the problem, the solution is expressed as:

u (x, s) =
n∑
i=1

Fi(x)Gi(s) (3.1)

where s represents the load position, x the spatial coordinates and u contains three
displacement components. Fi(x) is the spatial vector and Gi(s) is the load vector.

31

3. Boundary conditions as extra problem dimension

Considering a general solid mechanics problem and neglecting the body forces, the
weak form of the problem can be written as:∫

Ω×Γ

(Lδu)T : D : LudΩdΓ =
∫

Γt×Γ

δuTt̄dΓdΓ (3.2)

Therefore the solution u (x, s) is defined in Ω× Γ. In particular Ω is the domain for
the spatial coordinate, Γ is the domain where the load can be applied and Γt is the
part of the boundary on which Neumann boundary conditions are applied.
The load position for simplicity is considered with unit value and it can be expressed
with the Dirac-delta like:

t̄ = et · δ (x− s) (3.3)
where et is the force magnitude. The load is expressed in a linear way.
In the spirit of the PGD method the Dirac-delta needs to be approximated with a
series of separable functions as:

t =
m∑
j=1

fj (x) gj (s) (3.4)

where m is the number of functions of the source term. The first function fj (x) is
the spatial term and gj is the load term to approximate the load t. The goal of the
PGD method is to find, in an impressive way, a finite sum of separable functions
to approach the solution. Assuming that we have convergence at iteration n of this
iterative procedure, the solution can be written as:

un (x, s) =
n∑
i=1

Fi (x)Gi (s) (3.5)

where the solution of the problem u (x, s) includes the j-th component of the
displacement vector with j = 1, 2, 3. Using the FE formulation, equation (3.5) is
expressed as:

un (x, s) =
n∑
i=1

N (x) FiM (s) Gi (3.6)

where Fi and Gi are the nodal values of the functions Fi (x) and Gi (s) while N (x)
is the shape function for the spatial coordinates and M (s) is the shape fuction for
the load position and it is expressed using 1D elements.
If the rank-n of the approximation does not give the desired accuracy, we look for
the (n+ 1)-th term, so that the approximation becomes:

un+1 (x, s) = un (x, s) + R (x)S (s) (3.7)

where R (x) and S (s) are the enrichment functions that improve the approximation.
The enrichment functions R (x) and S (s) are determined iteratively with a fixed-
point algorithm which gives good results and converges quickly.
The virtual displacement field δu is expressed as the following formulation:

δu (x, s) = δR (x)S (s) + R (x) δS (s) (3.8)

32

3.2. The load position as extra parameter of the problem

In the PGD framework in order to compute the enrichment functions, two steps
should be repeated until convergence:

1. The computation of R(x) assuming S(s) is known
In this case the virtual displacement field becomes:

δu (x, s) = δR(x)S(s) (3.9)

2. The computation of S(s) assuming R(x) is known
In this case the virtual displacement field becomes:

δu (x, s) = R(x)δS (s) (3.10)

These two steps should be repeated until convergence and in order to compute them
a fixed point method has been adopted. The iterative procedure stops when the
norm of the solution at iteration n and n− 1 is less than the TOL. Equation (1.2)
shows the stopping criterion formula.

3.2.1 Computation of R (x) assuming S (s) is known
Using equations (3.4), (3.5) and (3.9), the weak form of the problem (equation (3.2))
can be written as:∫

Ω×Γ

[LδR (x)S (s)]T : D :
[
n∑
i=1

LFi (x)Gi (s) + LR (x)S (s)
]

dΩdΓ

=
∫

Γt×Γ

[δR (x)S (s)]T
 m∑
j=1

fj (x) gj (s)

dΓdΓ (3.11)

where the operator L affects functions of the spatial coordinates and D is the
constitutive matrix.
Moving all known terms to the RHS, equation (3.11) becomes:∫

Ω×Γ

[LδR (x)S (s)]T : D : LR (x)S (s) dΩdΓ

=
∫

Γt×Γ

[R (x) δS (s)]T
 m∑
j=1

fj (x) gj (s)

dΓdΓ

−
∫

Ω×Γ

[LδR (x)S (s)]T : D :
n∑
i=1

LFi (x)Gi (s) dΩdΓ (3.12)

The FE discretization of the enrichment terms is:

un+1 (x, s) = un (x, s) + N (x) RM (s) S (3.13)

33

3. Boundary conditions as extra problem dimension

where R and S are the nodal values of the functions R(x) and S(s) relative to the
enrichment step. Take into account that the operator L is applied to the spatial
coordinates, the first derivative of the solution at iteration n+ 1 is like:

Lun+1 = Lun + LR (x)S (s)

=
n∑
i=1

LN (x) FiM (s) Gi + LN (x) RM (s) S

=
n∑
i=1

B (x) FiM (s) Gi + B (x) RM (s) S (3.14)

And in a similar way for the virtual displacement field:

Lδu = LδR (x)S (s) + LR (x) δS (s)
= LN (x) δRM (s) S + LN (x) RM (s) δS
= B (x) δRM (s) S + B (x) RM (s) δS (3.15)

The extra parameter of the problem, the load t, can be discretized with the following
equation by introducing the shape functions respectively for the spatial coordinate
and the load position:

t =
m∑
j=1

N (x) f jM (s) g
j

(3.16)

Introducing the discretizations and taking into account equations (3.13), (3.14),
(3.15) and (3.16), equation (3.12) can be written as:∫

Ω×Γ

[LN (x) δRM (s) S]T DLN (x) RM (s) SdΩdΓ

=
∫

Γt×Γ

[N (x) δRM (s) S]T
 m∑
j=1

N (x) f jM (s) g
j

dΓdΓ

−
∫

Ω×Γ

[LN (x) δRM (s) S]T D
n∑
i=1

LN (x) FiM (s) GidΩdΓ (3.17)

Substituting the strain-displacement matrix B (x) = LN(x) the previous equation
becomes: ∫

Ω×Γ

[B (x) δRM (s) S]T DB (x) RM (s) SdΩdΓ

=
∫

Γt×Γ

[N (x) δRM (s) S]T
 m∑
j=1

N (x) f jM (s) g
j

dΓdΓ

−
∫

Ω×Γ

[B (x) δRM (s) S]T D
n∑
i=1

B (x) FiM (s) GidΩdΓ (3.18)

34

3.2. The load position as extra parameter of the problem

The spirit of the PGD method is to integrate each function on its proper domain, so
that equation (3.18) becomes:

ST

∫
Γ

MT (s) M (s) dΓ

SδRT

∫
Ω

BT (x) DB (x) dΩ

R

= δRT
m∑
j=1

∫
Γt

NT (x) N (x) dΓ

 f jST

∫
Γ

MT (s) M (s) dΓ

g
j

− δRT
n∑
i=1

∫
Ω

BT (x) DB (x) dΩ

FiST

∫
Γ

MT (s) M (s) dΓ

Gi (3.19)

The previous equation must hold for any δR:

ST

∫
Γ

MT (s) M (s) dΓ

S

∫
Ω

BT (x) DB (x) dΩ

R

=
m∑
j=1

∫
Γt

NT (x) N (x) dΓ

 f jST

∫
Γ

MT (s) M (s) dΓ

g
j

−
n∑
i=1

∫
Ω

BT (x) DB (x) dΩ

FiST

∫
Γ

MT (s) M (s) dΓ

Gi (3.20)

An equivalent expression of equation (3.20) is reproduced below:

STM2 (s) SK (x) R =
m∑
j=1

N2 (x) f jSTM2 (s) g
j

−
n∑
i=1

K (x) FiSTM2 (s) Gi (3.21)

Equation (3.21) shows an interesting similarity with the classical FE formulation
KU = P. In this case, the LHS shows a new stiffness matrix obtained from the
classical stiffness matrix K, using FEM, multiplied by a scalar value STM2 (s) S.
The RHS shows a new external load vector, which is different from the vector P in
the FEM, since it is obtained from two addends. In particular the second addend
consists of previously computed known terms of the PGD approximation. Note
that the PGD method applied to this particular parametric problem involves in
integrals depending on just one variable. For that the gain of less computational cost
is obtained.

35

3. Boundary conditions as extra problem dimension

3.2.2 Computation of S (s) assuming R (x) is known

Taking into account of equations (3.4), (3.5) and (3.10), the weak form of the problem
(equation (3.2)) becomes:

∫
Ω×Γ

[LR (x) δS (s)]T : D :
[
n∑
i=1

LFi (x)Gi (s) + LR (x)S (s)
]

dΩdΓ

=
∫

Γt×Γ

[R (x) δS (s)]T
 m∑
j=1

fj (x) gj (s)

dΓdΓ (3.22)

Moving all known terms to the RHS, equation (3.22) becomes:

∫
Ω×Γ

[LR (x) δS (s)]T : D : LR (x)S (s) dΩdΓ =
∫

Γt×Γ

[R(x)δS (s)]T
 n∑
j=1

fj (x) gj (s)

dΓdΓ

−
∫

Ω×Γ

[LR (x) δS (s)]T : D :
n∑
i=1

LFi (x)Gi (s) dΩdΓ (3.23)

Taking into account of equations (3.13), (3.14), (3.15) and (3.16), equation (3.23)
becomes: ∫

Ω×Γ

[LN (x) RM (s) δS]T DLN (x) RM (s) SdΩdΓ

=
∫

Γt×Γ

[N (x) RM (s) δS]T
 m∑
j=1

N (x) f jM (s) g
j

dΓdΓ

−
∫

Ω×Γ

[LN (x) RM (s) δS]T D
n∑
i=1

LN (x) FiM (s) GidΩdΓ (3.24)

Introducing the strain-displacement matrix B (x), equation (3.24) becomes:

∫
Ω×Γ

[B (x) RM (s) δS]T DB (x) RM (s) SdΩdΓ

=
∫

Γt×Γ

[N (x) RM (s) δS]T
 m∑
j=1

N (x) f jM (s) g
j

dΓdΓ

−
∫

Ω×Γ

[B (x) RM (s) δS]T D
n∑
i=1

B (x) FiM (s) GidΩdΓ (3.25)

36

3.3. Numerical integration: Gaussian quadrature rules

Splitting the integrals in equation (3.25) results in:

RT

∫
Ω

BT (x) DB (x) dΩ

RδST

∫
Γ

MT (s) M (s) dΓ

S

=
m∑
j=1

δST

∫
Γ

MT (s) M (s) dΓ

g
j
RT

∫
Γt

NT (x) N (x) dΓ

 f j

−
n∑
i=1

RT

∫
Ω

BT (x) DB (x) dΩ

FiδST

∫
Γ

MT (s) M (s) dΓ

Gi (3.26)

The previous equation must hold for any δS, so that we can write:

RT

∫
Ω

BT (x) DB (x) dΩ

R

∫
Γ

MT (s) M (s) dΓ

S

=
m∑
j=1

∫
Γ

MT (s) M (s) dΓ

g
j
RT

∫
Γt

NT (x) N (x) dΓ

 f j

−
n∑
i=1

RT

∫
Ω

BT (x) DB (x) dΩ

Fi

∫
Γ

MT (s) M (s) dΓ

Gi (3.27)

Equation (3.27) can be rewritten in a short form like:

RTK (x) RM2 (s) S =
m∑
j=1

M2 (s) g
j
RTN2 (x) f j

−
n∑
i=1

RTK (x) Fi ·M2 (s) Gi (3.28)

The previous equation needs some considerations. In the LHS the classic stiffness
matrix in the FEM K, with size ndof × ndof , is obtained. Then, we have to take into
account of another integral over Γ of the shape functions for the extra coordinate
called M2 of size ndof s × ndof s. The RHS has a similar expression of the LHS plus a
second addend takes into account of the source term in separated form.
The matrix N2 (x) f j has been built by considering a matrix ndof × ndof s in which
the no-vanishing entries are the corresponding degrees of freedom where the load
can be applied and their values are equal to the force magnitude. Note that in the
Matlab code shown in Appendix A, this matrix is called directly f .

3.3 Numerical integration: Gaussian quadrature rules
In order to perform the numerical integrations, the Gaussian quadrature rule has
been adopted. In particular, for the elements defining the load position domain,

37

3. Boundary conditions as extra problem dimension

a linear integration scheme is used with two Gauss points sg,i. Let considere a
general domain of integration [a, b]. The domain of integration for such a rule is
conventionally taken as [−1,+1]. Thus the interval of integration change in the
following way:

∫ b

a
f (x) dx = b− a

2

∫ 1

−1
f

(
b− a

2 x+ a+ b

2

)
dx (3.29)

Applying the Gaussian quadrature rule the integral involves in the following approxi-
mation: ∫ b

a
f (x) dx ≈ b− a

2

n∑
i=1

wgf

(
b− a

2 sg + a+ b

2

)
(3.30)

where the Gauss points sg and the weights wg are:

sg = [−0.57735, 0.57735] (3.31)
wg = [1, 1] (3.32)

3.4 Geometry

The cantilever beam, with heigth 1 m and lenght 3 m, is clamped at its left edge.
The finite element model has been built using GMSH is a free 3D finite element
generator with a built-in CAD engine and post-processor. Its goal is to provide a
parametric output which nodes and elements [7].

(a) (b)

Figure 3.1: (a) Linear triangular element, (b) Shape function N e
1 of a triangular

element.

The beam has been discretized using linear triangular elements. Figure 3.1 shows an
element and one of its shape functions. Each element has three nodes and each node
has two degrees of freedom, uxi in x direction and uyi in y direction with i = 1, 2, 3.
The shape functions used to discretize the solution are linear shape functions and
they are described using the Cartesian coordinates, an example of the first shape
function N e

1 is given in figure (3.1,b).
Figure (3.2) shows the discretized beam with 435 nodes, 788 elements and 848 degrees
of freedom.

38

3.5. Results

x

yy

x

Elements and nodes

zz

Figure 3.2: FE mesh of the beam.

3.5 Results
In this section, the results for both the off-line and on-line phase are presented. First
the outputs, the CPU time and the PGD convergence will be discussed. Second the
diplacements for varying load positions and comparisons with the FE solution will
be discussed.

3.5.1 Off-line phase results
Once the off-line phase code has been executed, the vademecum is obtained. The
load is applied at the vertical degrees of fredoom of the beam. The off-line phase
code is reproduced in Appendix A.
The PGD solution is given by equation (3.5). So that the PGD outputs in order to
obtain the meta model are two matrices. The first one is the matrix F that includes
all the spatial modes. The size of F is ndof × niter. The second one is the matrix G
that includes all the load modes. The size of G is ndof s × niter.
Figures 3.3 and 3.4 display some mechanical and load modes. In particular Fi and
Gi with i = 1, 2, 3, 10.
Table 3.1 shows the CPU times for the PGD method and the FE method using
StaBIL. The CPU time for the PGD method is referred to the time to find the
solution for one particular extra coordinate. The CPU time for the FE method has
been evaluated on the time to get the solutions u for any possible load positions. The
offline phase, for the PGD method, takes a bigger time than the online phase. The
interesting fact is that the CPU time for the FE implementation takes a bigger time
than the time requested for the PGD implementation. For that, the PGD method
demostrates its powerful, since the CPU time is reduced and in less time the user is
able to obtain several responses of the model. The laptop used is an ASUS F552C
with Processor Intel Core i7 3537U, memory of 4.0 GB and HDD 500 GB.

The load position problem has been studied considering an initialized vector S0 as a
random vector and as a vector with constant values. Considering S0 as a random
vector the number of iterations to reach the convergence is around 33-36 iterations
while considering a unit vector the number of iteration for the convergence is 31.

39

3. Boundary conditions as extra problem dimension

5 10 15 20 25 30

Nodes

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

V
e

rt
ic

a
l
d

is
p

la
c
e

m
e

n
ts

 [
m

]

5 10 15 20 25 30

Nodes

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

V
e

rt
ic

a
l
d

is
p

la
c
e

m
e

n
ts

 [
m

]

(a) (b)

5 10 15 20 25 30

Nodes

-4

-3

-2

-1

0

1

2

3

V
e

rt
ic

a
l
d

is
p

la
c
e

m
e

n
ts

 [
m

]

10-3

5 10 15 20 25 30

Nodes

-6

-4

-2

0

2

4

6

8

V
e

rt
ic

a
l
d

is
p

la
c
e

m
e

n
ts

 [
m

]

10-4

(c) (d)

Figure 3.3: Spatial modes: (a) Spatial mode F1, (b) Spatial mode F2, (c) Spatial
mode F3, (d) Spatial mode F10.

5 10 15 20 25 30

Node number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

G
(s

)

5 10 15 20 25 30

Node number

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

G
(s

)

(a) (b)

5 10 15 20 25 30

Node number

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

G
(s

)

5 10 15 20 25 30

Node number

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

G
(s

)

(c) (d)

Figure 3.4: Load modes: (a) Load mode G1, (b) Load mode G2, (c) Load mode
G3, (d) Load mode G10.

Table 3.1: CPU time: PGD method VS FE method
PGD CPU time FE CPU time
Offline 1.52 s -
Online 0.0003 s 0.04 s

The stopping criteria used for the enrichment step is defined by equation (1.2).
Figure 3.5 shows that it gives very good results in the load position problem since
the convergence is reached quickly.

40

3.5. Results

5 10 15 20 25 30 35 40

Number of iterations

0

0.2

0.4

0.6

0.8

1
E

r
r
o

r
s

Figure 3.5: Relative errors for varying iterations.

3.5.2 On-line phase results

Once the vademecum is obtained, the user in the on-line phase code is able to
choose the desidered position of the load clicking in any point of the beam surface.
Interactively, the user can play with the load position and see in real time the
beam deflection under a unit vertical load. The on-line phase code is reproduced in
Appendix A.
Figure 3.6 shows the two points on the top of the beam chosen by the user. The
chosen points are node 68 near the clamped end and node 46 near the free end. The
displacement has been evaluated in the node 2 at the bottom right corner.
The two deformed shapes releated to the two chosen points are represented in figure
3.7, the red one represents the beam configuration when the load is applied in node
68 while the blue one is the beam configuration when the load is applied in node 46.
Table 3.2 gives the vertical displacements in node 2 of two loaded points using
the PGD method and the FE method. These displacements for the PGD method
are obtained at convergence of the procedure. The table shows that the vertical

Figure 3.6: Example of two loaded points and evalutaion of the displacement in
the node 2.

41

3. Boundary conditions as extra problem dimension

x

yyyy

xxxzzzz

Figure 3.7: Deformed shapes due to the unit load. Note that the scaling is equal
for both deformations.

displacements in node 46 match in both methods. While there is a little difference
between the vertical displacements in node 68 and so far from the point where the
load is applied.

Table 3.2: Displacement of node 2 due the load applied in nodes 68 and 46.

Displacements [m]
PGD method FE method

Load position
Node Node 68 Node 46 Node 68 Node 46

2 -0.0058 -0.0927 -0.0061 -0.0927

Interesting considerations about the accuracy of the displacements can be done
considering the unit load applied at the node 3. The displacements are evaluated for
nodes 3 and 71 for varying iterations. Figure 3.8 shows the FE model considering
the loaded node (red indicator) and the two chosen nodes (blue) for the evaluation
of the displacements.

Figure 3.8: Beam loaded in node 3. Displacement evaluated in node 3 and 71.

Figure 3.8 shows some particular points chosen to check the validity of the PGD
method for varying iterations. For that, table 3.3 shows other interesting results. As

42

3.5. Results

expected, the accuracy of the displacements depends on the number of iterations. In
particular considering the load applied at the free end, we need more iterations to get
a better approximation of the displacement near the free end and so where the load
is applied and not near the clamped end. Indeed the solution by FEM is reached
at iteration 5 for the node 71 and at iteration 30 for the node 3. Obviously similar
considerations are valid if the load is applied in node 71. In that case, we need 30
iterations in node 71 to get a better displacements accuracy, while in node 3, the FE
solution is reached at iteration 5. The table shows only the vertical components of
the displacements in m.

Table 3.3: Accuracy displacements: PGD method VS FE method

Displacements PGD Displacements FEM
n. max iteration Node3 Node 71 Node 3 Node 71

3 -0.1145 -0.00095

-0.1193 -0.0011

5 -0.1161 -0.00098
10 -0.1177 -0.0011
20 -0.1188 -0.0011
25 -0.1191 -0.0011
30 -0.1193 -0.0011
50 -0.1193 -0.0011

43

Chapter

4
Material parameter as extra problem
dimension

4.1 Introduction
In this chapter the proper generalized decomposition method is applied to another
solid mechanics problem where the Poisson’s ratio is assumed as an extra parameter
of the problem. The Poisson’s ratio domain is assumed linear and discretized using
1D elements. After implementation the user is able to choose any Poisson’s value
digiting it on the keyboard and obtain in real time the deformed shape of the beam
considering the load acting on the top right corner (node 3). The Young’s modulus
is assumed with a value of E = 1000 Mpa.

4.2 The Poisson’s ratio as extra parameter of the problem
For this particular problem, the weak form of a linear elastic problem in continuum
solid mechanics is represented by the following formulation:∫

Ω×Iν

(Lδu)T : D : LudΩdIν =
∫

Γt×Iν

δuTt̄dΓdIν (4.1)

where Ω is the domain of the problem to be solved, subjected to Dirichlet boundary
contidions on a region Γu and Neumann boundary conditions with surface tractions
t on Γt, D the elastic constitutive matrix, ρ the material density and δu is any
virtual dispacement of the displacement field u that is compatible with the prescribed
boundary consitions.
Under the basic assumptions of the PGD method, assuming the Poisson’s ratio as
extra dimension in the problem, the solution of equation (4.1) depends on the spatial
variable x and Poisson’s ratio ν:

u (x, ν) =
n∑
i=1

Fi (x)Gi (ν) (4.2)

Now the problem is defined in the domain Ω× Iν . Where Iν is the range of values
for the Poisson’s ratio Iν ∈ [0; 0.5[.

45

4. Material parameter as extra problem dimension

If the rank-n approximation does not give the desired accuracy, we look for the
(n+ 1)-th term like:

un+1 (x, ν) = un (x, ν) + R (x)P (ν) (4.3)

where R(x) and P (ν) are the enrichment functions that improve the approximation.
The virtual displacement field δu is expressed with the following formulation:

δu (x, ν) = δR (x)P (ν) + R (x) δP (ν) (4.4)

The PGD method, applied to this particular problem, involves in two main steps
where the enrichment functions R (x) and P (ν) are determined iteratively with a
fixed-point algorithm:

1. The computation of R (x) assuming P (ν) is known
In this case the virtual displacement field becomes:

δu (x, ν) = δR(x)P (ν) (4.5)

2. The computation of P (ν) assuming R (x) is known
In this case the virtual displacement field becomes:

δu (x, ν) = R(x)δP (ν) (4.6)

These two steps should be repeated until convergence. The fixed algorithm point
has been used as stopping criterion. The iterative procedure stops when the norm of
the solution at iteration n and n− 1 is less than the TOL. Equation (1.2) shows the
stopping criterion formula.

4.2.1 Computation of R(x) assuming P (ν) is known

Using equations (4.2) and (4.5), the weak form of the problem (equation (4.1)) can
be written as:

∫
Ω×Iν

[LδR (x)P (ν)]T : D (ν) :
n∑
i=1

LFi (x)Gi (ν) + LR (x)P (ν) dΩdIν

=
∫

Γt×Iν

[δR (x)P (ν)]T t̄dΓdIν (4.7)

where operator L only affects functions of the spatial coordinates x and D is the
constitutive matrix.
Since the contribution of the first n modes are already available at this step, the

46

4.2. The Poisson’s ratio as extra parameter of the problem

known terms are moved to the RHS and equation (4.7) becomes:∫
Ω×Iν

[LδR (x)P (ν)]T : D : LR (x)P (ν) dΩdIν

=
∫

Γ×Iν

[δR (x)P (ν)]T t̄dΓdIν

−
∫

Ω×Iν

[LδR (x)P (ν)]T : D :
n∑
i=1

LFi (x)Gi (ν) dΩdIν (4.8)

The FE discretization of the PGD solution is:

un (x, ν) =
n∑
i=1

N (x) FiM (ν) Gi (4.9)

where Fi and Gi are the nodal values of the fuctions Fi (x) and Gi (ν) while N (x)
and M (ν) are the shape functions respectively of the spatial coordinates x and
Poisson’s ratio ν.
Instead the FE discretization for the enrichment terms is:

un+1 (x, ν) = un (x, ν) + N (x) RM (ν) P (4.10)

Take into account that the operator L only affects the spatial coordinates, the
displacement field at iteration n+ 1 is like:

Lun+1 = Lun + LR (x)P (ν)

=
n∑
i=1

LN (x) FiM (ν) Gi + LN (x) RM (ν) P

=
n∑
i=1

B (x) FiM (ν) Gi + B (x) RM (ν) P (4.11)

In a similar way:

Lδu = LδR (x)P (ν) + LR (x) δP (ν)
= LN (x) δRM (ν) P + LN (x) RM (ν) δP
= B (x) δRM (ν) P + B (x) RM (ν) δP (4.12)

The matrix structure of the problem is obtained considering equations (4.9), (4.10),
(4.11) and (4.12), so that equation (4.8) can be written as:∫

Ω×Iν

[LN (x) δRM (ν) P]T D (ν) LN (x) RM (ν) PdΩdIν

=
∫

Γt×Iν

[N (x) δRM (ν) P]T t̄dΓdIν

−
∫

Ω×Iν

[LN (x) δRM (ν) P]T D (ν)
n∑
i=1

LN (x) FiM (ν) GidΩdIν (4.13)

47

4. Material parameter as extra problem dimension

Substituing the strain-displacement matrix B(x) = LN(x) the previous equation
becomes: ∫

Ω×Iν

[B (x) δRM (ν) P]T D (ν) B (x) RM (ν) PdΩdIν

=
∫

Γt×Iν

[N (x) δRM (ν) P]T t̄dΓdIν

−
∫

Ω×Iν

[B (x) δRM (ν) P]T D (ν)
n∑
i=1

B (x) FiM (ν) GidΩdIν (4.14)

In the spirit of the PGD method, each function should be integrated over its proper
domain. In this particular PGD application, the function depending on ν should
be integrated over Iν and the functions depending on the spatial variable x over Ω.
Keeping in mind this, equation (4.14) becomes:

δRT
∫
Ω

BT (x) PT

∫
Iν

MT (ν) D (ν) M (ν) dIν

PB (x) dΩR

= δRT

PT
∫
Iν

MT (ν) dIν


∫

Γt

NT (x) t̄dΓ


− δRT

n∑
i=1

∫
Ω

BT (x)

∫
Iν

PTMT (ν) D (ν) M (ν) GidIν

B (x) FidΩ (4.15)

Equation (4.15) must hold for any δR:

∫
Ω

BT (x)

∫
Iν

PTMT (ν) D (ν) M (ν) PdIν

B (x) dΩR

= PT

∫
Iν

MT (ν) dIν


∫

Γt

NT (x) t̄dΓ


−

n∑
i=1

∫
Ω

BT (x)

∫
Iν

PTMT (ν) D (ν) M (ν) GidIν

B (x) FidΩ (4.16)

Equation (4.16) has a structure very similar to the one of the FE method. Indeed
the expression is similar to the FE equation KU = P but in this case the stiffness
matrix K is computed from a new and modified constitutive matrix D′ obtained
pre-multiplying and post-multiplying the original constitutive matrix D by the scalar
values PTMT(ν) and M(ν)P and integrating over Iν . The RHS has two terms. The
first one is derived from the numerical integration of the shape function M(ν) over

48

4.2. The Poisson’s ratio as extra parameter of the problem

Iν and the external load vector evaluated with the function of StaBil. The second
one has an expression similar to the LHS where Fi and Gi are determined at the
step n− 1. Equation (4.16) permits to solve the spatial vector R.

4.2.2 Computation of P (ν) assuming R(x) is known
Substituting equations (4.2) and (4.6) the weak form (equation (4.1)) becomes:∫

Ω×Iν

[LR (x) δP (ν)]T : D (ν) :
n∑
i=1

LFi (x)Gi (ν) + LR (x)P (ν) dΩdIν

=
∫

Γ×Iν

[R(x)δP (ν)]T t̄dΓdIν (4.17)

Moving all known terms to the RHS:∫
Ω×Iν

[LR (x) δP (ν)]T : D (ν) : LR (x)P (ν) dΩdIν

=
∫

Γt×Iν

[R (x) δP (ν)]T t̄dΓdIν

−
∫

Ω×Iν

[LR (x) δP (ν)]T : D (ν) :
n∑
i=1

LFi (x)Gi (ν) dΩdIν (4.18)

The matrix structure of the problem is obtained considering equations (4.9), (4.10),
(4.11) and (4.12), so that equation (4.18) becomes:∫

Ω×Iν

[LN (x) RM (ν) δP]T D (ν) LN (x) RM (ν) PdΩdIν

=
∫

Γt×Iν

[N (x) RM (ν) δP]T t̄dΓdIν

−
∫

Ω×Iν

[LN (x) RM (ν) δP]T D (ν)
n∑
i=1

LN (x) FiM (ν) GidΩdIν (4.19)

Introducing the strain-displacement matrix B(x) that includes the first derivative of
the shape function N(x), the previous equation becomes:∫

Ω×Iν

[B (x) RM (ν) δP]T D (ν) B (x) RM (ν) PdΩdIν

=
∫

Γt×Iν

[N (x) RM (ν) δP]T t̄dΓdIν

−
∫

Ω×Iν

[B (x) RM (ν) δP]T D (ν)
n∑
i=1

B (x) FiM (ν) GidΩdIν (4.20)

49

4. Material parameter as extra problem dimension

Splitting the integrals, equation (4.20) becomes:

δPT
∫
Iν

MT (ν) RT

∫
Ω

BT (x) D (ν) B (x) dΩ

RM (ν) dIνP

= δPT

∫
Iν

MT (ν) dIν

RT

∫
Γt

NT (x) t̄dΓ


− δPT

n∑
i=1

∫
Iν

MT (ν) RT

∫
Ω

BT (x) D (ν) B (x) dΩ

FiM (ν) GidIν (4.21)

Equation (4.21) must hold for any δP:

∫
Iν

MT (ν) RT

∫
Ω

BT (x) D (ν) B (x) dΩ

RM (ν) dIνP

=

∫
Iν

MT (ν) dIν

RT

∫
Γt

NT (x) t̄dΓ


−

n∑
i=1

∫
Iν

MT (ν) RT

∫
Ω

BT (x) D (ν) B (x) dΩ

FiM (ν) GidIν (4.22)

In a more elegant way, the previous equation can be written like:∫
Iν

MT (ν) RTK (ν) RM (ν) dIνP

=

∫
Iν

MT (ν) dIν

RT

∫
Γt

NT (x) t̄dΓ


−

n∑
i=1

∫
Iν

MT (ν) RTK (ν) FiM (ν) GidIν (4.23)

where the stiffness matrix K(ν) still depends on the Poisson’s ratio and for that, it
should be integrated numerically over the domain Iν . The RHS has two terms: the
first one derives from the numerical integration of the shape function M(ν) over Iν
and the external load vector evaluated with the function of StaBIL and the second
one has an expression similar to the LHS, with Fi and Gi determined at the step
n− 1. Note that these vectors are initialized as null vectors at the beginning and
determined iteratively step by step until convergence of the method. Finally, equation
(4.23) permits to solve the Poisson’s vector P. Note that the integral formulations
for the Poisson’s ratio problem are no longer separated as was the case for the load
position problem.

50

4.3. Implentation in Matlab: Gaussian quadrature rules

4.3 Implentation in Matlab: Gaussian quadrature rules
The implementation in Matlab has been performed with the Gaussian quadrature
rule. For more details refer to section 3.3.
In this section, the implentation in Matlab is presented. In particular the two
procedures adopted to perform the numerical integrations of equations (4.16) and
(4.22). The first intuitive procedure of integration leads to an extra approximation
of the numerical result since it uses a linear interpolations to evaluate functions at
Gauss points. The second procedure follows an interesting way to approach the
implementation. In particular the solution is given by separeted integrals where
each integral depends just on one variable. In order to do this, the constitutive
matrix D(ν) has been divided in a symmetric and anti-symmetric part [18]. Note
that the only difference between the two approaches is the computation of the LHS
and the second term of the RHS. Indeed the first term of the RHS is equal for both
approaches.

4.3.1 First approach of implementation
The first approach used, leads to the implementation of the two steps governing the
Poisson’s problem with a bigger CPU time. Basically, it is due to the principle in
which the numerical integrations of equations (4.16) and (4.23) are performed.

Computation of R(x) assuming P (ν) is known
Equation (4.16) should be implemented in order to find the spatial vector R.
The LHS of equation (4.16) leads to the computation of the stiffness matrix K that
comes from a new and modified constitutive matrix D′. The new constitutive matrix
is given by pre-multiplication and post-multiplication of each term Dij by a scalar
values obtained from PTMT (ν) and M (ν) P. So, its numerical integration, term by
term, involves in the following integration:∫

Iν

PTMT (ν) Dij (ν) M (ν) PdIν (4.24)

where Dij is the constitutive matrix element with i = 1 : 3 and j = 1 : 3.
In this spirit, the RHS of equation (4.16) has been performed as well. In this case
the first scalar value is given by PTMT (ν) and second by M (ν) Gi. The first
addend of the RHS is given by an integral of the shape function M (ν) over Iν and
the external load vector already available in StaBIL. In Appendix B, the Matlab
functions ke.plane3.m and ke.plane32.m permit to perform the described stiffness
matrix at element level.

Computation of P (ν) assuming R(x) is known
In order to find the Poisson’s vector P, equation (4.23) should be numerically
integrated. The LHS of equation (4.23) shows that the stiffness matrix K(ν) still

51

4. Material parameter as extra problem dimension

depends on the Poisson’s ratio. For that it should be integrated over the domain Iν .
As first attempt, the stiffnness matrix K(ν) has been evaluated for every Poisson’s
ratio. This operation leads to a 3D matrix, whose entries are ndof ν stiffness matrices.
After that, the term RTK(ν)R leads to a function of ν. It is described in figure 4.1,
where the spatial vector R is referred to the first iteration.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

I

0.114

0.115

0.116

0.117

0.118

0.119

0.12

0.121

0.122

0.123

R
'
*

K

(
)

*

R

Figure 4.1: Function RTK(ν)R

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

I

-8

-6

-4

-2

0

2

4

6

8

R
'
*

K

(
)

*

F

i

10-5

Figure 4.2: Function RTK(ν)F1

52

4.3. Implentation in Matlab: Gaussian quadrature rules

However the Gaussian quadrature rule leads to the evaluation of a function in the
Gauss points. For that, the function reproduced in figure 4.1, should be interpolated
in the Gauss points. A linear interpolation has been adopted. After interpolation,
the integral of the shape functions M(ν) over Iν is easy to compute.
In a similar way, the RHS of equation (4.23) has been approached. In this case, the
function obtained from the 3D stiffness matrix K(ν) is represented in figure 4.2. In
Appendix B, the Matlab functions used to perform the numerical integration with
the first approach are reproduced.

4.3.2 Second approach of implementation
The second approach to implement the PGD problem for the Poisson’s ratio is more
efficient and accurated than the first approach of integration. It respects the basic
idea of the PGD method that the integrals over each domain should be separated.
For that the computational cost is of the order of seconds instead of minutes.

Computation of R(x) assuming P (ν) is known
First the LHS of equation (4.16) should be integrated. It is a double integral where
the inner integral leads to a new constitutive matrix D′ while the outer integral is
over Ω and it leads to the stiffness matrix using a particular constitutive matrix.
In order to perfom this integral, the original constitutive matrix D is divided in two
new constitutive matrices D1 and D2, so that:

D = E

2(1− ν)D1 + E

2(1 + ν)D2 (4.25)

where E is the Young’s modulus and ν the Poisson’s ratio. These two new matrices
D1 and D2 are written like:

D1 =

1 1 0
1 1 0
0 0 0

 (4.26)

D2 =

 1 −1 0
−1 1 0
0 0 1

 (4.27)

In this way the two constitutive matrices D1 and D2 do not depend more on the
Poisson’s ratio ν. Taking into account of this separated constitutive matrix, the
stiffness matrix K can be derived automatically and it equals:

K =
∫

Ω
B(x)TD(ν)B(x)dΩ = E

2(1− ν)K1 + E

2(1 + ν)K2 (4.28)

where:

K1 =
∫

Ω
B(x)TD1B(x)dΩ (4.29)

K2 =
∫

Ω
B(x)TD2B(x)dΩ (4.30)

53

4. Material parameter as extra problem dimension

Under these considerations, equation (4.16) can be solved. In particular the inner
integral over Iν , that is the new constitutive matrix D′, becomes like:∫
Iν

PTMT (ν) D (ν) M (ν) PdIν

= D1

∫
Iν

E

2(1− ν)PTMT (ν) M (ν) PdIν + D2

∫
Iν

E

2(1 + ν)PTMT (ν) M (ν) PdIν

= D1ν
∗
1 + D2ν

∗
2 (4.31)

where the scalar values ν∗1 and ν∗2 are defined from the integral over Iν and they are:

ν∗1 =
∫
Iν

E

2(1− ν)PTMT (ν) M (ν) PdIν (4.32)

ν∗2 =
∫
Iν

E

2(1 + ν)PTMT (ν) M (ν) PdIν (4.33)

Introducing the new resulting constitutive matrix (4.31) into the LHS of equation
(4.16), the global stiffness matrix K is written like:

∫
Ω

BT (x)

∫
Iν

PTMT (ν) D (ν) M (ν) PdIν

B (x) dΩ

= ν∗1

∫
Ω

B(x)TD1B(x) + ν∗2

∫
Ω

B(x)TD2B(x)

= ν∗1K1 + ν∗2K2 (4.34)

In a similar way the numerical integration of the RHS of equation (4.16) has been
solved. In particular the second term looks like:

n∑
i=1

∫
Ω

BT (x)

∫
Iν

PTMT (ν) D (ν) M (ν) GidIν

B (x) FidΩ

=
n∑
i=1

[
ν∗1,iK1 + ν∗2,iK2

]
Fi (4.35)

where, in this case, the scalar values ν∗1,i and ν∗2,i are defined like:

ν∗1,i =
∫
Iν

E

2(1− ν)PTMT (ν) M (ν) GidIν (4.36)

ν∗2,i =
∫
Iν

E

2(1 + ν)PTMT (ν) M (ν) GidIν (4.37)

Note that with this interesting approach, the numerical integrations involve in
integrals depending on just one variable. In particular the stiffness matrices K1 and
K2 can be computed out from the enrichment step since they do not change during
the simulation. Indeed, it leads to a further reduced computational cost.

54

4.4. Geometry

Computation of P (ν) assuming R(x) is known
The computation of P (ν) has been perfomed taking into account the same considera-
tions regard the divided constitutive matrix D(ν). In particular the LHS of equation
(4.23) shows that the stiffness matrix K(ν) depends on the Poisson’s ratio ν, so that
it can be written in a separated form like:

K (ν) =
∫

Ω
B(x)TD(ν)B(x)dΩ = E

2(1− ν)K1 + E

2(1 + ν)K2 (4.38)

Considering equation (4.38), the LHS of equation (4.23) becomes:∫
Iν

MT (ν) RT E

2(1− ν)K1RM (ν) dIν +
∫
Iν

MT (ν) RT E

2(1 + ν)K2RM (ν) dIν

(4.39)

Including into integral over Iν only the variable depending on ν, the previous
formulation can be written like:

(RTK1R)
∫
Iν

E

2(1− ν)MT (ν) M (ν) dIν + (RTK2R)
∫
Iν

E

2(1 + ν)MT (ν) M (ν) dIν

(4.40)
The size of the LHS is ndof ν × ndof ν . Note that the terms RTK1R and RTK2R
give a scalar values.
In a similar way the RHS of equation (4.23) can be derived. Taking into account of
equation (4.38), the RHS becomes:

n∑
i=1

{
(RTK1Fi)

∫
Iν

E

2(1− ν)MT (ν) M (ν) dIν+(RTK2Fi)
∫
Iν

E

2(1 + ν)MT (ν) M (ν) dIν

}
Gi

(4.41)
Again, the terms RTK1Fi and RTK2Fi are scalar values. The size of the RHS is
ndof ν × 1.
In Appendix B the Matlab codes for the second approach of implementation are
shown.

4.4 Geometry
The FE model for the Poisson’s ratio problem is the same of the load position
problem, for more details refer to section 3.4.

4.5 Results
In this section the off-line phase results and the on-line phase results are illustrated.
First the outputs, the CPU time and the PGD convergence will be discussed. Second
the PGD diplacements for the Poisson’s ratio problem and comparisons with the FE
solution using StaBIL will be discussed.

55

4. Material parameter as extra problem dimension

4.5.1 Off-line phase results

The PGD solution is given by equation (4.2). So that the PGD outputs in order to
obtain the meta model are two matrices. The first one is the matrix F that includes
all the spatial modes. The size of F is ndof × niter. The second one is the matrix G
that includes all the Poisson’s modes. The size of G is ndof ν × niter. The off-line
phase code is reproduced in Appendix B.
Figure 4.3 shows the Poisson’s modes for i = 1, 2, 3, 8: in x- axis there is the FE
discretization of the Poisson’s ratio domain Iν and in y-axis the scalar values G(ν).
The PGD solution is given by multiplication of the spatial mode F(x) and the scalar
value G(ν) for each iteration. In particular the scalar value G(ν) at each iteration
depends on the chosen Poisson’s ratio. Figure 4.3 is referred to a Poisson’s ratio
domain discretized with 25 1D elements of length 0.02.
Particularly interesting is figure 4.4. It shows the convergence of the PGD method
for the Poisson’s ratio for varying iterations. The red line describes the convergence
using the first approach and the blue line the convergence using the second approach.

0 5 10 15 20 25

Node number

0.19

0.195

0.2

0.205

G
(

)

0 5 10 15 20 25

Node number

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

G
(

)

(a) (b)

0 5 10 15 20 25

Node number

-0.1

0

0.1

0.2

0.3

0.4

0.5

G
(

)

0 5 10 15 20 25

Node number

-0.2

0

0.2

0.4

0.6

0.8

1

G
(

)

(c) (d)

Figure 4.3: Poisson’s modes: (a) Poisson’s mode G1, (b) Poisson’s mode G2, (c)
Poisson’s mode G3, (d) Poisson’s mode G8.

56

4.5. Results

The convergence is reached at iteration 9 for the first approach and at iteration 8
for the second approach. It could depend on the scheme of integration adopted and
further also on the accuracy of the solution. Indeed, the inner integrals over Iν of
equation (4.16) have to be computed at each iteration, and so the PGD method
using the first approach needs more iterations to reach the convergence. Note that
the maximum number of iterations for the second approach does not depend on
the discretization of the Poisson’s ratio domain, in other words the convergence is
always reached with 8 iterations. In both cases, the convergence is reached quickly,
for that the fixed algorithm point is a good method to implement the PGD method.
The maximum number of iterations to reach the convergence does not depend on
the initial vector P0 if it is assumed as random or unit vector. There is a little
difference of error between the two approaches due to the linear interpolation adopted
to implement the formulations. Note that the number of elements used to discretized
the Poisson’s domain is 25, thus it is a quite dense mesh.
In order to check the convergence of the method a finer mesh has been adopted. In
particular the Poisson’s ratio domain has been discretized with 50 1D elements of
length 0.01. Considering this discretization, the method behaves in different way
as expected. The second approach of implementation leads to the same number of
iterations and the same global trend. Instead the first approach of implementation,
using a finer mesh, leads to 12 iterations to reach the convergence.

1 2 3 4 5 6 7 8 9 10

Number of iterations

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

r
r
o
r
s

First approach

Second approach

Figure 4.4: Relative errors using the first and the second approach of implementa-
tion.

Figure 4.5 shows the CPU time requested for each iteration using the first and the
second approach. In particular, it is possible to remark that the computational cost,
using the first approach, increases with the number of iterations (blue line) like the
second approach (red line) since at each subsequent iteration there are more terms
to improve the solution. The second approach leads to a lower computational cost
for varying iterations. Basically it is due to the principle in which the numerical

57

4. Material parameter as extra problem dimension

integration of the first approach is performed. In particular, in the first approach,
the stiffness matrix K computed from the modified constitutive matrix D′ should
be found at each iteration. Further the constitutive matrix D′ is computed term by
term and it is computationally expensive. Indeed the biggest computational time is
due to the computation of the spatial vector R, where the stiffness matrix computed
from the modified constitutive matrix takes several minutes. In particular the LHS
of equation (4.16) takes 2 minutes while the RHS takes 20 minutes in total. As
expected the RHS takes a bigger time since it takes into account of the enrichment
terms. Instead, the second approach computes the stiffness matrices K1 and K2 out
from the enrichment step. Further it solves just one dimensional integrals which is
computationally cheap. Finally, the second approach of implementation respects
completely the PGD idea.

1 2 3 4 5 6 7 8 9

Number of iteration

100

102

104

C
P

U

t
im

e

[
s
]

Figure 4.5: CPU time per iterations using the first and the second approach.

Table 4.1 shows some interesting results regarding the CPU time of the PGD method
and FE method. The CPU time has been evaluated considering the time that the
algorithm takes to find the solution for one particular Poisson’s value. Of course, the
CPU time for the FEM has been evaluated considering the time requested for all
possible Poisson’s ratio. For that, the CPU time for the FE program can be seen as
mix between the off-line and on-line phase. The time requested for the computation
of the off-line phase is higher than the time requested for the on-line phase. Note
that the only difference between the first and the second approach is the computation

Table 4.1: CPU time: PGD method VS FE method
PGD CPU time FEM CPU time

First approach Second approach -
Offline phase 45 min 0.58 s -
Online phase 0.0005 s 0.0005 s 0.025 s

58

4.5. Results

time of the off-line phase since the on-line phase code is the same for both approaches.
Further, there is a big difference between the CPU time requested for the on-line
phase and the CPU time of the FE program. Again important benefits, in term of
computation time, are remarked. The laptop used is an ASUS F552C with Processor
Intel Core i7 3537U, memory of 4.0 GB and HDD 500 GB.

4.5.2 On-line phase results
Once the off-line phase is executed, in the on-line phase the user is able to choose
and digit on the keyboard the desidered Poisson’s ratio ν within a range [0, 0.5[. The
on-line phase code is reproduced in Appendix B.
In this section the results of two different approaches of implementation are shown.
Table 4.2 shows the maximum displacements for several Poisson’s values obtained
using the PGD method and the FE method (StaBIL). Regard the PGD method, the
table shows the displacements found using the two approaches. The accuracy of the
displacements using the first approach is less than the accuracy of the displacements
using the second approach. This is due to the linear interpolation adopted to perfom
the numerical integration. Both procedures could be adopted as valid.

Table 4.2: Displacements for varying Poisson’s ratio: PGD method VS FE method.

Displacments [m]
PGD method FE method

Poisson’s ratio \nu First approach Second approach -
0.1 0.121584 0.121589 0.121732
0.15 0.121989 0.121997 0.122056
0.2 0.122218 0.122226 0.122328
0.25 0.122501 0.122509 0.122549
0.3 0.122649 0.122658 0.122719
0.35 0.122813 0.12282 0.12284
0.4 0.122907 0.122911 0.12291
0.45 0.122931 0.122929 0.122928

59

Chapter

5
Conclusions and future works

This thesis studied static structural mechanics problems applying reduced order
modelling techniques. In particular, the goal was to see the validity of the PGD
method and compare it with the FE method. The work has led to very interesting
results in terms of computational cost for instance. The extra dimensions of the
problem considered are the load position and Poisson’s ratio.

5.1 Conclusive remarks
The PGD approach introduces big advantage in terms of computational costs also
if the PGD scheme involves in an iterative procedure. Further, at the end of this
thesis, it has been seen that a coarse discretizations influences the computational
costs, as expected. In particular a finer mesh for the extra dimension requires higher
CPU time. For that the physical space discretization affects the results. Finally, a
finer mesh influences the accuracy of the displacements.
Thanks to the separated nature of the method, it is possible to solve a general
parametric problem for a large number of parameters as well, obtaining a global
reduced computational cost - offline and online phases - which is less than the
computational cost of the FE software. The results obtained underline the very
low computational costs required by the PGD method, which is a fundamental
requirement in the reduce order modelling (ROM) orientated to an offline-online
splitting of the algorithm. It allows the user, in the online phase, to choose any
extra dimension problem. Further, the low computational cost and the low storage
requirements to use the offline phase results on low performance devices.
In general, from the mathematical point of view, a lot of work needs to be done in
order to develop a tool to implement in a better way the PGD method. Since the
main goal of the PGD method is to reduce the computational costs and solve the
problem once, the mathematical formulation should be seen from a particular point of
view. In order to reduce the CPU time, the goal is to obtain just 1D integrals which
are much less expensive than the 2D integral and so on. It has been demostrated in
this thesis, where the second approach of implementation for the Poisson’s problem,
shows a very low computational cost. For that the authors should find a way to
derive formulations with integrals depending on one parameter. In other words, this

61

5. Conclusions and future works

idea respects the separated representation of the solution using the PGD method.
Thus, the solution is given by the numerical integration of several integrals which
are depending on just one variables.
The PGD method for the load position (chapter 3) leads just to integrals depending
on just one variable and so further mathematical treatments are not necessary.
Instead the final formulations of the PGD method for the Poisson’s ratio (chapter 4)
leads to a double integral which need to be splitted in order to obtain gain using the
PGD method. Finally, the more modes are obtained, the higher computational cost
will be.

5.2 Recommendations for further research
Both PGD applications presented in this thesis form a foundation for further research
developments, in particular for projects towards more complex scenario in structural
mechanics problems.
In this thesis the PGD method has been applied to static solid mechanics problems.
It could be interesting to implement the PGD method for static solid mechanics
problems considering as extra dimensions problem the material parameters such as
the Poisson’s ratio ν, the Young’s modulus E or the material density ρ. Further
it is possible to combine them with the extra mechanical parameters like the load
position or a prescribed settlement of the struture for instance. Obviously assuming
all these variables as extra parameters, the problem becomes more difficult from the
computational point of view. But at the same time, solving it with 1D integrals,
could be a very interesting application since every possible input defining the problem
can be particularized. Future work could be the PGD method applied to dynamics
problems where, for instance, the frequency ω or the initial condition u0 are the
extra dimension problem. In this case there is another additional variable that is the
time t.
The numerical integration has been performed with the standard Gaussian quadrature
rule and it could be more expensive than a more efficient quadrature rule like Gauss-
Lobatto. Further, the PGD scheme could be implemented using other high-efficiency
programming languages such as C/C++.

62

Bibliography

[1] Ammar, A., Mokdad, B., Chinesta, F., and Keunings, R. A new family of solvers
for some classes of multidimensional partial differential equations encountered
in kinetic theory modeling of complex fluids. Part II: transient simulation using
space-time separated representations, vol. 144. J. Non Newton. Fluid mech, 2007.

[2] Chinesta, F., Ammar, A., and Cueto, E. Recent advances in the use of the proper
generalized for solving multidimensional models. Archives of Computational
Methods in Engineering 17(4) (2010), 327–350.

[3] Chinesta, F., and Cueto, E. PGD-based modeling of materials, structures and
processes. Springer, Switzerland, 2014.

[4] Chinesta, F., Ladeveze, P., and Cueto, E. A short review on model order
reduction based on proper generalized decomposition. Archives of Computational
Methods in Engineering 18 (2011), 395–404.

[5] Cueto, E., Gonzlez, D., and Alfaro, I. Proper Generalized Decompositions: an
introduction to computer implementation with Matlab. Springer, 2015.

[6] De Roeck, G. The finite element method. KU Leuven, 2013.

[7] Geuzaine, C., and Remacle, J. A three-dimensional finite element mesh generator,
http://gmsh.info.

[8] Ghnations, C., Masson, F., Huerta, A., Leygue, A., Cueto, E., and Chinesta, F.
Proper generalized decomposition based dynamic data-driven control of thermal
processes. Computational Methods Applied Mechanical Engineering (2011).

[9] Giner, E., Bognet, B., Rodenas, J., Leygue, A., Fuenmayor, F., and Chinesta,
F. The proper generalized decomposition as a numerical procedure to solve
3d cracked plates in linear elastic fracture mechanics. Internatonal Journal of
Solids and Structures (2012).

[10] Laughlin, R., and Pines, D. The theory of everything., vol. 97. Proc. Natl. Acad.
Sci.), 2000.

63

Bibliography

[11] Modestp, D., Zlotnik, S., and Huerta, A. Proper generalized decomposition
for parameterized helmholtz problems in heterogeneous and unbounded do-
mains: application to harbour agitation. Laboratori de Clcul Numerc (LaCn),
Universitat Politcnica de Catalunya, Barcelona, Spain.

[12] Niroomandi, S., Gonzalez, D., Alfaro, I., Bordeu Weldt, B., and Leygue, A.
Real time simulation of biological soft tissues: a proper generalized decompo-
sition approach. International Journal for Numerical Methods in Biomedical
Engineering. (2017), 586–600.

[13] of Colorado, U. https://www.colorado.edu/engineering/cas/courses.d/ifem.

[14] of Zaragoza, U. http://amb.unizar.es/projects.

[15] Pric, S., and Rogers, Y. Let’s get physical: the learning benefits of interacting
in digitally augmented physical spaces., vol. 43. Comput. Educ., 2004.

[16] Quesada, C., Gonzlez, D., Alfaro, I., Cuedo, E., Huerta, A., and Chinesta, F.
Final report. dddas workshop at arlington. National Science Foundation (2006).

[17] Talbot, D. Given tablets but no teachers, ethiopian children teach themselves
(2012), http://www.technologyreview.com/news/506466/given-tablets-but-no-
teachers-ethiopian-children-teach-themselves.

[18] Xi, Z. Computational Mechanics and Advanced Materials. PhD thesis, Universi-
tat Politécnica de Catalunya, 10 2017.

64

Appendix

A
PGD code for load position

The off-line phase code is reproduced below. It solves the off-line phase for the
problem of a cantilever beam for varying load positions. The code provides the
solution under plane stress condition.

Listing A.1: Off-line phase code for the load position problem.
1 % MSc - KU Leuven - Faculty of Engineering Science

%
% Giuseppe D' Ettorre

4 % May 2018
%
% Proper Generalized Method applied

7 % to solid mechanincs problems
%
% Boundary conditions as extra problem dimension

10 % OFF -LINE PHASE
%
clear all; close all; clc;

13 %% 1. VARIABLES
E =1000;
Modulus =1;

16 TOL =1.0E -03;
num_max_iter =50;

19 %% 2. Load mesh file
[Nodes , Elements] = GMSHread ('beam ');
nNodes =size(Nodes);

22 nelem = size(Elements ,1);
triangles =[Elements (: ,2) Elements (: ,3) Elements (: ,4)];

25 %% 3. Define element types , sections and materials
% Plane stress or plane strain conditions
Options . problem ='stress '; % Options . problem ='strain ';

65

A. PGD code for load position

28 Types = {1 'plane3 ', Options };
Sections = [1];
% Materials = [MatID E nu rho];

31 Materials = [1 E 0.3 1];
ncoords =2* size(Nodes ,1); % spatial coordinates X-Y
Elements = [Elements (: ,1) ones(nelem ,3) Elements (: ,2: end)

];
34 Elements1 = [Elements (: ,5) Elements (: ,6) Elements (: ,7)];

%% 4. Plot FE mesh with node and element numbers
37 figure ;

plotnodes (Nodes ,'r','numbering ','off ');
hold on

40 plotelem (Nodes ,Elements ,Types ,'numbering ','off ');
title('Elements and nodes ');
axis equal

43
%% 5. Obtain degrees of freedom and specify boundary

conditions
DOF = getdof (Elements ,Types);

46 % Clamped boundary at x = 0
seldof = find(Nodes (: ,2) ==0);
DOF = removedof (DOF , seldof);

49 nDOF= length (DOF);

%% 6. Domain where the load can be applied : \I_s
52 X0 =0;

X1 =3;
tamX =0.1;

55 force=X0:tamX:X1;
coords2 =force '; % vector with the coordinates of the load

domain
ncoords2 =numel(coords2);

58
%% 7. Allocation of matrices and vectors
F=zeros(nDOF ,1); % Spatial vector

61 G=zeros(numel(force) ,1); % Load position vector
f=zeros(nDOF , ncoords2); % Nodal values for spatial

coords
g=eye(numel(force)); % Nodal values for load

64
%% 8. Assemble stiffness matrix , M2 matrix and N2 matrix
% Stiffness matrix K using the FEM: StaBil

67 [K,M] = asmkm(Nodes ,Elements ,Types ,Sections ,Materials ,DOF
);

66

% Matrix of linear shape functions to discretize the
extra - coordinate 's'

[M2] = M2(coords2);
70

%% 9. Force term in separated form
Node_top =[];

73 for i1 =1: length (Nodes)
if Nodes(i1 ,3) ==1
node_top =[i1];

76 Node_top =[Node_top ; node_top]; %Node where the load
can be applied : TOP of the beam

end
end

79
dof_top =[];
for i1 =1: numel(Node_top)

82 if i1 ==2
dof_top =[dof_top ;5]; % (The number 5 is a

simbolic number ! Just to identify that node !)
else

85 dof_top =[dof_top ;find(DOF (: ,1) ==(Node_top (i1 ,1)
+0.02))]; % Considering only the .02 dof for
nodes top

end
% Not taking into account of node 4 (clamped node)

indeed 30x1 and not 31x1 !
88 end

for i1 =1: numel(Node_top)
91 if i1 ==2

f(dof_top (i1),i1)=0;

94 else
f(dof_top (i1),i1)= - Modulus ; % I have -1 just

where the load can be applied (thus DOF_top)
end

97 end
f3=f(: ,1); % get the first column of 'f'
f4=f(: ,2);

100
f2 =[]; % get columns from 3 to 31
for i1 =3: numel(dof_top)

103 f2=[f2 , f(:,i1)];
end
f2= fliplr (f2);

67

A. PGD code for load position

106 f=[f4 ,f2 ,f3];

%% 10. Enrichment step: looking for R and S
109 num_iter =0;

iter=zeros (1);
Aprt =0;

112 Error_iter =1;

while Error_iter >TOL && num_iter < num_max_iter
115 num_iter = num_iter + 1;

S0=rand(numel(force) ,1); % random values for S

118 % Enrichment step
[R,S,iter(num_iter)] = enrichment_load (K,M2 ,f,g,S0 ,F

,G,num_iter ,TOL ,DOF);

121 F(:, num_iter)=R;
G(:, num_iter)=S;

124 % Stopping criterion
Error_iter =norm(F(:, num_iter)*G(:, num_iter) '); %

Evaluate the norm of the solution u=F*G
Aprt=max(Aprt ,sqrt(Error_iter));

127 Error_iter = sqrt(Error_iter)/Aprt;

% Plot PGD convergence :
130 Errors (:, num_iter)= Error_iter ;

fprintf (1,'%dst iteration with an error of %f\n',
num_iter , Error_iter);

133 end
num_iter =num_iter -1;
fprintf (1,'PGD off -line phase excuted normally \n\n');

136 save('Workspace_PGD_load_position_force .mat ');

The following code shows the on-line phase. Running it, the user is able to click
any point of the beam and obtain in real time the deformed shape of the beam under
an unit vertical load.

Listing A.2: On-line phase code for the load position problem.
1 % MSc - KU Leuven - Faculty of Engineering Science

%
% Giuseppe D' Ettorre

4 % May 2018
%

68

% Proper Generalized Method applied
7 % to solid mechanincs problems

%
% Boundary conditions as extra problem dimension

10 % ON -LINE PHASE
%
clear all; close all; clc;

13 load('Workspace_PGD_load_position_force .mat ');

%% 1. Online phase : choose the load position on the beam
surface with a click

16 fprintf (1,'PGD on -line phase ... ')
fprintf (1,'\n\ nSelect the load position on the beam

surface \n\n ');
fprintf (1,'\n\n otherwise pick out of the beam to exit !\n

\n');
19 h1 = figure (1);

figure ;
plotnodes (Nodes ,'r','numbering ','off ')

22 hold on
plotelem (Nodes ,Elements ,Types ,'numbering ','off ');
axis equal;

25
[Cx ,Cy]= ginput (1); % Waiting for a click on the beam
lim= 0.1/(X1 -X0); % Exit zone out of the beam

28 Y0 =0;
Y1 =1;

31 while X0 -lim <=Cx && Cx <=X1+lim && Y0 -lim <=Cy && Cy <=Y1+
lim

h1= figure (1);
plotelem (Nodes ,Elements ,Types ,'numbering ','off ');

34 axis equal;
Posforce =find(force <Cx ,1,'last '); %Look for the

closest loaded node

37 % Evaluation of the solution choosing the selected
node in G vector

desp=zeros(numel(DOF) ,1);
desp=F*G(Posforce ,:) .';

40
% Plotting the solution
plotdisp (Nodes ,Elements ,Types ,DOF ,desp ,'dispscal ' ,5)

% StaBil !
43

69

A. PGD code for load position

title('Vertical displacement [m]: Select the force
position on the top of the beam or pick out to
exit ... ');

view (2);
46 figure (1); axis equal;

[Cx ,Cy]= ginput (1); % Waiting for new load position ...
end

49 fprintf (1,'\n\n _____End of simulation_____ \n\n');

The enrichment function is illustrated below. It permits to find iteratively the
two enrichment functions R and S.

Listing A.3: Matlab code for the enrichment function.
function [R,S,iter] = enrichment_load (K,M2 ,f,g,S0 ,F,G,

num_iter ,TOL ,DOF)
2 %

% Computes a new sumand by a fixed point algorithm
using PGD

% function [R,S,iter] = enrichment (K,M2 ,S0 ,F,G,f,g,
num_iter ,TOL ,DOF ,nDOF , ncoords2)

5 % returns the enrichment functions R and S
%
% K Global stiffness matrix (DOF * DOF)

8 % M2 Integral over the load domain of M(s)'M(s
) (DOF_s * DOF_s)

% f Nodal values for the spatial coordinates
(DOF * 1)

% g Nodal values for the extra coordinates (
DOF_s * 1)

11 % S0 Random vector to initialise the procedure
(DOF_s * 1)

% F Spatial or mechanical vector (DOF * 1)
% G Load vector (DOF_s * 1)

14 % num_iter Number of iteration (1 * 1)
% TOL Tolerance (1 * 1)
% DOF Degrees of freedom (nDOF * 1)

17 %
% Giuseppe D' Ettorre 2018

20 R=zeros(size(F ,1) ,1);
R0=R;
h=size(M2 ,2);

23 ExitFlag =1;
iter =0;
mxit =25;

70

26 nDOF=size(DOF ,1);
ncoords2 =size(G ,1);

29 while ExitFlag >TOL
%% Looking for R(x) , assuming S(s) known

32 % Computation of LHS equation (3.21)
matrixR = (S0 '*M2*S0)*K;

35 % Computation of RHS equation (3.21)
sourceR =zeros(nDOF ,1);
for k1 =1:h

38 sourceR = sourceR + (f(:,k1))*(S0 '*M2*g(:,k1));
end
for i1 =1: num_iter -1

41 sourceR = sourceR - K*F(:,i1)*(S0 '*M2*G(:,i1));
end

44 % Now I can solve R:
R = matrixR \ sourceR ;

47 %% Looking for S assuming R known

% Computation of LHS equation (3.28)
50 matrixS =(R '*K*R)*M2;

% Computation of RHS equation (3.28)
53 sourceS =zeros(ncoords2 ,1);

for k1 =1:h
sourceS = sourceS + (M2*g(:,k1))*(R '*f(:,k1));

56 end
for i1 =1: num_iter -1

sourceS = sourceS - (R '*K*F(:,i1))*(M2*G(:,i1));
59 end

% Now I can solve S:
62 S = matrixS \ sourceS ;

S = S./ norm(S);

65 %% Stopping criterion :
error=max(abs(sum(R0 -R)),abs(sum(S0 -S)));
R0=R;

68 S0=S;
iter=iter +1;
if iter >mxit || abs(error)<TOL

71

A. PGD code for load position

71 return
end

end
74 return

In the load position problem, the only extra function nedeed is the function M2
reproduced below. It is the integral over Γ of the product of the shape functions
M(s).

Listing A.4: Matlab code for the function M2.
function [M2] = M2(coords2)
%

3 % function [M2] = M2(coords2) performs the numerical
integration of M(s)'M(s)

%
% M2 Integral over the load domain of M(s)'M(s

) (DOF_s * DOF_s)
6 % coords2 Load domain (DOF_s * 1)

%
% Giuseppe D' Ettorre 2018

9
sg = [-0.57735 0.57735];
wg = ones (2 ,1);

12 npg = numel(sg);
ncoords_2 = numel(coords2); % # coords of 's'

15 M2 = zeros(ncoords_2);

% Coordinates of elements
18 X2 = coords2 (1: ncoords_2 -1) ';

Y2 = coords2 (2: ncoords_2) ';
L2 = Y2 - X2;

21
for i1 =1: ncoords_2 -1

w=zeros (1, npg);
24 M=zeros(ncoords_2 ,npg);

w(1 ,:) = 0.5.*(1.0 - sg).*X2(i1) + 0.5.*(1.0+ sg).*Y2(i1
);

27 M(i1 +1 ,:) = (w(1 ,:) -X2(i1))./L2(i1);
M(i1 ,:) = (Y2(i1)-w(1 ,:))./L2(i1);

30 for j1 =1: npg
M2 = M2 + M(:,j1)*M(:,j1) '*0.5.* wg(j1).*L2(i1); %

int M '(s)M(s) \d_I_s

72

end
33 end

return

73

Appendix

B
PGD code for Poisson’s ratio

In this appendix, the two approaches described in the section 4.3 are reproduced.

B.1 First approach of implementation
The off-line phase code is reproduced below. It leads to the vademecuum that
includes all the possible solution of the problem.

Listing B.1: Off-line phase code for the Poisson’s ratio problem (first approach).
1 % MSc - KU Leuven - Faculty of Engineering Science

%
% Giuseppe D' Ettorre

4 % May 2018
%
% Proper Generalized Method applied to solid mechanincs

problems
7 %

% Material parameters as extra problem dimension
% OFF -LINE PHASE

10 % First approach of implementation

clear all; close all; clc;
13

%% 1. VARIABLES
E =1000;

16 TOL =1.0E -03;
num_max_iter =10;

19 %% 2. Load mesh file
[Nodes , Elements] = GMSHread ('beam ');
nNodes =size(Nodes);

22 nelem = size(Elements ,1);
triangles =[Elements (: ,2) Elements (: ,3) Elements (: ,4)];

75

B. PGD code for Poisson’s ratio

25 %% 3. Define element types , sections and materials
% Plane stress or plane strain conditions
Options . problem ='stress '; % Options . problem ='strain ';

28 Types = {1 'plane3 ', Options % Element to compute
K_nu LHS equation (4.16)

2 'plane32 ', Options }; % Element to compute K2
equation (4.16)

31 Sections = [1];

% Poisson 's ratio domain
34 I_nu =0:0.02:0.499;

ncoords_nu =numel(I_nu);
ncoords =2* size(Nodes ,1); % spatial coordinates X-Y

37 Elements = [Elements (: ,1) ones(nelem ,3) Elements (: ,2: end)
];

Elements1 = [Elements (: ,5) Elements (: ,6) Elements (: ,7)];
% Only vertices

40 Materials1 =[];
for i1 =1: ncoords_nu

Materials1 =[Materials1 ; 1 E I_nu(i1) 1];
43 end

46 %% 4. Plot FE mesh with node and element numbers
figure ;
plotnodes (Nodes ,'r','numbering ','off ')

49 hold on
plotelem (Nodes ,Elements ,Types ,'numbering ','off ');
title('Elements and nodes ');

52 axis equal

%% 5. Obtain degrees of freedom and specify boundary
conditions

55 DOF = getdof (Elements ,Types);
% Clamped boundary at x = 0
seldof = find(Nodes (: ,2) ==0);

58 DOF = removedof (DOF , seldof);
nDOF = length (DOF);

61 %% 6. Define loading
P_load = nodalvalues (DOF ,3.02 , -1); % vector with 1 at node

where the load is applied

76

B.1. First approach of implementation

64 %% 7. Allocation of vectors
F=zeros(nDOF ,1); % vector nodal values spatial coords
G=zeros(numel(I_nu) ,1); % vector nodal values Poisson 's

ratio
67

%% 8. Matrix M1
% Matrix of linear shape functions M and (int M)=M1

70 [M1] = M1(I_nu);
% Sizes matrices M and M1 : 1 x Ndof_nu
M1=M1 ';

73

%% 10. Enrichment step: looking for R and P
76 num_iter =0;

iter=zeros (1);
Aprt =0;

79 Error_iter =1;

Types1 = {1 'plane3 ', Options % Element to compute
K_nu LHS equation (4.16)

82 1 'plane32 ', Options % Element to compute K2
RHS equation (4.16)

1 'plane33 ', Options }; % Element to compute
matrixP equation (4.23)

85
% Computation LHS equation (4.23) --> I get a 3D matrix

K3=zeros(nDOF ,nDOF , ncoords_nu);
88

for i1 =1: ncoords_nu
Materials = Materials1 (i1 ,:);

91 Types= Types1 (3 ,:); % plane33_element
K3(:,:,i1) = asmK3(Nodes ,Elements ,Types ,Sections ,

Materials ,DOF ,I_nu);
end

94
while Error_iter >TOL && num_iter < num_max_iter

num_iter = num_iter + 1;
97

P0=ones(ncoords_nu ,1);

100 % Enrichment step
[R,P,iter(num_iter)] = enrichment (K3 ,P_load ,M1 ,P0 ,F,

G,num_iter ,TOL ,DOF ,I_nu ,Nodes ,Elements ,Types1 ,

77

B. PGD code for Poisson’s ratio

Sections ,Materials , Materials1);

103 F(:, num_iter)=R; % F=R - spatial coord
G(:, num_iter)=P; % G=P - extra coord - Poisson 's

ratio

106 % Stopping criterion
Error_iter =norm(F(:, num_iter)*G(:, num_iter) '); %

Evaluate the norm of the solution u=F*G
Aprt=max(Aprt ,sqrt(Error_iter));

109 Error_iter = sqrt(Error_iter)/Aprt;

% Plot PGD convergence :
112 Errors (:, num_iter)= Error_iter ;

fprintf (1,'%dst iteration with an error of %f\n',
num_iter , Error_iter);

115
end
num_iter =num_iter -1;

118 fprintf (1,'PGD off -line phase exited normally \n\n');
save('Workspace_PGD_Poisson_ratio_first_approach .mat ');

The following code shows the on-line phase. Running it, the user is able to digit on
the keyboard the desidered Poisson’s ratio and get in real time the beam configuration
under unit load applied at node 3.

Listing B.2: On-line phase code for the Poisson’s ratio problem (first approach).
% MSc - KU Leuven - Faculty of Engineering Science
%

3 % Giuseppe D' Ettorre
% May 2018
%

6 % Proper Generalized Method applied to solid mechanincs
problems

%
% Material parameter as extra problem dimension

9 % ON -LINE PHASE
% First approach of implementation
tic

12 clear all; close all; clc;

%% 1. Online phase: digit the Poisson 's ratio on the
keyboard . . .

15 load('Workspace_PGD_Poisson_ratio_first_approach ');

78

B.1. First approach of implementation

fprintf (1,'PGD on -line phase ...\n\n');
18 fprintf (1,'\n\ nDigit on the keyboard the Poissons ratio

between the range [0;0.5[\n\n');
nu=input('\n\n nu = \n\n');

21 lim =0.005; % Exit zone out of the Poisson 's ratio range
nu0=I_nu (1 ,1);
nu1=I_nu (1, ncoords_nu);

24
while nu0 -lim <=nu && nu <= nu1+lim

nu_chosen =find(I_nu <nu ,1,'last '); %Look for the
closest Poisson value

27 % Evaluation of the solution choosing the selected
node in G vector

desp=zeros(nDOF ,1);
desp=F*G(nu_chosen ,:) .';

30
% Plotting the solution

plotdisp (Nodes ,Elements ,{1 'plane3 '},DOF ,desp ,'
dispscal ' ,1) % StaBil !

33 title('Vertical displacement [m]');

nu=input('\n\n nu = \n\n'); % New Poisson ratio ...
36 end

toc
fprintf (1,'\n\n-------- End of simulation --------\n\n')

;

The LHS of equation (4.16) is computed using a linear triangular elements, in StaBIL
ke.plane3.m. The stiffness matrix at element level, is computed using a modified
constitutive matrix called in the Matlab code D1. The element stiffness matrices
are assembled in the function of StaBIL asmKν .m.

Listing B.3: Element stiffness matrix used to compute the LHS of equation (4.16).

1 function [Ke ,Me]= ke_plane3 (Node ,Section ,Material ,Options ,
I_nu ,P0)

%
% KE_PLANE3 Plane 3 element (CST) stiffness matrix

4 % computes from a modified constitutive
matrix D1.

%
% [Ke]= ke_plane3 (Node ,Section ,Material ,Options ,I_nu ,P0)

returns the element

79

B. PGD code for Poisson’s ratio

7 % stiffness in the global coordinate system for a 3-
node plane CST element .

%
% Node Node definitions [x y z] (3 * 3)

10 % Material Material definition [E nu rho]
% Options Element options { Option1

Option2 ...}:
% 'planestress ' (

default)
13 % 'axisym '

% 'planestrain '
% I_nu Poisson 's domain (1 * DOF_nu)

16 % P0 Random vector to initialise the procedure
(DOF_nu * 1)

% MATERIAL PROPERTIES
19 E= Material (1);

% Constitutive matrix
22 switch lower(Options . problem)

case 'stress ' % PLANE STRESS
sg = [-0.57735 0.57735];

25 wg = [1 1];
ngp=numel(sg);
ncoords_nu =numel(I_nu);

28 nu1=I_nu (1: ncoords_nu -1) ';
nu2=I_nu (2: ncoords_nu) ';
L=nu2 -nu1;

31 D1=zeros (3 ,3);

for iD = 1:9
34 T=zeros(ncoords_nu);

D=zeros (1 ,1);
for i1 =1: ncoords_nu -1

37 w=zeros (1, ngp);
w(1 ,:) =0.5.*(1 - sg).* nu1(i1) + 0.5.*(1+ sg).* nu2(i1

);
M=zeros (2, ngp);

40 M(1 ,:) =(nu2(i1)-w(1 ,:))./L(i1);
M(2 ,:) =(w(1 ,:) -nu1(i1))./L(i1);
for j1 =1: ngp

43 Dt = E/(1-w(:,j1)^2) *[1 w(:,j1) 0;
w(:,j1) 1 0;
0 0 (1-w(:,j1))/2];

46 D(j1 ,j1) = Dt(iD);

80

B.1. First approach of implementation

end
T(i1:i1+1,i1:i1 +1) = T(i1:i1+1,i1:i1 +1) + M.'*(D*

diag(wg))*M*0.5*L(i1);
49 end

D1(iD) = P0.'*T*P0;
end

52 end

% Triangle shape function
55 X=Node (: ,1);

Y=Node (: ,2);
b1=Y(2) -Y(3); b2=Y(3) -Y(1); b3=Y(1) -Y(2);

58 c1=X(3) -X(2); c2=X(1) -X(3); c3=X(2) -X(1);

% Element area
61 Delta =0.5* det ([1 X(1) Y(1)

1 X(2) Y(2)
1 X(3) Y(3)]);

64
% Shape function derivatives
Be =1/(2* Delta)*[b1 0 b2 0 b3 0

67 0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3];

70 % Stiffness matrix
Ke=Delta*Be.'*D1*Be;

73 % Mass matrix
if nargout >1

Me =1/3* rho*Delta*eye (6);
76 end

return

In a similar way, the RHS of equation(4.16) is computed. In this case the triangular
element used is called in StaBIL ke.plane32.m. The element stiffness matrices are
assembled with the function of StaBIL asmK2.m.

Listing B.4: Element stiffness matrix used to compute the RHS of equation (4.16).
1 function [Ke ,Me]= ke_plane32 (Node ,Section ,Material ,Options

,I_nu ,P0 ,G)
%
% KE_PLANE32 Plane 32 element (CST) stiffness matrix

4 % computes from a modified constitutive
matrix D1.

%

81

B. PGD code for Poisson’s ratio

% [Ke]= ke_plane32 (Node ,Section ,Material ,Options ,I_nu ,P0
) returns the element

7 % stiffness in the global coordinate system for a 3-
node plane CST element .

%
% Node Node definitions [x y z] (3 * 3)

10 % Material Material definition [E nu rho]
% Options Element options { Option1

Option2 ...}:
% 'planestress ' (

default)
13 % 'axisym '

% 'planestrain '
% I_nu Poisson 's domain (1 * DOF_nu)

16 % P0 Random vector to initialise the procedure
(DOF_nu * 1)

% G Poisson vector (DOF_nu * 1)

19 % MATERIAL PROPERTIES
E= Material (1);
if (nargout >1) , rho= Material (1 ,3); end

22

% Computation of the new constitutive matrix
25 switch lower(Options . problem)

case 'stress ' % PLANE STRESS
sg =[-0.57735 0.57735];

28 wg =[1 1];
ngp=numel(sg);
ncoords_nu =numel(I_nu);

31 nu1=I_nu (1: ncoords_nu -1) ';
nu2=I_nu (2: ncoords_nu) ';
L=nu2 -nu1;

34 D1=zeros (3 ,3);

D1=zeros (3 ,3);
37 for iD = 1:9

T=zeros(ncoords_nu);
D=zeros (1 ,1);

40 for i1 =1: ncoords_nu -1
w=zeros (1, ngp);
w(1 ,:) =0.5.*(1 - sg).* nu1(i1) + 0.5.*(1+ sg).* nu2(i1

);
43 M=zeros (2, ngp);

M(1 ,:) =(nu2(i1)-w(1 ,:))./L(i1);

82

B.1. First approach of implementation

M(2 ,:) =(w(1 ,:) -nu1(i1))./L(i1);
46 for j1 =1: ngp

Dt = E/(1-w(:,j1)^2) *[1 w(:,j1) 0;
w(:,j1) 1 0;

49 0 0 (1-w(:,j1))/2];
D(j1 ,j1) = Dt(iD);

end
52 T(i1:i1+1,i1:i1 +1) = T(i1:i1+1,i1:i1 +1) + M

. '*(D*diag(wg))*M*0.5*L(i1);
end
D1(iD) = P0.'*T*G;

55 end
end

58 % Triangle shape function
X=Node (: ,1);
Y=Node (: ,2);

61 b1=Y(2) -Y(3); b2=Y(3) -Y(1); b3=Y(1) -Y(2);
c1=X(3) -X(2); c2=X(1) -X(3); c3=X(2) -X(1);

64 % Element area
Delta =0.5* det ([1 X(1) Y(1)

1 X(2) Y(2)
67 1 X(3) Y(3)]);

% Shape function derivatives
70 Be =1/(2* Delta)*[b1 0 b2 0 b3 0

0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3];

73
% Stiffness matrix
Ke=Delta*Be.'*D1*Be;

76
% Mass matrix
if nargout >1

79 Me =1/3* rho*Delta*eye (6);
end
return

The LHS of equation (4.23), called in Matlab matrixP1.m, is reproduced below.

Listing B.5: LHS of equation (4.23).

1 function [matrixP]= matrixP1 (K3 ,R,I_nu)
%

83

B. PGD code for Poisson’s ratio

% function [matrixP]= matrixP1 (K3 ,R,I_nu) computes the LHS
of equation

4 % (4.23)
%
% K3 Global 3D stiffness matrix for every

Poisson 's value of I_nu (DOF * DOF)
7 % R Spatial or mechanical vector (DOF * 1)

% I_nu Poisson 's domain (1 * DOF_nu)
%

10 % matrixP (DOF_nu * DOF_nu)

13 sg =[-0.57735 0.57735];
wg =[1 1];
ngp=numel(sg);

16 ncoords_nu =numel(I_nu);
nu1=I_nu (1: ncoords_nu -1) ';
nu2=I_nu (2: ncoords_nu) ';

19 L=nu2 -nu1;
matrixP =zeros(ncoords_nu , ncoords_nu);
matrix =zeros(ncoords_nu ,1);

22
%% Computation of R '*K(\nu)*R
for j1 =1: ncoords_nu

25 matrix (j1 ,:)=R '*K3(:,:,j1)*R;
end

28 for i1 =1: ncoords_nu -1
w=zeros (1, ngp);
y=zeros (1, ngp);

31 M=zeros(ncoords_nu ,ngp);
w(1 ,:) =0.5.*(1 - sg).* nu1(i1) + 0.5.*(1+ sg).* nu2(i1);
M(i1 +1 ,:) =(w(1 ,:) -nu1(i1))./L(i1);

34 M(i1 ,:) =(nu2(i1)-w(1 ,:))./L(i1);

% Linear interpolation to find the value of R'*K(\nu)
*R in the Gauss points

37 y(1 ,:) = matrix (i1) + (w(1 ,:) -nu1(i1))*((matrix (i1 +1)
-matrix (i1))/(nu2(i1)-nu1(i1)));

for j1 =1: ngp
40 matrixP = matrixP + M(:,j1)*y(:,j1)*M(:,j1) '*wg(

j1)*0.5*L(i1); % y is a single value!
end

end

84

B.1. First approach of implementation

43 return

The RHS of equation (4.23), called in Matlab sourceP1.m, is reproduced below.

Listing B.6: RHS of equation (4.23).

function [sourceP]= sourceP1 (I_nu ,F,K3 ,R)
2 %

% function [sourceP]= sourceP1 (I_nu ,F,K3 ,R) computes the
RHS of equation

% (4.23)
5 %

% K3 Global 3D stiffness matrix for every
Poisson 's value of I_nu (DOF * DOF)

% R Enrichment function for the spatial or
mechanical vector (DOF * 1)

8 % F Spatial or mechanical vector (DOF * 1)
% I_nu Poisson 's domain (1 * DOF_nu)
%

11 % soruceP (DOF_nu * 1)

14 sg =[-0.57735 0.57735];
wg =[1 1];
ngp=numel(sg);

17 ncoords_nu =numel(I_nu);
nu1=I_nu (1: ncoords_nu -1) ';
nu2=I_nu (2: ncoords_nu) ';

20 L=nu2 -nu1;
sourceP =zeros(ncoords_nu , ncoords_nu);
source =zeros (1, ncoords_nu);

23
%% Computation of R '*K(\nu)*F
for j1 =1: ncoords_nu

26 source (:,j1)=R '*K3(:,:,j1)*F;
end

29 for i1 =1: ncoords_nu -1
w=zeros (1, ngp);
y=zeros (1, ngp);

32 M=zeros(ncoords_nu ,ngp);
w(1 ,:) =0.5.*(1 - sg).* nu1(i1) + 0.5.*(1+ sg).* nu2(i1);

35 % Linear interpolation to find the value of R'*K(\nu)
*R in the Gauss points

85

B. PGD code for Poisson’s ratio

y(1 ,:) = source (i1) + (w(1 ,:) -nu1(i1))*((source (i1 +1)
-source (i1))/(nu2(i1)-nu1(i1)));

M(i1 +1 ,:) =(w(1 ,:) -nu1(i1))./L(i1);
38 M(i1 ,:) =(nu2(i1)-w(1 ,:))./L(i1);

for j1 =1: ngp
41 sourceP = sourceP + M(:,j1)*y(:,j1)*M(:,j1) '.*wg(j1)

.*0.5* L(i1);
end

end
44 return

B.2 Second approach of implementation
The off-line phase code is reproduced below. It leads to the vademecum that
includes all the possible solution of the problem.

Listing B.7: Off-line phase code for the Poisson’s ratio problem (second approach).
1 % MSc - KU Leuven - Faculty of Engineering Science

%
% Giuseppe D' Ettorre

4 % May 2018
%
% Proper Generalized Method applied

7 % to solid mechanincs problems
%
% Material parameters as extra problem dimension

10 % OFF -LINE PHASE
%
clear all; close all; clc;

13 %% 1. VARIABLES
E =1000;
TOL =1.0E -03;

16 num_max_iter =50;

%% 2. Load mesh file
19 [Nodes , Elements] = GMSHread ('beam ');

nNodes =size(Nodes);
nelem = size(Elements ,1);

22 triangles =[Elements (: ,2) Elements (: ,3) Elements (: ,4)];

%% 3. Define element types , sections and materials
25 % Plane stress or plane strain conditions

Options . problem ='stress '; % Options . problem ='strain ';

86

B.2. Second approach of implementation

Types = {1 'plane1 ', Options % Triangular element to
compute K1 using D1

28 2 'plane2 ', Options }; % Triangular element to
compute K2 using D2

Sections = [1];

31 % Poisson 's ratio domain
I_nu =0:0.02:0.499;
ncoords_nu =numel(I_nu);

34 ncoords =2* size(Nodes ,1); % spatial coordinates X-Y
Elements = [Elements (: ,1) ones(nelem ,3) Elements (: ,2: end)

];
Elements1 = [Elements (: ,5) Elements (: ,6) Elements (: ,7)];

% Only vertices
37 Materials =[1 E 0 1];

%% 4. Plot FE mesh with node and element numbers
40 figure ;

plotnodes (Nodes ,'r','numbering ','off ')
hold on

43 plotelem (Nodes ,Elements ,Types ,'numbering ','off ');
title('Elements and nodes ');
axis equal

46
%% 5. Obtain degrees of freedom and specify boundary

conditions
DOF = getdof (Elements ,Types);

49 % Clamped boundary at x = 0
seldof = find(Nodes (: ,2) ==0);
DOF = removedof (DOF , seldof);

52 nDOF = length (DOF);

%% 6. Define loading
55 P_load = nodalvalues (DOF ,3.02 , -1); % vector with 1 at node

where the load is applied

%% 7. Allocation of vectors
58 F=zeros(nDOF ,1); % Spatial vector

G=zeros(numel(I_nu) ,1); % Poisson vector

61 %% 8. Matrix M1 , K1 and K2
% Matrix of linear shape functions M and (int M)=M1
[M1] = M1(I_nu);

64 % Sizes matrices M and M1 : 1 x Ndof_nu
M1=M1 ';

87

B. PGD code for Poisson’s ratio

67 % Computation of K1 and K2 using the constitutive
matrices D1 and D2

Types1 = {1 'plane1 ', Options % Triangular element to
compute K1 using D1

1 'plane2 ', Options }; % Triangular element to
compute K2 using D2

70 Types= Types1 (1 ,:); % plane1 element
K1=asmK1(Nodes ,Elements ,Types ,Sections ,Materials ,DOF);
Types= Types1 (2 ,:); % plane2 element

73 K2=asmK2(Nodes ,Elements ,Types ,Sections ,Materials ,DOF);

%% 10. Enrichment step: looking for R and P
76 num_iter =0;

iter=zeros (1);
Aprt =0;

79 Error_iter =1;

while Error_iter >TOL && num_iter < num_max_iter
82 num_iter = num_iter + 1;

P0=ones(ncoords_nu ,1);
85

% Enrichment step
[R,P,iter(num_iter)] = enrichment (K1 ,K2 ,P_load ,M1 ,P0

,F,G,num_iter ,TOL ,DOF ,I_nu , Materials);
88

F(:, num_iter)=R; % F=R - spatial mode
G(:, num_iter)=P; % G=P - Poisson 's mode

91
% Stopping criterion : Fixed algo. point
Error_iter =norm(F(:, num_iter)*G(:, num_iter) ');

94 Aprt=max(Aprt ,sqrt(Error_iter));
Error_iter = sqrt(Error_iter)/Aprt;

97 % Plot PGD convergence :
Errors (:, num_iter)= Error_iter ;

100 fprintf (1,'%dst iteration with an error of %f\n',
num_iter , Error_iter);

end
num_iter =num_iter -1;

103 fprintf (1,'PGD off -line phase exited normally \n\n');
save('Workspace_PGD_Poisson_ratio .mat ');

88

B.2. Second approach of implementation

The following code shows the on-line phase. Running it, the user is able to digit on
the keyboard the desidered Poisson’s ratio and get in real time the beam configuration
under unit vertical load applied at node 3.

Listing B.8: On-line phase code for the Poisson’s ratio problem (second approach).
% MSc - KU Leuven - Faculty of Engineering Science
%

3 % Giuseppe D' Ettorre
% May 2018
%

6 % Proper Generalized Method applied
% to solid mechanincs problems
%

9 % Material parameters as extra problem dimension
% ON -LINE PHASE
%

12 clear all; close all; clc;
load('Workspace_PGD_Poisson_ratio '); % Loading the

vademecum

15 %% 10. Post processing : text the Poisson 's ratio on the
keyboard . . .

fprintf (1,'PGD on -line phase ...\n\n');
fprintf (1,'\n\ nDigit on the keyboard the Poissons ratio

between the range [0;0.5[\n\n');
18 nu=input('\n\n nu = \n\n');

lim =0.005;
nu0=I_nu (1 ,1);

21 nu1=I_nu (1, ncoords_nu);

while nu0 -lim <=nu && nu <= nu1+lim
24 nu_chosen =find(I_nu <nu ,1,'last '); % Look for the

closest Poisson 's value

% Evaluation of the solution choosing the selected
node in G vector

27 desp=zeros(nDOF ,1);
desp=F*G(nu_chosen ,:) .';

30 % Plotting the solution
plotdisp (Nodes ,Elements ,{1 'plane3 '},DOF ,desp ,'

dispscal ' ,1)
title('Vertical displacement [m]');

33
nu=input('\n\n nu = \n\n'); % Waiting for a new

89

B. PGD code for Poisson’s ratio

Poisson 's value ...
end

36 fprintf (1,'\n\n-------- End of simulation --------\n\n');

The enrichment function is illustrated below. It permits to find iteratively the
enrichment functions R and P.

Listing B.9: Matlab code for the enrichment function.
function [R,P,iter] = enrichment (K1 ,K2 ,P_load ,M1 ,P0 ,F,G,

num_iter ,TOL ,DOF ,I_nu , Materials)
%

3 % Compute a new sumand by a fixed point algorithm using
PGD

% function [R,P,iter] = enrichment (K1 ,K2 ,P_load ,M1 ,P0
,F,G,num_iter ,TOL ,DOF ,I_nu ,Nodes ,Elements ,Types ,
Sections ,Materials , Materials1)

% returns the enrichment functions R and P
6 %

% K1 Global stiffness matrix using the
constitutive matrix D1 (DOF * DOF)

% K2 Global stiffness matrix using the
constitutive matrix D2 (DOF * DOF)

9 % P_load External load vector (DOF * 1)
% M1 Integral over the load domain of M(s) (

DOF_nu * 1)
% P0 Random vector to initialise the

procedure (DOF_nu * 1)
12 % F Spatial or mechanical vector (DOF * 1)

% G Poisson 's ratio vector (DOF_nu * 1)
% num_iter Number of iteration (1 * 1)

15 % TOL Tolerance (1 * 1)
% DOF Degrees of freedom (nDOF * 1)
% I_nu Poisson 's domain (1 * DOF_nu)

18 % Materials Material definitions [MatID MatProp1
MatProp2 ...]

%
% R Spatial or mechanical vector (DOF * 1)

21 % P Poisson 's ratio vector (DOF_nu * 1)
%
% Giuseppe D' Ettorre 2018

24
nDOF=size(DOF ,1);
ncoords_nu = length (I_nu);

27 R=zeros(nDOF ,1);
R0=R;

90

B.2. Second approach of implementation

ExitFlag =1;
30 iter =0;

mxit =25;

33 while ExitFlag >TOL
%
% Looking for R(x) , assuming P(nu) known

36 %

% Computation LHS of equation (4.16)
39 matrixR =zeros(nDOF);

matrixR = matrixR1 (K1 ,K2 ,Materials ,I_nu ,P0 ,nDOF);

42 % First term RHS of equation (4.16)
sourceR =zeros(nDOF ,1);
sourceR = P0 '*M1 '* P_load ;

45
% Second term RHS of equation (4.16)
for i1 =1: num_iter -1

48 sourceR = sourceR - sourceR1 (K1 ,K2 ,Materials ,I_nu
,P0 ,G(:,i1),F(:,i1),nDOF);

end

51 % Now I can solve R
R = matrixR \ sourceR ;

54 %
% Looking for P assuming R known
%

57
% Computation LHS of equation (4.23)
matrixP = matrixP1 (K1 ,K2 ,I_nu ,R, Materials);

60
sourceP =zeros(ncoords_nu ,1);
sourceP = M1 '*R'* P_load ;

63
% Computation RHS of equation (4.23)
for i1 = 1: num_iter -1

66 sourceP = sourceP - sourceP1 (K1 ,K2 ,F(:,i1),G(:,i1
),I_nu ,R, Materials);

end
69

% Now I can solve S
P = matrixP \ sourceP ;

91

B. PGD code for Poisson’s ratio

72 P = P./ norm(P);

75 %% Stopping criterion
error=max(abs(sum(R0 -R)),abs(sum(P0 -P)));
R0=R;

78 P0=P;
iter = iter + 1;
if iter >mxit || abs(error)<TOL ,

81 return
end

end
84 return

The numerical integration of M(ν) over Iν is performed into the following function:

Listing B.10: Matlab code for the function M1.
function [M1] = M1(I_nu)
%

3 % function [M1] = M1(I_nu) Computes the integral of M(
nu) over I_nu

%
% I_nu Poisson 's domain (1 * DOF_nu)

6 %
% M1 (DOF_nu * 1)
%

9 % Giuseppe D' Ettorre 2018

sg = [-0.57735 0.57735];
12 wg = [1 1];

ngp = numel(sg);
ncoords_nu =numel(I_nu);

15 nu1 = I_nu (1: ncoords_nu -1) ';
nu2 = I_nu (2: ncoords_nu) ';
L = nu2 -nu1;

18 M1=zeros(ncoords_nu ,1);

for i1 =1: ncoords_nu -1
21 w=zeros (1, ngp);

M=zeros(ncoords_nu ,ngp);
w(1 ,:) = 0.5.*(1 - sg).* nu1(i1) + 0.5.*(1+ sg).* nu2(i1);

24 M(i1 ,:) = (nu2(i1)-w(1 ,:))./L(i1);
M(i1 +1 ,:) = (w(1 ,:) -nu1(i1))./L(i1);

27 for j1 =1: ngp

92

B.2. Second approach of implementation

M1 = M1 + M(:,j1) *0.5.* wg(j1).*L(i1);
end

30 end
return

Into the enrichment function there are four sub-functions in order to perform
the numerical integrations of the equations of the two iterative steps represented by
equations (4.16) and (4.23).

Listing B.11: Matlab code for the function matrixR1.
1 function [matrixR] = matrixR1 (K1 ,K2 ,Materials ,I_nu ,P0 ,

nDOF)
%
% Compute the LHS equation (4.16)

4 % function [matrixR] = matrixR1 (K1 ,K2 ,Materials ,I_nu ,P0
,nDOF) returns the

% matrixR
%

7 % K1 Global stiffness matrix using the
constitutive matrix D1 (DOF * DOF)

% K2 Global stiffness matrix using the
constitutive matrix D2 (DOF * DOF)

% Materials Material definitions [MatID MatProp1
MatProp2 ...]

10 % I_nu Poisson 's domain (1 * DOF_nu)
% P0 Random vector to initialise the

procedure (DOF_nu * 1)
% nDOF Number degrees of freedom (1 * 1)

13 %
% matrixR (DOF * DOF)
%

16 % Giuseppe D' Ettorre 2018

E= Materials (2);
19

sg = [-0.57735 0.57735];
wg = [1 1];

22 ngp=numel(sg);
ncoords_nu =numel(I_nu);
nu1=I_nu (1: ncoords_nu -1) ';

25 nu2=I_nu (2: ncoords_nu) ';
L=nu2 -nu1;
nu_1=zeros (1);

28 nu_2=zeros (1);
matrixR =zeros(nDOF);

93

B. PGD code for Poisson’s ratio

31 for i1 =1: ncoords_nu -1
w=zeros (1, ngp);
M=zeros(ncoords_nu ,ngp);

34 w(1 ,:) = 0.5.*(1 - sg).* nu1(i1) + 0.5.*(1+ sg).* nu2(i1);
M(i1 ,:) = (nu2(i1)-w(1 ,:))./L(i1);
M(i1 +1 ,:) = (w(1 ,:) -nu1(i1))./L(i1);

37
for j1 =1: ngp

nu_1 = nu_1 + 0.5*(P0.'* M(:,j1)).*(E/(1-w(:,j1))
)*(M(:,j1) '*P0) *0.5.* wg(j1).*L(i1);

40 nu_2 = nu_2 + 0.5*(P0.'* M(:,j1)).*(E/(1+w(:,j1))
)*(M(:,j1) '*P0) *0.5.* wg(j1).*L(i1);

end
end

43 matrixR = K1*nu_1 + K2*nu_2;
return

Listing B.12: Matlab code for the function sourceR1.
function [sourceR] = sourceR1 (K1 ,K2 ,Materials ,I_nu ,P0 ,G,F

,nDOF)
%

3 % Compute the second term of RHS of equation (4.16)
% function [sourceR] = sourceR1 (K1 ,K2 ,Materials ,I_nu ,P0

,G,F,nDOF)
%

6 % K1 Global stiffness matrix using the
constitutive matrix D1 (DOF * DOF)

% K2 Global stiffness matrix using the
constitutive matrix D2 (DOF * DOF)

% Materials Material definitions [MatID MatProp1
MatProp2 ...]

9 % I_nu Poisson 's domain (1 * DOF_nu)
% P0 Random vector to initialise the

procedure (DOF_nu * 1)
% F Spatial or mechanical vector (DOF * 1)

12 % G Poisson 's ratio vector (DOF_nu * 1)
% nDOF Number degrees of freedom (1 * 1)
%

15 % sourceR (DOF * 1)
%
% Giuseppe D' Ettorre 2018

18
E= Materials (2);

94

B.2. Second approach of implementation

sg = [-0.57735 0.57735];
21 wg = [1 1];

ngp=numel(sg);
ncoords_nu =numel(I_nu);

24 nu1=I_nu (1: ncoords_nu -1) ';
nu2=I_nu (2: ncoords_nu) ';
L=nu2 -nu1;

27 nu_1=zeros (1);
nu_2=zeros (1);
sourceR =zeros(nDOF);

30
for i1 =1: ncoords_nu -1

w=zeros (1, ngp);
33 M=zeros(ncoords_nu ,ngp);

w(1 ,:) = 0.5.*(1 - sg).* nu1(i1) + 0.5.*(1+ sg).* nu2(i1);
M(i1 ,:) = (nu2(i1)-w(1 ,:))./L(i1);

36 M(i1 +1 ,:) = (w(1 ,:) -nu1(i1))./L(i1);

for j1 =1: ngp
39 nu_1 = nu_1 + (P0.'* M(:,j1)).*(E/(2*(1 -w(:,j1)))

)*(M(:,j1) '*G) *0.5.* wg(j1).*L(i1);
nu_2 = nu_2 + (P0.'* M(:,j1)).*(E /(2*(1+ w(:,j1)))

)*(M(:,j1) '*G) *0.5.* wg(j1).*L(i1);
end

42 end
sourceR = (K1.* nu_1 + K2.* nu_2)*F;
return

Listing B.13: Matlab code for the function matrixP1.
function [matrixP]= matrixP1 (K1 ,K2 ,I_nu ,R, Materials)
%

3 % Compute the LHS of equation (4.23)
% [matrixP]= matrixP1 (K1 ,K2 ,I_nu ,R, Materials)
%

6 % K1 Global stiffness matrix using the
constitutive matrix D1 (DOF * DOF)

% K2 Global stiffness matrix using the
constitutive matrix D2 (DOF * DOF)

% Materials Material definitions [MatID MatProp1
MatProp2 ...]

9 % I_nu Poisson 's domain (1 * DOF_nu)
% R Spatial or mechanical vector (DOF * 1)
%

12 % matrixP (DOF_nu * DOF_nu)

95

B. PGD code for Poisson’s ratio

%
% Giuseppe D' Ettorre 2018

15
E= Materials (2);
sg =[-0.57735 0.57735];

18 wg =[1 1];
ngp=numel(sg);
ncoords_nu =numel(I_nu);

21 nu1=I_nu (1: ncoords_nu -1) ';
nu2=I_nu (2: ncoords_nu) ';
L=nu2 -nu1;

24 matrixP =zeros(ncoords_nu , ncoords_nu);
M1=zeros(ncoords_nu);
M2=zeros(ncoords_nu);

27
for i1 =1: ncoords_nu -1

w=zeros (1, ngp);
30 M=zeros(ncoords_nu ,ngp);

w(1 ,:) = 0.5.*(1 - sg).* nu1(i1) + 0.5.*(1+ sg).* nu2(i1);
M(i1 ,:) = (nu2(i1)-w(1 ,:))./L(i1);

33 M(i1 +1 ,:) = (w(1 ,:) -nu1(i1))./L(i1);

for j1 =1: ngp
36 M1 = M1 + 0.5*M(:,j1)*(E/(1-w(:,j1)))*M(:,j1)

'*0.5.* wg(j1).*L(i1);
M2 = M2 + 0.5*M(:,j1)*(E/(1+w(:,j1)))*M(:,j1)

'*0.5.* wg(j1).*L(i1);
end

39 end
matrixP = R '*K1*R*M1 + R '*K2*R*M2;
return

Listing B.14: Matlab code for the function sourceP1.
1 function [sourceP1]= sourceP1 (K1 ,K2 ,F,G,I_nu ,R, Materials)

%
% Compute the second term of RHS equation (4.23)

4 % function [sourceP1]= sourceP1 (K1 ,K2 ,F,G,I_nu ,R,
Materials)

%
% K1 Global stiffness matrix using the

constitutive matrix D1 (DOF * DOF)
7 % K2 Global stiffness matrix using the

constitutive matrix D2 (DOF * DOF)
% Materials Material definitions [MatID MatProp1

96

B.2. Second approach of implementation

MatProp2 ...]
% I_nu Poisson 's domain (1 * DOF_nu)

10 % R Spatial or mechanical vector (DOF * 1)
% F Spatial or mechanical vector (DOF * 1)
% G Poisson 's ratio vector (DOF_nu * 1)

13 %
% sourceP1 (DOF_nu * 1)
%

16 % Giuseppe D' Ettorre 2018

E= Materials (2);
19 sg =[-0.57735 0.57735];

wg =[1 1];
ngp=numel(sg);

22 ncoords_nu =numel(I_nu);
nu1=I_nu (1: ncoords_nu -1) ';
nu2=I_nu (2: ncoords_nu) ';

25 L=nu2 -nu1;
sourceP1 =zeros(ncoords_nu , ncoords_nu);
M1=zeros(ncoords_nu);

28 M2=zeros(ncoords_nu);

for i1 =1: ncoords_nu -1
31 w=zeros (1, ngp);

M=zeros(ncoords_nu ,ngp);
w(1 ,:) = 0.5.*(1 - sg).* nu1(i1) + 0.5.*(1+ sg).* nu2(i1);

34 M(i1 ,:) = (nu2(i1)-w(1 ,:))./L(i1);
M(i1 +1 ,:) = (w(1 ,:) -nu1(i1))./L(i1);

37 for j1 =1: ngp
M1 = M1 + M(:,j1)*(E/(2*(1 -w(:,j1))))*M(:,j1)

'*0.5.* wg(j1).*L(i1);
M2 = M2 + M(:,j1)*(E /(2*(1+ w(:,j1))))*M(:,j1)

'*0.5.* wg(j1).*L(i1);
40 end

end
sourceP1 = (R'*K1*F*M1 + R '*K2*F*M2)*G;

43 return

97

		Politecnico di Torino
	2018-07-18T08:23:30+0000
	Politecnico di Torino
	Rosario Ceravolo
	S

