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Abstract

Globally Asynchronous Locally Synchronous (GALS) Field-Programmable
Gate Array (FPGA) are composed of standard synchronous reconfig-
urable logic islands that communicate with each other via an asyn-
chronous means. Past research into fully asynchronous FPGA has
demonstrated high throughput and reliability adopting dual-rail en-
coding. GALS FPGAs have been proposed, relying on bundled-data
encoding and fixed asynchronous communication between synchronous
islands. This thesis proposes a new GALS FPGA architecture with
fully reconfigurable asynchronous fabric, that relies on coarse-grained
Configurable Logic Blocks (CLBs) to improve the communication ca-
pability of the device. Through datapath dedicated elements, asyn-
chronous pipelines are efficiently mapped onto the device. The ar-
chitecture is presented as well as the customized tool flow needed to
compile Verilog for this new coarse-grained reconfigurable circuit.

The main purpose of this thesis is to map communication-purpose
user-circuits on the proposed asynchronous fabric and evaluate their
performance. The benchmark circuits target the design of a Network-
on-Chip (NoC) router and employ two-phase bundled-data protocol.
The results are obtained through simulation and compared with the
performances of the same circuits on a fine-grained classical FPGA
style. The proposed architecture achieves up to 3.2x higher through-
put and 2.9x lower latency than the classical one. The results show that
the coarse-grained style efficiently maps asynchronous communica-
tion circuits, and it may be the starting point for future reconfigurable
GALS systems. Future work should focus on improving the back-end
synthesis and evaluating the FPGA GALS system as a whole.

Keywords - FPGA, GALS, asynchronous, coarse-grained, NoC,
bundled-data
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Chapter 1

Introduction

FPGAs are widely used and accepted nowadays not only as proto-
typing devices but also as powerful tools for advanced applications.
As well as non-programmable circuits in the current late-Moore era,
FPGAs are facing problems like increased process variability, power
and thermal bottlenecks, high fault rates, scalability [1]. Clock sig-
nals, in particular, suffer from these problems: variability in clock
skew severely limits performance, and the clock signal itself causes a
vast part of dynamic power consumption. Asynchronous design style
could solve the mentioned issues.

This chapter is an overview of the thesis, and it is organized as
follows. Section 1.1 briefly describes the thesis background. Section
1.2 introduces the on-going project in which this master research is
involved. Section 1.3 presents the main purpose of the thesis. Section
1.4 details the measurable goals of the thesis. Section 1.5 underlines the
limits of the selected research approach. Finally, Section 1.6 outlines
the entirety of the thesis.

1.1 Background

FPGA systems are being used in a variety of applications thanks to
their reconfigurability benefit. Initial drawbacks such as very low ef-
ficiency and a limited number of logic cells have been mostly miti-
gated [2][3]. State-of-the-art FPGAs contain millions of logic cells (e.g.,
Virtex-7 by Xilinx has up to 2M logic cells). Currently, FPGA systems
are used for advanced applications, an example is Microsoft Catapult
project, where FPGAs are connected to servers in a data center for sup-

1



2 CHAPTER 1. INTRODUCTION

porting inter-node communication [4]. Another field of use for FPGAs
nowadays is Deep Learning accelerators [5].

However, FPGAs suffer from scalability problems, mainly due to
timing issues. In fact, timing constraints become very strict for larger
FPGAs as it is difficult to distribute clock and sometimes it is not possi-
ble to reach every part of the chip in a single clock cycle [6][7][8]. One
solution could be to introduce multiple clock regions, but interfaces
between them would be troublesome. Another primary concern of
current FPGAs architecture is power consumption. Power dissipated
just by the clock signal can be relatively high, up to 22% of the total
dynamic power [9].

This being said, it is clear that avoiding the use of a global clock
would lead to faster and more efficient circuits. It would be conve-
nient to build what is called a reconfigurable GALS system, that is a
circuit formed by medium-small synchronous cores communicating
with each other through an asynchronous reconfigurable circuit. This
asynchronous system replaces the global clock using local handshak-
ing, in particular, targeting single-rail bundled-data handshaking pro-
tocol.

1.2 Problem

This master research is part of a broader ongoing project performed
at National Institute of Informatics (NII), that is the design of a fully
reconfigurable circuit for GALS systems. Previously, so-called GALS
FPGAs [10][11] were proposed. These works, however, include no re-
configurability in asynchronous communication channels, and thus,
their applications are limited.

The proposed circuit addresses fully reconfigurable GALS systems,
i.e., also the asynchronous communication channels can be programmed.
The asynchronous fabric is specialized for communication mechanism
for GALS (handshake, NoC routers, switches). It does not include
data processing elements, but it is focused more on communication,
so it makes use of word registers and user-controlled multiplexers.
For achieving high efficiency in bundled-data protocol, the proposed
FPGA architecture has been constructed in a coarse-grained manner,
with basic logic elements 8 to 10 times larger than CLB of a fine-grained
classical architecture.
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Basic Logic Elements (BLEs) of the proposed architecture have al-
ready been developed. The main problem to be solved is to develop
the place & route algorithm that would map a user circuit to the pro-
posed coarse-grained architecture. The mapping problem in a coarse-
grained architecture is tough due to its complicated structure. More-
over, there are many constraints in the connection between elements.
Therefore, the mapping problem is not yet solved, and a semi-automated
tool flow has been developed for early performance evaluation of the
proposed method.

1.3 Purpose

As part of the ongoing work previously mentioned, the purpose of
this master research is to contribute to the improvement of the semi-
automated placement tool and to evaluate the performance of the pro-
posed device in a particular case.

More in detail, several medium-complex communication-purpose
user-circuits (i.e., First In First Out (FIFO), crossbar switch, router)
have been mapped onto the proposed architecture using the devel-
oped semi-automated tool, with the aim to carry out the initial per-
formance evaluation. Also, a pure combinational circuit (ripple-carry
adder) has been evaluated for checking the performance of the pro-
posed architecture out of the intended field of use. Simulation results
are then compared with a fine-grained asynchronous FPGA that ex-
ploits an established tool flow for FPGAs (Verilog-to-Routing (VTR)
[12]).

1.4 Goals

The measurable goal of this Master project is the result of the compari-
son between conventional fine-grained architecture FPGA and coarse-
grained one, focusing on communication-purpose user circuit. The
comparison establishes whether the proposed architecture is more ef-
ficient regarding area and performance. If so, the project would be a
starting point for the development of a new efficient reconfigurable
device for GALS systems.

The research follows a quantitative approach, as the final result
achieved is a comparison of several measurable performance param-
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eters. A simulation approach has to be carried out since the FPGA
architecture is still in developing status. As mentioned before, for the
fine-grained architecture VTR tool for placement and routing has been
used. For the proposed coarse-grained architecture, instead, a semi-
automated tool for placement and routing has been developed. This
means that part of the placement has been conducted manually, and
then the developed tool has been used to complete the mapping.

1.5 Limitations

This Master’s thesis examines the performance of a coarse-grained
asynchronous FPGA specialized for communication mechanism for
GALS systems. The evaluation is then mainly focused on communi-
cation purpose circuit (FIFO, crossbar switch, router), plus a case of a
simple, pure combinational circuit (ripple carry adder). The research
does not take into consideration more complex data-processing user
circuit.

Moreover, the design of the asynchronous user circuits follows the
single-rail bundled-data asynchronous protocol [13]. Other asynchronous
design styles have not been examined. Finally, as mentioned, the pro-
posed architecture has not been tested running on actual hardware.
Given the early status of development, the evaluation has been car-
ried out by simulation.

1.6 Structure of the Thesis

The first section of Chapter 2 provides basic knowledge about FPGAs.
It offers a brief introduction to FPGA architecture, from the logic el-
ements design to the routing structure, and a description of the most
common commercial and academic design flow for FPGA. Chapter 2
continues by focusing on asynchronous design. It begins by listing
pros and cons of this design style, followed by an overview of asyn-
chronous techniques and communication protocols. Subsequently, GALS
systems are also mentioned, describing the possible interfaces between
different timing domains. Once the basics are given, Chapter 2 ends
by presenting related work in the field of asynchronous reconfigurable
circuits and GALS FPGA.
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In Chapter 3 the proposed coarse-grained architecture and the tool
flow are presented.

In Chapter 4 the architecture evaluation is carried out. First, the
fine-grained architecture is presented, with which the proposed one is
compared. Then, the simulation results are given and discussed.

Finally, Chapter 5 sums up the thesis conclusions and suggests im-
provements and topics for future work.



Chapter 2

Background

This chapter provides the reader basic knowledge needed to famil-
iarize with reconfigurable circuits and asynchronous design. Section
2.1 defines what an FPGA is, describing logic blocks and routing ar-
chitecture, as well as the standard tool flow employed for synthesis
and mapping of user circuits on a reconfigurable device. Section 2.2
presents the asynchronous design, the benefits that it can achieve and
several foundational techniques of this approach. In particular, the
GALS application of asynchronous circuit will be analyzed more in
detail. Lastly, Section 2.3 reviews a selection of asynchronous recon-
figurable architectures presented in the past two decades.

2.1 FPGA

An FPGA is a silicon device that can be programmable to behave such
as almost any digital circuit. FPGAs provide some interesting advan-
tages over the fixed-function counterpart, Application Specific Inte-
grated Circuits (ASICs), such as reduced Non-recurring engineering
(NRE) cost and shorter time-to-market [14]. In fact, ASICs are usu-
ally extremely expensive to fabricate, and their design and validation
process takes months [15].

Nevertheless, FPGAs have a number of disadvantages that still
prevent them from replacing ASICs entirely. Area overhead is still se-
vere, being the occupied area from an FPGA circa 20 to 35 times larger
respect to a standard cell ASIC, as well as delays (approximately 3 to
4 times slower) and dynamic power (roughly ten times more) [14].

Since the first produced FPGA by Xilinx in 1984, this kind of device

6
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increased in capacity and speed, reducing cost and energy consump-
tion [2][3]. At the same time, as Moore’s law [16] advances, the cost for
state-of-the-art lithographic process and NRE increase at each technol-
ogy node, making ASICs even more expensive. Nowadays, only a few
chips have a market volume large enough to cover these costs [3]. In
FPGA market development costs are shared with all the customers, so
that unit cost mostly drives the final price.

Currently, more and more digital designs are being implemented
using FPGAs. FPGAs are used in advanced applications such as data-
center services accelerators [4], or Deep Learning accelerators [17]. These
applications, in particular, are evolving very fast. They need to rely on
flexible hardware which performance and efficiency can be continu-
ously be improved, so FPGAs tend to be an optimal solution.

2.1.1 Architecture

An FPGA chip basically consists in an array of logic blocks (called
also CLBs) connected between them by a programmable routing fab-
ric. The ability to reconfigure an FPGA comes from both the possibility
of programming the CLB and the interconnect. In modern FPGA the
programming technologies mainly used are flash [18], static memory
[19], and anti-fuses [20].

A typical island-style FPGA, that is the most popular architectural
style used for commercial FPGAs, as well as among research commu-
nity, is depicted in Figure 2.1.

CLBs can be of a various type. Originally, they consisted of just
programmable logic (mainly Look-Up Tables (LUTs)) and storage ele-
ments (flip-flops or latches) [19], that formed what is called a BLE. As
technology scaling advances it was possible to enhance the functions
of each CLB. Current commercial FPGAs can contain heterogeneous
dedicated CLBs, such as arithmetic logic blocks, large memories or
microprocessors [21].

The routing fabric is typically composed of connection blocks and
switch blocks. A connection block connects a CLB inputs and outputs
to the wires in the routing fabric. A switch block (Figure 2.2) con-
nects adjacent wire segments, with the possibility to program the path
using logic buffers or pass-transistors. Different connection patterns
between adjacent channels are possible, namely disjoint, Wilton and
universal. Their pros and cons are described in [22]. Finally, there are
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Figure 2.1: Island-style FPGA.

Wire
Segment

Programmable
Switch

Figure 2.2: Typical switch box.

input/output (I/O) blocks around the edges of the FPGA providing
programmable I/O for various standards.

Additionally, in modern FPGAs clock distribution network is an
essential part of the chip. Like the ASIC counterpart, the most used
clock distribution network is H-tree style [23]. This clock distribution,
however, costs power and area, then attempts of using routable clock
networks have been made [24], such that fixed clock trees can be re-
placed by routable clock grid that allows constructing arbitrarily sized
clock trees to in arbitrary locations of the FPGA.

When it comes to defining FPGAs architecture, a critical feature to
take into account is the area. In fact, the area occupied by a die on the
silicon wafer is what determines the fabrication cost of the device, and
as previously stated, the low cost is the main advantage for FPGAs
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K-input
LUT

Clock
Inputs OutDFF

Figure 2.3: Structure of a BLE.

BLE
N

BLE
1

Clock

I Inputs

N
BLEs N

Outputs

... ...I

N

Figure 2.4: Logic cluster assuming a LUT size (K) of 4.

over ASICs.
Chosen the architecture framework (typically island-style) and the

programming technologies, logic blocks mainly dictate the area of the
chip, especially for devices with a large logic capacity. Then, the de-
sign of the architecture of the CLBs is crucial to reduce the chip area.
The typical structure of a LUT-based BLE is represented in Figure 2.3,
as well as an example of a logic cluster in Figure 2.4 [25]. Directly
mapped functions in LUTs are particularly area-inefficient since the
area occupied by LUTs grows exponentially with the number of in-
puts. A solution known as clustering is used instead. Here, N BLEs
using LUT/flip-flop are used grouped into a cluster.

2.1.2 Design Flow

During the early days, until the mid-90s, FPGAs were so small that the
automated placement and routing were considered superfluous. Man-
ual design was used instead, for both logical and physical design [3].
As FPGA capacity grew in line with Moore’s law, manual design was
not feasible anymore. At this point, the late 90s, automated synthe-
sis, placement and routing were essential. FPGA vendors nowadays
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RTL design

RTL elaboration

Architecture-independent optimization

Technology mapping and
architecture-specific optimization

Clustering and placement

Placement-driven optimization
and incremental placement

Routing

Bitstream generation

Bitstream

Figure 2.5: Commercial tool flow.

provide commercial Computer-Aided Design (CAD) tools for their de-
vices that starting from a design specified in hardware description lan-
guages (VHDL or Verilog) produce the bit-stream needed to program
the chip.

A typical design flow is shown in Figure 2.5 [26]. The inputs of
the design flow are the Register Transfer Level (RTL) description, the
design constraints, and the FPGA device. The specification is usually
given in Verilog or VHDL even though there is a general trend mov-
ing to higher level of abstraction using languages like C or SystemC
[27]. The design constraints include required I/O delays and clock fre-
quency. The choice of an FPGA architecture depends on the capacity,
performance, cost, and power. The correct FPGA device is chosen in
an iterative process: the smallest FPGA is selected, then if it is not pos-
sible to map the user application on this device a higher capacity one
is needed.

As concerning the tool-flow steps of Figure 2.5, several steps be-
have as follow. The RTL elaboration analyzes the datapath and maps
all the element in Finite State Machines (FSMs), generic Boolean logic
or hard blocks that are eventually available in the chosen architecture
(i.e., multiplier, carry chains, synchronizer). A net containing only this
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set of elements is built. The second step is a general optimization, in-
cluding combinatorial and control logic optimization. At this point,
the optimized datapath is mapped on the chosen architecture, choos-
ing dedicated structures if possible, otherwise general BLEs. After
the first placement is obtained, exploiting clustering eventually, inter-
connects are defined, and there may be an optimization of the place-
ment if it does not meet the performance required. This step is recur-
sive consists of defining and validating the placement incrementally.
There are many placement options for FPGAs [28]. Exploiting the pro-
grammable switches, routing is performed to connect all the signals as
designed. Numerous routing approaches for FPGAs are summarized
in [2]. Last step, a bit stream necessary to program logic and intercon-
nects is generated.

The described tool flow is a typical example of commercial CAD
tool that may be provided by the vendor. This approach works per-
fectly for a specific target device, but in the research community, there
are significant efforts to explore new architectures and enhanced algo-
rithms for CAD tools. For this purpose, an open-source tool that can
be easily modified and adapted is required. The most popular open-
source CAD tool for FPGA is VTR that allows to model and target
hypothetical FPGA devices [12]. The overall tool flow, in this case, is
described in Figure 2.6.

Figure 2.6: VTR tool flow.

Similarly to the previous case, the inputs are a user-circuit described
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in Verilog and the architectural description file of the hypothetical FPGA
[29]. The analysis of the RTL design is done by ODIN [30], that trans-
lates the Verilog code into a Berkeley Logic Interchange Format (BLIF)
file [31], that is a netlist of primitives, according to the resources present
in the description file. ABC [32] then optimizes the logic, also mapping
the soft logic in LUTs of the size reported in the description file. Finally,
Versatile Place and Route (VPR) [33] performs clustering, placement
and routing, also providing an estimation of the quality of the result
in terms of timing, area and power.

2.2 Asynchronous design

Most of the digital circuits for almost every application are nowadays
synchronous. This technology relies on a clock signal that synchro-
nizes all the operations on the circuit. Asynchronous architectures,
conversely, do not have a global notion of time along the circuit. Op-
erations, in this case, are much more complicated because signals must
meet specific timing constraints. The communication protocol between
different elements in the circuit in an asynchronous domain is called
handshake, that exploits two additional signals to provide operations
synchronization usually called request and acknowledge [34].

Over the last two decades, new challenges arose as Moore’s law
comes to its end [35]: increased variability, power consuming and dis-
sipation, high fault rates [1][36]. These three primary challenges, high-
lighted in the International Technology Roadmap for Semiconductor
(ITRS) reports [1], could be tackled using an asynchronous approach
in the design flow.

Some interesting example of commercial asynchronous devices have
been developed, such as [37] for communications, and an example of
neuromorphic computer from IBM [38]. Some other industrial exper-
iments, also, have been carried out, like IBM Finite Impulse Response
(FIR) [39]. Finally, emerging researches about the asynchronous field
are ultra-low energy systems [40][41], asynchronous Digital Signal Pro-
cessor (DSP) [42], extreme environments applications [43] and nano-
magnetic logic [44].
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2.2.1 Pros and Cons

Synchronous design methodology is currently the most used. Indeed,
it has some remarkable advantages. The great benefit of this approach
is that the design is straightforward and easy to validate since the sig-
nals are usually sampled on a particular clock event thus are not re-
quired to be correct all the time. As far as flip-flop set-up and hold
time are observed, the circuit is guaranteed to work. Engineers are
very well trained to build synchronous circuits and very advanced
and complex CAD tools have been developed for synchronous de-
sign. Nevertheless, synchronous design has some limits that can be
overcome with an asynchronous approach.

Asynchronous circuits do not need to distribute the clock signal
along the circuit. This property is a great benefit since at each technol-
ogy node the clock distribution network becomes more complex and
critical due to the process variation [45]. Using clock signal is also not
very efficient energy-wise, since it consumes quite a significant frac-
tion of the total dynamic power, up to 22% [9]. The computation in the
case of asynchronous circuits is event-driven, i.e., operations only exe-
cute when needed, that is highly energy efficient, and there is no need
to insert extra clock-gating elements [46]. Moreover, performance in
the case of synchronous design is limited by the worst-case delay be-
tween each pipeline stage, while for asynchronous circuits each op-
eration is executed at the maximum speed. The fact that signals do
not commute at the same instant also have benefits on the Electromag-
netic Compatibility (EMC) side [47], resulting in less noisy and reliable
system. Finally, asynchronous design can easily accommodate hetero-
geneous system timing of system-on-a-chip (SoC) architectures.

On the other hand, asynchronous approach poses some other prob-
lems. The main one is that the vast majority of CAD and validation
tools addresses synchronous design only. There is a lack of tool-flow
and CAD systems for asynchronous circuits. Designers have to de-
velop brand new tools or adapt the existing synchronous ones. Few
experiments in the former direction have been carried out; more effort
was put last two decades trying to exploit synchronous tools, like [48]
and [49], that try to automatically transform a synchronous design into
an asynchronous one. Using this approach, furthermore, there is no
need to retrain designers on asynchronous circuits as the transforma-
tion is done automatically. As hybrid architectures emerge, like GALS,
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another issue is the synchronization between different timing domain
elements.

2.2.2 Basics

As previously mentioned (Section 2.2), handshaking channels are fun-
damental in asynchronous communications between elements along
the circuit. Different implementations are possible, defining different
protocols and data encoding. Other fundamental building blocks for
more complex asynchronous systems are asynchronous pipelines, syn-
chronization, and arbitration blocks.

Handshake

Two signals of request and acknowledge (called req and ack from now on)
are required to guarantee the correctness of the handshake communi-
cation. Two main communication protocols are used, 4-phase (return-
to-zero) and 2-phase (non-return-to-zero or transition-signaling).

In the 4-phase protocol, shown in Figure 2.7a, req and ack wires cod-
ify the information in usual Boolean levels. For starting the transmis-
sion, the sender asserts req and waits for the receiver reply asserting
ack. At this point sender deasserts req that causes the receiver to de-
assert ack, bringing the signals back to the initial state (from this the
name return-to-zero). On the other hand, in the 2-phase protocol, shown
in Figure 2.7b, the information is codified on wires toggling: when-
ever req toggles a request is sent, same for ack. Both these protocols
are very common among designers. 4-phase protocol requires simpler
hardware because it relies on signals Boolean levels, nevertheless the
return-to-zero phase is not essential and makes the transaction less ef-
ficient in terms of throughput and energy. 2-phase protocol only re-
quires one round-trip communication, thus is generally more efficient,
even though more complex hardware may be needed [50].

For what concerns data encoding, two main schemes are used: single-
rail or dual-rail.

The single-rail approach is also called bundled-data. The term refers
to the fact that req and ack wires are bundled with the correspondent
data (Figure 2.8a). In single-rail encoding, data are encoded with usual
binary levels. Req and ack extra wires are required. The request must
be transmitted after the data are valid on the channel and this order
must be preserved at the receiver. For ensuring this, a matched delay
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Figure 2.8: Handshake data encoding schemes.

is added to the req signal, such that its delay is longer than the worst-
case data delay. The matched delay can be either a chain of inverters or
a replication of the critical path. The advantage of this encoding is that
the design is very similar to the synchronous counterpart and has low
area overhead, even though the matched delay is sensitive to process
variation hence it must be added with appropriate safety margin [34].

In dual-rail (also called delay-insensitive) encoding, data are sent us-
ing a couple of wires for each bit (Figure 2.8b). One wire is asserted
when the data to be sent is ’1’, vice versa the other wire. The couple
{0,0} means no data valid and {1,1} is not used. This encoding provides
an implicit request when all data are valid, condition easily recogniz-
able at the receiver. The great advantage of this technique is that it is
very robust and insensitive to process or physical variations. The dis-
advantage consists of using a couple of wires for transmitting one bit.
Moreover, a completion detector must be used at the receiver’s side.
In general, only 4-phase protocol works for this encoding scheme.

Pipelining

In asynchronous systems, as well as in the synchronous case, pipelin-
ing is an essential technique used to increase throughput parallelizing
the elaboration flow. In the synchronous implementation, it usually
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Figure 2.9: Sutherland micropipeline.

reckons on registers that break the data path in several stages, with
the clock signal behaving as a pacemaker. Asynchronous systems do
not have a global clock, so handshaking communication between ad-
jacent stages is used instead.

A possible asynchronous pipeline implementation was proposed
by Sutherland [51] depicted in Figure 2.9. It is a 2-phase bundled-data
pipeline that exploits a chain of Muller C-elements. The C-element is
a ubiquitous storage component in the asynchronous design, which
output is driven by inputs only if they have the same value, else it
holds the previous value. The circuit makes use of so-called capture-
pass latch: this specialized latch has two control inputs (capture C and
pass P) and two control outputs (capture done Cd and pass done Pd). At
the initial condition all the latches are transparent. As soon as an event
occurs on its capture input, a latch turns in the hold state, and it stays in
hold until an event occurs on the pass input. Request propagates along
the pipeline in a "wave front" fashion: it advances forward perform-
ing a series of capture operations, while predecessor stages, behind the
wave front, are afterward freed up by a series of pass operations. This
implementation is straightforward and elegant, even though it uses
specific elements (capture-pass latch, C-element) that are not area effi-
cient. Nevertheless, the idea had inspired many similar approaches.

Another 2-phase bundled-data pipeline is Mousetrap pipeline, shown
in Figure 2.10 [52]. It is based on the same idea of the Sutherland mi-
cropipeline, but it uses common gates and data latches instead of spe-
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cialized asynchronous elements. This approach shows better results
in terms of area and delay [1]. Initially all the data latches are trans-
parent. At stage i, when a request arrives from stage i-1, it makes the
XNOR low, thus turning the latch in the hold state. At the same time,
the request propagates to the next stage and toggles the acknowledge
to the previous stage, requiring new data. Eventually, stage i receives
an acknowledge from i+1, that makes the XNOR high turning the latch
transparent again.

Another asynchronous pipeline style is based on dynamic logic
data paths and dual-rail encoding. It is mainly used for high-performance
systems, very robust but expensive regarding design effort and valida-
tion [13]. One possible implementation is the precharge half-buffer
(PCHB) style [53]. This approach relies on Quasi delay-insensitive
(QDI) circuits, i.e., operation correctness does not depend on gates
and wires delay, as far as delays on all the branches of a wire fork are
roughly equal (isochronic fork assumption). A PCHB circuit is shown
in Figure 2.11 [54]. There are two completion detectors, at the input
and the output of the function. The evaluation at the stage i only starts
when valid input data are available. After the function evaluation has
been carried out, an acknowledge is sent to the previous stage i-1 to
make it start the pre-charge phase. An acknowledge from the next
stage i+1, similarly, means that the output data has been consumed,
and the stage i can be pre-charged. When the pre-charged is completed
each stage turns back to evaluate phase.
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Synchronization and arbitration

Synchronizers are needed at the interfaces between different timing
systems, asynchronous-synchronous as well as two unrelated synchronous
systems. In these interfaces setup and hold timing may be violated,
causing a metastable output that could be undetermined for an ex-
tended amount of time. The classical and most natural solution is
to use for each bit a chain of flip-flops as a synchronizer. The num-
ber of flip-flops depends on the required Mean Time Between Fail-
ure (MTBF), typically two or three flip-flops ensure sufficiently high
MTBF. This simple synchronizer leads to low area overhead but also
low throughput. Another approach to interface two arbitrary clock do-
mains is using specially designed asynchronous FIFO buffers [55][56].

Finally, arbitration is needed for the resolution of multiple requests
of the same resource. In synchronous systems, this is not a critical
issue, as at each clock cycle one pending request is selected as the win-
ner. On the other hand, in asynchronous design requests arrive as
continuous time signals, so there is need of an element that guaran-
tees a winner when requests come very close to each other. The basic
block to resolve two-way arbitration is called mutual-exclusion ele-
ment (mutex). It is an analog component that in principle may require
in some cases infinite time to resolve, in practice long arbitration is
extremely rare. It is the building block for n-way arbiters used.
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2.2.3 GALS systems

As an alternative to fully-asynchronous designs, hybrid approaches
have been developed, that combine synchronous components and asyn-
chronous communication to form a GALS system. This approach gains
the benefits of asynchronous and synchronous design. Synchronous
modules can be designed following the standard synchronous flow, or
Intellectual Property (IP) blocks can be easily integrated into the asyn-
chronous interconnect. Several blocks may require different clock re-
quirements that can be easily accommodated in a GALS system, either
to make them work for maximum performance or low power [57]. As
a global asynchronous system, moreover, no global clock is needed,
avoiding clock skew and distribution issues.

Each synchronous island is locally clocked and connected to the
asynchronous network through a synchronous/asynchronous inter-
face. The interface must be designed to guarantee that the communi-
cation succeeds without causing metastability. The way the interface
implements the data transfer between different timing domains deter-
mines the GALS design style. Generally, three main different design
styles are possible [58][57]: pausible-clock, asynchronous and loosely
synchronous.

The pausible-clock (also called clock-stretching) was the first approach
proposed for a GALS system [59]. A local clock is generated in each
synchronous block using a ring oscillator [60]. Whenever a communi-
cation is needed at the interface, the rising edge of the local clock is de-
layed. A handshake communication is then performed and when data
are safely latched the local clock can run again. Port controllers are
needed to perform the handshake communication. On the one hand,
this approach is very robust and energy efficient [61]. On the other
hand, the design of the ring oscillator is critical since it is difficult to
obtain an accurate and stable clock frequency.

In the asynchronous interface the synchronous block is not inter-
rupted when a communication is issued. Rather, synchronizers are
used to transfer signals through different timing domains safely. It
may be a two-flops synchronizer or a FIFO buffer (as seen in 2.2.2).
The former method is easy to design and has low area overhead, but
it affects latency and throughput. On the other hand, the FIFO buffer
can achieve high throughput and low latency at the cost of more area
[56].
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Finally, the loosely synchronous approach exploits known relation-
ships between timing domains to build an efficient communication.
These systems are more properly referred to as multi-synchronous sys-
tems [1]. According to Messerschmitt classification [62], timing rela-
tionships between two clock domains can be:

• Mesochronous: same frequency but different and stable phase dif-
ference.

• Plesiochronous: slightly different frequencies, that cause a phase
shift.

• Heterochronous: different unrelated frequencies. An interesting
subcategory is called ratiochronous relationship, in which one clock
frequency is an exact multiple of the other.

When some bounds on the frequencies are known, it could be possible
to eliminate handshaking and build very efficient systems. Neverthe-
less, these timing relationships are not exploited and integrated into
the analysis of the current CAD tools [57].

GALS implementation style is a perfect match for NoC approach,
where processing element are intrinsically separated from the com-
munication infrastructure. Several researches have proposed GALS-
NoC architectures [63][64], wrappers [65], and routers [66], proving its
power and performance benefit.

2.3 Related works

There have been some attempts to join the benefit of asynchronous
design and reconfigurable logic.

Manohar [54] introduced an asynchronous FPGA architecture de-
signed for static dataflow systems. In this computational model, a to-
ken traveling through a pipeline indicates the flow of data [67], im-
plementing data-driven operations that perfectly fit with the asyn-
chronous paradigm. This architecture relies on QDI logic, i.e., on dual-
rail data encoding handshake, exploiting PCHB asynchronous pipeline
(Section 2.2.2). The overall architecture is an island-style FPGA very
similar to the synchronous counterpart. Each route track corresponds
to three wires due to the choice of dual-rail channel. The communi-
cation is then wholly asynchronous, and the interconnect is pipelined,
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Figure 2.12: Manohar asynchronous FPGA BLE [54].

inserting buffer stages in the switch boxes. The BLE design, depicted
in Figure 2.12, is analogous to the synchronous BLE (Section 2.1.1).
It contains essential dataflow building blocks: function, source, sink,
copy, initial, merge and split (the last two implemented in a single
conditional unit). All the logic is implemented as a programmable
pull-down stack in a PCHB stage, for example, the 4-LUT is shown in
Figure 2.13. This architecture can operate at high throughput and is
very robust, proven to be functional in a wide range of voltage and
temperature. Moreover, it has been commercially developed [68].

Komatsu et al. adopted a similar solution [69]. Like the previous
case, the architecture consists of an island-style FPGA, and a dual-
rail data encoding is employed. The main difference is in the BLEs
structure. While Manohar proposes a dataflow-based architecture, Ko-
matsu et al. propose a handshake-component-based design. Balsa
[70] is proposed as a design methodology that uses handshake compo-
nents. Balsa is a Hardware Description Language (HDL) that allows
describing asynchronous systems hiding to the designer handshake
related gate-level details. Thus, this approach is suitable for complex,
large-scale asynchronous circuits. Balsa relies on a small set of hand-
shake components, into whom the described circuit will be compiled.
With the FPGA logic is possible to implement 39 out of 46 handshake
components defined in Balsa manual. Frequently used components
are implemented in a BLE (Figure 2.14), while rarely used ones are ob-
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tained connecting multiple BLEs. A pre-layout simulation in HSPICE
showed that the area overhead compared to a conventional architec-
ture is up to 62%, and throughput is nearly halved.

Alternatively to fully asynchronous FPGAs, GALS approaches have
been proposed.

Royal and Cheung [10] introduced a level of hierarchy into the
FPGA fabric. Standard CLBs are grouped to form large synchronous
blocks. Within each of these blocks, the architecture is the same of
a synchronous FPGA, with a local clock that spans only through the
block. The communication between different synchronous islands,
however, follows an asynchronous protocol. As previously analyzed
(Section 2.2.3), a synchronization system is needed at the interface be-
tween synchronous and asynchronous domain. For this reason, an
asynchronous wrapper is provided. The chosen synchronization style
is pausible clock, hence the wrapper contains a ring oscillator for clock
generation. I/O controllers manage the communication with the asyn-
chronous routing. A four-phase bundled-data protocol has been cho-
sen as handshake protocol. The output port controller receives data
bundled with the valid bit from the synchronous block and initiates a
handshake communication on the asynchronous channel, meanwhile
the local clock is paused until the communication ends. Similarly, the
input port controller pauses the clock when new data are required,
receives a request and safely latches the data from the asynchronous
channel, then the local clock is restored. Data transfer through the
asynchronous fabric is facilitated by inserting micropipelines at each
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Figure 2.14: Structure of a handshake-component-based BLE [69].

switch box, reducing the time a synchronous block is paused and elim-
inating deadlock.

Jia and Vemuri [11] further developed the same idea in the pro-
posed architecture called GALS Programmable Logic Array (GAPLA),
of which block diagram is represented in Figure 2.15. The approach is
the same, using asynchronous wrappers as interface between the two
time domains. As before, the wrappers implement a pausible clock
approach, containing the local clock generator and the I/O port con-
trollers. The interesting difference is that each synchronous tile has
four different wrappers to which it can be connected, and they can be
merged if needed, enhancing I/O capacity of a clock domain. More-
over, each wrapper contains 8 I/O ports, allowing some flexibility
in the number of bits required for a communication. Inside the syn-
chronous island, all four clocks are routed and each CLB can choose
one arbitrarily. The communication protocol adopted is a two-phase
bundled-data handshake. Moreover, adjacent tiles have the possibility
of direct and fast communication.

This latter approach provides some flexibility in the use of the asyn-
chronous communication, allowing to program size and shape of each
synchronous logic block and also the data width of each I/O port.

Nevertheless, one common problem of the above architectures is
that the communication protocol is fixed and not programmable. There-
fore, it is not possible to explore different communication mechanism,
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such as implementing an asynchronous NoC router.



Chapter 3

Proposed GALS FPGA

FPGA technology is widely adopted in a variety of applications, of-
fering the benefit of computational capacity and reconfigurability. The
vast majority of FPGA devices currently employs an island-style fine-
grained architecture [71] and a synchronous design approach. Even-
tually, some coarse-grained heterogeneous elements are adopted, such
as RAM or arithmetic blocks [21].

Here we propose an architecture for FPGAs which is optimized
for GALS applications. Such device aims to be used for implement-
ing asynchronous NoCs or SoCs. The focus of this work is mainly
on the asynchronous fabric that allows the communication between
synchronous tiles. The inclusion of a reconfigurable circuit more spe-
cialized for communication mechanism for GALS in a synthesizable
coarse-grained FPGA is different from the previous works [10][11],
which contain fixed communication mechanism only.

This chapter presents the proposed architecture and describes how
a communication circuit is mapped into the asynchronous fabric. In
the proposed architecture, the word-wide data handling functions from
the Verilog source are mapped to datapath blocks, while the control
logic is extracted and mapped to coarse-grained blocks.

A fundamental premise of the chapter is that the current project
status is not definitive. The overall architecture is still incomplete, as
the asynchronous/synchronous interface has yet to be developed. The
focus at the current status is the asynchronous network that surrounds
the synchronous blocks. Regarding the tool development, what is now
available is the very first version of the placement and routing tools.
Many improvements can be made, and some functionalities are still

26
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missing.
The rest of the chapter is organized as follows. Section 3.1 illus-

trates general desirable properties of the reconfigurable GALS circuit.
Section 3.2 presents in detail the proposed architecture. Section 3.3
describes the tool flow needed to synthesize a user-circuit onto the
asynchronous fabric. Section 3.4 goes through the tool flow to show
a simple usage example.

3.1 Requirements

This section describes common characteristics that are desirable when
building a communication circuit for asynchronous systems.

In general, communication circuits can be divided into control and
datapath portions. The datapath typically contains memory elements,
such as registers or latches. Existing FPGA devices are not optimized
for dealing with word-wide data and, as a result, a significant amount
of FPGA resources is wasted. In fact, data are saved in scattered CLBs,
so it is not possible to efficiently share control signals.

The control circuit usually occupies less area, and it is possible to
map it to coarse-grained FPGA resources. Control circuits, neverthe-
less, should be linked to the correspondent datapath through a fast
connection. Moreover, for dealing with asynchronous communica-
tion specific elements (C-elements, latches, mutex elements) should
be available that are usually not needed in the synchronous design.

Finally, the proposed architecture aims to provide what is needed
to implement GALS NoC. Therefore, essential elements for building
NoC routers are required. A fundamental building block for a router is
the crossbar switch [72], that can be made of word-wide user-controller
multiplexers.

Based on the above analysis, some basic requirements for the pro-
posed architecture can be derived.

• Coarse-grained latches are necessary to implement asynchronous
pipelines.

• Coarse-grained interconnection and switches will allow efficient
implementation of communication circuits.

• Dedicated connection from control logic to datapath.
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• User-controlled word-wide multiplexers, to simplify the imple-
mentation of asynchronous routers.

3.2 Architecture

Figure 3.1 shows a top-level block diagram of the proposed recon-
figurable GALS architecture. It consists of synchronous islands sur-
rounded by a reconfigurable asynchronous fabric. The synchronous
tiles can adopt any existing FPGA structure; thus, the primary focus of
the thesis will be on the architecture of the asynchronous communica-
tion network.

3.2.1 Overall

The asynchronous portion of the reconfigurable circuit employs itself
an island-style FPGA structure, formed by coarse-grained CLBs con-
nected by a mesh routing network. Switch Blocks (SBs) divide chan-
nels into segments that in general can be of variable length, spanning
more CLBs to reduce long connection delays. Although this benefit
is desirable, the length of each segment in the proposed architecture
spans one CLB, this is partly for simplicity, and partly due to the small
scale of the device. The coarse-grained CLB contains two Pipeline
Stage Blocks (PSBs), each of which has the elements needed to imple-
ment stage of an asynchronous pipeline. The connection between each
CLB and the routing channels is possible only on the West and South
sides of the block.

The details of the proposed CLB are shown in Figure 3.2. There
are two PSBs, one along the x-direction and one along the y-direction.
Each PSB is composed of a Control Circuit Block (CCB) and two Data
Path Block (DPB), i.e., two 40-bit latches.

3.2.2 Routing channels

Referring to Figure 3.2, the routing networks are separated for data
and control, such that the coarse-grained data can save area by sharing
configuration bits. As a consequence, there are two kinds of switch
blocks, Switch Block Data (SBD) and Switch Block Control (SBC).

Switch blocks are implemented following the directional single-
driver style [73], using buffers and multiplexers, as shown in Figure
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3.3. The CLBs outputs connect directly to the adjacent SBs multiplex-
ers inputs, avoiding the use of tri-state buffers and pass-transistors.

The SB topology used is the disjoint switch, in which each track
of the routing channel is numbered, and a given track i can only be
connected to the same number track or, eventually, shifted by one
track when turning. The convention adopted here is that signals flow
up/right on odd-numbered track and down/left on even numbered
tracks.

The data routing channels employ 8 multi-bit tracks, 4 for each di-
rection. The width of each track is the same as the capacity of data
latches, that is 40 bits. The control routing channels are composed of
128 single-bit tracks, 64 for each direction.

3.2.3 DPB

The detail of the DPB implementation is shown in Figure 3.4. It con-
sists of four 10-bits latches, which gate inputs come from the corre-
spondent CCB placed in the same PSB, while the reset input comes
from a global wire. Input data are selected from the routing channel
through an 8-way multiplexer.

As previously stated, single-driver implementation is used, and
consequently, there is no output connection at wires midpoint, but
DPB outputs are connected to the adjacent SBs multiplexers inputs.
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Figure 3.4: Implementation of the DPB.
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Figure 3.5: Connection between DPB and SBD.

Since two DPBs share the same routing segment, their output is half
connected, i.e., connected with half of the available tracks, following
the connection patterns of Figure 3.5a and 3.5b

3.2.4 CCB

Figure 3.6 shows the block diagram of a CCB. This block is organized
hierarchically.

At the highest level of the hierarchy, a CCB is composed of 8 sub-
blocks (CCB_SUBs). The structure of a CCB_SUB is similar to a logic
cluster of Figure 2.4, and it is shown in Figure 3.7. CCB_SUBs in-
clude the programmable logic of the architecture. They can select in-
puts from both the 128-bit control channel (CIO) and the data chan-
nel. These sub-blocks are divided into two sets of 4 CCB_SUB each.
Among each set, there is a local interconnect. The first set of 4 sub-
blocks can produce the gate signals directly linked to the correspon-
dent DPBs, allowing to control the flow of an asynchronous pipeline.
The rest of the sub-blocks can control adjacent SBDs multiplexers through
16 sbd_cont signals. Each CCB_SUB is half connected in input to the
CIO, while the connection flexibility in output is Fc_out = 1/8, i.e., 16
wires can be connected to CCB_SUB output.
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It is also possible to select inputs from the data channel. The 20
most significant bits of two data tracks can be chosen from one CCB_SUB.
This feature is useful for recognizing flit type in a flit-based transmis-
sion. Additionally, 8 global signals can connect to the CCB_SUB in-
puts.

Except for the mutex element, the six FBs that compose CCB_SUB
are similar to BLEs shown in Figure 2.3. Functionalities are enhanced
by adding a C-Muller and a latch as further asynchronous elements
(Figure 3.8).

Figure 3.9 explains the adopted mechanism to control SBDs at run-
time, allowing to include user-controlled multiplexers in the circuit.
The selection bits of the SBD multiplexers do not come directly from
the bitstream configuration. Instead, for each SBD multiplexer, a con-
figuration one is used to choose whether the selection bits will come
from the configuration bitstream or from signals controlled by the CCB
of the correspondent segment. These specialized signals from the CCB
(sbd_cont) are connected to the configuration multiplexer by a direct
route.

3.3 Tool Flow

Similarly to the architecture section 3.2, the focus of this section is a
tool flow that maps a communication user-circuit on the asynchronous
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reconfigurable fabric. For the synchronous islands, any commercial
CAD can be used.

The tool flow here introduced can compile a synthesizable Verilog
user-circuit into a configuration bitstream for the proposed architec-
ture. The novel coarse-grained architecture proposed in this thesis has
some inherent characteristics that prevent from using established tool
flows. Existent FPGA tools are designed for fine-grained logic, so new
functionalities have been added to support placement and routing of
the coarse-grained logic. The tool has been developed in Python [74]
for simplicity and readability.

Figure 3.10 illustrates complete tool flow, from the Verilog descrip-
tion to the bitstream configuration.

3.3.1 Front-end synthesis

The mapping process of user-circuits onto the proposed coarse-grained
architecture needs a different approach, respect to the standard flow il-
lustrated in Section 2.1.2. Nevertheless, the initial elaboration, the so-
called front-end synthesis, must be the same [75]. The front-end syn-
thesis involves parsing the user-circuit description, elaborating and
expressing it in some convenient format for the tools to perform the
mapping.

Odin [30] and ABC [32] are used for the front-end synthesis, in
the same manner as in VTR, the well-established academic tool flow
of Figure 2.6. Odin receives as inputs the user Verilog description
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and a top-level description of the resources available in the architec-
ture. It elaborates the design to single-bit operations, producing then
a BLIF file, that is a textual description of the circuit at a logic-level
[31]. ABC subsequently elaborates the file, cleans up dangling logic
and technology-maps the logic to LUTs. One more step is needed after
ABC elaboration, rm_POandLC_dummy.py, which eventually removes
doubled signal names for output ports as well as dummy macros in-
troduced in the source Verilog file for cutting combinatorial loops to
avoid an ABC bug.

3.3.2 Back-end synthesis

After the front-end, the following phase is the back-end synthesis, also
known as physical synthesis. This phase, which involves clustering,
placement and routing steps, is performed separately for control cir-
cuit and datapath. Therefore, the first step is to divide the control logic
portion of the circuit from the datapath.

The step of the tool flow that performs this separation, reduce_blif.py,
accepts the BLIF file from the front-end synthesis as input, and pro-
duces as output two different files, a description for the datapath (data_path.blif )
and a description of the control circuit netlist (ctrl_path.blif ). Further-
more, the reduce step generates additional information needed in the
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following placement stage: the lists of the elements to be placed for
both control logic and datapath. At this point the tool flow branches
in two parallel elaborations.

Datapath synthesis

Regarding the datapath, the placement is conducted manually. Given
the relatively small size of the reconfigurable circuit, it is easy or some-
times efficient for users to specify placement information for datapath.

The elements to be placed are I/O pads, latches, and user-controlled
SBD multiplexers. Each latch must be placed in a DPB, while for data
multiplexers, if any, must be specified the position in the selected SBD.
Particular attention must be taken in placing all the datapath compo-
nents in a way that is coherent with the channel tracks direction.

Once every latch, multiplexer and I/O pad has a location on the
circuit, the routing phase determines how to connect all the elements.
In the datapath portion of the circuit, the connections are represented
as 40-bit wide routes. Each route has exactly one source and one or
more sinks. The routing is performed using channel tracks and SBDs.

Since only inter-PSB routing is needed for the datapath, the XY-
routing algorithm is used.

Control logic synthesis

Once the routing of the datapath is completed, back-end synthesis for
the control portion of the circuit can be performed.

At this stage, all the control Logic Elements (LEs) present in the list
generated at the reduce step must be mapped to some FBs in the archi-
tecture. Similar to the datapath portion, it is needed to feed the place-
ment tool with some auxiliary information. More in detail, for each LE
the correspondent PSB location must be manually decided. However,
connection constraints limit the possible locations. For example, the
logic elements that provide gate or SBD control signals must be in the
same PSB of the related latch or SBD multiplexer.

Once the PSB has been decided, the FB location of each LE is de-
termined. The placement problem of LEs in FBs within the PSB can be
formulated as a Boolean Satisfiability problem (SAT) [76]. In fact, the
problem is to obtain a placement that satisfies all the constraints due
to the limited connection between LEs available.
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SAT problem can be expressed by Conjunctive Normal Form (CNF),
that is: given a set of variables, assign a Boolean value to all of them
such that a given conjunction (AND) of clauses is satisfied, i.e. true,
where a clause is a disjunction (OR) of literals, and a literal is a positive
or negative variable. The problem is solved and is satisfied if such a
set of variables exists, otherwise the problem is unsatisfied. The SAT-
solver used in the tool is MiniSAT [77], a widely-used, minimalistic,
open-source SAT.

In our problem each LE is specified by four true SAT variables: two
variables for defining the CCB_SUB location, one for the FB and one
eventually for which mutex output select. Encoding the constraints
for the SAT problem means to write down clauses that come from un-
acceptable solutions. For example:

• For one LE at least one FB should be selected.

• For one LE no more than one FB should be selected.

• Two LEs can’t be placed in the same FB.

• If two LEs are connected, they must be placed in two FB that can
be connected.

• Inter-PSB communications should not intersect.

In Figure 3.11 an example of how the variables uniquely define the
position in the CCB is illustrated. In the example, for a certain LE, the
SAT-solver has found out that the true variables that satisfy the con-
straints are LE|S1, LE|SS1, LE|5, LE|out1. The resulting LE position
is then on the FB5 of the CCB_SUB3. The details of the constraints
encoding can be found in the Appendix A.

An incremental solver approach [78] is used for guaranteeing the
correct placement when there is congestion on LUTs inputs, a situation
that cannot be encoded as a constraint a priori.

The SAT-solver provides one among all the possible solutions, that
is accepted without optimization. Moreover, if too many LEs are placed
within the same CCB, the SAT-solver is not able to provide a solution
in an acceptable amount of time. Thus, if this is the case, the user must
rearrange the placement, spreading the elements in different CCBs.

For the control logic, the router used is based on a breadth-first
search algorithm. Routing is done by expanding the routing wave
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Figure 3.11: SAT variables example.

front from the source along all the possible branches until the first des-
tination is reached. More efficient algorithms are available [79][80],
but, due to the small scale of the circuit, the breadth-first search routes
in an acceptable amount of time. For a route with n sinks, the router is
involved n times to perform the routing.

Finally, the bit stream generation configures all the reconfigurable
elements to make the circuit behave as designed.

3.4 Mapping example

In this section a full example of mapping an user-circuit onto the pro-
posed asynchronous architecture is shown. A simple 4-stages mouse-
trap FIFO has been chosen for the example. Here, we will go from the
Verilog description though the design flow until the bitstream genera-
tion, following the steps of Figure 3.10.

The Verilog description of the user-circuit must be done aware of
the hard blocks available in the architecture. These hard blocks are de-
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fined in the architecture file that is an input for ODIN. A file snippet of
this architectural description file is shown in Figure 3.12. With refer-
ence to the file snippet, the keyword "D_dl_blk" directs ODIN to syn-
thesize a 40-bit DPB latch. The architecture file lists the input and the
output ports of each hard block. The other blocks listed in the archi-
tecture file are: C-element, mutex, latch, flip-flop, and user-controlled
mux.

<model name="D_dl_blk">
<input_ports>

<port name="I"/>
<port name="G"/>

</input_ports>
<output_ports>

<port name="O"/>
</output_ports>

</model>

Figure 3.12: Example declaration of a hard block.

Accordingly, the instantiation of the hard blocks in the Verilog de-
scription has to follow the architectural declaration. Figure 3.13 illus-
trates example Verilog code for the instantiation of a mousetrap stage
using single latch and 40-bit latch hard block.

The result of ODIN and ABC elaborations is a BLIF file netlist that
is subsequently separated in control and datapath portions. Basically,
the datapath portion comprehends all the elements connected to a 40-
bit latch or a user-controlled mux, the rest is part of the control path.
At this point, the lists of the elements to be placed are provided, named
accordingly the BLIF terminology.

The next step consists then to manually place the listed datapath
elements onto the coarse-grained architecture. Careful placement is
needed to guarantee all the connections between the elements, aware
of the connection patterns of Figure 3.5. For our FIFO example, the
datapath manual placement onto a 4x4 architecture is shown in Figure
3.14. The resulting routing is then shown in Figure 3.15. The posi-
tion of each datapath latch is specified by CLB number, PSB side (0=X,
1=Y), and DPB number. In the case of user-controlled multiplexers the
SBD position and side must be specified. Moreover, the I/O connec-
tions must be defined, specifying the pad coordinates, the directions
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module mt_stage(idata, odata, ireq, oack, oreq, iack,
rstb);
input [39:0] idata;
output [39:0] odata;
input ireq, iack, rstb;
output oreq, oack;
wire gate;

D_dl_blk ldd(.I(idata), .G(gate), .O(odata));
C_d_latch ldc(.D(ireq), .G(gate), .RD(rstb), .Q(oreq)

);

assign gate = ~(oreq ^ iack);
assign oack = oreq;

endmodule

Figure 3.13: Example instantiation of hard blocks in a mousetrap stage
module.

and the bus number.
Once the datapath placement and routing has been defined, the

control path elements must be placed. While for the datapath sec-
tion defining the position of each element is relatively simple, the high
number of connection constraints makes this operation though for the
control path. Every elements in the placement list must be assigned to
an FB into the CCB. Employing the placement tool described in Sec-
tion 3.3.2, the user only has to define the PSB position of each logic
element.

In the case of the FIFO example, a possible input to the placement
tool is shown in Figure 3.16. All the logic elements to be placed must
be listed into each PSB group. Since these lists can become quite large,
the keywords "EXACT" and "AND" are used reduce them. EXACT is
used to place one single element, so the complete name must be spec-
ified. On the other hand, AND is used to list multiple logic elements
related to the same module, so the common part of the names is listed.
For example, writing "AND: mt_stage_inst_0" means that in that par-
ticular PSB all the logic elements which name contains "mt_stage_inst_0"
are listed. Moreover, the exact name of the I/O pins must be specified
in the selected I/O pad list. Some constraints exist when placing the
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le.top.mt_stage+mt_stage_inst_0.D_dl_blk+ldd^O~39 :
root.clb[0].psb[0].dpb[0].dl_blk[0]

le.top.mt_stage+mt_stage_inst_1.D_dl_blk+ldd^O~39 :
root.clb[0].psb[0].dpb[1].dl_blk[0]

le.top.mt_stage+mt_stage_inst_2.D_dl_blk+ldd^O~39 :
root.clb[4].psb[0].dpb[0].dl_blk[0]

le.top^odata~39 :
root.clb[4].psb[0].dpb[1].dl_blk[0]

top^idata : Pad_DB_in_1_1_W[1]
top^odata : Pad_DB_out_1_1_W[2]

Figure 3.14: Datapath placement file.

logic elements in the architecture. Elements that produce a gate signal
for the DPBs must be placed in the same PSB, and those that produce
control signals for the user-controlled multiplexers must be placed in
the adjacent PSB.

Based on the mentioned information, the placement tool generates
an output that specifies the FB position of each logic element, and the
CIO position of each I/O signal, similarly to the datapath placement
seen in Figure 3.14. The control path routing can be now obtained. The
result for the FIFO example is shown in Figure 3.17. Finally, the rout-
ing description and the BLIF file feed the bitstream generation script,
that fills the configuration bits, given as an input to the architecture.
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Figure 3.15: FIFO datapath routing result.

PSB_1_1_X begin : # stages 0-1
EXACT: le.top^oack
AND: mt_stage_inst_0
AND: mt_stage_inst_1

end

PSB_2_1_X begin : # stages 2-3
EXACT: le.top^oreq
EXACT: le.top^odata~39
AND: mt_stage_inst_2
AND: mt_stage_inst_3

end

PSB_0_1_X begin : # for I/O Pad_CIO_1_1_W
top^ireq
top^oreq
top^iack
top^oack

end

Figure 3.16: Control circuit placement.
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Figure 3.17: FIFO control path routing result.



Chapter 4

Performance Evaluation

The previous chapter completes the description of the architecture and
the tool flow for the proposed reconfigurable circuit. The next step is
to evaluate the performance obtained when mapping benchmark user-
circuits onto the FPGA. As the focus for the architecture and the tool
flow was on the asynchronous reconfigurable fabric, similarly, the per-
formance evaluation is conducted on the same portion of the circuit.
Therefore, the benchmarks used are three different communication-
purpose user-circuits: a four-stages asynchronous pipeline, a crossbar
switch, and an asynchronous router. Besides, a combinatorial user-
circuit (ripple-carry adder) is also tested to evaluate the performance
outside the intended field of use.

Since the project is still in development phase, the simulation ap-
proach is adopted for this preliminary evaluation results. To prove
the effectiveness of the proposed architecture, the simulation results
are compared with an asynchronous FPGA following a fine-grained
style. The coarse-grained architecture is expected to outperform the
fine-grained one when built-in datapath structures are used (i.e., data
latches, user-controlled multiplexers), while similar performances are
expected for user-circuits that do not exploit datapath functionalities.

For the fine-grained architecture, VPR tool is used for develop-
ment. For this tool, the front-end synthesis is the same as the one in-
troduced in Section 3.3.1 and the standard VPR place & route is used
for the physical synthesis.

The simulation flow, illustrated in Figure 4.1, is the same for the
fine-grained and coarse-grained architecture. Delays for the Standard
Delay Format (SDF) file are extracted from a 130nm bulk CMOS tech-

45



46 CHAPTER 4. PERFORMANCE EVALUATION

Architecture Verilogdescription

Design Compiler

.v and .sdf

vcs

Logic synthesis

Verilog simulation

Testbench

Config. bits

InnovusPlace&Route

.v and .sdf

vcsVerilog simulation

(User-circuit independent)

(From 
user-circuit)

Figure 4.1: Tool flow for simulation.

nology library. For more accurate delays evaluation, physical synthe-
sis would be needed in a future development stage.

The rest of the chapter is organized as follows. Section 4.1 illus-
trates the fine-grained architecture used for comparison. Section 4.2
presents in detail the set-up and the results of the experiments.

4.1 Fine-grained FPGA

The fine-grained architecture used for the comparison with the pro-
posed coarse-grained one is built as a traditional island-style FPGA. It
has been designed as an asynchronous FPGA targeting single-rail data
encoding. The architecture is modeled on top of the Classical Architec-
ture template provided by VTR tool flow [12]. This Classical Architec-
ture consists of an array of homogeneous CLBs, built similarly to the
cluster of N BLEs shown in Figure 2.4. The template is then modified
as depicted in Figure 4.2. The CLB has eight general inputs and seven
BLEs per cluster plus one Special Logic Element (SLE), and each of the
LUTs has four inputs. Each BLE has a LUT with the output optionally
latched or registered, while an SLE accommodates the asynchronous
elements, a mutex, and a C-element. The routing architecture uses
wire segments of length 4, channel width 64, unidirectional single-
driver routing, Wilton switch box [81]. CLBs can be connected on the
four sides, are fully connected in input while the connection flexibility
in output is Fc_out = 1/4, i.e., 16 wires can be connected to CLB output.
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Figure 4.2: Fine-grained CLB architecture.

There are four I/O pins per I/O block.
The entire VTR flow is used for the synthesis. The front-end syn-

thesis is the same for the proposed architecture, described in Section
3.3.1. The back-end synthesis, in this case, reckons on VPR, which
implements simulated annealing for the placement and Pathfinder ne-
gotiated congestion algorithm for the routing [79][33].

For the simulation, a behavioral description of the architecture it-
self is needed. For this purpose, a script has been developed based
on Zuma [82], an open-source FPGA overlay (also called "FPGA-on-
an-FPGA"). In our case, Zuma is not used for its primary purpose of
FPGA overlay. Instead, it is used to read the VPR output and to con-
struct an internal data structure. Then, the script generates a behav-
ioral Verilog description of the FPGA architecture, which is an input
of Design Compiler, as well as the configuration bitstream used for the
simulation, as shown in Figure 4.1

4.2 Results

Here the experimental results are presented. For the circuits where an
asynchronous pipeline is present, three metrics are taken into account
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for determining the performance:

• forward latency: time interval reqin → reqout when the pipeline
is empty, i.e., slow injection rate and fast consuming rate.

• backward latency: time interval ackin → ackout when the pipeline
is full, i.e., fast injection rate and slow consuming rate.

• throughput: inverse of the time interval between two consecu-
tive reqout when the pipeline is full, i.e., fast injection rate and
fast consuming rate.

The asynchronous pipeline chosen for the evaluation is the mouse-
trap pipeline (Section 2.2.2) because it has shown to have good per-
formance and it can be implemented using ordinary logic. There-
fore, a two-phase bundled data handshake protocol is used. Differ-
ent pipelines may be implemented and evaluated, as well as different
protocols. However, the proposed architecture does not allow to im-
plement a dual-rail encoding.

As previously stated (Section 2.2.2), the bundled data protocol in-
volves the use of delay matching to guarantee that the request signal
arrives at the receiver after every data bit is stable and valid, and that
data remains stable for a hold time after the acknowledge signal. This
delay matching on req and ack is usually implemented via an inverter
chain or a copy of the critical path. In our case, latches available in the
architectures are used in transparent mode for creating delay elements.
Moreover, for reconfigurable circuits, the delay additionally depends
on the relative position of the elements onto the device. Therefore, the
evaluation of the delay needed can only be performed after the place
& route phase. Here, an iterative process is used: no delay is added at
the first iteration, and it is incremented until the first correct configu-
ration is reached. To be noted, however, that it may be possible that,
using a different place & route algorithm, the same number of latches
added is not enough due to different routing delays.

Finally, the logic array size is decided as the minimum needed to fit
the most complex circuit of the set of experiments, that is a five-ports
asynchronous router. Accordingly, the fine-grained logic array size is
25x25 CLBs, while the coarse-grained one is 4x4 CLBs.
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Figure 4.3: Four stages asynchronous pipeline fine-grained mapping.

4.2.1 FIFO

In the most straightforward asynchronous pipeline, the logic blocks
between two adjacent stages are just wires, so that the pipeline acts as
a FIFO buffer with data being enqueued by the input request signal
and data being dequeued by the output acknowledge signal.

Figure 4.3 shows the results of the place & route on the fine-grained.
Coarse-grained mapping has been shown in details in Section 3.4.

It is interesting to note that in the fine-grained implementation it
has been needed to add three latches delay on the acknowledge line
of each pipeline stage and six latches delay on the output request line,
while for the coarse-grained architecture only one latch on the output
request was added. The reason for this behavior is that in the coarse-
grained architecture data-bits follow the same path, thanks to DPBs
and separated data-tracks, thus the dispersion on the arrival time is
less accentuated than the fine-grained. This behavior is common for
the other user-circuits analyzed.

Table 4.1 presents the simulation results for the FIFO user-circuit.
Here the proposed architecture performs up to 2.3 times better than
the classical architecture.

4.2.2 Crossbar

A fundamental element in the construction of a router is the crossbar
switch. This device has multiple inputs and multiple outputs and is
capable, in general, of flexibly connecting input ports to output ports.
In the specific case of a crossbar switch for mesh-type topology routers,
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Table 4.1: FIFO simulation results.

Forward Backward
Latency Throughput Latency

(ns) (MHz) (ns)

Fine-grain 26.90 55.83 39.80

Coarse-grain 11.56 119.76 17.85

MUX

MUX

MUX

MUX

MUX

IN0 IN1 IN2 IN3 IN4

OUT0

OUT1

OUT2

OUT3

OUT4

Figure 4.4: 5x5 crossbar block diagram.

it has five ports and is not fully populated, i.e., equally labeled ports
cannot be connected (e.g., North input to North output). The crossbar
can be easily implemented with standard multiplexers, as shown in
Figure 4.4.

Regarding the coarse-grained approach, the crossbar adopts the
user-controlled multiplexers available in the architecture. It is worth to
discuss some implementation details about the mapping of the cross-
bar on an SBD, as shown in Figure 4.5. To build the crossbar out of the
provided user-controlled multiplexer, it has to be guaranteed at place-
ment time that each input comes from a different direction. Since there
are five inputs and four SBD sides, at least one input must be on all the
sides of the SBD (in the case in Figure 4.5 it is the input port number
3, the dashed line). Therefore, one selected data input must be routed
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Figure 4.5: 5x5 crossbar mapping detail.

through data latches adjacent to the SBD. This behavior has to be spec-
ified in the Verilog description of the user-circuit, as the transparent
latches used for this trick must be placed in DPBs as every other latch.

The user-circuit is composed of the crossbar itself inserted between
two mousetrap pipeline stages. The mechanism for the control logic is
the same used in the router described by Ghiribaldi et al. [66].

In this case, the fine-grained version of the user-circuit slightly dif-
fers from the coarse-grained one. In fact, the former architecture has
400 I/O pins, not enough to connect 400 data bits plus 35 control bits.
For this reason, the word width, in this case, has been reduced to 34
bits, based on the assumption that more data bits do not strongly im-
pact the performance: wider words may increase the dispersion of the
data delays, and some more delay elements may be needed.

Figure 4.6 shows the results of the place & route on the fine-grained
(4.6a) and on the coarse-grained architecture (4.6b, 4.6c).

Table 4.2 presents the simulation results for the crossbar user-circuit.
Here the proposed architecture throughput is 3 times higher than the
classical architecture.

4.2.3 Router

Merging the FIFO, the crossbar, and some more control logic, a com-
plete asynchronous NoC router is obtained. The additional logic re-
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Figure 4.6: 5x5 crossbar mapping.

Table 4.2: 5x5 crossbar simulation results.

Forward Backward
Latency Throughput Latency

(ns) (MHz) (ns)

Fine-grain 33.64 23.17 26.35

Coarse-grain 12.41 68.63 14.96
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quired is for the computation of the packet route and the arbitration
between concurrent requests on the same output port.

The router architecture selected as user-circuit is the NoC switch
described by Ghiribaldi et al. [66]. It is an asynchronous NoC router
relying on 2-phase bundled-data handshake protocol, based on the
mousetrap pipeline. Other features are five input and five output
ports, wormhole switching strategy and algorithmic dimension-order
routing (route first in X, then in Y dimension).

The actual router is preceded by 5 four-stages FIFO buffers, one for
each input port, implemented as the asynchronous pipeline of Section
4.2.1. A route selector recognizes the flit type and extracts the rout-
ing information from the head flit. The request is then propagated
to the selected output port. An asynchronous arbiter guarantees that
one packet per time occupies the output port; it is built with specific
asynchronous components, i.e., C-elements and mutexes. Data are
switched from input ports to output ports by the crossbar described
in Section 4.2.2 The architecture details can be found in the cited paper
[66].

As it has been explained for the crossbar (Section 4.2.2), the word
width for the fine-grained architecture is reduced to 34 bits to allow to
map the user-circuit with the restricted number of pins available. The
crossbar is implemented with the same technique illustrated in Figure
4.5.

Figure 4.7 shows the results of the place & route on the fine-grained
(4.7a) and on the coarse-grained architecture (4.7b, 4.7c).

Table 4.3 presents the simulation results for the router user-circuit.
Here, two kind of latencies are evaluated: the Head Forward Latency is
the latency of the head flit, that goes through the router control logic
to define the output port to be used; the Data Forward Latency is the
latency of the following data flits that do not pass through the routing
logic. The proposed architecture performs up to 3.2 times better than
the classical architecture.

4.2.4 Adder

Finally, a combinatorial user-circuit is tested to evaluate the perfor-
mance of the proposed architecture out of the intended field of ap-
plication. For this purpose, a common combinatorial circuit is used,
a ripple-carry adder, that is nothing else than a chain of full-adders.
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Figure 4.7: 5 ports asynchronous router mapping.

Table 4.3: Asynchronous router simulation results.

Head Data Backward
Fw Latency Fw Latency Throughput Latency

(ns) (ns) (MHz) (ns)

Fine-grain 93.06 57.89 21.00 83.08

Coarse-grain 34.33 19.84 67.52 32.64
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Table 4.4: Ripple Carry Adder simulation results.

Coarse-grained Fine-grained
SAT-solver Manual

(ns) (ns) (ns)

32 bit Adder
Average Delay 13.65 12.10 18.34

Worst Case Delay 66.24 56.06 78.61

64 bit Adder
Average Delay 15.95 13.90 21.95

Worst Case Delay 131.44 109.59 156.75

A 32-bits adder and a 64-bits adder are implemented. No datapath
portion is used for the coarse-grained circuit as it is not possible to
elaborate datapath signals.

The relative simplicity and regularity of the circuit permits to inves-
tigate one further aspect, that is the loss of performance due to SAT-
solver limits. In fact, if there are too many constraints that limit the
solution to few possible configurations, the problem is hard to solve,
and the SAT-solver takes an indefinite amount of time. This case hap-
pens when a large number of LEs is required to be placed in the same
CCB. Thus, there may be some optimal solution that the SAT-solver
cannot provide.

Figures 4.8 and 4.9 show the mappings of the adders onto the ar-
chitectures. It is possible to notice that using the manual placement a
more compact mapping can be achieved, while, for making the SAT-
solver provide a solution, functional blocks have to be spread along
the circuit.

Table 4.4 shows the results of the comparison. First of all, it can
be noted that the coarse-grained architecture performs slightly better
than the fine-grained one, regardless of the adopted mapping. The im-
provement, however, is much smaller with respect to the user-circuits
that employ the special-purpose components (datapath, multiplexers).

Secondly, the manual mapping outperforms the SAT-solver one for
up to 20%. It means that coarse-grained architecture performance may
be improved by using a more efficient placement algorithm.
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Figure 4.8: Ripple carry adder 32-bit mapping.
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Figure 4.9: Ripple carry adder 64-bit mapping.
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Table 4.5: Relative performance improvement.

Head Forward Backward
Fw Latency Latency Throughput Latency

FIFO — 2.3 2.1 2.2

Crossbar — 2.7 3 1.8

Router 2.7 2.9 3.2 2.5

4.2.5 Summary

This section presented the preliminary performance evaluation of the
proposed asynchronous reconfigurable fabric for GALS systems. A
fine-grained standard FPGA has been adopted as the comparison with
the proposed coarse-grained style. Instead of the absolute timing val-
ues, a relative comparison is significant. Table 4.5 and Figure 4.10 sum
up the gain in performance obtained by the proposed architecture.

Overall, for every performance indicators, the benefits are evident,
as throughput is more than doubled and latency is more than halved.
The improvement is substantial if the user-circuit exploits the pecu-
liar characteristics of the architecture (DPB and user-controlled multi-
plexers). In fact, the crossbar and the router benefit the most of these
characteristics, as they gain advantage from the datapath structures.

In conclusion, these preliminary results are overall positive, show-
ing up a clear benefit in the use of the coarse-grained architecture over
the fine-grained one.
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Chapter 5

Conclusions

This chapter provides the reader some reflections about the work, an
overall sight of what has been done and what can be improved. Fur-
thermore, some future directions are suggested.

Section 5.1 concludes the thesis discussing the outcome. Section 5.2
further analyzes the limitations of this research and the validity of the
results, providing guidelines for future work built upon this project.

5.1 Conclusions

The research in this thesis has contributed to GALS FPGA architec-
ture. It proposes a novel asynchronous reconfigurable device made of
synchronous FPGAs surrounded by an asynchronous fabric. The cir-
cuit aims to map asynchronous NoCs and GALS systems. Support
for asynchronous pipeline is embedded in the architecture. A spe-
cialized tool flow is developed for the proposed coarse-grained FPGA
architecture. This tool enables placement in the coarse-grained CLBs
that complies with the architectural constraints. The proposed archi-
tecture and the tool flow facilitate the study of the interface between
asynchronous and synchronous systems, asynchronous communica-
tion optimization, and GALS NoC systems. The key characteristics
of the proposed architecture style are separated datapath and control
logic, coarse-grained CLBs, and user-controlled multiplexers for data-
path.

The main achievement of this work was to prove the effectiveness
of the proposed architecture over a standard fine-grained FPGA for
communication-purpose asynchronous circuits. The metric used to

60
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evaluate the architecture is the performance. The benefit of the new
architecture should be greater enough over a standard architecture to
justify the development effort. Performances are measured using the
synthesis results from four different benchmark circuits. Three of them
are communication circuits that employ asynchronous pipeline. These
are the types of circuits that are expected to be implemented on the
proposed reconfigurable circuit, so the primary results are extracted
from these evaluations. The fourth circuit uses a combinatorial logic,
which does not map well onto the proposed architecture. This circuit,
in fact, does not exploit any inherent element provided by the archi-
tecture.

The proposed architecture is presented in Chapter 3. The proposed
CLB is a unique combination of data latches, asynchronous resources,
and traditional FPGA BLEs. The architecture is presented in detail and
how it implements a circuit is shown.

In Chapter 4 the results of the comparison between coarse-grained
and fine-grained style can be found. For the communication-purpose
user-circuits, the proposed architecture outperforms the classical one,
allowing a throughput improvement up to 3.2x. Surprisingly, the pro-
posed architecture shows slightly better performance respect to the
fine-grained one also in the case of combinatorial circuit, up to 27%.

Overall, the results presented in this thesis prove that the proposed
architecture performs considerably better than a classical one for asyn-
chronous communication circuits. Thus, this early evaluation can be a
starting point for the development of a complete reconfigurable GALS
system.

5.2 Limitations and Future Work

Several limitations were encountered during this research, that, how-
ever, do not affect the thesis outcome. There could be improvements to
this work to address some current issues, and further research based
on the architecture proposed in this thesis.

The main focus of this thesis is the reconfigurable asynchronous
interconnect between synchronous FPGAs. In future work, the inter-
face between synchronous/asynchronous elements can be explored,
to allow the evaluation of the GALS FPGA device as a whole. A fair
comparison between the device and other relevant asynchronous FP-
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GAs [54][11] should be provided to establish the effective advantage
to use the proposed style.

The limitations of the current tool would merit future work since
some essential functionalities are still missing. At the current status,
it is impossible to handle large and complex user-circuits, due to the
manual steps required by the tool. A fully automatic tool flow is re-
quired, that would efficiently place each asynchronous pipeline stage
in the architecture PSBs. A first attempt in this direction has been
made, trying to adapt the VPR simulated annealing approach to the
coarse-grained device. However, this attempt has failed, given the in-
trinsic hierarchical structure of the proposed architecture, as well as
the many constraints that limit the possible connections.

The current placement tool for the control portion of the user-circuit
is an automatic step that merely places the elements accordingly to ar-
chitecture constraints. It provides a placement according to a solution
generated by a SAT-solver, that is one possible solution to the prob-
lem, no optimizations are carried out on it. This placement mechanism
can be improved using incremental SAT-solver techniques: placement
quality should be estimated using some link cost metrics, and, if it
does not meet the requirement, the solution is discarded generating
another SAT solution.

Regarding the simulation, some more parameters can be taken into
account. Area and power estimations are essential indicators of the
quality of a device. This measurement, as well as more accurate delay
models, can be carried out after a physical implementation has taken
place (e.g., by Cadence Innovus).

In conclusion, proposed GALS FPGA device can be used as a re-
configurable device not only for general purpose NoC, but also as
application specific device. In particular, the asynchronous paradigm
fits with the concept of neural networks. The newly proposed device
can be used to directly map, and consequently speed-up convolutional
neural networks.



Bibliography

[1] S. M. Nowick and M. Singh. “Asynchronous Design #x2014;Part
1: Overview and Recent Advances”. In: IEEE Design Test 32.3
(June 2015), pp. 5–18. ISSN: 2168-2356. DOI: 10.1109/MDAT.
2015.2413759.

[2] Ian Kuon, Russell Tessier, and Jonathan Rose. “FPGA Architec-
ture: Survey and Challenges”. en. In: Foundations and Trends R� in
Electronic Design Automation 2.2 (2007), pp. 135–253. ISSN: 1551-
3939, 1551-3947. DOI: 10.1561/1000000005. URL: http://
www.nowpublishers.com/article/Details/EDA-005
(visited on 05/24/2018).

[3] S. M. Trimberger. “Three Ages of FPGAs: A Retrospective on
the First Thirty Years of FPGA Technology”. In: Proceedings of the
IEEE 103.3 (Mar. 2015), pp. 318–331. ISSN: 0018-9219. DOI: 10.
1109/JPROC.2015.2392104.

[4] Andrew Putnam et al. “A Reconfigurable Fabric for Accelerating
Large-scale Datacenter Services”. In: Proceeding of the 41st Annual
International Symposium on Computer Architecuture. ISCA ’14. Pis-
cataway, NJ, USA: IEEE Press, 2014, pp. 13–24. ISBN: 978-1-4799-
4394-4. URL: http://dl.acm.org/citation.cfm?id=
2665671.2665678 (visited on 02/27/2018).

[5] Lei Gong et al. “A Power-efficient and High Performance FPGA
Accelerator for Convolutional Neural Networks: Work-in-progress”.
In: Proceedings of the Twelfth IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis Com-
panion. CODES ’17. New York, NY, USA: ACM, 2017, 16:1–16:2.
ISBN: 978-1-4503-5185-0. DOI: 10.1145/3125502.3125534.
URL: http://doi.acm.org/10.1145/3125502.3125534
(visited on 02/27/2018).

63



64 BIBLIOGRAPHY

[6] Jason Cong et al. “Architecture and Synthesis for Multi-cycle
Communication”. In: Proceedings of the 2003 International Sym-
posium on Physical Design. ISPD ’03. New York, NY, USA: ACM,
2003, pp. 190–196. ISBN: 978-1-58113-650-0. DOI: 10.1145/640000.
640040. URL: http://doi.acm.org/10.1145/640000.
640040 (visited on 10/10/2017).

[7] Akshay Sharma et al. “Exploration of Pipelined FPGA Intercon-
nect Structures”. In: Proceedings of the 2004 ACM/SIGDA 12th In-
ternational Symposium on Field Programmable Gate Arrays. FPGA
’04. New York, NY, USA: ACM, 2004, pp. 13–22. ISBN: 978-1-
58113-829-0. DOI: 10 . 1145 / 968280 . 968284. URL: http :
//doi.acm.org/10.1145/968280.968284 (visited on
10/10/2017).

[8] William Tsu et al. “HSRA: High-speed, Hierarchical Synchronous
Reconfigurable Array”. In: Proceedings of the 1999 ACM/SIGDA
Seventh International Symposium on Field Programmable Gate Ar-
rays. FPGA ’99. New York, NY, USA: ACM, 1999, pp. 125–134.
ISBN: 978-1-58113-088-1. DOI: 10.1145/296399.296442. URL:
http://doi.acm.org/10.1145/296399.296442 (visited
on 10/10/2017).

[9] Li Shang, Alireza S. Kaviani, and Kusuma Bathala. “Dynamic
Power Consumption in VirtexTM-II FPGA Family”. In: Proceed-
ings of the 2002 ACM/SIGDA Tenth International Symposium on
Field-programmable Gate Arrays. FPGA ’02. New York, NY, USA:
ACM, 2002, pp. 157–164. ISBN: 978-1-58113-452-0. DOI: 10.1145/
503048.503072. URL: http://doi.acm.org/10.1145/
503048.503072 (visited on 03/01/2018).

[10] Andrew Royal and Peter Y. K. Cheung. “Globally Asynchronous
Locally Synchronous FPGA Architectures”. en. In: Field Programmable
Logic and Application. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, Sept. 2003, pp. 355–364. DOI: 10.1007/978-
3-540-45234-8_35. URL: https://link.springer.com/
chapter/10.1007/978-3-540-45234-8_35 (visited on
10/04/2017).

[11] Xin Jia and R. Vemuri. “A novel asynchronous FPGA architec-
ture design and its performance evaluation”. In: International Con-
ference on Field Programmable Logic and Applications, 2005. Aug.
2005, pp. 287–292. DOI: 10.1109/FPL.2005.1515736.



BIBLIOGRAPHY 65

[12] Jason Luu et al. “VTR 7.0: Next Generation Architecture and
CAD System for FPGAs”. In: ACM Trans. Reconfigurable Technol.
Syst. 7.2 (July 2014), 6:1–6:30. ISSN: 1936-7406. DOI: 10.1145/
2617593. URL: http://doi.acm.org/10.1145/2617593
(visited on 03/05/2018).

[13] S. M. Nowick and M. Singh. “High-Performance Asynchronous
Pipelines: An Overview”. In: IEEE Design Test of Computers 28.5
(Sept. 2011), pp. 8–22. ISSN: 0740-7475. DOI: 10.1109/MDT.
2011.71.

[14] I. Kuon and J. Rose. “Measuring the Gap Between FPGAs and
ASICs”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 26.2 (Feb. 2007), pp. 203–215. ISSN:
0278-0070. DOI: 10.1109/TCAD.2006.884574.

[15] M. H. Ho et al. “Architecture and Design Flow for a Highly Effi-
cient Structured ASIC”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 21.3 (Mar. 2013), pp. 424–433. ISSN:
1063-8210. DOI: 10.1109/TVLSI.2012.2190478.

[16] G. E. Moore. “Cramming more components onto integrated cir-
cuits, Reprinted from Electronics, volume 38, number 8, April
19, 1965, pp.114 ff.” In: IEEE Solid-State Circuits Society Newsletter
11.3 (Sept. 2006), pp. 33–35. ISSN: 1098-4232. DOI: 10.1109/N-
SSC.2006.4785860.

[17] Eriko Nurvitadhi et al. “Can FPGAs Beat GPUs in Accelerating
Next-Generation Deep Neural Networks?” In: Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. FPGA ’17. New York, NY, USA: ACM, 2017, pp. 5–
14. ISBN: 978-1-4503-4354-1. DOI: 10.1145/3020078.3021740.
URL: http://doi.acm.org/10.1145/3020078.3021740
(visited on 02/28/2018).

[18] D. C. Guterman et al. “An electrically alterable nonvolatile mem-
ory cell using a floating-gate structure”. In: IEEE Transactions on
Electron Devices 26.4 (Apr. 1979), pp. 576–586. ISSN: 0018-9383.
DOI: 10.1109/T-ED.1979.19462.

[19] H. C. Hsieh et al. “A 9000-gate user-programmable gate array”.
In: Proceedings of the IEEE 1988 Custom Integrated Circuits Confer-
ence. May 1988, pp. 15.3/1–15.3/7. DOI: 10.1109/CICC.1988.
20872.



66 BIBLIOGRAPHY

[20] K. EI-Ajat et al. “A Cmos Electrically Configurable Gate Array”.
In: 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC.
Digest of Technical Papers. Feb. 1988, pp. 76–. DOI: 10.1109/
ISSCC.1988.663633.

[21] Carl Ebeling et al. “StratixTM 10 High Performance Routable Clock
Networks”. In: Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. FPGA ’16. New
York, NY, USA: ACM, 2016, pp. 64–73. ISBN: 978-1-4503-3856-1.
DOI: 10.1145/2847263.2847279. URL: http://doi.acm.
org/10.1145/2847263.2847279 (visited on 02/28/2018).

[22] Julien Lamoureux and Steven J. E. Wilton. “FPGA Clock Net-
work Architecture: Flexibility vs. Area and Power”. In: Proceed-
ings of the 2006 ACM/SIGDA 14th International Symposium on Field
Programmable Gate Arrays. FPGA ’06. New York, NY, USA: ACM,
2006, pp. 101–108. ISBN: 978-1-59593-292-1. DOI: 10.1145/1117201.
1117216. URL: http://doi.acm.org/10.1145/1117201.
1117216 (visited on 03/08/2018).

[23] Fei Li et al. “Architecture Evaluation for Power-Efficient FPGAs”.
In: in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays. 2003,
pp. 175–184.

[24] Carl Ebeling, Darren C. Cronquist, and Paul Franklin. “RaPiD —
Reconfigurable pipelined datapath”. en. In: Field-Programmable
Logic Smart Applications, New Paradigms and Compilers. Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg, Sept.
1996, pp. 126–135. DOI: 10.1007/3-540-61730-2_13. URL:
https://link.springer.com/chapter/10.1007/3-
540-61730-2_13 (visited on 03/08/2018).

[25] Alexander (Sandy) Marquardt, Vaughn Betz, and Jonathan Rose.
“Using Cluster-based Logic Blocks and Timing-driven Packing
to Improve FPGA Speed and Density”. In: Proceedings of the 1999
ACM/SIGDA Seventh International Symposium on Field Programmable
Gate Arrays. FPGA ’99. New York, NY, USA: ACM, 1999, pp. 37–
46. ISBN: 978-1-58113-088-1. DOI: 10.1145/296399.296426.
URL: http://doi.acm.org/10.1145/296399.296426
(visited on 03/06/2018).



BIBLIOGRAPHY 67

[26] Deming Chen, Jason Cong, and Peichen Pan. “FPGA design au-
tomation: A survey”. In: Foundations and Trends in Electronic De-
sign Automation 1 (Nov. 2006). DOI: 10.1561/1000000003.

[27] P. R. Panda. “SystemC - a modeling platform supporting mul-
tiple design abstractions”. In: International Symposium on System
Synthesis (IEEE Cat. No.01EX526). 2001, pp. 75–80. DOI: 10.1109/
ISSS.2001.156535.

[28] Kristofer Vorwerk. “On the Use of Directed Moves for Placement
in VLSI CAD”. en. In: (July 2009). URL: https://uwspace.
uwaterloo.ca/handle/10012/4528 (visited on 05/24/2018).

[29] Jason Luu, Jason Helge Anderson, and Jonathan Scott Rose. “Ar-
chitecture Description and Packing for Logic Blocks with Hier-
archy, Modes and Complex Interconnect”. In: Proceedings of the
19th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 227–
236. ISBN: 978-1-4503-0554-9. DOI: 10.1145/1950413.1950457.
URL: http://doi.acm.org/10.1145/1950413.1950457
(visited on 04/21/2018).

[30] P. Jamieson et al. “Odin II - An Open-Source Verilog HDL Syn-
thesis Tool for CAD Research”. In: 2010 18th IEEE Annual Inter-
national Symposium on Field-Programmable Custom Computing Ma-
chines. May 2010, pp. 149–156. DOI: 10.1109/FCCM.2010.31.

[31] Berkeley Logic Interchange Format (blif) - Semantic Scholar. 1992.
URL: /paper/Berkeley-Logic-Interchange-Format-
(blif)/08a0e4888666cd21c35c47581fd7db249f762ff3
(visited on 03/02/2018).

[32] Robert Brayton and Alan Mishchenko. “ABC: An Academic Industrial-
strength Verification Tool”. In: Proceedings of the 22Nd Interna-
tional Conference on Computer Aided Verification. CAV’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 24–40. ISBN: 978-3-642-
14294-9. DOI: 10.1007/978-3-642-14295-6_5. URL: http:
//dx.doi.org/10.1007/978-3-642-14295-6_5 (visited
on 04/21/2018).

[33] Vaughn Betz and Jonathan Rose. “VPR: a new packing, place-
ment and routing tool for FPGA research”. en. In: Field-Programmable
Logic and Applications. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, Sept. 1997, pp. 213–222. DOI: 10.1007/3-



68 BIBLIOGRAPHY

540 - 63465 - 7 _ 226. URL: https : / / link . springer .
com/chapter/10.1007/3-540-63465-7_226 (visited
on 05/28/2018).

[34] Jens Sparso and Steve Furber, eds. Principles of Asynchronous Cir-
cuit Design: A Systems Perspective. en. Springer US, 2001. ISBN:
978-0-7923-7613-2. URL: //www.springer.com/cn/book/
9780792376132 (visited on 04/28/2018).

[35] A. A. Chien and V. Karamcheti. “Moore’s Law: The First Ending
and a New Beginning”. In: Computer 46.12 (Dec. 2013), pp. 48–
53. ISSN: 0018-9162. DOI: 10.1109/MC.2013.431.

[36] K. J. Kuhn et al. “Process Technology Variation”. In: IEEE Trans-
actions on Electron Devices 58.8 (Aug. 2011), pp. 2197–2208. ISSN:
0018-9383. DOI: 10.1109/TED.2011.2121913.

[37] M. Davies et al. “A 72-Port 10G Ethernet Switch/Router Using
Quasi-Delay-Insensitive Asynchronous Design”. In: 2014 20th IEEE
International Symposium on Asynchronous Circuits and Systems. May
2014, pp. 103–104. DOI: 10.1109/ASYNC.2014.22.

[38] P. A. Merolla et al. “A million spiking-neuron integrated circuit
with a scalable communication network and interface”. en. In:
Science 345.6197 (Aug. 2014), pp. 668–673. ISSN: 0036-8075, 1095-
9203. DOI: 10.1126/science.1254642. URL: http://www.
sciencemag.org/cgi/doi/10.1126/science.1254642
(visited on 04/24/2018).

[39] M. Singh et al. “An Adaptively Pipelined Mixed Synchronous-
Asynchronous Digital FIR Filter Chip Operating at 1.3 Gigahertz”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
18.7 (July 2010), pp. 1043–1056. ISSN: 1063-8210. DOI: 10.1109/
TVLSI.2009.2019660.

[40] J. F. Christmann et al. “Bringing Robustness and Power Effi-
ciency to Autonomous Energy Harvesting Microsystems”. In:
2010 IEEE Symposium on Asynchronous Circuits and Systems. May
2010, pp. 62–71. DOI: 10.1109/ASYNC.2010.19.

[41] K. L. Chang et al. “Synchronous-Logic and Asynchronous-Logic
8051 Microcontroller Cores for Realizing the Internet of Things:
A Comparative Study on Dynamic Voltage Scaling and Varia-
tion Effects”. In: IEEE Journal on Emerging and Selected Topics in



BIBLIOGRAPHY 69

Circuits and Systems 3.1 (Mar. 2013), pp. 23–34. ISSN: 2156-3357.
DOI: 10.1109/JETCAS.2013.2243031.

[42] C. Vezyrtzis et al. “A Flexible, Event-Driven Digital Filter With
Frequency Response Independent of Input Sample Rate”. In: IEEE
Journal of Solid-State Circuits 49.10 (Oct. 2014), pp. 2292–2304. ISSN:
0018-9200. DOI: 10.1109/JSSC.2014.2336532.

[43] P. Shepherd et al. “A robust, wide-temperature data transmis-
sion system for space environments”. In: 2013 IEEE Aerospace
Conference. Mar. 2013, pp. 1–13. DOI: 10.1109/AERO.2013.
6497376.

[44] Marco Vacca, Mariagrazia Graziano, and Maurizio Zamboni. “Asyn-
chronous Solutions for Nanomagnetic Logic Circuits”. In: J. Emerg.
Technol. Comput. Syst. 7.4 (Dec. 2011), 15:1–15:18. ISSN: 1550-4832.
DOI: 10.1145/2043643.2043645. URL: http://doi.acm.
org/10.1145/2043643.2043645 (visited on 04/24/2018).

[45] V. Mehrotra and D. Boning. “Technology scaling impact of vari-
ation on clock skew and interconnect delay”. In: Proceedings of
the IEEE 2001 International Interconnect Technology Conference (Cat.
No.01EX461). June 2001, pp. 122–124. DOI: 10.1109/IITC.
2001.930035.

[46] Y. Y. Dai and R. K. Brayton. “Verification and Synthesis of Clock-
Gated Circuits”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (2018), pp. 1–1. ISSN: 0278-0070.
DOI: 10.1109/TCAD.2018.2808231.

[47] C. H. Van Berkel, M. B. Josephs, and S. M. Nowick. “Applica-
tions of asynchronous circuits”. In: Proceedings of the IEEE 87.2
(Feb. 1999), pp. 223–233. ISSN: 0018-9219. DOI: 10.1109/5.
740016.

[48] Michiel Ligthart et al. “Asynchronous Design Using Commer-
cial HDL Synthesis Tools”. In: Proceedings of the 6th International
Symposium on Advanced Research in Asynchronous Circuits and Sys-
tems. ASYNC ’00. Washington, DC, USA: IEEE Computer Soci-
ety, 2000, pp. 114–. ISBN: 978-0-7695-0586-2. URL: http://dl.
acm.org/citation.cfm?id=785166.785308 (visited on
04/26/2018).



70 BIBLIOGRAPHY

[49] J. Oberg, J. Plosila, and P. Ellervee. “Automatic synthesis of asyn-
chronous circuits from synchronous RTL descriptions”. In: 2005
NORCHIP. Nov. 2005, pp. 200–205. DOI: 10.1109/NORCHP.
2005.1597024.

[50] S. B. Furber and P. Day. “Four-phase micropipeline latch con-
trol circuits”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 4.2 (June 1996), pp. 247–253. ISSN: 1063-8210. DOI:
10.1109/92.502196.

[51] I. E. Sutherland. “Micropipelines”. In: Commun. ACM 32.6 (June
1989), pp. 720–738. ISSN: 0001-0782. DOI: 10.1145/63526.
63532. URL: http://doi.acm.org/10.1145/63526.
63532 (visited on 04/29/2018).

[52] M. Singh and S. M. Nowick. “MOUSETRAP: High-Speed Transition-
Signaling Asynchronous Pipelines”. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 15.6 (June 2007), pp. 684–
698. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2007.898732.

[53] Andrew Matthew Lines. Pipelined Asynchronous Circuits. Report
or Paper. Jan. 1998. URL: http://resolver.caltech.edu/
CaltechCSTR:1998.cs-tr-95-21 (visited on 05/10/2018).

[54] R. Manohar. “Reconfigurable Asynchronous Logic”. In: IEEE Cus-
tom Integrated Circuits Conference 2006. Sept. 2006, pp. 13–20. DOI:
10.1109/CICC.2006.320939.

[55] E. Beigne and P. Vivet. “Design of on-chip and off-chip interfaces
for a GALS NoC architecture”. In: 12th IEEE International Sym-
posium on Asynchronous Circuits and Systems (ASYNC’06). Mar.
2006, 10 pp.–183. DOI: 10.1109/ASYNC.2006.16.

[56] T. Chelcea and S. M. Nowick. “Robust interfaces for mixed-timing
systems”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 12.8 (Aug. 2004), pp. 857–873. ISSN: 1063-8210. DOI: 10.
1109/TVLSI.2004.831476.

[57] P. Teehan, M. Greenstreet, and G. Lemieux. “A Survey and Tax-
onomy of GALS Design Styles”. In: IEEE Design Test of Computers
24.5 (Sept. 2007), pp. 418–428. ISSN: 0740-7475. DOI: 10.1109/
MDT.2007.151.



BIBLIOGRAPHY 71

[58] M. Krstic et al. “Globally Asynchronous, Locally Synchronous
Circuits: Overview and Outlook”. In: IEEE Design Test of Com-
puters 24.5 (Sept. 2007), pp. 430–441. ISSN: 0740-7475. DOI: 10.
1109/MDT.2007.164.

[59] D. M. Chapiro. “Globally-asynchronous locally-synchronous sys-
tems”. In: Ph.D. Thesis (Oct. 1984). URL: http : / / adsabs .
harvard.edu/abs/1984PhDT........50C (visited on
03/12/2018).

[60] A. A. Abidi. “Phase Noise and Jitter in CMOS Ring Oscillators”.
In: IEEE Journal of Solid-State Circuits 41.8 (Aug. 2006), pp. 1803–
1816. ISSN: 0018-9200. DOI: 10.1109/JSSC.2006.876206.
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Appendix A

Encoding the architectural con-
straints

This appendix presents the technique used for encoding the architec-
tural constraints into clauses for a boolean SAT problem. As explained
in the body of the thesis (Section 3.3.2), this step is part of the place-
ment tool, required to correctly place the LEs into FBs such that the
subsequently routing step is possible.

The problem should be encoded as a boolean formula in CNF, i.e.,
in a conjunction of clauses, where the clauses are a disjunction of lit-
erals (asserted or negated variables). Given the formula, a popular
SAT-solver is used for extracting a solution, MiniSat [77]. An example
of CNF boolean formula is the following:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

formed by three variables and three clauses. It is easy to verify that it
is satisfied by x1 = False, x2 = False, x3 = (arbitrarily). Note that the
solution is not unique as x3 can assume an arbitrary value.

A.1 Variables

The SAT variables for the placement problem define the LE position in
a PSB. The variable name consists of two parts. The first one is fixed
and uniquely identifies the PSB location and the LE name; the second
one specifies the position inside the PSB. Each LE appears in the for-
mula with 15 variables, of which only four must be true to uniquely

75
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Figure A.1: SAT-solver variables representation.

specify the position of each LE into a PSB. Referring to Figure A.1,
these variables are:

• (PSB_location)_(LE_name)|Sm, with m=0...3

• (PSB_location)_(LE_name)|SSn, with n=0,1

• (PSB_location)_(LE_name)|k, with k=0...6

• (PSB_location)_(LE_name)|outp, with p=0,1

The variable (PSB_location)_(LE_name)|outp indicates the output
of the mutex element, so the true variable is always out0, except the
cases where mutex outputs need to be placed.
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A.2 Clauses

Encoding the constrains means to find a disjunction of variables that
represent the architectural constraint, and then add it as a clause to the
boolean formula.

A trivial constrain states that each LE can be only in one place, then
the clauses to add are the following (given A=(PSB_location) _(LE_name)).

• At least one location should be selected:

(A|S0 ∨ A|S1 ∨ A|S2 ∨ A|S3)∧
(A|SS0 ∨ A|SS1)∧
(A|0 ∨ A|1 ∨ A|2 ∨ A|3 ∨ A|4 ∨ A|5 ∨ A|6)

• No more than one location should be selected:

(¬A|S0 ∨ ¬A|S1) ∧ (¬A|S0 ∨ ¬A|S2) ∧ (¬A|S0 ∨ ¬A|S3)∧
(¬A|S1 ∨ ¬A|S2) ∧ (¬A|S1 ∨ ¬A|S3) ∧ (¬A|S2 ∨ ¬A|S3)∧
(¬A|SS0 ∨ ¬A|SS1)∧
(¬A|0 ∨ ¬A|1) ∧ (¬A|0 ∨ ¬A|2) ∧ (¬A|0 ∨ ¬A|3)∧
(¬A|0 ∨ ¬A|4) ∧ (¬A|0 ∨ ¬A|5) ∧ (¬A|0 ∨ ¬A|6)∧
(¬A|1 ∨ ¬A|2) ∧ (¬A|1 ∨ ¬A|3) ∧ (¬A|1 ∨ ¬A|4)∧
(¬A|1 ∨ ¬A|5) ∧ (¬A|1 ∨ ¬A|6) ∧ (¬A|2 ∨ ¬A|3)∧
(¬A|2 ∨ ¬A|4) ∧ (¬A|2 ∨ ¬A|5) ∧ (¬A|2 ∨ ¬A|6)∧
(¬A|3 ∨ ¬A|4) ∧ (¬A|3 ∨ ¬A|5) ∧ (¬A|3 ∨ ¬A|6)∧
(¬A|4 ∨ ¬A|5) ∧ (¬A|4 ∨ ¬A|6) ∧ (¬A|5 ∨ ¬A|6)

Other constraints come from relative position between two LEs in
the same PSB. Given two LEs, which we denote with A and B, the
following clauses should be true.
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• A and B cannot be placed in the same FB:

(¬A|S0 ∨ ¬B|S0 ∨ ¬A|SS0 ∨ ¬B|SS0 ∨ ¬A|0 ∨ ¬B|0)∧
(¬A|S0 ∨ ¬B|S0 ∨ ¬A|SS0 ∨ ¬B|SS0 ∨ ¬A|1 ∨ ¬B|1)∧
· · ·
(¬A|S0 ∨ ¬B|S0 ∨ ¬A|SS1 ∨ ¬B|SS1 ∨ ¬A|0 ∨ ¬B|0)∧
· · ·
(¬A|S1 ∨ ¬B|S1 ∨ ¬A|SS0 ∨ ¬B|SS0 ∨ ¬A|0 ∨ ¬B|0)∧
· · ·
(¬A|S3 ∨ ¬B|S3 ∨ ¬A|SS1 ∨ ¬B|SS1 ∨ ¬A|6 ∨ ¬B|6)∧

• If a connection from A to B exists, then the connection must be
guaranteed:

(A|S0 ∧ A|SS0 → B|S0 ∨ (B|S1 ∧ B|SS1) ∨ B|S2)∧
(A|S0 ∧ A|SS1 → B|S0 ∨ (B|S1 ∧ B|SS0) ∨ B|S2)∧
(A|S1 → B|S0 ∨ B|S1 ∨B|S2)∧
(A|S2 → B|S1 ∨ B|S2 ∨B|S3)∧
(A|S3 ∧ A|SS0 → B|S1 ∨ (B|S2 ∧ B|SS1) ∨ B|S3)∧
(A|S3 ∧ A|SS1 → B|S1 ∨ (B|S2 ∧ B|SS0) ∨ B|S3)

The last constraints come from connections between LEs in differ-
ent PSBs. The clauses to add to the problem, in this case, are the fol-
lowing.

• If a connection from A to B exists, then the connection must be
guaranteed:

(A|S0 → (B|S0 ∨ B|S2) ∧ A|outp)∧
(A|S1 → (B|S0 ∨ B|S2) ∧ A|outp)∧
(A|S2 → (B|S1 ∨ B|S3) ∧ A|outp)∧
(A|S3 → (B|S1 ∨ B|S3) ∧ A|outp)
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• If the route of a connection from A to B intersects another connec-
tion from C to D, then the source LEs must be in different relative
position within their PSB:

(¬A|S0 ∨ ¬C|S0 ∨ ¬A|SS0 ∨ ¬C|SS0 ∨ ¬A|0 ∨ ¬C|0)∧
(¬A|S0 ∨ ¬C|S0 ∨ ¬A|SS0 ∨ ¬C|SS0 ∨ ¬A|1 ∨ ¬C|1)∧
· · ·
(¬A|S0 ∨ ¬C|S0 ∨ ¬A|SS1 ∨ ¬C|SS1 ∨ ¬A|0 ∨ ¬C|0)∧
· · ·
(¬A|S1 ∨ ¬C|S1 ∨ ¬A|SS0 ∨ ¬C|SS0 ∨ ¬A|0 ∨ ¬C|0)∧
· · ·
(¬A|S3 ∨ ¬C|S3 ∨ ¬A|SS1 ∨ ¬C|SS1 ∨ ¬A|6 ∨ ¬C|6)∧

A.3 Statistics

The SAT problem is an NP-complete problem, that means that each
problem in the NP complexity class is at most as complex as the SAT.
Therefore, in general, no efficient algorithm to solve the SAT problem
exists (assuming that P�=NP). Nevertheless, MiniSat algorithm solves
the problem in our specific case in an acceptable amount of time.

For the NoC router example of Section 4.2.3, on a 4x4 coarse-grained
array, the constraints encoding results in about 5000 variables and 1.2
million clauses. The SAT-solver run-time to find the first solution (i.e.,
no incremental solving used) on a Core i7 @4GHz is about 28 seconds,
that is an acceptable amount of time.
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