POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Civile

Tesi di Laurea Magistrale

Il fenomeno del rockburst: gestione del rischio applicato ad un caso reale

Relatore

Prof. Ing. Daniele Peila

Candidato Matteo Ferranti

A.A.2017/2018

INDICE

LISTA DI	ELLE FIGURE III
LISTA DI	ELLE TABELLEVI
Capitolo I	- Introduzione1
Capitolo I	I - Problematiche tecniche nelle gallerie lunghe e profonde3
2.1 Ro	ttura fragile dell'ammasso roccioso4
2.2 Gra	andi convergenze dell'ammasso roccioso7
2.3 Pre	senza di acqua10
2.4 Ins	tabilità del fronte
2.5 Alt	e temperature
Capitolo I	II - Gestione del rischio nei confronti del rockburst16
3.1 Ide	ntificazione del rischio
3.1.1.	Sorgenti di rischio
3.1.2.	Evento
3.1.3.	Conseguenze
3.2 An	alisi di rischio
3.2.1.	Parametri di resistenza della roccia intatta
3.2.2.	Energia elastica immagazzinata
3.2.3.	Stato tensionale in situ
3.2.4.	Grado di fratturazione
3.2.5.	"GDE multiple graph", Russo, 2014
3.3 Tra	ttamento del rischio
3.3.1.	Monitoraggio in-situ
3.3.2.	Modalità di scavo
3.3.3.	Sistemi di supporti

Capitolo IV - Progettazione delle sezioni tipo57				
4.1	Velocità di eiezione	59		
4.2	Profondità di frattura	52		
4.2	2.1. Approccio empirico	52		
4.2	2.2. Approceio numerico	54		
4.3	Spostamento radiale	59		
4.4	Sezione tipo con bullonatura	70		
4.5	Sezione tipo con centine e barre	71		
Capitolo V - Applicazione ad un caso reale75				
5.1	Inquadramento geologico dell'opera	76		
5.2	2 Valutazione della suscettibilità al rockburst79			
5.3	Progettazione delle sezioni tipo90			
Capito	olo VI - Conclusioni9	2		
BIBL	IOGRAFIA9	14		
APPENDICE A				
ALLEGATO 1				
ALLEGATO 2				
ALLE	ALLEGATO 3 109			

LISTA DELLE FIGURE

Figura 2.1 - Fenomeno di spalling avvenuto durante la costruzione del Tunnel di base
Lötschberg [21]
Figura 2. 2 – Fenomeno di rockburst: danni e frammentazione della roccia (Ortlepp) [21] 5
Figura 2. 3 – Confronto delle zone di rottura al variare della dimensione del tunnel [27]5
Figura 2. 4 – Buckling al piedritto destro in alto e al sinistro in basso [21]7
Figura 2. 5 - Conseguenze del buckling sui supporti in centine e shotcrete (Tunnel di base
Lötschberg). A destra: riprofilatura prima dell'installazione del rivestimento finale [21] 8
Figura 2.6 – Convergenza della galleria dovuta ad un intenso evento di squeezing (Tunnel del
Gottardo) [21]9
Figura 2.7 – TBM monoscudo intrappolata in ammasso soggetto a squeezing (Uluabat Tunnel;
Cortesia di Werner Burger, Herrenknecht AG) [21]9
Figura 2.8 - (a) Afflusso di acqua e materiale fine. Presenza di acqua in (b) discontinuità
aperte o (c) strati di argilla [21]10
Figura 2. 9 - Afflusso d'acqua osservato durante la costruzione del (sx) "Dalazie Aval"
(cortesia di JV RAZEL-BEC) e del (dx) "Lake Mead Intake No. 3 tunnel" (cortesia di JV
Impregilo-Salini-Healy, USA) [21]10
Figura 2. 10 – Pressione dell'acqua agente sull'ammasso roccioso trattato con grouting [21].
Figura 2. II– (a) Instabilita globale del fronte e (b) instabilita locale dovuta all'elevata
pressione idrostatica [21]
Figura 2. 12 – A sinistra: creazione di blocchi al fronte a causa dell'elevato stato tensionale
(Tunnel di base Lötschberg). A destra: TBM bloccata a causa dell'instabilità del fronte (Tunnel
di base del Gottardo) [21]
Figura 2. 13 – Ingresso di acqua ad elevate temperatura (43°C) nel "Tunnel di base del Gottardo"
[21]15
Figura 3. 1 – Diagramma riassuntivo della Metodologia di gestione del rischio [1]18
Figura 3.2 – Grafico GSI (Marinos & Hoek, 2000) con range suggeriti per la potenziale rottura
fragile (Cai et al., 2004 ; [16])

Figura 3.3 – Danno da spalling. Livelli crescenti in senso orario, a partire dall'alto a sinistra
[16]21
Figura 3. 4 – Confronto tra spalling (a sx) e rockburst (a dx) [15]22
Figura 3. 5 - Meccanismi di danno da rockburst, severità di danno e funzioni richieste ai
supporti (modificato da [22])
Figura 3. 6 – Intensità dell'evento in base ai parametri di resistenza della roccia intatta 33
Figura 3. 7 – Prova di compressione monoassiale ed energia elastica immagazzinata (triangolo
in giallo)
Figura 3.8 – Individuazione del valore di CI mediante monitoraggio di a) emissioni acustiche;
b) misura delle deformazioni
Figura 3. 9 - Intensità dell'evento in base al rapporto tra stato tensionale e caratteristiche
meccaniche della roccia intatta
Figura 3. 10 – Determinazione dell'indice RQD (Deere, 1989)
Figura 3. 11 – Schema concettuale per una stima generale del comportamento allo scavo 44
Figura 3. 12 – Multiple graph per la valutazione preliminare del comportamento allo scavo
(Russo, 2007) [34] [36]45
Figura 3. 13 – Rappresentazione 2D dei risultati di un'indagine TSP [2]
Figura 3. 14 – Confronto tra numero di eventi microsismici per metro (linea blu; asse verticale
sinistro) e rockburst osservati per categoria (istogramma rosso; asse verticale destro). È
mostrata tutta la zona monitorata, relativa alla TBM sinistra [42]49
Figura 3. 15 – Le tre funzioni chiave (Reinforce, Retain, Hold) di un supporto in roccia [22].
Figura 3. 16 – I sette principi nella progettazione di supporti per rockburst [24] [11]56
Figura 4. 1 – Relazione tra magnitudo-distanza-ppv [31] (Eq.[4. 5])60
Figura 4. 2 – Estensione del danno intorno ad uno scavo circolare in base all'Eq.[A. 5], al
variare di <i>K</i> 0 > 1
Figura 4.3 – Relazione tra profondità di frattura e massima tensione tangenziale al contorno
(Eq.[4.9])
Figura 4. 4 – Confronto tra profondità di frattura stimata mediante Eq.[A. 5] e correlazione
empirica (Eq.[4. 9])64
Figura 4. 5 – Inviluppo di rottura per il modello DISL (Diederichs, 2007) [16]65

Figura 4.6 – Zone dell'ammasso roccioso influenzate dallo scavo
Figura 4. 7 – Damage zones rappresentate nel modello DISL [16][30]67
Figura 4.8 – Damage zones individuate mediante modello numerico [30]
Figura 4.9 – Schema semplificato del sistema McNally (non in scala). Sezione longitudinale
(a sx), sezione frontale (a dx) e particolare delle barre longitudinali in acciaio inserite tramite
scatolari (in alto, esempio Tunnel de La Maddalena [5])72
Figura 4. 10 – Sistema di sostegno McNally®. A sinistra, in alto gli scatolari saldati sotto lo
scudino per l'installazione delle barre in acciaio; in basso le barre in acciaio poggianti su due
centine consecutive. A destra, una vista globale del sistema di sostegno ad installazione
avvenuta [32]72
Figura 5. 1 – Grafico Burst Potential. Scavo tradizionale
Figura 5. 2 – Grafico Burst Potential. TBM scudata
Figura 5. 3 – Grafico Burst Potential. TBM aperta
Figura 5. 4 – GDE Multiple Graph. Scavo tradizionale
Figura 5. 5 – GDE Multiple Graph. TBM aperta, $k0 = 0.5$
Figura 5. 6 – GDE Multiple Graph. TBM aperta, $k0 = 1$
Figura 5. 7 – GDE Multiple Graph. TBM aperta, k0 = 1.5
Figura A1.1 – GDE Multiple Graph
Figura A2. 1 – Sezione geologica (da p.k. 6+048)
Figura A2. 2 – Sezione geologica (da p.k. 10+910)
Figura A2. 3 – Sezione geologica (da p.k. 18+940)
Figura A2. 4 – Sezione geologica (da p.k.26+850)

LISTA DELLE TABELLE

Tabella 3. 1 – Sorgenti di rischio individuate per un evento di rottura fragile [24]
Tabella 3. 2 – Conseguenze legate all'occorrenza di un evento di rottura fragile in base al tipo
di TBM utilizzata e localizzazione nelle aree di lavoro [21]
Tabella 3. 3 – Classi di conseguenze in termini di costi, ritardi e zona interessata dall'impatto
[1]
Tabella 3. 4 – Classi di probabilità di occorrenza di un evento [1]
Tabella 3. 5 – Matrice di rischio per la determinazione del livello di rischio [1]. 32
Tabella 3.6 - Intensità dell'evento in base al valore della resistenza a compressione della roccia
intatta
Tabella 3. 7 – Intensità dell'evento in base al valore di energia elastica immagazzinata35
Tabella 3. 8 – Intensità dell'evento secondo Wang, 1998
Tabella 3. 9 – Intensità dell'evento in base al valore del grado di fratturazione dell'ammasso
roccioso
Tabella 3. 10 – Schema logico adottato per l'identificazione dei rischi potenziali
Tabella 4.1 – Meccanismi di danno da rockburst, severità del danno e cause [22]61
Tabella 4. 2 – Parametri di Hoek-Brown modificati per il metodo DISL
Tabella 4. 3 – Valori di GSI e UCS/T per la scelta del metodo da adottare
Tabella 5. 1 – Unità geomeccaniche attese lungo l'asse del tunnel
Tabella 5. 2 – Valutazione qualitativa della suscettibilità al rockburst
Tabella 5. 3 – Valutazione quantitativa della suscettibilità al rockburst
Tabella 5. 4 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Burst
Potential, scavo tradizionale
Tabella 5. 5 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Burst
Potential, TBM scudata
Tabella 5. 6 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Burst
Potential, TBM scudata
Tabella 5. 7 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. SED
Method, scavo tradizionale

Tabella 5. 8 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. SED
Method, TBM scudata
Tabella 5. 9 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. SED
Method, TBM aperta
Tabella 5. 10 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Wang,
1998, scavo tradizionale
Tabella 5. 11 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Wang,
1998, TBM scudata
Tabella 5. 12 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Wang,
1998, TBM aperta
Tabella 5. 13 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. GDE
Multiple Graph, scavo tradizionale
Tabella 5. 14 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. GDE
Multiple Graph, TBM aperta
Tabella 5. 15 – Velocità di espulsione dei blocchi definite per gli scenari ipotizzati
Tabella 5. 16 – Sezioni tipo definite per gli scenari ipotizzati.90
Tabella A2. 1 – Parametri geomeccanici delle litologie attese lungo l'asse del tunnel 100
Tabella A2. 2 – Parametri geomeccanici. Metodo di scavo: tradizionale. 105
Tabella A2.3 – Parametri geomeccanici. Metodo di scavo: TBM scudata (da p.k. 11+725 a p.k.
20+133), tradizionale (da p.k. 20+133 a p.k. 21+048)
Tabella A2. 4 – Parametri geomeccanici. Metodo di scavo: TBM aperta.107
Tabella A2. 5 – Tabella riassuntiva della suscettibilità al rockburst stimata lungo il tracciato.
Tabella A3. 1 – Parametri geomeccanici adottati nel modello
Tabella A3. 2 – Definizione delle sezioni tipo, scenario di progetto, evento lieve
Tabella A3. 3 – Definizione delle sezioni tipo, scenario di progetto, evento medio. 110
Tabella A3. 4 – Definizione delle sezioni tipo, scenario di progetto, evento intenso 110
Tabella A3. 5 – Definizione delle sezioni tipo, scenario sfavorevole, evento lieve. 110
Tabella A3. 6 – Definizione delle sezioni tipo, scenario sfavorevole, evento medio 110
Tabella A3 . 7 – Definizione delle sezioni tipo scenario sfavorevole, evento intenso 110

Capitolo I Introduzione

La realizzazione di gallerie in un contesto geologico caratterizzato da ammasso roccioso fragile sottoposto ad un elevato stato tensionale costituisce una serie di sfide ingegneristiche uniche per complessità dal punto di vista della previsione dei rischi.

Il comportamento meccanico della roccia varia significativamente rispetto a quello mostrato in uno stato tensionale inferiore, per cui l'applicazione dei principi di progettazione (stand-up time) e delle leggi costitutive convenzionali (Mohr-Coulomb elasto-plastico) può fuorviare i progettisti. In passato, le fratture indotte dall'elevato stato tensionale, sviluppatesi successivamente allo scavo del tunnel, sono state fraintese come giunti naturali, con conseguenti difficoltà nello sviluppo di efficaci misure di supporto.

Lo scopo di tale tesi è quello di trattare il fenomeno della rottura fragile secondo i principi della gestione del rischio, per poi analizzare le tipologie di supporti comunemente adottati per contrastare tale evento e concludere con l'applicazione pratica ad un caso reale. Questo processo logico segue e riassume il lavoro da me svolto durante l'attività di tirocinio realizzata presso la società di ingegneria SYSTRA S.A.

In particolare, nel Capitolo II verrà proposta una panoramica delle principali problematiche tecniche riscontrate durante lo scavo di una galleria lunga e profonda, facendo affidamento sulle esperienze maturate nella realizzazione di tali opere nelle varie regioni del mondo [21].

Nel Capitolo III sarà trattata la Metodologia di Gestione del rischio, secondo i principi dettati dalla Norma ISO 73/2009 e dalla pubblicazione dell'AFTES in merito a tale tema [29] [1]. In

particolare, tale metodologia verrà applicata al fenomeno di rottura fragile e più specificamente alla rottura violenta ed impulsiva, nota come rockburst. In accordo con quanto richiesto dalla fase di progetto oggetto di questo studio, la trattazione si dividerà in tre parti: Identificazione del rischio, Analisi di rischio e Trattamento del rischio. Nella prima, si farà distinzione tra fattori che costituiscono le *sorgenti di rischio*, diverse tipologie di *evento*, classificate in base meccanismo di innesco, meccanismo di danno e severità del danno, e *conseguenze* in termini di danni agli strumenti utilizzati per lo scavo e pericolosità per i lavoratori. La seconda tratterà i molteplici metodi di valutazione della suscettibilità al rockburst presenti in letteratura, le cui differenze concettuali verranno messe in evidenza al fine di comprendere i principi su cui sono basati. Infine, nella terza parte verranno analizzate le contromisure da prevedere nella progettazione al fine di ridurre il livello di rischio stimato.

Nel Capitolo IV verrà approfondito il tema della progettazione delle sezioni tipo, in quanto ritenuta di principale importanza nella fase di progetto in cui mi sono trovato ad operare. A differenza dell'approccio classico, la natura dinamica dell'evento ha richiesto una progettazione energetica dei sostegni. Negli ultimi due paragrafi verranno presentati i sistemi di sostegno maggiormente adoperati nella pratica al fine di contrastare il fenomeno del rockburst.

In conclusione, nel Capitolo V sarà presentato il lavoro da me svolto riguardante il caso studio a me assegnato. Dopo un breve inquadramento geologico dell'ammasso roccioso oggetto dello scavo, verranno presentati i risultati ottenuti in termini di valutazione della suscettibilità al rockburst, confrontando le classificazioni e i valori derivanti dall'applicazione dei metodi descritti nel Capitolo III. Per finire, verranno evidenziate le caratteristiche energetiche delle sezioni tipo progettate seguendo i criteri esposti nel Capitolo IV.

Capitolo II Problematiche tecniche nelle gallerie lunghe e profonde

Lo scavo con TBM di gallerie lunghe e profonde diventa particolarmente complesso quando si incontrano elevate coperture, ammasso roccioso di scarsa qualità, o una combinazione delle due condizioni.

In tali circostanze diventa molto elevata la probabilità di occorrenza di fenomeni estremi (quali squeezing e rockburst) che possono sensibilmente influenzare l'avanzamento della TBM e la sicurezza delle maestranze.

Per altro, l'elevata profondità dello scavo e il suo importante sviluppo lineare portano ad un'incertezza della geologia rilevante.

Considerando il basso grado di adattabilità di uno scavo con TBM e la frequente difficoltà nell'effettuare interventi dalla superficie, qualsiasi tipo di problema incontrato durante lo scavo meccanizzato di gallerie lunghe e profonde costituisce una vera sfida per ingegneri e appaltatori.

"For tunnel boring machines (TBMs), the use of which will be more extensive, the challenges will be to bore tunnels under high rock pressures and high water pressures, both in hard rock and in soft ground conditions; these challenges are simply extraordinary" (Bieniawski, 2014).

Per tali motivi, al fine di ottimizzare il progetto e la scelta della tipologia di TBM più idonea allo scavo, è di primaria importanza l'individuazione di tutti i possibili scenari di rischio.

2.1 Rottura fragile dell'ammasso roccioso

Lo scavo di una galleria profonda comporta uno stato tensionale in-situ molto elevato, a causa delle grandi coperture incontrate. Se tale situazione interessa un ammasso roccioso di buona qualità strutturale (GSI e UCS elevate), la probabilità che esso vada incontro ad una rottura fragile va tenuta in considerazione.

Il comportamento meccanico dell'ammasso roccioso rimane prevalentemente in campo elastico, senza manifestazione di deformazioni permanenti.

L'energia di deformazione elastica accumulata non viene dissipata mediante plasticizzazione della roccia, ma viene rilasciata in maniera improvvisa una volta che la resistenza limite dell'ammasso viene superata dalla tensione agente in-situ.

L'intensità con cui ha luogo tale rilascio tensionale dipende dalla resistenza meccanica dell'ammasso e dallo stato tensionale agente.

Sulla base di tale aspetto in letteratura si distinguono due fenomeni di rottura fragile:

• Spalling (bassa intensità)

La rottura avviene senza proiezione di materiale; si osserva una esfoliazione dell'ammasso roccioso, in particolare ai piedritti, con formazione di vere e proprie lastre di roccia (Figura 2. 1);

• Rockburst (alta intensità)

La rottura è caratterizzata da un violento e improvviso rilascio di energia con proiezione di pezzi di roccia; in casi estremi si può raggiungere il collasso del tunnel (Figura 2. 2).

Figura 2. 1 – Fenomeno di spalling avvenuto durante la costruzione del Tunnel di base Lötschberg [21].

Figura 2. 2 – Fenomeno di rockburst: danni e frammentazione della roccia (Ortlepp) [21].

La rottura avviene in direzione parallela alla massima tensione di compressione e interessa maggiormente la calotta e i piedritti. L'estensione e la profondità della zona di rottura dipende dal rapporto tra lo stato tensionale in-situ e la resistenza a compressione della roccia.

La zona di rottura tipica del fenomeno di rockburst è caratterizzata da una forma a V, la cui dimensione varia anche in base al diametro di scavo (Figura 2. 3). È costituita da blocchi di roccia di spessore variabile da pochi millimetri a decine di centimetri, che vengono isolati ed espulsi dall'ammasso roccioso.

Con grandi diametri di scavo, la zona di rottura può interessare un'estesa superficie [27].

Figura 2. 3 – Confronto delle zone di rottura al variare della dimensione del tunnel [27].

Tali fenomeni hanno luogo indicativamente entro 2 diametri dal fronte, alcune ore dopo lo scavo, e si arrestano in genere quando l'ammasso roccioso circostante ha raggiunto un nuovo stato tensionale di equilibrio.

In casi particolari, il fenomeno di rockburst può verificarsi in qualsiasi momento in maniera improvvisa, anche a grande distanza dal fronte, a causa di una ridistribuzione dello stato tensionale dovuta ad eventi esterni (scavi nell'ammasso circostante, eventi sismici, ecc...).

Il verificarsi di una rottura fragile dell'ammasso roccioso può danneggiare la TBM, così come provocare infortuni alle maestranze. Non va esclusa la possibilità che tale fenomeno possa creare delle difficoltà nelle operazioni di trasporto del materiale scavato all'esterno del cantiere, a causa della formazione di blocchi di roccia di dimensioni notevoli a seguito della rottura.

Le condizioni necessarie affinché si possa verificare un evento di rottura fragile sono:

- Elevata resistenza della roccia;
- Ammasso roccioso massivo ed omogeneo;
- Comportamento fragile della roccia (bassa deformabilità);
- Elevato stato tensionale (grandi coperture e/o anisotropie).

La previsione della sua occorrenza risulta molto difficile.

2.2 Grandi convergenze dell'ammasso roccioso

Le convergenze del cavo possono raggiungere valori inaccettabili nei confronti della sicurezza dei lavoratori e delle specifiche tecniche del tunnel, di conseguenza la probabilità di occorrenza di tale problematica va presa in considerazione nell'analisi di rischio della costruzione di una galleria lunga e profonda.

Si distinguono due particolari tipi di fenomeni che comportano il verificarsi di grandi convergenze:

• Buckling.

La rottura della roccia avviene lungo la direzione di foliazione, oppure nei piani di flessione e ciò comporta l'inflessione dell'ammasso roccioso verso lo scavo.

Tale fenomeno si verifica principalmente in gallerie scavate parallelamente alla direzione di foliazione e si manifesta in prossimità del fronte di scavo.

Il buckling è intensificato quando la tensione in-situ è parallela alla direzione di foliazione.

L'effetto osservato è una deformazione altamente anisotropa del profilo di scavo, caratterizzata da una convergenza perpendicolare alla foliazione maggiore di quella parallela alla stessa (Figura 2. 4) e di conseguenza un carico asimmetrico sia sui supporti (ad esempio centine, shotcrete – vedi Figura 2. 5), sia sul rivestimento finale.

Le interruzioni legate all'occorrenza del fenomeno di buckling possono essere particolarmente prolungate, soprattutto quando sono necessari interventi manuali degli operatori.

Figura 2. 4 – Buckling al piedritto destro in alto e al sinistro in basso [21].

Figura 2. 5 – Conseguenze del buckling sui supporti in centine e shotcrete (Tunnel di base Lötschberg). A destra: riprofilatura prima dell'installazione del rivestimento finale [21].

Le condizioni necessarie affinché si possa verificare un evento di buckling sono:

- Stato tensionale elevato (grandi coperture);
- Foliazione o presenza di discontinuità dell'ammasso roccioso;
- Orientazione della foliazione parallela all'asse della galleria.

La previsione della sua occorrenza risulta difficile.

• Squeezing.

L'elevato stato tensionale dell'ammasso roccioso provoca ampie convergenze dello scavo, o elevate pressioni interne se i supporti installati sono particolarmente rigidi.

A differenza del buckling, il fenomeno di squeezing causa una convergenza dell'intero perimetro di scavo (Figura 2. 6).

Il suo completo sviluppo potrebbe necessitare di giorni, settimane o mesi (soprattutto in ammassi rocciosi caratterizzati da una bassa permeabilità).

I principali problemi che si potrebbero riscontrare durante uno scavo con TBM sono:

- Intrappolamento dello scudo (Figura 2. 7);
- Intrappolamento del back-up;
- Intrappolamento della testa fresante;
- Convergenze inammissibili del profilo scavato;
- Danni ai supporti.

Figura 2. 6 – Convergenza della galleria dovuta ad un intenso evento di squeezing (Tunnel del Gottardo) [21].

Figura 2. 7 – TBM monoscudo intrappolata in ammasso soggetto a squeezing (Uluabat Tunnel; Cortesia di Werner Burger, Herrenknecht AG) [21].

Le condizioni necessarie affinché si possa verificare un evento di squeezing sono:

- Stato tensionale elevato (grandi coperture);
- Bassa resistenza dell'ammasso roccioso (rispetto alle tensioni in-situ);
- Elevata deformabilità dell'ammasso roccioso.

La previsione della sua occorrenza risulta difficile.

2.3 Presenza di acqua

Si distinguono tre tipi di problematiche legate alla presenza di acqua nell'ammasso roccioso circostante lo scavo:

• Water inrush with extremely high inflow

L'afflusso d'acqua avviene attraverso discontinuità dell'ammasso (ad esempio giunti, piani di taglio, zone carsiche) o zone di faglia (Figura 2. 8). Si può verificare durante lo scavo della galleria o la realizzazione di sondaggi esplorativi. Nelle gallerie profonde il volume di afflusso può essere rilevante e, in casi estremi, può provocare l'allagamento del tunnel (Figura 2. 9).

Altri problemi causati dall'afflusso d'acqua possono essere il trasporto del materiale scavato, in particolare se l'ammasso roccioso è tenero o altamente disgregato (lo smarino assomiglia ad una fanghiglia che può presentare problemi di estrazione dal nastro trasportatore), e problemi di logistica in genere.

Figura 2. 9 – Afflusso d'acqua osservato durante la costruzione del (sx) "Dalazie Aval" (cortesia di JV RAZEL-BEC) e del (dx) "Lake Mead Intake No. 3 tunnel" (cortesia di JV Impregilo-Salini-Healy, USA) [21].

Le condizioni necessarie affinché si possa verificare un elevato afflusso d'acqua sono:

- Elevata permeabilità dell'ammasso roccioso;
- Presenza di un acquifero;
- Elevata ricarica potenziale.

La previsione della sua occorrenza è possibile, ma potrebbe risultare difficile, ad esempio in caso di carsismo.

• High water pressure

L'alta pressione incrementa la probabilità di occorrenza di altri rischi geotecnici, quali instabilità del fronte, squeezing e afflusso d'acqua con trasporto di materiale fine.

La mitigazione di tale rischio in fase di costruzione si realizza mediante interventi di grouting, per il miglioramento delle proprietà meccaniche dell'ammasso roccioso, con lo scopo di ridurre la pressione agente sulla TBM, sui supporti o sul rivestimento (Figura 2. 10).

In alcuni casi è necessario implementare un sistema di drenaggio dell'ammasso roccioso per ridurre la pressione idrostatica, solitamente realizzato con drenaggi in avanzamento durante la fase di scavo della TBM.

Figura 2. 10 – Pressione dell'acqua agente sull'ammasso roccioso trattato con grouting [21].

Le condizioni necessarie affinché si possa verificare un'elevata pressione idrostatica sono:

- Elevato battente idraulico;
- Presenza di un acquifero.

La previsione della sua occorrenza è possibile mediante perforazioni esplorative, che ne permettono la localizzazione e la stima dell'intensità.

• Mud inrush

L'afflusso di acqua potrebbe trasportare il materiale fine presente tra le discontinuità (quali giunti, piani di taglio, carsismi o faglie) e causare un flusso di fango incontrollato.

Tale fenomeno può avvenire durante lo scavo, oppure durante l'esecuzione di sondaggi esplorativi. Può generare problemi di trasporto del materiale scavato (difficoltà di estrazione dal nastro trasportatore), specialmente quando si verifica in ammassi rocciosi teneri o fortemente alterati.

Il flusso di fango potrebbe verificare anche dietro allo scudo, mettendo a rischio la sicurezza degli operatori.

Le condizioni necessarie affinché si possa verificare un elevato afflusso di fango sono:

- Elevata permeabilità dell'ammasso roccioso;
- Presenza di un acquifero;
- Elevata ricarica potenziale.

La previsione della sua occorrenza è possibile, ma potrebbe risultare difficile, ad esempio in caso di carsismo.

2.4 Instabilità del fronte

L'instabilità del fronte di scavo (Figura 2. 11a) può essere causata da uno dei seguenti fattori, o da una combinazione di essi:

• Ammasso roccioso di bassa qualità

È tipico delle zone di faglia o tettonicamente alterate. Il fronte di scavo può diventare instabile a causa di un'insufficiente capacità portante dell'ammasso;

• Pressione idrostatica elevata

Le gallerie profonde sotto falda sono spesso caratterizzate da elevate pressioni idrostatiche, per cui le forze di filtrazione indotte sono rilevanti e possono indurre l'instabilità del fronte, anche nel caso di ammasso roccioso cementato. L'elevata pressione dell'acqua incrementa anche i fenomeni di instabilità locale, con proiezione di pezzi di roccia che riducono la sicurezza delle ispezioni al fronte (Figura 2. 11b). Infine la pressione dell'acqua può causare rottura per punzonamento negli strati di roccia caratterizzati da una bassa permeabilità;

• Rockburst

Improvviso collasso del fronte, con danni ai cutters e alla testa fresante. Può causare il blocco di quest'ultima;

• Squeezing

Può provocare rilevanti deformazioni plastiche del fronte e in casi estremi il suo collasso;

• Orientazione delle discontinuità sfavorevole

L'avanzamento della TBM in un ammasso roccioso con piani di discontinuità ravvicinati, orientati in direzione sub-perpendicolare all'asse della galleria, è sfavorevole alla stabilità del fronte in quanto implica che il materiale scavato sia costituito da blocchi, anziché da frammenti. L'azione dei dischi produce la formazione di questi cunei instabili che scorrono dal fronte di scavo. Questo può causare il danneggiamento della testa fresante, dei cutters, dei buckets e del nastro trasportatore.

Figura 2. 11- (a) Instabilità globale del fronte e (b) instabilità locale dovuta all'elevata pressione idrostatica [21].

Nello scavo con TBM l'occorrenza di importanti fenomeni di instabilità del fronte possono causare il blocco e il possibile danneggiamento della testa fresante (Figura 2. 12).

Figura 2. 12 – A sinistra: creazione di blocchi al fronte a causa dell'elevato stato tensionale (Tunnel di base Lötschberg). A destra: TBM bloccata a causa dell'instabilità del fronte (Tunnel di base del Gottardo) [21].

Le condizioni necessarie affinché si possa verificare l'instabilità del fronte sono:

- Bassa resistenza o struttura a blocchi dell'ammasso roccioso;
- Elevato gradiente idraulico;

La previsione della sua occorrenza risulta difficile.

2.5 Alte temperature

Le elevate coperture implicano elevate temperature della roccia e dell'acqua, le quali costituiscono condizioni di lavoro complesse, specialmente nel caso in cui l'acqua affluisce attraverso la superficie scavata.

L'occorrenza di tale problematica rende necessaria l'installazione di un sistema di raffreddamento in tutte le aree di lavoro, inclusa la testa fresante durante la fase di manutenzione.

L'intercettamento dell'acqua deve essere tempestivo, in modo da evitare che ricopra aree eccessivamente estese, sopra le quali la diffusione del calore è favorita (Figura 2. 13).

Figura 2. 13 – Ingresso di acqua ad elevate temperatura (43°C) nel "Tunnel di base del Gottardo" [21].

Le condizioni necessarie affinché si possano riscontrare elevate temperature durante lo scavo sono:

- Elevate coperture;
- Presenza di acquiferi ad elevate temperature;

La previsione della sua occorrenza risulta possibile mediante l'utilizzo di perforazioni esplorative.

Capitolo III Gestione del rischio nei confronti del rockburst

Data la complessa natura del mezzo in cui vengono realizzate, la progettazione di opere in sotterraneo è sempre affetta da un certo grado di incertezza. Le conseguenze, positive o negative, possono avere un impatto considerevole sulla sicurezza del cantiere, sui tempi necessari a terminare i lavori e sui costi legati alla realizzazione dell'opera. L'obiettivo principale da perseguire consiste nel ridurre al minimo tali incertezze, al fine di realizzare il modello teorico più vicino possibile alla realtà e avere un chiaro quadro concettuale del contesto geologico in cui l'opera viene inserita.

Appare quindi necessario studiare il problema seguendo un approccio probabilistico, che tenga conto della probabilità di occorrenza degli eventi possibili e della probabilità che questi eventi comportino delle conseguenze che vanno a condizionare la realizzazione dell'opera.

Secondo quest'ottica è stata sviluppata la "**Metodologia di gestione del rischio**" [1] (Figura 3. 1), che consiste in un processo iterativo da ripetere alla fine di ogni fase del progetto, prima di passare alla fase successiva. È sulla base di questo studio, e dalle conclusioni che ne tirerà il committente in termini di rischi che intende accettare, che andranno decise eventuali investigazioni aggiuntive, modifiche al progetto, cambio dei metodi di scavo e l'adozione di opportune sezioni tipo. Essa è articolata come segue:

- Revisione delle conoscenze e delle incertezze
 - **Compilazione dei dati reali**, acquisiti specificamente per il progetto, provenienti da cantieri precedenti o da pubblicazioni;

- Analisi di affidabilità dei dati, con scelta di quali possono essere adottati e quali scartati, al fine di stabilire il corretto modello idrogeologico e definire il contesto geotecnico;
- Redazione della **Memoria di Sintesi Geotecnica** (MSG), completa di profilo longitudinale geotecnico;
- Redazione del **Registro delle incertezze geotecniche**, il quale rappresenta il "negativo" della MSG.

Apprezzamento del rischio

Questa fase prende forma non appena si ha un'idea del modo di costruzione dell'opera; è una prima bozza del rapporto di progetto. Si articola in tre fasi:

- Identificazione del rischio

Consiste nel passare in rassegna tutte le incertezze e immaginare le loro conseguenze, positive o negative, sulle condizioni di realizzazione dell'opera. Comprende l'identificazione delle **sorgenti di rischi**o, degli **eventi**, delle loro **cause** e delle loro **conseguenze** potenziali. Si basa su esperienze precedenti, includendo ricerche bibliografiche e consultazioni con tecnici esperti;

- Analisi di rischio

Consiste nel quantificare (o almeno qualificare) al meglio la probabilità di occorrenza di un evento incerto e la gravità delle sue conseguenze in termini di costi, ritardi, sicurezza del cantiere, impatto ambientale, ecc. Le conseguenze di un evento possono coinvolgere diversi obiettivi in più modi, il livello di rischio risultante varia in base agli obiettivi e alle priorità definite dal committente. Tale analisi viene solitamente illustrata in forma matriciale a doppia entrata (probabilità × conseguenze) e vengono applicati dei coefficienti moltiplicativi;

- Valutazione del rischio

Consiste nel confronto dei risultati dell'analisi di rischio con i criteri di accettazione definiti dal committente. Rende possibile la determinazione di quali rischi necessitano di un trattamento, affinché la loro severità rientri in un livello accettabile.

• Trattamento del rischio

Questa fase riguarda la riduzione del livello di rischio, o della sua completa eliminazione, inteso come: riduzione della probabilità mediante investigazioni addizionali, riduzione

delle conseguenze mediante modifica delle scelte progettuali (tracciato, profilo, sezione e metodi di scavo, ecc.). Una volta applicate queste misure, il livello di rischio va nuovamente valutato e comparato con i criteri di accettazione del committente, secondo un procedimento iterativo.

Figura 3. 1 – Diagramma riassuntivo della Metodologia di gestione del rischio [1].

La metodologia illustrata fa riferimento ad una terminologia specifica [1] [29], che ha l'intenzione di dare un assetto sistematico al concetto di gestione del rischio. Al fine di evitare incomprensioni, è utile dare una definizione dei termini adottati.

Rischio: effetto di un'incertezza su degli obiettivi.

Sorgenti di rischio: tutti gli elementi che, da soli o in combinazione con altri, presentano un potenziale intrinseco di generare un rischio.

Apprezzamento del rischio: insieme dei processi di identificazione, analisi e valutazione del rischio.

Identificazione del rischio: processo di ricerca, riconoscimento e descrizione del rischio.

Evento: occorrenza o cambiamento di un particolare insieme di circostanze.

Analisi di rischio: processo eseguito per comprendere la natura di un rischio e per determinarne il livello.

Livello di rischio: importanza di un rischio o di un insieme di rischi espressi in termini di combinazione di conseguenze e loro probabilità di occorrenza.

Conseguenza: effetto di un evento riguardante gli obiettivi.

Probabilità: possibilità che qualcosa si verifichi.

Valutazione di rischio: processo di comparazione dei risultati dell'analisi di rischio con i criteri di accettazione dei rischi, al fine di valutare se il rischio e/o la sua importanza sono accettabili o tollerabili.

Criteri di rischio: termini di riferimento secondo i quali l'importanza di un rischio è valutata.

Trattamento del rischio: processo destinato a modificare un rischio.

Rischio residuo: rischio rimanente dopo il trattamento di rischio.

3.1 Identificazione del rischio

La rottura fragile è da attendersi per un ammasso roccioso massivo o interessato da sistemi di discontinuità a bassa persistenza (Figura 3. 2) sottoposto ad un elevato stato tensionale. Essa può verificarsi sotto forma di spalling o rockburst.

Figura 3. 2 – Grafico GSI (Marinos & Hoek, 2000) con range suggeriti per la potenziale rottura fragile (Cai et al., 2004 ; [16]).

Prima di procedere all'identificazione del rischio come descritto in precedenza, occorre chiarire la distinzione tra i due possibili eventi di rottura fragile, accennata brevemente nel Capitolo II.

Lo *spalling* è definito come lo sviluppo di visibili fratture a trazione a seguito di carichi di compressione lungo il contorno di uno scavo. Diversi livelli di danno da spalling sono illustrati in Figura 3. 3.

Figura 3.3 – Danno da spalling. Livelli crescenti in senso orario, a partire dall'alto a sinistra [16].

È importante notare che lo spalling associato ad uno scavo in ammasso roccioso fragile non deve essere un evento violento; in alcuni casi può essere tempo-dipendente. In assenza di supporti e in presenza di uno stato tensionale anisotropo, il processo di spalling può portare alla formazione di cunei di roccia, spesso confusi con cadute gravitazionali.

Il *rockburst* è spesso confuso con lo spalling (Figura 3. 4). Tale evento consiste nella rottura violenta di un volume di roccia sottoposto ad elevato stato tensionale. Il danno da spalling può verificarsi prima dall'occorrenza del rockburst; l'instabilità creata dalla formazione di lastre di roccia sottili e parallele genera il cinematismo per il rilascio istantaneo di energia. Mentre anche

rocce deboli possono incorrere in fenomeni di spalling, la capacità di immagazzinare energia, tipica di rocce più resistenti, è richiesta affinché si verifichi un evento di rockburst.

Figura 3. 4 – Confronto tra spalling (a sx) e rockburst (a dx) [15].

Come già esposto in precedenza, nel seguito l'analisi verrà condotta solo nei confronti del rockburst.

3.1.1. Sorgenti di rischio

Le sorgenti di rischio che possono causare potenziali eventi di rockburst e influenzare la loro severità sono molteplici [22] [24].

In Tabella 3. 1 sono elencate le quattro categorie individuate, descritte di seguito:

• Evento sismico

Lo scuotimento indotto da un evento sismico può alterare lo stato tensionale nell'ammasso roccioso. Se la tensione agente cresce fino a superare la resistenza dell'ammasso, il rilascio energetico associato può essere rilevante e la probabilità che si verifichi una rottura fragile aumenta. L'importanza dell'evento sismico nel fenomeno di comportamento fragile dipende dalla sua intensità, dalla distanza della sorgente dal sito in oggetto e dalla quantità di energia rilasciata.

• Condizioni geologiche

La presenza di una zona di debolezza geologica, quale una zona di taglio o una faglia, nelle vicinanze dello scavo può comportare un rilascio energetico maggiore in quanto tale struttura geologica tende a creare condizioni di carico sfavorevoli, ad esempio coinvolgendo un ampio volume di roccia nel processo di deformazione e rottura.

• Parametri geotecnici

Le elevate coperture comportano un elevato stato tensionale in-situ. Quando esso è generato in un ammasso roccioso massivo di elevata qualità, non avviene dissipazione mediante plasticizzazione della roccia, per cui la concentrazione degli sforzi è rilevante e la probabilità di occorrenza di una rottura fragile aumenta.

• Operazioni di scavo

Quando si deve realizzare un'apertura rilevante, o aperture multiple sono create a ridosso tra di loro, la probabilità di occorrenza dei rischi derivanti da rockburst è ampliamente incrementata a causa di una riduzione della rigidezza del sistema. Per cui anche la geometria di scavo o la zona plastica possono influenzare la propensione al rockburst.

Evento sismico	Geologia	Parametri geotecnici	Operazioni di scavo
- Magnitudo	- Tipo di roccia	- Fragilità della roccia	- Sequenze di scavo
- Energia rilasciata	- Stato tensionale in-situ	- Struttura dei giunti	- Dimensioni scavo
- Distanza dalla sorgente	- Faglie	- Elevata resistenza	- Tensioni indotte
	- Discontinuità	della roccia	dalle attività di scavo
			- Modalità di scavo
			- Sistemi di supporto
			installati

Tabella 3. 1 – Sorgenti di rischio individuate per un evento di rottura fragile [24].

I primi due gruppi determinano l'intensità del carico dinamico e il luogo in cui l'evento potrebbe avvenire, mentre gli altri due gruppi determinano la risposta del sito dovuta agli impulsi sismici. L'evento di rockburst è governato da una combinazione di questi fattori.

3.1.2. Evento

Il "Canadian Rockburst Support Handbook" definisce il rockburst come un "danno ad uno scavo che avviene in maniera improvvisa e/o violenta ed è associato ad un evento sismico" [22]. Tale definizione è ampliamente utilizzata nell'industria mineraria. Nell'ambito dello scavo di gallerie, tale definizione risulta troppo specifica ed è comune definire come rockburst "tutti gli eventi che comportino dei rumori dovuti alla fratturazione dell'ammasso, oppure espulsioni di piccoli blocchi di roccia, pur non causando danni, ma che indichino un rilascio di energia" [22].

Non tutti gli eventi di rottura fragile si verificano con le stesse modalità e la zona di ammasso roccioso in cui essi si manifestano può variare.

È possibile suddividere le cause in tre classi principali [24]:

• Strainburst

Può essere indotto da un cambiamento dello stato tensionale, dovuto alla realizzazione di uno scavo nelle vicinanze, oppure essere causato da un evento sismico remoto che porta ad un incremento delle tensioni agenti.

L'energia di deformazione elastica immagazzinata nell'ammasso roccioso circostante viene rilasciata di norma entro due diametri dal fronte, ma non è escluso che esso possa aver luogo al fondo scavo o al fronte.

In condizioni di equilibrio potenzialmente instabile, uno strainburst può essere innescato anche a distanza dal fronte da un evento dinamico di modesta entità, da una volata o uno scorrimento di faglia.

È il tipo di rockburst più comunemente osservato durante lo scavo di gallerie profonde.

• Pillar burst

Consiste nella rottura violenta del nucleo di un pilastro di roccia, o il completo collasso dello stesso. Il volume di ammasso roccioso coinvolto nella rottura è generalmente maggiore rispetto al caso di strainburst, per cui anche il rilascio di energia avviene in quantità maggiore.

Analogamente allo strainburst, anche un fenomeno di pillar burst può essere indotto dall'attività di scavo, o da un evento sismico. Nel primo caso la sorgente sismica e il danno da rockburst sono collocate nello stesso elemento, ovvero il pilastro (ad esempio a causa di un incremento eccessivo della luce di scavo). Nel secondo caso la localizzazione è distinta, in quanto l'incremento di tensione è indotto da un evento sismico remoto (ad esempio uno scorrimento di faglia).

È un evento che riguarda principalmente gli scavi minerari.

• Fault-slip burst

È causato da uno scorrimento dinamico lungo una faglia preesistente, o generata da una rottura per taglio.

Si può verificare se, a causa dalle attività di scavo, la tensione tangenziale agente è incrementata e supera quella resistente della faglia, che è funzione della tensione normale, del coefficiente d'attrito della superficie di scorrimento, dell'ondulazione o dilatanza, della presenza di acqua e, nel caso di propagazione della frattura, della resistenza della roccia.

Questo tipo di rockburst può sviluppare un'elevata quantità di energia sismica che deriva dall'istantaneo rilascio di deformazione elastica, immagazzinata in un ampio volume di roccia sottoposto ad un elevato stato tensionale, circostante l'area di scorrimento o rottura. Le vibrazioni prodotte possono essere sufficientemente elevate da causare danni agli scavi (strainburst indotto dinamicamente), mobilitazione di blocchi di roccia non sufficientemente supportati e/o innesco di strainburst e pillar burst in zone relativamente remote (centinaia di metri dalla sorgente sismica).

Nell'ambito della costruzione di gallerie, un evento di rottura fragile è spesso di difficile interpretazione, per cui è utile distinguere i vari aspetti che lo caratterizzano:

- Meccanismi di innesco;
- Meccanismi di danno;
- Severità del danno.

• Meccanismo di innesco

I possibili meccanismi di innesco per un evento di rottura fragile sono due [24]:

- Remotely triggered rockburst

Un evento sismico remoto, ad esempio un terremoto o un fault slip, innesca la rottura e provoca danni a uno scavo. Si può verificare nelle regioni sismicamente attive o nell'estrazione mineraria;

- Self-initiated rockburst

L'evento sismico e i danni osservati sono localizzati nello stesso posto. Si verifica quando le sollecitazioni nel contorno di scavo superano la resistenza dell'ammasso e la rottura avviene in modo instabile e violento.

La rottura è improvvisa e violenta se l'energia di deformazione immagazzinata nell'ammasso roccioso non è dissipata durante il processo di fratturazione.

Le sollecitazioni che causano la rottura possono essere [24]:

- Geostatiche;
- Indotte dallo scavo;
- Forze dinamiche causate dalle vibrazioni del terreno (di tipo inerziale);
- Incrementi di sollecitazione dinamica dovuti a deformazioni dinamiche del terreno (causata da onde elastiche).

• Meccanismo di danno

La comprensione del meccanismo di danno da rockburst è necessaria al fine di mettere in opera un adeguato supporto/sostegno, volto alla mitigazione del rischio associato a tale fenomeno.

I tre principali tipi di danno da rockburst identificati sono [22]:

- Rock bulking due to fracturing

Può essere la conseguenza di un evento sismico remoto, oppure di uno stesso rockburst. La rottura fragile della roccia avviene a seguito di un innesco, propagazione e coalescenza di fratture [23]. Ciò permette la generazione di nuove superfici di frattura laddove il mezzo era precedentemente intatto, o poco fratturato.
La disgregazione della roccia porta ad un aumento di volume dell'ammasso, in gergo definito "rock mass bulking".

Tale processo è principalmente il risultato di un'incompatibilità geometrica dei blocchi, per cui risulta più rilevante rispetto all'incremento di volume di un ammasso roccioso in fase di plasticizzazione.

Altra caratteristica molto importante è quella di essere un fenomeno direzionale, perpendicolare alle pareti di scavo.

- Rock ejection due to seismic energy transfer

Può essere la conseguenza di un evento di strainburst, pillar burst, o di un evento sismico remoto. La roccia espulsa può viaggiare a velocità superiori a 3 m/s, mentre velocità fino a 10 m/s sono state stimate da Ortlepp e Stacey (1994).

Quando nella roccia avviene una frattura improvvisa, parte dell'energia di deformazione immagazzinata nell'ammasso circostante può essere trasferita a frammenti di roccia sotto forma di energia cinetica, causandone l'espulsione violenta.

Con elevati livelli di energia di deformazione immagazzinata nell'intorno dello scavo, le onde provenienti da un evento sismico remoto possono aggiungere un disturbo tensionale dinamico e causare uno strainburst. In questo caso, la velocità di eiezione non è direttamente correlata all'intensità dell'evento sismico, ma all'energia accumulata nell'ammasso adiacente e al modo in cui essa viene rilasciata;

- Rockfall induced by seismic shaking

Relazionato al rockburst ma non strettamente appartenente a questa categoria, come suggerito dal nome stesso, tale meccanismo di danno è la conseguenza di scuotimenti a bassa frequenza, a seguito di un rilevante evento sismico remoto, potenzialmente indotto da un pillar burst o da un fault-slip burst. Si verifica quando un'onda sismica accelera un volume di roccia che, in condizioni di carico statiche, si trovava in equilibrio stabile. La nascita di forze aggiuntive comporta il superamento della capacità di carico del sistema di supporti.

È inoltre possibile che le prime onde sismiche causino la frattura del volume di roccia, mentre le successive vibrazioni indotte accelerino la roccia fratturata, causando dei crolli.

• Severità del danno

Una volta che la rottura è innescata, la severità del danno dipende da due fattori [24]:

- Volume di ammasso roccioso coinvolto. Dipende dall'estensione della zona in cui lo stato di sollecitazione dell'ammasso roccioso è particolarmente elevato;
- Energia rilasciata. Fornisce una misura dell'entità della rottura, dipende dal valore di tensione a rottura e dalla rigidezza del sistema.

Data la difficoltà nella determinazione dell'energia rilasciata durante la rottura, la classificazione della severità del danno fa riferimento al volume coinvolto [24]:

- Minor. Le rotture osservate interessano spessori inferiori a 0.25 m al contorno del cavo;
- Moderate. Le rotture osservate interessano spessori circa pari a 0.75 m;
- Major. Le rotture osservate interessano spessori dell'ordine di 1.50 m.

In Figura 3. 5 sono rappresentati i meccanismi di danno descritti, la loro severità di danno e le funzioni richieste al sistema di supporti al fine di mitigare i rischi ad essi legati, come verrà ampliamente descritto nei capitoli seguenti.

Figura 3.5 - Meccanismi di danno da rockburst, severità di danno e funzioni richieste ai supporti (modificato da [22]).

3.1.3. Conseguenze

Le possibili conseguenze legate all'occorrenza di un evento di rottura fragile sono molteplici e, nello scavo meccanizzato, dipendono dal tipo di macchina utilizzata. In Tabella 3. 2 vengono riportate le principali, organizzate in forma matriciale per una migliore comprensione. La definizione del livello di rischio rientra nel processo di analisi di rischio.

 Tabella 3. 2 – Conseguenze legate all'occorrenza di un evento di rottura fragile in base al tipo di TBM utilizzata e localizzazione nelle aree di lavoro [21].

	Tipo di TBM			Localizzazione		
Note: ¹ dovuto a carichi dinamici (impatto) ² dovuto a blocchi instabili in rotazione con la testa fresante che generano usura ³ dovuto a carichi asimmetrici e carichi dinamici (impatto)		Mono scudo	Doppio scudo	Fronte	Zona TBM	Zona back-up
Danni alla TBM ¹	X	X	X	X		
Danni alla testa fresante e/o agli utensili ²	Х	X	X	X		
Infortuni ai lavoratori durante le ispezioni al fronte	X	X	X	X		X
Danni al rivestimento ³		X	X			X
Danni ai supporti	X					X
Infortuni ai lavoratori	Х				X	X
Danni al back-up; danni al nastro trasportatore	X				X	X

3.2 Analisi di rischio

Nella Metodologia di gestione del rischio, la fase di Analisi del rischio prevede tre operazioni:

- Quantificazione delle conseguenze derivanti da un evento identificato come un rischio;
- Quantificazione della probabilità dell'evento e/o delle conseguenze;
- Determinazione del livello di rischio (significatività del rischio) combinando le conseguenze e la probabilità.

La prima operazione consiste nella valutazione di tutte le possibili conseguenze che un evento potrebbe generare. Esse possono interessare più obiettivi, ciascuno con un impatto differente. Facendo riferimento al solo ambito geotecnico, i principali obiettivi sono la sicurezza del sito, i costi, i tempi di consegna, le prestazioni e l'ambiente [1]. La conseguenza è generalmente stimata come costi aggiuntivi e/o tempi supplementari richiesti per trattare l'evento. La Tabella 3. 3 fornisce una determinazione qualitativa o quantitativa delle conseguenze attese.

Risk matrix score	Scale of consequences	Delay (1-2), expressed in terms of the overrun	Cost (2), expressed in terms of the overrun	Image (2), expressed in terms of media impact	Other
4	Very high	t > 3 months	C > 50%	Worldwide	
3	High	$1 \mod t < 3 \mod t$	10% < C < 50%	Continental	
2	Medium	1 week < t < 4 weeks	5% < C < 10%	Countrywide	
1	Low	t < 1 week	C < 5%	Local	

Tabella 3. 3 – Classi di conseguenze in termini di costi, ritardi e zona interessata dall'impatto [1].

(1) deadline overruns are indicated for a project lasting approximately one year (2) indicative values: to be adjusted depending on the project

Per quanto riguarda la seconda fase, va notato che la probabilità può riguardare l'evento e le sue conseguenze, o solo le conseguenze. La rottura fragile appartiene alla prima categoria. La probabilità dell'evento stesso dipende da una serie di fattori che caratterizzano il livello di conoscenza del contesto geologico, per cui il progettista deve valutarne la complessità, così come quantità e qualità delle indagini geotecniche effettuate, nonché la loro vicinanza all'opera. Di conseguenza la probabilità è legata alla qualità del modello geologico e alla sua vicinanza

alla realtà. La Tabella 3. 4 fornisce una determinazione qualitativa o quantitativa della probabilità.

Matrix score	Likelihood scale	Indicative probability, to be adjusted according to the project being studied
4	Possible	1/5 = 20 %
3	Unlikely	1/20 = 5 %
2	Highly unlikely	1/50 = 2 %
1	Improbable	1/200 = 0,5 %

Tabella 3. 4 – Classi di probabilità di occorrenza di un evento [1].

Nella terza parte il livello di rischio viene quantificato combinando verosimiglianza e conseguenze. Tale combinazione può essere qualitativa o quantitativa, a seconda delle circostanze. Molto spesso è presentato in forma matriciale (Tabella 3. 5), moltiplicando il punteggio assegnato alla probabilità di occorrenza dell'evento (Tabella 3. 4) e quello stabilito per l'impatto che le eventuali conseguenze avrebbero in termini di costi e ritardi (Tabella 3. 3).

		Risk	matrix		
	Possible	4	8	12	16
poor	Not likely	3	6	9	12
keli	Very Unlikely	2	4	6	8
	Improbable	1	2	3	4
	A	Slight	Medium	Significant	High
		Consequences			

In questo paragrafo verrà affrontata solo l'analisi della probabilità di occorrenza del fenomeno di rockburst, in quanto oggetto del lavoro svolto. I metodi adottati ne forniscono una valutazione qualitativa e le scale di intensità non sempre presentano lo stesso numero di livelli. Per coerenza di esposizione sono stati riportati fedelmente, mentre un loro adattamento ai valori numerici presentati in Tabella 3. 4 verrà proposto nel Capitolo V.

3.2.1. Parametri di resistenza della roccia intatta

Partendo dall'assunzione che la rottura fragile comporta un processo di fratturazione a trazione, Diederichs [16] propone un criterio per la valutazione della suscettibilità allo spalling (in contrapposizione alla deformazione plastica a taglio) basato sul parametro m_i definito nel criterio di Hoek-Brown. L'occorrenza di un potenziale evento di rockburst (sotto forma di strainburst) è invece dettata dalla resistenza della roccia σ_c , in quanto valori crescenti di questo parametro permettono un maggiore accumulo di energia deformativa (Figura 3. 6).

Figura 3. 6 – Intensità dell'evento in base ai parametri di resistenza della roccia intatta

Tuttavia tale criterio non è sufficiente a stabilire l'occorrenza di una rottura fragile sotto forma di spalling o di strainburst, in quanto non prende in considerazione lo stato tensionale in-situ. Piuttosto fornisce un'indicazione sul valore soglia di UCS al di sotto del quale è ragionevole escludere la possibilità che si verifichi una rottura fragile, a prescindere dall'entità dello stato tensionale (Tabella 3. 6).

UCS [MPa]	Intensità Rockburst
≤ 80	Very Low
80 ÷ 120	Low
120 ÷ 160	Moderate
160 ÷ 200	High
> 200	Very High

Tabella 3. 6 - Intensità dell'evento in base al valore della resistenza a compressione della roccia intatta.

3.2.2. Energia elastica immagazzinata

Come già esposto nei paragrafi precedenti, il rockburst è un fenomeno di natura dinamica che avviene in ammassi rocciosi competenti (RMR in classi di Bieniawski I e II) e con valori elevati di resistenza alla compressione monoassiale (UCS>80MPa). Lo scavo del tunnel causa un'alterazione dello stato tensionale preesistente, permettendo l'accumulo di energia elastica, la quale viene rilasciata nel processo di rottura.

Per questi motivi un utile indicatore della suscettibilità di un ammasso roccioso ad essere interessato da un evento di rockburst è il livello di energia elastica immagazzinabile.

Tale criterio è stato indicato da [26] in cui viene proposto il calcolo della "Densità di energia elastica" secondo Eq. [3. 1], che consiste nell'energia elastica per unità di volume immagazzinata durante una prova di compressione monoassiale (Figura 3. 7) secondo il Teorema di Clapeyron. Tale assunzione è valida in campo elastico per cui, data l'elevata qualità strutturale dell'ammasso roccioso (requisito necessario affinché ci si attenda un fenomeno di rockburst), risulta ragionevole.

$$SED = \frac{\sigma_c^2}{2E}$$
[3.1]

in cui:

SED = Strain Energy Density; σ_c = Resistenza a compressione monoassiale della roccia;

E = Modulo di Young.

La relazione tra il valore di SED e l'intensità del fenomeno proposta in [26] è mostrata in Tabella 3. 7.

Figura 3. 7 – Prova di compressione monoassiale ed energia elastica immagazzinata (triangolo in giallo).

SED [kJ/m ³]	Intensità Rockburst
≤ 50	Very Low
50 ÷ 100	Low
100 ÷ 150	Moderate
150 ÷ 200	High
> 200	Very High

Tabella 3. 7 – Intensità dell'evento in base al valore di energia elastica immagazzinata.

Da tale criterio emerge che se una certa tipologia di roccia non è in grado di immagazzinare energia di deformazione elastica sufficiente, non potranno generarsi fenomeni di rockburst, a prescindere dallo stato tensionale in-situ o dal contesto geologico in cui è inserito l'ammasso roccioso.

3.2.3. Stato tensionale in situ

Come esposto nel paragrafo precedente, l'accumulo di energia elastica si verifica in seguito all'alterazione dello stato tensionale a causa dello scavo. Per tale motivo l'occorrenza di un evento di rockburst è tanto più elevata quanto più lo scavo viene realizzato in profondità. Le grandi coperture determinano uno stato tensionale in-situ molto elevato e ciò può essere la causa di evento di rottura fragile. In particolare la tensione verticale raggiunge valori molto elevati proprio in seguito alla profondità alla quale viene realizzato lo scavo, ma la tensione orizzontale potrebbe essere addirittura superiore, a causa delle sollecitazioni tettoniche generatesi durante il processo di formazione dell'ammasso roccioso o di orogenesi (nel caso di catene montuose). Per cui l'intensità dell'evento dipende anche dall'entità dello stato tensionale.

• Diederichs, 2007 [16]

Sulla base dei lavori di Martin *et al.* [27], Diederichs ha individuato dei range di variazione del rapporto tra lo stato tensionale in-situ e le caratteristiche meccaniche della roccia intatta Eq.[3. 2] entro i quali sono attesi fenomeni di rottura fragile di determinata intensità (Figura 3. 9).

$$\frac{\sigma_{\max}}{CI}$$
[3.2]

in cui:

 σ_{max} = Massima tensione tangenziale al contorno del cavo;

CI = Crack initiation.

Per il calcolo della tensione tangenziale σ_{max} , una ragionevole approssimazione è espressa in Eq.[3. 3].

$$\sigma_{\max} = 3\sigma_1 - \sigma_3 \tag{3.3}$$

in cui:

 σ_{max} = Tensione tangenziale massima al contorno del cavo;

 σ_1 = Tensione principale massima;

 σ_3 = Tensione principale minima.

Il termine CI rappresenta il livello tensionale al quale inizia l'enucleazione e la coalescenza delle microfratture, che possono poi propagare se sottoposte ad un ridotto stato di confinamento (come accede nel contorno di uno scavo) [15]. Tale valore può essere individuato mediante un monitoraggio delle emissioni acustiche in-situ (Figura 3. 8a) oppure del livello deformativo durante una prova di compressione monoassiale (Figura 3. 8b).

Figura 3. 8 – Individuazione del valore di CI mediante monitoraggio di a) emissioni acustiche; b) misura delle deformazioni. Nel monitoraggio del livello deformativo, il valore di CI è individuato dal punto in cui inizia la non-linearità della deformazione laterale (Figura 3. 8b).

In assenza di dati specifici, è stato notato che tipicamente CI assume valori pari al 40-45% di UCS. Tale relazione è in accordo con i risultati ottenuti da Martin *et al.* [27].

Figura 3.9 - Intensità dell'evento in base al rapporto tra stato tensionale e caratteristiche meccaniche della roccia intatta.

• Criterio della tensione tangenziale (Wang, 1998)

Nel criterio proposto da Wang (1998) [17] viene considerato tanto lo stato tensionale in-situ quanto le proprietà meccaniche della roccia e costituisce un'evoluzione del criterio di Hoek (1980). In tale criterio viene calcolato il parametro T_s , come espresso in Eq. [3, 4].

$$T_{\rm s} = \frac{\sigma_{\rm \theta}}{\sigma_{\rm c}}$$
 [3.4]

in cui:

- σ_{θ} = Tensione tangenziale nella roccia al contorno dello scavo
- σ_c = Resistenza a compressione monoassiale della roccia

Per il calcolo di σ_{θ} , si può considerare che questa tensione è quella provocata dal peso della colonna litostatica sovrastante, come indicato da Hoek nella prima formulazione di questo criterio. In questo modo il valore della tensione tangenziale nella roccia sarà (Eq. [3. 5]):

$$\sigma_{\theta} = \gamma \cdot z \qquad [3.5]$$

in cui:

 γ = Peso specifico della roccia;

z = Copertura.

La relazione tra il valore di T_s e l'intensità del fenomeno proposta da Wang è mostrata in Tabella 3. 8.

T _s	Intensità Rockburst
≤ 0.3	No risk
0.3 ÷ 0.5	Low
0.5 ÷ 0.7	Moderate
> 0.7	High

Tabella 3.8 – Intensità dell'evento secondo Wang, 1998

I due criteri sopracitati propongono una correlazione di proporzionalità diretta tra l'intensità dell'evento atteso e il rapporto tra lo stato tensionale in-situ e la resistenza a compressione monoassiale della roccia (Wang, 1998), o una sua aliquota (Diederichs, 2007). L'obiettivo di tali criteri è quello di evidenziare che al crescere dello stato tensionale in-situ (e quindi delle coperture), l'intensità potenziale dell'evento aumenta.

Tuttavia, anche al diminuire della resistenza a compressione monoassiale della roccia si noterebbe un aumento dell'intensità dell'evento atteso. Ciò può andare in contrasto con quanto detto nei paragrafi precedenti, dato che una bassa resistenza implica l'impossibilità di immagazzinare energia elastica sufficiente a produrre una rottura violenta.

Per questi motivi tali criteri devono essere utilizzati in combinazione con gli altri già citati.

3.2.4. Grado di fratturazione

L'osservazione sperimentale nel campo dell'ingegneria mineraria ha dimostrato che, in generale, tanto il livello tensionale in-situ quanto quello di energia di deformazione sono meno elevati negli ammassi rocciosi fratturati, per cui si può affermare che il grado di fratturazione è inversamente proporzionale all'intensità di rockburst.

Come ben noto, la stima del grado di fratturazione dell'ammasso roccioso può essere fornita in modo semplice e comodo mediante la determinazione dell'indice RQD (Figura 3. 10).

Figura 3. 10 – Determinazione dell'indice RQD (Deere, 1989).

In particolare, il grado di fratturazione dell'ammasso roccioso aumenta al diminuire di tale parametro. In accordo con questo principio si può affermare che l'intensità di rockburst aumenta all'aumentare dell'indice RQD dell'ammasso roccioso, risultando quindi direttamente proporzionali. Tale rischio è quantificato in Tabella 3. 9.

RQD	Intensità Rockburst
≤ 25	No Risk
25 ÷ 50	Low
50 ÷ 75	Moderate
> 75	High

Tabella 3. 9 – Intensità dell'evento in base al valore del grado di fratturazione dell'ammasso roccioso.

Come indicato in precedenza, è importante precisare che questa tabella non fornisce un criterio di predizione e quantificazione del rischio di rockburst, tuttavia è molto utile per confermare o scartare il rischio di rockburst in litologie o zone geologiche che altri criteri basati ad esempio sull'energia elastica o sullo stato tensionale hanno indicato come pericolose.

3.2.5. "GDE multiple graph", Russo, 2014

La predizione del comportamento allo scavo è un punto chiave nella progettazione di una galleria ed esso dipende da una molteplicità di parametri. Per tale motivo Russo [34] [36] ha proposto un metodo che si basa sulle equazioni riportate in Tabella 3. 10 allo scopo di fornire una valutazione preliminare del fenomeno atteso.

Eq.1	Rock block volume + Joint Conditions = Rock mass fabric
_	
Eq.2	Rock mass fabric + Strength of intact rock = Rock mass strength
Eq.3	Rock mass strength + In situ stress = Competency
Eq.4	Competency + Self supporting capacity = Excavation behaviour
	(→Potential hazards)

 $Tabella \ 3. \ 10 - Schema \ logico \ adottato \ per \ l'identificazione \ dei \ rischi \ potenziali$

In particolare è stato ideato un grafico composto da 4 quadranti, ciascuno dei quali è finalizzato ad una agevole quantificazione delle corrispondenti proprietà presentate in Tabella 3. 10. Tale grafico, riportato in Figura 3. 12 e in Figura A1. 1 per una migliore lettura, va utilizzato procedendo in senso antiorario, partendo dal primo quadrante in basso a destra. Tuttavia, nel caso in cui alcune informazioni fossero già disponibili, è possibile entrare nel grafico partendo da quadranti successivi al primo (ad esempio partendo dal II quadrante se il parametro GSI è già noto). Di seguito vengono analizzati nel dettaglio i quattro quadranti.

• I Quadrante – Stima del Rock mass fabric

Quando l'ammasso roccioso può essere trattato come mezzo continuo-equivalente, le sue proprietà geomeccaniche possono essere espresse tramite un "fabric index", il quale è funzione di due componenti: rock structure e joint conditions. Nello specifico, il fabric index è rappresentato dal GSI, stimabile mediante il metodo proposto da Russo, 2007 [33]. Tale metodo tiene in considerazione l'equivalenza concettuale tra GSI e JP (Jointing Parameter) del RMi system (Palmstrom, 1996), entrambi utilizzati per scalare la resistenza della roccia intatta σ_c a quella dell'ammasso roccioso σ_{cm} .

In accordo con i due sistemi, si ha:

RMi :
$$\sigma_{\rm cm} = \sigma_{\rm c} \cdot JP$$
 [3.6]

$$GSI : \sigma_{\rm cm} = \sigma_{\rm c} \cdot s^a$$
[3.7]

In cui *s* e *a* sono le costanti di Hoek-Brown, come riportato in APPENDICE A. Di conseguenza, JP dovrebbe essere numericamente equivalente a s^a e ciò permette di stabilire una correlazione diretta tra JP e GSI:

$$JP = \left[\exp\left(\frac{GSI - 100}{9}\right) \right]^{\frac{1}{2} + \frac{1}{6} \left[\exp\left(-\frac{GSI}{15}\right) - \exp\left(-\frac{20}{3}\right) \right]}$$
[3.8]

Invertendo l'Eq.[3.8] si può calcolare il parametro GSI in funzione di JP:

$$\text{GSI} \approx 153 - \frac{165}{1 + \left(\frac{\text{JP}}{0.19}\right)^{0.44}}$$
[3.9]

A questo punto, seguendo l'Eq.[3.9] è possibile effettuare una stima quantitativa del GSI, definendo i parametri necessari alla definizione di JP, ovvero il "block volume" (Vb) e il "Joint Condition factor" (jC). Seguendo quanto suggerito da Palmstrom (2000), alcuni valori tipici di jC sono riportati nel I quadrante di Figura 3. 12 per una rapida valutazione preliminare.

Va infine notato che l'uso di tale approccio non è raccomandato in ammassi rocciosi complessi ed eterogenei, per i quali è più indicato l'approccio proposto da Marinos e Hoek (2001).

• II Quadrante – Stima del Rock mass strength

La stima della resistenza dell'ammasso roccioso di basa sulle Eq.[3.6][3.7] presentate in precedenza ed è graficamente individuata dall'intersezione tra la linea orizzontale relativa al GSI stimato e la corrispondente curva di resistenza della roccia intatta. L'affidabilità di tale stima è legata sia all'applicabilità del criterio di Hoek-Brown, in quanto mezzo omogeneo ed isotropo, sia all'occorrenza di una rottura di taglio.

Al contrario, una rottura di tipo spalling, che interessa la resistenza della roccia intatta, può avvenire in un ammasso roccioso fragile e di buona qualità, sottoposto ad uno stato tensionale elevato. In questo caso, in accordo con il cosiddetto "approccio m=0" [14] [27], la resistenza

mobilizzata a rottura può risultare maggiore o minore di quella determinata mediante le Eq.[3.6][3.7], in base al valore stesso GSI, così come dello stato tensionale necessario all'innesco della frattura.

Per una stima preliminare della possibilità che si verifichi un evento di rottura fragile, nel II quadrante la zona suscettibile a spalling/rockburst, se in presenza di uno stato tensionale adeguato, è evidenziata.

I limiti inferiori di tale regione sono stati fissati, a favore di sicurezza, ad un valore di 60 sia per il GSI che per σ_c (MPa). Tuttavia, Diederichs (2005) [15] ha classificato come "media" la suscettibilità dello stesso tipo di roccia fragile per un valore di $\sigma_c > 80$ MPa.

• III Quadrante – Stima del Rock mass competency

Il "Competency Index" (IC) è semplicemente definito come il rapporto tra la resistenza dell'ammasso roccioso σ_{cm} e la tensione tangenziale σ_{θ} al contorno dello scavo.

Nella costruzione del grafico è stato assunto per semplicità un rapporto tra tensione orizzontale e verticale k = 1. Di conseguenza, per un tunnel circolare si ha $\sigma_{\theta} = 2\gamma H$, con γ = densità dell'ammasso roccioso (assunta pari a 0.025MN/m³) e H = copertura. Nel caso in cui k \neq 1, una ragionevole approssimazione consiste nel calcolo della tensione tangenziale massima $\sigma_{\theta max} = 3\sigma_1 - \sigma_3$ e poi dividere il risultato per 2 γ , in modo da ottenere una copertura fittizia che origini la stessa tensione calcolata per k = 1.

Il valore di IC = 1 separa la risposta deformativa dello scavo in dominio elastico (al di sopra) e plastico (al di sotto). Inoltre, nel III quadrante sono riportate alcune linee tratteggiate orizzontali che rappresentano la migliore correlazione del Competency Index con le classi di comportamento riportate in Figura 3. 11 [36].

Figura 3. 11 - Schema concettuale per una stima generale del comportamento allo scavo.

• IV Quadrante – Stima dell'Excavation behaviour

Nell'ultimo quadrante del "GDE multiple graph", il sistema di classificazione presentato in Figura 3. 11 è integrato con le classi di RMR (Bieniawski, 1984), date le ben note relazioni empiriche che legano tale parametro alla capacità di auto supporto dell'ammasso roccioso. Per questo, alcuni dei principali rischi sono stati delimitati nel IV quadrante.

Il termine *caving* è utilizzato per identificare crolli gravitazionali di porzioni di ammasso roccioso altamente fratturato, che possono interessare la calotta e/o il fronte di scavo. Data la bassa capacità di auto sostegno del cavo, il più alto rischio di *caving* è associato a classi sfavorevoli di RMR.

Lo *squeezing* riguarda un processo deformativo tempo-dipendente ed è generalmente associato a rocce con bassa resistenza ed alta deformabilità. Altrimenti, le deformazioni plastiche dovrebbero prevalere, lasciando spazio alla probabilità che si verifichi un *caving*. I termini "severe" e "very severe" sono stati associati rispettivamente alle classi "d" ed "e" riportate in [35] [37] [38]. Considerando le misure di stabilizzazione applicate, essi possono essere correlati anche alle classi proposte da Hoek e Marinos (2000). Per il *rockburst*, è ragionevole aspettarsi un incremento di intensità con il diminuire di IC. Ad esempio Palmstrom (1996), per rocce fragili massive con $\sigma_{cm} \approx \sigma_c/2$, classifica come "heavy rockburst" il caso in cui IC < 0.5.

La rottura di tipo *rock wedge* è principalmente associata ad ammassi rocciosi di buona qualità soggetti ad uno stato tensionale relativamente basso, ovvero quando la risposta allo scavo è dominata dalla resistenza a taglio lungo le discontinuità, con occorrenza di rottura per scorrimento (Bandis, 1997). Ulteriori analisi all'equilibrio limite possono verificare l'effettiva possibilità che avvenga tale cinematismo.

Sono state evidenziate anche due zone *improbabili*, corrispondenti a combinazioni di GSI e RMR poco probabili: la prima al di sotto della zona *spalling/rockburst* e la seconda nella zona in alto a destra, dove si sovrappongono teoricamente RMR di classe V e comportamento elastico.

(**) depending also from the length of the potential proned zone: given a possible "silo effect", for short zones included in good quality rocks, a caving behaviour it is most likely

Figura 3. 12 – Multiple graph per la valutazione preliminare del comportamento allo scavo (Russo, 2007) [34] [36].

3.3 Trattamento del rischio

Come riportato in [24], molti fattori che influenzano i danni da rockburst sono legati alle operazioni di scavo, quali ad esempio sequenza di scavo, excavation span, sistema di supporti installato. Ciò significa che è importante la gestione di tali fattori al fine di ridurre e controllare i rischi derivanti da rockburst.

I metodi per raggiungere tale obiettivo sono molteplici, ad esempio cambiare il metodo o la sequenza di scavo. Va sottolineato che una buona strategia di costruzione è necessaria, ma non sufficiente a creare un ambiente di lavoro sicuro, per cui un dettagliato piano di supporti per rockburst deve essere sviluppato in parallelo.

Inoltre, data la vicinanza degli operatori alla sorgente del danno potenziale e allo spazio ristretto, che costituisce un limite alle eventuali contromisure, l'abilità di prevedere l'occorrenza di un evento con un adeguato grado di affidabilità è di fondamentale importanza per lo svolgimento in sicurezza dello scavo di un tunnel realizzato con TBM.

Va considerato anche l'aspetto economico, che potrebbe essere interessato dal verificarsi di tali eventi, in quanto rallentamenti o interruzioni della produzione costituiscono un fattore di primaria importanza nella realizzazione di gallerie profonde, andando ad incidere sui costi complessivi dell'opera in misura non trascurabile.

3.3.1. Monitoraggio in-situ

Nel progetto è necessario stabilire un piano di monitoraggio dell'ammasso roccioso durante lo scavo, con lo scopo di investigarne le condizioni geomeccaniche e poter anticipare eventuali comportamenti di rottura fragile, i quali potrebbero comportare l'insorgere di rischi da contrastare con adeguate misure di mitigazione. Tale monitoraggio è inoltre utile per l'adattamento del progetto iniziale alle strutture geologiche incontrate, sulla base delle evidenze emerse durante gli scavi esplorativi.

Le tecniche di monitoraggio usualmente adottate sono molteplici, hanno finalità differenti a seconda delle informazioni ricercate e non sono sempre applicabili in tutti i progetti, a causa di problemi pratici che potrebbero sorgere nell'ambito della logistica di cantiere. L'attendibilità dei risultati ottenuti è strettamente legata al processo di calibrazione svolto durante gli scavi dei cunicoli di indagine geognostica.

Con riferimento al fenomeno di rockburst, mediante il monitoraggio in-situ è utile investigare il grado di fratturazione della roccia, lo stato tensionale raggiunto nella zona circostante lo scavo e la velocità di propagazione delle onde nell'ammasso roccioso. Tali informazioni possono essere ricercate mediante rispettivamente: indagine in avanzamento TSP, modelli numerici accoppiati a misure in-situ e prove di laboratorio speciali, monitoraggio microsismico.

Di seguito si fornisce una breve descrizione delle metodologie di indagine menzionate:

• Tunnel Seismic Prediction (TSP)

La tecnica del rilievo sismico a riflessione TSP può essere applicata per l'esplorazione in avanzamento di gallerie e permette di individuare e posizionare geometricamente nello spazio le discontinuità litologiche e tettoniche.

Il metodo è basato sui principi sismici di riflessione ed è utilizzato in gran parte e con successo nelle opere sotterranee [2].

Piccole cariche esplosive vengono fatte brillare e l'energia di onda sismica si propaga attraverso le masse della roccia. I cambiamenti nelle proprietà meccaniche della roccia, la presenza di zone di taglio o fratturate e dei piani di debolezza provocano un contrasto di impedenza acustico e la riflessione di una parte del segnale che arriverà (dopo un certo tempo) ai ricevitori situati nelle pareti del tunnel. Analizzando la velocità delle onde di compressione (P) e di taglio (S) e convertendo i tempi del segnale riflesso in distanza, le discontinuità (piani di riflessione) possono essere localizzate nell'ammasso roccioso sia in termini di distanza dal fronte di scavo che di inclinazione rispetto all'asse del tunnel (Figura 3. 13). È possibile anche effettuare una stima dei parametri meccanici e fisici (come modulo di Young, coefficiente di Poisson e densità).

Figura 3. 13 – Rappresentazione 2D dei risultati di un'indagine TSP [2].

• Monitoraggio microsismico (MS)

Numerose ricerche indicano che l'energia accumulata nell'ammasso è gradualmente rilasciata sotto forma di emissione acustica per un determinato periodo di tempo antecedente la rottura. Sulla base di ciò, il monitoraggio MS è stato usato per la localizzazione dei danni nella pratica ingegneristica [10].

Ogni evento microsismico contiene informazioni utili riguardanti la variazione di conformazione dell'ammasso roccioso, per cui l'elaborazione e l'analisi dei segnali ricevuti possono fornire una base per la valutazione della stabilità dell'ammasso.

I campi di applicazione in cui è stato adottato il monitoraggio MS sono molteplici, specialmente nell'ingegneria mineraria, settore nel quale in alcuni paesi è stato implementato come standard obbligatorio.

La tecnica si basa sulla rilevazione, in tre dimensioni, degli eventi microsismici generati dalla microfessurazione della massa rocciosa, risultante dall'alterazione dello stato tensionale generata dallo scavo.

L'analisi delle onde rilevate da sensori adeguatamente disposti all'interno del tunnel può fornire informazioni su tempo, posizione, intensità e tipo di frattura della roccia, e di conseguenza permette la formulazione di ipotesi circa lo sforzo interno e il grado di fratturazione dell'ammasso roccioso. Queste condizioni cambiano se un evento di rockburst è imminente, per cui il MS può fornire un tempestivo avvertimento.

Di seguito vengono riportati i risultati ottenuti dal monitoraggio MS nel "Neelum Jhelum hydroelectric project", i quali mostrano la stretta correlazione tra numero di eventi microsismici per metro e rockburst osservati (Figura 3. 14).

Figura 3. 14 – Confronto tra numero di eventi microsismici per metro (linea blu; asse verticale sinistro) e rockburst osservati per categoria (istogramma rosso; asse verticale destro). È mostrata tutta la zona monitorata, relativa alla TBM sinistra [42].

3.3.2. Modalità di scavo

La selezione della modalità di scavo appropriata è uno dei punti chiave nella gestione del rischio, in quanto può sensibilmente influire sui tempi di realizzazione dello scavo, sull'impatto economico e sulla sicurezza dei lavoratori. La scelta va effettuata sulla base delle informazioni disponibili relative alla geologia attesa, le quali a volte possono essere carenti e indurre quindi a valutazioni errate, con conseguenze importanti durante la fase realizzativa dell'opera.

• Scavo meccanizzato

Negli ultimi anni sono stati registrati molti casi di tunnel profondi (coperture da 1000 m a 2000 m) realizzati mediante scavo meccanizzato, in cui le TBM utilizzate hanno riportato danni importanti a causa di eventi di rockburst.

Data l'elevata resistenza e qualità dell'ammasso roccioso in cui può verificarsi un evento di rockburst, la scelta più frequente ricade sull'adozione di una TBM aperta. Tale tipo di macchina permette una velocità di avanzamento piuttosto elevata legata anche alla flessibilità nella scelta della frequenza e del tipo di supporti da mettere in opera, indipendenti dal processo di scavo. D'altro canto l'installazione di sezioni tipo composte da bulloni e reti metalliche (soluzione ampiamente adottata per contrastare tale fenomeno) può essere effettuata solo ad una certa distanza dal fronte, comportando un rischio per la sicurezza dei lavoratori esposti all'ammasso roccioso in una zona in cui la probabilità che si verifichi un evento di rockburst è elevata. Nel Paragrafo 4.5 viene proposta una sezione tipo che permette di sfruttare la rapidità di avanzamento di una TBM aperta senza trascurare il problema legato alla sicurezza appena esposto.

• Scavo convenzionale

Per vari motivi questa modalità di scavo non rappresenta la prima scelta nella realizzazione di tunnel lunghi e profondi, a causa soprattutto della loro estensione, per i quali viene preferito lo scavo meccanizzato. In molti progetti, per i quali era stato scelto lo scavo con TBM, si sono riscontrate problematiche in corso d'opera che sono state superate solo grazie ad un cambiamento della modalità di scavo (ad esempio mediante Drill&Blast nelle sezioni a più elevate coperture). Tale decisione è stata motivata dalla maggiore flessibilità dello scavo

convenzionale nei confronti di quello meccanizzato dal punto di vista della possibilità di contrastare le criticità incontrate con un ventaglio più ampio di soluzioni tecniche.

Il pericolo principale è rappresentato dalla diretta esposizione dei lavoratori all'ammasso roccioso, per cui l'installazione del sistema di supporti va realizzata quanto più possibile in prossimità del fronte di scavo. È importante notare che il fenomeno di rottura violenta può verificarsi anche al fronte e in questo caso la pericolosità in termini di sicurezza diventa rilevante e difficilmente riducibile.

Una soluzione tecnica interessante è rappresentata dallo scavo a sezione parzializzata. Analizzando il progressivo cambiamento dello stato tensionale a seguito dello scavo, si può controllare la quantità di energia elastica gradualmente rilasciata e fare in modo che essa non superi dei valori limite oltre i quali la probabilità che si verifichi un evento di rockburst diventa non trascurabile.

3.3.3. Sistemi di supporti

L'importanza di avere un sistema di supporti efficace negli scavi potenzialmente soggetti a rockburst è stata dimostrata in numerose case histories. Di seguito vengono analizzati i principi e le metodologie ai quali il progetto di tali sistemi di supporto dovrebbe fare riferimento.

Il funzionamento di un sistema di supporti è molto complesso, così come la descrizione dell'interazione tra le varie componenti. In [22] sono state attribuite tre funzioni chiave ai supporti (Figura 3. 15):

• Reinforce

Funzione di rinforzo dell'ammasso roccioso in modo da aumentarne la resistenza e controllarne l'aumento di volume. Solitamente viene svolta dai rock bolts, il cui scopo non è solo quello di aumentare la resistenza dell'ammasso, in modo da renderne possibile un auto-supporto, ma anche quello di controllare l'incremento di volume, in quanto tale sistema previene la propagazione e l'apertura di fratture;

• Retain

Contenimento di blocchi di roccia fratturati in modo da prevenirne la rottura e il rilascio gravitativo. Elementi di contenimento ampliamente utilizzati sono reti metalliche, shotcrete armato, centine o rivestimenti in calcestruzzo gettato in opera. Lo shotcrete necessita di un rinforzo costituito da fibre o reti metalliche, in modo da incrementare resistenza a trazione e tenacità. L'utilizzo di reti metalliche come armatura dello shotcrete offre una funzione di contenimento maggiore in presenza di condizioni di rockburst. Nei sistemi di supporti convenzionali, gli elementi di contenimento sono l'anello debole della catena, il ché ne determina la resistenza globale. L'incremento della capacità complessiva del sistema è strettamente collegato al problema della debolezza degli elementi di contenimento e della loro connessione con gli elementi di rinforzo e di ancoraggio;

• Hold

Funzione di ancoraggio dei blocchi fratturati all'ammasso stabile. È richiesta per tre principali motivi:

- Legare gli elementi di contenimento al sistema di supporti e assicurare la roccia sciolta all'ammasso stabile;

- Dissipare l'energia dinamica dovuta alle espulsioni di roccia e ai movimenti dell'ammasso roccioso;
- Contrastare cadute gravitative di blocchi di roccia.

Figura 3. 15 - Le tre funzioni chiave (Reinforce, Retain, Hold) di un supporto in roccia [22].

L'utilizzo di un sistema di supporti cedevoli è da preferire nel caso in cui il danno da rockburst viene anticipato. In esso gli elementi di ancoraggio devono avere una grande capacità dissipativa, mentre quelli di contenimento devono essere in grado di tollerare le convergenze dello scavo senza "auto-distruggersi", in modo da assorbire elevate quantità di energia dinamica. Al contrario, un anello di shotcrete continuo è solitamente troppo rigido e non riesce a seguire la deformazione dell'ammasso dovuta all'incremento di volume.

Gli elementi di supporto che svolgono le tre funzioni di rinforzo, contenimento e ancoraggio non agiscono indipendentemente e devono essere adeguatamente connessi tra di loro, formando un efficace sistema di supporti. La connessione tra elementi di contenimento e di ancoraggio necessita particolare attenzione per poter assicurare una capacità complessiva ottimale del sistema.

La Figura 3. 15 mostra che le tre funzioni di supporto, in condizioni di potenziale rockburst, sono richieste a prescindere dal meccanismo di danno o dalla sua severità.

In linea generale è importante avere un quadro chiaro dei principi guida relativi alla progettazione di un sistema di supporti per rockburst. A tale scopo, Cai e Champaigne [24] [11] hanno riassunto le loro esperienze pratiche in sette semplici principi (Figura 3. 16):

• Evitare il rockburst

L'obiettivo principale per un sistema di supporti installato in un ammasso roccioso esposto al rischio di rockburst è quello di evitare l'occorrenza di tale fenomeno. La migliore strategia è quella di stabilizzare la roccia senza dover ricorrere a tipologie di supporti pesanti, che hanno lo scopo di contrastare carichi e tensioni imposti dall'ammasso. I metodi volti ad evitare i rischi da rockburst includono l'utilizzo di diverse forme e sequenze di scavo, anche adottando sezioni parzializzate del fronte, o il cambio del metodo di scavo convenzionalmente adottato;

• Uso di supporti cedevoli

La rottura fragile dell'ammasso roccioso è sempre associata ad un aumento di volume e tal volta anche ad una notevole energia di impatto. Per questi motivi il sistema di supporti deve essere deformabile ed in grado di assorbire l'energia dinamica rilasciata. Spesso non è economico cercare di prevenire i rischi da rockburst incrementando la capacità di carico dei supporti; il loro comportamento meccanico deve essere quello di un sistema di supporti che si deforma con l'ammasso, in grado di tollerare ampie convergenze senza che lo scavo collassi e assorbendo un'elevata quantità di energia dinamica, in modo da garantire la sicurezza e l'agibilità del tunnel. Un sistema di supporti cedevoli deve essere in armonia con il circostante ammasso roccioso, quando quest'ultimo è prossimo alle condizioni di rottura;

• Attenzione al collegamento debole

Le procedure progettuali di un sistema di supporti si concentrano principalmente sulla determinazione di quanto carico un rock bolt può sopportare, oppure quanta energia esso può dissipare. Spesso la fratturazione dell'ammasso roccioso compreso tra i rock bolts e l'impatto che ha sul sistema di supporti non vengono presi in considerazione. Nei supporti convenzionali, gli elementi di contenimento sono spesso la componente più debole del sistema e ciò ne determina la sua massima resistenza. Nella maggior parte degli eventi di rockburst, la

connessione tra elementi di ancoraggio e di contenimento (ad esempio tra bolts e rete metallica) rappresenta il punto debole del sistema, per cui la sua efficacia dipende dalla resistenza e dalla qualità di tale connessione;

• Uso di un sistema integrato

Molto spesso è necessario un sistema di supporti composto da differenti elementi, ciascuno che svolga il proprio ruolo, in quanto le tre funzioni di supporto sono sempre richieste, a prescindere dal meccanismo di danno e dalla sua severità (vedi Figura 3. 5). Di conseguenza è fondamentale che gli elementi di ancoraggio siano combinati con elementi di rinforzo (ad esempio rebars) ed elementi di contenimento (ad esempio shotcrete armato con reti metalliche) in modo da formare un sistema di supporti integrato.

• Semplicità

Gli elementi di supporto dovrebbero risultare di semplice realizzazione, installazione e manutenzione, in quanto nelle operazioni di cantiere si potrebbero incontrare difficoltà potenzialmente dannose per l'efficacia del sistema. La difficoltà di installazione potrebbe rallentare la produzione e complicare l'accettazione di tale sistema da parte degli operatori. Il concetto da seguire può essere sintetizzato ricordando le parole di A. Einstein: "Make everything as simple as possible, but not simpler";

• Rapporto costo/efficacia

I supporti per rockburst sono ancora ampliamente considerati costosi per l'utilizzo in ammasso roccioso sottoposto a condizioni di stato tensionale elevato, anche se non è pensabile di poter limitare i costi di uno scavo a spese della sicurezza del cantiere. D'altro canto, le conseguenze legate ad un evento di rockburst possono essere estremamente più costose ed è stato stimato che il loro costo può essere da 10 a 20 volte maggiore di quello inizialmente ipotizzato per lo scavo. In conclusione si può affermare che se la potenziale incidenza sui costi di un eventuale danno da rockburst è elevata, il costo da affrontare per la sua prevenzione in una prima fase può essere relativamente contenuto;

• Anticipare e adattare

In un ammasso roccioso in cui la probabilità di occorrenza di rockburst è elevata, la severità di danno attesa potrebbe cambiare continuamente, per cui non è auspicabile avere un progetto stabilito a priori che non può essere adeguato. Lo scavo e il metodo di supporto devono essere sensibili alla varietà di condizioni dell'ammasso che possono essere incontrate. La concezione di un sistema di supporti efficacie non deve fare affidamento sulla bassa probabilità che si verifichino comportamenti inaspettati dell'ammasso, ma sulla prontezza nella gestione degli stessi.

Figura 3. 16 – I sette principi nella progettazione di supporti per rockburst [24] [11].

Capitolo IV Progettazione delle sezioni tipo

Data la natura dinamica dell'evento, la progettazione di un sistema di supporti da applicare in caso di rockburst differisce dal caso statico. In aggiunta ai carichi gravitativi dei blocchi che raggiungono la rottura, vanno tenuti in conto i carichi dinamici e gli elevati aumenti di volume causati dall'evento.

L'approccio classico per la progettazione prevede che sia raggiunto un fattore di sicurezza definito come il rapporto tra la resistenza degli elementi di supporto e lo stato tensionale applicato. Nella progettazione di un sistema di sostegni atti a contrastare un fenomeno di rockburst si può seguire lo stesso approccio, ma in questo caso i fattori di sicurezza vanno garantiti in termini di carichi, spostamenti e capacità di dissipazione energetica.

Tale approccio di basa quindi sul soddisfacimento di quattro criteri di progettazione. In questo capitolo si porrà l'attenzione sul Criterio energetico (Eq.[4. 3]), in quanto particolarmente caratterizzante del fenomeno di rockburst, mentre nel seguito viene fornita una breve descrizione di ciascun criterio:

• Criterio dei carichi
$$FS_{Load} = \frac{Capacità di carico dei supporti}{Carico di progetto}$$
 [4. 1]

Generalmente tale criterio si ricopre la progettazione sia nei confronti di carichi statici che dinamici. In condizioni di carico dinamico, il carico di progetto può aumentare; in questo caso un sistema di supporti deformabili è preferibile, in modo da dissipare parte dell'energia attesa.

• Criterio degli spostamenti
$$FS_{Disp} = \frac{Capacità deformativa dei supporti}{Spostamento di progetto}$$
 [4. 2]

La fratturazione della roccia non può essere impedita se lo stato tensionale supera la resistenza dell'ammasso roccioso. Il sistema di supporti deve avere la capacità deformativa necessaria a contenere le deformazioni radiali comportate dall'aumento di volume dell'ammasso roccioso fratturato.

• Criterio energetico
$$FS_{Energy} = \frac{Capacità energetica dei supporti}{Energia di progetto}$$
 [4. 3]

Nel processo di eiezione di un blocco di roccia, esso possiede una certa quantità di energia meccanica (Eq.[4. 4]) data dalla somma di energia cinetica, dovuta alla sua espulsione, e di energia potenziale, a seguito del suo cambiamento di posizione progressivo. Il sistema di supporti deve avere una capacità di dissipazione energetica superiore a tale valore.

$$E = \frac{1}{2}m v_e^2 + q m g d_s$$
 [4.4]

in cui:

g = Accelerazione di gravità;

- d_s = Deformazione del sistema di supporti;
- q = Coefficiente per tenere conto della zona interessata dalla rottura;
 - q = 1 per rottura attesa in calotta;

q = 0 per rottura attesa ai piedritti;

- q = -1 per rottura attesa al pavimento.
- Criterio di compatibilità del sistema

I precedenti tre criteri sono riferiti alla progettazione degli elementi che svolgono le funzioni Reinforce e Hold (vedi Paragrafo 3.3.3), tuttavia esse sono garantite solo se i carichi sono efficacemente trasmetti mediante gli elementi di supporto superficiale. Come accennato in precedenza, in questo capitolo si farà riferimento al Criterio energetico (Eq.[4. 3]), per cui si definirà l'Energia di progetto analizzando i termini di Eq.[4. 4] (vedi Paragrafi 4.1 - 4.2 - 4.3) e si proporranno due sezioni tipo, ciascuna con funzioni specifiche legate al sistema di supporti messo in opera, per le quali verrà calcolata la capacità energetica (vedi Paragrafi 4.4 - 4.5).

4.1 Velocità di eiezione

Durante l'evento di rockburst la massa rocciosa viene espulsa ad una velocità che dipende dalla natura del fenomeno stesso (vedi Paragrafo 3.1.2). Si fa distinzione tra fenomeno innescato da un evento sismico remoto (Remotely triggered) o autoindotto a seguito del rilascio di energia di deformazione elastica immagazzinata (Self-initiated). Il primo meccanismo di innesco può comportare un meccanismo di danno di tipo "Rock ejection from seismic energy transfer" o "Rockfall induced by seismic shaking" (quest'ultimo legato al rockburst ma non riferibile ad un'espulsione della roccia), mentre il secondo meccanismo di innesco può portare ad un "Rock bulking due to fracturing".

• Rock ejection from seismic energy transfer

L'ipotesi di base è che la velocità di eiezione della roccia possa essere assunta pari alla peak particle velocity (ppv) [22][31], stimabile mediante la relazione riportata in Eq.[4. 5] e rappresentata in Figura 4. 1.

$$ppv = \frac{C \cdot 10^{\frac{1}{2}(m_{L}+1.5)}}{R+R_{0}}$$
[4.5]

in cui:

C = Costante (valori suggeriti 0.2-0.3);

$$R = Distanza;$$

 $R_0 = Raggio sismico stimato da [22] come riportato in Eq.[4. 6];$

$$R_0 = \alpha 10^{\frac{(m_L + 1.5)}{3}}$$
[4.6]

 α = Costante (valori suggeriti 0.53-1.14);

 $m_L = Magnitudo di Richter.$

Figura 4. 1 – Relazione tra magnitudo-distanza-ppv [31] (Eq.[4. 5]).

Tuttavia tale parametro è complesso, non uniforme e l'indagine su tali fenomeni risulta difficile a causa della mancanza di dati relativi al near field, per cui va posta attenzione a non commettere eccessive semplificazioni.

• Rock bulking due to fracturing

Per fenomeni Self-initiated che si manifestano sul contorno del cavo la velocità di proiezione dei blocchi è maggiormente relazionata alla capacità di immagazzinamento e rilascio di energia a rottura. Come proposto in [3], si può pensare di stimare tale velocità ponendo la massima energia elastica immagazzinabile E_s (vedi Paragrafo 3.2.2) uguale all'energia cinetica E_k (Eq.[4. 7] – le energie sono espresse per unità di volume).

$$E_{k} = \frac{1}{2}\rho v^{2} \\ E_{s} = \frac{\sigma_{c}^{2}}{2E}$$
 $v = \frac{\sigma_{c}}{\sqrt{\rho E}}$ [4.7]

in cui:

 $v_e = Velocità di eiezione;$

 σ_c = Resistenza a compressione monoassiale della roccia intatta;

E = Young modulus;

 ρ = Densità.

Si nota che in questo modo si trascura l'energia potenziale, il che comporta una sovrastima della velocità di eiezione. Inoltre i parametri utilizzati sono riferiti alla roccia intatta, mentre l'ammasso roccioso presenterà un certo grado di fratturazione che comporterà un abbassamento dei valori ottenuti. Per questi motivi non è consigliabile riferirsi ad un unico valore di velocità, ma scegliere un ragionevole range di variazione atteso, sulla base di precedenti casi studio ampiamente documentati, per la definizione di molteplici scenari di progetto. In Tabella 4. 1 viene presentata la classificazione proposta in [22], in cui viene riportata anche il range di velocità di eiezione attesa.

Tabella 4. 1 - Meccanismi di danno da rockburst, severità del danno e cause [22].

Damage mechanism	Damage severity	Cause of rockburst damage	Thickness [m]	Weight [kN/m ²]	Closure* [mm]	v _e [m/s]	Energy [kJ/m ²]
Bulking	Minor	highly stressed rock	< 0.25	< 7	15	< 1.5	not critical
without	Moderate	with little excess	< 0.75	< 20	30	<1.5	not critical
ejection	Major	stored strain energy	< 1.5	< 50	60	< 1.5	not critical
Bulking	Minor	highly stressed rock	< 0.25	< 7	50	1.5 to 3	not critical
causing	Moderate	with significant	< 0.75	< 20	150	1.5 to 3	2 to 10
ejection	Major	excess strain energy	< 1.5	< 50	300	1.5 to 3	5 to 25
Ejection by	Minor	seismic energy	< 0.25	<7	< 150	> 3	3 to 10
remote	Moderate	transfer to	< 0.75	< 20	< 300	> 3	10 to 20
seismic event	Major	jointed or broken rock	< 1.5	< 50	> 300	> 3	20 to 50
	Minor	inadequate strength,	< 0.25	< 7g/(a+g)	na	na	na
Rockfall	Moderate	forces increased	< 0.75	<20g/(a+g)	na	na	na
	Major	by seismic acceleration	< 1.5	<50g/(a+g)	na	na	na

Rockburst damage mechanisms and nature of the anticipated damage

 v_e is the velocity of displaced or ejected rock; a and g are seismic and gravitational accelerations

* closure expected with an effective support system

4.2 Profondità di frattura

La stima della profondità di frattura serve a definire l'entità della massa rocciosa espulsa e quindi sia dell'energia potenziale di progetto, che di quella cinetica.

Le attività di scavo generano un'alterazione dello stato tensionale nell'ammasso roccioso che si attenua gradualmente all'aumentare della distanza dal contorno. Si possono quindi individuare diverse zone nell'intorno del cavo distinte in base alla qualità dell'ammasso roccioso a seguito della perforazione (vedi Paragrafo 4.2.2).

Lo studio delle numerose case histories [27] ha evidenziato che la rottura fragile si verifica a causa di una perdita della resistenza coesiva, mentre quella attritiva viene mobilitata solo in fase post picco. Questo principio è ragionevole per un ammasso roccioso di qualità elevata (classi I e II di RMR; Bieniawski, 1989) ed è alla base dei modelli numerici sviluppati per l'analisi della rottura fragile, come si vedrà nel seguito.

4.2.1. Approccio empirico

La zona di rottura che si forma intorno allo scavo è funzione della sua geometria, dello stato tensionale e della resistenza dell'ammasso. Martin *et al.* [27], a seguito di osservazioni dettagliate riguardo al processo di rottura intorno ad un tunnel circolare, hanno concluso che la formazione di la formazione di lastre di roccia è associata all'avanzamento del fronte e al raggiungimento di condizioni di deformazione piana la geometria del cavo post rottura è essenzialmente stabile. La loro esperienza ha mostrato che la resistenza coesiva tra le lastre di roccia formate a seguito del processo di rottura è molto bassa, mentre all'esterno di tale regione l'ammasso roccioso è molto meno danneggiato. In particolare dai loro risultati si evince che al momento della completa mobilitazione della resistenza attritiva, quella coesiva è ridotta di circa il 70% e ciò avviene solo dopo una deformazione inelastica. Tale circostanza si verifica approssimativamente ad un valore del deviatore di tensione pari ad $1/3 \sigma_c$ (Eq.[4.8]).

$$\sigma_1 - \sigma_3 = \frac{1}{3}\sigma_c \qquad [4.8]$$

La forma della regione definita dall'Eq.[A. 5] (vedi APPENDICE A) è controllata dal rapporto tra le tensioni in-situ orizzontale e verticale ($K_0 = \sigma_h/\sigma_v$), come mostrato in Figura 4. 2.

Tuttavia la forma a cunei della zona di rottura presentata in Figura 2. 3 non è adeguatamente rappresentata da quella individuata in Figura 4. 2. L'Eq.[A. 5] descrive solamente la zona in cui il danneggiamento ha inizio e non l'estensione del processo di splaccaggio, per cui può prevederne la massima profondità di propagazione, ma non la forma. I cunei iniziano a formarsi nel punto in cui la tensione tangenziale è massima, perciò la localizzazione della rottura dipende dal coefficiente di spinta a riposo K_0 (ai piedritti per $K_0 < 1$, in calotta per $K_0 > 1$), e la loro estensione si propaga fino al raggiungimento del valore limite individuato dall'Eq.[A. 5], ovvero fino alla massima profondità di danno in direzione della tensione principale minima (cerchi in Figura 4. 2).

Figura 4. 2 – Estensione del danno intorno ad uno scavo circolare in base all'Eq.[A. 5], al variare di $K_0 > 1$.

L'analisi di otto case histories, in cui la profondità e la forma della zona di rottura sono state misurate, ha permesso un confronto con i risultati ottenuti dall'Eq.[A. 5]. Utilizzando i dati rilevati, Martin *et al.* [27] hanno proposto una relazione lineare per la stima della profondità di frattura:

$$\frac{R_{\rm f}}{a} = 0.49(\pm 0.1) + 1.25 \frac{\sigma_{\rm max}}{\sigma_{\rm c}}$$
[4.9]

in cui:

 R_f = Profondità di frattura (Figura 4. 3);

a = Raggio del tunnel;

 σ_{max} = Tensione tangenziale massima (Eq.[3. 3]);

In Figura 4. 3 si può notare che l'Eq.[4. 9] prevede l'inizio della rottura ad un valore di $\sigma_{max}/\sigma_c \approx 0.4 \pm 0.1$, in accordo con i metodi di stima della suscettibilità analizzati nel paragrafo 3.2.

La Figura 4. 4 mostra la profondità frattura stimata mediante Eq.[A. 5] (Predicted) e quella ottenuta dall'Eq.[4. 9] (Measured). Tale confronto mette in evidenza una leggera sovrastima rispetto a quanto osservato nell'analisi delle case histories per $\sigma_{max}/\sigma_c = 0.34 \div 0.6$.

Figura 4. 3 – Relazione tra profondità di frattura e massima tensione tangenziale al contorno (Eq.[4. 9]).

Figura 4. 4 – Confronto tra profondità di frattura stimata mediante Eq.[A. 5] e correlazione empirica (Eq.[4. 9]).

4.2.2. Approccio numerico

Una seconda e forse più rigorosa metodologia per la predizione della profondità di rottura in tunnel profondi scavati in ammassi rocciosi competenti (GSI > 65) è stata proposta da Diederichs, 2007 [16]. Egli introduce un criterio di rottura bi-lineare che tiene conto di diversi valori di soglia al di sotto dei quali le fratture fragili possono propagare (Figura 4. 5), dai quali prende il nome "Damage initiation, Spalling limit". Tale approccio mette in risalto la dipendenza del processo di rottura fragile dal confinamento, minima per il "damage initiation" (elevata coesione, basso attrito) e crescente fino al punto di "spalling limit" (elevato attrito, bassa coesione). Utilizzando il criterio di Hoek-Brown, la perdita di coesione è rappresentata dalla riduzione del parametro *s*, mentre l'aumento della resistenza attritiva viene simulata con un aumento del parametro *m*. Utilizzando i parametri modificati di Hoek-Brown riportati in Tabella 4. 2, il comportamento fragile può essere riprodotto in un modello numerico, in cui al

"damage initiation" possono essere assegnati i parametri di picco, mentre lo "spalling limit" corrisponde ai valori di resistenza residui.

Para	ametri di picco	Parametri residui			
a _p	0.25	a _r	0.75		
s _p	$\left(\frac{\mathrm{CI}^*}{\mathrm{UCS}}\right)^{1/\mathrm{a_p}}$	s _r	0.001		
m _p	$s_p\left(\frac{UCS}{ T }\right)$	m _r	6-12		

Tabella 4. 2 – Parametri di Hoek-Brown modificati per il metodo DISL.

*per il calcolo di CI vedi Paragrafo 3.2.3.

Il processo di spalling va ad auto-equilibrarsi al crescere della distanza dal cavo e quindi della tensione di confinamento, cosa non completamente considerata nel criterio di Martin *et al.* [27].

Figura 4.5 – Inviluppo di rottura per il modello DISL (Diederichs, 2007) [16].

Il criterio di Hoek-Brown è comunemente impiegato come un approccio di tipo strain weakening, in cui la resistenza post-snervamento è ridotta e risulta adeguato per ammassi rocciosi che presentano un comportamento duttile (elastico-perfettamente plastico). Questo è il caso di ammassi rocciosi caratterizzati da un certo grado di discontinuità, con conseguente comportamento attritivo e deformazione di taglio. Adottando questo approccio, le componenti di resistenza coesiva e attritiva sono mobilizzate simultaneamente ed entrambe ridotte ai valori residui di post-picco. Ciò ha mostrato l'inadeguatezza di tale approccio alla previsione della profondità e dell'estensione della zona di rottura al contorno di scavi profondi realizzati in rocce dure e fragili [18] [27]. Per questo, a seconda dei valori di GSI e UCS/T (Tabella 4. 3) è più opportuno adottare i parametri classici di Hoek-Brown o quelli modificati, presentati in Tabella 4. 2.

	GSI	GSI	GSI	GSI
003/1	< 55	55 - 65	65 - 80	> 80
< 8	GSI	GSI	GSI	GSI
9 - 15	GSI	GSI	GSI	GSI/SP
15 - 20	GSI	GSI/SP	SP/GSI	SP
> 20	GSI	GSI/SP	SP	SP

Tabella 4. 3 – Valori di GSI e UCS/T per la scelta del metodo da adottare.

Una volta individuato il metodo adatto e calcolati i parametri da utilizzare, si può procedere alla modellazione. I risultati ottenuti vanno interpretati al fine di stabilire quale sia la profondità di frattura attesa. La realizzazione di uno scavo genera un'alterazione dell'ammasso roccioso, la cui entità diminuisce con l'aumentare della distanza dal contorno, come descritto in [30] (Figura 4. 6).

Figura 4. 6 – Zone dell'ammasso roccioso influenzate dallo scavo.

La zona più superficiale è conosciuta come "construction damage zone" (CDZ) e può essere ridotta adattando o cambiando il metodo di scavo. Appena al di fuori si individua la "highly damaged zone" (HDZ), in cui le macro-fratture sono interconnesse. Procedendo verso l'esterno si passa alla "excavation damage zone" (EDZ) in cui si osserva una transizione graduale da danni connessi (EDZi) ad isolati (EDZo). La zona ancora esterna è caratterizzata da cambiamenti di tipo elastico e viene denominata "excavation influence zone" (EIZ). In Figura 4. 7 vengono riportate le zone appena descritte in relazione al modello DISL.

Figura 4. 7 – Damage zones rappresentate nel modello DISL [16][30].

Gli studi effettuati da Perras *et al.* (2010, 2012) [30] hanno mostrato che i migliori indicatori per la determinazione della profondità delle diverse zone sono volumetric strain, yielded elements e minor principal stress, i cui valori, ottenuti dal modello numerico, sono plottati in funzione della distanza dal contorno dello scavo.

La transizione da HDZ a EDZi può essere assunta come il primo punto in cui σ_3 aumenta dal valore alla superficie di scavo. Allo stesso tempo si osserva una rapida diminuzione della deformazione di trazione (o di taglio).

La transizione da EDZi a EDZo può essere assunta come il punto in cui il volumetric strain diventa positivo (trazione).

La transizione da EDZo a EIZ può essere assunta come il punto in cui lo snervamento plastico ha inizio.

La profondità di frattura da definire per un evento di rockburst può essere assunta come coincidente con la EDZi, in cui le micro-fratture sono connesse e comportano danni visibili. Si fa notare che la EDZi può sovrastimare la profondità di frattura per $\sigma_{max}/CI > 1.5$.

In figura viene riportato un esempio di definizione di tali zone secondo i criteri descritti sopra.

Figura 4.8 – Damage zones individuate mediante modello numerico [30].

4.3 Spostamento radiale

La stima dello spostamento radiale atteso a seguito di un evento di rockburst è importante per la progettazione energetica delle sezioni tipo, in quanto permette di determinare l'entità dell'energia potenziale ad esso associata (Eq.[4. 4]). Esso si verifica a seguito della propagazione della frattura nell'ammasso roccioso, con conseguente disgregazione della roccia e aumento di volume. Ciò risulta dall'incompatibilità geometrica dei blocchi costituenti l'ammasso roccioso e può essere contenuto qualora il cavo sia adeguatamente supportato. La simulazione numerica di questo incremento di volume non è semplice, per cui in alternativa si può stimare mediante Eq.[4. 10].

$$\mathbf{d}_{\mathbf{s}} = \mathrm{DOF} \cdot \mathrm{BF} \cdot \mathbf{G}$$
 [4. 10]

in cui:

 d_s = Spostamento radiale atteso;

DOF = Profondità di frattura (Depth Of Failure);

G = Fattore legato al gradiente deformativo tra il contorno del cavo e l'estremità
 della zona plasticizzata (assunto pari a 0.5);

$$BF = Bulking Factor (\%) [22] [13].$$

$$BF = 0.3 \cdot e^{\left(-\frac{P}{70}\right)}$$

P = Pressione applicata dal supporto (in kPa);

Il BF è un fattore empirico espresso in percentuale che dipende dalla pressione applicata dal supporto al contorno del cavo.

È importante porre l'attenzione sul gradiente di deformazione plastica a taglio all'interno dell'ammasso roccioso a rottura per determinarne l'entità del danno subito, in quanto solo la zona che presenta un valore elevato di questo parametro va considerata come soggetta al fenomeno, come precedentemente esposto nel Paragrafo 4.2.2.

4.4 Sezione tipo con bullonatura

L'analisi di un elevato numero di case histories in cui la forma della zona di rottura è stata misurata e ben documentata mostra che l'evento di rockburst comporta la formazione di cunei di roccia che vengono espulsi, a prescindere dalla forma o dalla dimensione originale dello scavo (Figura 2. 3). Tale osservazione è importante per la progettazione delle sezioni tipo in cui vengono utilizzati i bulloni come elementi di ancoraggio, al fine di determinarne la lunghezza.

Come descritto in precedenza nel Capitolo III, affinché un sistema di sostegni sia efficacie nei confronti del rockburst, esso deve garantire anche la funzione di sostegno, oltre quelle di rinforzo e ancoraggio svolte dalla bullonatura. L'elemento superficiale maggiormente utilizzato per il compimento di tale funzione consiste in rete elettrosaldata, ricoperta da uno strato di shotcrete. Spesso le opere sotterranee realizzate al di sotto delle catene montuose sono caratterizzate da uno stato tensionale con k > 1, di conseguenza la zona più a rischio per un eventuale evento di rockburst è la calotta. Per tale motivo la disposizione degli elementi menzionati interessa principalmente questa zona; a volte il sistema è integrato con l'impiego di spezzoni di centina e solitamente ricopre un arco minimo di 120°.

La progettazione energetica di un sistema di supporti dovrebbe riguardare tutti gli elementi che lo compongono. In accordo con Potvin *et al.*, 2010-2013 [31], gli elementi superficiali possono garantire un fattore di sicurezza aggiuntivo, oppure rappresentare l'anello debole del sistema, a seconda che quest'ultimo sia in grado di lavorare rispettivamente in serie o in parallelo (anche in relazione alla spaziatura dei bulloni). Cala *et al.*, 2013 [12] sottolineano che la ridistribuzione di energia tra i vari elementi di supporto è funzione della rigidezza della componente superficiale: tipicamente in condizioni di sistema rigido, gli elementi di rinforzo (bulloni) e quelli superficiali (rete) assorbono rispettivamente il 75% e il 25% dell'energia rilasciata. In altri test [40] gli elementi di rinforzo hanno mostrato un assorbimento dal 72% al 93% dell'energia.

Nello studio effettuato è stata posta particolare attenzione alla progettazione energetica degli elementi di rinforzo, ipotizzando che assorbissero tutta l'energia in ingresso. I risultati ottenuti verranno presentati nel Capitolo V.

4.5 Sezione tipo con centine e barre

Nel caso di utilizzo di TBM aperta, l'elevata capacità energetica di una sezione composta da bulloni rende tale tipo di sostegno molto efficiente dal punto di vista del contenimento dell'ammasso roccioso instabile. Come descritto nel Capitolo III, l'utilizzo di bulloni va associato ad altri elementi di contenimento, in particolare a quelli superficiali quali rete elettrosaldata e shotcrete. La loro applicazione ha luogo subito dietro allo scudino della TBM, per cui i lavoratori sono direttamente esposti all'ammasso roccioso e ciò comporta una sicurezza del cantiere non adeguata nell'eventualità che si verifichi un evento di rockburst.

Per tale motivo, è stato ideato un sistema di sostegno alternativo che possa garantire la giusta protezione ai lavoratori, denominato McNally® e utilizzato durante lo scavo di numerose gallerie (ad esempio Olmos Tunnel, Perù; La Maddalena Tunnel, Italia [32]). Tale metodo consiste nell'installazione di centine a passo costante, collegate da barre in acciaio da carpenteria ad interasse molto ridotto (circa 3 centimetri) poste tra l'ammasso roccioso e le centine stesse, in modo da creare una protezione contro l'eventuale espulsione di roccia. Solitamente tali barre sono installate in calotta, in quanto parte dello scavo più a rischio nei confronti del rockburst; per agevolarne la messa in opera, vengono inserite in scatolari in acciaio saldati ad hoc allo scudino. Per quanto riguarda il passo tra le centine, la sua dimensione dovrebbe coincidere con quella dei piedi del gripper, in modo che essi non vadano a deformare i sostegni durante la fase di avanzamento.

Ne risulta un'elevata rapidità di installazione, con conseguente guadagno in termini di tempo e sicurezza. In Figura 4. 9 è riportato lo schema concettuale di questo sistema di sostegni, mentre in Figura 4. 10 vengono evidenziati alcuni particolari costruttivi relativi allo scavo del Cunicolo esplorativo de La Maddalena [5].

Figura 4.9 – Schema semplificato del sistema McNally (non in scala). Sezione longitudinale (a sx), sezione frontale (a dx) e particolare delle barre longitudinali in acciaio inserite tramite scatolari (in alto, esempio Tunnel de La Maddalena [5]).

Figura 4. 10 – Sistema di sostegno McNally®. A sinistra, in alto gli scatolari saldati sotto lo scudino per l'installazione delle barre in acciaio; in basso le barre in acciaio poggianti su due centine consecutive. A destra, una vista globale del sistema di sostegno ad installazione avvenuta [32].

Il sistema di sostegni sopra descritto rappresenta sostanzialmente un'estensione dello scudino della TBM, garantendo la continua protezione dei lavoratori da eventuali espulsioni violente. Tale sistema dissipa l'energia associata all'evento di rockburst mediante ampia deformazione delle barre in acciaio, coinvolgendo sia la componente elastica di resistenza, che quella plastica. Dal punto di vista del calcolo, ciò comporta l'utilizzo di un software agli elementi finiti che possa seguire la legge costitutiva dell'acciaio all'aumentare del livello deformativo. Inoltre, nei classici programmi strutturali non è agevole definire un carico agente di tipo energetico.

Considerando che la fase di progetto in cui è stato svolto questo studio non era ancora ad uno stadio così avanzato, è stato ritenuto sufficiente procedere in maniera semplificata, ideando un approccio basato sull'energia meccanica coinvolta, allo scopo di determinare un carico statico distribuito maggiorato, per tenere conto della natura dinamica dell'evento.

$$E_{1} = \frac{1}{2}m_{1}v^{2} + m_{1}gd_{s} \\ E_{2} = m_{2}gd_{s}$$
 $E_{1} = E_{2} \rightarrow \frac{1}{2}m_{1}v^{2} + m_{1}gd_{s} = m_{2}gd_{s} \rightarrow m_{2} = m_{1}\left(1 + \frac{v^{2}}{2gd_{s}}\right)$

in cui:

 E_1 = Energia meccanica associata al potenziale rockburst;

 E_2 = Energia potenziale fittizia, equivalente ad E_1 ;

 m_1 = Massa di roccia espulsa;

 m_2 = Massa di roccia espulsa fittizia, maggiorata dalla quota parte di energia cinetica;

 d_s = Deformazione delle barre;

v = Velocità di eiezione;

g = Accelerazione di gravità;

In questo modo è possibile calcolare una massa fittizia m_2 con la quale calcolare il carico distribuito q_2 da applicare alle barre per il calcolo del loro diametro e dell'interasse (Eq.[3.10]).

$$q = \frac{m g}{L} \rightarrow q_2 = q_1 \left(1 + \frac{v^2}{2gd_s} \right)$$
[3.10]

Resta da definire la deformazione delle barre d_s , la quale andrebbe calcolata a rigore tenendo conto della plasticizzazione dell'acciaio a seguito dell'evento di rockburst. Per semplicità si è ipotizzato di rimanere sotto la soglia di snervamento, in modo da calcolare la deformazione mediante le equazioni della linea elastica (Eq.[3.11]). Tale ipotesi permette di effettuare un calcolo molto rapido, ma abbastanza distante dalla realtà; va notato che questa assunzione porta ad un risultato a favore di sicurezza. Lo schema statico ipotizzato è quello di semplice appoggio, nel quale gli appoggi sono rappresentati dalle centine e la luce corrisponde con il loro interasse.

$$d_{s} = \frac{5}{384} \frac{q L^{4}}{E I}$$
[3.11]

in cui:

q = Carico distribuito;

E = Modulo elastico dell'acciaio;

I = Momento d'inerzia della sezione;

L = Interasse centine;

Come di può notare, la deformazione delle barre d_s dipende dal carico applicato, il quale a sua volta dipende dalla deformazione stessa, per cui va effettuato un processo di calcolo iterativo al fine di determinare il carico distribuito q_2 mediante il quale calcolare il momento massimo agente sulla barra e quindi la tensione a cui è sottoposta, da confrontare con quella di snervamento.

$$M = \frac{q L^2}{8} \to \sigma = \frac{M}{W} \le f_y$$
[3. 12]

Capitolo V Applicazione ad un caso reale

Nel Capitolo III è stata descritta la procedura di Gestione nel rischio, analizzando nel dettaglio le fasi di Identificazione del rischio, Analisi del rischio e Trattamento del rischio nel caso del fenomeno del rockburst. Nel Capitolo IV è stato presentato il procedimento da seguire per la progettazione delle sezioni tipo dal punto di vista energetico al fine di contrastare il medesimo evento.

Nel seguente Capitolo verranno applicate le procedure sopra citate al caso reale oggetto dello studio condotto. In particolare, verrà presentato un inquadramento geologico dell'opera e dei dati geomeccanici utilizzati. Di seguito, in accordo con la fase di Analisi del rischio, verrà proposta una valutazione della suscettibilità al rockburst secondo i metodi esposti nel Capitolo III, paragrafo 3.2. I risultati ottenuti verranno confrontati con i valori proposti dal committente, al fine di individuare eventuali discordanze. In conclusione, in riferimento alla fase di Trattamento del rischio, verrà presentata la progettazione delle sezioni tipo effettuata secondo le procedura esposta nel Capitolo IV per le sezioni del tracciato in cui è stata individuata una potenziale suscettibilità all'evento. Si fa notare che per la progettazione delle sezioni con centine e barre verrà seguito il metodo descritto nel Capitolo IV, Paragrafo 4.5.

Va infine precisato che l'opera in questione non è ancora stata realizzata, per cui si tratta di uno studio previsionale e non di una comparazione di risultati già noti.

5.1 Inquadramento geologico dell'opera

L'opera consiste in una galleria bitubo del diametro di 11.40 m e sviluppo longitudinale totale pari a 57 km, suddivisa in 3 lotti. Lo studio effettuato riguarda la porzione di tunnel costituente il Lotto 2, compresa tra la p.k. 6+048 e la p.k. 29+920. Lo scavo verrà realizzato secondo il metodo convenzionale (da p.k. 6+048 a p.k. 11+725 e da p.k. 20+133 a p.k. 21+048), con TBM scudata (da p.k. 11+725 a p.k. 20+133) e con TBM aperta (da p.k. 21+048 a p.k. 29+920). In particolare è stata analizzata la suscettibilità al rockburst lungo tutto il Lotto 2, mentre la progettazione delle sezioni tipo ha riguardato solo la tratta da scavare con TBM aperta.

I parametri geomeccanici delle litologie attese lungo l'asse del tunnel (Tabella A2. 1) hanno portato alla definizione delle 12 unità geomeccaniche (UG) elencate in Tabella 5. 1.

UG	Litologia
Α	Anidriti e gessi
В	quarziti, conglomerati quarzitici
	scistosi di Loutraz
С	Marmi, dolomie, calcari e argilliti
D	Calcemicascisti, scisti carbonatici, gneiss albitici, gneiss leucocratici, micascisti quarzitici conglomeratici d'Ambin, micascisti e gneiss occhiadini, quarziti micacee e conglomerati quarzitici, gneiss, micascisti
E	Arenarie
F	Calcari marnosi
G	Metabasiti
н	Scisti, flysch scistosi, flysch scisto- arenacei
Ι	Carbone
H1	Arenarie, scisti, rocce molto fratturate
J	Rocce di faglia e carniole
Κ	Depositi non consolidati

Tabella 5. 1 – Unità geomeccaniche attese lungo l'asse del tunnel.

Come si può notare nelle Figura A2. 1-2-3-4, il committente ha fornito delle percentuali di UG al fine di definire delle zone geologiche omogenee. Per questo motivo, a partire dai parametri geomeccanici di Tabella A2. 1, sono stati calcolati dei nuovi parametri da assegnare a ciascuna zona omogenea individuata, mediante media ponderata degli stessi rispetto alle percentuali

assegnate a ciascuna UG, come riportato in Tabella A2. 2-3-4. Questo discorso è valido per i parametri medi, utilizzati poi per il calcolo della suscettibilità al fenomeno del rockburst.

I dati di input sono quelli di sondaggi, test e rilievi eseguiti nelle fasi successive del progetto, e quelli ottenuti dai ritorni d'esperienza dallo scavo delle discenderie previste.

PK 3+921 – 4+445: Le prime centinaia di metri del tunnel attraverseranno dei depositi di origine gravitativa e/o alluvionale, raggruppati nell'unità geomeccanica K.

PK 4+445 – 7+440: L'ammasso roccioso fa parte dell'UG H. Il comportamento allo scavo è controllato dallo stato di fratturazione, e i problemi principali possono derivare da instabilità al fronte o da fenomeni di *squeezing* in caso di elevate coperture in roccia.

PK 7+440 – 10+060: Le rocce della zona formano una successione carbonatica classificata principalmente nell'UG C e dalle buone caratteristiche geomeccaniche; i problemi in fase di scavo possono derivare principalmente da fenomeni di *rockburst* e di *spalling* e/o splaccaggio. In questa zona si trovano inoltre calcari marnosi dell'UG F (buona qualità geomeccanica, possibili distacchi di cunei instabili secondo l'orientazione dei piani d'anisotropia) e calcescisti dell'UG D (il comportamento allo scavo è molto variabile e può rientrare nei campi d'instabilità tipici dei cunei instabili, del *rockburst* e/o dello *squeezing*). In corrispondenza dei fronti di scollamento ai margini di questa zona si trovano anidriti e gessi dell'UG A, con caratteristiche geomeccaniche da discrete a buone, ma fenomeni di *rockburst* al di sotto di coperture elevate sono comunque possibili. Localmente associate ai piani di taglio su tutta la zona si possono trovare delle carniole (UG J).

PK 10+060 – 23+100: Le porzioni più fratturate delle altre unità dell'ammasso roccioso fanno parte dell'UG H1, per la quale sono possibili fenomeni di *squeezing* nel caso di fratturazione pervasiva e di copertura elevata. Per le unità successive si è provveduto a classificare le porzioni più arenacee e/o competenti nell'UG E, caratterizzata da comportamento discreto, e quelle più scistose e/o fratturate nell'UG H (possibili fenomeni di *squeezing*), mentre i livelli carboniosi presenti localmente rientrano nell'UG I.

PK 23+100 - 33+350: L'ammasso in condizioni di media fratturazione ha un comportamento geomeccanico medio-buono. Le quarziti rientrano nell'unità geomeccanica UG B, con un buon comportamento (classe II di Bieniawski). Le rocce di basamento e le quarziti filladiche

rientrano nell'UG D e il massiccio si riparte nelle classi II e III di Bieniawski. Per le quarziti filladiche, i cui parametri geomeccanici hanno valori inferiori a quelli dei micascisti del basamento, si attendono le condizioni geomeccaniche peggiori. Cattive condizioni geomeccaniche sono attese per anidriti e gessi fratturati, in corrispondenza delle zone di taglio (UG J).

PK 33+350 – 39+920: Anidriti e gessi hanno qualità geomeccanica generalmente buona (UG A). La formazione di calcari e dolomie (p.k. 33+350 - 34+070 e p.k. 36+900 - 39+440) hanno un comportamento geomeccanico da buono a discreto (UG C) che può migliorare in corrispondenza degli orizzonti di anidriti e/o gessi (UG A). Tra le p.k. 35+300 - 36+200 le rocce carbonatiche hanno comportamento geomeccanico buono (UG C). Tra le p.k. 37+500 e 39+920 si trovano rocce con caratteristiche geomeccaniche variabili da buone a discrete (UG B – UG D).

PK 39+920 - 48+672: Le rocce del massiccio presentano caratteristiche geomeccaniche mediobuone (UG D). In corrispondenza delle zone di faglia sono attese caratteristiche geomeccaniche da mediocri a scadenti, e tipiche dell'unità geomeccanica UG J.

5.2 Valutazione della suscettibilità al rockburst

I metodi descritti nel Paragrafo 3.2 sono stati applicati al caso in oggetto. Tali metodi permettono una valutazione qualitativa della suscettibilità al rockburst (Tabella 5. 2), a differenza di quanto fornito dal committente, che assegna un determinato livello di rischio all'evento.

Burst Potential	SED Method	Wang, 1998	GDE Multiple Graph*
No Risk	Very Low	No Risk	No Risk
Low	Low	Low	Minor
Medium	Medium	High	Minor-Severe
High	High	Very High	Severe
Very High	Very High		

Tabella 5. 2 – Valutazione qualitativa della suscettibilità al rockburst.

*nel GDE MULTIPLE GRAPH [36] il termine "minor-severe" non è presente nel grafico originale, ma è stato inserito per considerare una situazione di transizione intermedia. Per tale metodo la scelta del livello di suscettibilità è stata effettuata in base a come i dati si collocavano nel grafico, per cui non segue precise relazioni matematiche, come invece accade negli altri metodi.

Per questo, sulla base delle indicazioni riportate in [1], il livello di rischio è stato depurato dal valore di impatto assegnato (Tabella A2. 5), in modo da risalire al livello di probabilità dell'evento, ritenendo che la sua suscettibilità non sia legata alle conseguenze che potrebbe generare. Inoltre, le valutazioni qualitative ottenute mediante i metodi sopracitati sono state convertite in una scala numerica, al fine di quantificarle (Tabella 5. 3). L'equivalenza tra suscettibilità qualitativa e quantitativa è stata effettuate cercando di mantenere l'uniformità con i termini utilizzati dal committente [1].

Burst Po	Burst Potential SED M		ethod	Wang, 1998		GDE Multiple Graph*		
INTENSITA'	LIVELLO	INTENSITA'	LIVELLO	INTENSITA'	LIVELLO	INTENSITA'	LIVELLO	
No Risk	0	Very Low	0	No Risk	0	No Risk	0	
Low	2	Low	2	Low	2	Minor	2	
Medium	3	Medium	3	High	3	Minor-Severe	3	
High	4	High	4	Very High	4	Severe	4	
Very High	5	Very High	5					

Tabella 5.3 – Valutazione quantitativa della suscettibilità al rockburst.

Di seguito vengono presentati sia in forma grafica che tabellare i risultati ottenuti, i quali saranno poi confrontati con i valori proposti a priori dal committente.

• Parametri di resistenza della roccia intatta – Burst Potential [15]

In Tabella 5. 4-5-6 sono riportati i valori ottenuti per la valutazione qualitativa e quantitativa della suscettibilità al rockburst. I parametri geomeccanici calcolati come descritto sopra sono stati rappresentati sul grafico di Figura 3. 6, ottenendo quando riportato in Figura 5. 1-2-3.

Figura 5.1 – Grafico Burst Potential. Scavo tradizionale.

Figura 5. 2 – Grafico Burst Potential. TBM scudata.

Figura 5. 3 – Grafico Burst Potential. TBM aperta.

Tabella 5. 4 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Burst Potential, scavo tradizionale.

H (m)	360	628	805	1126	935	586	555	675	807	693
Pki	6078	7075	7441	7551	8734	10144	10403	10850	20133	20659
Pkf	7075	7441	7551	8734	10144	10403	10850	11725	20659	21048
Li (m)	997	366	110	1183	1410	259	447	875	526	389
UCS (MPa)	105.0	97.1	34.3	93.9	72.7	80.1	16.9	55.2	110.5	64.4
Burst	Low	Low	_	Low	-	Low	-	-	Low	-
Potential	2	2	0	2	0	2	0	0	2	0

Tabella 5.5 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Burst Potential, TBM scudata.

H (m)	817	1086	1058	890
Pki	11725	12420	15639	18938
Pkf	12420	15639	18938	20133
Li (m)	695	3219	3299	1195
UCS (MPa)	55.2	97.7	96.8	110.5
Burst	-	Low	Low	Low
Potential	0	2	2	2

H (m)	675	705	860	970	992	1101	1116
Pki	21048	21580	21938	23094	23711	24027	25229
Pkf	21580	21938	23094	23711	24027	25229	25456
Li (m)	532	358	1156	617	316	1202	227
UCS (MPa)	64.4	122.8	143.8	56.7	91.0	107.4	95.5
Burst	-	Medium	Medium	-	Low	Low	Low
Potential	0	3	3	0	2	2	2

Tabella 5.6 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Burst Potential, TBM scudata.

H (m)	1100	1035	1083	1116	1185	1148	1015
Pki	25456	25918	26100	26681	27277	28403	29254
Pkf	25918	26100	26681	27277	28403	29254	29800
Li (m)	462	182	581	596	1126	851	546
UCS (MPa)	114.5	91.0	107.0	91.0	59.1	91.0	53.8
Burst	Low	Low	Low	Low	-	Low	-
Potential	2	2	2	2	0	2	0

• Energia elastica immagazzinata – SED Method

Г

In Tabella 5. 7-8-9 sono riportati i valori ottenuti per la valutazione qualitativa e quantitativa della suscettibilità al rockburst.

Tabella 5	5. 7 – Valu	utazione q	ualitativa	e quantitativ	a della suscet	tibilità al rock	burst. SED M	lethod, sca	vo tradizio	nale.
H (m)	360	628	805	1126	935	586	555	675	807	693

٦

H (m)	360	628	805	1126	935	586	222	675	807	693
Pki	6078	7075	7441	7551	8734	10144	10403	10850	20133	20659
Pkf	7075	7441	7551	8734	10144	10403	10850	11725	20659	21048
Li (m)	997	366	110	1183	1410	259	447	875	526	389
SED (kJ/m ³)	188.68	197.30	59.78	127.52	104.59	103.45	25.24	86.66	175.61	119.29
SED Mothod	High	High	Low	Moderate	Moderate	Moderate	Very Low	Low	High	Moderate
SED Method	4	4	0	3	0	3	0	0	4	0

Tabella 5.8 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. SED Method, TBM scudata.

H (m)	817	1086	1058	890
Pki	11725	12420	15639	18938
Pkf	12420	15639	18938	20133
Li (m)	695	3219	3299	1195
SED (kJ/m ³)	86.66	160.26	144.47	175.61
SED Mothed	Low	High	Moderate	High
SED Wiethod	0	4	3	4

 Tabella 5. 9 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. SED Method, TBM aperta.

H (m)	675	705	860	970	992	1101	1116
Pki	21048	21580	21938	23094	23711	24027	25229
Pkf	21580	21938	23094	23711	24027	25229	25456
Li (m)	532	358	1156	617	316	1202	227
SED (kJ/m ³)	119.29	257.90	345.27	99.88		172.23	111.51
SED Mothod	Moderate	Very High	Very High	Low	Moderate	High	Moderate
SED Method	0	5	5	0	3	4	3

H (m)	1100	1035	1083	1116	1185	1148	1015
Pki	25456	25918	26100 26681		27277	28403	29254
Pkf	25918	26100	26681	27277	28403	29254	29800
Li (m)	462	182	581	596	1126	851	546
SED (kJ/m ³)	192.76	142.78	171.25	142.78	122.04	142.78	85.64
SED Mathad	High	Moderate	High	Moderate	Moderate	Moderate	Low
SED Method	4	3	4	3	0	3	0

• Stato tensionale in situ – Wang, 1998

In Tabella 5. 10-11-12 sono riportati i valori ottenuti per la valutazione qualitativa e quantitativa della suscettibilità al rockburst.

Tabella 5, 10 – Valutazione o	uualitativa e quantitativ	a della suscettibilità al rockburst.	Wang, 19	98. scavo tradizionale
1 abcha 5. 10 = valutazione q	juanianva e quaninanv	a dena suscentonna ai fockouist.	. wang, 17	76, seave tradizionale

H (m)	360	628	805	1126	935	586	555	675	807	693
Pki	6078	7075	7441	7551	8734	10144	10403	10850	20133	20659
Pkf	7075	7441	7551	8734	10144	10403	10850	11725	20659	21048
Li (m)	997	366	110	1183	1410	259	447	875	526	389
$T_s = \sigma_{\theta} / \sigma_c$	105.0	97.1	34.3	93.9	72.7	80.1	16.9	55.2	110.5	64.4
Wang 1009	Low	Low	-	Low	-	Low	-	-	Low	-
wang, 1998	2	2	0	2	0	2	0	0	2	0

H (m)	817	1086	1058	890
Pki	11725	12420	15639	18938
Pkf	12420	15639	18938	20133
Li (m)	695	3219	3299	1195
$T_s = \sigma_{\theta} / \sigma_c$	55.2	97.7	96.8	110.5
Wang 1009	-	Low	Low	Low
wang, 1998	0	2	2	2

Tabella 5. 11 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Wang, 1998, TBM scudata.

 Tabella 5. 12 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. Wang, 1998, TBM aperta.

H (m)	675	705	860	970	992	1101	1116
Pki	21048	21580	21938	23094	23711	24027	25229
Pkf	21580	21938	23094	23711	24027	25229	25456
Li (m)	532	358	1156	617	316	1202	227
$T_s = \sigma_{\theta} / \sigma_c$	64.4	122.8	143.8	56.7	91.0	107.4	95.5
Wang 1009	-	Medium	Medium	-	Low	Low	Low
wang, 1998	0	3	3	0	2	2	2

H (m)	1100	1035	1083	1116	1185	1148	1015
Pki	25456	25918	26100	26681	27277	28403	29254
Pkf	25918	26100	26681	27277	28403	29254	29800
Li (m)	462	182	581	596	1126	851	546
$T_s = \sigma_{\theta} / \sigma_c$	114.5	91.0	107.0	91.0	59.1	91.0	53.8
Wang 1009	Low	Low	Low	Low	-	Low	-
wang, 1996	2	2	2	2	0	2	0

• GDE Multiple graph

In Tabella 5. 13-14 sono riportati i valori ottenuti per la valutazione qualitativa e quantitativa della suscettibilità al rockburst, calcolati per diversi stati tensionali ($k_0 = 0.5, 1, 1.5$). La rappresentazione grafica è riportata in Figura 5. 4-5-6-7.

(**)	depending also from the length of the potential proned zone:	given a possible	"silo effect",	for short zones included in good quality rocks, a caving behaviour it is most likely	

Unità Geomeccaniche	UGH (20) 30% UGH (21) 70%	UGH (21) 89% UGH (23) 11%	UGA (8) 27% UGJ (23) 73%	UGA (8) 15% UGC (18) 85%	UGC (9) 4% UGA (18) 60% UGF (19) 30% UGJ (23) 6%	UGA (8) 85% UGJ (23) 15%	UGH1 (17a) 40% UGH1 (17b) 30% UGJ (23) 30%	UGE (16a) 25% UGH (16b) 20% UGH1 (17a) 30% UGH1 (17b) 10% UGH1 (22) 10% UGI (16c) 2% UGJ (23) 3%	UGB (10) 71% UGD (11) 23% UGJ (23) 6%	UGB (12) 100%
Legenda	\bigcirc				•	ightarrow			ightarrow	\triangle

Figura 5. 4 – GDE Multiple Graph. Scavo tradizionale.

 Tabella 5. 13 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. GDE Multiple Graph, scavo tradizionale.

Н	(m)	360	628	805	1126	935	586	555	675	807	693
F	° ki	6078	7075	7441 7551		8734	10144	10403	10850	20133	20659
F	' kf	7075	7441	7551	8734	10144	10403	10850	11725	20659	21048
Li (m) 997 366 110 1183		1183	1410	259	447	875	526	389			
GDE	$k_0 = 0.5$	No Risk	Risk No Risk No Risk Severe		Severe	No Risk	Minor	No Risk	No Risk	No Risk	No Risk
Multiple	k ₀ = 1	No Risk	No Risk	No Risk	Minor-Severe	No Risk	Minor	No Risk	No Risk	No Risk	No Risk
Graph	$k_0 = 1.5$	No Risk	No Risk	No Risk	Severe	No Risk	Minor-Severe	No Risk	No Risk	No Risk	No Risk

Il grafico relativo alla tratta da scavare con TBM scudata non viene riportato, in quanto i dati analizzati hanno dato luogo ad una suscettibilità sempre nulla.

(**) depending also from the length of the potential proned zone: given a possible "silo effect", for short zones included in good quality rocks, a caving behaviour it is most likely

Figura 5. 5 – GDE Multiple Graph. TBM aperta, $k_0 = 0.5$.

^(**) depending also from the length of the potential proned zone: given a possible "silo effect", for short zones included in good quality rocks, a caving behaviour it is most likely

Figura 5. 6 – GDE Multiple Graph. TBM aperta, $k_0 = 1$.

(*) only for the susceptible region, otherwise the development of plastic region and moderate radial convergences are more probable (**) depending also from the length of the potential proned zone: given a possible "silo effect", for short zones included in good quality rocks, a caving behaviour it is most likely

Figura 5. 7 – GDE M	ultiple Graph.	TBM aperta, k ₀	= 1.5.
---------------------	----------------	----------------------------	--------

Unità Geomeccaniche	UGE (14a) 20% UGE (15a) 5% UGH (14b) 20% UGH1 (22) 30% UGJ (23) 25%	UGE (14a) 50% UGH (14b) 50%	UGE (14a) 85% UGH (14b) 15%	UGD (13a) 90% UGJ (23) 10%	UGB (12) 100%	UGB (10) 75% UGD (11) 10% UGH1 (22) 10% UGJ (23) 5%	UGA (8) 50% UGC (9) 50%
Legenda	0			\blacklozenge			
Unità Geomeccaniche	UGB (10) 85% UGJ (23) 15%	UGB (12) 100%	UGB (10) 71% UGD (11) 23% UGJ (23) 6%	UGB (12) 100%	UGD (13b) 95% UGJ (23) 5%	UGB (12) 100%	UGB (12) 10% UGD (11) 40% UGD (13B) 35% UGJ (25) 15%
Legenda	\diamond	ightarrow		\triangle	\diamond	\bigcirc	

I ub chu ct I i t uit					ieinitä ai ie t iiet			ir aperiai
H (m)		675	705	860	970	992	1101	1116
Pki		21048	21580	21938	23094	23711	24027	25229
Pkf		21580	21938	23094	23711	24027	25229	25456
Li (m)		532	358	1156	617	316	1202	227
GDE Multiple Graph	k ₀ = 0.5	No Risk	No Risk	No Risk	No Risk	Minor-Severe	Minor-Severe	Minor-Severe
		0	0	0	0	3	3	3
	k ₀ = 1	No Risk	No Risk	No Risk	No Risk	Minor	Minor-Severe	Minor-Severe
		0	0	0	0	2	3	3
	k ₀ = 1.5	No Risk	No Risk	No Risk	No Risk	Severe	Minor-Severe	Severe
		0	0	0	0	4	3	4
r								r
H (m)		1100	1035	1083	1116	1185	1148	1015
Pki		25456	25918	26100	26681	27277	28403	29254
Pkf		25918	26100	26681	27277	28403	29254	29800
Li (m)		462	182	581	596	1126	851	546
GDE Multiple Graph	k ₀ = 0.5	Minor-Severe	Minor-Severe	Minor-Severe	Minor-Severe	No Risk	Minor-Severe	No Risk
		3	3	3	3	0	3	0
	k ₀ = 1	Minor-Severe	Minor-Severe	Minor	Minor-Severe	No Risk	Minor-Severe	No Risk
		3	3	2	3	0	3	0
	k ₀ = 1.5	Minor-Severe	Severe	Minor-Severe	Severe	No Risk	Severe	No Risk
		3	4	3	4	0	4	0

Tabella 5. 14 – Valutazione qualitativa e quantitativa della suscettibilità al rockburst. GDE Multiple Graph, TBM aperta

In Tabella A2. 5 sono presentati i livelli di probabilità ottenuti dai vari metodi e confrontati con quelli stabiliti a priori dal committente.

Dall'applicazione dei diversi metodi di valutazione della suscettibilità al rockburst si può notare una certa discordanza tra i risultati ottenuti, dovuta a molteplici fattori. Essi sono fortemente condizionati dai parametri geomeccanici utilizzati e dallo stato tensionale in situ. I primi vanno aggiornati in itinere in base ai ritorni di esperienza delle future tratte di tunnel da scavare. Per quanto riguarda lo stato tensionale, la tensione verticale è stimabile con buona precisione, data la conoscenza del profilo altimetrico, mentre è necessaria una valutazione più dettagliata del coefficiente di spinta k_0 . A tale proposito si evidenzia che questo parametro non influenza molto la suscettibilità dell'evento, ma esso determina la zona del cavo in cui quest'ultimo può verificarsi.

5.3 Progettazione delle sezioni tipo

La procedura di progettazione delle sezioni tipo con bullonatura descritta nel Capitolo IV è stata applicata al caso in oggetto. Sono stati ipotizzati due scenari, di Progetto e Sfavorevole, caratterizzati da prestazioni energetiche dei bulloni e velocità di espulsione dei blocchi crescenti. Allo scenario di Progetto sono state associate le capacità di dissipazione minime che i bulloni possono garantire e le velocità medie di espulsione dei blocchi, mentre allo scenario Sfavorevole sono state associate le massime capacità di dissipazione dei bulloni e maggiori velocità di espulsione dei blocchi di roccia (Tabella 5. 15). Lo studio ha portato alla definizione di 4 sezioni tipo, riportate in Tabella 5. 16, che differiscono per capacità energetica dei bulloni adottati e interasse trasversale.

Tabella 5. 15 –	Velocità di	espulsione	dei blocchi	definite per	gli scenari	ipotizzati.
				· ·	0	.

Intonsità dal fonomana	Velocità di espulsione dei blocchi [m/s]				
Intensita del fenomeno	Scenario di Progetto	Scenario Sfavorevole			
Lieve	1	1.5			
Medio	2	3			
Intenso	3	5			

	Interasse Long.	Interasse Trasv.	Area Bullone	BF ^[22]	Scenario di progetto		Scenario sfavorevole	
Sezione Tipo					Energia singolo bullone	Energia assorbibile a m²	Energia singolo bullone	Energia assorbibile a m²
	[m]	[m]	[m ²]	[%]	[kJ]	[kJ/m²]	[kJ]	[kJ/m²]
1	1.25	0.6	0.75	2	4.00	5.33	8.00	10.67
2	1.25	0.45	0.56	2	4.00	7.11	8.00	14.22
3	1.25	0.9	1.13	6	15.00	13.33	42.00	37.33
4	1.25	0.75	0.94	6	15.00	16.00	42.00	44.80

Tabella 5. 16 – Sezioni tipo definite per gli scenari ipotizzati.

Per valutare l'estensione della zona al contorno del cavo potenzialmente soggetta al fenomeno di espulsione violenta è stato realizzato un modello di calcolo agli elementi finiti tramite il software RS2. Il calcolo è stato ripetuto per tutte le 14 zone geologiche omogenee, descritte nel Paragrafo 5.1, andando a modificare i parametri geomeccanici corrispondenti e lo stato tensionale, quest'ultimo in funzione della massima copertura di ciascuna zona omogenea. Il

criterio di rottura adottato dipende dai valori di m_i e GSI riscontrati, come descritto nel Paragrafo 4.2.2. In Tabella A3. 1 sono riassunti i parametri utilizzati nel modello.

Sulla base di quanto descritto nel Paragrafo 4.2.2, dai risultati ottenuti tramite il modello numerico è stato possibile stimare la Profondità di frattura (DOF), utile alla definizione della lunghezza minima dei bulloni, nonché della massa di roccia espulsa. A seconda dell'intensità del fenomeno atteso è stato fatto variare il valore dell'velocità di eiezione, necessaria per il calcolo dell'energia cinetica, mentre la stima dello spostamento radiale, come esposto nel Paragrafo 4.3, ha permesso il calcolo dell'energia potenziale. La somma delle due ha fornito l'energia meccanica totale associata all'evento, la quale è stata divisa per l'area di competenza del singolo bullone e confrontata con la sua capacità energetica. I risultati ottenuti sono riportati in Tabella A3. 2-3-4-5-6-7.

Capitolo VI Conclusioni

La procedura di gestione del rischio nei confronti del rockburst è stata ampiamente descritta e applicata al caso in oggetto. I risultati sono generalmente comparabili con i valori proposti dal committente. Si osservano alcune discordanze locali tra i metodi utilizzati. Generalmente i valori del committente tendono a sottostimare la suscettibilità dell'evento.

La suscettibilità dell'evento di rockburst determinata mediante i metodi presenti in letteratura è fortemente condizionata dai dati geomeccanici, nonché dallo stato tensionale in-situ. È fondamentale una revisione dei parametri geomeccanici, da aggiornare in base ai ritorni di esperienza relativi ai tratti di tunnel attualmente in fase di scavo. Mentre la tensione verticale è stimabile con buona precisione, data la conoscenza del profilo altimetrico, si ritiene importante una valutazione più dettagliata del coefficiente di spinta k_0 . A tale proposito si fa notare che la suscettibilità dell'evento non varia molto al variare di quest'ultimo parametro, ma esso influenza la zona del cavo in cui l'evento può verificarsi.

La "traduzione" della suscettibilità da qualitativa a quantitativa è stata effettuata cercando di mantenere l'uniformità con i termini utilizzati dal committente. Tuttavia si raccomanda una sua revisione critica, allo scopo di armonizzare maggiormente la terminologia adottata, cercando di capire qual era l'entità del fenomeno atteso nell'utilizzo dei vari livelli di probabilità.

Allo stesso modo è necessaria un'armonizzazione delle scale di suscettibilità adottate, in quanto alcuni metodi propongono 4 livelli di variazione, altri ne propongono 5. Questo risulta in una difficoltosa comparazione dei risultati ottenuti.

In conclusione si può affermare che i risultati ottenuti sono in parte discordanti con i valori proposti. La differenza si riscontra a volte nella localizzazione dell'evento, altre volte nella sua entità e ciò può essere dovuto ad una mancanza di informazioni geomeccaniche specifiche per le zone analizzate.

La progettazione delle sezioni tipo, descritta nel Capitolo IV e applicata nel Capitolo V, ha evidenziato come le sezioni con bullonatura siano le più efficaci a contrastare il fenomeno studiato. Infatti, il metodo semplificato proposto nel Paragrafo 4.5 per le sezioni con barre e centine non ha fornito risultati soddisfacenti, per cui è stato accantonato. Tuttavia tale sezione tipo continua ad essere molto vantaggiosa in termini di rapidità di installazione e protezione offerta ai lavoratori durante la fase di scavo. Per tale motivo lo studio al riguardo andrebbe approfondito, formulando ulteriori ipotesi che possano migliorare il modello concettuale proposto.

Per concludere, il calcolo energetico è stato effettuato solo per gli elemento di rinforzo (bulloni), senza tenere in considerazione gli elementi superficiali (ad esempio reti metalliche). Lo studio di questi ultimi è anch'esso importante, in quanto contribuiscono all'effettiva capacità dissipativa della sezione tipo. In questo senso non è da escludere una combinazione delle due sezioni tipo proposte, in modo da unire la semplicità di installazione del sistema a barre e centine alla capacità energetica offerta dalle sezioni con bullonatura.

BIBLIOGRAFIA

- [1] AFTES, 2012. "Caractérisation des incertitudes et des risques géologiques, hydrogéologiques et géotechniques".
- [2] Armetti G. *et al.*, 2017. "Les reconnaissances géotechniques directes par sondage et la méthode de prédiction sismique : Comparaison pour prévoir le cadre géologique de la masse rocheuse du tunnel "La Maddalena" tunnel Chiomonte, Italy".
- [3] Aydan G. *et al.*, 2001. "Assessment of susceptibility of rock bursting in tunneling in hard rock".
- [4] Baldi A.M., Bianchi F., 1999. "Sviluppi nell'esecuzione e nell'impiego delle indagini geotecniche".
- [5] Baldovin E. *et al.*, 2017. "Innovazioni delle tecnologie di scavo meccanizzato in ammassi rocciosi caratterizzati da roccia dura con distacchi in calotta e alte coperture", 16° ciclo di conferenze di meccanica e ingegneria delle rocce, 16-17 febbraio 2017. Celid, Torino.
- [6] Barla G. *et al.*, 2007. "Lessons learned during the excavation of the Saint Martin La Porte access gallery along the Lyon-Turin Base tunnel", Internationales Symposium Brenner Basis tunnel uns Zulaufstrecken. Innsbruck University Press, 2007.
- [7] Barla G. *et al.*, 2007. "Situation des importantes convergences rencontrées dans la descenderie de Saint-Martin-la-Porte du projet de base du Lyon-Turin", Tunnels et ouvrages souterrains, vol. 204, pp. 409-413.
- [8] Barla G., Barla M., 2008. "Metodi innovativi per la costruzione di gallerie in rocce spingenti", Ingegneria Ferroviaria, vol. 12, pp. 1-15.
- [9] Barla M., 2010. "Elementi di Meccanica e Ingegneria delle Rocce", Celid.
- [10] Cai M. et al., 2001. "Quantification of rock mass damage in underground excavations from microseismic event monitoring" International Journal of Rock Mechanics and Mining Sciences. 2001, 38 (8): 1 135-1 145.
- [11] Cai M., Champaigne D., 2009. "The art of rock support in burst-prone ground." Keynote Lecture. In: RaSiM 7: Controlling Seismic Hazard and Sustainable Development of Deep Mines. [S.1.]: Rinton Press, 2009: 33–46.
- [12] Cala M. *et al.*, 2013. "Large scale field tests of rock bolts and high-tensile steel wire mesh subjected to dynamic loading", Rock Mechanics for Resources, Energy and Environment Edited by Marek Kwaśniewski and Dariusz Łydżba.

- [13] Carter T.G. *et al.*, 2008. "Application of modified hoek-brown transition relationships for assessing strength and post yield behaviour at both ends of the rock competence scale".
- [14] Diederichs M.S. *et al.*, 2004. "Damage initiation and propagation in hard rock during tunneling and the influence of near-face stress rotation", Int. Journal of Rock Mechanics and Mining Science, n.41.
- [15] Diederichs M.S. et al., 2010. "Practical rock spall prediction in tunnels".
- [16] Diederichs M.S., 2007. "Damage and spalling prediction criteria for deep tunneling", Can. Geotech. J., Vol. 44: 9, pp. 1082-1116(35)
- [17] González del Tánago J., Arlandi Rodríguez M., 2004. "Comportamiento geotécnico del terreno durante la construcción de túneles profundos (Squeezing y Rockburst)", ingeopress – Actualidad técnica de Ingeniería Civil, Minería, Geología y Medio Ambiente, n.124, pp. 24-30
- [18] Hajiabdolmajid V. et al., 2002. "Modelling brittle failure of rock".
- [19] Hoek E. *et al.*, 1995. "Support of Underground Excavation in Hard Rock", Taylor & Francis Group.
- [20] Hoek E., 2006. "Practical Rock Engineering".
- [21] ITA WG17, 2017. "TBM excavation of long and deep tunnels under difficult rock conditions".
- [22] Kaiser P.K. *et al.* 1996 "Canadian Rockburst Support Handbook", Geomechanics Research Centre, Laurentian University, Sudbury, Ontario
- [23] Kaiser P.K. *et al.* W., 2000. "Underground works in hard rock tunneling and mining", GeoEng 2000, Melbourne Australia
- [24] Kaiser P.K., Cai M., 2012. "Design of rock support system under rockburst condition", Journal of Rock Mechanics and Geotechnical Engineering
- [25] Kaiser P.K., Maloney S.M., 1997. "Scaling Laws for the Design of Rock Support"
- [26] Kwasniewski M. *et al.*, 1994. "Study of ability of coal from seam 510 for storing elastic energy in the aspect of assessment of hazard in Porabka-Klimontw".
- [27] Martin C.D. *et al.*, 1999. "Hoek-Brown parameters for predicting the depth of brittle failure around tunnels", Can. Geotech. Journal 36, pp. 136-151.
- [28] Mierzejewski J. et al., 2017. "Short-Term Rockburst Prediction in TBM Tunnels".

- [29] Norme ISO Guide 73 : 2009 (E/F) Management du risque ; vocabulaire.
- [30] Perras M.A., Diederichs M.S., 2014. "Predicting excavation damage zone depths in brittle rocks", Journal of Rock Mechanics and Geotechnical Engineering n.8, pp.60-74.
- [31] Potvin Y., Wesseloo J., 2013. "Towards an understanding of dynamic demand on ground support".
- [32] Russo G. *et al.*, 2016. "Case history of hard rock TBM La Maddalena exploratory adit for the Turin-Lyon high speed railway base tunnel", Mechanized Tunneling: challenging case histories, Rome.
- [33] Russo G., 2007. "Improving the reliability of GSI estimation: the integrated GSI-RMi system", submitted to the I.S.R.M. Workshop "Underground Works under Special Conditions", Madrid, July 6
- [34] Russo G., 2008. "A simplified rational approach for the preliminary assessment of the excavation behaviour in rock tunneling".
- [35] Russo G., 2009. "A new rational method for calculating the GSI", Tunnelling and Underground Space Technology n.24, pp. 103-111.
- [36] Russo G., 2014. "An update of the "multiple graph" approach for the preliminary assessment of the excavation behavior in rock tunneling", Tunneling and Underground Space Technology, n.41 pp. 74-81.
- [37] Russo G., Grasso P., 2006. "Un aggiornamento sul tema della classificazione geomeccanica e della previsione del comportamento allo scavo", Gallerie e grandi opere sotterranee, n.80 pp. 56-65.
- [38] Russo G., Grasso P., 2007. "On the classification of the rock mass excavation behaviour in tunnelling", Proc. 11th Congress of ISRM, Lisbon, pp 979-982.
- [39] Sirait B. *et al.*, 2013. "Rockburst prediction of a cut and fill mine by using energy balance and induced stress".
- [40] Villaescusa E. *et al.*, 2016. "Ground Support Design for Sudden and Violent Failures in Hard Rock Tunnels", 9th Asian Rock Mechanics Symposium (ARMS9). Bali, Indonesia.
- [41] Wang J. *et al.*, 2012. "Practices on rockburst prevention and control in headrace tunnels of Jinping II hydropower station", Journal of Rock Mechanics and Geotechnical Engineering.

- [42] Wang J. *et al.*, 2012. "Practices on rockburst prevention and control in headrace tunnels of Jinping II hydropower station" Journal of Rock Mechanics and Geotechnical Engineering. 2012, 4 (3): 258–268.
- [43] Wang J.A., Park H.D., 2001. "Comprehensive prediction of rockburst based on analysis of strain energy in rocks", Tunneling and Underground Space Technology 16. pp 49-57.
- [44] Zhao X. *et al.*, 2010. "Considerations of rock dilation on modeling failure and deformation of hard rocks—a case study of the mine-by test tunnel in Canada".

APPENDICE A

La resistenza di un ammasso roccioso è solitamente espressa secondo il criterio di rottura di Hoek-Brown (1980) [20] riportato nella forma generalizzata in Eq.[A. 1].

$$\sigma_1 = \sigma_3 + \sigma_c \left(m \frac{\sigma_3}{\sigma_c} + s \right)^a$$
 [A. 1]

in cui:

 σ_1 = Massima tensione principale a rottura;

 σ_3 = Minima tensione principale a rottura;

 σ_c = Resistenza a compressione monoassiale della roccia;

m = Costante empirica legata alla resistenza attritiva;

s = Costante empirica legata alla resistenza coesiva;

a = Costante empirica basata sulla qualità dell'ammasso roccioso.

Nel caso in cui l'ammasso roccioso sia di buona qualità, la costante a può essere considerata pari a 0.5, mentre le costanti empiriche m ed s possono essere stimate in base alla qualità dell'ammasso roccioso e della modalità di scavo [20]:

$$m = m_{\rm i} \exp\left(\frac{{
m GSI} - 100}{28 - 14{
m D}}\right)$$
 [A. 2]

$$s = \exp\left(\frac{\text{GSI} - 100}{9 - 3\text{D}}\right)$$
[A. 3]

in cui:

 m_i = Valore di *m* per la roccia intatta;

GSI = Geological Strength Index [20];

D = Fattore di disturbo [20].

Come detto in precedenza, nel processo di rottura fragile la resistenza attritiva non viene mobilitata, per cui si può porre la costante *m* uguale a zero, ottenendo così:

$$\sigma_1 = \sigma_3 + \sqrt{s \sigma_c^2} \qquad [A. 4]$$

Ricordando l'osservazione di Martin et al. [27] espressa in Eq.[4. 8], l'Eq.[A. 4] diventa:

$$\sigma_1 - \sigma_1 = \sqrt{s \sigma_c^2} = \frac{1}{3} \sigma_c \quad \rightarrow \quad \sqrt{s} = \frac{1}{3} \quad \rightarrow \quad s = 0.11$$
 [A. 5]

Figura A1. 1 – GDE Multiple Graph.

(**) depending also from the length of the potential proned zone: given a possible "silo effect". for short zones included in good quality rocks, a caving behaviour it is most likely

ALLEGATO 1
13-17 13 - 17 13 - 17 -19 è ₽ ₽ ø ₽ 읃 ₽ <u>8</u> ø --₽ -2 Þ -5 ŝ 19,5 71,5 31,2 78,5 2 22 22 ş 66,3 ŝ 33 \$ 8 8 8 22 8 5 퀑 13 5 8 59 Þ . EI (GPa) 1 26,25 13,9 5^{,5} 16,8 10,7 46 5 80 8 þ 8 8 7 얻 7,4 8 8 3,2 5 3.7 5 2 . 26,9 27,9 28,5 28,4 28,5 28,2 29,6 26,8 28,3 28,2 28,1 28,3 29,7 27,7 29,4 19,3 N. 28,1 29,2 26,7 28,7 28,1 28,4 28,3 28,2 器 y (kNIm) 27,2 27,6 26,1 26,6 26,9 25,9 27,5 27,2 26,6 26,8 27,1 24,1 1/1 26,8 23,4 2 23,4 11,2 ន E 2 62 62 3 8 \$ AAV. 22 2 2 3 8 2 3 92 26 8 \$ 3 2 4 8 6 \$ 5 g 8 5 9 41 Ş \$ G. 8 Ę 4 8 32 53 ₽ 5 쿯 21 22 5 8 i, ត្ត RMR 8 6 3 6 8 8 8 8 3 \$ 3 3 នន 8 8 8 8 ន 8 8 8 8 8 8 MAX 5 22 6 15 665 64 75 5 42 \$ 5 \$ ş ş ş 35 2 7 8 8 19 3 Q 38 25 3 5 3 8 23 5 5 3 큟 41 80 54 4 8 8 \$ 8 33 33 \$ 5 9 27 8 89 8 8 ¥ 8 7 8 2 8 5 5 큟 얺 5 8 8 8 8 8 s 8 3 8 53 8 5 ΞŦ. 284,1 168,6 209,1 117.5 193,9 107,8 129,9 191,3 189,3 208,2 25,9 146,1 224,3 173,8 136,2 84,3 107,8 187,7 127,8 VAL 107,8 157.1 32,7 16,5 ន 32,7 UCS (MPa) 12,3 21,4 21,4 39,6 428 12,3 15 57,1 46,7 34,5 21,2 26,5 36,9 18,2 2 8 5 8 60 8 8 28,3 37,1 4 ŝ 101,4 132,4 61,5 152,8 112,7 97,15 107,5 16,1 91,9 942 72,4 76,2 6'16 61,5 92,7 68,8 1,99 21,3 10,3 5 8 5 8 5 ₽ 20,3 Cb, CDng, ca-e, DGA, Jm, j4-7, tC, tCd, tcD, tDB, tDD marbres, dolomies et calcaires I Cng, jmc., j10, 11-4, tSD, tSS, t6, t7SB, t7UD calcairee, dolomies et arglittee Neasoisti * r-t quartzites ± micacées et conglomérats quartzitiques / quarziti ± micacee e MA, AMD, AMF micaschistes quartzitiques mamosi GDng, tG, tng, tGsb anhydrites et gypses tCG conglomérats quartzitiques ± schiste "de Loutraz" / conglomerati quarzitici ± CL micaschistes et gneiss micro-oilles / conglomératiques d'Ambin / micascisti eFag flyacha achiato-gréaeux / flysch scistoso-arenacei (+ eBr, ol-ci, ol-ca) * Roches très fracturées / rocce molto quarzitici ± conglomeratici d'Ambin SV, S micaschistes / micascisti Roche de faille et cargneules / micascisti e gneiss occhiadini to - OSE quartzites / quarziti hE, SGng achistea / scisti calcari, dolomie e argilito roccia di faglia e camiole BCC, K, Kng, Kab marmi, dolomie e calcari jmCM calcaires marneux / calcari OMB prasinites / prasiniti hBO charbon / carbone eFs flyschs schisteux / flysch scistosi (+ e7G) conglomerati quarzitici hBO achiates / soisti Lithologies / Litologie TCS calc-micaschistes / calcen hLP grès / arenarie scistosi 'di Loutraz' hBO grès / arenarie cl-b metabasites / metab hF achistes / scisti anidriti e gessi fratturate GS gneisa hE, grès / an hF grès/a hLPa 13a 13b 14a 15a 17b 12 6 9 ø Ę. <mark>≩</mark> € 15b 15b 8 2 17a ដ ŝ 8 읃 5 4 g c < U 댶 -8 ۵ т

Tabella A2. 1 - Parametri geomeccanici delle litologie attese lungo l'asse del tunnel.

ALLEGATO 2

Scavo tradizionale

Figura A2. 1 – Sezione geologica (da p.k. 6+048).

Scavo tradizionale

TBM scudata

\$ 89.078	1529.831	I I	2-1
206.688	1508.426	-	
262.693	1711.EOB1	- 5 -	
269.899	1493.846		
260.888	1488.326		
264.788	081.6841		
268.999	1484.594		
265, 268	AB1 2011		
209,200	0101000		
C64.400	CCC.1041		
969, 699	048.8441		
962.299	126.8261		
969.299	89914294		
960.299	- 381.7781		
564.188	1570.814		
660,883	917.9781		
860.235	158.8781	<u> </u>	
882.628	715.8781		
046.859	1561.239		
262,828	855.3381		
166.000	026,8881		
500 99 9	6ZL 20/L		
20/ 999	Z14.81/1		
922.054	967.9691	⊢ <u>%</u> –	
907.406	1684.356	"	
692'899	1634.762		
111.688	894.8921		le le
652.463	1624.739		Ē
818.128	366.5641		B
891.129	152.4441		Ğ
650.520	1428.261		-e
£78.648	600,9651		5
255 648	976,8861		liste
273 848	10.P0P1		S
202.140	2/6.0041		8
PE0.0P0	027.4841		ے ا
996'979	EL0.7881		
645.339	996'2691		
169.449	1589.744	- 🛱	
644.043	165.9781	<u> </u>	
843.396	1627.239		
847.248	155.281		
001.248	555.9291 1659.553		
641.453	+72.8681		
208.04-9	1726.534		
721.068	900 9021		
700,000	101.101F		
\$12'88'9	689,9891		
299.769	1683.460		
616.969	1672.419		
175.868	1664.268	4	
428.858	865.9381	- 2 -	
976. 4 £8	988.7491		
826.468	166.3491		
189.659	Z11.4281		
220 229	C60.0001		
74/,160	- 8/0.6 POI		
960.169	196.4081		
134.058	1516.433		
908.629	1470.125		
629,162	1446.544	22	
628.517	1459.491	- # -	
ST8.TS8	1391.764		
822.728	974.6761		
626.583	304.8861	8월도 8	
825.938	1349.724	SMP SMP	
62,294	1339.384	" 은 " "	
674.649	1313'3'88		jê.
900 909	P80 8001		, Sec
90/ 779	990.0121	- 🛱 –	
850.ZZ 058	5/2'89ZL	"	le l
607.129	1245.225		NA N
657.029	1226.326		
620,109	1204.932		
634.918	972.0011	⊢ ? ⊣	

102

φφ	
UGE (16a) 33 UGH (16b) 65 UGI (16c) 23	
UGE (16a) 53% UGH (16b) 45% UGI (16c) 2%	
UGE (16a) 25% UGH1 (17b) 20% UGH1 (17b) 20%+ (17b+22) 20% UGI (16c) 27%, UGJ (23) 3%	

Figura A2. 2 – Sezione geologica (da p.k. 10+910).

TBM scudata Scavo tradizionale

TBM aperta

Figura A2. 3 – Sezione geologica (da p.k. 18+940).

TBM aperta

10850	11725	875	UGE (16a) 25% UGH (16b) 20% UGH1 (17a) 30% UGH1 (17b) 10% UGH1 (22) 10% UGH (22) 10% UGI (16C) 2% UGI (23) 3%	hE-hBO	1299	624	675	3.00	55.21 101 20	DC:TCT	0.10 7.05	18.50	0:00	17.59	71.50	15.00	41.01 65 00	10.00	41.36	62.00	7.00	11.52	17.00	11.20	26.49	29.70
10403	10850	447	UGH1 (17a) 40% UGH1 (17b) 30% UGJ (23) 30%	hE	1174	619	555	5.00	16.85 27 70	0/:70	0.10 2.49	8.00	06.0	5.63	25.00	15.00	31.40	10.00	33.30	46.00	7.00	9.40	13.00	23.00	26.02	28.20
10144	10403	259	UGA (8) 85% UGJ (23) 15%	tGsb	1200	614	586	5.00	80.07 168 60	00.00T	3.10 4.34	7.10	13.90	30.98	59.00	15.00	64.10 78.00	10.00	59.95	75.00	7.00	9.55	10.00	23.00	27.82	29.60
8734	10144	1410	UGC (9) 4% UGA (18) 60% UGF (19) 30% UGJ (23) 6%	j1D; jmC; jmCM; jmC; j1D; 11-4; jmC; 11-4; tSD	1536	601	935	2.20	72.66 24.20	NC:137	1.80 6.20	10.70	0.40	25.24	78.50	15.00	53.64	10.00	55.40	73.00	5.00	5.76	7.00	23.00	26.45	29.20
7551	8734	1183	UGA (8) 15% UGC (18) 85%	jmC; j1D; 11-4; t7SB; tSD; tGsb; tSD; t7SB; 11-4; t7SB; tSD; tGsb; tSD; t7SB; 11-4	1724	598	1126	21.20	93.86 172 90	00°C/T	3.10 6.46	10.70	7.40	34.54	61.00	20.00	57.40	52.00	59.35	75.00	6.00	6.60	10.00	25.60	26.70	29.60
7441	7551	110	UGA (8) 27% UGJ (23) 73%	tGsb	1397	592	805	5.00	34.30 169 CD	00.001	3.10 1.38	7.10	13.90	9.84	59.00	15.00	37.42	10.00	32.69	75.00	7.00	7.81	10.00	23.00	25.55	29.60
7075	7441	366	UGH (21) 89% UGH (23) 11%	eFsg	1220	592	628	5.00	97.11 200 200	77077	2.40 4.63	7.67	1.70	23.90	52.00	15.00	36.57 4F.00	10.00	52.04	70.00	7.00	7.00	7.00	23.00	27.70	29.40
6078	7075	597	UGH (20) 30% UGH (21) 70%	eFsg; ol-cs; eFsg; ol-cs; eBr; eFsg; ol-cs; ol-ci	948	588	360	6.80	104.98	77077	0.70 6.13	15.90	1.70	29.21	66.30	30.00	42.80	41.00	54.80	70.00	7.00	7.00	7.00	17.10	26.39	29.40
			niche					NIM	MED		MIN	MAX	NIM	MED	MAX	NIM	MED	NIM	MED	MAX	NIM	MED	MAX	NIM	MED	MAX
Pki	PKf	r (m)	Unità Geomecca	Litologie	Qterr (m)	Qtunn (m)	(m) H		UCS (MPa)		ot (MPa)			Ei (GPa)			22		RMR			Ē			γ (kN/m3)	

Tabella A2. 2 - Parametri geomeccanici. Metodo di scavo: tradizionale.

20659	21048	389	UGE (14a) 20% UGE (15a) 5% UGH (14b) 20% UGH1 (22) 30% UGI (23) 25%	hLP; hF	1375	682	693	5.00	64.38	284.10	0.10	5.61	21.10	0:00	17.37	60.00	15.00	38.55	65.00	10.00	38.70	62.00	7.00	9.90	17.00	21.50	25.76	28.40
20133	20659	526	UGE (15a) 95% UGH (15b) 5%	hLP	1487	680	807	21.40	110.51	206.40	3.10	11.10	19.10	3.20	34.77	60.00	27.00	54.70	65.00	21.00	50.70	62.00	7.00	14.60	17.00	26.10	27.12	28.30
18938	20133	1195	UGE (15a) 95% UGH (15b) 5%	ηгΡ	1568	678	068	21.40	110.51	206.40	3.10	11.10	19.10	3.20	34.77	60.00	27.00	54.70	65.00	21.00	50.70	62.00	7.00	14.60	17.00	26.10	27.12	28.30
15639	18938	3299	UGE (16a) 33% UGH (16b) 65% UGI (16c) 2%		1713	655	1058	3.00	55.18	191.30	2.80	10.72	18.50	3.30	32.44	71.50	35.00	52.89	65.00	29.00	42.52	62.00	7.00	9.78	17.00	11.20	26.70	29.70
12420	15639	3219	UGE (16a) 53% UGH (16b) 45% UGI (16c) 2%	hE - hBO	1726	640	1086	3.00	55.18	191.30	2.80	10.89	18.50	3.30	29.76	71.50	35.00	52.89	65.00	29.00	45.32	62.00	7.00	9.78	17.00	11.20	26.72	29.70
11725	12420	695	UGE (16a) 25% UGH (16b) 20% UGH1 (17a) 30% UGH1 (17b+22) 20% UGI (16c) 2% UGI (23) 3%		1446	629	817	3.00	55.18	191.30	0.10	7.05	18.50	0:90	17.59	71.50	15.00	52.89	65.00	10.00	41.36	62.00	7.00	9.78	17.00	11.20	26.49	29.70
			niche					MIN	MED	MAX	NIM	MED	MAX	MIN	MED	MAX	MIN	MED	MAX	MIN	MED	MAX	MIN	МОУ	MAX	MIN	MED	MAX
Pki	PKf	(m) L (m)	Unità Geomecca	Litologie	Qterr (m)	Qtunn (m)	(m) H		UCS (MPa)			ot (MPa)			Ei (GPa)			GSI			RMR			Е			7 (kN/m3)	

Tabella A2. 3 – Parametri geomeccanici. Metodo di scavo: TBM scudata (da p.k. 11+725 a p.k. 20+133), tradizionale (da p.k. 20+133 a p.k. 21+048).

Fei 21043 21393 21394 2131 2403 2133 2134 2139 2149																												
Fbi 1104 21943 21943 21944 2111 2407 22233 25461 2771 2400 26611 2771 2403 2540 2541 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2403 2561 2777 2603 2575 2777 2603 2575 2771 2603 2575 2771 2603 2771 2771 2603 2771 2771 2603 2771 2771 2771 2771 2771 2603 2771 2771 2701 2771 2771 2771	29254	29800	546	UGB (12) 10% UGD (11) 40% UGD (13B) 35% UGJ (25) 15%	r-t; SV; r-tCG	1754	739	1015	5.00	53.82 146 10	3.10	5.68	22.10	3.10	16.91	44.00	15.00	57.10	75.00	10.00	54.50	76.00	6.10	7.82	17.00	22.30	26.84	28.20
Fvi 21048 21360 21311 24077 25233 25456 25451 25100 26611 2777 2803 I 1 3233 3156 3151 3004 23111 24077 25233 25456 25313 5500 26611 7777 2600 I 1 3232 358 55 55 55 55 55 55 55 55 55 55 55 56 55 56 106 106 107 56 100 5661 57 56 111 106 105 56 55 55 56 57 56 55 55 56 57 56 56 57 56 57 56 56 57 56 56 56 56 56 56 56 56 56 57 56 57 56 57 56 56 57 56 57 56 56 57	28403	29254	851	NGB (15) 100%	r-tcG	1881	733	1148	46.70	91.00 146 10	3.30	13.50	22.10	14.00	29.00	44.00	64.00	70.00	75.00	60.00	67.00	74.00	17.00	17.00	17.00	26.60	27.30	28.10
Fil 21043 21240 21343 23944 23711 24077 25223 25446 25313 26100 26601 I 1 532 333 1394 13711 24077 3513 35100 36611 3661 3711 3617 3610 3661 3711 3617 3611	27277	28403	1126	NCI (53) 2% NCD (73P) 62%	S	1916	731	1185	5.00	59.08 107 80	4.00	7.41	17.20	3.10	14.30	27.00	15.00	63.00	75.00	10.00	61.80	76.00	7.00	7.00	7.00	22.30	27.16	28.10
Fit 21048 21580 2138 2304 3311 24027 2523 5546 5318 2600 26601 I 1 533 2094 3311 24027 2523 2546 25318 26100 26601 I 1 533 25094 3711 24027 25318 2610 26601 Intrib Geneccantiche UGE (14a) 20% 55 55 55 55 55 55 55 55 55 55 55 56 55 56 56 56 <td< td=""><td>26681</td><td>27277</td><td>596</td><td>NGB (12) 100%</td><td>r-tCG</td><td>1837</td><td>721</td><td>1116</td><td>46.70</td><td>91.00 146.10</td><td>3.30</td><td>13.50</td><td>22.10</td><td>14.00</td><td>29.00</td><td>44.00</td><td>64.00</td><td>70.00</td><td>75.00</td><td>60.00</td><td>67.00</td><td>74.00</td><td>17.00</td><td>17.00</td><td>17.00</td><td>26.60</td><td>27.30</td><td>28.10</td></td<>	26681	27277	596	NGB (12) 100%	r-tCG	1837	721	1116	46.70	91.00 146.10	3.30	13.50	22.10	14.00	29.00	44.00	64.00	70.00	75.00	60.00	67.00	74.00	17.00	17.00	17.00	26.60	27.30	28.10
Fki 21048 21150 21938 23044 23711 2407 22239 23456 23911 I (m) 323 1155 617 315 1155 617 315 2456 25918 2500 Virt 21530 21938 2004 2711 2407 25239 2446 2918 182 Untrib Geomeccaniche UGE (15a) 55% 55 6 6 56 7 6 57 10 % 66 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26100	26681	581	UGB (10) 71% UGD (11) 23% UGJ (23) 6%	r-t; tQ; r-t; K	1803	720	1083	5.00	107.00	3.10	9.01	19.90	3.30	33.43	63.00	15.00	61.22	71.00	10.00	58.81	72.00	6.10	14.00	17.00	23.00	26.54	28.20
Fki 21048 21580 21938 23044 23711 24027 22239 25466 2331 L (m) 522 358 1156 617 316 1100 2495 25938 L (m) 522 358 1156 617 316 1100 2495 2593 UGE (13a) 20% 550 5% 557 5% 95 5% 100 5% 66 6% 559 5% 559 5% 559 5% 559 5% 559 5% 559 5% 559 5% 559 5% 559 5% 559 5% 550 5% <td< td=""><td>25918</td><td>26100</td><td>182</td><td>NGB (15) 100%</td><td>r-tCG</td><td>1751</td><td>716</td><td>1035</td><td>46.70</td><td>91.00 146.10</td><td>3.30</td><td>13.50</td><td>22.10</td><td>14.00</td><td>29.00</td><td>44.00</td><td>64.00</td><td>70.00</td><td>75.00</td><td>60.00</td><td>67.00</td><td>74.00</td><td>17.00</td><td>17.00</td><td>17.00</td><td>26.60</td><td>27.30</td><td>28.10</td></td<>	25918	26100	182	NGB (15) 100%	r-tCG	1751	716	1035	46.70	91.00 146.10	3.30	13.50	22.10	14.00	29.00	44.00	64.00	70.00	75.00	60.00	67.00	74.00	17.00	17.00	17.00	26.60	27.30	28.10
Fit 21046 21550 21934 2094 2711 24027 25239 25456 L(m) 532 338 1156 617 316 1202 2533 25456 L(m) 532 338 1156 617 316 1202 2533 25456 UGE (14a) 20% 05% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %	25456	25918	462	NGI (53) 72% NGB (70) 82%	đ	1812	712	1100	5.00	114.49 209.10	7.30	9.69	19.90	17.00	34.00	63.00	15.00	59.00	71.00	10.00	56.55	72.00	7.00	15.50	17.00	23.00	26.20	26.50
Fki 21048 21580 21938 2304 23711 24027 I UGE (15a) 5% 5% 5% 55% 5%	25229	25456	227	%05 (8) AƏU %02 (9) CƏU	tG; tCd; tG	1828	712	1116	34.50	95.45 224 20	1.80	5.40	10.30	12.00	40.85	78.50	61.00	68.50	78.00	57.00	66.00	75.00	6.00	8.00	10.00	26.90	28.30	29.60
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24027	25229	1202	UGB (10) 75% UGD (11) 10% UGH1 (22) 10% UGJ (23) 5%	r-t; tQ; K; r-t; tQ	1811	710	1101	5.00	107.39 209.10	0.10	9:36	19.90	0:00	33.48	63.00	15.00	59.20	71.00	10.00	57.75	72.00	6.10	14.76	17.00	23.00	26.40	28.20
Fki 21048 21580 21938 23044 23711 L(m) 532 358 1156 617 2371 L(m) 532 358 1156 617 2371 L(m) 532 358 1156 617 2371 Untià Geomeccaniche UGE (15a) 5% %	23711	24027	316	NGB (12) 100%	r-tCG	1694	702	992	46.70	91.00 146.10	3.30	13.50	22.10	14.00	29.00	44.00	64.00	70.00	75.00	60.00	67.00	74.00	17.00	17.00	17.00	26.60	27.30	28.10
Fki 21048 21580 21938 21938 Fkf 532 358 1156 L(m) 532 358 1156 L(m) 532 358 1156 UGE (15a) 5% 05 5% 5% 5% 5% 5% UGE (15a) 5% 05 10 5% 5% 5% 5% 5% UGE (15a) 5% UGE (15a) 5% 05 00 5% 5% 5% UGE (12a) 25% UGE (12a) 25% 05 00 5% 5% 5% UGH1 (22) 30% UGH1 (22) 30% 05 00 5% 5% 5% UCe (m) 1358 1393 1556 UCe (m) 1358 1393 1556 UCE (MPa) MIN 550 2140 2140 UCS (MPa) MIN 570 250 250 UCE (MPa) MIN 570 2140 2140 UCE (MPa) MIN 550 254.10 2140 UCE (MPa) MIN 550 250 250 UCE (MPa) MIN 5.110	23094	23711	617	001 (23) 70% 00D (739) 60%	GS	1670	700	970	5.00	56.65 107 80	4.00	7.02	17.20	3.70	16.07	32.00	15.00	61.00	75.00	10.00	59.60	76.00	7.00	9.70	10.00	22.30	27.02	28.10
Fki 21048 21580 21581 21581 2161 21531 255% 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 2100	21938	23094	1156	921 (149) 12% NGE (149) 82%		1556	969	860	21.40	143.79 284.10	2.50	11.14	21.10	5.50	29.94	55.00	40.00	54.60	64.00	34.00	56.55	61.00	7.00	13.80	17.00	21.50	25.34	28.40
Pki 21048 Pkf 21580 L(m) 532 L(m) 532 L(m) 532 UGE (14a) 20% UGE (14b) 20% UGH1 (22) 30% UGH1 (22) 30% Urbità Geomeccaniche UGH1 (22) 30% Urbità Geomeccaniche UGH1 (22) 30% Ucologie NIN Utologie MIN UCS (MPa) MIN MIN 683 UCS (MPa) MIN MAX 234.10 Ot (MPa) MIN MIN 5.00 MIN 0.10 MIN 5.00 MIN 0.10 MIN 0.10 <t< td=""><td>21580</td><td>21938</td><td>358</td><td>%05 (141) HƏU %05 (141) HƏU</td><td>L.</td><td>1393</td><td>688</td><td>705</td><td>21.40</td><td>122.75 284.10</td><td>2.50</td><td>9.60</td><td>21.10</td><td>5.50</td><td>29.21</td><td>55.00</td><td>40.00</td><td>49.00</td><td>64.00</td><td>34.00</td><td>48.50</td><td>61.00</td><td>7.00</td><td>11.00</td><td>17.00</td><td>21.50</td><td>26.35</td><td>28.40</td></t<>	21580	21938	358	%05 (141) HƏU %05 (141) HƏU	L.	1393	688	705	21.40	122.75 284.10	2.50	9.60	21.10	5.50	29.21	55.00	40.00	49.00	64.00	34.00	48.50	61.00	7.00	11.00	17.00	21.50	26.35	28.40
Pki L (m) L (m) L (m) Litologie Otturn (m) Otturn (m) MIN ot (MPa) MIN ot (MPa) MIN ot (MPa) MIN GSI MIN RMR MIN RMR MIN MIN MIN M	21048	21580	532	UGE (14a) 20% UGE (15a) 5% UGH (14b) 20% UGH1 (22) 30% UGI (23) 25%	4	1358	683	675	5.00	64.38 284 10	0.10	5.61	21.10	0:00	17.37	60.00	15.00	38.55	65.00	10.00	38.70	62.00	7.00	9.90	17.00	21.50	25.76	28.40
PK PK L (r L (r L (r Litolo Qterr Qterr A (nPa) ot (MPa) ot (MPa) Ei (GPa) Ei (GPa) Ei (GPa) Mi RMR RMR	<u></u>	Ŧ	(u	leccaniche	ogie	(m).	(m) (ц)	MIN	MED	MIN	MED	MAX	MIN	MED	MAX	MIN	MED	MAX	MIM	MED	MAX	MIN	MED	MAX	MIM	MED	MAX
	Ŗ	PK	r (n	Unità Geom	Litolc	Qterr	Qtunn	H (r		UCS (MPa)		ot (MPa)			Ei (GPa)			GSI			RMR			ā			γ (kN/m3)	

Tabella A2.4 - Parametri geomeccanici. Metodo di scavo: TBM aperta.

																					ł	(TIJ	LIBI	.TEC	sn	S	
														ìpo di sc	(m) H	Pki	PKf	Li (m)	Ltot (n	Comn		GDE		Burst	SED N	Wan	S
Ti							1	ά Π	181		วรกะ	s		avo					(-	nittente	ko=0.5	ko=1	ko=1.5	Potential	Method	g, 1998	arto
po di scav	H (m)	Pki	PKf	Li (m)	Ltot (m)	Committ		DE		Burst Pot	SED Met	Wang, 1	scart	Tradi	807	20133	20659	526	5	0	0	0	0	2	4	0	1.5
0/						ente	ko=0.5	ko=1	ko=1.5	ential	thod	998	0	zionale	693	20659	21048	389	115	0	0	0	0	0	0	0	'
	360	6078	7075	997		0	0	0	0	2	4	0	1.5		675	21048	21580	532		0	0	0	0	0	0	0	'
	628	7075	7441	366		0	0	0	0	2	4	0	1.5		705	21580	2193	358		0	0	0	0	3	5	0	2.0
	805	7441	7551	110		0	0	0	0	0	0	0	'		86	0 219	8 230	115		0	0	0	0	3	5	2	2.5
Tra	1126	7551	8734	1183		1	4	с	4	2	с	2	1.7		6 0	38 23	94 23	9 9									m
dizional	935	8734	10144	1410	5647	0	0	0	0	0	0	0	'		70	094 2	711 2	17		3	0	0	0	0	0	0	0.0
a	586	10144	10405	259		1	2	2	e	2	ß	0	'		992	3711	4027	316		3	3	2	4	2	Э	2	,
	555	1 1040	3 1085	447	-	0	0	0	0	0	0	0	'		1101	24027	25229	1202		3	З	e	З	2	4	2	,
	6	3 10	0 11.	80										TBM	1116	25229	25456	227	8	3	З	e	4	2	З	2	'
	75	350 1	725 1	75										aperta	1100	25456	25918	462	752	3	3	З	3	2	4	2	'
	817	1725	2420	695		0	0	0	0	0	0	0	,		1035	25918	26100	182		3	3	З	4	2	3	2	'
TBM sci	1086	12420	15639	3219	840	0	0	0	0	2	4	0	1.5		1083	26100	26681	581		3	З	2	е	2	4	2	'
udata	1058	15639	18938	3299	8	0	0	0	0	2	3	0	1.3		1116	26681	27277	596		2	3	3	4	2	3	2	'
	890	18938	20133	1195		0	0	0	0	2	4	0	1.5		1185	27277	28403	1126		2	0	0	0	0	0	0	2.0
															1148	28403	29254	851		2	3	3	4	2	3	2	'
															1015	29254	29800	546		2	0	0	0	0	0	0	2.0

Tabella A2.5 – Tabella riassuntiva della suscettibilità al rockburst stimata lungo il tracciato.

1185	27277	28403	1126	UGB (12) 10% UGD (11) 40% UGD (13B) 35% UGI (25) 15%	26.84	1015	27.24	40.86	57.10	53.82	21.53	5.68	7.82	GSI	0.50	0.0085	1.6897	0.50	0.0085	1.6897	16.91
1116	26681	27277	596	NGB (13) 100%	27.30	1148	31.34	47.01	70.00	91.00	36.40	13.50	17.00	GSI	0.50	0.0357	5.8228	0.50	0.0357	5.8228	29.00
1083	26100	26681	581	NGI (53) 2% NGD (73P) 32%	27.16	1185	32.18	48.28	63.00	59.08	23.63	7.41	7.00	GSI	0.50	0.0164	1.8673	0.50	0.0164	1.8673	14.30
1035	25918	26100	182	NGB (13) 100%	27.30	1116	30.47	45.70	70.00	91.00	36.40	13.50	17.00	GSI	0.50	0.0357	5.8228	0.50	0.0357	5.8228	29.00
1100	25456	25918	462	UGB (10) 71% UGD (11) 23% UGJ (23) 6%	26.54	1083	28.74	43.12	61.22	107.00	42.80	9.01	14.00	GSI	0.50	0.0134	3.5037	0.50	0.0134	3.5037	33.43
1116	25229	25456	227	NGB (13) 100%	27.30	1035	28.26	42.38	70.00	91.00	36.40	13.50	17.00	GSI	0.50	0.0357	5.8228	0.50	0.0357	5.8228	29.00
1101	24027	25229	1202	NGI (23) 15% NGB (10) 82%	26.20	1100	28.82	43.23	59.00	114.49	45.80	9.69	15.50	GSI	0.50	0.0105	3.5843	0.50	0.0105	3.5843	34.00
992	23711	24027	316	%05 (8) AƏU %02 (8) JƏU	28.30	1116	31.58	47.37	68.50	95.45	38.18	5.40	8.00	SP	0.25	0.0256	0.4525	0.75	0.2947	8	40.85
970	23094	23711	617	UGB (10) 75% UGD (11) 10% UGH1 (22) 10% UGJ (23) 5%	26.40	1101	29.07	43.60	59.20	107.39	42.96	9.36	14.76	GSI	0.50	0.0107	3.4365	0.50	0.0107	3.4365	33.48
860	21938	23094	1156	NGB (15) 100%	27.30	992	27.08	40.62	70.00	91.00	36.40	13.50	17.00	GSI	0.50	0.0357	5.8228	0.50	0.0357	5.8228	29.00
705	21580	21938	358	NGI (53) 10% NGD (139) 30%	27.02	970	26.21	39.31	61.00	56.65	22.66	7.02	9.70	GSI	0.50	0.0131	2.4091	0.50	0.0131	2.4091	16.07
675	21048	21580	532	06H (14b) 15% UGE (14⊒) 85%	25.34	860	21.79	32.68	54.60	143.79	57.51	11.14	13.80	GSI	0.50	0.0064	2.7271	0.50	0.0064	2.7271	29.94
693	20659	21048	389	05 (144) 80% 105 (144) 80%	26.35	705	18.58	27.87	49.00	122.75	49.10	9.60	11.00	GSI	0.51	0.0035	1.7797	0.51	0.0035	1.7797	29.21
807	20133	20659	526	UGE (14a) 20% UGE (15a) 5% UGH (14b) 20% UGH1 (22) 30% UGI (23) 25%	25.76	675	17.39	26.08	38.55	64.38	25.75	5.61	9.90	GSI	0.51	0.0011	1.1028	0.51	0.0011	1.1028	17.37
H (m)	Pki	PKf	i (m)	Unità eccaniche	[kN/m3]	[ш]	[MPa]	[MPa]		[MPa]	[MPa]	[MPa]		llo calcolo			,	ı		,	[GPa]
				Geom	γ	Ŧ	8	f	GSI	σci	С	ъ	Ē	Mode	ap	sp	dm	ar	sr	m	Ξ

Tabella A3.1 - Parametri geomeccanici adottati nel modello.

ALLEGATO 3

1185	27277	28403	1126	UGB (12) 10% UGD (11) 40% UGD (13B) 35% UGJ (25) 15%	1	0.8	1	8	1642	0.82	0.13	0.95	1.27	4.21
1116	26681	27277	596	NGB (13) 100%	1	0.8	1	8	1670	0.83	0.13	0.97	1.29	4.14
1083	26100	26681	581	NGI (53) 2% NGD (73P) 82%	1	0.8	1	8	1661	0.83	0.13	0.96	1.28	4.16
1035	25918	26100	182	NGB (13) 100%	1	0.8	1	8	1670	0.83	0.13	0.97	1.29	4.14
1100	25456	25918	462	UGB (10) 71% UGD (11) 23% UGJ (23) 6%	1	0.8	1	8	1623	0.81	0.13	0.94	1.25	4.26
1116	25229	25456	227	NGB (13) 100%	1	0.8	1	8	1670	0.83	0.13	0.97	1.29	4.14
1101	24027	25229	1202	NGI (53) 72% NGB (70) 82%	1	0.8	1	8	1602	08.0	0.13	0.93	1.24	4.32
992	23711	24027	316	%05 (8) AƏU %02 (8) JƏU	1	0.8	1	8	1731	0.87	0.14	1.00	1.34	3.99
970	23094	23711	617	UGB (10) 75% UGD (11) 10% UGH1 (22) 10% UGJ (23) 5%	1	0.8	1	8	1615	0.81	0.13	0.93	1.25	4.28
860	21938	23094	1156	NGB (13) 100%	1	0.8	1	8	1670	0.83	0.13	0.97	1.29	4.14
705	21580	21938	358	NGI (23) 10% NGD (139) 30%	1	0.8	1	8	1653	0.83	0.13	0.96	1.27	4.18
675	21048	21580	532	06H (14b) 15% UGE (14a) 85%	1	0.8	1	8	1550	0.77	0.12	0.90	1.20	4.46
693	20659	21048	389	05 (144) 50% UGE (149) 50%	1	0.8	1	8	1612	0.81	0.13	0.93	1.24	4.29
807	20133	20659	526	UGE (14a) 20% UGE (15a) 5% UGH (14b) 20% UGH1 (22) 30% UGJ (23) 25%	1	0.8	1	8	1576	0.79	0.12	0.91	1.22	4.39
(m)	Pki	oKf	(m)	nità eccaniche	ne tipo	[m]	[m/s]	[mm]	[kg]	[kJ]	[kJ]	[kJ]	[kJ/m²]	FS
Т		-	LI	U Geome	Sezio	DOF	٨	p	m	Ec	Ep	Etot	E'tot	

ieve
evento li
progetto,
÷
scenario
ipo,
.:
sezion
ō
dell
ione
<u> </u>
efin
Ď
1
à
A3.
Tabella

$ \ \ \ \ \ \ \ \ \ \ \ \ \$															
$ \begin{array}{ $	1185	27277	28403	1126	UGB (12) 10% UGD (11) 40% UGD (13B) 35% UGJ (25) 15%	1	0.8	2	8	1642	3.28	0.13	3.41	4.55	1.17
$ \begin{array}{ $	1116	26681	27277	596	NGB (13) 100%	1	0.8	2	8	1670	3.34	0.13	3.47	4.63	1.15
H(m) 807 693 675 705 860 970 992 1101 1116 1100 1035 $F(i)$ 20133 20659 21048 21580 21938 23094 23711 24027 25229 25456 25918 26100 $I(m)$ 5266 389 532 358 1156 617 316 1202 25456 25918 26100 $U(m)$ 5266 389 5329 3538 1156 617 316 1202 2572 462 25918 26100 $U(m)$ 5526 389 532 356 059 056 05913 0601 1100 1120 120 272 2610 273 26100 273 26100 273 26100 273 2610 273 2610 273 2610 273 2610 273 2610 273 2610 273 2610 273 2610 273 2610 273	1083	26100	26681	581	NGI (53) 2% NGD (73P) 32%	1	0.8	2	8	1661	3.32	0.13	3.45	4.60	1.16
$ \ \ \ \ \ \ \ \ \ \ \ \ \$	1035	25918	26100	182	NGB (13) 100%	1	0.8	2	8	1670	3.34	0.13	3.47	4.63	1.15
	1100	25456	25918	462	UGB (10) 71% UGD (11) 23% UGJ (23) 6%	1	0.8	2	8	1623	3.25	0.13	3.37	4.50	1.19
	1116	25229	25456	227	NGB (13) 100%	1	0.8	2	8	1670	3.34	0.13	3.47	4.63	1.15
H(m) 807 693 675 705 860 970 992 Fki 20133 20659 21048 21580 21938 23094 23711 24027 Fkf 20133 20659 21048 21580 21938 23094 23711 24027 Fkf 20659 21048 21580 21938 23094 23711 24027 Ucle (14a) 20% 8%	1101	24027	25229	1202	NGI (53) 72% NGB (70) 82%	1	0.8	2	8	1602	3.20	0.13	3.33	444	1.20
H(m) 807 693 675 705 860 970 Pki 20133 20659 21048 21580 21938 23094 23711 $I I (m)$ 5265 389 532 358 1156 617 $I I (m)$ 526 389 532 358 1156 617 $I (m)$ 526 389 532 358 1156 617 $I (m)$ $D (m (14a) 20%$ $5%%$ $5%%$ $5%%$ 000 000 $I (m)$ V $I (m)$ <td>992</td> <td>23711</td> <td>24027</td> <td>316</td> <td>%05 (8) AƏU %02 (8) JƏU</td> <td>1</td> <td>0.8</td> <td>2</td> <td>8</td> <td>1731</td> <td>3.46</td> <td>0.14</td> <td>3.60</td> <td>4.80</td> <td>1.11</td>	992	23711	24027	316	%05 (8) AƏU %02 (8) JƏU	1	0.8	2	8	1731	3.46	0.14	3.60	4.80	1.11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	970	23094	23711	617	UGB (10) 75% UGD (11) 10% UGH1 (22) 10% UGJ (23) 5%	1	0.8	2	8	1615	3.23	0.13	3.36	4.47	1.19
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	860	21938	23094	1156	NGB (13) 100%	1	0.8	2	8	1670	3.34	0.13	3.47	4.63	1.15
$\begin{tabular}{ c $	705	21580	21938	358	NGI (23) 10% NGD (139) 30%	1	0.8	2	8	1653	3.31	0.13	3.43	4.58	1.16
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	675	21048	21580	532	06E (149) 15% NGE (149) 82%	1	0.8	2	8	1550	3.10	0.12	3.22	4.29	1.24
$\begin{tabular}{ c c c c c c c } & H(m) & 807 & 807 & $$Pki & $$20659 & $$Pki & $$20659 & $$16$ & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & 16 & $16$$	693	20659	21048	389	%05 (144) HOU 106E (14a) 50%	1	0.8	2	8	1612	3.22	0.13	3.35	4.47	1.19
H (m) Pki PKf Li (m) Unità Geomeccaniche Sezione tipo DOF [m]/s] m [k]/s] m [k]/s] Etot [k] Etot [k] Fs [k]/m²] Fs [k]/m²]	807	20133	20659	526	UGE (14a) 20% UGE (15a) 5% UGH (14b) 20% UGH1 (22) 30% UGJ (23) 25%	1	0.8	2	8	1576	3.15	0.12	3.27	4.37	1.22
H Geome Company Compan	(m)	oki	ĸf	(m)	nità ccaniche	ne tipo	[m]	[m/s]	[mm]	[kg]	[kJ]	[kJ]	[kJ]	[kJ/m²]	FS
	Т	±	Ч	LI	U Geome	Sezio	DOF	^	p	E	Ec	Ep	Etot	E'tot	

progetto, evento medio.
÷Ħ
scenario c
tipo,
Ъ.
sezic
lle
de
zione
DI:
efi
Ã
Э
13.
Tabella ∉
-

1185	27277	28403	1126	UGB (12) 10% UGD (11) 40% UGD (13B) 35% UGJ (25) 15%	3	0.8	ŝ	24	2462	11.08	0.58	11.66	10.36	1.29
1116	26681	27277	596	NGB (12) 100%	æ	0.8	m	24	2505	11.27	0.59	11.86	10.54	1.26
1083	26100	26681	581	NGI (53) 2% NGD (73P) 32%	e	0.8	m	24	2492	11.21	0.59	11.80	10.49	1.27
1035	25918	26100	182	NGB (13) 100%	3	0.8	en	24	2505	11.27	0.59	11.86	10.54	1.26
1100	25456	25918	462	UGB (10) 71% UGD (11) 23% UGJ (23) 6%	æ	0.8	ę	24	2435	10.96	0.57	11.53	10.25	1.30
1116	25229	25456	227	NGB (13) 100%	3	0.8	3	24	2505	11.27	0.59	11.86	10.54	1.26
1101	24027	25229	1202	NGI (23) 72% NGB (70) 82%	æ	0.8	с	24	2404	10.82	0.57	11.38	10.12	1.32
992	23711	24027	316	%05 (8) AƏU %02 (8) JƏU	æ	0.8	e	24	2596	11.68	0.61	12.29	10.93	1.22
970	23094	23711	617	UGB (10) 75% UGD (11) 10% UGH1 (22) 10% UGJ (23) 5%	3	0.8	ŝ	24	2422	10.90	0.57	11.47	10.19	1.31
860	21938	23094	1156	NGB (13) 100%	3	0.8	m	24	2505	11.27	0.59	11.86	10.54	1.26
705	21580	21938	358	NGI (23) 10% NGD (139) 30%	æ	0.8	с	24	2479	11.16	0.58	11.74	10.43	1.28
675	21048	21580	532	06H (14a) 15% NGE (14a) 85%	æ	0.8	с	24	2324	10.46	0.55	11.01	9.78	1.36
693	20659	21048	389	05 (144) 50% UGE (149) 50%	9	0.8	en	24	2417	10.88	0.57	11.45	10.18	1.31
807	20133	20659	526	UGE (14a) 20% UGE (15a) 5% UGH (14b) 20% UGH1 (22) 30% UGJ (23) 25%	3	0.8	ŝ	24	2363	10.63	0.56	11.19	36.9	1.34
(m)	ki	kf	(m)	nità ccaniche	ne tipo	[m]	[m/s]	[mm]	[kg]	[kJ]	[kJ]	[kJ]	[kJ/m²]	S
н	а	Ч	LI	Ur Geomei	Sezion	DOF	>	q	ε	Ec	Ep	Etot	E'tot	-
					-			· · · ·						

-				l Geom	Sezi	DOF	٨	р	ш	Ec	Ep	Etot	E'tot	
H (m)	Pki	PKf	i (m)	Jnità eccaniche	one tipo	[m]	[m/s]	[mm]	[kg]	[kJ]	[kJ]	[kJ]	[kJ/m²]	FS
807	20133	20659	526	UGE (14a) 20% UGE (15a) 5% UGH (14b) 20% UGH1 (22) 30% UGJ (23) 25%	1	0.8	1.5	8	1576	1.77	0.12	1.90	2.53	4.22
693	20659	21048	389	%05 (144) HDU 905 (144) 50%	1	0.8	1.5	8	1612	1.81	0.13	1.94	2.59	4.12
675	21048	21580	532	06E (14a) 15% 06E (14a) 85%	1	8.0	1.5	8	1550	1.74	0.12	1.86	2.49	4.29
705	21580	21938	358	NGI (23) 10% NGD (139) 30%	1	0.8	1.5	8	1653	1.86	0.13	1.99	2.65	4.02
860	21938	23094	1156	NGB (13) 100%	1	0.8	1.5	8	1670	1.88	0.13	2.01	2.68	3.98
970	23094	23711	617	UGB (10) 75% UGD (11) 10% UGH1 (22) 10% UGJ (23) 5%	1	0.8	1.5	8	1615	1.82	0.13	1.94	2.59	4.12
992	23711	24027	316	%05 (8) AƏU %02 (8) JƏU	1	0.8	1.5	8	1731	1.95	0.14	2.08	2.78	3.84
1101	24027	25229	1202	NGI (53) 72% NGB (70) 82%	1	8'0	1.5	8	1602	1.80	0.13	1.93	2.57	4.15
1116	25229	25456	227	NGB (13) 100%	1	8'0	1.5	8	1670	1.88	0.13	2.01	2.68	3.98
1100	25456	25918	462	UGB (10) 71% UGD (11) 23% UGJ (23) 6%	1	0.8	1.5	8	1623	1.83	0.13	1.95	2.60	4.09
1035	25918	26100	182	NGB (15) 100%	1	0.8	1.5	8	1670	1.88	0.13	2.01	2.68	3.98
1083	26100	26681	581	NGI (53) 2% NGD (73P) 62%	1	0.8	1.5	8	1661	1.87	0.13	2.00	2.67	4.00
1116	26681	27277	596	NGB (13) 100%	1	0.8	1.5	8	1670	1.88	0.13	2.01	2.68	3.98
1185	27277	28403	1126	UGB (12) 10% UGD (11) 40% UGD (13B) 35% UGJ (25) 15%	1	0.8	1.5	8	1642	1.85	0.13	1.98	2.63	4.05
	_	_	_		_	_	_	_				_		_

lieve.
evento
orevole,
sfave
scenario
tipo,
sezioni
delle
- Definizione
Ś
A3.
Tabella

$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$															
$ \begin{array}{ $	1185	27277	28403	1126	UGB (12) 10% UGD (11) 40% UGD (13B) 35% UGJ (25) 15%	2	0.8	3	8	1231	5.54	0.10	5.64	10.02	1.42
$ \begin{array}{ $	1116	26681	27277	596	NGB (12) 100%	2	0.8	3	00	1252	5.64	0.10	5.73	10.19	1.40
$ \ \ \ \ \ \ \ \ \ \ \ \ \$	1083	26100	26681	581	NGI (53) 2% NGD (73P) 82%	2	0.8	3	00	1246	5.61	0.10	5.70	10.14	1.40
$ \ \ \ \ \ \ \ \ \ \ \ \ \$	1035	25918	26100	182	NGB (13) 100%	2	0.8	3	00	1252	5.64	0.10	5.73	10.19	1.40
	1100	25456	25918	462	UGB (10) 71% UGD (11) 23% UGJ (23) 6%	2	0.8	3	80	1217	5.48	0.10	5.57	9.91	1.44
	1116	25229	25456	227	NGB (13) 100%	2	8.0	3	8	1252	5.64	0.10	5.73	10.19	1.40
$H(m)$ 807 633 675 705 860 970 992 Fki 20133 20659 21048 21580 21938 23034 23711 24027 Fkf 20659 21048 21580 21938 23034 23711 24027 $Ic(m)$ 526 389 532 358 1156 617 316 $Uc(k)(12)30\%$ \ddot{m} \ddot{m} \ddot{m} \ddot{m} \dot{m}	1101	24027	25229	1202	NGI (23) 72% NGB (70) 82%	2	0.8	3	8	1202	5.41	0.09	5.50	9.78	1.45
H(m) 807 693 675 705 860 970 Fki 20133 20659 21048 21580 21938 23094 23711 $Ii(m)$ 5265 389 532 358 1156 617 $Ii(m)$ 526 389 532 358 1156 617 $Ucft(15a) 5%$ $Ucft(15a) 5%$ $Ucft(15a) 5%$ $Ucft(15a) 5%$ $Ucft(12a) 20%$ $Ucft(12a) 20%$ $Ucft(12a) 20%$ $Ucft(12a) 20%$ $Ucft(12a) 25%$ $Ucft($	992	23711	24027	316	%05 (6) JOU %05 (8) AOU	2	0.8	3	8	1298	5.84	0.10	5.94	10.57	1.35
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	970	23094	23711	617	UGB (10) 75% UGD (11) 10% UGH1 (22) 10% UGJ (23) 5%	2	0.8	3	8	1211	5.45	0.10	5.54	9.86	1.44
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	860	21938	23094	1156	NGB (13) 100%	2	0.8	3	8	1252	5.64	0.10	5.73	10.19	1.40
$\begin{tabular}{ c $	705	21580	21938	358	NGI (23) 10% NGD (139) 30%	2	0.8	3	80	1239	5.58	0.10	5.67	10.09	1.41
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	675	21048	21580	532	NGH (1⊄9) 12% NGE (1⊄9) 82%	2	0.8	3	80	1162	5.23	0.09	5.32	9.46	1.50
$\begin{tabular}{ c c c c c } \hline H (m) & 807 & 807 \\ \hline Pki & 20133 & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	693	20659	21048	389	05 (144) 50% UGE (149) 50%	2	0.8	3	80	1209	5.44	0.09	5.53	9.84	1.45
H (m) Pki Pkf Li (m) Li (m) Beomeccaniche Sezione tipo DOF [m] m [kg] Ep [kl] Etot [kl] Etot [kl] Etot [kl] Ftot [kl]	807	20133	20659	526	UGE (14a) 20% UGE (15a) 5% UGH (14b) 20% UGH1 (22) 30% UGJ (23) 25%	2	0.8	3	8	1182	5.32	0.09	5.41	9.62	1.48
	(m)	oki 🛛	ъКf	(m)	nità ccaniche	ne tipo	[m]	[m/s]	[mm]	[kg]	[kJ]	[kJ]	[kJ]	[kJ/m²]	FS
	т	4	4	Ľ	UI Geome	Sezio	DOF	^	p	ε	Ë	Ep	Etot	E'tot	_

evento medio.
revole,
sfavc
scenario
tipo,
•=
sezion
delle
Definizione
6 – I
A3.
Tabella

992 1101 1116 1100 1035 1083 1116 1185 23711 24027 25229 25456 25918 26100 26681 27277 28403 24027 25229 25456 25918 26100 26681 27277 28403 316 1202 227 462 182 581 596 1126 % 66.0 10.0 103 182 581 596 1126 % 66.0 10.0 1202 227 462 182 581 596 1126 % 66.0 0.0 0.0 0.6611 133% 10 06611 40% % 66.0 0.0 0.0 0.0 0.0 0.0611 40% % 66.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	31.01 31.90 31.73 31.90 31.36	28.35 28.21 28.35 27.88	1.32 1.32 1.32 1.34
992 1101 1116 1100 1035 1083 1116 23711 24027 25229 25456 25918 26100 26681 27277 24027 25229 25456 25918 26100 26681 27277 316 1202 227 462 182 581 596 $(8,0)$ 055% 660171% 0661071% 100 26681 27277 $(8,0)$ 05550% 855% 106 1061017% 100 26681 27277 $(8,0)$ 05500% 855% 068 01071% 100 26681 27277 $(8,0)$ 055 0550 25918 26100 26681 27277 $(8,0)$ 056 0550 1202 227 462 182 26100 26681 $(10,0)$ 066 060 061123% 123 053 3 3 3 $33 3 3 3 3 3$	31.01 31.90 31.73 31.90	28.35 28.21 28.35	1.32 1.32 1.32
992 1101 1116 1100 1035 1083 23711 24027 25229 25456 25918 26681 24027 25229 25456 25918 26100 26681 316 1202 227 462 182 581 316 1202 227 462 182 581 999 990 060 06103 1325 581 990 900 060 06103 581 581 990 900 060 060 955 955 900 060 061236% 96 960 960 900 060 061236% 96 966 966 900 96 0611236% 96 966 966 900 96 061236% 96 966 966 900 96 966 966 966 966 900 96 96 966	31.01 31.90 31.73	28.35 28.21	1.32 1.32
992 1101 1116 1100 1035 23711 24027 25229 25456 25918 26100 24027 25229 25456 25918 26100 316 1202 227 462 182 66 6066 6010 1021 1021 66 6066 1000 1021 1021 66 6066 100 1021 1021 1021 66 6000 6601 1061 11236 1021 66 1000 1021 1236 1021 123 66 6000 1061 1061 1236 123 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 90 90	31.01 31.90	28.35	1.32
992 1101 1116 1100 23711 24027 25229 25456 24027 25229 25456 25918 316 1202 227 462 316 1202 227 462 $\%$ <t< td=""><td>31.01</td><td></td><td>[7]</td></t<>	31.01		[7]
992 1101 1116 23711 24027 25229 25456 24027 25229 25456 2371 316 1202 227 227 % 88.50% 553% 227 % 88.9550 25456 25529 % 88.955 200 227 % 88.955 008 227 % 88.955 008 0.08 0 0 0 0 0 0 0.8 0.8 0.8 0.8 3 3 3 3 3 3 3 3 3 3 0.8 0.8 0.8 0.8 0.8 25 5 5 5 5 25404 2505 30.05 31.31 32.455 30.05 31.31 0.59		27.56	1.35
992 1101 23711 24027 24027 25229 316 1202 316 1202 066 (9) 50% 068 (20) 55% 93 3 324027 25229 316 1202 93 3 93 3 33 3 240 0.88 (50) 50% 90.8 0.068 (10) 85% 93 3 32.459 240 4 24 24 25 5 32.455 30.05 0.61 0.57	31.90	28.35	1.32
992 23711 23711 24027 24027 316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 32596 245 32,455 32,456 0.61	30.61	27.21	1.37
228	33.07	29.39	1.27
970 23094 23711 617 0168 (10) 755 0168 (10) 755 0168 (10) 755 0168 (10) 755 0168 (10) 755 010 0168 (10) 755 0.8 0.8 0.8 0.57	30.85	27.42	1.36
860 23094 1156 1156 1156 0.88 (122) 100% 5 5 5 5 24 24 24 24 24 24 0.8 0.8 0.8 0.8 0.8 0.59 0.59	31.90	28.35	1.32
705 21580 21938 358 358 358 358 30.99 0.58 0.58	31.57	28.06	1.33
675 21048 21580 21580 21580 21580 21580 21580 21580 0.6F (14b) 15% 3 3 0GH (14b) 15% 232 232 232 232 232 232 232 23	29.60	26.31	1.42
693 20659 693 21048 3389 389 389 3389 0GH (14b) 50% 389 389 33022 0.88 3 051 (14b) 50% 300 0.57 0.57 0.57 0.57 0.57	30.79	27.37	1.36
807 20133 20659 526 526 UGE (14a) 20% UGH (14b) 20% UGH (22) 30% UGI (23) 25% 3 3 0.8 5 24 24 24 24 29.54 0.56	30.10	26.75	1.40
(m) kf (m) (kg) (ku)	[kJ]	[kJ/m ²]	S
	Ţ	¥	1

intenso.
evento
vorevole,
sfa
scenario
tipo,
sezioni
delle
efinizione
P_
ŕ
A3.
Tabella