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Abstract

Advanced Driver Assistance Systems (ADAS) are widely used by car
companies. The aim of these systems is to assist the driver when park-
ing, during the journey and engendering an overall increase in car
safety. Among these systems, the real-time ones suffer the problem
of processing a large amount of data in a very short time. This thesis
addresses this problem for an application that aims to generate a wide
angle rear-view, trough an image stitching algorithm.
For this purpose Scale Invariant Feature Transform (SIFT), matching
and Random Sample Consensus (RANSAC) from global homography
have been used. The first finds, for each image, the keypoints and the
local descriptors around each keypoint to extract local properties of the
image. The matching algorithm finds the correspondences between
the descriptors of the first image with respect to the ones of the sec-
ond. Once the set of matched points is found, the transformation ma-
trix, homography, is evaluated by exploiting the RANSAC algorithm
that carries out the best fitting transformation matrix.
In order to achieve the desired performances an ad-hoc Application
Specific Integrated Circuit (ASIC) implementation has been developed.
Each module has been described in Very High Speed Integrated Cir-
cuits Hardware Description Language (VHDL) and tested by using
Modelsim. The gate netlist has been extracted by using synopsys, there-
fore the area, power and timing data were carried out.
The results obtained prove the effectiveness of the system.

Keywords: ADAS, SIFT, RANSAC, image processing, real-time sys-
tems, image stitching.
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Chapter 1

Introduction

Nowadays, ADAS, are widely used. Automotive companies are heav-
ily working on developing new technologies for moving toward the
automated driving. Advanced Emergency Breaking (AEB), Adaptive
Cruise Control (ACC), Lane Keep Assist (LKA) are already mounted
and used by almost the totality of the modern cars. The purpose of
these systems is to assist the driver when parking, during the journey
and engendering an overall increase in car safety for everyone on the
road [1].
In order to ease the driver, recent researches are focused on providing
a surround view which can help to park and reduce blind spots while
traveling. It offers the driver the view of the exterior of the vehicle to
aid in maneuvering the vehicle to park and to alert the driver of ob-
stacles in its path that may not be immediately visible. A display on
the vehicle’s interior control panel shows the surround view, which is
typically composed of four wide-angle cameras that are mounted in
the wing mirrors, at the front and rear of the vehicle [2].

1.1 Goal

The aim of the project is to develop a system which stitches two differ-
ent images taken by separated cameras placed on the back of a car and
displays the final image that covers a wider angle, hence reducing the
blind spots, by helping the driver finding obstacles.
Furthermore, the system can be mounted on vehicles and sold by car
companies, increasing the quality and the safety of their products. In-
expert drivers will appreciate the help provided by the surround view

1



2 CHAPTER 1. INTRODUCTION

while parking, as well as expert drivers who can exploit the internal
display for spot and avoid obstacles and be quieter while driving.
One of the main problems to be addressed in ADAS systems is the real-
time processing of data since a large amount of data is to be handled
due to the several systems provided by modern cars, such as ACC,
AEB, LKA. Moreover, for this application, the higher is the camera
resolution, the longer is the latency of the algorithm. In order to ob-
serve a clear final image, the design has to process a significant num-
ber of samples very quickly. An ad-hoc ASIC design is implemented
to achieve these goals.

1.2 Research Question

One important parameter that should be taken into account, when
dealing with stream processing and real-time applications like the one
studied in this paper, is the human reaction time . The latter is on the
order of a quarter of second, i.e. 250 milliseconds [3].
In view of the previous considerations, the system developed for this
research should be able to reach at least 30 frames per seconds, in or-
der to be mounted on a car, allowing a flowing scene on the internal
display. Is the design able to achieve these performances in order to
allow the system’s development?

1.3 Structure of the thesis

This thesis proposes first, in Chapter 2, the literature studies devel-
oped in this research field, by focusing mainly on the algorithms ex-
ploited for the project implementation. Section 3 describes how it has
been tried to address the problem mentioned before. All the hardware
blocks implemented are discussed and some details are given related
to the project philosophy and the choices done. Further, Chapter 4 pro-
vides all the results extracted from the synthesized blocks and the data
analysis performed. In the end, Chapter 5 reports the thesis conclu-
sions along with author deductions and opinions that come from the
results exploration. The thesis ends with the list of the future works
that will be done to enhance the system.



Chapter 2

Background

Studies on image alignment and stitching started in the mid-1990s for
film photography applications [4]. Pixel-to-pixel dissimilarities were
minimized for these applications, but researches moved on a different
class of algorithms works by extracting a sparse set of features and
then matching these to each other. Feature-based approaches have the
advantage of being more robust against scene movement and are po-
tentially faster.
Many algorithms have been developed for extracting features from
an image, for instance SIFT, Speed-Up Robust Features (SURF), Ro-
bust Independent Elementary Features (BRIEF), Oriented Fast Rotated
BRIEF (ORB) [5], [6], [7] or based on corner and edge detectors [8].

Although SIFT is slower then SURF, it extracts a more significant num-
ber of features for different scales and rotation [9]. This been said, this
chapter will provide an introduction to the different algorithm used
during the thesis.
Section 2.1 describes better the SIFT, which has been chosen for the
system developed among the several methods mentioned before, in
order to better introduce the reader understanding the future steps.
The definition of matching the keypoints that come from the two im-
ages is given in section 2.2, whereas a deeper explanation of the global
homography and RANSAC is proposed in section 2.3.

3
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2.1 SIFT

In Distinctive Image Features from Scale-Invariant Keypoints Lowe de-
scribes how the SIFT algorithm finds image features that have many
properties that make them suitable for matching differing images of an
object or scene [7]. Those features are invariant in scale changes and
rotational changes and partially invariant in illumination and camera
viewpoint.

The SIFT can be divided into 4 main steps:

1. Scale-space extrema detection: A series of blurred images, de-
fined scale-space, is obtained by convolving the image with dif-
ferent kernels and resizing it in order to achieve scale invariance.
Then, the extrema are detected looking into the DoG which are
the result of the subtraction between two adjacent scales.

2. Keypoints localization: For each possible keypoint a more de-
tailed model is used in order to remove bad keypoints, hence
location and scale of each keypoint are determined.

3. Orientation assignment: One or more orientation assignment is
found for each keypoint to achieve rotation invariance.

4. Keypoint descriptor: Around each keypoint a local descriptor
is found, by increasing the reliability of the keypoint itself when
the matching algorithm is applied.

Scale-space extrema detection Detecting locations that are invariant to
scale change of the image can be accomplished by searching for stable
features across all possible scales, using a continuous function of scale
known as scale- space [10].
The scale-space of an image is defined as a function L(x,y, σ), that is
produced from the convolution of a variable-scale Gaussian, G(x,y,σ)
that from now on it will be called kernel, with an input image, I(x,y):

L(x, y, σ) = G(x, y, σ) ⇤ I(x, y),

where * is the convolution operator and G =
1

2⇡σ2
e
(−(x2+y2)/2σ2).
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In order to detect stable keypoints the DoG function D(x,y, σ) is de-
fined as the difference of two next scales separated by a constant mul-
tiplicative factor k:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ)

σ is called scale factor and represents the variance of the Gaussian
kernel. The function D provides a close approximation to the scale-
normalized Laplacian of Gaussian, σ2r2

G, which contains the factor
σ
2 that is required for scale invariance. Maxima and minima of the

function σ
2r2

G produce most stable image features compared to other
image functions, such as Harris corner function or Hessian function
[11].

Figure 2.1: Scale space and Difference of Gaussian. The figure has been
extracted from the SIFT paper [7].

The Gaussians function of Figure 2.1 are built by convolving the im-
agewith different kernels defined by a scale factor σ, obtaining an oc-
tave. The higher the scale the bigger the σ value, according to the
formula:

σ = σ02

octave ⇤ levels+ scale

levels
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with k = 21/levels. Moreover, scale and octave are, respectively, the in-
dex of the scale in each octave and the index of the octave itself. After
an octave is completed, the image is scaled by a factor 2 and it is con-
volved again with different kernels, starting from the one which has
the scale factor 2σ0.
For example, given 4 octaves, 4 levels and 5 scales, the sigma at the
bottom of the scale-space is σ0, while at the top of the first octave the
scale factor is σ = 2σ0, whereas at the top of the scale space is 16σ0.
Once the difference of Gaussian has been obtained, the extrema (possi-
ble keypoints), are detected by comparing each pixel in the DoG with
its 8 neighbors and the 9 correspondent in the lower and upper scales,
as described in Figure 2.2.

Figure 2.2: Extrema detection process. The figure has been extracted from
the SIFT paper [7].

Keypoint localization Up till now the set of extrema has been ob-
tained, which represents an approximation of the maxima/minimum,
because in most cases this maximum value does not lie exactly on a
pixel, but it is located in an intermediate position between pixels. The
only way to carry out these sub-pixels’ values is to create a mathemat-
ical approximation of the function D.
A Taylor expansion series is used for the DoG function and it turns
out:

D(x) = D +
dD

dxT
x +

1

2
xTd

2
D

dx2
x

where D is represented by the values available that come from the sub-
traction of the two contiguous scales.
The extreme point of this equation can be easily calculated by differ-
entiating it and equate to zero.
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The location of the extremum is: x̂ = −d
2
D

dx2

−1
dD

dx
.

D(x̂) is used for rejecting unstable extrema with low contrast. The val-
ues |D(x̂)| < threshold are discarded; threshold = 0.02 is suggested by
the author.
Besides the low contrast points, one more type of extrema must be
removed: the points for which the location along an edge is poorly
determined are unstable to small amount of noise. When this hap-
pens the peak of the DoG will have large curvature across the edge
but a small one in the perpendicular direction. The Hessian matrix’s
H eigenvalues ↵ and β are proportional to the principal curvatures of
D, where the matrix is:

H =


Dxx Dxy

Dyx Dyy

"

By the definition of Trace and Determinant

Tr(H) = Dxx +Dyy = ↵ + β,

Det(H) = DxxDyy − (Dxy)
2 = ↵β

In order to check if the ratio between the principal curvatures is less

then a certain threshold the value
Tr(H)2

Det(H)
is calculated.

After some computation
Tr(H)2

Det(H)
=

(↵ + β)2

↵β
=

(r + 1)2

r
, where r is

the ratio between the two eigenvalues r =
↵

β
. The value r0 = 10 is

suggested by the author. If
Tr(H)2

Det(H)
<

(r0 + 1)2

r0
the point is kept, oth-

erwise it is discarded.

Orientation assignment For each keypoint, an orientation is assigned
based on the properties of the image nearby the keypoint itself. In this
way the local descriptor, which will be described later, can be repre-
sented related to the keypoint orientation, therefore achieving rotation
invariance.
The idea is to collect, around each keypoint, gradients and magnitude
of each sample, according to the following equations:

m(x, y) =
p

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2
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✓(x, y) = tan
−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y)))

An orientation histogram is obtained, with 36 bins covering 360 de-
grees range of orientations. Each sample added to the histogram is
weighted by a Gaussian circular window with σ equals to 1.5 times
the scale of the keypoint. The histogram peak is the orientation as-
signed to the keypoint. Multiple orientations could be assigned to the
same keypoint if any other local peak is at least 80 % of the highest
peak. Figure 2.3 shows on the LHS the orientation histogram built at
this point, whereas the right-hand side shows the local keypoint de-
scriptor which is described in the next section.

Figure 2.3: Orientation histogram (LHS) and keypoint descriptors
(RHS). The picture has been extracted from the Lowe’s paper [7].

Keypoint descriptor The last step of the SIFT algorithm consists in
finding local keypoint descriptors which are highly distinctive, by re-
moving other kinds of change, such as illumination or 3D viewpoint.
The keypoint descriptor shown on the RHS of Figure 2.3 is formed
by using the 16x16 values of the orientation histogram. Each sample
is assigned to one of the eight possible directions defined by the key-
point descriptor, by taking the difference of the sample with respect
to the keypoint orientation found at the previous step. When a 4x4
piece has been evaluated in the orientation histogram, one sample in
the keypoint descriptor array has been completed, and the next one is
processed until the whole 4x4 array keypoint descriptor is completed.
According to these values, which are suggested in the SIFT paper, each
keypoint is described, locally, by a 4x4x8=128 features vector. Finally,
the feature vector is normalized to its length. This results in contrast
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invariance since a constant factor would be removed by the normal-
ization, whereas the brightness invariance is given by the magnitude
evaluation, that is performed with subtractions.

2.2 Matching

Image matching is the process that finds the correspondences between
a set of features, in general points, that are related to different images.
This task is part of several computer applications, image processing
and recognition. In the case proposed, the matching algorithm works
on a set of 128 array features, extracted by the SIFT algorithm.
Suppose that p is a point detected in an image associated with a de-
scriptor

φ(p) = {φk(P) | k = 1, 2, ..., K}

where, for all K, the feature vector provided is:

φk = (fk
1p, f

k
2p, ..., f

k
nkp

)

The aim is to find the best correspondence q in the set of N points in
the other image Q = q1, q2, ..., qN , by comparing the feature vector φ(p)
with the points in the set Q [12]. In order to make it, the Euclidean
distance dk(p, q) has been evaluated :

dk(p, q) =
p

(φk(p)− φk(q))2 =
q

(fk
1p − f

k
1q)

2 + (fk
2p − f

k
2q)

2 + ...+ (fk
nkp
− fk

nkq
)2

Considered two points (p, q), a match is accepted if:

1. p is the best match for q in relation to all the other first image’s
points

2. q is the best match for p in relation to all the other second image’s
points

The nearest neighbor algorithm is used for this purpose. Moreover,
for suppressing false matching, it is evaluated both the nearest neigh-
bor and the second-nearest neighbor (the one which has the distance
dk higher than the nearest one, but lower than the rest); if the ratio be-
tween these two distances is greater than 0.8 the point is discarded.
In any case, since finding nearest neighbors is a very hard task to be
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achieved with classical algorithms like kd-tree or with "time bound"
approximation search, two more efficient matching algorithms have
been found, especially for high dimensional data: the randomized k-d
forest and the fast library for approximate nearest neighbors (FLANN)
[13].

2.3 Homography and RANSAC

The homogeneous representation of a 2D point (x, y) that lies on the
projective plane P

2 can be represented by a 3D vector (a, b, c), where

x =
a

c
, whereas y =

b

c
[14].

According to Hartley and Zissermalm, an homography, also called po-
jectivity, can be defined as:
An invertible mapping h from P

2 to itself such that 3 points x1, x2, x3 lie on
the same line if and only if h(x1), h(x2) and h(x3) do.
Matematically, this can be formulated as:
A mapping h: P

2 ! P
2 is a projectivity if and only if there exists a non-

singular 3x3 matrix H such that for any point in P
2 represented by a vector

x it is true that h(x) = Hx.
The transformation matrix is a 3x3 matrix represented by:

h =

2

4
h1 h2 h3

h4 h5 h6

h7 h8 h9

3

5

In the project developed, the purpose is to find this matrix h that maps
the points in the second image with respect to the first one.
In order to find the homography matrix h, that best fit the set of matched
points, the RANSAC algorithm is used.
Given the matched points of the two different images (u, v, 1)  !
(u0

, v
0
, 1), the system can be written:

2

4
h1 h2 h3

h4 h5 h6

h7 h8 h9

3

5

2

4
u

v

1

3

5 =

2

4
u
0

v
0

1

3

5
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The system can be manipulated and it turns out:

2

4
0 0 0 −u −v −1 v

0
u v

0
v v

0

u v 1 0 0 0 −u0
u −u0

v −u0

−v0u −v0v −v0 u
0
u u

0
v u

0 0 0 0

3

5

2

66666666666664

h1

h2

h3

h4

h5

h6

h7

h8

h9

3

77777777777775

=

2

4
0
0
0

3

5, Ah = 0

It is possible to observe that the third row in A is a linear combination
of the first and the second row row3 = −u0

row1 − v
0
row2, hence each

point correspondence contributes with 2 equation in the 9 unknown
parameters.
Since h is homogeneous, the matrix A only need to have rank 8 in
order to determine h. Assuming that there are not 3 collinear points, 4
points are sufficient to determine the vector.
The system becomes:

2

6666666664

0 0 0 −u1 −v1 −1 v
0
1u1 v

0
1v1 v

0
1

u1 v1 1 0 0 0 −u0
1u1 −u0

1v1 −u0
1

0 0 0 −u2 −v2 −1 v
0
2u2 v

0
2v2 v

0
2

u2 v2 1 0 0 0 −u0
2 −u0

2v2 −u0
2

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

3

7777777775

2

66666666666664

h1

h2

h3

h4

h5

h6

h7

h8

h9

3

77777777777775

=

2

6666666664

0
0
0
0
.

.

.

3

7777777775

The problem is translated in an eigenvalues problem, and it is pos-
sible to calculate the non-trivial solution by using the Singular Value
Decomposition (SVD). The last column of the V matrix (right singular
vector without a singular value), that comes out from the SVD algo-
rithm, is the homography evaluated.
RANSAC consists, then, in iterates for a certain number of times by
picking up randomly 4 points’ pairs each iteration, evaluate the ho-
mography matrix and compute the number of Inliers by seeing how
the matrix fits all the points in the matched points set [15].
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The Inliers are defined as the point correspondences, in the set of the
matched points, that have a distance lower than a chosen threshold,
with respect to the transformation matrix evaluated by the homogra-
phy.
Algorithmically, the operations to be performed are represented in Al-
gorithm 1.

Algorithm 1: Homography estimation using RANSAC
Input : Set of matched Points
Output: Global homography transformation matrix

1 while iteration < N do
2 Pick up, randomly, 4 correspondences C = x ! x

0, from the
whole set of matched points.

3 SVD(C) −! carry out the matrix h, evaluated from the 4
correspondences C.

4 Inliers − dist(hx, x’) < threshold.
5 if Inliers > Inliers_max then
6 iteration iteration+ 1
7 Inliers_max Inliers

8 SetmaxInliers SetInliers

9 else
10 iteration iteration+ 1
11 end
12 end
13 Evaluate the final matrix h SVD(SetmaxInliers)

2.3.1 SVD for eigenvalues decomposition
Given a mxn matrix, if σ is a non negative scalar, it is a singular value
of the matrix A and u and v are respectively left and right singular
vectors, if and only if:

Av = σu and Au = σv

The matrix product:
USV

⇤

is a singular value decomposition of the matrix A [16], if:
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• U and V have orthonormal columns.

• D has nonnegative elements on its diagonals, 0 otherwise.

• A = UDV
⇤

There are multiple ways for solving the SVD. One is to use the House-
holder reduction to bidiagonal form, as described in the Algorithm 2:

Algorithm 2: SVD by exploiting Householder reduction
Input : tol, loopmax, m, n, A, where A is m x n.
Output: U, S, V such that the matrix have the properties

mentioned before.
1 U  Im

2 S  A
T

3 V  In

4 Error  value, such that value > tol

5 while Error > tol & loopcnt < loopmax do
6 Q,S  QRfactorization(ST )
7 U  U ⇤Q
8 Q,S  QRfactorization(ST )
9 V  V ⇤Q

10 E  norm(triu(S))
11 F  diag(S)
12 if F = 0 then
13 F  1
14 end
15 Err  E/F

16 loopcnt loopcnt+ 1

17 end
18 DS  diag(S)
19 S  0
20 for i = 1 : length(DS) do
21 S(i, i) abs(DS(i))
22 if DS(i) < 0 then
23 U(all, i) −U(all, i)
24 end
25 end
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The operations triu and diag extract, respectively, from the input ma-
trix, the values of the upper triangular matrix and the diagonal.
In addition, the abs and the norm function evaluate, respectively, the
absolute value of the input and the quadratic norm of the vector.

2.3.2 QR factorization for SVD
Let A be an mxn matrix with full column rank. It is defined QR factor-
ization of A the decomposition A = QR, such that Q is an mxn orthog-
onal matrix, while R is an mxn upper triangular. Different ways are
known for evaluate it, for instance using Householder matrices, using
Jacobi Rotations or Gram-Schmidt orthogonalization [17]. A pseudo-
code that summarize the QR factorization using Householder reduc-
tions is reported in algorithm 3.

Algorithm 3: QR transofrmation of a matrix A
Input : m, n, A, where A is m x n.
Output: Q and R such that Q is an m x n orthogonal matrix,

while R is an m x n upper triangular.
1 R A.

2 Q I3

3 for k = 1, ...,m− 1 do
4 x(i) 0 for each element i of the size m array.
5 x(i) R(i, k) for i = k, k + 1, ..,m
6 g  norm(x)
7 v(i) x(i), for i = 1, ..,m , with i 6= k.
8 v(k) x(k) + g

9 s norm(v)
10 if s 6= 0 then
11 w  v/s

12 u 2RT
w

13 R R− wu
T

14 Q Q− 2Qww
T

15 end
16 end
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2.4 Related Works

A similar algorithm was developed by Vishnu-Sharan at University of
Dehli, India. The proposed design used a Xilinix Field Programmable
Gate Array (FPGA), exploiting it through an ARM microprocessor.
The whole algorithm has been developed in C and just the RANSAC
part was accelerated trough an High Level Synthesis (HLS). At the end
of the project very long latency come out, especially for the global ho-
mography estimation and the scale-space construction [18].
The results obtained are not enough to guarantee the proper function-
ality of the system.



Chapter 3

Methods

The system developed is designed by using VHDL and tested by us-
ing the Modelsim/Questasim’s functionalities.
The project has been divided in several modules in order to handle the
big structure of the design.
A 256x256 pixels camera resolution has been used and the number of
scales and octaves processed are, respectively, 3 and 4. Although these
values are different from the SIFT author, multiple checks have been
done on MATLAB for testing the capability to detect features. More-
over more scales means more storage space and also higher latency,
since the number of pixels to be processed would increase drastically,
therefore this choice has been done as a trade off between robustness
of keypoints and algorithm latency. Other parameters, related to dif-
ferent modules of the design, will be discussed during the report.
This chapter provides an in-deep presentation of the modules devel-
oped to realize the system. First, Section 3.1 will explain how the mod-
ule that create the scale-space1 has been developed.
Trough this section, first in Subsection 3.1.1 the details on the 2D con-
volution module are given. Subsection 3.1.2 focuses the attention on
the DRAM controller that handle the communication between the DRAM
and Static Random Access Memory (SRAM). Finally, Subsection 3.1.3
shows, shortly, how the DoG has been implemented.

1From now on the term scale-space can both be used for the set of function G and
for the set of function D.

16
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3.1 Scale-space construction

The pixels values are supposed to be stored inside the DRAM since the
number of pixels’ data and kernel values is too large for a SRAM due
to the cell size. A memory hierarchy has been created: the 256x256 has
been divided in smaller pieces of dimension mxn, hence the local op-
erations have been done on the pixels’ values previously stored in the
SRAM, by avoiding long access time, heavily speeding up the process.
Since the accesses to the DRAM suffers of long latency and they are
power consuming, due to the many operations that has to be done,
data locality technique has been exploited to reduce them.
Each piece of image being processed at time has been kept fixed, while
the kernels were changed in order to compute all the different scales,
by exploiting the clustered OFMP technique, based on the data locality,
as explained in [19] and depicted on the right hand side of Figure 3.1.
Different pieces of the image are given to Processing Element (PE)s
(parallelism for different pixels) as well as the multiple kernels (paral-
lelism along scales).

k11 k12

k13 k14

k21 k22

k23 k24

I1 I2 I3 I4

I5 I6 17 I8

PE1 PE2 PE3 PE4

k11 k12

k13 k14

k21 k22

k23 k24

I1 I2 I3 I4

I5 I6 17 I8

PE1 PE2 PE3 PE4

k11 k12

k13 k14

k21 k22

k23 k24

I1 I2 I3 I4

I5 I6 17 I8

PE1 PE2 PE3 PE4

(a) Intra OFMP (b) Inter OFMP (c)Clustered OFMP

Figure 3.1: The figure shows different ways of manage the image and
kernels data that feed the PE. In order to reduce as much as possible
the DRAM accesses, the clustered OFMP -c)-has been implemented.
The figure has been extracted been extracted from [19].

3.1.1 2D convolution
In order to create the Gaussians functions L, that form the scale space,
the 2D convolution module has been implemented.
By definition of 2D convolution, the output of an matrix I[x, y] is still
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a matrix L[x, y], according to:

L[x, y] = I[x, y] ⇤ k[x, y] =
1X

u=−1

1X

v=−1
I[u, v]k[x− u, y − v]

In this way the number of operations to be performed, for a KxK ker-
nel and an XxY image, is K2

XY .
However, the convolution style can be changed if the kernel is separa-
ble as depicted in Figure 3.2 [20].
In this way the number of operation is reduced to 2K XY and the nec-
essary storage space for kernels is strongly reduced. Since the Gaus-
sian kernel is also symmetric, only K values have to be stored and
used, properly, both as Kx1 and 1xK filter, as shown in Figure 3.2.

Figure 3.2: Kernel’s separability and 2D convolution

The design has been created, by following the previous mentioned
convolution style. The "array" kernel is shifted first row-wise, than
column-wise in order to process a certain image block.
Figure 3.3 clarifies the system behavior.
A memory hierarchy has been created to speed up the process. The
image is divided in pieces: the SRAM is filled by fetching from the
DRAM all the pixels within the black square, as depicted in Figure 3.3
because they are necessary for the blue and, in turn, the green area.
Later on the handling of images pieces will be discussed.
For the sake of clarity the 2D convolutions steps are listed below:
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(a) First step of the 2D con-
volution

(b) Row-wise kernel shift

(c) Column-wise operations (d) 2D convolution com-
pleted for the green area

Figure 3.3: The figure shows how the 2D convolution has been imple-
mented by exploiting the kernel’s separability. The blue area has to be
processed in order to find the output correspondent to the green one.

1. The kernel is centered on the pixel to be evaluated.

2. The Multiply and Accumulate (MAC) operations are properly
performed.

3. The kernel is shifted on the next pixel in the row (or shifted by
n_pixels2 if more then one pixel is processed at the same time)

4. The steps 1-3 are repeated for all the pixels in a row

5. The steps 1-4 are repeated for all the rows

6. The kernel is transposed, centered in the upper corner of the
green region. If multiple pixels are processed the same trans-
posed kernel is centered on multiple contiguous pixels.

2n_pixels is a parameter used inside the design for specifying the parallelism of
each L(σ).
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7. The steps 2-5 are repeated for the columns.

As already mentioned, in the above description, some parameters have
been used in order to let the design be as generic as possible.
For this module, in particular, the parameters n_scales and n_pixels
have been used, respectively for determining the parallelism’s grade
along the different scales and along the pixels of the same scale. More
precisely:

• n_pixels determines the number of the output pixels evaluated
at the same time in a certain scale, e.g. n_pixels = 4 means
L[j, k], L[j + 1, k], L[j + 2, k], L[j + 3, k] are evaluated at the same
time.

• n_scales determines the number of scales processed at the same
time. E.g.: n_scales = 2, n_pixels = 2 means that L[j, k, σ1],
L[j + 1, k, σ1] and L[j, k, σ2], L[j + 1, k, σ2] are carried out at the
same time. Figure 3.6 shows what happens when a new row is
being processed and multiple pixels, in this case 2, are evaluated
at time.
More details about this topic are given later in the paper.
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Assuming, for instance, n_scales = 2 and n_pixels = 2, a sketch of the
data path is reported in Figure 3.4:

DRAM

SRAM

8

RF
8

rd_ptr

wr_ptr

log2(deepRF)
n_pixels x log2(deepRF)

deepRF=kernel_size+n_pixels1

16 16

RF_kernel1

16

mac

16

16

16

RF_tmp

16

16

mac

16

16

16

RF_tmp

16

16

mac

16

16

16

RF_tmp

16

RF_kernel2

16

mac

16

16

16

RF_tmp

16

Figure 3.4: Data path of 2D convolution for n_scales = 2 and
n_pixels = 2

Figure 3.4 shows a sketch of the data path for the 2D convolution mod-
ule, with n_pixels = 2 and n_scale = 2. The DRAM feeds the SRAM
with the original pixel’s value. Once the SRAM filling is completed,
the SRAM itself is read and the pixels’ values are stored such that the
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central pixel corresponds to the central position of the register file, RF.
The register file has N slots, with N = kernel_sizemax+npixels−1, where
kernel_sizemax is the number of kernel coefficients related to the max-
imum scale to be processed. Furthermore, the RF is instantiated with
a number of ports that is equal to the number of pixels: the same port
feeds different scales since the same pixel has to be processed with
different kernels. The number of kernel register file, LHS of Figure
3.3, is equal to n_scale because each scale needs its kernel coefficients.
Instead, the RFs_tmp register files are used to store, temporarily the
results of row-wise convolution process, that are later needed for the
column-wise step. Their size is ((kernel_size − 1 + m) ⇤ n)/n_pixels,
since each RF_tmp needs to keep just one pixel every n_pixels for each
row.
In order to clarify the behavior of the FSM that controls the 2D con-
volution, a chart is reported in Figure 3.5: Every FSM that is reported,
during the report, would not represent a connection between the done
and the start state of each FSM. For graphical reasons it has been avoided,
but when a module is in a done state and triggers a negated start signal,
the machine goes into the idle state, waiting for a new event.
Crucial points of the FSM depicted in Figure 3.5 are discussed in the
following. In the UPLOAD_RF_PX_NR state, the register file (RF_PX)
is filled by using the data stored in the SRAM. NR, new row, means
that a new row is being processed and all the register file deepRF =
kernel_size + n_pixels − 1 slots have to be filled by the pixels values
stored into the SRAM. According to Figure 3.3a) the kernel is centered
on the pixel to be evaluated, hence from that pixel kernel_size/2 pre-
vious and kernel_size/2 later are needed for the output evaluation3. If
n_pixel > 1, for example n_pixel = 2, one more pixel is needed in or-
der to cover all the kernel_size/2 subsequent data. The filled red and
green boxes represent the pixels that have to be evaluated, whereas
the red and green rectangles are the correspondent kernels, properly
centered.

3It has been considered the central pixel position of an even kernel as
(kernel_size− 1)/2
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Yes

Idle

reset

Initialize signals

start? No

Yes

Fill the pixels' register file with the
data stored into the DRAM

Upload_RFPX_NR

RF
filled?No

Yes

Evaluate the rowwise
convolution, filling the TMP RF

Evaluate TMP_PX

completed? 

Yes

Store rowwise convolved
pixels into the TMP RF

Store_TMP

completed? 

Fill n_pixels location of the  register
file, by discarding the oldest

Upload_RFPX 

RF
filled?No

No Yes

end
columns? Yes No

Upload_RFPX_NR Upload_RFPX 

Evaluate the columnwise
convolution for

kernel_size+n_pixels1 cycles

Evaluate_conv

completed? Yes No

Store 2D convolution output 

Store_out

stored? Yes No

Done! 

Done
last
row? Yes

Move on the next column

Change_col

No

No

Figure 3.5: FSM that controls the 2D convolution
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Once all the process is completed for all the pixels to be stored into the

Figure 3.6: Fill pixels’ RF when a new row is being processed and
n_pixels > 1.

TMP RF the system goes in the EVALUATE_CONV and the column-
wise operation starts to be performed. Otherwise, if the pixels to be
processed are on a new row, the next state of the system is UPLOAD_RF_PX_NR,
whereas if the pixels to be processed are on the same row then the ma-
chine goes in the UPLOAD_RF_PX. In the state UPLOAD_RF_PX the
new n_pixels, on the same row, have to be evaluated. In this case, the
previous kernel_size− 1 pixels are already stored, hence only the new
n_pixels are brought from the SRAM to the RF, according to Figure 3.7.
The notation -box/colors- follows the one used is Figure 3.6, by assum-

Figure 3.7: Fill pixels’ RF when n_pixels > 1

ing that the two new pixels -yellow and blue- have to be evaluated,
therefore the correspondent yellow and blue kernels are shifted with
respect to the red and green one. The final result shows that, for the



CHAPTER 3. METHODS 25

new pixels only the last n_pixels have to be stored because the others
can just be kept from the previous cycle. Once the row-wise convolu-
tion has been completed, the column wise has to be developed and the
result hA to be stored. If the pixels to be stored are the last in the mxn
block the system goes in the DONE state and wait for a new event.

3.1.2 Handling DRAM to SRAM communication
The 2D convolution process is repeated many times, according to the
mxn block size. The number of blocks of an XxY image is n_blocks =
XY

mn
. This size can be arbitrarily decided, but the maximum kernel

size required and the available space of the SRAM that has to store
(m + kernel_sizemax − 1) ⇤ (n + kernel_sizemax − 1) amount of pixels,
must be taken into account.
Figure 3.8 shows a generic green block mxn that is the pixels area eval-
uated by the 2D convolution, whereas the black area is the image piece
stored into the SRAM in order to compute the convolution’s output for
the green piece.

Figure 3.8: The green piece is the m x n part of the image for which the
convolution’s output is calculated, while the black area is the portion
of image stored into the SRAM used for the 2D convolution evaluation.

Once the 2D convolution for the green block has been completed, the
next one should be evaluated. According to the previous reasonings,
in order to reduce the memory accesses, the part of image already
stored, to be used for the next operation, is kept inside the SRAM and
just the new part is fetched from the DRAM.
A better explanation is given by Figure 3.9, where two next blocks have
been represented: the non overlapped area, marked by the blue color,
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is the one that is, effectively, moved from the DRAM to the SRAM,
hence a starting address signal is updated and used by the SRAM con-
troller for identifying the pixels’ position inside the memory itself.

Figure 3.9: The figure shows two next greens blocks evaluated by the
2D convolution. The black areas are the pixels needed by the 2D con-
volution in order to evaluate the green output. The overlapped area
between the two blocks is already stored into the SRAM, therefore only
the blue part has to be fetched.

Furthermore, in order to avoid useless accesses to the memory for
writing the L function elements, the DoG function has been computed,
whereupon the D elements have been stored.
Achieving that means to compute at least 2 scales at time, therefore
during the design the parallelism grade n_scale, along the scales, it
has been considered n_scale > 2.
The duty of this FSM that drives the DRAM control is to fill the SRAM
properly, according to the block’s number to be evaluated, hence ad-
dress both the DRAM and the SRAM, fill the kernel’s register files, ac-
cording to the number of scales processed at time, wait the DoG com-
putation and enable the storage into the DRAM itself. At the end of the
process, part of the DRAM memory contains the calculated function

D, where the number of pixels stored is: 3XY + 3
XY

4
+ 3

XY

16
, where

X, Y are the dimensions of the image, whereas the factor 3 comes from
n_scales− 1, with n_scale = 4 because of the project decisions.
Considering that, on the image border, part of the black area is out-
side the image, some zeros values were stored into the SRAM. Prob-
lem come up for this operation since, by storing the data traditionally
row-wise can happens that, for several rows, some 0 need to be stored,
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whereupon some image data too; after a row4 has been completed the
phenomenon turns out for the next one. This leads to a continuous
open/close of the DRAM page that decreases, drastically, the perfor-
mances. For each black block that has some "external image" part it
has been decided to store first (or later) the ’0s, and once the page is
opened bring in all the pixels’ value needed for the output evaluation.

Yes

Idle
reset

Initialize signals

start? No

Yes

Fill the SRAM with the data stored
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block number

Fill_SRAM_NR

SRAM
filled?No

Yes
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Figure 3.10: FSM for DRAM controller

4In this case row means
Y

n
blocks to be evaluated by moving horizontally along

the image.
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3.1.3 DoG evaluator
The Difference of Gaussian evaluator is, simply, a series of subtractor
that takes as input the 2D convolution’s outputs. As for the 2D convo-
lution block, according to the parameter n_octaves the DoG modules
are instantiated.
Figure 3.11 shows how the blocks are bounded, by assuming n_ocaves =
3, n_pixels = 1, n_scales = 4 which means that all the scales are pro-
cessed at the same time.

DoG evaluator2D convolution

scale1

scale2

scale3

scale4







DoG evaluator2D convolution

scale1

scale2

scale3

scale4







DoG evaluator2D convolution

scale1

scale2

scale3

scale4







octave3

octave2

octave1

Figure 3.11: The figure shows the DoG modules’ instantiation, accord-
ing to n_octaves = 3, n_pixels = 1 and n_scales = 4.

The DoG pixels are then stored back to the DRAM memory. The num-

ber of stored pixels is: 3XY +3
XY

4
+3

XY

16
, where X Y are the original

image dimensions.
Every data is represented on 16 bits, according to the 2D convolution’s
output. Since the input data are both positive, the result of the opera-
tion will never give overflow, then the 16 bits adders can be used and
the D values are, in turn, represented with the same bit’s width.
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3.2 Accurate keypoint localization

In this section of the report is described the proposed architecture used
to detect, accurately, the keypoints. Three main steps were performed
in order to obtain the final correct position:

1. Localization of extrema candidates;

2. Get rid of low contrast keypoints;

3. Get rid of poorly localized on edges keypoints.

3.2.1 Extrema candidates localization
Possible extrema are detected, according to the theory, by comparing
the pixel candidate with its 8 neighbors and the nine correspondent
pixels in the upper and lower scale, as described in Figure 2.2. The
DoG values are stored into the DRAM. For this purpose it has been
thought to directly access the DoG and store the 27 pixels in the local
register file, starting from the bottom to the top scale, hence the central
RF data corresponds to the pixel candidate.

Register File0

26

13 candidate
RF out1

RF out2 

comparator
A     B

AgtB BgtA

DFF

DFF

flagG

flagS
extrema 

Figure 3.12: Extrema localization data path.

The RF neighbor is changed until the extrema signal becomes ’0’ or
the whole register file has been read. The comparator gives the two
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output signals: A greater then B -AgtB-, B greater then A -BgtA-. The
flip flops are enabled at the first cycle, therefore if flagG is asserted
a biggest candidate has been detected and in order to consider that
pixel as an extrema for the rest of the cycles the neighbors have to be
smaller than the candidate, otherwise the process is stopped and a new
candidate is analyzed. If the process continue for all the register file’s
elements and, in the last step, the signal G or S is still asserted, then
that candidate is considered an extrema and its position is stored into
the DRAM.
As for the scale-space construction, it has been tried to minimize the
DRAM accesses, therefore also in this case, when a new candidate has
to be analyzed, instead of fetching in all the 27 pixels’ data, just the
next right nine more pixels are needed. Figure 3.13 shows two next
candidates, the points circled by the black line, with their neighbors
needed for the extrema detection. When the new candidate has to be
evaluated, hence the points contained in the red area are the pixels to
be stored into the RF, only the blue ones are brought from the DRAM
to the register file and the others just kept from the previous cycle. An

Figure 3.13: Extrema detection moving window

FSM has been designed in order to control the process and cover all
the scales and the octaves.
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Therefore a flow chart has been reported in order to help the reader
understanding how this process has been handled and in which way
all the scales have been controlled.
The FSM that controls the process is reported in Figure 3.14:
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Figure 3.14: Keypoint location FSM

The FSM structure is quite similar to the one that has been described
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before for the 2D convolution. The process is really straightforward:
the DoG data values feed the RF that, for each candidate, is read un-
til the point is discarder or detected as an extrema. Some states are
used to identify the position, scale and octave related to the point it-
self. Once all the scale-space has been analyzed, the system goes in a
steady-state, waiting for a new event.

3.2.2 Get rid of bad keypoints

Low-constrast keypoint

In order to remove the low contrast keypoints the maximum of the D
function around the extrema has to be found, hence an approximation
of D, given by the Taylor expansion has been found:

D(x) = D +
dD

dxT
x +

1

2
xTd

2
D

dx2
x

The process of building this expansion can be translated into a new 2D
convolution with the kernels [1 2 1; -2 -4 -2; 1 2 1] and [-1 -1; 1 1], that
translates the subtractions/divisions operations into 2D convolutions.
The 2D convolution block can be exploited for this purpose, by using
a new FSM that controls properly the fill process of the kernel regis-
ter file, perform the final operations and store back the data into the
DRAM. Therefore if the value of the function D in the position of the
keypoint is lower than the threshold chosen, the point is discarded.
For this purpose it has been assumed that the the position of the key-
points as well as the Taylor expansion series D are stored into the
DRAM, as reported in Figure 3.15, where, on the left, it is reported
the way used to stored the keypoints’ position, instead of using a set
of two coordinates.

The position of a keypoint is a number 0 < ↵ < 254 ⇤ 254 and from its
value it is easily possible to carry out the x, y coordinates. It is clear
that, due to the extrema research algorithm, that a keypoint can not
lie on the border of the image. However, the LHS of Figure 3.15 is a
reduced example of how the keypoint position is identified in a matrix
that, in the report, is represented by the D function.
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Figure 3.15: Memory structuring for extrema removing

The module that implements this process is, basically, an FSM depicted
in Figure 3.16 .
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Figure 3.16: Remove low contrast keypoints’ FSM
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When the process shown in Figure 3.16 starts the system goes into
the state Read_Expos where the keypoint position is read. The system,
then, moves to the Read_DoG state in which, based on the position
extracted in the previous step, the correspondent D value is read: if
the data is lower than the contrast threshold the keypoint has to be
rejected, hence the FSM moves into the Remove_KP state. In the Re-
move_KP state the system write "-1" inside the correspondent keypoint
location. Once all the extrema are analyzed the finite state machine
moves into the Done state and waits for a new event.

Poorly localized on edges keypoints

The matrix H elements were computed starting from the Taylor func-
tion D, already used in the previous step.
The DP is composed by an adder/sub and a multiplier, as well as a
pipelined divider provided by the synopsys design-ware (DW) library.
The arithmetic units are feed properly by a control unit reported in
Figure 3.17.
When the FSM is triggered by the start signal, it goes into the Read_Expos
state where the system check if that keypoint has already been dis-
carded (the value "-1" is read), otherwise the machine goes into a se-
ries of states where the element of the hessian matrix H are evalu-
ated. Once all the elements are evaluated the determinant and the
ratio are computed, therefore if the result is greater than the threshold
discussed in Section 2.1, the FSM goes in the Remove_KP state and "-1"
is written into the location, as already described for the previous mod-
ule. Once all the keypoints are analyzed the process is completed and
the system goes into the Done state.
The threshold used in this module comes from the parameter r = 10,
as suggested in the SIFT paper [7].
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Figure 3.17: Remove edges control unit

3.3 Orientation Assignment

According to the formula mentioned in Section 2.1, an histogram has
been built in the proximity of the keypoint. Each pixels’ magnitude
contained into the histogram is weighted by a Gaussian circular func-
tion. The higher the scale, the wider the number of pixels that are
inside the histogram area itself - width ⇤ width- where width = 2 ⇤
round(3 ⇤ 1.5 ⇤ σ) in order to bring in the same amount of information,
due to the Gaussian shape.
According to statistics extracted from the MATLAB code, on 256x256
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resolution image, 1000 memory locations have to be reserved for the
extrema positions. Moreover, it has been decided to have 4 maxi-
mum orientations for each keypoint, where the keypoint orientation
will be a number bin in the range 0-35 that corresponds to the orienta-
tion 10xbin, expressed in degrees. The memory locations reserved for
this purpose are shown in Figure 3.15.
For this module it has been thought, as already done for some of the
previous block, to implement and handle a memory hierarchy in order
to speed up the process. Hence the control unit manage also the data
communication from the DRAM to the SRAM.
The arithmetic unit architecture proposed for this purpose is reported
in Figure 3.18.
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Figure 3.18: Assign Orientation data path
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The sqrt function has been developed by exploiting the Design Ware
synopsys library, using a pipelined version with 3 pipe stages. Fur-
thermore, the arctan has been developed by using a small logic and
a 5-inputs Look-Up Table (LUT), since the granularity needed for the
purpose of the module was just 10 degrees.
It has been supposed to use two different SRAMs: one for storing the
pixels’ value of the area around the keypoint, the other one for storing
both the magnitude and the orientation of each of them.
The flow chart which represents the control unit behavior for this mod-
ule is reported in the Figure 3.19.
The FSM basically controls the following operations basically:

• The window around the keypoint needed to evaluate the pixels’
"vectors" is brought from the DRAM to the SRAM.

• The computations are performed, therefore the second SRAM is
filled with the magnitude and orientation values of each pixel in
the window.

• The SRAM just mentioned is read, the vectors are properly weighted
by the gaussian circular function and a final magnitude for each
angle is obtained, therefore a 36 slots (0°, 10°,...350°) register file
is filled with the magnitude, such that for each angle the corre-
spondent magnitude is stored.

• Finally, the RF is read and the maximum orientation is found by
using classical research methods.
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Figure 3.19: Asssign orientation FSM

3.3.1 Atan2 module
The atan2 module is, in a variety of computer languages, a function
that has two input x,y representing the coordinates of an arbitrary
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point (x, y) and finds the arctangent of ✓, where tg✓ =
y

x
. For the

system application, the output resolution of this module needed is 10
degrees. Due to the coarse granularity, a 6- input LUT, driven by a
small control logic, has been developed to carry out the atan2(x, y)
value. Figure 3.20 depicts the proposed architecture of this block.
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Figure 3.20: atan2 proposed architecture

3.4 Local descriptor and matching algorithm

For this part of the algorithm it has been thought to use a software
implementation in order to create the local descriptor and match the
descriptors that comes up from the two different images. For the local
descriptor a MATLABR_2016a code has been implemented, as well
for the matching algorithm. It has been used an 2,5 GHz Intel Core i7
processor in order to run the program. The threshold discarding ratio
between the nearest and the second nearest neighbor has been set to
0.8, as suggested in [7].
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3.5 RANSAC for global homography

This section will illustrates how the global homography and RANSAC
have been developed to find the transformation that allows the stitch-
ing.
According to the MATLAB simulations and the number of matched
points that come out from the matching algorithm the iteration num-
ber has been set to 50, but can be easily modified through the param-
eter itself defined in the package. The results obtained were carried
out by using the parameters and threshold discussed previously in the
paper. Furthermore it has been decided to upper bound the number of
matched points to 32 (should be increased for different threshold and
parameters using in SIFT).
The data format used is Q18.46 according to the simulation results and
the operations performed by the algorithm. The huge number of frac-
tional bits come from the high resolution needed by the SVD algo-
rithm, which iterate until an error is below a certain threshold. Many
simulation have been run until this format has been chosen after veri-
fied that the convergence is always reached.
The entire process is controlled by an FSM that triggers each module
and properly drives the Register File (RF)s. Duty of the same FSM is to
work as an arbiter that select which module has to talk with the data
path that it is shared between all the units inside the module itself.
This FSM first drive the signals for properly storing the point indexes,
after while generates the matrix A discussed in Section 2.3, then gives a
start signal to the SVD module and wait for the result. Iterate this pro-
cess for 50 times, according to the defined parameter. Each cycle, once
the matrix h, based on four points, is obtained (SVD is completed),
triggers the module that evaluate the points’ distance with respect to
the homography matrix just computed. Furthermore, it evaluates the
number of inliers by reading the data register file: if an inlier is spot, 1
is stored into the 5-bits RF, otherwise 0. If the number of inliers exceed
the "Inliers_max", the "Inliers_max" locations itself are updated.
Once the iterations are over, the FSM fills the A data with the inliers
max and triggers the SVD module. The process is completed when the
SVD gives the final homography matrix.
The FSM chart that represents the behavior is reported in Figure 3.21:
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Figure 3.21: FSM RANSAC control unit
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3.5.1 Random index generator
The random four points correspondences have been created by using
Linear Feedback Shift Register (LFSR). The number of matched points
is evaluated at run-time by the matching algorithm and it is used to
select the correct range within the points have to be generated.
Therefore, multiple sizes LFSRs have been instantiated and a small
logic, driven by the number of matched point signal, decides which
one has to be selected, by properly controlling a 4 ways mux.
Figure 3.22 shows how the random generator block is built.

LFSR LFSR LFSR

5 4 3

5

0111Rand_sel

call_rand

5 5

'0' '0'

10

Figure 3.22: Random generator with multiple size LFSR

The call_rand signal enables the LFSRs to change state, then generates a
new random number. The signal is asserted every time a new number
is needed. Since, for the purpose of the project, four points’indexes
were needed, the signal is asserted for 4 sequential cycles, hence the
output is stored into a small RF.
However, the rand_sel signal works in a way that ensures that the index
will be inside the number of matched points evaluated at run time.
For the sake of clarity the logic is described as:

Rand_sel  

8
><

>:

11 if n_matched = 32

10 if 15  n_matched < 32

01 else

The LFSR itself has been designed by using XORs feedbacks. The poly-
nomials used are the ones that ensure the maximum count cycle: 2n−1.
Different n-lenght LFSRs correspond to different polynomials.
The latters are reported in the table below:
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3 bit 4 bit 5 bit
Polynomials x

3 + x
2 + 1 x

4 + x
3 + x

1
x
5 + x

3 + x
1

Table 3.1: Polynomial for maximum length LFSR

The LFSR behavior and the concept of feedbacks’ polynomial is clari-
fied by Figure 3.23, where a 16-bit LFSR is represented, with a feedback
polynomium: x16 + x

14 + x
13 + x

11 + 1.

1 11 1314 16

Figure 3.23: Fibonacci series LFSR

The indexes are stored into the first 4 location of a small RF that con-
taints that are then used to point to the correct location of the RF that
cointains the coordinates of the matched points.

3.5.2 Data path
As already said, the RANSAC data path is completely reused for all
the algorithm involved in the global homography process. An arbiter
signal controls in which way the AUs are fed.
Basically, four arithmetic units have been used: adder/subtractor, square
root unit, divider and a MAC. The synopsy design ware library -DW-
has been exploited for the sqrt and the divider, both in a pipelined ver-
sion, with 5 pipelined stages each.
The internal units are controlled by the FSM that is currently using the
arithmetic units, by properly driving the severals control signals such
as muxes selectors and different units enables.
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The proposed architecture is reported in Figure 3.24.
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Figure 3.24: Proposed architecture for global homography datapath

According to the operations, the divisions’ result is always a number
lower than 1. To avoid precision’s losses it has been shifted the divi-
dend by 46 bits (the number of fractional bits used) and then the first
64 bits have been extracted from the output.
However, for the MAC unit, it has been chosen to doubled the register
output size in order to avoid overflow in each multiplier operation.
Because of the data format and the sum+multiplication operations the
output data has the format Q36.92, therefore the bits 109:46 have been
picked up, going back to the Q18.46 representation. Figure 3.25 shows
how the fixed-point operations are performed.
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Figure 3.25: Basic operations fixed point format. The figure has been
extracted from [21].

3.5.3 SVD implementation
The module that performs the operation which allow the decomposi-
tion of the A matrix by exploiting the SVD is basically a pair of hierar-
chically FSMs that properly drive the controls and signals to the Data
Path (DP) and the storage units.
Among the different ways for the decomposition evaluation, the QR
factorization trough the householders’ method has been chosen, due
to its simple implementation. However, since for the project’s purpose
U and S, defined in Section 2.3.1 are useless, the hardware design has
been projected ad hoc for it, by skipping the operations that carry out
the all the output parameters of the SVD function.
Basically, finding the matrix V (as well as the other parameters of the
factorization) is an iterative algorithm that "calls" twice the QR factor-
ization method and iterates until the error is lower of a desired toler-
ance. According to statistics the tolerance tol = 0.1 has been chosen as
a trade off between data resolution and algorithm accuracy.
One of the two FSM performs the QR factorization, whereas the second
one triggers the QR module itself, evaluates the matrix v and controls
the entire iterative process.
Furthermore, whether the FSM does not reach the desired tolerance, it
will be bounded by a maximum number of iterations, set to 5.
Statistics, previously done on MATLAB shows that the desired toler-
ance is reached 95% of cases in 2-4 iterative cycles, otherwise a wrong
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result comes out.
The FSM that handles the entire loop and drives the QR module is
reported in Figure 3.26.
The CU represented in Figure 3.26 is straightforward related to the al-
gorithm reported in Algorithm 2. Once the process start, the FSM goes
into the state that allow the computation of the first QR factorization.
Once the process is completed, the data are properly stored into the
correct RF location such that the next module’s call has its input ready
to be processed. It is not possible to reuse the same RF locations of the
output data as input since some data would be overwritten and the
result would not be correct. Once the second QR factorization and the
data are correctly stored, matrix V is evaluated, therefore the error is
computed. The Check_err state verifies if the error is below the desired
tolerance or the number of loops reached the maximum decided and
goes to Done if Yes, otherwise goes back to the beginning of the loop.

3.5.4 QR factorization implementation
The QR module is, as already said before, an FSM that properly con-
trols the DP in order to perform the operations reported in algorithm
3.
The FSM is in the Idle_QRfact until the SVD FSM assert the start sig-
nal. The system starts and the matrix R is filled, by copying the values
from A to R. The system moves, then, into the Build_X state, where
the variable X is built. Algorithm 3 is followed in order to perform the
operations. In the states Prod_R and Prod_Q some temporary variables
are used to store intermediate values that are then used for the final
result. Once the loop is completed, the system goes into the Done state
by giving R and Q as result.

Due to the operations of this module, a very high resolution is needed
to obtain good results, that is the reason why 46 bits were used for the
fractional bits. The input and output range of the module is very wide
- MATLAB simulations in floating point notation shows that numbers
goes from very large number that need 18 bits to be represented, as
well as small number that are of the order 1e−30. A good compromise
has been achieved by using the notation Q18.46.
The FSM behavior is reported in Figure 3.27.
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Figure 3.26: FSM that controls SVD operations
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Figure 3.27: FSM that controls the QR fact operations.

3.5.5 Distance evaluator
The last module implemented for the global homography design is
the distance evaluator. This block has the duty to evaluate, for each
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point in the set of matched points, the distance with respect to the
homography matrix previously evaluated. To do that, first the points
of the second matrix are transformed by multiplying them with the
transformation matrix. Once the transformed points, called PTS3 in
the chart of Figure 3.28, are obtained, the distance is computed with
the squared differences between the matched point of the fixed image
and the transformed points of the second one.
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Figure 3.28: FSM that controls the system for the distance evaluation.
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3.5.6 Global homography overview
A global vision of the interconnected block is reported in Figure 3.29.
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Figure 3.29: Global homography by using RANSAC overview

Figure 3.29 summarize the previous discussion. The Ransac_ctrl block
feeds the others FSM and triggers, properly, the different modules. The
arbiter signal, that comes from the Ransac_ctrl itself, selects the correct
group of signals for feeding the AU and the control/addresses to the
RF. The output data of the RF is bounded to the input port of the RF,
whereas the two output ports of the RF feed the arithmetic unit that
are then used for the internal operations.



Chapter 4

Results

In this chapter the results obtained will be reported. First an overview
of the image processing is provided by showing intermediate results
of the algorithm up to the final stitched image.
Then, more in details, Section 4.2 will provide all the area, power and
latency results related to the modules implemented.

4.1 Overview

The system has been tested by using the two 256x256 pixels images
shown in Figure 4.1.

(a) Left image (b) Right image

Figure 4.1: Image used for testing the system.

The data input have been given to the modelsim testbench through a
file, by exploting the textio library. The output has been then written
on a file, hence MATLAB has been used for plotting the results that are
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then reported in the paper.
Partial results of the SIFT algorithm are shown in Figure 4.2, where
only the image depicted in Figure 4.1a) has been used for the report.
Then, the result of the matched algorithm is reported in the next Fig-
ure 4.3, by using 0.85 as a threshold on the distance’s ratio.

(a) Candidate (b) Extrema after low contrast
correction

(c) Extrema after poorly local-
ized correction

Figure 4.2: SIFT results: Red points mark the candidate after the first
localization step. Green and blue are respectively after the rejections
of low contrast and poorly localized on edges keypoints.

Finally, the stitched image is reported after the transformation of the
second image with respect to the 3x3 matrix evaluated by the homog-
raphy hardware module.
The final plot of the two stitched image is reported in Figure 4.4.
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Figure 4.3: Matched point of the two images.

Figure 4.4: Final result of the image stitching algorithm, after the sec-
ond matrix transformation.

4.2 Synthesis and data analysis

Each module has been synthesized by using synopsys through design_vision
in order to have some results to be discussed and to verify the perfor-
mance of the system.
A logic syntesys has been done, by using a 40 nm technology library,
and the clock gating technique has been used to reduce the power con-
sumption. Furthermore, during the synthesis, the delay and area in-
troduced by interconnections have been neglected, by using the zero
delay model. It has been also assumed to work at 25 °C and NCCOM
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operating conditions. An example script is reported in the Appendix
A if more informations are needed on the synopsys commands used.

4.2.1 Scale-space construction results
For the construction of the scale space, different parameters have been
changed in order to compare the different designs. Three modules
are needed for the scale-space construction: 2D convolution evaluator,
DRAM to SRAM controller, DoG evaluator. Before going ahead with the
discussion, it is worth to remind that the kernels coefficient used for
each scale are fixed. The kernels’ size, related to each scale, are, in
order from the bottom to the top of the scale-space:

9, 12, 15, 19, 19, 24, 30, 38, 38, 48, 60, 76

The green block represented in Figure 3.8 has been chosen mxn = 4x4
for the following results (it is not necessary to choose a square: the
only mandatory condition is that the n dimension is sub-multiple of
the number of columns of the whole image).
The values n_scale = 2 and n_scale = 4 have been used: for each
n_pixels = 1, n_pixels = 2, n_pixels = 4.The area and power results
reported in Table 4.1

2D convolution
Area Power [mW ]

n_pixels = 1 52082.45 8.32
n_pixels = 2 54811.36 8.37
n_pixels = 4 60199.85 8.4529

Table 4.1: Result 2D convolution for n_scale = 2. The area is expressed
in terms of gate count.

The latency of the 2D convolution module, depends on the kernel size
evaluated, therefore after having verified that the constraint on the 5ns
clock period, arbitrarily decided, were satisfied, multiple simulations,
by changing the kernel size parameters, were done in order to extract
the performances that are reported in Table 4.2.
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Latency 2D convolution[µs]

kernel_size 12 19 24 38 48 76
n_pixels = 1 6.4 12.9 19.2 43.6 68.8 160
n_pixels = 2 3.7 7.7 11.5 26.0 40.0 95.2
n_pixels = 4 2.4 5.1 7.6 17.2 26.5 63.2

Table 4.2: Latency result 2D convolution for n_scale = 2.

As well as for the 2D convolution module, the synthesis has been per-
formed for the DRAM controller and for the DoG evaluator. The re-
sults are reported in table 4.3, for n_scales = 2.

DRAM controller DoG evaluator
Area Power[mW ] Area Power[mW ]

n_pixels = 1 10827.79 0.74 76.91 0.03

n_pixels = 2 10905.93 0.73 153.29 0.06

n_pixels = 4 10802.03 0.73 406.05 0.12

Table 4.3: Result DRAM controller and DoG evaluator for n_scale = 2.
The area is expressed in terms of gate count.

Since at the current project status the modules have been developed
separately, a rough estimation was done for the scale-space construc-
tion’s perfomances evaluation.
The following formulas, for n_scales = 2 have been used in order to
carry out significant values:

Latency 1st octave =
X

m
(m+ kernel_size_4− 1)(n+ kernel_size_4− 1) T

| {z }
Storage ofpixels value from DRAM to SRAM each ”new row”

+

+ (
XY

mn
− X

m
)(n)(m+ kernel_size_4− 1)T

| {z }
Storage ofpixels value from DRAM to SRAM rest of the blocks

+
XY

mn
(L2D12+L2D19)

Latency 2nd octave =
X

2m
(m+ kernel_size_8− 1)(n+ kernel_size_8− 1) T

| {z }
Storage ofpixels value from DRAM to SRAM each ”new row”

+
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+ (
XY

4mn
− X

2m
)(n)(m+ kernel_size_8− 1)T

| {z }
Storage ofpixels value from DRAM to SRAM rest of the blocks

+
XY

4mn
(L2D24+L2D38)

Latency 3rd octave =
X

4m
(m+ kernel_size_12− 1)(n+ kernel_size_12− 1) T

| {z }
Storage ofpixels value from DRAM to SRAM each ”new row”

+

+ (
XY

16mn
− X

4m
)(n)(m+ kernel_size_12− 1)T

| {z }
Storage ofpixels value from DRAM to SRAM rest of the blocks

+
XY

16mn
(L2D48+L2D76)

The final latency of the scale-space construction will be:

LSS = Latency 1st octave+ Latency 2nd octave+ Latency 3rd octave

In order to clarify the meaning of each term in the equations Table
4.4 is reported, by showing a legend of the variables mentioned in the
equation.

X , Y image dimensions
m, n 2D conv dimensions

kernel_size_i kernel’s length of scale i
T clock period

L2Di 2D convolution latency for kernel_size = i

Table 4.4: Legend of variables mentioned in the previous equation.

By using T = 5 ns, after having verified that constraints on setup time
are met by using the logical synthesis, the results reported in Table 4.5
were carried out, hence the latency of the scale-space construction is
reported for all the n_pixels values evaluated before.

Latency scale-space [ms]

n_pixels = 1 206
n_pixels = 2 124
n_pixels = 4 83

Table 4.5: Scale-space construction latency for n_scales = 2.
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The same operations were repeated by setting n_scales = 4 and the
results are reported in Table 4.6.

2D convolution
Area Power [mW ]

n_pixels = 1 151883.22 24.09
n_pixels = 2 154783.24 24.20
n_pixels = 4 162169.28 24.4

Table 4.6: Results of the 2D convolution for n_scales = 4. The area is
expressed in terms of gate count.

The results reported in Table 4.6 are what is expected from the experi-
ments. The AUs’ number increased, hence the area and the power in-
crease as well. It is worth to note that the area evaluated for n_scale =
4, n_pixels = 1 (4 MAC units) is much bigger than the one evaluated
for n_scale = 2, n_pixels = 2 (4 MAC) units as well, because a larger
register file was needed, which must be able to store more kernels at
the same time. The same reasons are valid for the power values since
part of the energy is used by the register (clock distribution, higher
switching activity).
The different designs were synthesized again to check if the clock con-
straints were met.
As in the previous case, the 2D convolution results for latency as well
as the area and power of the DRAM controller and DoG evaluator are
shown, respectively, in table 4.7 and 4.8.

Latency 2D conv[µs]

kernel_size 19 38 76
n_pixels = 1 12.9 43.6 160
n_pixels = 2 7.7 26.0 95.2
n_pixels = 4 5.1 17.2 63.2

Table 4.7: Latency result 2D convolution for n_scale = 4.
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DRAM controller DoG evaluator
Area Power[mW ] Area Power[mW ]

n_pixels = 1 10951.79 0.74 229.67 0.09

n_pixels = 2 10951.79 0.74 153.29 0.18

n_pixels = 4 10951.79 0.74 406.05 0.36

Table 4.8: Result DRAM controller and DoG evaluator for n_scale = 4.
The area is expressed in terms of gates counted.

As the parallelism increases the latency continues to decrease. The
overall area and the power increases as expected, expecially in mod-
ules that require multiple AUs.
Moreover, the latency that is reported in Table 4.7 refers just to the
kernel with size 19, 38, 76 since all the scales in each octaves are eval-
uated concurrently and the latency for those values is "hidden" inside
the one of the biggest kernel size, which determines the performance
of the design.
The overall latency has been estimated as described before with one la-
tency 2D convolution contribution to each block. The results obtained
are reported in table 4.9.

Latency scale-space [ms]

n_pixels = 1 139.5
n_pixels = 2 86.4
n_pixels = 4 59.0

Table 4.9: Scale-space construction latency for n_scales = 4.

The current results of the scale-space construction do not allow a very
fast process, therefore a final performance estimation has been done,
increasing the parallelism grade, for a mxn = 16x16 block, by using
n_scales = 4 and n_pixels = 16.
According to the usual formulas it has been obtained:
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Latency scale-space [ms]

n_pixels = 16 7.2

Table 4.10: Scale-space construction latency for n_scales = 16 and
mxn = 16x16.

The higher the parallelism, the faster the scale-space construction with
the drawback determined by the number of pixels needed to be stored
in the SRAM in order to compute the 2D convolution.
The area, power and latency results are summarized in Figures 4.5, 4.6
and 4.7. It has been considered to evaluate those parameters for the
whole scale-space construction process by considering Area = Area2Dconv+
AreaDRAM−SRAMctrl + AreaDoG and P = P2Dconv + PDRAM−SRAMctrl +
PDoG. Each bar in the figures is identified by sNpxMscL. The letter s
stands for size and can be either size1 = 4x4 block or size2 = 16x16
block, pxM means n_pixels = M , whereas scL means n_scales = L.
Increasing the parallelism grade the area increases and, how expected,
the power increases as well. A bigger gap is visible between values of
different scales because both the AUs and the storage units increases.
Figure 4.7 has to be discussed a little bit more due to the red, green and
violet results that seems to be different for what expected. However,
n_scales = 2 and n_pixels = 4 means Parallelism = 8, while green
and violet have, respectively, Parallelism = 4 and Parallelism = 8.
Hence, it is clear that the red latency has to be lower than the green
one. What happens between the red and the violet is that with the same
number of arithmetic units, due to the algorithm, parallelize more pix-
els has more effect than more scales because the 2D convolution mod-
ule’s latency decreases drastically. There is no optimal solution after
this result exploration. The designer has to find trade-off between la-
tency and area/power.



60 CHAPTER 4. RESULTS

s2px16sc4

s1px1sc2
s1px2sc2
s1px4sc2
s1px1sc4

s1px4sc4
s1px2sc4

Figure 4.5: Area overall results

s2px16sc4

s1px1sc2
s1px2sc2
s1px4sc2
s1px1sc4

s1px4sc4
s1px2sc4

Figure 4.6: Power overall results
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s2px16sc4

s1px1sc2
s1px2sc2
s1px4sc2
s1px1sc4

s1px4sc4
s1px2sc4

Figure 4.7: Latency overall results

4.2.2 Results accurate keypoints localization
In this section are reported the results for each module involved in the
keypoint localization: first the extrema detection module and then the
results of the less robust keypoints rejection.

Extrema detection

The VHDL description has been given to synopsys for the logic synthe-
sis as it has already been done for the previous blocks. The parameters
chosen are the same used for the scale-space construction.
The area and power results obtained that come from the synthesis are
reported in Table 4.11 as well as the module latency with a clock pe-
riod1

T = 5 ns.

Extrema detection
Area Power [mW ] Latency [ms]

10244.96 0.49 0.12

Table 4.11: Area and power of the extrema detection module.

1From now each clock period that has been used for the extracted values has to
be considered verified for the module itself in terms of timing constaints.
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Results of low contrast rejection module

In the same conditions of the previous blocks the results were ex-
tracted out from the synthesis and the simulations. Table 4.12 shows
the values obtained.

Low contrast rejection
Area Power [mW ] Latency [ms]

2619.01 0.13 0.0076

Table 4.12: Area, power and latency of low contrast keypoints rejection
module.

Results of poorly localized on edges keypoints rejection

The results of the poorly localized on edges keypoint rejection are re-
ported in Table 4.13.

Poorly localized on edges rejection
Area Power [mW ] Latency [ms]

7232.58 0.34 0.027

Table 4.13: Area, power and latency of the poorly localized on edges
rejection module.

The overall latency of the accurate keypoints localization process is:

LatencyAccurateLocalization = (0.12 + 0.076 + 0.027) ms = 0.22 ms

4.2.3 Orientation Assignment results
The Orientation Assignment results are reported in Table 4.14, by us-
ing a clock period T = 5ns, verified with the synthesis.
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Assign Orientation
Area Power [mW ] Latency [ms]

24988.12 0.99 31.14

Table 4.14: Area, power and latency of the Assign Orientation module.

The high latency is determined by both the communication between
the storage modules and the iterations among all the keypoints de-
tected.

4.2.4 RANSAC and global homography results
Since for this block a final defined design has been developed, only
a global synthesis and performance estimation has been done (area,
power and latency will not reported for each independent module).
From the synthesis results, performed with 5 pipelined stages, both for
the sqrt and the divider it has been reached a satisfied clock constraint
T = 8 ns, but still the critical path is forced by one of this two module,
hence could be reduced more by adding pipelined stages.
The results extracted are reported in Table 4.15.

RANSAC for Global Homography
Area Power [mW ] Latency [ms]

247482.50 10.83 14.0

Table 4.15: Results of global homography and RANSAC

4.3 Overall algorithm latency

The overall latency at the current status of the project is

Latencystitching = 1.6 s

The flow along the values step by step is reported in Figure 4.8. The
SW values are obtained by using tic and toc command on MATLAB
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2016a, on intel i7 processor 2.5 GHz.
The SW results are reported just for completeness, but they are totally
distant from the system target and their meaning is definitely not sig-
nificant.

Original Image

Construction of the scalespace

Locate DOGExtrema

Generation of the D' function

Remove low contrast keypoints

Remove poorly localized on edges keypoints

Assign keypoints orientation

Build keypoint descriptors

Descriptors matching

Calculate Homography (RANSAC)

Image Stitching

Process in HW

Process in SW

7.2 ms

0.12 ms

0.0076 ms

0.027 ms

31.14 ms

550 ms

990 ms

14 ms

9 ms

Figure 4.8: Image processing flow with latency.



Chapter 5

Conclusions

This chapter provides some conclusions on the research. The limita-
tion of the design will be discussed in Section 5.1, whereas 5.2 dis-
cusses the future work that will be done to improve the quality of the
research.

5.1 Conclusions and Limitations

By looking at the results obtained it is clear that, in terms of algorithm
latency, at the current project status it is not possible to use this system
for a real-time application. The result obtained Latencyoverall = 1.6s is
far away from the desirable latency that a real time system should have

1

FRdesired
=

1

30FPS
, hence Latencydesired ⇡ 33ms, where FR stands for

frame rate.
Figure 4.8 depicts the flow as well as the latency associated to each
module.
It comes out that the SW implemented blocks are not allowed in this
design since their latency drastically decreases the system’s perfor-
mances.
However, by focusing the attention on the HW processed still a long
latency comes out, in particular for the Assign Orientation module, the
scale-space construction module and the homography evaluator.
In the future, a pipelined version of the whole algorithm has to be im-
plemented, therefore the system’s throughput will address the prob-
lems related to the real-time processing for the system target, but keep-
ing a short latency as well to let the design be useful for the rear-
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view generation purpose. Problems grow up when a shorter latency
is needed in critical applications, such as aerospace. In that case more
improvements are needed to adopt the algorithm proposed for those
applications.
In the car case, despite the latency can not allow steady stream, it is
enough short to avoid accidents and safety problems.

5.2 Future Work

First, the work will be completed by implementing the last blocks
missed in the algorithm: D’ generation, which should be just an FSM
that controls 2D convolution modules, as described in Section 3.2.2 of
chapter 3, the matching module and the build descriptors module
More parallelism will be added for the scale-space construction to fur-
ther speed-up the performances. Besides parallelizing for multiple
pixels and multiple scales, each pixel will be parallelized: kernel_size
operations will be performed in less then kernel_size clock cycles. In
this case, a pipelining overhead is expected when the parallelism grade
is bigger then kernel_size that is being evaluate.
A ping-pong buffer for the sckratchpad SRAM will be implemented in
order to by-pass the DRAM memory accesses [22].
This will lead to performances improvement both for the scale-space
construction and for the Assign Orientation module that spend a lot
of time bringing data from a memory to the other one. Further the
atan module could be exploited to avoid post processing on orienta-
tion evaluation, due to its granularity.
Moreover, since the RANSAC algorithm has still a long critical path, it
will be speeded-up by heavily pipelining the units inside the module.
It will be also parallelized by reducing the number of iterations, such

that Nnew =
N

p
, where Nnew is the number of iterations after the paral-

lelization and p is the parallelism grade.
Further, before the scale-space construction, the image will be inter-
polated, by increasing the image size by a factor 2 before the filtering
process, i.e. the robustness will be increased and in turn the final result
will enhance [7].
Moving Direct Linear Transform (DLT) and alpha blending algorithms
will be developed for removing local problems of the stitched image,
such as parallax [18].
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A physical synthesis will be done to figure out the interconnections
contribute and extract more accurate results.
The final ASIC result will be benchmarked against a Convolutional
Neural Network (CNN) version of the same algorithm.
At the end of the research the system will be then mapped on coarse
grain reconfigurable building blocks called SiLago blocks [23].



Appendix A

Unnecessary Appended Material

Listing A.1: Example of a script used for synthesis
set designer "Farina Marco"
set company "KTH"
set SynopsysHome "/afs/kth.se/pkg/vol/contrib/ict/nveg/

pkg/vol2/synopsys/syn_M-2016.12"
set outfname "RANSAC"
set version "3.31"
####### Set Directory #########
set SYNDIR ../EXE
set OUTDIR ../OUTPUT
set SYNDB ../EXE
set RPTDIR ../REPORTS
######Enviroment############
define_design_lib work -path $SYNDIR/work

set write_name_nets_same_as_ports "true"

#set sdc_write_unambiguous_names false
######Libary#################
# Minimal .synopsys_dc.setup file
set search_path "$search_path /mnt/storage/stathis/

Documents/silago/Libs/tcbn40lpbwp_120b/FrontEnd/
tcbn40lpbwp_120b /afs/kth.se/pkg/vol/contrib/ict/nveg
/pkg/vol2/synopsys/syn_M-2016.12/libraries/syn"

set synlib "/afs/kth.se/pkg/vol/contrib/ict/nveg/pkg/
vol2/synopsys/syn_M-2016.12/libraries/syn/
dw_foundation.sldb"
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set target_library tcbn40lpbwptc.db
set link_path "$search_path"
set synthetic_library "$synthetic_library $synlib /afs/

kth.se/pkg/vol/contrib/ict/nveg/pkg/vol2/synopsys/
syn_M-2016.12/libraries/syn/standard.sldb"

set link_library "* $target_library $synthetic_library"

define_design_lib WORK -path ./SYN/WORK

set_clock_gating_style -sequential_cell latch

##
analyze -library WORK -format vhdl {/afs/kth.se/home/m/f

/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
misc.vhd}

analyze -library WORK -format vhdl {/afs/kth.se/home/m/f
/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
myPackage.vhd}

analyze -library WORK -format vhdl {/afs/kth.se/home/m/f
/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
lfsr.vhd}

analyze -library WORK -format vhdl {/afs/kth.se/home/m/f
/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
Rand_gen.vhd}

analyze -library WORK -format vhdl {/afs/kth.se/home/m/f
/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
CU_EvDist.vhd}

analyze -library WORK -format vhdl {/afs/kth.se/home/m/f
/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
CU_QRfact.vhd}

analyze -library WORK -format vhdl {/afs/kth.se/home/m/f
/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
CU_SVD.vhd}

###analyze -library WORK -format verilog {/afs/kth.se/
home/m/f/mfarina/rear_view_system_new/synth/RANSAC/
SOURCE/DW02_prod_sum1.v}

###analyze -library WORK -format verilog {/afs/kth.se/
home/m/f/mfarina/rear_view_system_new/synth/RANSAC/
SOURCE/DW_div.v}

#analyze -library WORK -format verilog {/afs/kth.se/home
/m/f/mfarina/rear_view_system_new/synth/RANSAC/SOURCE
/DW_div_pipe.v}
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#analyze -library WORK -format verilog {/afs/kth.se/home
/m/f/mfarina/rear_view_system_new/synth/RANSAC/SOURCE
/DW_sqrt.v}

#analyze -library WORK -format verilog {/afs/kth.se/home
/m/f/mfarina/rear_view_system_new/synth/RANSAC/SOURCE
/DW_sqrt_pipe.v}

analyze -library WORK -format vhdl {/afs/kth.se/home/m/f
/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
DP_SVD.vhd}

analyze -library WORK -format vhdl {/afs/kth.se/home/m/f
/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
RANSAC_ctrl.vhd}

analyze -library WORK -format vhdl {/afs/kth.se/home/m/f
/mfarina/rear_view_system_new/synth/RANSAC/SOURCE/
RANSAC.vhd}

elaborate RANSAC -architecture BEHAVIOUR -library WORK
set_wire_load_mode top
set_wire_load_model -name ZeroWireload
set_operating_conditions NCCOM
create_clock -name "clock" -period 5 -waveform {0 2.5} {

clock}
set_false_path -from [get_port rst_n]
compile -map_effort high
write -hierarchy -format ddc -output /home/m/f/mfarina/

rear_view_system_new/synth/RANSAC/RANSAC.dcc
write -hierarchy -format verilog -output ./RANSAC.v
report_constrains > ./REPORTS/constraint_RANSAC.rep
report_cell > ./REPORTS/cell_RANSAC.rep
report_area > ./REPORTS/area_RANSAC.rep
report_timing > ./REPORTS/timing_RANSAC.rep
report_power -analysis_effort low > ./REPORTS/

power_RANSAC.rep
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