
POLITECNICO DI TORINO
Corso di Laurea in Ingegneria Informatica

Tesi di Laurea Magistrale

Reliability Issues among Android
Components: Analysis, Testing and

Solutions

Relatori
prof. Antonio Lioy
prof. Ugo Buy

Vincenzo Chiaramida

Anno accademico 2017-2018

To my family, for always
believing in me,
To my dearest and
beloved friends, for
supporting me even in
the darkest moments,
Thank you.

Summary

Android is the most widespread mobile operating system in the world. Introduced
by Google in 2008, it has been adopted by several companies to power their devices,
including smartphones, tablets and wearable objects.

As an open source project, the Android source code is publicly available for
download, allowing everyone to explore and study its working mechanisms. How-
ever, the enormous diffusion and the availability of this operating system have made
Android subject to a very wide range of different attack vectors, that negatively af-
fected the user experience under several aspects. The reliability is one of the aspects
of the operating system that have been compromised most frequently, through the
exploitation of various methodologies. This has lead Google to focus on the improv-
ing of specific components and modules at every new released version of Android.
Nowadays, most of the attacks that once represented serious threats have been com-
pletely neutralised. Nonetheless, the perfectly protected operating system does not
exist.
In our research, we focused on the last stable version of Android, nicknamed Android
Oreo. We studied various components of Android applications and their interaction
principles, and we tried to expose some potential design and implementation vul-
nerabilities that could affect the reliability and security of this operating system.

We first studied the elements of novelty that Android Oreo brought with respect
to its previous version. This lead us to the uncover of a design flaw affecting the
interactions among applications and specific components, called foreground services.
Given the systematic presence of a pattern found in those applications subject to this
flaw, we decided to build and implement a tool for the specific purpose of labelling
input applications as vulnerable or safe. We then proceeded with the evaluation of
the obtained classification results through some tests performed both on an emulated
and a real device. The great majority of the tests confirmed the labels assigned by
the tool, demonstrating how all the most popular Android applications are affected
by this issue, including system applications. For this reason, we decided to report our
findings to the Android Security Team, through the Google IssueTracker platform.

Next, our research focused on the feasibility of a potential attack that tries to
exploit the foreground services flaw. This lead us to the discovery of two additional
issues affecting two specific Java classes that are found in Android, named Context
and ClassLoader. We demonstrated how the exploitation of some features of these
classes can represent two different but equivalent ways to implement a real life attack
against those vulnerable applications.

We provided some ideas and suggestions that could mitigate and fix the exposed

iv

problem, and we realised how the next version of Android, whose code name is
still unreleased at the time of writing, is actually moving toward the solution of the
foreground service flaw. Finally, we briefly described another result of our researches
in the field of class loaders, that could represent the starting point for future works.

v

Acknowledgements

I want to thank my committee: Prof. Buy, Prof. Gjomemo and Prof. Lioy for their
time, attention and interest.
Beside my committee, I would like to thank my advisors, Prof. Buy and Prof. Lioy,
whose dedication, enthusiasm and knowledge have always helped me during the
making of this work.

vi

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Goal of this thesis . 1

1.2 Deliverables . 1

1.3 Research environment . 1

1.4 Road map . 2

2 Background 3

2.1 Basic principles . 3

2.1.1 The callback mechanism . 3

2.1.2 API Levels . 4

2.1.3 The proxy pattern . 4

2.1.4 Signature and permissions . 6

2.2 Android applications . 7

2.2.1 Activities and tasks . 7

2.2.2 Broadcast Receivers . 8

2.2.3 Services . 9

2.2.4 Content providers . 9

2.2.5 Identify an application . 10

2.3 Applications interaction . 11

2.3.1 Intents . 11

2.3.2 Handlers and messages . 12

2.3.3 Binder . 12

2.4 Services . 13

2.4.1 Started and bound services . 13

vii

2.4.2 IntentServices . 14

2.4.3 Foreground and Background Services 15

2.4.4 Changes in Android Oreo . 16

3 Evolution of security mechanisms in Android 17

3.1 Android threats . 17

3.1.1 Intent hijacking . 18

3.1.2 User interface attacks . 20

3.1.3 Callback mechanism failures 22

3.1.4 Bluetooth based attacks . 22

3.2 Android security mechanisms . 23

3.2.1 Google Bouncer . 23

3.2.2 Implicit intents deprecation 24

3.2.3 API methods restrictions . 24

3.2.4 Overlays limitations . 25

4 Vulnerability Description 27

4.1 A new design choice . 27

4.2 Technical details . 28

5 Automatic Detection and Evaluation Tool 31

5.1 Aim of the tool . 31

5.2 Reasons to use the tool . 31

5.3 Logical description . 32

5.4 Limitations . 33

5.5 Developer Manual . 33

5.5.1 Reversing the apk . 34

5.5.2 Manifest fetcher . 34

5.5.3 Source-sink search . 36

5.5.4 Automatic intent sender . 41

5.6 User Manual . 43

5.7 Results . 45

5.7.1 Third party applications . 45

5.7.2 System applications . 47

5.7.3 Consequences on Phone app 48

viii

6 Real implementation cases 49

6.1 Using explicit intents . 50

6.1.1 Introduction to Reflection API 50

6.1.2 How class objects are retrieved 51

6.1.3 Exploiting class loaders . 52

6.1.4 How Context objects are retrieved 53

6.1.5 Creating the explicit intent . 54

6.2 Using implicit intents . 54

6.2.1 Faking the Context . 55

7 Proposed solutions 57

7.1 General considerations . 57

7.1.1 New onStartCommand() prototype 57

7.1.2 Leveraging the permissions system 58

7.1.3 Final considerations . 58

8 Conclusions 60

8.1 Fix in Android P . 60

8.2 Future works . 61

8.2.1 Context faking exploitations 61

8.2.2 ClassLoaders exploitations . 61

8.3 Final considerations . 62

Bibliography 63

ix

List of Tables

2.1 Application components description 10

2.2 Service types . 15

4.1 Foreground services - Possible use cases 27

5.1 FileCursor Primitive I . 39

5.2 FileCursor Primitive II . 39

5.3 Tests results classification . 42

x

List of Figures

2.1 Proxy pattern class diagram. Adopted from [1]. 5

2.2 Activity lifecycle and callbacks. Adopted from [2]. 8

2.3 Diagram of content provider architecture. Adopted from [3]. 9

2.4 Intents can be conveniently used to start other activities. Adopted
from [4]. 12

2.5 Started and bound services lifecycles and callbacks. Adopted from [5]. 14

3.1 Activity hijacking attack. 19

3.2 Broadcast receiver hijacking attack. 20

3.3 Example of overlay UI element. The TextView stays on top of every-
thing else on the screen even when the app is closed. 21

3.4 Bluetooth protocol stack in Android. Adopted from [6]. 23

3.5 In applications targeting API level lower than 26, overlays were al-
lowed to be displayed even on top of dialogs windows. 25

3.6 For applications targeting API level 26 and higher, the behaviour has
been fixed. Every dialog window now disables any overlay element. . 25

3.7 Overlays can still be displayed on top of many applications, like the
Camera application of the emulated device. The overlay is designed
to be fullscreen with a transparent background in order to show what
it hides behind it. 26

4.1 Application A code showing the correct way how to start a foreground
service. 28

4.2 Application B code showing the correct way how to bring a service
in the foreground. 29

5.1 Example of obfuscated code extracted from application Telegram. . . 32

5.2 Tool architecture overview. 33

5.3 Service declaration in AndroidManifest.xml file of application Spotify. 35

5.4 Pseudocode describing the approach used for building the hierarchy
of a service, starting from the lowest class. 37

5.5 Class diagram of MethodDeclaration class. 38

5.6 Class diagram of MethodInvocation class. 38

xi

5.7 Class diagram of FileCursor class. 40

5.8 Pseudocode describing the approach used for the classification of a
service. 40

5.9 Output of the analysis of the exported services of application Spotify
v.8.4.48 . 44

5.10 Third party apps classification according to declared services. 46

5.11 System apps classification according to declared services. 47

6.1 Explicit intent definition for a service declared in the same application
that starts it. 49

6.2 Implicit intent definition with one action and one category. 50

6.3 Use of reflection API to invoke a method of class Handler. 52

6.4 Explicit intent creation procedure for application Whatsapp. 55

7.1 The execution flow generated by the introduction of a new dangerous
level permission never leads to the crash of the application hosting
the service. 59

xii

Chapter 1

Introduction

1.1 Goal of this thesis

Over the past years, mobile operating systems have been growing continuously and
increasingly providing services that became essential to everyone’s everyday life.
We rely on our mobile devices so much that they now represent one of the main
keepers of our personal data. For this reason, security and reliability issues affecting
mobile operating systems must be treated with the same degree of awareness and
seriousness as in any other OS. The aim of this work is to study the current state
of confidentiality, integrity and availability of the Android OS, the most widespread
mobile OS in the world, and to highlight some potential threats to these factors.
We then show how an attacker could exploit these issues and finally we propose
solutions aimed at mitigating some of the flaws found.

1.2 Deliverables

Our research identified a new vulnerability, exploitable through a Denial of Service
(DoS) attack, that is found in the whole set of tested applications. We built an
automated tool for detecting the potentially vulnerable applications, that made the
testing phase a lot more efficient, especially on a large scale. The results of these
tests have been reported to the Android Security Team through the Google Issue-
Tracker platform, and they are currently investigating the issue [7].
Moreover, this research highlighted some potential flaws concerning two special Java
classes, Context and ClassLoader, for which some practical applications are pre-
sented.

1.3 Research environment

All our research has been performed directly on the source code of the last available
stable Android release as of this writing, called Android Oreo. The main devel-
opment tool is the official Android IDE, Android Studio, while all the tests have

1

1 – Introduction

been performed both on an emulated device (a Google Pixel 2) and a real device (a
Google Pixel), both running Oreo with API levels 26 and 27.

1.4 Road map

In order to expose the results in the most accessible way, some basic Android back-
ground is described in Chapter 2, with the definition and explanation of all the
concepts used. Chapter 3 is dedicated to the current state of the art in Android
security and threat models. Chapter 4 and Chapter 5 are dedicated to the descrip-
tion of the main discovered vulnerability and our implemented tool. After that, we
present how such a vulnerability could be exploited in a real use-case, introducing
the Context and ClassLoader flaws. In Chapter 7, some proposed solutions are de-
scribed in attempt to mitigate the effects of a malicious application trying to exploit
this issue. In the final chapters an additional research about ClassLoader objects is
introduced, that could represent the starting phase of some future works, together
with some final considerations.

2

Chapter 2

Background

Android, introduced by Google in 2008, is the most widespread mobile operating
system (OS) in the world, with about the 86% of the worldwide mobile market share
[8]. The key of its diffusion is its openness to a wide variety of devices from a lot
of different companies. Moreover, it is an open source project, thus representing
a perfect choice for a research study like ours. It is based on a slightly modified
Linux kernel, and its main official programming language is Java. However recently
Google added the possibility to also use a new programming language called Kotlin
[9].

2.1 Basic principles

2.1.1 The callback mechanism

Writing an Android application never means writing a standard program, that is a
program with a main entry point of execution. Instead, the role of the developer is
to write code that satisfies specific requirements of the OS, so that the main pro-
cess, called system_process and started when the device is booted, can continuously
interact with the application through what is known as the callback mechanism.

For example, the system_process has the responsibility of handling the lifecycle
of every application, from its creation to its destruction. For this reason, it will call
special methods in the context of the application at the right time. These meth-
ods are specific to every class that represents a component within an application,
and their implementation is left to developers, that will adapt them according to
their applications purpose. Indeed, in most of the cases, these special methods are
declared as abstract, or they have a default implementation that developers must
modify.

In this sense, an Android application is deeply coupled with the OS, because
it satisfies specific design and implementation requirements that allow the sys-
tem_process to communicate and interact with it. These sets of methods that
the system_process will execute are referred to as callback methods.

3

2 – Background

2.1.2 API Levels

Every new version of Android, characterized by a unique code name, is released
with a set of modifications that directly affect the source code. These changes can
include:

• The introduction of new methods and variables, or the deletion of those con-
sidered obsolete;

• The modification of the prototype of existing methods;

• The deprecation of methods and variables that will be completely deleted in
future versions, and that are left only for backward compatibility.

The overall collection of the methods declared in every Android version repre-
sents the platform Application Programming Interface, or API. It follows that new
Android releases correspond to new API levels, that contain all the new features of
the new version. Moreover, it can happen that the API is updated within the same
version of Android. This is the reason why the name of the current version alone
is usually not enough to identify which Android API level we are referring to. For
example, Android Jelly Bean, corresponding to Android 4.0, contains three different
API levels from 16 to 18. In the same way Android 7.0, nicknamed Nougat, cor-
responds to API levels 24 and 25, while Android 6.0 (Marshmallow) only includes
API level 23 [10].

When creating an application, developers can decide the minimum API level
that they want to target. This will provide them with the correct collection of
methods available to implement their functions, as well as defining the set of devices
compatible with their application, according to the version of the OS installed. The
latest Android version, whose code name is Android Oreo, is linked to API levels 26
and 27.

2.1.3 The proxy pattern

The constant interactions among applications and system_process are at the core
of the OS. For this reason, they must rely on a strong foundation able to provide
stability, security and scalability properties. Android adopted the proxy design
pattern for this purpose. Thanks to the proxy pattern:

• Clients (applications) communicate with a centralized server, the system_process,
in a controlled way;

• The system_process can expose its functionalities that applications can access
in a transparent way;

• The sensible resources hosted by the system_process are protected.

4

2 – Background

Figure 2.1. Proxy pattern class diagram. Adopted from [1].

This is achieved with the introduction of special objects, called proxies. The key
point of this design pattern is that a proxy acts as a middleman in the communication
between clients and server, providing controls and security, and clients are not aware
of its presence because it implements and provides the same methods of the “hidden”
object, in this case the system_process.

The presence of a proxy allows the protection of special objects that the sys-
tem_process manages, called system services. These services control all the aspects
of the device, from touch screen gestures (InputManagerService) to sensors (Sys-
temSensorManager), from applications (ActivityManagerService) to external usb
devices management (UsbService), and so on. Of course, external applications can
use some of the methods that system services declare in order to exploit specific
features of the device. For this reason, every system service exposes its own API,
to which applications can access thanks to proxies object that implement it. In
Android, proxies are usually retrieved through objects called managers, and they
implement the API of the related service. A standard communication between an
application willing to access a method belonging to the API of a system service, like
the ActivityManagerService (AMS), is realised through the following steps:

1. The application obtains an ActivityManager instance through
Context.getSystemService(Context.ACTIVITY_SERVICE). The passed pa-
rameter is the constant defining the name of the AMS;

2. The application invokes one of the available method in the API of the AMS;

3. The manager forwards the request to the actual system service, that is in
execution in the context of the system_process;

4. The AMS executes the method.

This protocol ensures that the system service will be accessed only through the
corresponding manager, that can thus perform security checks and deny unautho-
rised requests. This layer of protection is not detected by an application and it

5

2 – Background

does not affect the usability of the framework. At the same time, it provides strong
reliability and scalability properties since new clients just need to retrieve a new
instance of the manager in order to access the functionalities of the desired service.

2.1.4 Signature and permissions

Signing an application

Every application is delivered to users in special archive files with the .apk extension.
These files contain all the necessary resources of the application. In order to be
publicly available for download, .apk files must be signed by developers. The signing
process is achieved through the association of every application with a certificate that
contains the public key matched by the private key owned by the rightful developer.
If an .apk is correctly signed, its developer can be identified, and the OS can easily
manage the process of applications update when new versions are available.

Permissions

One of the most crucial security mechanism in Android is represented by the permis-
sions system. Every Android application runs in its own sandbox, meaning that it
cannot normally access and make use of external features of the device (like sensors,
network connection, etc.). However, thanks to permissions, an application can over-
come this limit and increase its capabilities. For example, if an application wishes
to access the system camera to take pictures, or if it needs to read the contacts from
the SIM card, it must ask the user to have specific permissions granted.

It is clear that the process of granting a permission implies that the user trusts the
application, leading to security implications. For this reason, not all the permissions
are treated in the same way, and they are classified as:

• Normal Permissions: They are automatically granted by the system when
the application is first installed. They are considered not to have a big im-
pact on the user privacy and security [11], and so there exists no way a user
can revoke one of these permissions from an application. Examples include:
VIBRATE (allows an application to use the device vibrator), and, surprisingly,
also BLUETOOTH (allows an application to access the device Bluetooth services)
and INTERNET (allows an application to use the network);

• Dangerous Permissions: These kind of permissions must be explicitly granted
by the user, because they are considered to have security and privacy implica-
tions. For this reason, starting from API level 23 [12], developers must follow
specific implementation requirements in order to correctly prompt the user
with a dialog window asking to allow or deny the grant of most dangerous
permission their applications use. For lower API levels instead, the dialog is
shown at application install time only. Examples include CALENDAR (allows an
application to read and write calendar events), CAMERA (allows an application
to start the system camera and take pictures);

6

2 – Background

• Signature Permissions: They provide a stronger level of security with re-
spect to normal and dangerous level permissions. Indeed, these kind of per-
missions is automatically granted by the system, but only if the application
requesting the permission has the same signature of the application that de-
fined the permission. This means that if a signature level permission is defined
by a system application (like the Settings app), only applications with its same
signature can have that permission granted, thus restricting its use to system
applications only;

2.2 Android applications

An Android application consists of four main kinds of components: activities, broad-
cast receivers, services and content providers. Each is implemented with an abstract
class (called framework class) that developers must extend in order to include one
or more instances of the desired component. This also means that every component
has its own set of callbacks.

Moreover every Android application is published with a AndroidManifest.xml
file, that contains the app overview and description. The manifest contains infor-
mation about the application in general (package name, minimum targeted API,
permissions) as well as about every activity, broadcast receiver, service and content
provider that the application defines.

By default, when an app is launched, its operations are executed in its main
thread, also known as UI thread. This thread is the only one able to add, delete and
modify UI elements. For this reason, if a new thread is started by an application
(either through Thread or Runnable classes), it must not perform operations on the
UI. We shall refer to these created threads as worker threads, because their task is to
perform heavy and time consuming operations without modifying the UI. This is a
very important distinction that every Android developer should be aware of, because
if long operations are performed directly on the UI thread for a period of time longer
than 5 seconds, the result is the killing of the application with the Application Not
Responding (ANR) error message dialog.

2.2.1 Activities and tasks

Activities represent single actions that users can perform on the device. They man-
age the user interface (UI) and handle the interactions through event listeners. Start-
ing from API level 11, Android introduced a new feature that allows the split of the
display into multiple sections, called fragments. This means that an activity can
contain one or more fragments, and thus it can display more than one screen at
time.
As Figure 2.2 shows, the lifecycle of an Activity is composed of 7 different callbacks,
that correspond to 7 different activity states.

When users perform some operations, multiple activities are generally involved.
Android defines the concept of task as the collection of subsequents activities that

7

2 – Background

Figure 2.2. Activity lifecycle and callbacks. Adopted from [2].

users interact with. Within a task, activities are organized in a stack, denoted as
back stack, with the most recently used activity at the top. Users can navigate
through the stack by pressing the back button of the device, that pops the first
activity from the top of the stack and resumes the one just below it.

2.2.2 Broadcast Receivers

A broadcast receiver is an application component aimed to listen and react to broad-
cast messages. These kind of messages are Intent objects that are sent to the whole
system. Android widely relies on broadcast receivers to achieve InterProcess Com-
munication (IPC), because they conveniently implement the publish-subscribe design
pattern, providing low coupling between components and good scalability properties.

8

2 – Background

A receiver can filter the messages it wishes to receive, and can even require spe-
cific permissions for both sending and receiving broadcasts. The main callback is
the method
BroadcastReceiver.onReceive(Intent i, Context c), that is called by the sys-
tem_process every time a broadcast message matching the receiver filter is sent.

2.2.3 Services

The next type of components are services. Unlike activities, services do not provide a
UI, and are usually executed in the background for long-lasting operations. A very
common example is a music player application, that keeps doing its job (playing
music) even in the background.

Due to their capabilities, Services are widely exploited for several different pur-
poses, and they represent the main target of the flaws uncovered by our work. We
will analyse them in detail in the following sections.

2.2.4 Content providers

The fourth kind of component of an Android application is represented by content
providers. These components are a very useful abstraction of the data stored and
used by an application. Indeed, they can be accessed and queried in a similar way
to SQL databases, allowing applications to process and use data published by the
application hosting the Provider.

Figure 2.3. Diagram of content provider architecture. Adopted from [3].

9

2 – Background

Table 2.1. Application components description

Component Name Role
Activity A single action a user can per-

form. They can contain sub-
displays, called fragments, and
they are organized in tasks.

Broadcast Receiver A listener to broadcasts sent to
the whole system. They can filter
the intents to be received.

Service Used for long-term operations,
with no UI. They can run in back-
ground.

Content Provider A database-like object that appli-
cations can query to retrieve data.

2.2.5 Identify an application

The ability of identifying an application and a specific component within it is crucial
in Android in order to achieve IPC.

UID and PID

When an application is launched, it is executed in its own process, identified by the
Unix Process Identifier (PID). Moreover, every Android application runs under a
specific user ID, or UID, denoting the application that owns the process in which
it is being executed. Indeed, an application can specify in its manifest in which
process(es) it wants to run: if more than one process is needed, different PIDs will
be used, but the UID will stay the same.

For example, the Phone application, one of the system apps, runs under the
pre-defined UID denoted by the constant Process.PHONE_UID, whose integer value
is 1001. However, the PID that will be assigned to the com.android.phone process
will vary at every new execution of the application.

Despite being precise and efficient, the use of UIDs and PIDs to identify a specific
application is not so practical, and higher level approaches are preferred in most of
the cases.

Package and context

Every application is denoted by a unique package name, a string that is usually de-
rived from the company that published the application. Through the package name,
objects of class Context can be retrieved. These objects hold a lot of relevant in-
formation about an application, including: package name, UID, location of the .apk
file of the application on the device, UI thread data, etc. The context describes the
environment in which an application runs, and it represents a convenient alternative
to process and user identifiers in order to uniquely refer to a specific application.

10

2 – Background

2.3 Applications interaction

2.3.1 Intents

The first mechanism provided by Android to achieve IPC makes use of intents. Ob-
jects of this class represent the simplest way that an application has to communicate
with another component, either within the same application or in external ones. In
order to be correctly delivered, intents must be created so that they target the right
component in the right application. To achieve this, developers can decide to use
two different kinds of intents:

• Explicit intents: These kind of intents are created by providing the cou-
ple {package, class}. They are the most secure type of intents because they
uniquely identify the target component thanks to the provided package and
class. For this reason, no ambiguities can arise in the resolution of the receiver
of the intent. They are generally used to target components within the same
application, because of the availability of the class names;

• Implicit intents: Alternatively, intents can be created by providing specific
values that will make the OS identify the target component through a mecha-
nism known as intent resolution process. These values are labelled as actions,
categories, data, type and extras. Every component of an application can de-
clare in the manifest its own intent filter, that contains the values that an
intent must hold in order to target that component. When an implicit intent
is sent, the system_process will compare its fields to the ones of every regis-
tered intent filter. If an exact match is found, the OS will immediately deliver
the intent to the matching component, otherwise the user will be prompted
with a dialog to choose one among a list of applications able to handle the in-
tent. Depending on the intent aim, its fields can be populated with pre-defined
constant values (like the Intent.ACTION_SEND constant for intents targeting
components capable of sharing some data), or with user-defined ones.

Regardless of the type of intent used, the extras field can always be exploited
to deliver to the target any kind of data. This field is populated with a key-value
mechanism, where the key is a simple string, and the value can be basically every
kind of object. In this way the receiving component can extract data given the
knowledge of the key. Despite being very easy to implement, the use of intents for
data exchange between applications is not the most convenient way to achieve IPC,
even if it is still widely used.

Intents are exploited in a wide variety of API methods, but the most commonly
used are:

• startActivity(Intent i) and startActivityForResult(Intent i, int id):
Thanks to these methods, a new activity can be started. The latter method
is used if the activity starting the new one is expecting a result back;

11

2 – Background

Figure 2.4. Intents can be conveniently used to start other activities. Adopted from [4].

• sendBroadcast(Intent i): Through this method, the system will call the
onReceive() callback of all the broadcast receivers whose intent filter matches
the values of the sent intent;

• startService(Intent i) and
bindService(Intent i, ServiceConnection sc, int flags): These meth-
ods are used to start and establish a connection with the service component
that the intent targets.

2.3.2 Handlers and messages

Objects of class handler are specific components with the only purpose of manag-
ing the exchange of messages between applications. An application can instantiate
its own message handler by extending the class Handler and overriding the call-
back handleMessage(Message msg), that is executed every time a message is sent
through the methods Handler.sendMessage(Message msg) or
Handler.sendMessageDelayed(Message msg, long delayMillis). The messages
are small objects with various fields that can be properly populated to pass various
kind of information from applications to applications. Moreover, handlers organ-
ise messages in a queue system, ensuring that every sent message will be received
and handled. The standard implementation of handleMessage() contains a switch
statement that evaluates the what field of the received message, in order to execute
the right method according to its value.

2.3.3 Binder

The final and most complex IPC mechanism used in Android is represented by the
class Binder and the related interface IBinder. The use of binder objects allows an
application to call methods of remote components as if they were declared locally.
For this reason, binders are widely used to realise the proxy pattern in the commu-
nication with the system_process and the system services. Moreover, an external

12

2 – Background

application that defines a bound service can decide to expose its own custom API
in order to allow clients to execute its methods. This is achieved either through the
direct implementation of the methods transact() and the corresponding callback
onTransact(), or through the exploitation of a specific language called AIDL (An-
droid Interface Definition Language), that allows a more immediate implementation
of the API that the service wants to expose.

2.4 Services

As Table 2.1 states, services are a kind of components without UI aimed to perform
time consuming operations. Thanks to intents, services can be started from external
applications, and IPC can be conveniently achieved through them. According to
their purpose, there are different kind of implementation of a service.

2.4.1 Started and bound services

When an application is launched, the services that it declares are not automatically
started. In order to put a service in the running state, an application can call the
method
Context.startService(Intent i). The parameter, an intent object, can be either
implicit or explicit, but explicit intents are usually preferred to avoid starting a
different service with respect to the requested one. If a service is started through
this mechanism, it is a started service.

This is the most basic type of service, that does not allow external applications
to access its functionalities and that keeps running in the background as long as the
process (and thus the application) holding it is kept alive. Otherwise, a client has the
capability to programmatically terminate the execution of a service in another appli-
cation through the method Context.stopService(Intent i), where the intent pa-
rameter targets the desired service. The call to Context.startService(Intent i)
by an external application is matched by the callback methods Service.onCreate()
and
Service.onStartCommand(Intent i, int flags, int startId). Every call to
startService() corresponds to a call to onStartCommand(), while onCreate() is
called only after the first time startService() is executed.

The next type of services are bound services. If an external application binds to
a service, it establishes a client-server relationship with it, with the server being the
application where the service resides. In order to execute requests from a client, the
server can expose an API through the special language called AIDL. This is achieved
through the method Context.bindService(Intent i, ServiceConnection sc, int flags).
The intent parameter has the same meaning as in startService(), while the two
new parameters are respectively the object where the API will be accessible and a
combination of flags. One difference with respect to started services is that, starting
from Android Lollipop (API level 21), the intent used to bind to a service must be
explicit.
A bound service will be kept alive as long as there is at least one client bound to it.

13

2 – Background

Figure 2.5. Started and bound services lifecycles and callbacks. Adopted from [5].

The call to Context.bindService(Intent i, ServiceConnection sc, int k) is
matched by the callback method Service.onBind(Intent i), executed every time
a client calls bindService().

2.4.2 IntentServices

One particular type of service is represented by the IntentService class. The pre-
vious considerations about the UI and worker threads are particularly important
when services are involved. Indeed, services are designed to perform long lasting
operations, but by default they are executed in the UI thread of the application
hosting them. This means that in the majority of cases, services need to create a
new worker thread as soon as they are started, to avoid blocking the UI thread and
receiving the ANR error message.

The IntentService class solves this problem, by directly providing a service with
a pre-defined worker thread, so that every operation will be safely executed without
interactions with the UI. In order to use this type of service, developers must extend

14

2 – Background

the IntentService class and override the specific callback method onHandleIntent(Intent i).
This callback works just as onStartCommand(), being executed at every call to
startService() or startForegroundService(). However, one major difference
with standard services is that intent services do not provide any type of concur-
rency mechanisms, and every call to
onHandleIntent(Intent i) is thus executed sequentially.

2.4.3 Foreground and Background Services

A service can be declared to run in the foreground if it is executing some operations
known to the user. For example, a service playing a song is a foreground service.
This kind of services are required to display a notification in the the status bar of
the device, to inform the user of the action they are performing. On the contrary, a
service is running in the background if the user is not aware of its operations. For
example, a service that is updating a resource that will be used by the application
later on, possibly downloading it from the network, will be a background service.
This classification becomes relevant when the system_process is in a low memory
situation and it needs more CPU resources to perform operations. In this case,
background services will be the first candidates to be killed by the system.

Started and bound conditions are not mutual exclusive: a service can be first
started and then bound by a client. Vice versa, if a client first binds to a service, it
will also start it if it was not already running. Moreover, a started Service can either
be running in the foreground or in the background, with bound services immediately
brought to the foreground as soon as a client executes one of their API call. Table
2.2 summarises these concepts.

Table 2.2. Service types

Service Type Description
Started Default service type. No API ex-

posed. Runs as long as its process
is kept alive.

Bound Client-Server model for IPC.
Runs as long as at least one client
is bound.

IntentService Standard service with a pre-
defined worker thread. No con-
currency.

(Started) Foreground For actions noticeable by the user.
Must provide a notification in the
status bar.

(Started) Background For actions not noticeable by the
user. Can be killed by the system
if it needs CPU resources.

15

2 – Background

2.4.4 Changes in Android Oreo

Android Oreo is the last stable version of Android, released in Semptember 2017 [13].
Like every new release, it brought some new features, and some of them are directly
related to services [14]. The most interesting element of novelty is the method
Context.startForegroundService(Intent i). It works just as the previously
mentioned Context.startService(Intent i) method, but it has the ability to
demand that the started component will be a foreground service, independently
from the state of the application hosting the service. This means that the user has
now a way of telling the system that the service she wants to start is relevant to
her, and it should not be killed if the system is low on resources.

16

Chapter 3

Evolution of security mechanisms in
Android

Over the past years, the growth of the capabilities of the Android operating system
has always been followed by a constant evolution of the threats to which mobile
devices are exposed. For this reason, every new Android release is aimed at the
complete or partial solution of the most serious security issues that previous versions
suffered from. We now introduce some of the most famous and relevant attack
vectors of the last years, and we will analyse which techniques have been adopted
by the Android developing team in order to mitigate their effects.

3.1 Android threats

Malwares in Android are usually deployed and spread in form of malicious applica-
tions. Users have two main ways of downloading and installing a new application
on their devices:

• From the official application store, called Google Play Store;

• Directly downloading the .apk file of the desired application from external
sources like websites or even other applications.

Of course, the direct download of the .apk file from external sources is highly
discouraged, as there is no verification on the authors and publishers of the appli-
cation. However, several malicious apps have been found in the Google Play Store,
disguising themselves as benevolent even for long periods of time [15].

Whatever the source is, a malicious application can execute a wide range of
attacks exploiting specific features of Android in unconventional ways: phishing,
man in the middle (MITM) attacks, privilege escalation attacks, denial of service
(DoS), adware, ransomware, etc.

17

3 – Evolution of security mechanisms in Android

3.1.1 Intent hijacking

We already highlighted how intents represent a very convenient way to achieve IPC.
However, implicit intents have been one of the most exploited Android feature since
their introduction, through a kind of attack known as intent hijacking. The under-
neath working principle is relatively simple, and it is based on two main factors:

1. The possibility for a malicious application to declare the same intent filter of
another application component at its own will;

2. The absence of controls on the received intents.

The result is that a component of a malicious application can be activated in
place of another. Since intents can carry personal data, the security implications
have often been very serious. Moreover, since intents are used to communicate
with various application components, intent hijacking attacks can be divided into
activities, broadcast receivers and services hijacking attacks.

Activity hijacking

When the intent filter of a benign activity is copied by a malicious application, the
starting of that activity through the API method startActivity(Intent i) or
startActivityForResult(Intent i, int requestCode) can result in the unde-
sired invocation of the malicious activity. This is usually achieved by setting the
attribute android:priority of the intent filter of the malicious activity to a high value,
so that the malicious application will be opened instead of the benign one. Once
an application can intercept implicit intents in this way, it usually clones the UI of
the benign application, so that the user is not aware of the hijacking. Moreover,
since activities started in this way can also extract data that the intents carry in
their extras field, the malicious activity can manipulate such data in every possible
way (like sending personal information to a malicious server to which the malicious
application is silently connected). Through activity hijacking, attacks like phishing,
MITM and DoS can easily be realised.

One immediate way that users have to detect the hijacking of an activity is to
look at the list of recent open applications, because the malicious activity will still be
part of a different application with respect to the one the user is expecting. However,
an application can decide to exclude itself from the list of recent apps through the
attribute android:excludeFromRecents set to true in the Manifest. This technique
was widely adopted by several application performing this kind of attacks [16].

Apart from avoiding the use of implicit intents, it is responsibility of the de-
velopers to avoid using them to send sensible information and to perform the right
controls on the received intents (in case of MITM attacks, where a malicious activity
can impersonate another activity and send corrupted intents on its behalf).

18

3 – Evolution of security mechanisms in Android

Figure 3.1. Activity hijacking attack.

Broadcast receiver hijacking

The hijacking of broadcast receivers can be even easier to realise. Indeed, a mali-
cious application only needs to register its broadcast receiver, either statically in the
Manifest or dynamically through the API method
registerReceiver(BroadcastReceiver receiver, IntentFilter filter), so that
its intent filter matches the type of broadcast intents that will be sent. In this way,
every time a broadcast intent is sent, the onReceive(Context c, Intent i) call-
back of the malicious broadcast receiver will be executed, performing every kind of
operation that can harm the device.

One way developers have to protect against the hijacking of broadcast receivers is
to restrict the use of broadcast messages only to components within their application,
by defining the broadcast receiver as local. Otherwise, they can decide to use a
feature of Android called ordered broadcasts. This kind of messages is sent with
a number that represents the maximum number of broadcast receivers that will
process the intent. The order in which a receivers will process this kind of broadcasts
is determined by the android:priority attribute of the intent filter of each registered
receiver.

Services hijacking

The hijacking of services is probably the most dangerous type of intent hijacking
attacks. The reason is that, except for those services that modify the UI or the
user experience in general (like playing a song), users cannot know which service
they have started through an implicit intent. This means that if a malicious service
is started instead of a benign one, it can perform its operations indefinitely in the
background. Additionally, if the malicious application is granted specific permissions

19

3 – Evolution of security mechanisms in Android

Figure 3.2. Broadcast receiver hijacking attack.

(like the normal level INTERNET permission), the service is left free to execute its
task in an uncontrolled way, and it can become difficult to detect and stop.

3.1.2 User interface attacks

This kind of attack was usually exploited as the second step of an activity hijack-
ing attack. As we already mentioned, once a malicious activity is loaded instead
of a rightful one, it usually clones the UI of the benign application in order not to
be detected by the user. However, this process implies the ability to know which
application and which activities are being hijacked, in order to adapt the UI de-
sign accordingly. Since this ability has been restricted to only system applications
starting from Android Lollipop (API level 21), UI hijacking attacks are usually de-
veloped to target just one application. In other terms, a malicious application tries
to copy every aspect of a legitimate app, starting from the icon and the name (that
cannot be exactly the same), hoping to be downloaded instead of the original one.
This kind of attack can harm the most naive and forgetful users, and is usually trig-
gered through social engineering means, that lead to the installation of undesired
applications.

Cloak and Dagger

While UI hijacking is a relatively old and simple category of attacks, nowadays
being replaced by more sophisticated ones, a totally different mention has to be

20

3 – Evolution of security mechanisms in Android

Figure 3.3. Example of overlay UI element. The TextView stays on top of every-
thing else on the screen even when the app is closed.

done for a set of attacks called Cloak and Dagger, deployed in May 2017 [17]. This
new attack vector is based on a vulnerability concerning applications downloaded
from the Play Store and requesting the special permission SYSTEM_ALERT_WINDOW.
If an application is granted this SIGNATURE level permission, it has the ability of
drawing permanent UI elements on top of every other applications, that are displayed
even if the application defining them is closed. The surprising element is that this
permission, being requested by a lot of famous applications, is automatically granted
if the application is downloaded from the Google Play Store.

Cloak and Dagger researchers found that the overlay elements could be designed
to occupy the full screen of the device, and they could even choose to intercept
or ignore touch events. In this way, users could be tricked into clicking specific
portions of the screen covered by an overlay, while they were actually performing
the chain of touches needed, for example, to grant all the permissions to the malicious
application. Despite being based on a relatively easy mechanism, this kind of attack
gave a whole new relevance to UI focused attacks, because of the huge variety of
dangerous behaviours that could be achieved by convincing the users to perform
just few clicks.

21

3 – Evolution of security mechanisms in Android

3.1.3 Callback mechanism failures

Another category of attacks involves the system_process and its interactions with
third party applications. We highlighted how system services, managed by the
system_process, expose their own APIs so that external applications can access their
methods. However, this design must be carefully implemented, because it makes the
system_process work with inputs arbitrarily chosen by an external application.

Specifically, in 2016 researchers found that some of the methods belonging to sev-
eral system services, like the ActivityManagerService, the LocationManagerService,
and the PackageManagerService, were poorly implemented, because they accepted
as parameters objects on which the system_process would call specific methods
[18]. This mechanism has the same working principle of the callback mechanism,
except that the callbacks method are executed on objects instantiated by external
applications.

This means that by properly designing the parameters, an attacker could decide
to execute arbitrary code in the context of the system_process. Moreover, some
of these vulnerable methods involved synchronized statements and blocks, so that
the system_process could be put in a frozen state by denying the access to specific
resources to other processes. Another point of attack made use of arbitrary code
that explicitly raised exceptions that could not be handled by the try-catch blocks
of the system_process.

All these failures of the main Android process could lead to the soft reboot of
the device, resulting in DoS attacks that made devices impossible to use.

3.1.4 Bluetooth based attacks

The Android OS, being built on a Linux kernel, was not excluded from a list of
several systems found to be vulnerable to a wide variety of attacks involving the
Bluetooth protocol stack. In 2017, the BlueBorne attack vector was deployed by
Armis Labs, that demonstrated how the Bluetooth protocol implementation was full
of vulnerabilities like stack and heap overflows and integer underflows [19].

These vulnerabilities were present basically at every level of the protocol stack,
resulting in major security issues. The main reason is the complex structure of the
protocol, that is composed of a lot of different basic blocks in every layer, resulting
in a very high fragmentation level. The researches demonstrated how an attacker
could gain control of a Bluetooth connected device just by being physically close
to it for a small amount of time (about 10 seconds). Moreover, the compromised
device could also represent the starting node for the diffusion of malwares of any
kind.

Given the amount of devices subject to these vulnerabilities, that included smart-
phones, laptops, IoT devices (like vocal assistants, smart houses etc.) and many
more, this Bluetooth based attack drew the attention of many famous companies,
like Google, Apple, Microsoft, Amazon.

22

3 – Evolution of security mechanisms in Android

Figure 3.4. Bluetooth protocol stack in Android. Adopted from [6].

3.2 Android security mechanisms

The described attacks represent a high-level overview of the main categories of vul-
nerabilities that Android has been subject to. Some of them are still exploitable,
especially in devices running older versions of the OS, while others have been com-
pletely fixed. For this reason, the first way users have to defend against these threats
is to keep their devices constantly updated to the latest Android release.

However, Google has adopted a wide set of techniques aimed not only to miti-
gate the specific issues highlighted by some of these attacks, but also to solve the
underneath flaws that affect its operating system.

3.2.1 Google Bouncer

With the explosion of the number of malicious applications found on the Play Store,
one of the first security mechanisms adopted by Google was the Google Bouncer, a
new layer of security “[...] which provides automated scanning of Android Market
for potentially malicious software without disrupting the user experience [...] ” [20].
Bouncer was introduced in February 2012, with the aim of drastically reduce the
number of malicious applications that silently resided on the Play Store. It uses
a combination of static analysis techniques, emulated software execution and data
collection techniques in order to identify potentially malicious software and exclude

23

3 – Evolution of security mechanisms in Android

it from the store.

Theoretically, the use of a centralized control system in the context of the Play
Store is a good approach. However, Google Bouncer was fingerprinted quite rapidly
from researchers [21], so that its working details were made public. Among them,
we now know that the Bouncer:

• Runs the applications it tests in an emulated device based on the QEMU
emulator;

• Analyses applications for 5 minutes, and if it does not detect any malicious
behaviour in this amount of time, the application is labelled as benign.

Of course, the disclosure of such details about the main security mechanism of
the Play Store is very dangerous, because attackers can develop their software in
such a way that every security control can be bypassed, and still be able to publish
their application on the store.

3.2.2 Implicit intents deprecation

Given the amount of hijacking techniques that could be realised through the ex-
ploitation of implicit intents, the use of this kind of objects is being discouraged
more and more in every new Android release. For example, starting from Android
Lollipop (API level 21), the execution of the method
Context.bindService(Intent i, ServiceConnection sc, int flags) with an
implicit intent as parameter is forbidden [22].

Moreover, developers should pay attention to the attributes android:exported and
android:permission that can be set in the Manifest of their applications, in order
to restrict in the most precise way the access to activities, broadcast receivers and
services from external applications.

3.2.3 API methods restrictions

Another line of protection adopted by Android is represented by the reduction and
limitations of the results returned by specific API methods. For example, we no-
ticed how intent hijacking attacks strongly relied on the ability of dynamically un-
derstanding which processes were in execution on the attacked devices, in order to
adapt their malicious behaviours accordingly. For these reasons, several methods
belonging to system services APIs, ActivityManagerService in particular, have been
radically changed in order to return results that do not have security implications
anymore. Examples include:

• getRecentTasks (int maxNum, int flags): this method used to return the
list of recent tasks that were running in the device. Starting from Android
Lollipop (API level 21), this method was deprecated and it now returns only
the recent tasks relative to the calling application, and not to the whole system
[23];

24

3 – Evolution of security mechanisms in Android

Figure 3.5. In applications
targeting API level lower than
26, overlays were allowed to
be displayed even on top of
dialogs windows.

Figure 3.6. For applications
targeting API level 26 and
higher, the behaviour has
been fixed. Every dialog win-
dow now disables any overlay
element.

• getRunningAppProcess(): this method used to return the list of all the run-
ning processes in a device, directly reading it from the proc/ folder. However,
due to the security consequences it implied, it now requires the SIGNATURE
level permission INTERACT_ACROSS_USERS_FULL, that is only granted to sys-
tem applications [24];

• getRunningServices(int maxNum): this method used to return the list of
all the services in execution, whose size is limited by the maxNum parameter.
Starting from Android Oreo (API level 26), this method was deprecated, and it
will only return the list of running services declared by the calling application
[25].

3.2.4 Overlays limitations

The specific vulnerabilities exposed by Cloak and Dagger attacks made Android
drastically change the way in which overlays can be used by third party applications.

25

3 – Evolution of security mechanisms in Android

First of all, prior to Android Oreo, developers had the possibility to create their
overlays elements with the flags TYPE_SYSTEM_OVERLAY or TYPE_SYSTEM_ALERT.
These flags allowed the UI widget to be displayed on top of every other element,
included status bar, popups and keyboard. These flags are now deprecated, and
the only flag available to developers is called TYPE_APPLICATION_OVERLAY [26], that
allows the system to manage overlay elements in a more controlled way. For exam-
ple, the status bar and the dialog windows prompted to the user when he/she has
to make a choice (like granting a permission) are now protected against overlays,
sharply reducing the feasibility of some attacks introduced by Cloak and Dagger.

Moreover, the system_process can decide to resize or move the overlay element,
if it covers relevant portions of the screen.

However, despite their potential, Google did not fully recognise the threats orig-
inating from these kind of attacks, so that the SYSTEM_ALERT_WINDOW permission is
still automatically granted to applications requesting it if they are downloaded from
the Play Store. This means that overlays could still be used for other malicious
behaviours. For example, our research found that it is still possible to draw overlays
on top of the Camera application, and a user could be tricked into taking pictures
both from the primary and the secondary cameras in undesired contexts.

Figure 3.7. Overlays can still be displayed on top of many applications, like the
Camera application of the emulated device. The overlay is designed to be fullscreen
with a transparent background in order to show what it hides behind it.

26

Chapter 4

Vulnerability Description

4.1 A new design choice

The new method introduced in Android Oreo implies a change of responsibilities
for both the actors involved in the scenario: the application requesting the start of
a service (application A) and the application hosting the service itself (application
B). First of all, application A has to understand if the service it is requesting must
be started through startService() or startForegroundService(). However, ap-
plication A does not have any mechanism to draw such a conclusion.
On the other hand, as the official SDK documentation states, the started service in
application B must call the second new method introduced in Oreo, called
startForeground(int i, Notification n), where the parameters represent an
identifier for the notification that must be displayed by every foreground service, and
the notification object itself. This new method must be called in the onStartCommand()
callback and should be used by those applications for which the killing of a service
would be “disruptive to the user” [27], compromising the whole purpose of the appli-
cation itself. Figure 4.1 and Figure 4.2 show a legal use case of these new methods
and the corresponding callbacks.

From the above considerations, we can identify four different use cases according
to what both the actors (application A and application B) decide to execute. Table
4.1 explains these combinations.

Table 4.1. Foreground services - Possible use cases

App A App B Behaviour

startService()
onStartCommand() Normal: background ser-

vice
onStartCommand() +
startForeground()

Normal: foreground ser-
vice

startForegroundService()
onStartCommand() Undefined behaviour
onStartCommand() +
startForeground()

Normal: foreground ser-
vice

27

4 – Vulnerability Description

public class MainActivity extends Activity {

...
Context c;
Intent i;
...

@Override
protected void onCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
...
try {

c = createPackageContext("app_B_package_name",
CONTEXT_IGNORE_SECURITY);

} catch(PackageManager.NameNotFoundException e){
e.printStackTrace();

}

i = new Intent(c, ForegroundService.class);
startForegroundService(i);
...

}

...

}

Figure 4.1. Application A code showing the correct way how to start
a foreground service.

We notice that if application A decides to start the service in application B as
a foreground service, but application B is not prepared for this, and thus it does
not call startForeground() in its onStartCommand() callback, the behaviour is
left undefined. By performing some tests both on the emulated and the real device,
the observed behaviour is actually well defined, but it is definitely not the intended
one: application B crashes programmatically, with the undesirable “Application Not
Responding” (ANR) dialog error message. The dialog appears after a timeout set to
5 seconds. The error message printed on the system_process log reads as follows:
“Context.startForegroundService did not then call Service.startForeground ”.
This means that application A can make application B crash at its own will, and
application B does not have any error recovering or backup mechanism to prevent
that.

4.2 Technical details

Starting a service, either in the background or in the foreground, always involves
the system_process. Indeed, Context.startService(Intent i) and

28

4 – Vulnerability Description

package app_B_package_name;
...
public class ForegroundService extends Service {

...
private int id = 1;
private Notification n;
private Notification.Builder mBuilder;
...

@Override
public int onStartCommand(Intent i, int flags, int startId){

...
n = mBuilder.build();
startForeground(id, n);
...

return START_NOT_STICKY;

}

...

}

Figure 4.2. Application B code showing the correct way how to bring a
service in the foreground.

Context.startForegroundService(Intent i) are only wrapper methods that in-
voke the function
startService(..., Intent service, ..., boolean requireForeground, ...),
that is part of the API exposed by the ActivityManagerService (AMS), one of the
most important system services hosted by the system_process.

We can notice that one of the parameters of the API method is a boolean variable,
whose value depends on how an application requested the start of the service: It
is true if the service is being started through startForegroundService(), false
otherwise. Once the client application posts a request to the system_process, the
AMS has the responsibility to perform the following actions:

1. Perform security checks. This task is performed thanks to the class Binder,
that allows the AMS to retrieve the UID and PID of the application requesting
the service. Since the system_process holds a record of all the processes being
executed by a given user and since it is in charge of checking what permissions
are granted to every user, it can block any unauthorised request and prevent
security issues.

2. Identify the hosting application. The ability to know what process is
currently in execution on a device is specific to the system_process, starting
from Android Lollipop (API level 21). This means that the system_process

29

4 – Vulnerability Description

can identify what application is targeted by the intent used to start the service,
and it can start it if it is not already running.

3. Start the service. Once the application that defines the service to be started
is identified, the service lifecycle can start. To execute the callbacks, the
AMS uses the helper class ActiveServices. If it is the first time that the ser-
vice is started, the first callback to be executed is onCreate(), otherwise it
can immediately proceed to call onStartCommand(). The procedure is the
same in both situations. It involves both the class ActiveServices and the
AMS, that asynchronously schedule the creation and/or starting of the ser-
vice by sending an object of class Message to the Handler of the hosting
application, and starting the 5 seconds timeout. The sent messages can con-
tain the constant values CREATE_SERVICE or SERVICE_ARGS. The handler de-
fined in main execution thread of the target application is implemented to
handle these messages with the proper methods: handleCreateService()
and handleServiceArgs(). These methods contain the call to respectively
onCreate() and onStartCommand(). Once these methods are executed, the
application communicates back to the AMS the performed action. Finally, if
the boolean requireForeground was true and startForeground() is exe-
cuted in this flow, the timeout is immediately cancelled and the application
can run safely. Otherwise, the timeout expires and the ANR dialog appears.

30

Chapter 5

Automatic Detection and Evaluation
Tool

5.1 Aim of the tool

Once the vulnerable pattern has been recognised, it is important to understand if
a given application is subject to its effects or not. For this reason, the first aim of
the implemented tool is to classify an application as vulnerable or safe according
to the presence of such a pattern. Moreover, we built the tool with the purpose of
evaluating the obtained results, to compare expected and actual behaviour of every
tested application.

5.2 Reasons to use the tool

The first advantage of the tool is scalability. Indeed, since the initial input is the
.apk file of the application of interest, it is relatively easy to collect a large number
of inputs and to analyse them in a fast and efficient way. In order to hide their
internal mechanisms, most of the companies publishes their applications only after
a process known as code obfuscation. Some common ways to achieve this result are:

• Renaming of methods and variables with meaningless strings (usually one or
two-letters words);

• Adding redundant code not relevant to the logic of the application;

• Adding random comments.

The use of code obfuscation techniques implies that the reverse engineering phase
performed by the tool does not lead to the original source code. Instead, the obfus-
cated source is retrieved. However, obfuscation techniques do not affect API calls
(that are thus recognizable), while every custom defined method, variable and class
name is modified. This means that manual inspection of the code can become a
really hard and time consuming task, especially when multiple classes are involved
as in the services hierarchies. In this context the use of a testing tool like ours can
be very convenient.

31

5 – Automatic Detection and Evaluation Tool

public class AddGroupParticipantsSelector extends aau {

private final Set<String> y = new HashSet();
private final sg z = sg.a();

public final void a(e eVar, fo foVar) {
super.a(eVar, foVar);
if (this.y.contains(foVar.s) || this.v.a(foVar.s)) {

int i;
eVar.a.setClickable(true);
TextEmojiLabel textEmojiLabel = eVar.d;
if (this.y.contains(foVar.s)) {

i = AnonymousClass1.cP;
} else {

i = AnonymousClass1.Ez;
}
textEmojiLabel.setText(i);
eVar.b.setEnabled(false);
eVar.d.setTypeface(null, 2);
eVar.c.a(b.c(this, f.bJ));
return;

}
eVar.c.a(b.c(this, f.bM));

}

public final void a(fo foVar) {
if (!this.y.contains(foVar.s)) {

super.a(foVar);
}

}

}

Figure 5.1. Example of obfuscated code extracted from application Telegram.

5.3 Logical description

Given the nature of the vulnerability described in Chapter 4, our tool can be con-
veniently labelled as a static analysis tool, completed by a final evaluation phase.
Indeed, its task is to look for a chain of executed methods directly in the extracted
source code, through a source-sink mechanism, without the actual execution of the
code.

A source-sink mechanism is the analysis of the execution flow that starts at
specific locations in the code (sources) where the user has the ability to control
some inputs. The sinks are the end points of the flow, where a potentially corrupted
input can lead to unexpected behaviours. In this specific case, the source method is
one between the
Service.onStartCommand(Intent i, int flags, int startId) and
IntentService.onHandleIntent(Intent i) callbacks, while the sink method is
Service.startForeground(int id, Notification n).

The initial input of the tool is a publicly available .apk file. These kind of files

32

5 – Automatic Detection and Evaluation Tool

Figure 5.2. Tool architecture overview.

are archives containing all the compiled classes (in Android machine instructions,
called Dex bytecode), resources and libraries of an application, and they represent
how applications are delivered and installed on devices. The final output is instead
a log file reporting the obtained results.

In order to achieve the desired results, the tool consists of four different compo-
nents, each with a specific task. Figure 5.2 shows the internal architecture of the
tool, highlighting inputs and outputs of each component.

5.4 Limitations

The main limitation of the tool we implemented is the absence of coverage for
possible callback paths.

The execution of the sink method startForeground() can only be found in
one of the classes that belong to the hierarchy of the service under investigation,
because this function is specific to the Service framework class, and only subclasses
have access to it. However, the call to startForeground() can be found in classes
external to the service hierarchy if callback paths are used. This kind of execution
flow is achieved if one class of the service hierarchy passes its own reference, the Java
this object, to a method belonging to a class not in the service framework. In this
case, the passed parameter is a valid object of a subclass of Service, and it supports
the execution of startForeground(). The implementation of the exploration of
this kind of paths represents one future expansion of the tool.

5.5 Developer Manual

We shall now analyse the working mechanism of every module of the tool, describ-
ing the used algorithms and data structures. Differently from many standard static

33

5 – Automatic Detection and Evaluation Tool

analysis tools, we also decided to include a module that allows the immediate eval-
uation of the obtained results as the final block of our tool. For this reason, the first
three modules are aimed to the actual analysis of the source code and the detection
of candidate vulnerable services, while the last block directly tests the results on a
connected device (either real or emulated).

5.5.1 Reversing the apk

The first task of the tool must be a reverse engineering action able to reconstruct
the source code from the bytecode found in the given .apk file in the most reliable
way. Various tools are already available for this purpose, but we decided to adopt
two of them:

1. ApkTool [28]: A famous tool for reverse engineering apk files and extracting
their contents, especially the AndroidManifest.xml file;

2. Jadx [29]: A tool able to convert apk/jar files directly to Java source files very
close to the original versions.

Specifically, we mainly used ApkTool to extract the AndroidManifest.xml file,
while we relied on Jadx to retrieve the (obfuscated) source code of most of the
analysed applications.

In order to retrieve a significant amount of .apk files we leveraged one famous tool
available online, known as APKMirror [30]. The main advantage is that APKMirror
allows the download of apk files that are compatible with several different architec-
tures. As a matter of fact, Android runs mostly on devices supporting various ARM
instructions sets, and so most of the online available apks are built only for such
architectures. However our research environment, and thus the Android emulated
device, runs on a x86 architecture, meaning that we needed a specific version of apk
files compatible with our setup. Thanks to APKMirror, we retrieved the entire set
of apks of the tested applications.

5.5.2 Manifest fetcher

This module scans the AndroidManifest.xml file previously extracted in order to
obtain a list of potentially vulnerable components of the input application. In our
scenario, the interesting components are those services that are declared as exported.
Indeed, among the several properties that can be specified in the manifest, there is
the possibility to restrict the use of a component only to the application defining
it. This is achieved through the tag android:exported set to false. If compo-
nents, and services in particular, are declared as not exported, no other application
but the declaring one is allowed to execute Context.startService(Intent i) or
Context.startForegroundService(Intent i), thus restricting the use of the ser-
vice to just one application.

The default value for the android:exported attribute is false, but it is auto-
matically set to true if a service declares an intent filter even if it does not specify

34

5 – Automatic Detection and Evaluation Tool

the exported value. This is a common mistake found in many applications; services
intended to be private are exported instead.

Another way an application has to limit the use of one of its components from
external applications is through the Android permissions mechanism. By using the
attribute android:permission, the defining application asks all the clients that try
to start one of its components to have that particular permission granted. Since the
granting of a permission involves the user approval, this is another way to protect
an application component from being accessed from external parties.

<service android:label="@string/service_label_main"
android:name="com.spotify.mobile.android.service.SpotifyService"
android:exported="false">

<intent−filter>
<action android:name="com.spotify.mobile.service.action.COSMOS_PROXY"/>

</intent−filter>
</service>

Figure 5.3. Service declaration in AndroidManifest.xml file of application Spotify.

For all these reasons, this module of the tool looks for those services meeting
either conditions:

1. attribute android:exported set to true, or;

2. attribute android:exported not defined, but an intent filter is declared.

Among these exported services, the tool also considers the ones that require
permissions to be started. This decision arises from two different reasons:

1. There are a lot of Android applications requesting a higher number of per-
missions with respect to those actually needed for the application purpose
[31];

2. The users are not normally aware of the effects that each permission implies.
As a result, they tend to grant whatever permission the application asks them.

This means that even if user approval is necessary to start/bind services requiring
permissions, this approval is very likely to be given, and such services should thus
be included in the list of potentially vulnerable components.

The manifest fetcher we implemented exploits a SAX (Simple API for XML)
algorithm. This approach was preferred with respect to the classical DOM (Docu-
ment Object Model) mechanism for both efficiency and efficacy reasons. Indeed, the
DOM approach builds a tree-like representation of the input XML file, with a node
for every attribute or tag found. This means that it provides a global overview of
the whole document, as well as the capabilities to efficiently traversing the tree. For
these reasons, a DOM approach is usually adopted when dependencies between dif-
ferent sections of the XML input file are present (like the modification of attributes

35

5 – Automatic Detection and Evaluation Tool

according to previously found tags), or when operations like sorting, rearranging or
searching are involved.

In our scenario, the overhead represented by the creation of the document tree
of the AndroidManifest.xml file was not needed, because we were able to fetch
all the desired services by sequentially scanning the manifest file. Moreover, the
SAX algorithm is event-driven, and it provides useful callbacks that are invoked
as reaction to specific elements found in the input file. For example, the de-
tection of the opening of XML tags is matched by the invocation of the method
startElement(..., String qName, Attributes attributes). When this method
is executed, the qName parameter holds the name of the current XML tag, for exam-
ple <service> or <intent-filter>. The attributes parameter instead contains
all the specified attributes of the given tag, like the values of the above mentioned
android:exported and android:permission fields.

5.5.3 Source-sink search

Once a list of candidate services has been populated, the search for the vulnerable
pattern must be executed in each of them. The first step executed by this component
of the tool is to build the inheritance hierarchy of the service under investigation.
This is needed because the call to Service.startForeground(int id, Notification n)
can happen in every class belonging to the hierarchy. Moreover, the name of the
service retrieved from the manifest fetcher is the name of the lowest class in its
hierarchy, and this means that there can be other classes in between that must be
included in the analysis. We found that the studied applications use 4 or 5 levels of
inheritance on average, meaning that most of the built hierarchies were composed
of 4 or 5 classes.

Formally, we can define the hierarchy H of a service Σ as an object with the
following properties:

• H is a set of classes: H = {Γ1,Γ2, ...,Γn};

• Γ1 ∈ {“Service”, “IntentService”};

• Γn = Σ;

• ∀i ∈ {1, ..., n− 1}: Γi+1 extends Γi;

• H(k) = Γk, meaning that we can extract a specific class from the hierarchy
given its index k, with 1 ≤ k ≤ n .

The first class in the hierarchy is one between Service and IntentService. The
latter is a specific variation of the general framework Service class, used for a well-
defined purpose: executing actions sequentially in a system-created worker thread,
avoiding any concurrency mechanism. Their general working principles do not differ
from a standard service, so they have to be included in order to consider every kind
of services.

36

5 – Automatic Detection and Evaluation Tool

Read currentClass line by line {

store packageName;
collect all import statements;

if(class declaration is found)
store superClass;
break;

}

/∗If currentClass actually extends a superClass∗/
if(superClass is not null){

/∗If the top class is Service or IntentService, start building H and return the positive
outcome∗/

if(superClass equals Service or IntentService)
H.add(superClass);
return 1;

/∗Look for superClass in the package directory first∗/
if(isInDirectory(superclass, packageName))

currentClass = superClass;
if(recur() == 1)

H.add(superclass);
return 1;

/∗Look for superClass in paths denoted by import statements previously collected∗/
for(import i : importsList)

if(isInDirectory(superClass, i))
currentClass = superClass;
if(recur() == 1)

H.add(superClass);
return 1;

}

/∗Negative outcome: either H does not terminate with Service or IntentService, or a
superClass file was not found.∗/

return 0;

Figure 5.4. Pseudocode describing the approach used for building the hierarchy of
a service, starting from the lowest class.

The pseudocode in Figure 5.4 describes the steps required to recursively build
the hierarchy of a service, given the name of its lowest class found in the manifest.

Once we built the inheritance hierarchy of the service under analysis, all the
source files corresponding to the classes in the hierarchy are available for the source-
sink search.

The next step is to define ways to identify declarations and invocations of meth-
ods. This is useful since we are performing analysis directly on source files, without
executing the code, and so we need a way to understand what declared method is

37

5 – Automatic Detection and Evaluation Tool

Figure 5.5. Class diagram of
MethodDeclaration class.

Figure 5.6. Class diagram of
MethodInvocation class.

addressed by each invocation. To achieve this we defined the classes MethodDec-
laration and MethodInvocation, that respectively model the signature of a method
and its invocation in the source code. Since a declaration holds more information
about a method with respect to its invocation (accessibility scope, return type, type
of every parameter), we considered a MethodInvocation to be referring to a Method-
Declaration when the two objects had the same method name and the same number
of parameters.

Moreover, the MethodInvocation class holds a boolean variable that is set to
true if the corresponding invocation is explicitly referring to a superclass method
declaration through the super keyword. This is required to correctly follow the
execution flow when a subclass overrides a method, but it requires to execute its
superclass implementation.

The detection of a method declaration and a method invocation is achieved
through the use of regular expressions, that are also exploited for other tasks like:

• The exclusion of comments;

• The detection of the package statement, that allowed the identification of the
path within the application folders where every source file is stored;

• The identification of every import statement, representing the paths to every
other classes that are used in the class under analysis.

Finally, the central task of this module is performed by an object of class File-
Cursor, that has the following attributes:

• int componentState: an integer whose possible values are VULNERABLE (0)
or SAFE (1), indicating the current state of the analysed component;

• int currentClassIndex: the index of the class in the hierarchy that is being
analysed;

• File currentClass: the File object of the current class;

• MethodDeclaration currentMethod: the method that the FileCursor is cur-
rently looking for in currentClass.

38

5 – Automatic Detection and Evaluation Tool

Table 5.1. FileCursor Primitive I

public void hierarchyUp()
this.currentClassIndex–
this.currentClass = H(this.currentClassIndex)

Table 5.2. FileCursor Primitive II

public void hierarchyDown()
this.currentClassIndex++
this.currentClass = H(this.currentClassIndex)

Moreover, the FileCursor class defines two useful primitives to traverse the given
hierarchy.

The main task of the FileCursor class is to scan a source file and keep track
of the executed methods chain, labelling the analysed component as vulnerable or
safe accordingly. The pseudocode in Figure 5.8 describes the approach used by this
class. The following initialisation makes the algorithm start from the lowest class in
the hierarchy, searching for the source method. Let:

• sourceMethod be the MethodDeclaration object relative to
public int onStartCommand(Intent i, int flags, int startId) or to
protected void onHandleIntent(Intent i), depending on the first com-
ponent of the hierarchy;

• sinkMethod be the MethodInvocation object relative to
public void startForeground(int id, Notification n);

• H be the hierarchy of the component under analysis;

• cursor be a FileCursor object such that:

- cursor.componentState = VULNERABLE;

- cursor.currentClassIndex = size(H);

- cursor.currentClass = H(cursor.currentClassIndex);

- cursor.currentMethod = sourceMethod.

After the analysis, all the services belonging to the list of candidates components
are labelled as “safe”, “vulnerable” or “vulnerable with permission”. The last label
is assigned to those services in which a source-sink path is not found, with the
additional requirement of at least one permission needed to start them as declared in
the manifest. According to this distinction, the original list is split in two collections,
that are the input of the final component. The services vulnerable with permission
are treated as standard vulnerable services for the testing phase, due to the nature
of the last component of the tool.

39

5 – Automatic Detection and Evaluation Tool

Figure 5.7. Class diagram of FileCursor class.

/∗Terminate because we reached one of the termination classes∗/
if c.currentClass == H(1)

return

/∗Terminate because we found the sinkMethod∗/
if c.currentMethod == sinkMethod

c.componentState = SAFE
return

Let D be the collection of MethodDeclaration objects whose signature match
c.currentMethod

/∗c.currentMethod is not found in c.currentClass∗/
if size(D) == 0

c.hierarchyUp()
recur()
c.hierarchyDown()

else
for MethodDeclaration d in D {

scan c.currentClass until d is reached
read d line by line {

if a MethodInvocation I is found {
c.currentMethod = I
if I is a superClass invocation

c.hierarchyUp()
recur()
c.hierarchyDown()

else
recur()

}
}

}

Figure 5.8. Pseudocode describing the approach used for the classification of a service.

40

5 – Automatic Detection and Evaluation Tool

5.5.4 Automatic intent sender

The final step is to evaluate the labels assigned to services and to compare the
expected behaviours with the actual ones on a connected device. In order to com-
plete this task, the Android Debug Bridge, or ADB, can be conveniently exploited.
It is a tool part of the Android Software Development Kit (SDK) that can be
used to send commands to a real or emulated device. These commands are di-
rectly derived from the API exposed by system services, so that there is no need
to write a complete application for testing purpose. This means that methods like
Context.startForegroundService(Intent i), part of the API of the AMS sys-
tem service, can be directly executed from command line. The required command is:

$ adb shell am start-foreground-service -p package_name -c
service_name

The p (package) and c (component) options emulate the creation of an explicit
intent, because the unique couple {package name, component name} is provided,
allowing ADB to immediately identify the target service in the target application.

Moreover, the use of ADB allowed us to test even those services that require
permissions, because it can execute commands on a device on behalf of the root
user, that has any permission automatically granted. This is achieved through the
command:

$ adb root

This is the reason why vulnerable services that required permissions in order to
be started have been associated to standard vulnerable services in the outputs of
the third module.

In order to understand if a process crashed, the logcat can be used. It is a record
of every event of every process in execution on a device, and it is composed by three
different channels: main, system and crash. The crash channel is the one where
crashes and errors reports are written, and so it can be analysed by reading it from
the most recent entry.

Now that we have a way to execute startForegroundService(Intent i) and
to check if a process crashed or not, we can automatically perform tests by executing
the following steps:

1) Read the list of vulnerable services;

2) For every service S in the list:

2.1) Clear the crash channel of logcat;

2.2) Start the main activity of the application hosting S;

2.3) Execute startForegroundService(Intent i), with Intent i targeting S;

41

5 – Automatic Detection and Evaluation Tool

2.4) Inject a touch event to dismiss the error message dialog (if any);

2.5) Read from the crash channel of logcat to check the result;

2.6) Loop to 2.1)

After having performed tests on every service labelled as vulnerable for a given
application, we can compare the actual results and we can estimate the precision
and reliability of the tool.

In order to completely analyse the given application, we decided to perform tests
also on the list of the services labelled as safe. This allowed the classification of the
results as:

Table 5.3. Tests results classification

Label Test Outcome Result Type
Vulnerable Crash True Positive
Vulnerable No Crash False Positive
Safe Crash False Negative
Safe No Crash True Negative

42

5 – Automatic Detection and Evaluation Tool

5.6 User Manual

In order to be correctly executed, the tool has the following system and software
requirements:

• operating system: Unix-based OS or MAC OS;

• Java 8 [32];

• The Android SDK with the ADB extension [33];

• ApkTool;

• Jadx;

• An Android device connected to ADB (only for the evaluation phase).

The tool is delivered as a collection of source files and bash scripts, allowing it
to be started directly from the command line. An initial configuration is required,
and it mainly involves the filling of variables storing the locations of the external
tools used:

• In vulnerableComponents.sh, the variables JADX_DIR and APKTOOL_DIR
hold the paths to the binary images of Jadx and ApkTool respectively. More-
over, OUTPUT_DIR can be modified to specify a custom location for the
outputs of the tool (default is the current folder), while JADX_OUT holds
the location of the output of the reverse engineering step;

• In evaluateServices.sh, the variable ADB_DIR must be filled with the path
storing the binary file for the ADB tool.

• The variables ANDROID_ROOT and SDK_ROOT contain respectively the
path to the AOSP Android source and the source code of the version of Android
under analysis.

These variables can be populated by running:

$ make config

After the execution of this command, the file config.cfg will be available. Then,
the compilation of the source codes for the Java components can be achieved through:

$ make install

Once the configuration and installation phases are performed, the user can start
to use the tool for the analysis of applications.

The presence of various options allows users to perform a complete or partial
study of the desired apk file. To perform the analysis corresponding to the tasks of
the modules dedicated to the vulnerability detection (modules 1 to 3), the following
command is available:

43

5 – Automatic Detection and Evaluation Tool

Figure 5.9. Output of the analysis of the exported services of applica-
tion Spotify v.8.4.48

$./vulnerableComponents.sh [-da] apk_path apk_name

Where:

• Input apk_path is the location where the apk file of the application under
analysis is stored;

• Input apk_name is a custom name given to the apk that will be used as name
of the folder containing the outputs;

• Option -d makes the script skip the apk decompilation phase. This can be
useful to perform analysis on already decompiled apks;

• Option -a makes the script skip the analysis phase. In other words this option
only makes the script perform the reverse engineering step.

If an Android application is analysed with this command, the list of potentially
vulnerable services will be available at the location specified in OUTPUT_DIR
during the configuration.

After that, the evaluation phase can be performed if an Android device (either
real or emulated) is connected to the user terminal. Depending on the type of con-
nected device, the connection is established in two different ways. For a real device,

44

5 – Automatic Detection and Evaluation Tool

either the USB or the Wi-Fi connection can be used. The device must have the USB
Debug enabled, available in the Developers Options settings. To start and connect
an emulated device instead, the following command is needed:

$ ADB_DIR/tools/emulator -avd device_name

Once the connection is established, the evaluation can take place thanks to the
command:

$./evaluateServices.sh [-f [-n N | -o M]] apk_name

Where:

• Input apk_name is the same name previously given to the apk;

• Option -f makes the script perform the false negative check, testing those
services labelled as safe;

• Option -n makes the script test only the first N services (can be combined
with -f)

• Option -o makes the script test only the Mth service (can be combined with
-f)

Finally, users can decide to perform a complete analysis of an apk by combining
the effects of the previously described commands with the execution of:

$./evaluateApk.sh apk_path apk_name

Where inputs apk_path and apk_name have the same meaning as in the previous
commands. If this script is executed, no options will be used in the execution of
vulnerableComponents.sh and evaluateServices.sh, resulting in both the complete
analysis of the application and the evaluation of every service.

5.7 Results

We found that most party applications we examined are not properly aware of
the presence of this vulnerability. We then analysed system applications, that are
already pre-installed on a device and developed by Google.

5.7.1 Third party applications

We studied the top 30 free downloaded applications from the Google Play Store.
We found that:

45

5 – Automatic Detection and Evaluation Tool

• Three of them did not expose any service to other applications;

• Twenty-four applications exposed at least one service requiring no permis-
sions to be started or bound;

• The three remaining applications only exposed services requiring at least one
permission from their client. In all the cases, these were SIGNATURE level per-
missions, thus restricting the use of their services only to system applications
or applications published by their same companies.

Figure 5.10. Third party apps classification according to declared services.

This difference already shows how the permission mechanism is not well exploited
to protect services. Overall, the total number of the analysed services is 120, labelled
in the following way by the tool:

• 117 have been classified as vulnerable;

• only 3 have been classified as safe.

After the tests, every label was confirmed to be correct, meaning that no false
positives or false negatives were found.

The 3 Services labelled as safe belong to the applications Facebook, Facebook
Messenger and Telegram. However, since these applications also exposed vulnerable
services, each of them being able to make each process crash, they cannot be con-
sidered completely safe. On the other hand, from a practical point of view, the 3
applications that restrict the use of all their services (6 in total) through SIGNATURE
level permissions can be considered reasonably safe, because external apps cannot
have such permissions granted and so they do not have access to these protected
services.

46

5 – Automatic Detection and Evaluation Tool

5.7.2 System applications

Despite being developed by the Android team itself, we discovered that system ap-
plications suffer from this flaw in the same way. However, in the case of system
apps, the implications are usually more serious with respect to third party appli-
cations, because system applications usually host very important services, like the
phone service, in charge of managing the phone calls protocols mechanisms. The
10 analysed system applications are: Camera, Contacts, Google Chrome, Google
Maps, Google Music, Google Photo, Google Video, Phone, Settings, YouTube. As
with third party applications, we found that:

• The Camera application does not export any service;

• 7 Applications expose at least one service requiring no permissions to be
started or bound;

• Among the 2 applications that only expose services requiring a permission
(Contacts and Settings):

a) none of them require at least one NORMAL level permission;

b) only Contacts requires one DANGEROUS level permission;

c) the Settings app only requires SIGNATURE level permissions.

Figure 5.11. System apps classification according to declared services.

The performed tests demonstrated how system apps are slightly more robust
with respect to third party applications, for two main reasons:

1. Some applications (like the Google Music application) make use of two dif-
ferent processes when in execution. Generally the first process is dedicated
to UI management, while the second to heavier and more time consuming
computations;

47

5 – Automatic Detection and Evaluation Tool

2. Most system services hosted by system applications are designed to automat-
ically restart after they are killed for unexpected reasons.

The performed tests highlighted the following results:

• 64 Services were labelled as vulnerable, with:

1. 60/64 (93.75%) of them being true positive, thus leading to the ANR
error dialog window;

2. 4/64 (6.25%) of them being false positive, because only one of the two
processes of the analysed application crashed.

• No services were labelled as safe.

5.7.3 Consequences on Phone app

Among the vulnerable system applications, the Phone app is one of the most relevant
because it hosts the com.android.phone process.

This process manages ingoing and outgoing phone calls, as well as the strength of
the received phone signal. The application hosts 7 services, of which 4 are exported.
Among them:

• Service com.android.phone.otasp.OtaspActivationService does not re-
quire any permission to be started;

• Services com.android.phone.TelephonyDebugService,
com.android.services.telephony.sip.SipConnectionService,
com.android.services.telephony.TelephonyConnectionService require SIGNATURE
level permissions.

The starting of each of these 4 services in the foreground through
Context.startForegroundService(Intent i) always results in the crash of the
phone process. One major consequence of the crash is the immediate loss of the
phone signal. This means that if a malicious application obtains the dangerous-level
permission READ_PHONE_STATE, it can understand if a phone call is currently ongoing
in the device and programmatically crash the phone process to immediately close
the communication channel. However, since the phone process is restarted by the
system_process as soon as it is killed, Android automatically makes the phone call
start again. This can ignite a infinite loop in which the malicious application keep
closing the phone call as soon as it is restarted, making the device impossible to use
without a reboot.

Given the previous considerations on the ease of the users to grant many permis-
sions to downloaded applications, the described scenario can be easily implemented
in a real life application, representing a serious threat to the system.

48

Chapter 6

Real implementation cases

We shall now proceed to analyse how a malicious application can trigger this vul-
nerability.

The only parameter of the Context.startForegroundService(Intent i)method
is an intent object that must target the service that the calling application is re-
questing to start. In Chapter 2 we analysed the difference between explicit and
implicit intents, and the concept of intent filter. To recap:

• Intent Filters are sets of values declared (statically) in the manifest or (dy-
namically) directly in the application source code. They consists of strings
labelled as actions, category, data, type and extras;

• Explicit Intents are created with the couple {package name, class object},
that uniquely identify a component within an application;

• Implicit Intents are created assigning to the fields actions, category, data,
type and extras of a new intent the values corresponding to the ones declared
by the intent filter of the target service. Thanks to the intent resolution
process, the OS can understand which component is aimed by the intent.

public Intent getExplicitIntent(){

Context appContext = getApplicationContext();
Intent i = new Intent(appContext, ServiceToStart.class);

return i;

}

Figure 6.1. Explicit intent definition for a service declared in the same
application that starts it.

We show how a malicious application can decide to leverage either implicit or
explicit intents in order to ignite the vulnerability and obtain the same exact results.

49

6 – Real implementation cases

public Intent getImplicitIntent(){

Intent i = new Intent();
i.setAction("android.intent.action.SET_ALARM");
i.addCategory("android.intent.category.DEFAULT");

return i;

}

Figure 6.2. Implicit intent definition with one action and one category.

We will exploit the capabilities of a very powerful API available in some program-
ming language, and some hidden features of two classes. In both the situations, the
attack could be executed without restrictions or exceptions depending on the target
applications.

6.1 Using explicit intents

6.1.1 Introduction to Reflection API

In order to build an explicit Intent, an object of the special Java class Class is
required. These objects are especially used with the reflection API, a feature of some
programming languages (Java and Kotlin included) that allows the introspection of
classes at runtime. Indeed, a Class object is the representation of every aspect
of a given class: its attributes (represented by objects of class Field), methods
(represented by objects of class Method), constructors (objects of class Constructor),
implemented interfaces, extended classes and so on.

This means that given the name of a class, we can retrieve every information
about it by loading the corresponding class object and exploiting reflection API
methods like Class.getDeclaredFields() and Class.getDeclaredMethods().

Alongside the inspection of the properties of a class, one of the most interesting
features of reflection is the capability of executing every method a class declares.
This is achieved with the following steps:

1. Load the class object of the class implementing the desired method;

2. Obtain the constructor object through
Class.getDeclaredConstructor(Class... params). The object params is
an array with all the class objects corresponding to the classes of the arguments
needed by the constructor, in declaring order;

3. Instantiate a new object of the class with the method
Constructor.newInstance(Object... args). This object will be referred
to as the receiver. The args array now holds all the actual objects used by
the constructor;

50

6 – Real implementation cases

4. Obtain the Method object of the requested function we want to execute through
Class.getDeclaredMethod(String name, Class... params). The params
array contains again the class objects of the parameters needed by the method
in correct order;

5. Execute Method.invoke(Object receiver, Object... args). The receiver
is the previously obtained instance, and args is an array with all the param-
eters requested by the method.

Figure 6.3 shows the implementation of the described steps to achieve the invo-
cation of the method obtainMessage(int what) of class Handler.

These steps imply that in order to execute a function from a class, a receiver of
that class is needed. However, if the method we want to execute is a static method,
the receiver parameter is null. Executing the constructor to obtain a receiver
instance can be a time consuming task, because it can imply calling other methods
or exploiting some properties of the passed parameters, that thus must be properly
populated. That is why focusing on static methods can be really convenient, as we
will understand in these sections.

6.1.2 How class objects are retrieved

One of the standard ways to obtain the class object of a specific class is through
the static method Class.forName(String name), where the name parameter is the
complete name of the required class. This means that if we want to load the class
object of the Java String class, we need to refer to it as java.lang.String. This
method uses another important class in the context of reflection, named ClassLoader.
As their name suggests, objects of this class have the responsibility to retrieve class
instances. Every class loader holds a path to a specific location in the device filesys-
tem that represents the starting point for the search of class objects, that are stored
in .apk, .jar, .zip and .dex files. For this reason, every downloaded application has
a default ClassLoader, assigned by the OS at installation time, whose class path is
set to the location of the .apk file of the application itself.

This means that the default class loader of every application is able to load all
the classes available in that application. System applications instead have access to
those classes that are private or hidden to every other app. Android enforces this
protection through the standard accessibility keywords that define the scope of a
class (like private and protected) and through annotations directly in the source
code, that prevent the compilers from accepting class names that it does not recog-
nise as part of the official documentation (one example is the @hide annotation).

If a third party application tries to load objects of these protected classes, the
result is a ClassNotFoundException. One consequence of this mechanism is that
there exists a hierarchy among class loaders, with some of them being more powerful
with respect to others, being able to load classes that other class loaders cannot see.

51

6 – Real implementation cases

public void reflectionInvocation(){

try {

//Handler class object
Class handlerClass = Class.forName("android.os.Handler");

//Retrieve the Constructor object for Handler class
Class looperClass = Class.forName("android.os.Looper");
Constructor handlerCt = handlerClass.getDeclaredConstructor(looperClass);

//A Looper object is needed for the instantiation
Looper myLooper = getMainLooper();
Handler myHandler = (Handler) handlerCt.newInstance(myLooper);

//Retrieve the Method object for Handler.obtainMessage(int what)
Class intClass = int.class;
Method obtainMsg = handlerClass.getDeclaredMethod("obtainMessage",

intClass);

//An integer value is needed to invoke the method
int value = 1;

//Method invocation
Message myMsg = (Message) obtainMsg.invoke(myHandler, value);

} catch (Exception e){

e.printStackTrace();

}

}

Figure 6.3. Use of reflection API to invoke a method of class Handler.

6.1.3 Exploiting class loaders

The properties of class loader objects emphasised so far imply that for an external
application it is impossible to retrieve the class object of a target service hosted
by another application, because its default ClassLoader does not have the ability
to load classes of different apps. This makes the instantiation of an explicit intent
impossible.

However, our study found a mechanism to programmatically load every class of
the OS, as well as of every installed application on the device. We exploit a particular
subclass of ClassLoader, called PathClassLoader. One of the two constructors of this
kind of object has the following signature:
public PathClassLoader(String classPath, String libPath).
The parameters represent:

• classPath: it is the string with the path pointing to an .apk, .jar or .zip

52

6 – Real implementation cases

file containing a classes.dex file, or directly to a classes.dex file. This is the
location that this PathClassLoader will use to load class objects;

• libPath: in the same way, ClassLoaders can load native libraries (.so files).
This is the path used by this PathClassLoader to load such libraries. We will
examine the implications of this parameter in Chapter 8.

This means that by providing the right path, we can decide to use the Path-
ClassLoader instance to load every class we need, through the inherited method
ClassLoader.loadClass(String className), instead of using the default class
loader of our application.

Surprisingly, we noticed that these objects can be instantiated even providing
protected paths. Since Android is a Unix based OS, it uses the classical access
control model of every Unix-like system. This implies that every file has a owner
as well as reading, writing and executing permissions for the classes user, group
and others. For example, the most important classes that the system_process
instantiates when it is first executed are stored in a .jar file found at the path
/system/frameworks/services.jar. This file is owned by root, and no other user
or group has read, write or execution privileges on it. However, through a Path-
ClassLoader, we are able to access the file and use it to load every class it holds.
In this way, objects of classes like ActivityManagerService can be instantiated, and
they can be used with standard reflection methods.

6.1.4 How Context objects are retrieved

The second component of an explicit intent is an object of the abstract class Con-
text. Normally, every application has access to its own context through the meth-
ods Context.getApplicationContext() and Context.getBaseContext(). These
methods return an object of class Context holding all the information of the calling
application. However, in order to make the explicit intent target an external ap-
plication, the context of that particular app must be retrieved. The easiest way to
achieve this task is through the method
Context.createPackageContext(String packageName, int flags). This method
returns the context object of the application identified by its unique package name,
that is publicly available for every app that can be downloaded from the Google
Play Store. The second parameter can be a combination of zero or more different
flags, with the following meaning:

• CONTEXT_INCLUDE_CODE (integer value 1): If this flag is set, the returned ob-
ject will also contain the class loader able to load classes from the requested
application. However, this could raise a SecurityException, as it happens with
system applications, whose class loader cannot be retrieved in this way;

• CONTEXT_IGNORE_SECURITY (integer value 2): if this flag is combined with
CONTEXT_INCLUDE_CODE, the class loader of the requested app will always be
included;

53

6 – Real implementation cases

• CONTEXT_RESTRICTED (integer value 4): this flag makes createPackageContext()
return a restricted context.

One of the most interesting properties contained by a context object retrieved
in this way is the exact path of the .apk file of the requested application. The
attribute holding this information is called mPackageInfo, and it is an object of class
LoadedApk. Thanks to the method Context.getPackageCodePath(), its value can
be retrieved.

6.1.5 Creating the explicit intent

Now that we are able to obtain the {Context, Class} objects pair, we can instan-
tiate the explicit intent that will be used as parameter of
Context.startForegroundService(Intent i). This can programmatically be achieved
for every installed application following these steps:

1. Obtain the context of the requested app;

2. Retrieve the .apk file location on the device;

3. Create a new PathClassLoader, whose class path is the previously obtained
path;

4. Obtain the class object of the service we want to start. The name can be read
from the AndroidManifest.xml file;

5. Create a new explicit intent;

6. Pass this intent to startForegroundService().

Figure 6.4 shows a real implementation case with the explicit intent targeting
one of the vulnerable services of the messaging application Whatsapp.

The method createPackageContext() throws a PackageManager.NameNotFoundException
exception if the requested package name cannot be found. If this happens it means
that the application that the attacker is trying to kill is not installed, so that this
procedure can even be exploited to understand which apps are available on the
device, and error situations (like trying to kill a non installed application) can be
silently handled thanks to the try-catch block.

6.2 Using implicit intents

The procedure to start a service using an implicit intent does not involve the use
of class loaders, because the class object is not needed anymore. Indeed, the OS
recognises which component in which application an implicit intent is targeting by
comparing the intent fields action, category, data, type and extras with the ones
declared in the intent filter of every component. For this reason, implicit intents

54

6 – Real implementation cases

public void startWhatsappService(){

Context wContext;
String wCodePath;
PathClassLoader wLoader;
Class wService;
Intent i;

try{

Context wContext = createPackageContext("com.whatsapp",
CONTEXT_IGNORE_SECURITY);

String wCodePath = wContext.getPackageCodePath();

wLoader = new PathClassLoader(wCodePath, null);
wService = wLoader.loadClass(

"com.whatsapp.accountsync.AccountAuthenticatorService");

i = new Intent(wContext, wService);
startForegroundService(i);

} catch (Exception e){

//Handle the exception...

}

}

Figure 6.4. Explicit intent creation procedure for application Whatsapp.

can be used only when the target service declares an intent filter. Moreover, we
already highlighted how the same filter can be declared by different components,
possibly leading to ambiguities in the choice of the target of the intent. Despite
the presence of some techniques aimed to reduce these ambiguities, like the pos-
sibility to define custom values for the intent filter fields, Android is constantly
discouraging the use of implicit intents in general. Indeed, starting from Android
5.0 (API level 21), it is not possible to call Context.bindService(Intent i) with
an implicit intent, mainly for security reasons [22]. In the same way, the execution of
Context.startService(Intent i) and Context.startForegroundService(Intent i)
with implicit intents generates a IllegalArgumentException on the application
that is starting the service that reads as: “java.lang.IllegalArgumentException: Ser-
vice Intent must be explicit”.

6.2.1 Faking the Context

We now introduce a procedure that allows a malicious application to use implicit
intents to start a service in the foreground and ignite the termination of its process,
regardless of its API level. This mechanism is a specific exploitation of a wider
approach that allows the modification of the context objects that are returned by

55

6 – Real implementation cases

the methods getApplicationContext() and getBaseContext(). The reflection
API is again useful in this case, because it allows the modification of the values of
every field within objects. However, standard reflection methods cannot be directly
applied on objects of class Context. The reason is that Context is an abstract
class, and reflection needs a concrete receiver object to work on. Android uses
the hidden class ContextImpl to implement the methods defined in Context. For
this reason, the first thing we need to do is to find a way to perform a cast from
the superclass, Context, to the subclass ContextImpl. Fortunately, the latter class
defines the static method ContextImpl.getImpl(Context context), that returns
the ContextImpl object corresponding to the passed parameter. As previously said,
the presence of a static method is really useful since no receiver of ContextImpl class
is required. Since the class object of ContextImpl is accessible through reflection,
we can inspect this class and obtain the method object corresponding to getImpl().
Finally, we can invoke it on a null receiver, passing the object returned by either
getBaseContext() or getApplicationContext() as parameter.

Once we retrieve the concrete implementation of the context of our applica-
tion, we can access all its field and modify them at our will. In particular, we
can access the field targetSdkVersion, and modify it at runtime by providing a
value lower than 21. In this way, when the intent to start the service is passed to
the method ContextImpl.validateIntentService(Intent i) during the execu-
tion of startForegroundService(), Android will consider our application as being
developed for API levels lower than 21. Since the starting and binding of services
with an implicit intent was allowed in these older versions, the intent will pass the
security check, and the service will be started normally. The log of the application
requesting the start of the service will display a warning message saying: “Implicit
intents with startService are not safe”, followed by the details of the intent, but the
application will be executed normally and the intent will be delivered correctly.

56

Chapter 7

Proposed solutions

7.1 General considerations

The analysis of the vulnerability highlighted that the current Android design is
missing at least two key mechanisms:

1. How an application can understand if one of the services that it declares is
being started in the foreground or not;

2. How an application can infer if a service can be started in the foreground.

Indeed, by providing applications with such capabilities, the application starting the
service could properly choose to execute Context.startService(Intent i) or
Context.startForegroundService(Intent i). Moreover, the application hosting
the service could call Service.startForeground(int id, Notification n) only
if the service is being started in the foreground, avoiding the crash of the process
and allowing it to keep running safely.

For these reasons we present some potential solutions that address and solve
these problems without a big overhead in terms of computation and complexity.

7.1.1 New onStartCommand() prototype

An immediate solution is to modify the prototype of the
Service.onStartCommand(Intent i, int flags, int startId) callback into
Service.onStartCommand(Intent i, int flags, int startId, boolean isForeground).
The reason why this solution would be easily affordable is that the system_process
already keeps a track of how a client is starting a service (background or fore-
ground) through a boolean variable. By propagating this variable to the requested
service, the hosting application is provided with a mechanism to understand if
Service.startForeground(int id, Notification n) must be called or not.

Of course, this solution implies the modification of a widely used callback, so
this could represent a problem in terms of backward compatibility. However, the
old prototype could still be used by applications that target API levels 25 and lower,

57

7 – Proposed solutions

while the new one should be enforced for applications targeting API level 26 and
higher. This technique has already been adopted in Android Oreo with the method
Activity.findViewById(int id) that changed its return type from View to the
generic <T extends View> [34].

7.1.2 Leveraging the permissions system

Another approach is represented by the exploitation of the Android permissions
system. We propose the introduction of a new dangerous level permission, that will
allow the application willing to start a service to know if such service can be started
in the foreground or not.

With this approach, the application defining the service should include this per-
mission with the attribute android:permission in the AndroidManifest.xml file.
In this way, the app is announcing to the system_process that all the services that
require the new permission are ready to be started as foreground services, and so
they correctly execute
Service.startForeground(int id, Notification n). Since the new permission
belongs to the dangerous level, the first time that an application will try to execute
startForegroundService(), the user will be prompted with a dialog asking to al-
low or deny the starting of the service in the foreground. By definition, a foreground
service executes operations that the user is aware of [35], so the dialog window would
represent an enforcement of this acknowledgement. Figure 7.1 shows the execution
flow achieved by the introduction of this new dangerous level permission.

7.1.3 Final considerations

Each of the proposed solutions targets only one portion of the issue. In particular:

• The new prototype of onStartCommand() solves the problem of allowing the
hosting application to know if one of its services is being started through
startService() or startForegroundService(). This gives the app the
chance to call startForeground() only when needed. However, the request-
ing application can still freely decide which of the 2 methods to use to start
the service;

• The new dangerous level permission makes the requesting application aware
of how the requested service can be started. The drawback is that the hosting
app would not know whether to call startForeground() or not.

Ideally, a combination of the two approaches would address both the problems,
providing a complete solution to this design flaw.

58

7 – Proposed solutions

Figure 7.1. The execution flow generated by the introduction of a new dangerous
level permission never leads to the crash of the application hosting the service.

59

Chapter 8

Conclusions

Our work exposed a design flaw in the Android OS that potentially makes every
application vulnerable to a DoS attack. For this reason, we decided to report this
issue directly to the Android security team, through the Google IssueTracker plat-
form [7]. After some time, our report was assigned to a developers team, and it is
under investigation at the time of writing.

8.1 Fix in Android P

The next version of Android is scheduled to be released in Autumn 2018. While its
official code name is not known yet, we currently refer to it as Android P, following
the alphabetical order that gave name to all the prior versions. Programmers have
access to the Android P Developer Preview, that allows them to install the latest
beta version of Android P and to start adapting their applications to the new API
level 28.

Among the new features of Android P, we can find one hint that suggests the
intention to fix the foreground services issue. Indeed, Google decided to introduce a
new permission called FOREGROUND_SERVICE. This permission belongs to the normal
level permissions, and “Allows a regular application to use Service.startForeground.”
[36].

However, despite the several modifications that the documentation could receive
in the next months prior to the final release, we argue that this new permission
would not solve the problem at all. The reasons are mainly two:

1. The new permission is a normal level permission. This means that applications
requesting it will automatically have this permission granted, denying to users
any possibility to avoid the start of a vulnerable service in the foreground;

2. According to the current documentation, the permission must be requested by
applications willing to execute Service.startForeground(int id, Notification n).
In other words, the permission must be asked by the application that declares
and hosts the service. Instead, as we proposed in Chapter 7, we think that a

60

8 – Conclusions

permission should be granted to the applications that request the start of a
service hosted by another application.

In the end, if this permission will become part of the official Android framework
with the release of Android P without any modification, the highlighted issue about
foreground service will still be present.

In this case, the only way that developers have to avoid their applications to
be programmatically crashed is to immediately execute startForeground() in all
their services, even those not designed to run in the foreground, and even if the
application requesting their start executed the standard startService().

8.2 Future works

Our work on the current state of the reliability of the Android OS highlighted some
potential flaws that could represent the starting point for future researches.

8.2.1 Context faking exploitations

Specifically, we highlighted how an application can fake every field of the context
objects returned by methods getApplicationContext() and getBaseContext().
To the best of our knowledge, the combined exploitation of the ContextImpl class
and the reflection API to achieve this result has not been explored yet. Since the
context is the most used way for the identification of an application in the OS, this
technique could represent the first step of a bigger attack vector.

8.2.2 ClassLoaders exploitations

We also gave evidence of the strength of objects of class PathClassLoader, a subclass
of the abstract class ClassLoader. Thanks to these objects, the protections enforced
by Android on specific classes can be bypassed, giving access to a whole new set
of methods and functionalities thanks to reflection API. Through class loaders, we
were able to demonstrate the feasibility of the implementation of attacks exploiting
the vulnerability about foreground services.

However, our work also found another interesting capability of these objects. We
recall that one of the constructors of a PathClassLoader has the signature:
public PathClassLoader(String classPath, String libPath). The classPath
argument gave us the possibility to load classes from every location in the device
filesystem storing a classes.dex file (like .apk, .jar and .zip files). The second argu-
ment, libPath, plays a similar role: it represents a location containing one or more
shared objects (.so) files that can be linked to our application at runtime. These files
are libraries that store the implementation of every native methods used in Android.
A native method is a function implemented in C or C++ languages that is invoked in
a Java class. The conversion from Java variables and classes to C/C++ structures
is managed by the Java Native Interface, or JNI, through a set of conventions and

61

8 – Conclusions

rules that allows the exchange of data from one environment to the other and vice
versa.

It follows that in order to execute a native method, an application must have
access to the .so file with the implementation of the required function. If this
condition is not satisfied, the result is an exception whose error message reads as
“No implementation found for int
com.android.server.input.InputManagerService.nativeInjectInputEvent()” (taking as
example the method int nativeInjectInputEvent() of the InputManagerService
class). Given the direct interfacing of the system_process with every aspect of
the device (sensors, power management, touch screen, bluetooth receivers and so
on), system services make a wide use of native methods that are implemented in
specific .so files in the device. This means that we need a way to load such native
libraries to completely take advantage of the capability of loading protected classes
like the system services. The standard way that an application has to load a .so
file is through the static method System.loadLibrary(String libName), where
the library denoted by libName must be located at the path stored in the libPath
argument of the default ClassLoader of the application.

However, starting from Android 7.0, specific native libraries have been declared
as private [37], so that the execution of the loadLibrary() method now results in
the error
“java.lang.UnsatisfiedLinkError: dlopen failed: ...”. All the libraries containing the
implementation of the native methods executed by the system services are part of
this new set of private libraries: this means that the default class loader of a standard
application cannot load these .so files.

Our study found a new way of overcoming this protection mechanism through the
exploitation of a PathClassLoader whose library path is properly set. This method
allows the dynamic loading of every .so file present in a device, private libraries
included. In this way the implementation of the desired native method is retrieved
by the OS, and the function can be actually executed.

For these reasons, the exploitation of PathClassLoader objects to gain access to
protected classes and libraries (and thus methods) can potentially pave the way for
new discoveries in the field of Android security.

8.3 Final considerations

Over the years, the continuous growth of Android has pushed this operating system
to a very strong level of reliability. However, its worldwide diffusion represents
its main limitation. It is users responsibility to keep their devices updated to the
latest version of the OS, in order to protect their data from threats that are now
considered to be obsolete or completely extinct, but that could easily harm devices
running older versions of the operating system.

In our work, we analysed various sections of this OS, and we demonstrated how
classes addressing apparently disjointed tasks can be combined to achieve unex-
pected results.

62

Bibliography

[1] Wikipedia, “Proxy pattern diagram.” https://commons.wikimedia.org/
wiki/File:Proxy_pattern_diagram.svg, 2007, [Online; accessed March-
2018]

[2] Google, “Activity | Android Developers.” https://developer.android.com/
reference/android/app/Activity#activity-lifecycle, 2018, [Online; ac-
cessed March-2018]

[3] Google, “Content providers | Android Developers.” https://developer.
android.com/guide/topics/providers/content-providers, 2018, [Online;
accessed March-2018]

[4] Google, “Intents and Intent Filters | Android Developers.” https:
//developer.android.com/guide/components/intents-filters#Types,
2018, [Online; accessed March-2018]

[5] Google, “Services overview | Android Developers.” https://developer.
android.com/guide/components/services#LifecycleCallbacks, 2018,
[Online; accessed March-2018]

[6] Google, “Bluetooth | Android Open Source Project.” https://source.
android.com/devices/bluetooth/#architecture-android-80, 2017, [On-
line; accessed March-2018]

[7] V. Chiaramida, “Google IssueTracker — Missing startforeground() causes
crashes in almost every app.” https://issuetracker.google.com/issues/
78603020, 2018, [Online; accessed 05-June-2018]

[8] Statista, “Global market share held by the leading smartphone op-
erating systems in sales to end users from 1st quarter 2009 to
1st quarter 2018.” https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/, 2018,
[Online; accessed May-2018]

[9] Google, “Kotlin and android.” https://developer.android.com/kotlin/,
2017, [Online; accessed May-2018]

[10] Google, “Codenames, Tags, and Build Number.” https:
//source.android.com/setup/start/build-numbers#
platform-code-names-versions-api-levels-and-ndk-releases, 2018,
[Online; accessed May-2018]

[11] Google, “Permissions overview | Android Developers.” https://developer.
android.com/guide/topics/permissions/overview#normal_permissions,
2018, [Online; accessed May-2018]

[12] Google, “Request App Permissions | Android Developers.” https://

63

https://commons.wikimedia.org/wiki/File:Proxy_pattern_diagram.svg
https://commons.wikimedia.org/wiki/File:Proxy_pattern_diagram.svg
https://developer.android.com/reference/android/app/Activity#activity-lifecycle
https://developer.android.com/reference/android/app/Activity#activity-lifecycle
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/components/intents-filters#Types
https://developer.android.com/guide/components/intents-filters#Types
https://developer.android.com/guide/components/services#LifecycleCallbacks
https://developer.android.com/guide/components/services#LifecycleCallbacks
 https://source.android.com/devices/bluetooth/#architecture-android-80
 https://source.android.com/devices/bluetooth/#architecture-android-80
https://issuetracker.google.com/issues/78603020
https://issuetracker.google.com/issues/78603020
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://developer.android.com/kotlin/
https://source.android.com/setup/start/build-numbers#platform-code-names-versions-api-levels-and-ndk-releases
https://source.android.com/setup/start/build-numbers#platform-code-names-versions-api-levels-and-ndk-releases
https://source.android.com/setup/start/build-numbers#platform-code-names-versions-api-levels-and-ndk-releases
https://developer.android.com/guide/topics/permissions/overview#normal_permissions
https://developer.android.com/guide/topics/permissions/overview#normal_permissions
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting

Bibliography

developer.android.com/training/permissions/requesting, 2018, [On-
line; accessed May-2018]

[13] Google, “Android — 8.0 Oreo.” https://www.android.com/versions/
oreo-8-0/, 2017, [Online; accessed May-2018]

[14] Google, “Android 8.0 Behavior Changes | Android Developers.” https:
//developer.android.com/about/versions/oreo/android-8.0-changes,
2017, [Online; accessed February-2018]

[15] NortonOnline, “Hundreds of malicious apps are showing up on the google
play store, disguised as legitimate applications.” https://us.norton.com/
internetsecurity-emerging-threats-hundreds-of-android-apps-containing-dresscode-malware-hiding-in-google-play-store.
html, 2016, [Online; accessed May-2018]

[16] Z. Wang, C. Li, Y. Guan, Y. Xue, and Y. Dong, “Activityhijacker: Hijacking
the android activity component for sensitive data”, 2016 25th International
Conference on Computer Communication and Networks (ICCCN), Aug 2016,
pp. 1–9, DOI 10.1109/ICCCN.2016.7568487

[17] Y. Fratantonio, C. Qian, S. Chung, and W. Lee, “Cloak and Dagger: From Two
Permissions to Complete Control of the UI Feedback Loop”, Proceedings of the
IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, May 2017

[18] K. Wang, Y. Zhang, and P. Liu, “Call me back!: Attacks on system server and
system apps in android through synchronous callback”, Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, New
York, NY, USA, 2016, pp. 92–103, DOI 10.1145/2976749.2978342

[19] Armis, “The Attack Vector "BlueBorne" Exposes Almost Every Connected De-
vice.” https://www.armis.com/blueborne/, 2017, [Online; accessed March-
2018]

[20] H. Lockheimer, “Android and Security.” https://googlemobile.blogspot.
com/2012/02/android-and-security.html, 2012, [Online; accessed June-
2018]

[21] J. Oberheide, “Dissecting the android bouncer.” https://jon.oberheide.
org/blog/2012/06/21/dissecting-the-android-bouncer/, 2012, [Online;
accessed May-2018]

[22] Google, “Android 5.0 Behavior Changes | Android Developers.”
https://developer.android.com/about/versions/android-5.0-changes#
BindService, 2014, [Online; accessed March-2018]

[23] Google, “Activitymanager | Android Developers.” https://developer.
android.com/reference/android/app/ActivityManager.html#
getRecentTasks(int,%20int), 2018, [Online; accessed March-2018]

[24] Google, “Activitymanager | Android Developers.” https://developer.
android.com/reference/android/app/ActivityManager.html#
getRunningAppProcesses(), 2018, [Online; accessed March-2018]

[25] Google, “Activitymanager | Android Developers.” https://developer.
android.com/reference/android/app/ActivityManager.html#
getRunningServices(int), 2018, [Online; accessed March-2018]

[26] Google, “Windowmanager.layoutparams | Android Developers.” https:
//developer.android.com/reference/android/view/WindowManager.
LayoutParams.html#TYPE_APPLICATION_OVERLAY, 2018, [Online; accessed
February-2018]

64

https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://www.android.com/versions/oreo-8-0/
https://www.android.com/versions/oreo-8-0/
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://developer.android.com/about/versions/oreo/android-8.0-changes
https://us.norton.com/internetsecurity-emerging-threats-hundreds-of-android-apps-containing-dresscode-malware-hiding-in-google-play-store.html
https://us.norton.com/internetsecurity-emerging-threats-hundreds-of-android-apps-containing-dresscode-malware-hiding-in-google-play-store.html
https://us.norton.com/internetsecurity-emerging-threats-hundreds-of-android-apps-containing-dresscode-malware-hiding-in-google-play-store.html
http://dx.doi.org/10.1109/ICCCN.2016.7568487
http://dx.doi.org/10.1145/2976749.2978342
https://www.armis.com/blueborne/
https://googlemobile.blogspot.com/2012/02/android-and-security.html
https://googlemobile.blogspot.com/2012/02/android-and-security.html
https://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
https://jon.oberheide.org/blog/2012/06/21/dissecting-the-android-bouncer/
https://developer.android.com/about/versions/android-5.0-changes#BindService
https://developer.android.com/about/versions/android-5.0-changes#BindService
https://developer.android.com/reference/android/app/ActivityManager.html#getRecentTasks(int, %20int)
https://developer.android.com/reference/android/app/ActivityManager.html#getRecentTasks(int, %20int)
https://developer.android.com/reference/android/app/ActivityManager.html#getRecentTasks(int, %20int)
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningAppProcesses()
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningAppProcesses()
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningAppProcesses()
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningServices(int)
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningServices(int)
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningServices(int)
https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#TYPE_APPLICATION_OVERLAY
https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#TYPE_APPLICATION_OVERLAY
https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#TYPE_APPLICATION_OVERLAY

Bibliography

[27] Google, “Service | Android Developers.” https://developer.android.
com/reference/android/app/Service.html#startForeground(int,
%20android.app.Notification), 2018, [Online; accessed February-2018]

[28] W. Ryszard and T. Connor, “Apktool - A tool for reverse engineering 3rd party,
closed, binary Android apps.” https://ibotpeaches.github.io/Apktool/,
2012, [Online; accessed March-2018]

[29] Skylot, “jadx - Dex to Java decompiler.” https://ibotpeaches.github.io/
Apktool/, 2013, [Online; accessed March-2018]

[30] I. R. LLC, “Apkmirror.” https://www.apkmirror.com, 2014, [Online; accessed
March-2018]

[31] A. Henry, “Why Does This Android App Need So
Many Permissions?.” https://lifehacker.com/5991099/
why-does-this-android-app-need-so-many-permissions, 2013, [On-
line; accessed May-2018]

[32] O. Corporation, “Download Free Java Software.” https://www.java.com/en/
download/, 2018

[33] Google, “Android Debug Bridge (adb | Android Developers.” https://
developer.android.com/studio/command-line/adb, 2018, [Online; accessed
February-2018]

[34] Google, “Android 8.0 Behavior Changes | Android Developers.”
https://developer.android.com/about/versions/oreo/android-8.
0-changes#fvbi-signature, 2017, [Online; accessed May-2018]

[35] Google, “Services overview | Android Developers.” https://developer.
android.com/guide/components/services, 2018, [Online; accessed
February-2018]

[36] Google, “Manifest.permission | Android Developers.” https://developer.
android.com/reference/android/Manifest.permission#foreground_
service, 2018, [Online; accessed June-2018]

[37] Google, “Android 7.0 behavior changes | Android Developers.”
https://developer.android.com/about/versions/nougat/android-7.
0-changes#ndk, 2016, [Online; accessed Marc-2018]

65

https://developer.android.com/reference/android/app/Service.html#startForeground(int,%20android.app.Notification)
https://developer.android.com/reference/android/app/Service.html#startForeground(int,%20android.app.Notification)
https://developer.android.com/reference/android/app/Service.html#startForeground(int,%20android.app.Notification)
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.apkmirror.com
https://lifehacker.com/5991099/why-does-this-android-app-need-so-many-permissions
https://lifehacker.com/5991099/why-does-this-android-app-need-so-many-permissions
https://www.java.com/en/download/
https://www.java.com/en/download/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/about/versions/oreo/android-8.0-changes#fvbi-signature
https://developer.android.com/about/versions/oreo/android-8.0-changes#fvbi-signature
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://developer.android.com/reference/android/Manifest.permission#foreground_service
https://developer.android.com/reference/android/Manifest.permission#foreground_service
https://developer.android.com/reference/android/Manifest.permission#foreground_service
https://developer.android.com/about/versions/nougat/android-7.0-changes#ndk
https://developer.android.com/about/versions/nougat/android-7.0-changes#ndk

	List of Tables
	List of Figures
	Introduction
	Goal of this thesis
	Deliverables
	Research environment
	Road map

	Background
	Basic principles
	The callback mechanism
	API Levels
	The proxy pattern
	Signature and permissions

	Android applications
	Activities and tasks
	Broadcast Receivers
	Services
	Content providers
	Identify an application

	Applications interaction
	Intents
	Handlers and messages
	Binder

	Services
	Started and bound services
	IntentServices
	Foreground and Background Services
	Changes in Android Oreo

	Evolution of security mechanisms in Android
	Android threats
	Intent hijacking
	User interface attacks
	Callback mechanism failures
	Bluetooth based attacks

	Android security mechanisms
	Google Bouncer
	Implicit intents deprecation
	API methods restrictions
	Overlays limitations

	Vulnerability Description
	A new design choice
	Technical details

	Automatic Detection and Evaluation Tool
	Aim of the tool
	Reasons to use the tool
	Logical description
	Limitations
	Developer Manual
	Reversing the apk
	Manifest fetcher
	Source-sink search
	Automatic intent sender

	User Manual
	Results
	Third party applications
	System applications
	Consequences on Phone app

	Real implementation cases
	Using explicit intents
	Introduction to Reflection API
	How class objects are retrieved
	Exploiting class loaders
	How Context objects are retrieved
	Creating the explicit intent

	Using implicit intents
	Faking the Context

	Proposed solutions
	General considerations
	New onStartCommand() prototype
	Leveraging the permissions system
	Final considerations

	Conclusions
	Fix in Android P
	Future works
	Context faking exploitations
	ClassLoaders exploitations

	Final considerations

	Bibliography

		Politecnico di Torino
	2018-07-17T15:06:34+0000
	Politecnico di Torino
	Antonio Lioy
	S

