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Summary

Web tracking techniques are constantly evolving, becoming ever more pervasive and harm-
ful for user privacy and company security. The last years witnessed the birth and diffusion
of stateless tracking mechanisms, which go under the name of "fingerprinting", that allow
device identification without the need for client-side storage. These methodologies rely
exclusively on JavaScript scripts injected into the source code of webpages and the use
of particular APIs, initially created for other purposes, but which ultimately allow the
retrieval of device-identifying information. As JavaScript scripts are widely diffused on
the web and the APIs used for fingerprinting are in most cases essential for the correct
functioning of webpages, users have no means to avoid being tracked by services employ-
ing such methodologies, unless by using tools which severely harm user experience and
webpage functionality by selectively allowing the execution of Javascript scripts.

Motivated by the privacy and security risks, the purpose of this thesis has been the de-
velopment of automatic detection methodologies able to recognize fingerprinting scripts by
statically analysing their code, through the use of code-mining and machine learning algo-
rithms, in order to be ultimately able to identify scripts and block fingerprinting attempts.
The static approach presents advantages like the possibility to perform a totally offline
analysis and the lack of need for dependencies other than the set of analysed scripts, but
also limitations such as the impossibility to analyse strongly obfuscated scripts and a much
lower amount of extracted information. In particular, the system developed in this thesis
relies on the identification of API components and code patterns which are commonly used
in web fingerprinting methodologies, the creation of features from the extracted informa-
tion and the use of machine learning classifiers in order to label the analysed scripts as
fingerprinters or not.

The developed system obtained positive results and the static analysis through machine
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learning algorithms has been proven to be a valid approach for the automatic detection
of fingerprinting scripts in the web, although it presented some limitations which should
be addressed in the future by improving the current methodology or integrating it with a
dynamic system.
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Chapter 1

Introduction

The modern web represents the perfect environment for advertisements, as it offers im-
portant advantages over other platforms which can be crucial for advertising purposes.
Tracking techniques allow the discovery of users’ interests and preferences, and the knowl-
edge of this information is a significant advantage for advertisers as it becomes possible to
target advertisements to the users who are more probably interested in the related prod-
ucts, considerably increasing the effectiveness of advertising activities. For these reasons,
more than 20,000 services, called trackers, build their business on the collection of users’
data, in order to produce analytics and statistics about them and being able to target them
with advertisements concerning products which they are probably interested into. While
this mechanism could be considered beneficial to the end users, as the displayed advertise-
ments concern products which they consider interesting, it also represent a privacy threat,
as the amount of collectable information by using tracking techniques is alarmingly large.
In addition, web tracking represent a security threat for companies too, as tracking the
web activity of employees can lead to the leak not only of personal information about the
employees, but also of sensitive company data such as strategic plans and research and
development information.

Web advertisements base their working principles on auctioning mechanisms called real-
time bidding [16, 23]. Webpage areas dedicated to advertisements are frequently managed
by services called "ad exchanges" which, when the related webpages get loaded, expose
the collected data regarding the current visiting user, including his preferences, habits,
age, sex, geographical region and other information, to other services called "demand-side
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platforms", used by the advertised companies in order to access ad exchanges. Demand-
side platforms offer their bid for the advertisement, based on the received user information
and the advertised product, and at this stage the ad exchange service selects the platform
offering the best bid and displays the related ad.

Most of the free services offered on the web base their business model on advertise-
ments, and as these services multiply users’ personal information is increasingly exposed
to the trackers’ collection activities and, consequently, privacy risks for users are constantly
increasing.

At the birth of web tracking, its functioning was exclusively based on the use of cookies.
Cookies allow tracking services to assign to each user a unique identifier and store it into
the user’s web browser. Thanks to this system, tracking services can recognize the user on
multiple websites by reading the mentioned identifier, and therefore track the websites the
user visits. This technique is highly identifying, as each user is characterized by a different
identifier, but it presents a major problem: the lack of cookies persistence. Indeed, not
only web browsers store a limited number of cookies, but users can also easily manage
them and delete unwanted ones. This possibility limited the effectiveness of the tracking
activity, as a previously met user who deleted cookies related to a tracking service appeared
to the latter as a new, unknown user. This problem led to the development of new track-
ing methodologies, based on alternative storage locations as Flash cookies [2], Silverlight
cookies [3], ETags [8], web cache, window.name DOM property, HTML5 session, global and
local storage, HTML5 IndexedDB, and force-cached PNGs using HTML5 Canvas tags to
read pixels, used as cookies, back out [3]. By using alternative storages for saving the users’
unique identifiers, tracking services managed to increase the complexity, for a web user,
to avoid being tracked, as the system became more resilient. The use of the listed storage
possibilities led to the creation of respawning cookies, also called "evercookies" [18]: since
the same identifier is saved in multiple locations, in the case that only a part of the copies
gets deleted by the user it is possible to respawn the removed values from any storage that
persists, without affecting the tracking activity.

Figure 1.1 exemplifies this mechanism in the case the user identifier is stored both in
Flash and HTTP cookies and the latter gets removed by the user.

Another commonly used workaround for the deletion or total blockage of cookies is
embedding unique identifiers in URL queries of HTTP requests [12]. By using this tech-
nique, it is extremely difficult for a user to avoid being tracked as the query containing the
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Figure 1.1: From [2]. Respawning HTTP cookies from Flash cookies: (a) the webpage
stores an HTTP and a Flash Cookies (LSO), (b) the user removes the HTTP cookie, (c)
the webpage respawns the HTTP cookie by copying the value From the Flash cookie.

corresponding identifier can be mixed together with other functional queries, and as such
it becomes challenging to detect, other than impractical.

An additional tracking methodology, developed in order to enhance tracking accuracy,
has been cookie synchronization, also known as cookie matching [2, 6]. Through this
practice, tracking services exchange the assigned identifier to a given user, so as to extend
the amount of retrieved information about that particular user.

Despite the already high pervasiveness of the exposed tracking methodologies, new
stateless tracking mechanisms have been developed in the last years allowing to recognize
devices which have been previously encountered by a tracking service without the need to
depend upon stateful systems, like cookies and HTML5 storage. These techniques rely on
JavaScript scripts, widely used in the web and difficult to control by an end user without
breaking the relative web page functionality, in order to collect a vast amount of information
regarding both hardware and software characteristics of the machine on which they are
being executed, allowing for its unique identification. These procedures, which goes under
the name of "fingerprinting" since a fingerprint of the executing machine is produced in
order to uniquely identify it, represent a major privacy threat as it becomes extremely
difficult to avoid being tracked, since only an expert user can distinguish fingerprinting
scripts from those which are functional for the webpage. Additionally, even in the case
of an expert user, the process of selecting which of the scripts contained in a webpage to
execute and which to block is remarkably complex and tedious, and for these reasons it
cannot represent a valid countermeasure against these tracking methodologies.

The purpose of this thesis has been the creation of a system capable of automatically
detecting fingerprinting scripts by statically analysing them, and therefore without the
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need to execute the contained code, through the use of code-mining and machine learning
algorithms.

The following work is structured as follows: chapter 2 describes the existing finger-
printing techniques, how they operate and the analysis and results obtained by previous
works which investigated web fingerprinting mechanisms; chapter 3 and chapter 4 illus-
trate the developed system, its working principles and the undertaken decisions during its
development; chapter 5 reports the system results, both during the development and at
its end; finally, in chapter 6 are expressed some observations about the system, the chosen
approach, the obtained results and possible improvements to be considered in future work.
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Chapter 2

Background and related work

In the following sections, the main fingerprinting techniques are introduced by explaining
their working principles, analysing their effectiveness and presenting the results obtained
by noticeable previous works which examined them and, in some cases, proposed possible
defence mechanisms.

2.1 Canvas fingerprinting

According to [2], canvas fingerprinting is the most widespread fingerprinting technique on
the web. It bases its operation on the use of HTML5 canvas element and it has been
first discovered by Keaton Mowery and Hovav Shacham in [13]. The final image rendered
through the mentioned HTML5 element presents, in fact, slight diversities among different
machines based on differences in the operating system, set of installed fonts, graphics card,
graphic driver, physical display and even internet browser used by the machines rendering
it. Moreover, the technique is completely transparent to the users, as drawing elements into
a canvas context and managing it can be done without displaying the obtained image on the
webpage. Mowery and Shacham estimated an entropy of at least 10 bits for the fingerprint
obtained by using the HTML5 canvas element, meaning that one in a thousand users share
the same fingerprint. This estimation is considered very conservative as Benoit Jacob, in
[7], already approximated an entropy of 9 bits caused exclusively by the GPU model. In
Mowery and Shacham’s experiment, 94.2% of the analysed devices were characterized by
a unique fingerprint.
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Figure 2.1: From [2]. Frequency of canvas fingerprinting scripts on the home pages of the
Top Alexa 100K sites.

Canvas fingerprinting works by creating a particular image, aimed at exposing possi-
ble peculiarities of the machine on which the corresponding code is being executed, and
then retrieving the image by converting it into a string (and, in some cases, hashing the
resulting string). In order to uncover these peculiarities, the image contains one or more
strings, characterized by a given font and size, aimed at highlighting font rendering differ-
ences between the analysed devices. Other than diversities caused by graphical rendering
properties, such as font rasterization, anti-aliasing and smoothing, the string also aims at
verifying the support of different writing scripts and at checking how particular Unicode
characters, like those corresponding to emojis, are rendered, exposing the different imple-
mentations adopted by operative systems and their versions. The two methods commonly
used for the described purposes are fillText() and strokeText(). Additional common
checks in canvas fingerprinting concern globalCompositeOperation support, which man-
ages how overlapping images are drawn, and the test for the presence of a specific point
in a path by drawing two or more geometrical shapes and using the isPointInPath()

method. Figure 2.2 illustrates the rendered figure when performing canvas fingerprinting
through the use of the Fingeprintjs2 library1. "Cwm fjordbank glyphs vext quiz" is a fa-
mous pangram2 commonly used in canvas fingerprinting, with the aim of drawing every
letter of the alphabet in the canvas context in order to maximize the probability of ren-
dering differences between the fingerprinted devices. Printing a string containing all the
Latin letters in alphabetical order is also a common practice.

Finally, multiple methods can be used in order to return the created image: readPixels(),

1FingerprintJs2 - Modern & flexible browser fingerprinting library: http://valve.github.io/
fingerprintjs2/

2Pangram: a sentence containing every letter of the alphabet.
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2 – Background and related work

Figure 2.2: The rendered image in Fingeprintjs2’s canvas fingerprinting.

getImageData(), toDataURL(), toBlob(), mozGetAsFile(), mozFetchAsStream() and
extractData() [2, 11, 13] all represent valid alternatives for retrieving the information
contained inside the rendered image and use it as a device identifier. In particular, the
most used methods in canvas fingerprinting are toDataURL(), which returns a base64-
encoded URI containing a representation of the drawn image, and getImageData(), that
returns an ImageData object which includes, in its data property, the RGBA values corre-
sponding the image. The other methods, as stated in [2], are rarely used for fingerprinting
purposes as they would require extra steps without gaining any advantage in the final
result.

As reported in [5], the usage of canvas fingerprinting has noticeably decreased among
tracker services in the last years as it brought negative public perception to those using
it. Nevertheless, its diffusion on the web has increased considerably, as knowledge of the
technique has spread and more obscure trackers have not been concerned about public
perception.

2.2 AudioContext fingerprinting

AudioContext fingerprinting is another fingerprinting methodology which bases its func-
tioning on hardware and software differences between the machines on which it is applied.
In particular, the internet browser and the audio stack, including the specific audio card
mounted on the machine, the audio driver and the operating system, are the causes for the
differences between machines which allow their fingerprinting.

This technique is usually deployed using two alternative processes, illustrated in Fig-
ure 2.3. The first method, illustrated in the upper part of the figure, is obtained through
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Figure 2.3: From [5]. AudioContext node configurations used to generate a fingerprint.
Top: Used by www.cdn-net.com/cc.js in an AudioContext. Bottom: Used by

js.ad-score.com/score.min.js in an OfflineAudioContext.

the use of an AudioContext, which is an audio-processing graph built from audio mod-
ules linked together. It makes use of an OscillatorNode in order to create an audio
wave, whose type is not relevant for the fingerprinting purposes. This node is followed by
a second node, of type AnalyserNode, which is able to provide real-time frequency and
time-domain analysis information. This is the most important node for the fingerprinting
purposes, as it allows to analyse the audio wave produced by the system and to collect
its frequencies components. For this purpose, a Fast Fourier Transform (FFT) is used by
the node in order to sample the wave signal over a period of time and divide it into its
frequency components. A GainNode is follows the Analyser, setting the audio gain to 0 in
order to avoid reproducing audible sounds, making the fingerprinting technique transpar-
ent to te tracked user. The frequencies values used for creating the unique identifier are
commonly retrieved using the getFloatFrequencyData() method of the AnalyserNode

object. getByteFrequencyData() could be a valid alternative, but its use has not been
noticed for fingerprinting purposes nor in previous works nor in this thesis’ study. Finally,
the gathered values are hashed and the resulting string is used as the fingerprinted device
identifier.

The latter method, illustrated in the lower part of the figure, employs an
OfflineAudioContext, which differs from the standard AudioContext because it doesn’t
render the audio to the device hardware but it outputs the result to an AudioBuffer. In
this case a DynamicCompressorNode is used instead of the AnalyserNode exploited in the
previous method. This node is used to tweak the audio wave that is successively passed to
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2 – Background and related work

an AudioDestinationNode, which represents the final destination of the audio wave. From
this node, the buffer representing the processed audio wave buffer is retrieved and, simi-
larly to the previous methodology, it gets hashed in order to create the device-identifying
string.

Figure 2.4: Audio frequency samples obtained by two different machines: the red samples
are produced using Google Chrome on Android, the blue ones by running Microsoft Edge

on Windows. The graphical representation has been generated by using Princeton
CITP’s AudioContext Fingerprint Test Page3.

In [5], Steven Englehardt and Arvind Narayanan estimated an entropy for the described
fingerprinting methodology of 5.4 bits, basing their evaluation on a set of 18,500 devices
which produced 713 different fingerprints. This value is not sufficient for the described
technique to uniquely identify the targeted devices, but it can be used in conjunction with
other methodologies in order to create a fingerprinting system based on multiple techniques.

2.3 WebGL fingerprinting

WebGL is a graphics API used for rendering interactive 2D and 3D objects in the browser
and manipulate them through JavaScript without the need for external plugins, allow-
ing GPU-accelerated usage of physics, image processing and effects as part of the web
page canvas. However, differently from standard canvas elements, this API does not use
CanvasRenderingContext2D but a dedicated context, which is WebGLRenderingContext.

Possible fingerprinting methodologies offered by this API have been initially analysed

3Princeton CITP’s AudioContext Fingerprint Test Page: https://audiofingerprint.openwpm.
com/.
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in [13] and were based on the same working principles which characterize canvas finger-
printing: the rendered image, in fact, presents slight differences based on the graphics
cards of the machines on which it is rendered, even if drawing a simple scene consisting
of 200 polygons, a black and white texture applied on their surfaces, a simple ambient
and directional lights. The motivation for these differences is to be found on the different
graphical stacks characterizing the tested machines, similarly to what causes analogues dif-
ferences in canvas fingerprinting. Given the similar dependencies to the already introduced
fingerprinting methodology, this technique has not faced the same diffusion on the web as
canvas fingerprinting, since the latter’s complexity is considerably lower while providing
comparable information.

Nevertheless, the API presents another privacy vulnerability which can be exploited for
obtaining information about the device on which the rendering context is created: initially
designed for supporting developers but available for any purpose, some of the methods
offered by the API expose informations about the physical GPU, the operative system
and the related environment which characterize the machine on which they are called. In
particular, the WEBGL_debug_renderer_info interface provides two properties, the WebGL
vendor and the WebGL renderer, which return the name of the GPU vendor and model,
respectively. In addition, WebGLRenderingContext offers, through the getParameter()

method, an access to over 90 parameters which highly depend on the graphics stack of the
device executing the code, and all together represent a noticeable amount of information
which can support other fingerprinting techniques in order to better identify a device.

Finally, in Appendix B it is reported an example of fingerprinting code using the WebGL
API and the described mechanism.

2.4 Battery fingerprinting

The Battery Status API provides information about the battery charge level, its charging
or discharging status, the amount of time remaining for the battery to get completely
charged or discharged and can also be used in order to get notifications, through an event-
based system, about changes in the mentioned information. It has been first presented
in April 2011 [9], became a W3C Candidate Recommendation in May 2012 [10], and web
browsers started supporting it, both on mobile and desktop platforms, in the same year
[14, 22], but as Łukasz Olejnik et al. found several privacy vulnerabilities derived by a
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possible API misuse in 2015 [17], browsers started limiting or removing support to the
API. The mentioned paper showed how the Battery API can lead to user tracking both
by using small amounts of battery readouts, in which case the tracking would be valid in
the short-term, and by using high amount of readouts, which allow the reconstruction of
the battery capacity and a long-term tracking procedure. In particular, the battery charge
level property allows retrieving the necessary readouts, which make possible short-term
tracking mechanisms. This value, if combined with the public IP address of the tracked
device, can lead to the identification of a device in the short-term, as a device characterized
by the same IP address of a previously recorded device and a battery level coherent with the
amount of time that has passed from the last encounter has high probabilities of being the
same device. Additionally, at the time of the discovery, Mozilla Firefox on Linux presented
an additional weakness, as it returned a double-precision floating-point value corresponding
to the exact battery charge level detected by the operating system, and even on other
browser-OS combinations, on which this value was truncated before being exposed by the
API, it was possible to calculate an higher measurement precision than the one obtained
by reading the charge level by combining its value with the one of chargingTime or
dischargingTime. By gathering and collecting such information, it is possible to estimate
the tracked device’s battery capacity and use it alongside other device properties in a
broader device fingerprint [15]. As of today, Mozilla Firefox and WebKit removed the
API support, Microsoft Edge never supported it but it is listed in the Microsoft Edge web
platform features status and roadmap, currently labelled as "Under consideration"4, and
Google Chrome still fully supports the API, returning truncated values for the battery
readouts. Being Chrome the currently most widely used web browser, occupying over 62%
of the browser market share in June 2018 according to NetMarketShare5, this tracking
technique has been included among the methodologies detected by the developed system.

4Microsoft Edge web platform features status and roadmap - Battery API: https://developer.
microsoft.com/en-us/microsoft-edge/platform/status/batterystatusapi/

5NetMarketShare Market Share Statistics for Internet Technologies - Browser Market Share: https:
//netmarketshare.com/browser-market-share.aspx
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2.5 Font enumeration

Font enumeration represent another common technique used in order to create a device
fingerprint, which bases its working principles on the probe of a high number of fonts,
checking for their support on the tracked machine. This process leads to the extraction
of device-identifying information since the set of supported fonts depends not only on the
operating system and its version, but also on the software which is installed on the machine.
Moreover, since fonts are OS-dependent, they allow linking different browsers running on
the same device [1].

This procedure can be obtained in two alternative ways, the first based solely on
JavaScript and HTMLElement properties, commonly referred to as JavaScript-based font
enumeration, and the second based on HTML5 <canvas> element and the correspond-
ing properties provided by CanvasRenderingContext2D, and for this reason referred to as
canvas font fingerprinting.

JavaScript-based font enumeration is the most diffused methodology of the two, as it
allows retrieving similar amount of information in a simpler way. The technique relies on
the browsers’ behaviour in case a non-supported font is set for writing a string in the HTML
document: in fact, in this case browsers automatically switch to a default font and write the
text by using that font instead of completely failing the writing attempt. Exploiting this
practice, in order to perform the necessary font probing the technique starts by creating
a specific HTML element and writing inside it a string characterized by a non-existent
font. This string gets automatically written using the default font, and at this stage the
dimensions of the mentioned HTML element are measured through the use of offsetWidth

and offsetHeight properties or by calling the getBoundingClientRect() method, and
saved into a dedicated variable. At this stage it is possible to start probing for the support
of other fonts, by repeating the described process for each of them and comparing the
measured element’s dimensions to those obtained by the default font: since each font is
characterized by slightly different measures on the same text, an equality to those of the
default font can be intended as the lack of support for the tested font on the device, and
the consequent automatic switch to the default one. Using this mechanism, a considerable
amount of fonts are tested (circa 500 in the most diffused JavaScript snippet), retrieving
identifying information about the analysed device. Figure 2.5 illustrates the diffusion of
the described methodology on the homepages of the top 1 million Alexa websites in 2013.
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Figure 2.5: From [1]. JavaScript-based font probing scripts on homepages of top 1 million
Alexa sites.

Canvas font fingerprinting is obtained in a very similar way to JS-font fingerprinting,
performing the same operations in a CanvasRenderingContext2D and measuring the text
size through the measureText() method. In [5] Steven Englehardt and Arvind Narayanan
encountered this technique on 3,250 first-party sites over the top 1 million Alexa websites,
corresponding to less than 1% of them but, as they highlight, the technique is more heavily
used on the top sites, reaching 2.5% on the top 1,000, and in the majority of cases (90%)
the corresponding JavaScript script was served by a single third-party, mathtag.com.

2.6 Plugin and mimetype enumerations

Plugin and mimetype enumerations are part of the most widespread fingerprinting tech-
niques, as they are very simple to realize and, according to [4], the most identifying finger-
printing methodology, as their results are characterized by an entropy which goes from 16.5
to 17.7 bits. The code needed for producing such fingerprints is minimal, as it is only needed
a loop construct to analyse every plugin or mimetype respectively exposed by the DOM
properties navigator.plugins and navigator.mimetypes. In particular, the retrieved
information is provided by the .name, .filename, .description and .version properties
of the Plugin objects contained in the PluginArray provided by navigator.plugins, and
the .enabledPlugin, .description, .suffixes and .type properties of the MimeType in-
stances in the MimeTypeArray provided by navigator.mimetypes. As it is intuitable, the
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amount of information collected through the presented properties in considerable, as it
fetched not only the support or not of a plugin or mimetypes, but also other details as
its version, the name of the file corresponding to the plugin, the list of supported suffixes
by a mimetype and other details which allow the achievement of the 17.7 bits of entropy
calculated in the aforementioned paper. In order to produce a fingerprint, as it is often
the case with other techniques, the retrieved values are concatenated into a string and, by
applying an hashing algorithm on it, the device identifier used for the pursued intents is
created.

2.7 DOM properties collection

The collection of generic DOM properties represents one of the oldest and most simple
fingerprinting techniques, as it relies exclusively on the collection of various property values
offered by the navigator and screen APIs, which highly depend on the characteristics of
the fingerprinted device. In Appendix A it is specified the list of over 30 properties which
are taken into consideration in the developed system, as they are particularly common in
fingerprinting scripts collecting information about the device by using this technique. The
obtained information varies from the browser vendor to its language, from the screen’s
colour depth to its DPIs, from the number of cores of the device’s CPU to the maximum
number of touches detected by the screen at the same time: as it is noticeable analysing the
mentioned list, the gathered data highly depends on the web browser, the operating system
and the physical hardware of the fingerprinted device. As with other methodologies, also
in this case the collected data is concatenated and successively hashed in order to obtain
a device identifier.

2.8 Fingerprinting applications

Fingerprinting techniques are not enough, if taken singularly, to uniquely identify a device
corresponding to a user. As the global population was estimated to 7.6 billions people in
2017 [19], the necessary amount of entropy to uniquely identify every human being is:

Entropy = − log2
1

7600000000 = 32.823 bits

No fingerprinting technique reaches this entropy level. Nevertheless, by combining the
presented fingerprinting methodologies, it is possible to move closer to it, and in fact this
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is the path taken by fingerprinters on the web. Figure 2.6 shows the results obtained by
EFF’s Panopticlick 3.0 fingerprinting test page6. As it is noticeable from the figure, the
test uses most of the presented methodologies in order to produce a device fingerprint. In
the test, the obtained fingerprint resulted to be unique among the 1,813,420 tested in the
previous 45 days, and it produced at least 20.79 bits of identifying information.

Figure 2.6: Device fingerprinting results obtained by Panopticlick 3.0 using Mozilla
Firefox 61.0.1 on Windows 10.

Finally, it is important to remark that device fingerprinting is not used exclusively

6Panopticlick 3.0 - Is Your Browser Safe Against Tracking?: https://panopticlick.eff.org/
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for tracking purposes. As the presented techniques evolved, their use for fraud detection
purposes became more and more common [5], as users logging in from unknown devices can
be the result of possible account thefts, and security-critical services (e.g: online banking)
can trigger additional checks if needed. As the final purpose of device fingerprinting cannot
be discerned on the client-side, since it depends on the fingerprinting services internal uses
of the retrieved identifiers, the automatic detection system developed in this thesis makes no
distinction between the two usage categories, detecting fingerprinting procedures regardless
of their final purposes.
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Chapter 3

Code Analysis

The chosen approach for automatically detecting fingerprinting scripts is based on the use
of binary classifiers in order to distinguish JavaScript scripts which attempt to create a
fingerprint of the visiting device, gathering information trough known JavaScript APIs,
from "safe" (i.e. non-fingerprinting) scripts. The analysis is fully static, which means that
the code contained in the analysed scripts is never executed during the process but its text
is parsed and processed before the successive execution of a machine learning classifier,
producing the features that the classification algorithm will later use. The static approach
is rarely to be found in previous works as it brings different limitations in the amount of
information that can be extracted when analysing the code, and in particular it impedes
an effective analysis of obfuscated scripts and prevents from knowing object’s values at
execution time. Nevertheless, static analysis allows analysing a script even without being
in possess of its dependencies as it would be necessary when executing the code in a dynamic
approach, and more importantly it allows a totally offline analysis. These advantages, in
conjunction with the methodology being almost unexplored until today for the detection
of fingerprinting scripts, led to a static approach to the problem in this work, accepting its
limitations in particular with obfuscated scripts.

During an early research about previous works addressing the JavaScript fingerprinting
detection problem, only "Detection of Browser Fingerprinting by Static JavaScript Code
Classification" by Tim van Zalingen and Sjors Haanen, 2018 [21] has been found to have a
static approach. Its authors used a deobfuscator/beautifier in order to try to deobfuscate
scripts which have been obfuscated through common weak obfuscation techniques, then
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created an Abstract Syntax Tree of the deobfuscated code and used it in order to "expand"
every member expression contained in the code, meaning that if a value has been assigned
to a variable through a variable declarator or an assignment expression, the correspondence
was recorded and in the following occurrences of that variable it has been substituted by
the value it has been assigned (the process will be examined in depth in section 3.2).
Finally, the number of occurrences of JavaScript APIs commonly used in fingerprinting
techniques was counted and the count values were used as features in a Support Vector
Machine binary classifier in order to determine which scripts attempted to create a unique
fingerprint for the device executing the code.

In the aforementioned project an extremely limited number of scripts consisting of 25
samples has been used in order to train and test the classifier, the Abstract Syntax Tree has
not been fully exploited in order to extract the maximum amount of information from the
analysed code and, more importantly, the only type of fingerprinting technique addressed
by above-mentioned work is the one based on plugins or mimetypes enumeration and
general DOM properties collection. Moreover, differently from the project developed in
this thesis, the classification as fingerprinter or safe did not refer to single JavaScript
scripts but to entire domains, analysing all of the scripts retrieved from a domain and then
marking the entire domain as a fingerprinter or not.

Given that the mentioned work’s code is publicly available at [20] and that the structure
of the used methodology reflects what was the initial concept for the project developed in
this thesis and appeared as a valid approach from the results obtained by the cited study,
it has been used as a starting point and modified in order to adapt it to this work’s
goals. The following sections describe in detail the phases that compose the scripts’ code
static analysis characterizing the system developed in this thesis, while in chapter 4 the
classification phase, obtained through machine learning algorithms, is examined.

3.1 Code deobfuscation and beautification

In this phase a JavaScript script executed in Node.js is used in order to deobfuscate scripts
which have been obfuscated using common weak obfuscation techniques: in particular,
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the addressed obfuscation methods and tools are Javascript Obfuscator 1, Dean Edward’s
packer 2, urlencoded JavaScript code and an old tool called MyObfuscate, now discontin-
ued, which mostly based its obfuscation procedure on urlencoding JavaScript code.

This deobfuscation procedure remained mostly untouched if compared with the one of-
fered by Tim van Zalingen and Sjors Haanen in their project, since deobfuscating JavaScript
code is not one of the main goals of this work, given that static deobfuscation is possible
only with a limited number of obfuscation methods and that, by choosing a static approach
to the fingerprinting scripts detection problem, the possibility of being unable to properly
process obfuscated scripts was accepted from the beginning, and any success in this sense
has been considered a bonus more than an actual objective.

The present phase consists of two sub-phases: in the first it is attempted, during the
analysis of a script, to detect obfuscation and eventually deobfuscate the code, while in
the second phase the code is beautified and shaped in a more human-readable form.

In order to detect the code which has been obfuscated through JavaScript Obfuscator

a regular expression in used, searching for matches on obligatory patterns in the resulting
code. Once that obfuscated code has been detected, the hexadecimal numbers characteriz-
ing this technique, since they are used in order to replace literal characters, are converted
back into ASCII characters and the resulting script is saved for further, subsequent pro-
cessing.

Scripts compressed through packer are detected by searching, again by using a regular
expression, for a static pattern common to all of the scripts compressed in this way. The
eval function, used in these scripts in order to execute the obfuscated code, is temporarily
overwritten by a substitute function that, after unpacking the code (i.e. made it readable,
and so statically analysable), collects its deobfuscated text into a variable instead of exe-
cuting it, as it would happen with a regular eval function. This process can defeat also
some other eval-based obfuscators, as they pack the code in a very similar way to what
packer does. The produced code is stored for the following processing steps.

Finally, the detection and deobfuscation of scripts obfuscated through the MyObfuscate

1Javascript Obfuscator (https://javascriptobfuscator.com/) bases its obfuscation procedure
on converting ASCII characters which constitute the code of the script into hexadecimal numbers, which
are then converted back at execution time and the resulting code is then executed.

2Dean Edward’s packer (http://dean.edwards.name/packer/) is an eval-based JavaScript com-
pressor that aims at reducing the code size but also causes the code to be illegible (obfuscated) until it
is not converted back to a convetional form through the execution of the eval function.
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tool or the urlencode function is obtained in a similar way, since these techniques are com-
parable, and it consists in searching for known patterns characterizing scripts obfuscated
through these methods, detecting strings corresponding to obfuscated code and using the
unescape() JavaScript function, which decodes url-encoded strings, in order to obtain a
clear, readable version of the code.

Once that the deobfuscation attempts have taken place, the js-beautify npm3 package
is exploited in order to reformat and reindent the code, enhancing its readability. This last
step is not strictly necessary for the fingerprinting detection process to work, but it is useful
in order to successively check manually the goodness of the classification results.

3.2 Abstract Syntax Tree, member expression expan-
sion and patterns check

For the following phase an Abstract Syntax Tree (AST) is created, based on the deob-
fuscated code. Similarly to the previous one, this phase is obtained through a JavaScript
script executed in Node.js. In order to create the AST and explore it, so as to expand the
member expressions contained in the script and identify patterns and APIs occurrences
which are commonly use in web fingerprinting techniques, two npm packages are used,
respectively esprima4 and estraverse5.

3.2.1 Member expression expansion

Working principles

An Abstract Syntax Tree allows creating a tree representation of the syntactic structure
of the code in which each node stands for a code construct in the analysed script, pro-
viding, for every node, information about its construct type, its position and additional,
construct-specific properties. This allows recording, for each scope, variable declarations
and assignations, and also permits the identification of particular code patterns which are

3npm is the default package manager for JavaScript in the runtime environment Node.js. Other
than a local, command-line client, able to download, install and manage packages, it offers an online
database called "npm registry", where the available packages can be browsed.

4esprima npm package: https://www.npmjs.com/package/esprima
5estraverse npm package: https://www.npmjs.com/package/estraverse
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useful to analyse in order to produce features for the following classification phase, extract-
ing, within the limits of a static analysis, a noticeable amount of information about what
will probably happen once that the code will be executed.

The successive classification phase is based on features consisting in the number of
occurrences of code patterns and known JavaScript API particularly common in finger-
printing scripts, therefore counting the right amount of occurrences is fundamental for
the classification phase to work properly. In this sense a mere string-matches count over
the deobfuscated file would produce poor results, since after every variable assignation
the subsequent occurrences of the left operand in the assignation would not be counted
as occurrences of the right operand. The following example shows a basic case in which
string-matching over the deobfuscated script would not work in order to identify the access
to window.screen properties.

var ws = window.screen;
var wsw = ws.width;
var wsh = ws.height;
var wsc = ws.colorDepth;
var wsp = ws.pixelDepth;
var wsvdpi = ws.verticalDPI;
var wshdpi = ws.horizontalDPI;

Listing 3.1: Code snippet on which a string-matching search would not be adequate in
order to count the number of occurrences of calls to window.screen properties.

If searching for string-matches over window.screen.height or any other
window.screen property, the occurrences count in the illustrated code would be equal
to zero, given that an exact, complete string representing the access to the mentioned
properties in not present in the code. This is a first, fundamental case in which the use
of an Abstract Syntax Tree is crucial: by recording, for each scope, all of the variable
assignations it is possible to substitute the following occurrences of the left assignation
operand with the right operand. By successively reporting on an output file every member
expression contained in the code and expanding them (i.e. substituting a member expres-
sion with its assigned operand in a previous assignment expression in the same scope) it
becomes possible to count the right amount of occurrences through string-matching. List-
ing 3.2 depicts what the described process would produce as output file when executing it
on the upper code snippet.
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window.screen
window.screen.width
window.screen.height
window.screen.colorDepth
window.screen.pixelDepth
window.screen.verticalDPI
window.screen.horizontalDPI

Listing 3.2: Member expression expansion phase output.

Performing a string-matching search over Listing 3.2 is now a reasonable approach in
order to count window.screen properties occurrences.

Expanding member expressions

In order to perform the member expression expansion, each node of AST created from the
analysed code must be processed. The AST can be easily obtained through the esprima

package, passing to its parse method the code that is going to be analysed. The method
returns an object corresponding to the AST, which is successively passed as an argument
to the traverse method of the estraverse package together with two functions, enter

and leave, which are executed respectively when entering and leaving a node during the
tree traversal and that, jointly, contain all of the processing logic that will be applied on
each node.

When analysing a node, the first step consists in a check on its type property: it specifies
the kind of syntactic construct to which the node corresponds, and as such it is the main
trait that characterizes the node. The first test regards the eventual creation of a scope:
nodes that have a type corresponding to FunctionDeclaration, FunctionExpression

or Program create a new scope, which is a fundamental information in order to expand
member expressions since the correspondences established by variable assignations are valid
only within their scope, and as such a collection of scopes and relative assignations is kept
during the AST traversal in the form of different associative arrays, one for each scope.
Node type is again the inspected property in the following check, aimed at detecting an
assignment operation: the searched node types are VariableDeclarator, as during its
declaration a variable may be initialized, and AssignmentExpression. When one of these
node types in encountered, the left and right operands of the assignation are memorized into
an associative array containing all the assignations that are part of the corresponding scope,
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saving the left operand as a key of the associative array and the right one as the relative
value. The name of the right operand is inspected before its memorization inside the array,
in order to expand it in case it already corresponds to another expression. This check is
performed recursively until the initial expression is found. Finally, when a node with type
MemberExpression is found, it gets analysed in order to expand it and store the expanded
value on the script’s output file. A member expression can contain one or more other
member expressions inside as it is, for example, with w.screen.height, since it contains
the member expression w.screen and the property identifier height. In order to properly
manage these cases, only the first expression is analysed when processing the corresponding
node, as the inner ones correspond to other nodes that will be analysed later in the AST
traversal. In the cited example, w.screen is, in turn, composed by the object w and the
property screen: in the case var w = window was one of the previous expressions in the
same scope, the analysed member expression will be expanded to window.screen.height.

3.2.2 Plugin and mimetype enumerations detection

The Abstract Syntax Tree is also useful in order to detect the most identifying fingerprinting
techniques: plugin and mimetypes enumeration. Since these techniques rely on loops in
order to detect installed plugins and supported mimetypes by the browser, it is possible
to isolate calls to navigator.plugins, navigator.mimetypes or their properties that are
located inside a loop by analysing the AST and checking if their relative nodes have, among
their parent nodes, a node corresponding to a loop, meaning that they are placed inside a
loop construct.

There are four loop types in JavaScript: while, do-while, for and for-in loops, which
correspond to the node types WhileStatement, DoWhileStatement, ForStatement and
ForInStatement inside the AST. When traversing the tree, it is checked if the currently
analysed node is characterized by one of these types. If it does, the node is recorded into an
array containing all the nodes which start a loop. When the leave function will be called
on the same node which started a loop, meaning that all of its children nodes have been
parsed and the analysis is leaving the code corresponding to the loop, the node is removed
from the looping nodes array. In this way it is possible to know if a node is part of a loop or
not by checking the looping nodes array’s size: if it is different from zero, then the currently
analysed node is contained inside a loop, otherwise it is not. Once that it is known that
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the currently analysed AST section is part of a loop, for each MemberExpression node it
checked if its expanded version contains a string identifying a call to navigator.plugins,
navigator.mimetypes or one of their properties: if it does, the -detectedLoop suffix is
added to the expanded value which will be reported on the current phase’s output file, in
order to distinguish occurrences of the mentioned APIs appearing inside a loop from those
which does not.

The plugin and mimetype enumerations detection system has been improved during the
whole thesis’ development phase, as it showed some problems which have been gradually
addressed. The issues were due to the fact that, as it is intuitable, not every occurrence
of the concerned APIs which is contained inside a loop aims at enumerating plugins or
supported mimetypes. Consequently, additional conditions and checks necessary to mark
an occurrence as a possible enumeration attempt have been added during the work.

The accessed navigator.plugins or navigator.mimetypes index should not be a con-
stant number or string but a variable: this because it is very common for the developer
to check for the presence or not of a plugin by trying to access its index and then test
on the returned value in order to understand if the plugin is installed or not. However, if
the accessed index is constant, it is very probable that the developer is checking for the
presence of a limited number of plugins, and so the API occurrence should not be marked
as a potential enumeration attempt. This test is performed by checking the node type of
the AST node corresponding to the index: if the type is Literal, then the index is not a
variable but a string, and thus the -detectedLoop suffix, identifying possible enumeration
attempts, is not added to the expanded value of the corresponding member expression.

Another condition regards the position of the API call occurrence: in the AST, chil-
dren nodes of a loop-identifying node are not only the ones corresponding to syntactic
constructs contained inside the loop block, but also those occurring inside the loop condi-
tional expression. In these cases an enumeration attempt is extremely unlikely, and as such
these occurrences should not be marked by the aforementioned suffix. Every AST node
corresponding to a loop is characterized by the test property, containing the node of the
syntactic construct coinciding with the loop’s test condition. By excluding the member
expressions contained in this node is then possible to avoid marking as potential enumer-
ation attempts the API calls positioned into the loop condition. An additional check is
performed when analysing a for loop, given that other than a test condition and a body it
is characterized by the presence of an initialization field and an update field, also present
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as properties in the relative AST node. While the update field is normally processed, since
the enumeration process can take place inside it, it is unlikely for it to occur into the
initialization field, which therefore is excluded from the enumeration check.

/* In the following example the call appearing in the test condition of the for
loop is not marked as a possible enumeration attempt, as occurrences
located there are exluded from this inspection. However, the call inside
the if conditional expression in this case would be marked as an
enumeration attempt, even if it is not: this issue will be solved in the
following steps */

var flash = false;
for (var i = 0; i < navigator.plugins.length; i++) {

if(navigator.plugins[i].name.indexOf("Adobe Flash") != -1) {
flash = true;
break;

}
}

/* The following example is characterized by two navigator.plugins occurrences
inside a for loop. While the first one is not marked as an enumeration
attempt since it is located in the test condition of the loop, the second
one is noted as such, being placed into the update field. */

var pluginsEnumeration = "";
var np = navigator.plugins;
for (var i = 0; i < np.length; pluginsEnumeration += np[i].name + "-" +

np[i].description + "-" + np[i].version + "|", i++)
/*

Listing 3.3: Examples illustrating a case in which the abovementioned APIs occurrences
are ignored and one in which they are detected as a possible enumeration attempt.

As commented in Listing 3.3, a problem persists: it is a common practice for developers
to loop on the whole plugins collection in order to check if some plugins or mimetypes,
necessary for their code to work properly, are installed on the browser. In these cases,
exemplified by the aforementioned code sample, calls to the indicated APIs would occur
inside a loop block and, as such, they would be marked as enumeration attempts. In
order to avoid so, a check on nodes of type IfStatement having among their parents a
node with a type indicating a loop (and as such being the corresponding code located
inside a loop) is performed. In case the if statement’s test condition implements a check
on the accessed plugin by comparing its name with a constant string through an equality
operator or by using the indexOf method and checking its return value, the accesses to
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the concerned APIs are excluded form the enumeration attempts detection. This condition
avoids errors when such a test is performed through the use of an if statement, but in
JavaScript another common syntax is used in order to execute a test, achieved by the usage
of logical expressions based on the operator &&: in the case of the operator in question,
if the left operand returns false then the right one is not evaluated, since it would be
superfluous as the final result would be false in any case. Exploiting this behaviour,
the mentioned syntax is used to achieve a conditional execution, by using the condition
as the left operand of logical expression and the code that needs to be executed if the
condition is satisfied as the right operand. Given the above, the same tests performed on
if statements are applied to the described construct, detected through the AST nodes
having type LogicalExpression.

var pdfViewer = false;
var np = navigator.plugins;
for (var i = 0; i < np.length; i++) {

np[i].name == "Edge PDF Viewer" && pdfViewer = true;
}

Listing 3.4: Code sample illustrating a case in which the mentioned test is fundamental
in order not to mark as possible enumeration attempt the described construct, if a test on
the plugin’s name is contained.

3.2.3 Other detected constructs

The AST is useful not only for expanding all the member expressions and detecting plugins
or mimetypes enumerations, but also in order to detect other types of enumerations and
fulfil additional conditions on other recognized API calls before reporting them as possible
fingerprinting attempts. In particular, in a similar way to what is done with plugin and
mimetype enumerations, font enumerations can be detected by identifying occurrences
of APIs located inside loops bodies and commonly used in order to perform them. As
described in the previous chapters, there are two main types of font enumerations: canvas
font enumerations, obtained by measuring the size of a text written in a canvas rendering
context through the measureText() method, and JS-based font enumerations, through
the offsetHeight and offsetWidth properties offered by the HTMLElement interface or
the getBoundingClientRect() method provided by Element. Also in these cases the
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-detectedLoop suffix is added to the output string when the mentioned methods are
detected inside a loop, in order to distinguish them from calls appearing outside any loop
construct.

Finally, the AST is exploited also in order to check the arguments of calls to the
toDataURL() method of the HTMLCanvasElement interface, commonly used in order to pro-
duce canvas fingerprints. This method accepts two optional parameters: a type parameter,
indicating the image format and whose default value is image/png, and an encoderOptions

parameter, indicating the compression level if the chosen image format is image/webp or
image/jpeg. For a canvas fingerprint to be effective the canvas representation contained
in the returned data URI should not be compressed, as compression would cause minor
modifications to the image which would be deleterious for the fingerprinting purposes. For
this reason the used parameters are checked and, in case the requested image format is
image/webp or image/jpeg, the API call is not counted among the occurrences marked as
possible canvas fingerprinting attempts. As previously described, since the default value for
the type optional parameter is image/png, when such parameter is not set in the API call
the occurrence is not excluded from the count of possibly fingerprinting API occurrences.
However, as it will be described in section 4.2, additional conditions must be met in order
to finally count the analysed toDataURL() call among the aforementioned occurrences.
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Chapter 4

Classification

The final step of the developed methodology consists in the analysed scripts classification
into "fingerprinting" and "safe" (non-fingerprinting) ones. For this purpose, two machine
learning classifiers are used: Support Vector Machine and Random Forest, both provided
by the scikit-learn Python package. The set of features used in the classification process
is determined by the execution of a Python script, whose objective is to count the number
of occurrences of APIs commonly used in fingerprinting scripts. In the following, the
classification model and its evolution during the thesis development are described in depth,
after a brief introduction to supervised machine learning algorithms.

4.1 Introduction to supervised machine learning

Machine learning algorithms can be divided into two groups, based on their learning
methodology: supervised and unsupervised learning algorithms. Supervised machine learn-
ing is characterized by the presence of a pre-labelled dataset, called "training set", used
by developers in order to train the classification model, acting as a guide to teach the
algorithm what conclusions it should produce based on input data characteristics. Un-
supervised machine learning algorithms are, instead, provided with unlabelled data, and
they automatically determine the groups in which data should be divided by analysing
similarities and differences among the contained items, without any guidance by external
data used as a model. For the automatic fingerprinting detection system developed in
this thesis the used machine learning algorithms belong to the first group, as the classes

37



Valentino Rizzo et al. ML Approaches for Automatic Detection of Web Fingerprinting

in which the processed scripts are divided and the features to be analysed are fixed and
pre-determined.

Features represent the distinctive properties derived from input data which a machine
learning algorithm employs in order to learn from the training dataset and successively
classify the analysed items. Feature extraction is the process of transforming the input
data into relevant values which can be interpreted by the classifier. Different algorithms
exist for the extraction of features, of which an example is "term frequency–inverse docu-
ment frequency" (tf-idf), commonly used in text classification. Feature extraction can be
followed by two additional processes, called feature transformation and feature selection,
which respectively aim to transform previously extracted features in order to improve the
accuracy of the algorithm and to reduce the number of features, removing those which are
superfluous and reducing redundancy. In the developed system, the chosen information to
be transformed into features consist in the number of occurrences of particular API meth-
ods and properties which provide device-identifying information and are commonly used in
fingerprinting techniques. Indeed, each fingerprinting methodology described in chapter 2
can be realized through the use of limited sets of API components, therefore their occur-
rences are detected in order to verify, by analysing their frequency and the satisfaction of
predetermined conditions, if they are exploited for fingerprinting purposes or not.

After that the set of features to be analysed has been determined and the classification
algorithm has been selected, the classification model can be built. A classification model
is a mathematical model, characterized by parameters which are set in order to tune it
and allow the transformation of the model’s input into outputs consisting in the classes
assigned to the analysed data. These parameters are set by adjusting them accordingly to
the training data, in a process called "model fitting". This process represents the phase
through which the algorithm learns to classify the analysed data and, as it is intuitable,
the training set quality is crucial for achieving good classification performance.

The model is successively validated by evaluating its performance on an independent
dataset. Cross validation is the most diffused model validation technique, and it has been
used in the this project in order to assess how the model results generalize to an independent
dataset. This technique is based on the division of the initial dataset into multiple subsets
and their use for training and validation. In particular, k-fold cross validation is the
methodology which has been adopted in this thesis, which is characterized by the division
of the dataset into k equally sized groups. One of the created groups is used as a validation
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set, on which the model performance is evaluated, while others are used as training data.
This process is repeated k times, until all of the subgroups have been used for the model
validation, and the final results are based on those obtained by each iteration.

4.2 Feature extraction

Differently from the initial work developed by Tim van Zalingen and Sjors Haanen in [21],
the purpose of this thesis has not been to detect fingerprinting attempts by identifying only
those carried on through the collection of navigator and window.screen properties, but
also to identify canvas fingerprinting, WebGL fingerprinting, AudioContext fingerprinting,
canvas font enumerations and JS font enumerations. In order to do so, different features
have been added to the initial set provided by the mentioned project, while others have
been removed or modified in order to improve the classification accuracy.

As introduced in chapter 3, the features used by the classifiers consist in the number
of occurrences of a set of APIs obtained through string matching. In their work, van Za-
lingen and Haanen used alternatively occurrences counted from the deobfuscated script or
those counted from the member expression expansion phase output as features for their
classifier. In this thesis, after a first analysis of the results, it has been chosen to use both
sets at the same time, since in this way it is possible to identify occurrences which are not
recognized in one of the two detection steps: this allows minimizing errors and it is useful
also in order to try to correctly classify some obfuscated scripts that the deobfuscation
phase has not been able to deobfuscate. Indeed the Abstract Syntax Tree is not useful
in these cases, since being created from obfuscated code causes it to have no significant
information contained inside its MemberExpression nodes, and therefore the member ex-
pression expansion output is not useful. Nevertheless, some obfuscation techniques are
based on run-time code composition starting from a set of strings containing the collection
of used APIs concatenated and separated by pre-determined delimiters: in these cases, a
string-matching search over the obfuscated script can detect the APIs and, as described
in the following chapter, in some cases it can bring to a correct classification of part of
the obfuscated fingerprinting scripts. However, it must be stressed that, given the static
nature of this work’s approach, classifying obfuscated scripts is not one of its objectives
and any success in this respect is taken as a bonus rather than a pursued goal.
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In addition to the conditions introduced in the AST traversal phase, further require-
ments are imposed in the current phase over a set of API calls for them to be counted
among the possibly fingerprint-identifying ones. In the case of canvas fingerprinting, the
set of detected methods is composed by readPixels(), getImageData(), toDataUrl(),
toBlob(), mozGetAsFile(), mozFetchAsStream() and extractData(). However, their
occurrence is not sufficient for the purposes of canvas fingerprinting, as text must be writ-
ten into the canvas rendering context in order to complete the fingerprinting procedure [2,
5, 11]. For this reason the fillText() or strokeText() method calls must be present
inside the script in order to count the mentioned APIs occurrences among those considered
as possible fingerprinting attempts (and passed as features to the classifiers), and this check
is conducted in the current phase.

In Appendix A it is presented the list of strings representing noticeable API calls in
fingerprinting techniques, for which the number of occurrences is counted on the deob-
fuscation and member expression expansion phases’ outputs. Some API occurrences are
counted only if the -detectedLoop suffix is also present in the relative string produced
in the member expression expansion output, as those API calls are particularly important
only in case of an enumeration attempt and thus an occurrence positioned outside loop
constructs would not be relevant.

Finally, it is proposed an example of a fingerprinting script - in which the device finger-
print is obtained through canvas fingerprinting, plugin enumeration, mimetypes enumera-
tion and the collection of other navigator and screen properties:

function deviceprint_software() {
var a = "";
var b = "";
var s = navigator.plugins;
var o = navigator.mimeTypes;
if (s.length > 0) {

var m = s.length;
for (var i = 0; i < m; i++) {

var plugin = s[i];
a += plugin.name + "-" + plugin.description + plugin.filename + "|"

}
}
if(o.length > 0) {

var m = o.length;
for (var i = 0; i < m; i++) {

var mimetype = s[i];
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b += mimetype.name + "-" + mimetype.description + mimetype.filename +
"|"

}
}
return a + b;

};

function deviceprint_display() {
var a = "";
if (self.screen) {

a += screen.colorDepth + SEP + screen.width + SEP + screen.height + SEP +
screen.availHeight

}
return a;

};

function deviceprint_java() {
var a = (navigator.javaEnabled()) ? 1 : 0;
return a;

};

function getCanvasFp() {
var a = [],

c = document.createElement("canvas");
c.width = 2E3;
c.height = 200;
c.style.display = "inline";
var b = c.getContext("2d");
return b.rect(0, 0, 10, 10), b.rect(2, 2, 6, 6), a.push("canvas winding:" +

(!1 === b.isPointInPath(5, 5, "evenodd") ? "yes" : "no")),
b.textBaseline = "alphabetic", b.fillStyle = "#f60", b.fillRect(125, 1,
62, 20), b.fillStyle = "#069", this.options.dontUseFakeFontInCanvas ?
b.font = "11pt Arial" : b.font = "11pt no-real-font-123",
b.fillText("Cwm fjordbank glyphs vext quiz, \ud83d\ude03",

2, 15), b.fillStyle = "rgba(102, 204, 0, 0.2)", b.font = "18pt Arial",
b.fillText("Cwm fjordbank glyphs vext quiz, \ud83d\ude03", 4, 45),
b.globalCompositeOperation = "multiply", b.fillStyle = "rgb(255,0,255)",
b.beginPath(), b.arc(50, 50, 50, 0, 2 * Math.PI, !0), b.closePath(),
b.fill(), b.fillStyle = "rgb(0,255,255)", b.beginPath(), b.arc(100, 50,
50, 0, 2 * Math.PI, !0), b.closePath(), b.fill(), b.fillStyle =
"rgb(255,255,0)", b.beginPath(), b.arc(75, 100, 50, 0, 2 * Math.PI, !0),
b.closePath(), b.fill(), b.fillStyle = "rgb(255,0,255)", b.arc(75, 75,
75,

0, 2 * Math.PI, !0), b.arc(75, 75, 25, 0, 2 * Math.PI, !0),
b.fill("evenodd"), c.toDataURL && a.push("canvas fp:" + c.toDataURL()),
a.join("~")
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};

var fp = deviceprint_software() + "|" + navigator.appCodeName + "|" +
navigator.cpuClass + "|" + naviagtor.platform + "|" + deviceprint_display()
+ "|" + deviceprint_java() + "|" + getCanvasFp();

Listing 4.1: Example of a fingerprinting script.

(exp)navigator.plugins-detectedLoop,2
(exp).name-detectedLoop,2
(exp).filename-detectedLoop,2
(exp).description-detectedLoop,2
(exp)navigator.plugins.length,2
(exp).toDataURL,2
(exp)navigator.appCodeName,1
(exp)navigator.javaEnabled,1
(exp)screen.height,1
(exp)screen.width,1
(exp)screen.colorDepth,1
(exp)screen.availHeight,1
(exp)navigator.cpuClass,1

(dob).toDataURL,2
(dob).appCodeName,1
(dob).javaEnabled,1
(dob)screen.height,1
(dob)screen.width,1
(dob)screen.colorDepth,1
(dob)screen.availHeight,1
(dob).platform,1
(dob).cpuClass,1

Listing 4.2: The set of features extracted from the script.

Every feature is characterized by a (dob) or (exp) prefix, whose purpose is differen-
tiating those obtained from the deobfuscation phase output from those acquired from the
member expression expansion phase output.

4.3 Classification models

While T. van Zalingen and S. Haanen used a Support Vector Machine for the final classifi-
cation phase, in the current work both Support Vector Machine and Random Forest have
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been used for the purpose. Both classifiers use as features the number of occurrences related
to output files deriving from the deobfuscation phase and the member expression expansion
phase, as previously described. The classification scripts are written in Python and the
Scikit-learn library (sklearn package) is used for retrieving machine-learning algorithms.

The best hyperparameters for both the classifiers have been found by executing a cross-
validated grid search optimization over a set of 4 hyperparameters with 96 possible combi-
nations and 1879 scripts in the dataset, divided in 1148 safe-labelled and 731 fingerprinting-
labelled scripts. The first set has been constructed by gathering JS scripts from known, non
fingerprinting websites consisting mainly of government and academic websites, whereas
the second set has been collected using the database1 offered by Princeton University’s
WebTAP project, which is the result of Steven Englehardt and Arvind Narayanan’s work
in Online Tracking: A 1-million-site Measurement and Analysis, 2016 [5], and by manually
collecting scripts for fingerprinting methodologies which does not appear in the mentioned
database. Moreover, scripts listed in the considered database have evolved between the
time in which they have been analysed and the time of their download for the current
work, and as such some of them, which initially did fingerprint the machine on which they
were executed, did not once that they have been downloaded for this thesis work, as the
fingerprinting code have been removed. For this reason many of them have been manually
analysed after their download, in order to move non-fingerprinting script into their relative
set. The described collection process led to the acquisition of 1879 scripts. Additional
details about this dataset are described in section 5.1. The used hyperparameters for the
two classifiers are:

C=100, coef0=0.0,
class_weight=None,
decision_function_shape=’ovr’,
degree=3, gamma=0.001,
kernel=’rbf’,tol=0.001

Listing 4.3: SVM hyperparameters

bootstrap=True, class_weight=None,
criterion=’gini’,

max_depth=None, max_features=’auto’,
max_leaf_nodes=None,

min_impurity_decrease=0.0,
min_impurity_split=None,

min_samples_leaf=10,
min_samples_split=2,

min_weight_fraction_leaf=0.0,
n_estimators=64, n_jobs=1

Listing 4.4: RF hyperparameters

1Database available at https://webtransparency.cs.princeton.edu/webcensus/
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The Random Forest classifier’s inner workings can be easily interpreted as it relies on a
set of decision trees characterized by randomly selected features. The following, partially
cut tree represents one of the decision trees produced by the classifier, and serves to provide
an idea of the classifier’s decision mechanisms:

Figure 4.1: Representation depicting part of one of the 64 trees produced by the Random
Forest algorithm.
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Chapter 5

Results

In this chapter the results obtained by the developed automatic detection system are pre-
sented, explaining how they have been influenced by the improvements introduced during
the development phase and comparing them to those of previous related work.

5.1 The used datasets

During the thesis work, two distinct datasets have been exploited in order to develop the
entire system: the one that has been introduced and discussed previously in section 4.3,
consisting of 1879 scripts obtained by government and academic websites, the mentioned
Princeton Web Census database and manually inserted script and another, larger dataset
collected during the initial phase of the thesis. In the following, the first set will be
mentioned as the "development" dataset, whilst the latter will be called the "wild" dataset,
as it provides a good representation of the script variety found in the wild. It is important
to specify that the development dataset has been improved throughout the duration of
the thesis, in order to increase its entropy and make it more representative of the real
scripts’ variety found on the web. This enhancement operation has been fundamental for
the improvement of the final results, since the considered dataset is used for the creation of
the classifiers’ training set and thus to make the classifier learn to distinguish safe scripts
from fingerprinters. Initially, the development dataset consisted of 789 safe scripts and
262 fingerprinting scripts. The safe scripts which were present at the time, whose only
source were academic and government websites, have been later reduced to 300 since the
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limited source diversity caused many scripts to be very similar among them. Both safe
and fingerprinting script sets have been later enlarged up to 1,879 total items, divided in
1,148 safe and 731 fingerprinting scripts, by manually labelling scripts contained in the
wild dataset and copying them into the development dataset, in order to improve it.

Safe Fingerprinters Total
# of scripts 1,148 731 1,879
# of domains 561 324 885

Table 5.1: Final dimensions of the development dataset.

The wild dataset has been gathered starting from a database containing traces of vol-
unteering users’ activities while surfing the web, in which each record represents an HTTP
request or response transmitted by the browser. The database counts 52,063,801 records,
collected from April to August 2017 and generated by 982 different users. Starting from a
set containing all the records, all those having an associated HTTP method different from
GET or POST, or being responses to previous requests have been removed. Then, analysing
the remained records’ URLs, only those ending with .js, and as such presumably con-
sisting in JavaScript scripts, have been kept. The remained scripts have been grouped
by domain, determining it through the PublicSuffixList Python package, and succes-
sively downloaded in order analyse them. The described processing led to a set containing
716,328 records, coming from 40,148 different domains. These records have been further
analysed in order to group scripts which always appeared as third-parties, script which
always appeared as first-party and those which had been used in both ways. In order to
do so, the domain derived from the script URL has been compared to the one indicated by
the referer HTTP header field. Whist this can appear as a valid approach, it presents
some flaws: it’s not uncommon for scripts not to be requested directly from the webpage
which the user is visiting, but from other, third-party elements which are present on the
page. In those cases, if the element making the request is characterized by the same do-
main of the requested script, the described methodology would label the script occurrence
as a first-party, even if both the requesting element and the script are finally loaded in
a website having a different domain. The exposed problem have not been solved, as the
database containing the records did not report any information about the website on which
the scripts were going to be loaded or the possible chain of requests which brought to the
one regarding the script. Given the difficulties in recreating a possible requests chain in a
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set of records containing no information about the relative relations and that the knowl-
edge about a script being used as third-party or first-party did not represent a critical
information for the thesis’ purposes, the possible errors derived from the discussed compli-
cation have been accepted. The described mechanism led to the collection of the following
sets: 474,415 scripts from 31,385 domains which always appeared as first-parties, 237,191
scripts from 8,278 domains which always appeared as third-parties and 4,722 scripts from
480 domains which appeared both as first-parties and third-parties considering the entirety
of the records. These sets have been finally downloaded. As expected, a noticeable part of
the dataset could not be downloaded as the scripts related to the reported URLs were not
available any more. Additionally, many scripts, even if downloaded from different URLs,
contained the same code, as reusing publicly available JavaScript snippets is a common
practice when creating websites. For this reason, the dataset has been further reduced by
calculating an MD5 hash for each of the downloaded scripts, comparing the hashes and
deleting those scripts which were found to be equal. The final dataset dimensions have
been the following: 89,029 scripts always identified as first-party, 70,479 scripts labelled
as third-party and 1,443 scripts used in both ways, for a total of 160,951 items in the
database, grouped by methodology of use (first or third-party) and domain.

First-party Third-party Used in both ways Total
# of scripts 89,029 70,479 1,443 160,951
# of domains 8,843 4,224 340 12,554

Table 5.2: Final dimensions of the wild dataset.

The development and wild dataset present a major difference: while in the first set every
contained script is labelled, dividing scripts which use fingerprinting techniques from those
which does not, and as such it can be used as training and test set in order to fit, evaluate
and, based on the achieved results, improve the classifier, it is much more arduous to do so
by using the wild dataset, which lacks any information about the presence of fingerprinting
code in the contained scripts. Considering this, the development dataset has been the one
initially used to develop the automatic detection system, while the wild dataset, larger
and containing more diverse scripts, has been used only later so as to evaluate the system
performance with data that better represents the real JS scripts variability in the web.
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5.2 Tests overview

The following table summarizes the most important tests which have been conducted during
the project development and which are successively described in depth in section 5.4 and
section 5.5, in order to provide the reader with an overview for a clearer understanding.
The table is later reproduced at the and of section 5.5 to recapitulate the respective results.

Test
name

#Safe &
#Fp in
test set

Data
origin Comment

Initial test;
SVM

#Safe: 7
#Fp: 3

(4-fold CV)

Small initial
dataset

Using the classification model provided in
[20], new features have been added for
detecting all targeted fingerprinting tech-
niques. Features are extracted by the deob-
fuscation or member expression expansion
phases’ output alternatively. Table 5.5,
Table 5.6.

Development
test 1;
SVM

#Safe: 279
#Fp: 195
(4-fold CV)

Development
dataset

Introduction of the development dataset
for model training and testing, removed
irrelevant features, union of the deobfus-
cation and member expression expansion
phases’ features. Table 5.7.

Development
test 2;
SVM

#Safe: 111
#Fp: 78

(10-fold CV)

Development
dataset

Introduction of advanced loop detection,
enhanced canvas fp detection, new hyper-
parameters through CV grid search opti-
mization. Table 5.8.

RF
introduction

#Safe: 111
#Fp: 78

(10-fold CV)

Development
dataset

Testing the Random Forest algorithm per-
formance. Table 5.9.

Wild
precision
(SVM)

#Total:
43,580

Wild
dataset

First approximation of the system’s preci-
sion score on the wild dataset.Table 5.10.

Wild recall
(SVM)

#Total:
27,834

Wild
dataset

First approximation of the system’s recall
score on the wild dataset. Table 5.11.

Final wild
scores
(SVM &
RF)

#Total:
160,951

Wild
dataset

Enhanced enumeration detection capabili-
ties, modified hyperparameters. Final re-
sults on the wild dataset. Table 5.12, Ta-
ble 5.13.
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Test
name

#Safe &
#Fp in
test set

Data
origin Comment

Final
development
scores
(SVM &
RF)

#Safe: 111
#Fp: 78

(10-fold CV)

Development
dataset

Final results on the development dataset.
Table 5.14, Table 5.15.

Table 5.3: Overview of the system developments and relative tests presented in this
chapter.

5.3 Initial results

As previously introduced, T. van Zalingen and S. Haanen’s "Detection of Browser Finger-
printing by Static JavaScript Code Classification" project’s code [20] has been used as a
starting point for the development of the currently presented system. This project bases its
classification phase on the use of an SVM classifier, and it is characterized by a definitely
modest dataset on which to perform the classifier’s training and testing. The scores which
have been calculated in the mentioned work and that will continue be evaluated so as to
measure the performance of the system developed in this thesis are the recall, precision
and F1 scores, respectively obtained through the following formulas:

Recall = |T rueP ositives|
|T rueP ositives|+|F alseNegatives| Precision = |T rueP ositives|

|T rueP ositives|+|F alseP ositives|

F1score = 2 · P recision·Recall
P recision+Recall

Reminding that the mentioned project’s approach presents differences from that of the
system presented in this thesis, since it aims to detect only the fingerprinting techniques
which rely on navigator and screen properties collection and presents a different clas-
sification granularity, as it classifies as "fingerprinter" or "safe" whole domains and not
individual scripts, the results obtained by the aforementioned project are reported in Ta-
ble 5.4, in order to compare them to those of the system developed in this thesis.

The development of the automatic detection system presented in this thesis started
from the modification of the aforementioned project’s code so as to classify single scripts
and not whole domains, and in order to detect a larger set of fingerprinting techniques.
For the latter purpose, strings corresponding to API calls which are popular in canvas
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SVM, K = 4 Precision Recall F1 score Test set size
Safe 0.83 0.95 0.88 5
Fingerprinters 0.84 0.70 0.73 3
Avg/Total 0.84 0.80 0.82 8

Table 5.4: Results obtained by T. van Zalingen and S. Haanen in "Detection of Browser
Fingerprinting by Static JavaScript Code Classification" [21].

fonts enumeration and canvas, AudioContext, WebGL and battery API fingerprinting,
have been added to the set of detected strings during the classifiers’ features calculation
phase. Despite WebRTC-based fingerprinting, which allows the discovery of a device IP
address even if it uses a VPN, has been initially taken into consideration, it has been later
removed from the set of detected methodologies since it is characterized by a low diffusion
(it is found only on the 0.07% of the Alexa1 top 1 million websites [5]) and also considering
that the functions used to obtain such fingerprint are very common among all the scripts
using WebRTC, a circumstance which caused many false positives in the developed system.

The classifier’s features at this stage were still obtained alternatively from the member
expression expansion phase’s outputs or from those of the deobfuscation phase, and so
without merging the two sets in order to provide the classifier with the maximum amount
of information. Moreover, SVM hyperparameters C, γ and class_weight were respectively
set to 1000, 0.0001 and balanced: as described in section 4.3, the mentioned values will be
later substituted by those obtained through a cross-validated grid search hyperparameter
optimization.

After the described modifications and using 4-folds cross validation, the results on an
initial dataset consisting of 43 manually gathered scripts, using features collected from the
deobfuscation phase’s output were the following:

SVM, K = 4 Precision Recall F1 score Test set size
Safe 0.84 0.93 0.88 7
Fingerprinters 0.75 0.64 0.69 3
Avg/Total 0.79 0.78 0.78 10

Table 5.5: Initial results on a small dataset. Features collected from the deobfuscation
phase’s output.

1Alexa Website Traffic, Statistics and Analytics: www.alexa.com

50

www.alexa.com


5 – Results

While using features collected by the member expression expansion phase’s output led
to the following scores:

SVM, K = 4 Precision Recall F1 score Test set size
Safe 0.73 1.00 0.84 7
Fingerprinters 0.50 0.28 0.35 3
Avg/Total 0.62 0.64 0.60 10

Table 5.6: Initial results on a small dataset. Features collected from the member
expression expansion phase’s output.

Features obtained from the member expression expansion’s output caused worse results
than those obtained by features collected from the deobfuscation phase’s output, as the
first phase could not correctly expand some expression and, other than their expanded
form, it did not produce any additional information about the analysed expressions yet.
Comparing these results to those reported for van Zalingen and Haanen’s project, it can
be noticed that the introduction of new APIs to be detected led to a deterioration of
the scores, as the problem became more difficult given the broader range of fingerprinting
techniques. The need for a bigger dataset to be used for the classifier’s training and testing
was indisputable, in order to train better the classifier and to produce more representative
results.

5.4 Developments

Given the emerged necessity for a larger amount of scripts, the previously introduced de-
velopment dataset has been collected. As described earlier, this dataset has been improved
during the entire duration of the thesis, gradually increasing its entropy so as to provide a
better representation of the scripts’ variance found on the web. For this reason, the preci-
sion, recall and F1 scores did often get worse during the thesis development, as the analysed
dataset became progressively more difficult to be correctly labelled given the increments
in the contained scripts’ diversity. Consequently, it has been chosen to present the gradual
methodology improvements by calculating the scores progressively obtained by the system
on the final version of the development set, in order to avoid misunderstandings caused by
possible worsening scores during the system’s development.

Other than a bigger dataset, additional improvements have been brought. Indeed, while
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the initial classifier used features collected from the deobfuscation or member expression ex-
pansion phases alternatively, at this stage the two sets have been merged, so as to have every
information obtained by the previous phases at the same time for the classifier to analyse
them. Furthermore, some initially detected strings’ occurrences like .width and .height,
supposed to match window.screen.width and window.screen.height calls, or .name and
.description, supposed to match navigator.plugins.name and
navigator.plugins.description, or even .product, supposed to match
navigator.product, were removed from the set of detected strings’ occurrences (used
as features by the classifier) as they have been found to be too commonly matched on
expressions which did not correspond to the mentioned APIs calls. In their place, only
the strings representing the complete API calls were left, not particularly common in the
deobfuscation phase’s outputs but frequently found among the expanded member expres-
sions.

The described enhancements led to noticeably improved scores, made even better by
the bigger dataset. Table 5.7 illustrates the results obtained at this stage using 4-fold cross
validation.

SVM, K = 4 Precision Recall F1 score Test set size
Safe 0.91 0.93 0.92 279
Fingerprinters 0.90 0.87 0.89 195
Avg/Total 0.91 0.90 0.90 475

Table 5.7: Results obtained by the developed system with the described improvements on
the final development dataset, using the SVM classifier.

At this stage, additional enhancements were introduced in order to further improve
the obtained results. The most important modification has been the introduction of loops
detection through the AST traversal. This improvement, whose inner workings are de-
scribed in depth in section 3.2, allowed a more rigorous detection of navigator.plugins,
navigator.mimetypes, JS fonts and canvas fonts enumerations, which represent the most
identifying and one of the most common fingerprinting techniques. However, in this phase,
other than checking if the corresponding API calls were positioned inside a loop, no other
additional conditions were checked, and as a result the detection accuracy could be im-
proved even more as it has been done subsequently. Another improvement introduced at
this stage regarded canvas fingerprinting: in order to count an occurrence of toDataURL(),
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readPixels(), getImageData(), toBlob(), mozGetAsFile(), mozFetchAsStream() or
extractData(), it has been established the need for fillText() or strokeText() to be
present too, as explained in section 4.2. SVM’s hyperparameters have been optimized too,
thanks to the use of cross-validated grid search optimization: C was modified from 1000

to 100 and γ from 0.0001 to 0.001. class_weight is the only parameter which has still
been left on a different value compared to the final ones presented in the previous chapter
(balanced), since its modification, in contrast with the cross-validated grid search results,
will be explained later.

The new results obtained by the system with the SVM classifier after the described
improvements, calculated through a 10-folds cross-validation, has been the following:

SVM, K = 10 Precision Recall F1 score Test set size
Safe 0.94 0.96 0.95 111
Fingerprinters 0.93 0.92 0.92 78
Avg/Total 0.94 0.94 0.94 189

Table 5.8: Results obtained on the final version of the development dataset by the refined
system, using the SVM classifier.

The Random Forest classifier has been introduced at this point in the development
phase, in order to test its performances and compare them to those of Support Vector
Machines. Its hyperparameters have been optimized through a cross-validated grid search
optimization, and even if the development dataset, used when performing the aforemen-
tioned optimization, evolved during the thesis’ stages, the optimal hyperparameters al-
ways remained the stable. However, when comparing the hyperparameters used at this
stage with those listed in section 4.3 there are some differences, as those described in
the previous chapter does not represent the best hyperparameters obtained through the
cross-validated grid search: in particular, at this stage class_weight was set to balanced

and min_samples_leaf to 1, since they represented the best values for the current dataset;
however, once that the wild dataset has been introduced successively, the mentioned hyper-
parameters have been changed in order to better adapt them to the latter scripts set. The
RF classifier results obtained at this stage, using a 10-folds cross validation, are illustrated
in Table 5.9.

As it can be noticed, its results are similar to those obtained by the SVM classifier in
this phase, and only marginally better.
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RF, K = 10 Precision Recall F1 score Test set size
Safe 0.95 0.96 0.96 111
Fingerprinters 0.94 0.93 0.94 78
Avg/Total 0.95 0.95 0.95 189

Table 5.9: Results obtained on the final version of the development dataset by the refined
system, using the RF classifier.

The following step has been to test the system, using both classifiers, on the wild
dataset, so as to get an estimate of its performance on a set of scripts representing well
those which are found in a normal web surfing activity. Unlike the development dataset,
the wild dataset did non evolve during the course of the thesis and, more importantly, the
contained scripts were not labelled as "fingerprinter" or "safe". For this reason, it has not
been possible to produce accurate results when evaluating the system performance over
the mentioned dataset, as only an estimation of the obtained scores has been achievable.
Indeed, given the lack of labels, a manual inspection of the scripts has been necessary so
as to determine if a script utilized fingerprinting techniques or not. Given the size of the
analysed dataset and the need for a manual analysis, labelling of all the dataset scripts
has not been practicable, and as such the calculated scores based their determination
exclusively on the partial amount of scripts which has been analysed.

As formerly described, the classifier’s training set originated, for every test, from the
development dataset, as it provides a ground truth being composed of correctly labelled
scripts. This represented a problem when classifying scripts contained in the wild dataset,
since some of them were previously inserted in the development dataset in order to improve
its variety and size: in fact, in order to correctly evaluate the performance of a classifier,
the elements on which it is tested should not be also present in its training set. In order
to avoid this problem, a Python script has been created, able to compare all the elements
contained in the designated training and test sets and then remove from the training set
those which are also part of the test set. The wild dataset has always been evaluated
by dividing it into subsets and analysing them one at a time. Before every test, the
aforementioned script has been executed so as to temporarily remove from the training set
the scripts which needed to be excluded from the training phase, and later restoring them
before the successive evaluation.

The initial results on the wild dataset returned an approximate distribution of 99% safe
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scripts to 1% fingerprinting scripts. As a result, the precision score for the fingerprinting
scripts resulted the least complicated to be determined, as it bases its value only on those
scripts labelled as fingerprinters by the system (both false and true positives), which were
definitely less than those classified as safe. In a first analysis over a subset of the wild
dataset, consisting of 44,193 scripts, 613 of them (1.39%) have been classified as finger-
printers. The SVM classifier has been used in this phase for the system’s classification
phase. Of the scripts classified as fingerprinters, 144 have been manually analysed and
labelled, obtaining the scores reported in Table 5.10.

Classifier True positives False positives Precision
SVM 104 40 0.72

Table 5.10: Initial precision score for the "fingerprinters" class on the wild dataset.

The calculation of the recall score caused more difficulties: as its value is given from
Recall = |T rueP ositives|

|T rueP ositives|+|F alseNegatives| , an estimation of the number of false negatives was
necessary, to be found among the 43,580 scripts which had been classified as "safe" by the
system. Also in this case a Python script has been written, in order to help determining
the number of false negatives in the system’s results. The script returns a list of scripts,
contained in the test set, which have been classified as safe even if occurrences of relevant
APIs in fingerprinting techniques have been found in their body. In the output list each
script name is followed by the set of APIs whose occurrences have been found in the
script body, together with the number of occurrences. The list is also sorted by the APIs
set size. Initially, only some of the APIs listed in Appendix A were included in this
phase since others, like occurrences of window.screen or navigator properties (excluding
those referred to navigator.plugins and navigator.mimetypes), were not considered
sufficient in order to efficaciously fingerprint a device if not complemented with other,
more identifying ones. However, as it has been found successively (and will be discussed
in section 6.2), in some cases the system was not able to detect a relevant API occurrence,
and this led to missed false negatives when trying to estimate them. For this reason,
the final version of the script detected the occurrences of every API known to be used in
web fingerprinting techniques, in order to minimize the possibility of underestimating the
number of false positives.

Using the described methodology, the recall score has been estimated by having the
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automatic detection system analyse a set of 27,834 scripts. The results at this stage,
considering only the scripts whose classification correctness had been verified manually,
were the following:

Classifier True positives False negatives Recall
SVM 69 8 0.90

Table 5.11: Initial recall score for the "fingerprinters" class on the wild dataset.

As it can be noticed scores, and in particular the precision score, faced an appreciable
deterioration if compared to those obtained on the development dataset. This is caused
by two factors: the distribution of the two classes in the development dataset, charac-
terized by a large unbalance between safe and fingerprinting scripts (circa 99% safe and
1% fingerprinting, as previously mentioned), which causes prominent deterioration in the
fingerprinters’ precision score even when a low percentage of safe scripts are misclassified
by the system, and the considerably higher diversity of the scripts contained in the wild
dataset if compared to those in the development dataset, which induces an higher difficulty
in the problem.

After the first estimation of the system’s recall and precision scores on the wild dataset,
the main error causes have been investigated and analysed, in a tentative to bring these
scores to the values previously obtained on the development dataset. A first source of in-
accuracy has been identified in the enumeration detection technique: as introduced earlier,
no additional conditions were present at this stage other than the presence of APIs com-
monly used in enumeration techniques inside the block of a loop construct. As mentioned
in subsection 3.2.2, developers often use these APIs inside loops for different purposes other
than producing enumerations: for this reason, at this stage the additional checks described
in the same section have been introduced so as to have a more accurate detection of the
mentioned fingerprinting methodology. As previously described, plugin and mimetype enu-
merations are the most identifying fingerprinting technique and, as such, also the one of
the most commonly used in fingerprinting scripts, given also the simplicity through which
a snippet of code performing these operations can be written. For this reason, given the
high diffusion of such techniques in the wild dataset, the newly introduced enhancement
in their detection led to a considerable improvement in the system results. Additionally,
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some classifiers’ hyperparameters have been modified at this stage, given the different dis-
tribution of the two scripts classes in the development dataset, used as training set, and
the wild dataset, used as test set. Indeed, if in the first set 39% of the contained scripts are
labelled as fingerprinters (see Table 5.1), in the latter set only about 1% of them include
fingerprinting code. As previously described, the class_weight parameter at this stage
was set, for both classifiers, to balanced: this gave a weight for the two classes which
was proportional to their distribution in the training set, which, as previously reported, is
definitely different from the subdivision found in the wild dataset, assumed to be more rep-
resentative of the characteristics of the entirety of scripts disseminated in the web. For this
reason, the mentioned parameter has been set to none, as the previously assigned weights
resulted in better results on the development dataset but worse results on the wild dataset.
Finally, the Random Forest’s min_samples_leaf hyperparameter, which defines the min-
imum number of samples that should be contained in the produced trees’ leafs, has also
been modified and set to 10, which corresponds to its final value reported in section 4.3, as
the value returned by the cross-validated grid search hyperparameters optimization caused
overfitting over the development dataset.

5.5 Final results

After the introduction of the improvements described above, the final results on all the
subsets in which the wild dataset has been previously divided have been estimated. This
process required over two weeks of work, as the scripts needed to be manually analysed
in order to verify the correctness of the class assigned by the system to each of them
by checking for the presence of fingerprinting techniques in their code. This operation
has been conducted, despite the considerable amount of work required for this process,
aiming at two goals: the first has been the estimation of the system’s performances basing
their calculation on a significant amount of samples, so as to have a good representation
of the performance on the entire dataset; the second has been the improvement of the
system performance itself, as this has been the phase in which the development dataset
has been enlarged the most by introducing the scripts, initially contained only in the wild
dataset (and which, as such, were unlabelled) which were being manually classified. The
achievement of a final version of the development dataset, characterized by the dimensions
reported in Table 5.1, led not only to more representative results but also to a more accurate
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classification by the system since the training set, derived from the development dataset,
got enriched with new syntactic constructs which obtained a device fingerprint in different
ways than those of the already contained set of scripts.

In total, over 550 scripts have been manually analysed and classified in this phase. The
following results were calculated considering only the scripts which have been manually
analysed. It must be highlighted that while the number of true positives and false negatives
is the same between the system version using the SVM classifier and that using RF, these
sets presented some noticeable differences among the two system versions, which will be
later analysed in section 6.3.

Classifier True positives False positives False negatives
SVM 413 79 35
RF 413 46 35

Table 5.12: Final TP, FP and FN values for the "fingerprinters" class on the wild dataset.

Classifier Precision Recall F1 score
SVM 0.84 0.92 0.88
RF 0.90 0.92 0.91

Table 5.13: Final precision, recall and F1 scores for the "fingerprinters" class on the wild
dataset.

In the end, the final results on the development dataset are reported. The related scores
faced a deterioration if compared to those obtained previously, before the introduction
of the last system modifications which aimed to the attainment of better results on the
development dataset. This is caused by the variation of the classifier’s hyperparameters,
which were previously optimized on the development dataset and have been later modified
in order to better fit the wild dataset, and by the low percentage of scripts contained in the
first dataset which benefited from the newly introduced checks, in particular those related
to the enumerations detection.

SVM, K = 10 Precision Recall F1 score Test set size
Safe 0.94 0.95 0.94 111
Fingerprinters 0.93 0.91 0.92 78
Avg/Total 0.93 0.93 0.93 189

Table 5.14: Final results on the development dataset, using the SVM classifier.
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RF, K = 10 Precision Recall F1 score Test set size
Safe 0.93 0.97 0.94 111
Fingerprinters 0.95 0.89 0.92 78
Avg/Total 0.94 0.93 0.93 189

Table 5.15: Final results on the development dataset, using the RF classifier.

The discussed deterioration on this dataset has been accepted as the wild dataset, larger
and characterized by an higher scripts diversity, has been considered as the main indicator
of the system’s performance in the wild.

Since the development dataset is entirely labelled, it has been also possible to plot the
receiver operating characteristic (ROC) curve, illustrating the system performance as the
threshold on the necessary probability to label a script as fingerprinter changes, for both
the system’s versions using SVM and RF classifiers. Both ROC curves have been calculated
by performing 5 and 10-cross validation, so as to avoid overfitting and have an insight on
the model’s efficacy on an independent dataset.

Figure 5.1: ROC curve obtained by the SVM classifier.
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Figure 5.2: ROC curve obtained by the RF classifier.

Finally, the table initially reported in section 5.2 is reproposed, updated with the ob-
tained results in order to provide an overview of the system developments during the thesis
work.

Test
name

#Safe &
#Fp in
test set

Results Comment

Initial
test; SVM

#Safe: 7
#Fp: 3
(4-fold CV)

(dob)
Precision: 0.75
Recall: 0.64
F1 score: 0.69

(exp)
Precision: 0.50
Recall: 0.28
F1 score: 0.35

Given the limited dataset size and the
lack of any advanced syntax constructs
detection, this initial test resulted in
modest scores. Table 5.5, Table 5.6.

Development
test 1;
SVM

#Safe: 279
#Fp: 195
(4-fold CV)

Precision: 0.90
Recall: 0.87
F1 score: 0.89

The introduction of a much bigger
dataset to be used in the training phase
and the modifications on the features,
removing the unnecessary ones and join-
ing those extracted from different pre-
processing phases, resulted in an impor-
tant improvement. Table 5.7.
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Test
name

#Safe &
#Fp in
test set

Results Comment

Development
test 2;
SVM

#Safe: 111
#Fp: 78
(10-fold CV)

Precision: 0.93
Recall: 0.92
F1 score: 0.92

Improvements like loop detection, addi-
tional conditions on canvas fingerprint-
ing and new hyperparameters led to bet-
ter scores on the development dataset.
Table 5.8.

RF
introduction

#Safe: 111
#Fp: 78
(10-fold CV)

Precision: 0.94
Recall: 0.93
F1 score: 0.94

Random Forest performed slightly bet-
ter than SVM on the development
dataset, if using the hyperparameters
obtained through grid search optimiza-
tion. Table 5.9.

Wild
precision
(SVM)

#Total:
43,580 Precision: 0.72

Given the higher script diversity of the
wild dataset, the initial precision score
on this set has been significantly lower
than that obtained on the development
dataset. Table 5.10.

Wild recall
(SVM)

#Total:
27,834 Recall: 0.90

The recall score on the wild dataset
proved to be fairly good from the be-
ginning. Table 5.11.

Final wild
scores
(SVM &
RF)

#Total:
160,951

(SVM)
Precision: 0.84
Recall: 0.92
F1 score: 0.88

(RF)
Precision: 0.90
Recall: 0.92
F1 score: 0.91

After an analysis of the causes for the
scores differences between the develop-
ment and the wild dataset, the system
has been improved with new checks and
different classifiers’ hyperparameters to
adapt it to the latter set, considered
more important as it better represents
the set of scripts which are found in the
wild. Table 5.12, Table 5.13.

Final
development
scores
(SVM &
RF)

#Safe: 111
#Fp: 78
(10-fold CV)

(SVM)
Precision: 0.93
Recall: 0.91
F1 score: 0.92

(RF)
Precision: 0.95
Recall: 0.89
F1 score: 0.92

Given the modifications introduced in
the previous test, the system suffered
the new hyperparameters and produced
worse, but still valid results on the de-
velopment dataset. Table 5.14, Ta-
ble 5.15.

Table 5.16: Overview of the developments and relative tests presented in this chapter.
The scores presented in the Results column refer to the "fingerprinting" class.
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Chapter 6

Conclusions

In the following, some considerations about the obtained results, the static approach and
the performance of the classifiers are made, highlighting advantages and disadvantages and
proposing some possible improvements to the developed system and conceivable different
approaches for the automatic detection of fingerprinting scripts.

6.1 The datasets and their influence over the system
performance

As it can be noticed in section 5.3, section 5.4 and section 5.5, the system scores faced
considerable variations based on the datasets which were used for the training and test
phases of the classifiers. As noted when the first results on the development dataset has
been presented, the final version of the mentioned set has been used for all the reported
scores, as its enhancements caused the classification difficulty to increase and as such
the results to become worse, and having the system developments producing degrading
scores could have generated misunderstandings and lack of clarity about their advantageous
impacts on the system performance. However, presenting the results in this way led to a big
step in the scores presented in Table 5.7. This was caused by the fact that a major part of
the work accomplished during the thesis consisted in the improvement of the cited dataset,
as this process led to considerable improvements in the system’s ability to correctly classify
the multitude of scripts contained in the mentioned dataset or gathered from independent
sets.
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It has been also discussed the cause of the degraded scores when the wild set has been
analysed by the system: the larger number and higher diversity of scripts contained in that
set caused the classification to be more complex than on the development set, bringing the
same methodology which previously obtained excellent results to poorer ones, before the
introduction of the latter improvements.

The development dataset continued to produce different results from those obtained by
the wild dataset, and only in the final outcomes they became more similar. The diversity
in the mentioned datasets is caused mainly by two reasons: the smaller size of the devel-
opment dataset, which as described before causes a limited scripts diversity if compared
to that of the wild dataset, and the different distribution of the safe and fingerprinting
scripts. As reported in section 5.4, the latter motivation caused the precision score on
the wild dataset to be easily deteriorated, as small percentages of wrongly classified safe
scripts had a noticeable influence over it. However, the distribution of 99 to 1 for safe
and fingerprinting scripts, which characterized the wild dataset and as such it has been
assumed to be representative of the real balance between the two classes in the web, could
not be reproduced in the development dataset, as it would have been necessary a number
of safe-labelled scripts which was not feasible to gather in the current work.

Finally, it is remarked the importance of data in the system improvements. While in
section 5.4 the described enhancements mainly concern the methodology, the amount of
time spent on constantly improving the development dataset, manually labelling a total of
1,540 scripts during the months of work on the thesis project, has been fundamental for
the achievement of the final detection capabilities of the system, as this dataset is used for
the classifiers’ training phase and, as such, it represents the main learning resource of the
system.

6.2 Limits of the static analysis

The static approach adopted in this work presents a significant advantage consisting in the
possibility to perform the analysis completely offline and without the need for additional
dependencies other than the code snippet than is going to be analysed, but, as introduced
in chapter 3, it also presents different limitations. In this section the main problems derived
from the static nature of the analysis will be presented and discussed.

One of the main issues derived from the static approach is the impossibility to get the
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same amount of information about the code and the context in which a particular snippet
is going to be executed that could be achievable through a dynamic analysis. The most
noticeable example for this problem concerns the fingerprinting techniques based on enu-
merations: when statically analysing the code, it is possible to detect a loop construct in
many ways, and for example this is an operation which in the developed project has been
performed through the use of an AST as described in subsection 3.2.2, but it is not possible
to observe the number of iterations over the loop, which is an important information in
order to distinguish a fingerprinting behaviour from a safe one. This is mostly caused by
the fact that other than the variables names, no other information can be gathered about
them and, in particular, their value in the section of code in which a possibly fingerprinting
construct is identified cannot be known. This information could be crucial, other than in
the case of enumerations, in many other unclear circumstances. For example, the detection
of canvas fingerprinting is one of the context in which knowing the mentioned information
could be decisive in order to increase the accuracy of the system. In this case, in fact, it
could be important to know the canvas element’s height and width, the length of the text
written into the canvas, or the size of the area specified by a getImageData() call [5] so as
to detect if the conditions which are necessary for a canvas fingerprinting operation are met
or not. Another case where the additional information that can be gathered when perform-
ing a dynamic analysis would be important is the detection of JS fonts enumerations, as
the number of iterations and the value of the object on which offsetWidth, offsetHeight

or getBoundingClientRect() are called could represent critical information in order to
distinguish harmless behaviours from fingerprinting ones. In general, the knowledge of
variables’ values is an important information in order to distinguish accurately fingerprint-
ing scripts from safe ones, and the lack of this information has been the main source of
complications during the development of the system presented in this thesis.

Another difficulty derived from the static approach has been discovered during the final
phase of the work, when manually analysing the wild dataset’s scripts in order to verify the
correctness of the class assigned by the classifiers. Indeed, in some cases it has been noticed
that a loop construct is not always necessary so as to produce an enumeration, as this could
be obtained also by the use of methods which apply a function passed as an argument over
each element contained in a set, allowing the production of an enumeration. In these cases
the static approach impedes to retrieve more details about the type of object on which
such a function is called and on the values of the variables passed as arguments, and even
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if the problems derived by these cases could be mitigated, only a dynamic approach would
guarantee an high accuracy. Nevertheless, enumerations obtained in the described way
have been very uncommon in the dataset, and for this reason the lack of detection in these
cases had marginal consequences over the final results.

A further consideration can be expressed about obfuscated scripts. As described in
chapter 3, the classification of such scripts has been excluded from the goals of the de-
veloped system from the beginning, as it was known that a static approach could not be
able to be effective on this type of scripts. Nevertheless, even if this statement remained
valid for the majority of the obfuscated scripts, in some cases the system has been able to
correctly classify some of them as fingerprinters. In fact, given that this type of scripts were
present both in the development and in the wild dataset, the system included them both
in the training and test sets of the classifiers, and as such learned from them and assigned
a label even for those scripts. While the majority of them has been classified as safe, as the
system could not be able to detect the presence of fingerprinting techniques within their
code, among the set of scripts classified as fingerprinter some obfuscated scripts have been
found which did use fingerprinting techniques. In particular, the SVM classifier has been
the one which has been able to detect these cases, while RF never did. The cases in which
the system has been effective over obfuscated scripts were those in which the code obfus-
cation has been obtained through the creation of a string, containing a concatenation of
APIs separated by a delimiter, used to dynamically create the real script code and execute
it. This caused the member expression expansion phase’s output to be meaningless, as
the AST could not extract significant information from obfuscated scripts, but it has been
possible to identify some noticeable APIs through string matching over the deobfuscation
phase’s output. These matches, whose occurrences have been counted and used as features
during the classification phase, have been enough for the SVM classifier to correctly de-
tect fingerprinting techniques in some of the obfuscated scripts. Despite that, obfuscated
scripts have been excluded from the calculation of the system performances, as this has
been the chosen policy from the beginning of the project.
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6.3 Additional observations

A noteworthy case has been the one regarding scripts belonging to the Matomo analytics
service1 (formerly Piwik): while on the official website it is stated that the service does use
fingerprinting techniques in order to produce the advertised analytics, the system never
classified any related script as a fingerprinter. By manually analysing the involved scripts,
it has been noticed that the fingerprinting attempts consists in the check for the support
of 9 pre-determined mimetypes and the collection of the values of the following properties:
navigator.javaEnabled, navigator.cookieEnabled, navigator.doNotTrack,
screen.height, screen.width, navigator.platform and window.GearsFactory. The
collected properties are not sufficient in order to uniquely fingerprint a device, as presum-
ably a vast set of users return the same values, and the enumeration of 9 mimetypes is not
the most effective way for trying to uniquely identify a device, since the most identifying
information would come out of uncommon supported mimetypes, that would be detected
by analysing all the the entire set contained in navigator.mimetypes and not by imposing
a predetermined group of mimetypes on which to perform the check. The developed sys-
tem did not label the mentioned scripts as fingerprinters because no script contained in the
training set and labelled as fingerprinter obtained a fingerprint in the described way. As
even after a manual analysis the effectiveness of this technique has not been ascertained,
these scripts have been excluded from the calculation of the system performance.

Finally, an observation about the two classifiers’ performance is presented. As noticeable
in the results reported in section 5.5, in the development dataset the SVM classifier has been
able to obtain and higher recall but a lower precision than RF over the "fingerprinters" class,
while the latter missed more fingerprinting scripts but also misclassified less safe scripts.
This trend has been found also over the wild dataset for the majority of the scripts but,
because of a set of similar fingerprinting scripts which were misclassified as safe by SVM
while correctly labelled as fingerprinters by RF, the final results over this dataset reports
the same amount of true positives and false negatives for the two classifiers. Nevertheless,
it has been noticed that while the two scripts did often misclassify the same safe scripts,
labelling them as fingerprinters and therefore producing false positives, the false negatives,
meaning fingerprinting scripts which were labelled as safe, were often different between the

1Matomo, free web and mobile analytics software: https://matomo.org/
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two classifiers. This led to the observation that a union of the sets of scripts labelled as
fingerprinters produced by the two classifiers could have led to a significant enhancement
for the recall score with a limited deterioration of the precision score. Hence the two sets
have been joined and the resulting set produced the following scores:

True positives False positives False negatives Precision Recall F1 score
436 101 12 0.81 0.97 0.88

Table 6.1: Results obtained by the union of the "fingerprinters" classes produced by SVM
and RF.

Similarly, an intersection of the two classifiers’ results would bring to an higher precision
and a lower recall score, which may be useful for some applications, but, because of the
higher differences among the true positive sets and the similiarity of the false negatives, it
would also cause an higher results degradation than the presented union.

6.4 Final thoughts and future work

User tracking on the web is becoming always more pervasive, as analytics services and ad-
vertisers gradually refine their tracking mechanisms in order to identify returning users in
spite of the possible implementations of countermeasures by the latter. Stateless tracking
methodologies have been created and developed during the last years, and faced an impor-
tant adoption by the aforementioned services. Despite stateful techniques still represent
the most widely used and precise tracking mechanism, stateless approaches, which mainly
consist in device fingerprinting, offer a crucial advantage consisting in the much higher
difficulty to avoid them and, consequently, the lack of control by the tracked users.

Motivated by the implications on users’ privacy caused by this trend, in this thesis
it has been developed a system which aims at automatically detecting fingerprinting JS
scripts found on the web, through a static analysis of the scripts’ code. The static nature
of the system represents a novel approach to the problem, and despite the previously
described limitations, it has proven to be effective at identifying fingerprinting scripts, as
shown by the final results in section 5.5. At the current stage, in order to produce an
accurate list of fingerprinting scripts, it could still be necessary a revision over the system
results, as the related precision, whose score varies from 0.84 to 0.90 on the wild dataset,
could not be sufficient in some applications. Nevertheless, the static analysis aimed at the
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automatic detection of fingerprinting scripts has proven to be a valid methodology, and
while a dynamic approach could solve most of the complications described in section 6.2, it
would also introduce the related disadvantages discussed in chapter 3. For these reasons,
the two approaches could be complementary for the purpose.

As described in the aforementioned section, in spite of the intrinsic limitations of the
static approach, the current system can still be further improved by enlarging the classifiers’
training set, refining the set of detected APIs or enhancing the AST traversal phase in order
to detect some of the unidentified fingerprinting constructs discussed in section 6.2. Finally,
the development of a dynamic analysis methodology to complement the system developed
in this thesis would undoubtedly lead to the resolution of the static approach limitations
and, as such, to an higher detection accuracy and the possibility to efficaciously analyse
even obfuscated scripts.
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Appendix A

List of detected APIs

Below it is presented the list of strings, representing APIs which are commonly used in
fingerprinting techniques, detected by the feature production phase.

Each string is followed by 0 or 1 (or both), indicating respectively if the string is searched
in the member expression expansion output or in the deobfuscation output. Concerning
strings which start with a dot, when they are searched in a deobfuscation output file it is
also performed a scan for a version without the initial dot, and its occurrences are counted
and reported separately from those that include the dot.

// Navigator and window.screen
properties

navigator.appCodeName,0
.appCodeName,0,1
navigator.product,0
navigator.productSub,0
.productSub,1
navigator.vendor,0,1
navigator.vendorSub,0
navigator.onLine,0,1
navigator.appVersion,0
.appVersion,1
navigator.language,0,1
navigator.cookieEnabled,0
.cookieEnabled,1
navigator.javaEnabled,0

.javaEnabled,1
navigator.doNotTrack,0
.doNotTrack,1
window.screen.horizontalDPI,0
.screen.horizontalDPI,1
.horizontalDPI,1
window.screen.verticalDPI,0
.screen.verticalDPI,1
.verticalDPI,1
window.screen.height,0
screen.height,0,1
window.screen.width,0
screen.width,0,1
window.screen.colorDepth,0
screen.colorDepth,0,1
.colorDepth,1
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window.screen.pixelDepth,0
screen.pixelDepth,0,1
.pixelDepth,1
window.screen.availLeft,0
screen.availLeft,0,1
.availLeft,1
window.screen.availTop,0
screen.availTop,0,1
.availTop,1
window.screen.availHeight,0
screen.availHeight,0,1
.availHeight,1
window.screen.availWidth,0
screen.availWidth,0,1
.availWidth,1
navigator.platform,0
.platform,1
navigator.hardwareConcurrency,0
.hardwareConcurrency,1
navigator.cpuClass,0
.cpuClass,1
navigator.maxTouchPoints,0
.maxTouchPoints,1
navigator.msMaxTouchPoints,0
.msMaxTouchPoints,1
navigator.oscpu,0
.oscpu,1
new Date().getTimezoneOffset(),0

// Timezone
.getTimezoneOffset(),0,1
new Date().getTimezoneOffset,0
.getTimezoneOffset,0,1

// AudioContext fingerprint
.createOscillator,0,1
.createAnalyser,0,1
.createDynamicsCompressor,0,1
.getChannelData,0,1
.getFloatFrequencyData,0,1

// Battery API fingerprint
.dischargingTime,0,1
.chargingTime,0,1

.charging,0,1
battery.level,0
navigator.getBattery,0,1
navigator.getBattery(),1
battery.addEventListener,0,1

// Plugin and mimetype enumerations
navigator.plugins-detectedLoop,0
.filename-detectedLoop,0
.description-detectedLoop,0
.name-detectedLoop,0
.version-detectedLoop,0
navigator.plugins.length,0
.plugins.length,1
navigator.mimeTypes-detectedLoop,0
.mimeTypes-detectedLoop,0
.mimeTypes.enabledPlugin-detectedLoop,0
.mimeTypes.description-detectedLoop,0
.mimeTypes.suffixes-detectedLoop,0
.mimeTypes.type-detectedLoop,0

// Canvas fingerprint
.readPixels,0,1
.getImageData,0,1
.toDataURL,0,1
.toBlob,0,1
.mozGetAsFile,0,1
.mozFetchAsStream,0,1
.extractData,0,1

// Canvas font enumeration
.measureText-detectedLoop,0

// WebGl infos
.getExtension("WEBGL_debug_renderer_info"),1
.UNMASKED_VENDOR_WEBGL,0,1
.UNMASKED_RENDERER_WEBGL,0,1
.RENDERER,0,1

// JS font enumeration
.offsetWidth-detectedLoop,0
.offsetHeight-detectedLoop,0
.getBoundingClientRect-detectedLoop,0
.getFontData,0,1
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WebGL fingerprinting example

The following code sample is part of a Bethesda1 fingerprinting script which uses multiple
fingerprinting techniques, retrieved at https://bethesda.net/shared/core/2/browser.

min.js. The reported section concerns WebGL fingerprinting, performed through the
collection of a considerable amount of graphic parameters.

getWebglCanvas: function () {
var e = document.createElement("canvas"),
t = null;
try {

t = e.getContext("webgl") || e.getContext("experimental-webgl")
} catch (e) {}
return t || (t = null), t

}

var e, t = function(t) {
return e.clearColor(0, 0, 0, 1), e.enable(e.DEPTH_TEST), e.depthFunc(e.LEQUAL),

e.clear(e.COLOR_BUFFER_BIT | e.DEPTH_BUFFER_BIT), "[" + t[0] + ", " + t[1]
+ "]"

},
n = function(e) {
var t, n = e.getExtension("EXT_texture_filter_anisotropic") ||

e.getExtension("WEBKIT_EXT_texture_filter_anisotropic") ||
e.getExtension("MOZ_EXT_texture_filter_anisotropic");

return n ? (t = e.getParameter(n.MAX_TEXTURE_MAX_ANISOTROPY_EXT), 0 === t && (t
= 2), t) : null

1Bethesda Softworks: https://bethesda.net/.
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};
if (e = this.getWebglCanvas(), !e) return null;
var r = [],
o = "attribute vec2 attrVertex;varying vec2 varyinTexCoordinate;uniform vec2

uniformOffset;void
main(){varyinTexCoordinate=attrVertex+uniformOffset;gl_Position=vec4(attrVertex,0,1);}",

i = "precision mediump float;varying vec2 varyinTexCoordinate;void main()
{gl_FragColor=vec4(varyinTexCoordinate,0,1);}",

a = e.createBuffer();
e.bindBuffer(e.ARRAY_BUFFER, a);
var s = new Float32Array([-.2, -.9, 0, .4, -.26, 0, 0, .732134444, 0]);
e.bufferData(e.ARRAY_BUFFER, s, e.STATIC_DRAW), a.itemSize = 3, a.numItems = 3;
var l = e.createProgram(),
c = e.createShader(e.VERTEX_SHADER);
e.shaderSource(c, o), e.compileShader(c);
var u = e.createShader(e.FRAGMENT_SHADER);

r.push("webgl aliased line width range:" +
t(e.getParameter(e.ALIASED_LINE_WIDTH_RANGE)));

r.push("webgl aliased point size range:" +
t(e.getParameter(e.ALIASED_POINT_SIZE_RANGE)));

r.push("webgl alpha bits:" + e.getParameter(e.ALPHA_BITS));
r.push("webgl antialiasing:" + (e.getContextAttributes().antialias ? "yes" :

"no"));
r.push("webgl blue bits:" + e.getParameter(e.BLUE_BITS));
r.push("webgl depth bits:" + e.getParameter(e.DEPTH_BITS));
r.push("webgl green bits:" + e.getParameter(e.GREEN_BITS));
r.push("webgl max anisotropy:" + n(e));
r.push("webgl max combined texture image units:" +

e.getParameter(e.MAX_COMBINED_TEXTURE_IMAGE_UNITS));
r.push("webgl max cube map texture size:" +

e.getParameter(e.MAX_CUBE_MAP_TEXTURE_SIZE));
r.push("webgl max fragment uniform vectors:" +

e.getParameter(e.MAX_FRAGMENT_UNIFORM_VECTORS));
r.push("webgl max render buffer size:" +

e.getParameter(e.MAX_RENDERBUFFER_SIZE));
r.push("webgl max texture image units:" +

e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS));
r.push("webgl max texture size:" + e.getParameter(e.MAX_TEXTURE_SIZE));
r.push("webgl max varying vectors:" + e.getParameter(e.MAX_VARYING_VECTORS));
r.push("webgl max vertex attribs:" + e.getParameter(e.MAX_VERTEX_ATTRIBS));
r.push("webgl max vertex texture image units:" +

e.getParameter(e.MAX_VERTEX_TEXTURE_IMAGE_UNITS));
r.push("webgl max vertex uniform vectors:" +

e.getParameter(e.MAX_VERTEX_UNIFORM_VECTORS));
r.push("webgl max viewport dims:" + t(e.getParameter(e.MAX_VIEWPORT_DIMS)));
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r.push("webgl red bits:" + e.getParameter(e.RED_BITS));
r.push("webgl renderer:" + e.getParameter(e.RENDERER));
r.push("webgl shading language version:" +

e.getParameter(e.SHADING_LANGUAGE_VERSION));
r.push("webgl stencil bits:" + e.getParameter(e.STENCIL_BITS));
r.push("webgl vendor:" + e.getParameter(e.VENDOR));
r.push("webgl version:" + e.getParameter(e.VERSION));

r.join("~");
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