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POLITECNICO DI TORINO

Abstract
Department of Electronics and Telecommunications (DET)

Master of Science

Extraction of Control Signal for Lower Limb Exoskeletons through
Non-Negative Matrix Factorization and High-Density sEMG

by Alberto Pala

Robotic devices such as exoskeletons are becoming ever more relevant for what
concerns the rehabilitation process of injured people. In this context, the overcom-
ing of the issues related to interaction human-device and the implementation of a
EMG-based exoskeleton control strategy represent a great challenge. This study,
starting from disadvantages of traditional supervised control method, proposes a
semi-supervised approach in order to extract a proportional and simultaneous myo-
electric control for a lower-limb rehabilitation exoskeleton. This allows, through the
synergy model assumptions, to evaluate a control signal directly from EMG signals
recorded on muscular surface. Five able-bodied subjects participated to this study,
and the experimental setup consisted in two phases (Exp1 and Exp2): in the Exp1 all
subjects performed movements of flexion-extension for knee and ankle joint sepa-
rately. Exp2 instead asked them to couples the single movements in order to activate
simultaneously two DOFs in a complete movement. For both phases signals from
lower-limb have been detected by using high-density surface electromyography (HD
sEMG). Specifically, electrodes grids of 8x4 and 8x8 channels have been employed. In
addiction, during the Exp2, joint angles were recorded with two electrogoniometers.
Data were factorized offline through a Non-negative factorization method. This linear
factorization algorithm allows to extract information related to muscle synergies and
activation signals. Different analysis were conducted in this study: in order to verify
the assumptions of the theoretical synergy model, 15 channel sub-configurations (8
evaluated with 10mm interelectrode distance, 5 with 20mm) were selected from the
total channels number of knee (196 single differential signals) and ankle (84 single
differential signals) joint. The investigation showed that the proposed method is
robust both with channels shift (in a transversal and longitudinal direction with
respect to the muscle fiber) and with a channels dimensionality reduction and it is
suitable for a control signal extraction. This confirmed that the EMG signals recorded
from lower-limb muscles can be approximated as a linear instantaneous mixture of
activation signals. In addiction, the proposed method has been validated comparing
calculated control signals and recorded joint angles showing high R2 values.

HTTP://WWW.POLITO.IT
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Initial Considerations

As reported from World Health Organization (WHO), since 2000 a growth related to
the number of worldwide people over 60 years has occurred. Specifically, data from
United Nations affirmed that in 2012 this category represented more or less 11.5%
of the whole world population. This percentage is destined to reach 22% no lather
than 2050. During this period, the number of people aged over 60 years will rise from
605 million to 2 billion. This category of people has not an equal distribution. For
example, 54% of elderly people live in Asia. Specifically, Japan in 2012 registered
more than 30% of 60 aged people. Europe instead shows a 22% [1][2].
In addiction, 10% of the worldwide population presents different disabilities. As
reported from "2013 China Statistical Yearbook of disabled people", their presence is about
37,95 millions. This value includes also the physically limb disabled for 16 millions
roughly[2]. The consequences of this situation lead to increasingly frequent issues
related to physiological functions of this people. Indeed, their daily living activities
are nowadays compromised by the most common and known neurologic injuries as
weaknesses of the skeletal muscles or spinal cord injuries or stroke[3]. The last one
has a particular importance because it cause long-term disability. Stroke is defined as
a death of nervous cells caused by lack of oxygen due to an interruption in blood flow
or by a rupture of an artery and it can lead to dementia and depression[6]. Further,
stroke survivors are affected especially in gait.
For all these reasons, rehabilitation techniques acquired a great importance to restore
the functionality of injured patients. Nevertheless, employed methods are strongly
related to therapist’s experience. Consequently, it is difficult to couple repetitive
training and with high-intensity. This is due to the fact that each treatment can
result subjective and the effect is not ensured. From this perspective, robotics for
rehabilitation allows to overcome the cited limits. Indeed, by using robots the physical
capabilities of the therapist are not so relevant and it is possible to supervise the
recorded data during each training, in order to evaluate the patient recovery status[4].
Moreover, for the rehabilitation purposes, wearable robots such exoskeletons are
employed. Wearable robots are mechanical devices that have been projected to be
worn by the subject and they are able to increase his strength or physical resistance
and, in addiction, to assist him during the motor function recovery[1].
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Thesis Aim

This work of thesis has been developed thanks to the cooperation between LISiN
(Laboratory for Engineering of the Neuromuscular System, Turin) and department
of Bioengineering at Imperial College of London. This project aims to produce a
signal useful to control a lower limb exoskeleton (multi DOFs movements) using high
density surface electromyography. Hence, electrical signals have been recorded from
principal muscles of knee and ankle joint. More specifically, muscular activations
have been acquired through electrodes grids. The contribution of this thesis is the use
of a semi-supervised method as control strategy. Indeed, most the employed methods
to perform a simultaneous and proportional control of more DOFs are supervised.
This means that they need to acquire both EMG signals and kinematic in order to
train the algorithm. A large amount of data implies more hardware and time required
[22]. Hence, the proposed method needs only EMG signals. It is based on muscle
synergy model [20], where it is assumed that a movement can be considered as a
translation of low-dimensional commands into muscle activation patterns with high
dimensionality through a translation matrix, or synergy matrix[22]. In addiction, the
examined model sustains that muscle activation patterns recorded on surface are a
linear instantaneous mixture of low-dimensional command signals[21], even if the
volume conductor exerts a filtering effect that can annul the hypothesis of linearity,
showing a convolutive behavior of the signal mixture [23]. Confirm this assumption
would allow the extraction of a control signal without the influence of electrodes
number or placement.
Previous researches applied a control strategy with a semi-supervised approach on
forearm, in order to control a multi-DOFs upper limb prosthesis. In those cases, there
was only wrist joint to control [22][29]. More specifically, in [22] the hypothesis of
linearity has been proved. This thesis instead want to apply this approach to two
different joint (knee and ankle), in order to extract two control signals. They will
be sent to the exoskeleton with the aim to perform a complex movement. For this
reason, this research investigated through different analysis to verify if it is possible
to confirm the fundamental assumption for the studied joint. After that, the control
signals were extracted.

Two experiment were performed. The first one aimed to estimate a synergy
matrix that includes weights from both joint. For this reason, in this phase each
subject performed simple flexo-extension movements activating only one joint at a
time. The second instead was useful to the extraction of a control signal for each joint.
EMG related to complete movements (coupling of knee and ankle activation) were
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recorded. Thus, the synergy matrix estimated during the first experiment was used
to extract control signals from EMG recorded in the second phase.
Data have been processed using a Non-negative matrix factorization algorithm in
order to extract both synergies and activation signals (low-dimensionality commands).
For each joint, from the total number of electrodes a progressive channels reduction
was applied in order to create different channels subsets.
In addiction, for what concerns the first experiment a similarity investigation between
channels subsets of different size has been conducted with the objective to verify the
basic assumption of this model. The analysis has been applied both on extracted
synergies and activation signals.
In the second experiment instead, a qualitative study about the goodness of resulted
control signal of each joint was realized. In particular, each control (calculated by the
proposed method) was compared with a joint angle signal acquired by using some
electrogoniometers during the exercises of second experiment. This choice is due to
the necessity to match the outcomes obtained from the algorithm (thus estimated)
with the ground truth measure.

This work of thesis is organized as follows; Chapter 1 provides general informa-
tion concerning surface electromyography and describes which muscles have been
included in the study. In addiction, an overview of existing exoskeletons is described.
Chapter 2 explains all experimental phase. First of all, the employed algorithm is
explained and then each experiment is described singularly. Moreover, everything
about data processing is stated. After that, Chapter 3 shows all results focusing on
similarity analysis for first experiment and performance of extracted control for the
second one. Further, outcomes from a statistical test are showed. Finally, Chap-
ter 4 summaries all achieved results. In addiction, some future developments are
proposed.
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Chapter 1

Introduction

1.1 Physiology of Motor Control

The motor system in humans has to face with a wide number of stimulus, both
internal and external. In particular, the skeletomotor system has a fundamental
influence for what concerns the control of force and movements.
Figure 1.1 shows a scheme of the central motor system. It is organized in a top-down
structure. Indeed, impulse for movement comes from different region such premotor
cortex and supplementary motor area. Stimulus from these areas reach the primary
motor cortex where it is possible inhibit or excite the neurons in this region. This step
is very important because the outgoing impulses are able to influence motor neurons
related to brain stam and spinal cord. In addiction, alfa (α)-motorneurons and the
corticospinal tract are connected and this allows a cortical control of muscle activity.
Looking at the right side of Figure 1.1 a fundamental motor unit (MU) is showed. It
is composed by an α-motoneuron in the spinal cord, that constitutes the final point of
all contributions resulting from descending and reflex input, and by all muscle fibers
that it innervates.

FIGURE 1.1: Figure shows a framework of basic motor control mechanisms.
All components are depicted[7].



Chapter 1. Introduction 2

Withing a motor neuron, sites of synaptic innervation produce a current that causes
the firing pattern of the motor unit. In this way, MU expresses its activity. Human
muscles present an amount of MUs per muscle with high variability. In fact, a small
muscle in a hand can show 100 MUs whereas a large muscle achieves 1000 or more
MUs. There exists different types of motor units, but make a classification based on
physiological properties results very difficult. For this reason, muscle fibers have been
classified with histochemical criteria: there are type 1 muscle fiber with elevated value
of ATPase and low level related to SDH (succinic dehydrogenase, that influences the
aerobic energy production). As opposite, type 2 fibers presents the reverse enzymatic
behavior [7].

1.2 Electromyographic Signal

The electromyographic (EMG) signal is the result of depolarization process performed
from the outer fiber muscle membrane, also called sarcolemma. This action lead to
the existence of an electric potential field which represents the EMG signal. Usually,
in order to detect him it is necessary employ intramuscular or surface electrodes.
They are positioned more or less distant from the signal sources. In addiction, a
very important factor for the signal acquisition is represented by the tissue in the
middle between source and electrode. It is also called volume conductor and its
properties play a crucial role for the characteristics of detected signals. In particular,
the tissue acts as low-pass filter (both spatial and temporal) and it modifies the
potential distribution.
For what concerns the process in details, a motor neuron generates an action potential
that reaches the neuromuscular junction. This implies that acetylcholine is released
between the nerve termination and the muscle fiber membrane. The latter is turned
on for the neurotransmitter effect and a potential gradient takes place within the
fiber. This potential is expressed by an inward current density, corresponding to a
depolarization zone. It spreads along the fibers and it goes from the neuromuscular
junction where the phenomena starts, to the tendons. The generated potential is
known as intracellular action potential (IAP).
The following Figure 1.2 describes how a motor unit generates a surface potential:
it is possible observe that a motor neuron reaches three different fibers, creating a
neuromuscular junction for all of them. When a potential is generated, within each
fiber there is a depolarization zone that propagates in both direction towards tendons.
In addiction, on the top of the figure is depicted the propagation velocity of the action
potential. Because of the relation with signal conduction inside the fiber, it is called
conduction velocity (CV). It is influenced from diameter of muscular fibers. Generally
it is equal to 4 m/s within them. It must be noted that this relation holds true also
within muscles with neuromuscular diseases. Finally, on the bottom (right side) of
the figure a focus on the source is showed. It is modeled by a tripole with a positive
charge in the middle and two negative charges on left and right side[8].
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FIGURE 1.2: Figure depicts the process of action potential propagation.
In addiction a focus on the tripole that models the depolarization zone is

showed[8].

1.3 EMG Collection

The EMG detection can be realized using two different approaches, a intramuscular
technique or an acquisition with electrodes placed on muscular surface. The first cited
approach expects to insert the electrodes (usually needles) directly in the muscle. This
allows to identify the potential near to the source. In addiction, the volume conductor
effect in this case is minimal because there is no the same portion of interposed tissue
between source and detector. These considerations lead to a good separability for the
detected action potentials of MUs; in fact they can be distinct also with low/medium
force levels. For what concerns the surface acquisition technique instead everything
is different. Indeed, in this case the phenomena of volume conductor is relevant
and the electrodes placement plays a key role and it can cause some issues. In order
to attenuate the power line interference and the low-pass filtering effect related to
interposed tissue, signals on surface are detected as linear combination of EMG
derived from more electrodes. This causes a spatial filtering effect. EMG signals can
be recorded as monopolar or bipolar fashion. First one includes EMG and a reference
electrode that can be positioned far-away, the other consists in two electrodes at a
limited distance. In addiction, they have to be positioned along the fiber direction.
The following Figure 1.3 shows a comparison between intramuscular and surface
detention as a function of distance from source and detector. It is evident that volume
conductor plays a fundamental role; in fact deeper sources highlight small amplitude
on surface if compared with the others[8].
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FIGURE 1.3: Comparison between signals detected with surface or intramus-
cular EMG as a function of depth[8].

1.4 Surface EMG

The most known method to acquire electromyographic signals from muscles surface
(surface EMG or sEMG) is simply represented by a pair of electrodes positioned
on the skin surface, above the interested area to detect. In addiction, a differential
amplifier allows to represent the signal with an acquisition software. Properties of
acquired EMG depend on the distance between electrodes (IED), placement and
size[8].
As discussed before, the fundamental role of electrodes configuration and location for
EMG acquisition is known for several years. In addiction, these factors are still a chal-
lenge and sometimes lead to different issues. There are three type of configurations
with which realize EMG detection. The simplest one is the monopolar configuration,
as cited before. A recording conducted with this modality, it allows to maintain
all available information. However, it has the drawback that also common mode
signals are preserved. An other type of detection is the bipolar o single differential
(SD) configuration where noise is mitigated. In addiction, there is also a double
differential (DD) configuration that is useful when it is necessary to evaluate the CV
or limit the volume of acquisition or have a great selectivity. Beyond the discussed
configuration, there is also a category of surface EMG related to a wide number of
electrodes. In fact, since the electrical potentials describe EMG maps on muscular
surface, it is possible use electrodes grids applied on the skin in order to appreciate
a different representation. This type of recording is related to high-density surface
EMG (HDsEMG). This depiction is very interesting; indeed acquiring these EMG
potential maps from the same region in time, it is possible to see how the potential
distribution changes in time. In order to show these maps in a better way, it is not
employed the electrical potential but a specific EMG feature within them[8].
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1.5 Motor Synergies

The human movement, also the simplest one, is the outcome related to the coor-
dination of many muscles. For example, hundreds of activations are necessary to
produce a locomotion. In any case, the aim is the activation of the α-motorneurons.
In this view, the importance of motor control strategies is crucial for what concerns
the mechanical effect produced with a muscle activation[8]. Motor control theories
have been developed many years ago. One of these sustained that the generation of
a movement would be too much costly for CNS if it would control singularly each
muscle. For this reason, the control strategy of CNS should be based on a internal
representation, related to low dimensional task-level, of the complex external envi-
ronment. Consequently, these task-level command are converted in muscle activation
patterns to perform a complex movement. Hence, CNS organizes its neuronal net-
works with modules, or synergy. It is defined as a "set of relative non-negative levels
of muscle activation"[9]. Given a synergy, an action to change also a complex pattern
can be traced back to the linear combination of a given number of basic patterns.
EMG detection represents a valid instrument to analyze the strategies used by CNS
to coordinate a lot of muscles that activate together. For this reason, it is necessary to
record simultaneously a large number of muscles, or at least those with a significant
activation during the movement. This is due to the fact that a lack of information,
because of a missing muscle, does not allow to discover the hidden organization of
muscular patterns. Usually, in order to study motor synergies from sEMG, envelopes
are evaluated because their trend is similar to the muscular activation. Moreover,
synergies are studied by factorizing the recorded sEMG with the objective to discover
both modules and activation signals.

There are two models useful to describe synergy. The first one is the time-invariant
synergy model, expressed by the following equation:

m(t) =
N

∑
i=1

ci(t)wi + e(t) (1.1)

where the muscle pattern m(t) comes from synergies wi and coefficients ci that are
combined in a linear way.
The second type is a time-varying synergy model, where

m(t) =
N

∑
i=1

ciwi(t− ti) + e(t) (1.2)

In this case, the muscular activation is composed by combinations of the whole
number of synergies that are time-dependent.
In this work of thesis only the time-invariant model, expressed in relation 1.1 will be
used.
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1.6 Neurophysiological Processes within EMG

On the fundamental concepts discussed for motor synergies, in this section a model
for surface EMG is described in order to understand the CNS control strategy.
Figure 1.4 shows a model for surface EMG proposed in [21]. It indicates that the
information useful to control a movement exists at the spinal level. In addiction, this
control information is modeled as a group of force functions, varying in time. This
functions include all activation levels for every DOFs. Hence, they have dimension
that corresponds to the number of DOFs of the movement.

FIGURE 1.4: Figure shows a schematic representation of the model for surface
EMG. Image has been modified from [21].

Considering a single joint, able to perform N DOFs, the force functions are expressed
as

F(t) = [ f1(t), f2(t), ..., fN(t)]T (1.3)

where fn(t) indicates the force function for the nth DOF. Further, each force function
has a maximum frequency f f lower than 5 Hz and this is due to the physiological
ability of neuromuscular system. At this point, if the movement of the considered
joint includes M muscles, the equation

X(t) = [x1(t), x2(t), ..., xM(t)]T (1.4)

describes the activation function for every muscles. Specifically, xm(t) is related to the
mth muscle and it can be indicated as

xm(t) =
N

∑
n=1

(smn · fn(t)) (1.5)

while in matrix form, it is possible simply express with

X(t) = S · F(t) (1.6)

In the last 2 equations, S is a matrix with dimensions M x N where each element
(in general smn) correlates the activation of a given DOF (indicated with subscript n)
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performed by a given muscle (indicated with m)[21].

The investigation can be conducted for both intramuscular and surface EMG detec-
tion, but this work of thesis focuses only on acquisition from muscular surface. In
case of sEMG, if it assumes that there is not effect of volume conduction filtering
but the only attenuation depends on the distance between source and detector, the
mixture can be considered linear instantaneous. Consequently, the activation yk(t)
recorded on a muscle for the generic kth electrode is explained as

yk(t) =
M

∑
m=1

gkm · xm(t) =
N

∑
n=1

(
M

∑
m=1

gkm · smn(t)) fn(t) =
N

∑
n=1

wkn · fn(t) (1.7)

This relation explains the linearity between activation signals and the surface of
detection. The factor gkm indicates the attenuation value that it is influenced only by
the distance source-electrode. In addiction, wkn is a weighting factor between the nth
command signal and the kth electrode.

If the hypothesis regarding the volume conductor is not applicable, the signals
mixture is convolutive and the contribution on muscular surface changes. In fact, the
activation at the kth electrode is expressed as

zk(t) =
M

∑
m=1

L

∑
l=1

gkm(l) · xm(t− l) =
M

∑
m=1

L

∑
l=1

gkm(l) ·
N

∑
n=1

smn · fn(t− l) (1.8)

It is noticeable that in this case the filtering effect plays a fundamental role; in fact L
represents the filter length. Thus, this case indicates that the mixture related to the
kth electrode is not linear instantaneous but it is a noninstantaneous combination of
activation signals.

In order to describe both cases in a compact fashion, matrix form for the linear
instantaneous can be indicated as

Y(t) = G · X(t) = G · S · F(t) = W · F(t) (1.9)

where W is a matrix with K rows (channel recorded) and N columns (number of chan-
nels weighting vectors) and, in a study related to motor control, it can be interpreted
as synergy matrix. Matrix form underlines the linear relation between EMG signals
detected Y(t) and command signals F(t). In addiction, weights matrix W is not related
with the synergies that CNS encodes. On the opposite, they are weighting factors
that allow to activation signals to be transferred on surface. Moreover, the number of
weighting vectors corresponds to the number of activation signals N.
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Instead, if the mixture is convolutive, matrix form is expressed as

Z(t) = G ∗ X(t)

=
L

∑
l=0

G(l) · X(t− l)

=
L

∑
l=0

G(l) · S · F(t− l)

=
L

∑
l=0

H(l) · F(t− l)

= [H(0)|H(1)| . . . |H(L)|]
·[F(t)|F(t− 1)| . . . |F(t− l)]T

(1.10)

where the matrix [H(0) |H(1)| . . . |H(L)|] now has dimensions of K × [N × (L+1)].
It is evident that the dimensionality of channel weighting vectors is larger than N. For
this reason, the N command signals are not correlated. Further, the delayed versions
can be partially correlated. Thus, it would be necessary to obtain a dimensionality
wider than N in order to consider also the information related to partially correlated
signals.

1.7 Muscular Joint Interested

This thesis focused on the control of a lower-limb exoskeleton. Thus the most impor-
tant muscles related to knee and ankle joint were employed for EMG detection. In par-
ticular for both of them, movements of flexion-extension for knee and dorsi/plantar
flexion for ankle have been realized.

1.7.1 Knee Joint

Muscles related to knee joint can be separated between extensors and flexors by a
fundamental characteristic: those with a movement path anterior respect the knee
joint axis (for example quadriceps femoris) are extensors, whereas those with a path
posterior to knee axis are flexors. Extensors muscles in the knee originate on the
femoral surface and they spread along the anterior-posterior thigh surface. The
biggest muscle that encourages the extension of the knee is the Quadriceps femoris. It
consists of wide muscles: Vastus Lateralis and Vastus Medialis and Vastus Intermedius.
The first two muscles are superficial while the Vastus intermedius is in depth. These
muscles originate along the femur bone and, all togheter, wrap the Rectus Femoris.
This muscle comes from the anterior-inferior iliac spine; for this reason, it is involved
both during knee extension and also in hip flexion. For what concerns the distal
termination, all these muscles end onto the tibial tuberosity, through the tendon of
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quadriceps. Figure 1.5 shows a global vision of knee joint; all interested muscles have
been highlighted with a colored box.

FIGURE 1.5: Figure shows muscles related to anterior region of knee joint.
Left-side: superficial view, Right-side: deep view [11].

For what concerns flexors, knee joint shows Biceps Femoris (short and long head),
Semitendinosus, Semimembranosus and Sartorius. In this thesis only first two cited
muscles have been recorded. All these muscles originates on pelvis edge and then
they insert on tibia and fibula. By contracting, they perform a flexion of the knee. The
first three cited muscles are known also as "back thigh muscles". Because of their
origin on pelvis and posterior respect to the acetabulum, their activation cause also
an hip extension[10]. Flexors muscles are depicted in Figure 1.6.

1.7.2 Ankle Joint

Most of the muscles related to ankle joint are useful to produce a plantar flexion. This
movement occurs during activities as gait and run. In this view, Gastrocnemius is a
wide muscle split in medialis and lateralis. Their power is increased because of the
presence of the Soleus in depth. Gastrocnemius origins from two tendons that are
linked to both medial and lateral femur condyles, while it ends (together with soleus)
on a common tendon (calcaneal tendon, most commonly known as Achilles tendon).
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FIGURE 1.6: Figure shows muscles related to back region of knee joint.
Left-side: superficial view, Right-side: deep view [11].

FIGURE 1.7: Figure shows muscles related to ankle joint. Left-side: front
view, Right-side: back view [11].
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In addiction, there are two muscles responsible for the plantar flexor; they are
fibularis muscles and they are located in depth, under gastrocnemius and soleus.
For what concerns the dorsi flexion of the ankle, the most representative muscle that
provides this movement is the Tibialis Anterior that it is opposed to the gastrocnemius.
For the ankle in this thesis have been recorded tibialis anterior and both gastrocnemius
lateralis and medialis[10]. Figure 1.7 summaries all cited muscles.

1.8 Lower-Limb Exoskeletons

This section provides general information related to exoskeletons development in
previous years with some examples. In addiction, a few considerations about EMG
control-based exoskeletons are supplied. Finally, a brief description of the employed
exoskeleton is provided.

1.8.1 Related Researches

Research oriented to the exoskeletons control in order to support human does not
represent a new technology field; in fact, during ’70s a group (guided by Vukobratovic)
realized a model of rehabilitation exoskeleton. Results were not positives because of
technological limits, like a reduced computer processor power and heavy actuators.
In the years following many projects have been developed thanks to technological
improvements. There are some fundamental factors to consider for an exoskeleton
design; mobility of the operator is maybe the most important and the increasingly
reduced size and weight facilitate this aim. Although the mechanical part has a great
relevance, also the exoskeleton control strategy is an important challenge, in order to
avoid a misinterpretation of the operator movements that can result in injuries[12].
Some examples of projects related to exoskeletons are described below.

Exoskeleton Walking Aid, Yugoslavia This device was projected around 1970 from
Vukobratovic research group and it was conceived as wearable exoskeleton to help
patients with locomotive deficits. A few versions were projected. In general, first
version had actuators for only hip and knee joint while ankle was passive. It had an
high encumbrance and heavy weight. In addiction, a complete paraplegic needed a
support from two assistants to keep his balance. However, after many changes, main
issues were a system constricted to indoor use because of the air supply (separated
from exoskeleton) and large hardware required[12].

BLEEX, University of Berkeley, USA This project was conducted with the aim to
design an exoskeleton for human strength augmentation. In fact, the main use was
the application within outdoor environments where there is a need to transport heavy
loads over large paths in a limited time. BLEEX included, for both legs, actuators of
hip, knee and ankle joint in sagittal plane.
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FIGURE 1.8: BLEEX Ex-
oskeleton design [13].

This exoskeleton is not provided of sensors that record
biological signals of the operator. In addiction, nei-
ther interaction forces between human and devices are
measured. Despite this, the device tries to min-
imize these interaction forces with a philosophy of
"out of the way of the operator as quickly as possi-
ble".
Thus, the operator does not feel the load applied. For
what concerns the control in case of unexpected forces
on the person, no algorithms were implemented to man-
age the postural stability. For this reason, for this de-
vices the response of the operator plays a key role, be-
cause he has to counterbalance an eventual imposed
movement[12].

HAL, University of Tsukuba, Japan The Hybrid Assistive Leg (HAL) exoskeleton
has been designed with the purpose of support elderly people and gait disordered
people. With HAL, the process starts from the EMG signal detected from muscle of
the operator. First prototype of HAL included four actuators localized at the hip and
knee (both legs), while latest version introduced also actuators for both shoulder and
elbow joint. For this exoskeleton, different control strategies have been realized. The
first is a "phase sequence algorithm", employed for stepping-up motion. This control
consists of five phases: switch among each of them happens only when joint angles
and measured center of gravity respects some criteria. In addiction, within every
phases there is a predefined path for all joint.

FIGURE 1.9: HAL Exoskeleton design (first prototype) [14].
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With HAL exoskeleton, EMG signal is detected from the Rectus Femoris muscle in
order to start the movement. At this point, the system wait for an increased muscular
activation and select 300ms of signal in order to process it. Thanks to a linear relation
obtained with a calibration performed at the beginning, EMG signal is converted into
a hip angle. This angular value is used as reference for the position. Hence, after
300ms, the device on the basis of calculated angle decides which change of phase
apply. For the remaining parts of the movement are used predefined trajectories. In
addiction to control strategy for stepping-up, others controls have been improved in
order to perform tasks as sitting-down or walking[12].

1.8.2 H2 EMG Controlled Exoskeleton

From all examples showed until now it is evident that a rehabilitation with lower-limb
exoskeletons, controlled with information from biological signals, is hard to realize.
However, these rehabilitation devices continue to be developed but they are affected
of some issues. One of the most evident problems is that gait rehabilitation should be
projected to ensure a repetitive training for longer therapy sessions. Unfortunately,
patient has a passive role during the exercises, so he achieves some results initially but
after a few weeks all advances stagnated. To solve this issue rehabilitation robotics
have been improved in order to stimulate the patient with the possibility to change a
fixed trajectory, providing feedbacks in different fashion (visual or force) and acting
only when he requires assistance.

FIGURE 1.10: H2 Ex-
oskeleton design [5].

Nevertheless, all these efforts did not lead to appreciable
results. This is due to the fact that there is a substantial gap
between the intention of user and the fixed device trajectories
and there is a lack of concentration from user because of his
passive role during the exercise. For all these reasons, a new
concept of rehabilitation with robots has been proposed in the
last few years. The novel approach would try to decode user’s
neural activity in order to evaluate his effective intention and,
in the next step, apply a correct command to the robot actuators.
This method aims to two outcomes; the first is to improve gait
task of the patient, while the second is to stimulate and reinforce
the interested cortical region during recovery tasks[15]. With
these purposes, EMG signal can represent a solution to control
a lower-limb exoskeleton. In this direction, a EMG-driven algo-
rithm was presented in [16] in order to control the exoskeleton

employed in this work of thesis. The H2 lower-limb exoskeleton showed in Figure
1.10 (Technaid S.L.,Spain) includes six DOFs organized for hip, knee and ankle joint.
Each DOF includes a position sensor and a motor torque sensor[16]. For what con-
cerns the mechanical side, H2 has been designed to rehabilitate adults with height
between 1.50 m and 1.95 m. It can able to support a maximum body weight of 100 kg
[5].
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Chapter 2

Materials and Methods

2.1 Blind Source Separation Problem

In the science and engineering environment data analysis, data mining and signal
processing earned an important role. As a matter of fact, the extraction of knowl-
edge from raw dataset constitutes an important challenge. Sometimes the analyzed
datasets hide complex phenomena as result of several inter-related factors and, for
this reason, they have to be separated into components in order to discover their
hidden internal structure.
Blind Source Separation (BSS) is a mathematical method that decompose the original
data by a lower-dimensional approximation through matrix factorization or data de-
composition. The optimal strategy depends on the different type of data to factorize.
For example, a great number of analyzed data are partially or totally non-negative.
Thus, in these cases, it needs to take in account the non-negativity constraint to extract
positive information. This is crucial to ensure a correct physical meaning and proceed
to a reasonable explanation, avoiding unpredictable outcomes.
BSS adopts a large number of unsupervised learning algorithm, which are used in a
lot of applications from engineering to neuroscience. The aim of BSS is, starting from
a structure of multi-dimensional data as input, to express the meaning of a physical
source and the parameters forming part of a unknown mixing system.
Figure 2.1 shows an example of BSS problem; the system output

y(t) = [y1(t), y2(t), ..., yI(t)]T (2.1)

includes all the observation recorded from I sensors. All signals belong from a MIMO
(multiple-input/multiple output) mixing and filtering system. The output signals are
an overlapping (also called signals mixture) of J unknowns source signals

x(t) = [x1(t), x2(t), ..., yJ(t)]T (2.2)

and noise expressed as
e(t) = [e1(t), e2(t), ..., eI(t)]T (2.3)

Because of the system composition, it is necessary to estimate the source signals
x(t) from the output y(t). Usually it is more useful identify the mixing system and
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FIGURE 2.1: General model illustrating blind source separation (BSS). The
output y(t) is known and it is composed from the overlapping of unknown

sources x(t) and interference e(t)[17].

then to estimate the source signals with some a priori information but this appears
very complicated since the mixing system is unknown. Furthermore, without a
priori information about source signals the estimation is not unique. Anyway it is
possible to assess them with indeterminacy or ambiguity because in mathematical
terms these properties can be translated on source signals as arbitrary scaling and
permutation. Fortunately, in a wide number of applications, the most relevant
information about the source signals are included in the temporal waveforms or
in the time-frequency patterns rather than in their amplitude or in the output order.
Thus, since the waveform is preserved, source signals can be approximated from a
mixture of signals without the knowledge of the mixing system. The BSS method
that match with the non-negativity constraint required by muscular activation data is
the Non-negative Matrix Factorization (NMF)[17].

2.2 Non Negative Matrix Factorization

In the previous paragraph basic concepts about Blind Source Separation have been
analyzed. The complexity of studied phenomena requires to adopt models able
to approximate the original data applying a lower dimensional representation. In
addiction, it has been said that sometimes analyzed data are non-negative. Thus,
this constraint has to be included also inside the low-rank data evaluated in order
to prevent inappropriate conclusion. The non-negative factorization problem can be
stated as:
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"Giving a non-negative matrix A ∈ Rmxn and a positive integer k < min(m,n), find nonnega-
tive matrices W ∈ Rmxk and H ∈ Rkxn to minimize the functional"

f (W, H) =
1
2
||A−WH||2F (2.4)

The product WH is an approximation of the input matrix A with rank k. A crucial
point for a correct factorization of the input matrix is the k parameter choice; usually
it is chosen in order to obtain k� min(m,n)[18]. Thus the NMF is able to decompose
an input matrix A such that

A ≈WH (2.5)

For the purpose of this thesis the input is a mxn matrix where m is the number of
EMG channel recorded and n is the number of samples in the dataset. In addiction,
the dimension k in the product WH represents the number of synergies chosen. The
meaning of the (2.5) is simple: it can be written column by column as

a ≈ Wh (2.6)

where a and h are the columns of matrices A and H and it is noted that each vector
of data a is approximated with a linear combination of the columns of matrix W,
weighted by the components of h. Hence the matrix W can be identified as container
for the optimized coefficients that allow to approximate the data in A [19].
The relation expressed in (2.4) represents a non-trivial minimization process due to
two reasons: the first one is the non-convexity of f(W,H) in both W and H and this
can lead to local minima phenomena. Moreover, as expressed previously, the NMF
solution is not unique and this is easily proved by considering the product WDD-1H
for a general non-negative and invertible matrix D where its inverse D-1 remains
non-negative.

2.2.1 Numerical Approach for NMF

The NMF algorithm needs the random initialization of W and H matrices with
non-negative values before the iteration starts [18]. This step is crucial because the
initial conditions, particularly in a multivariate context, influence the solution and
convergence provided by the algorithm. Indeed, poor matrices initializations can lead
both to a slow convergence and wrong solutions. A wide number of studies suggested
different approaches for NMF initialization, for example based on a spherical k-means
clustering or based on SVD (Singular Value Decomposition). In this thesis project the
following multi-start random initialization has been proposed:

• A parameter R useful to fix the number of initialization procedure has been
chosen. Typically, it is between 10 and 20 times.

• For each cycle, W and H matrices have been initialized with random number
and they are used to perform an NMF algorithm run with Alternating Least
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Square (ALS). At the end of the optimization in each cycle, estimated matrices
W(r) and H(r) have been saved.

• At the end of all R cycles, the W and H matrices chosen for the next phase of
the NMF algorithm namely W(rmin) and H(rmin) correspond to the cycle with the
lowest cost function among the R trials [17][18].

For what concerns the classes of NMF algorithms, there are three fundamental cat-
egories to cite: multiplicative update algorithm, gradient descent algorithm and
alternating least square algorithm. This work of thesis focuses the attention only on
the last one.

2.2.2 ALS Algorithm

The alternating least squares algorithm is based on a sequence of least square step.
This type of non-negative matrix factorization take advantage of the non total con-
vexity of the relation (2.4). Indeed, the optimization problem is only convex in either
W or H. Due to this reason, if one matrix is known, the other one can be easily cal-
culated with a least squares computation. Principal steps of the ALS algorithm can
be appreciated in Figure 2.2; the procedure perform at the beginning a least square
computation to solve matrix H and then set to 0 all negative elements. After that, the
procedure is repeated for W matrix. The ALS shows a lot of advantages: it is very
fast and it reaches convergence in a limited time. This means that it need to work less
despite the other NMF implementation. In addition, it has an important benefit if
compared with the multiplicative algorithm. As a matter of fact during multiplicative
update procedure, if an element of W or H acquires a null value it is not possible to
change it. This means that when the algorithm starts walking towards a fixed point,
even if a bad fixed point, it can’t correct the wrong path. The ALS algorithm instead
doesn’t suffer of this problem and it is able, during the iterative process, to run away
from a wrong path [18].

FIGURE 2.2: Principal steps of the Non-negative matrix factorization based
on Alternating Least Squares algorithm[17].
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2.2.3 DOF-wise NMF Approach

In Chapter 1 the theory of CNS control strategy has been illustrated. In addiction, it
has been said that if the mixture of signals recorded on the muscular surface can be
approximated as a linear instantaneous combination of the activation signals, their
extraction is attributed to an instantaneous linear BSS problem that can be solved
applying a non-negative matrix factorization. In this work of thesis, the input matrix
decomposition aims to extract information with a physiological meaning but, as
seen previously, NMF produces solutions that are not unique both in amplitude and
order. In order to perform a clear control to an exoskeleton for rehabilitation, data
extracted have to be meaningful. It is necessary, as in the myoelectric control, to know
which degree of freedom (DOF) is operative (indeterminacy in order) and quantify its
activation (indeterminacy in amplitude). To satisfy these requirements, the following
DOF-wise approach has been proposed [21].
Starting from the input matrix Y(t) and its approximation

W · F(t) (2.7)

the activation signals vector F(t) and the synergy matrix W can be written in a manner
that the i-th element has both positive and negative component. For example, for the
activation signals vector there will be:

f+i (t) = fi(t) when fi(t) ≥ 0

f−i (t) = − fi(t) when fi(t) < 0
(2.8)

Using this strategy with every element of the two vectors, the relation (2.7) can be
written as

Y(t)=[W+
1 , W−1 , W+

2 , W−2 , ...W+
D , W−D ] · [ f+1 (t), f−1 (t), f+2 (t), f−2 (t), ..., f+D (t), f−D (t)]T

(2.9)
where D is the number of DOFs. Thus the DOF-wise approach models a joint with
two activation signals, which correspond to the different directions of each DOF.
Summing up, in order to control a number D of DOFs, N = 2D activation signals will
be required [22][21].

Now, from the equation (2.9) it is possible to show the benefit of this approach:
considering the scenario in which only one DOF is activated (in general the i-th), the
previous relation become simply

Y(t)=[W+
i , W−i ] · [ f+i (t), f−i (t)]T (2.10)

As presented in [21], this "divide and conquer" approach allows to split the whole
signals mixture in a defined number of simple mixtures, related to each active DOF.
As said before, every sub-mixture is an instantaneous BSS linear problem that can be
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solved applying a non-negative factorization.

2.3 Experimental Procedures

This work of thesis focuses on the extraction of a control signal from muscular activ-
ity in order to provide a robust input signal for controlling motors of a lower limb
rehabilitation exoskeleton. Four motors (two for knee joint and two for ankle joint)
were available in the considered exoskeleton; for this reason, this work focused on
knee and ankle flexion-extension movements. For what concerns the experimental
phase, 7 able-bodied and non pathological subjects with age between 25 and 30 years
participated in the experiment. More specifically, 2 subjects were involved during
the pilot phase while the others performed the complete experiment. All people
involved were males. This choice is due to the different fat distribution between
genders. Indeed, as explained in [24], for a given body mass index (BMI) women
have an higher fat layer compared with men, estimable at 10 percent roughly.
The protocol consisted of two steps. The purpose of the first one was to estimate
a synergy matrix W from the EMG signals recorded during knee and ankle flexion
extension performed separately. This process have been replicated for a number of
selected channels subsets from the original electrode configuration in order to realize
subsequent inferences. The second step was intended to verify the possibility to
extract the activation signals from EMG signals detected during combined knee and
ankle flexion extension using the estimated matrices obtained in the first step. In
order to evaluate the performances of the system, extracted activation signals were
compared with the true knee and ankle joint angle recorded from two electrogo-
niometers. In any case, all subjects were seated comfortably for the duration of the
test. For what concerns the first experiment, ankle movements have been performed
with the subject seated on a chair and foot on the ground, whereas he was seated
with suspended foot to realize knee movements and for the duration of the second
experiment. Moreover, in order to make easier and repeatable the task execution, a
trapezoidal cue (similar for knee and ankle joint) was displayed on a computer screen
positioned in front of the subject, as shown in Figure 2.3.

FIGURE 2.3: Displayed trapezoidal trajectories during Exp.1 for Knee (left-
side) and Ankle (right-side) movements. Labels applied on the cue indicate
which phase of the movement the subject has to perform. Red markers only

help the patient to keep a constant velocity.



Chapter 2. Materials and Methods 20

2.3.1 First Experiment

During the Step1 (Exp.1), the subject was asked to perform two tasks: 1) the flexion
extension of the knee and 2) the plantar/dorsal flexion of the ankle separately. Each
task included ten repetitions. For each task the subject was instructed to follow the
trapezoidal cue reported in Figure 2.3. Each extension and flexion phase lasted 3 s
while the rests lasted 5 s. The whole sequence lasted 30 seconds. In order to give at the
subject a velocity feedback for a correct task execution, a sequence of red circle shaped
markers was displayed on the trapezoidal cue. For clarity, the dynamic sequence
shown on the cue was not related to the patient muscolar activation. Instead, it was
only useful to give an information about the phase of the movement to perform. The
same protocol was employed separately for both knee and ankle joint, insulating for
each joint the interested DOF as required from DOF-wise approach. In addiction,
the physiological range of motion of each joint were identified from literature[28].
For the ankle, the subject seated on a chair (reference position), the range identified
in literature indicates 80◦ (30◦ for dorsiflexion and 50◦ for plantar flexion). For the
knee, with the subject seated, the range was set in 125◦ (90◦ for extension and 35◦

for flexion). It is useful to specify that these range of motion only give a general
information. Each subject moved with his own range of motion.

FIGURE 2.4: Range of Motion for Knee flex-extension and Ankle dorsi and
plantar flexion[28].

High-density surface EMG signals were recorded from the most important ago-
nist and antagonists knee and ankle muscles of the right leg of each subject. Four
semi-disposable adhesive grids of 32 electrodes were placed on tibialis anterior, gas-
trocnemius medialis, gastrocnemius lateralis and rectus femoris. In addiction, three semi-
disposable adhesive grids of 64 electrodes were placed on vastus medialis, vastus
lateralis and biceps femoris (see Figure 2.8). All matrices were arranged in eight rows
and four columns (case of 32 electrodes) or eight rows and eight columns (case of
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64 electrodes) with 10 mm interelectrode distance (OT Bioelettronica & Lisin, Turin,
Italy). An overview of the employed matrices is shown in Figure 2.5.

(a) (b)

FIGURE 2.5: Electrodes grids employed: 32 electrodes (arranged in 8x4 grid,
IED=10mm) (a), 64 electrodes (arranged in 8x8 grid, IED=10mm) (b).

A patient reference electrode was positioned on the right ankle. The skin was
prepared using abrasive paste prior to electrode placement.
Monopolar surface EMG signals were acquired (Quattrocento, OT Bioelettronica,
Turin, Italy) with sample frequency of 2048 Hz and a 16-bit A/D converter. Signals
were observed during the recording through a customized graphic user interface
implemented on MATLAB R©platform.

2.3.2 Second Experiment

The second experiment (Exp.2) was focused on the simulation of a complete move-
ment activating both knee and ankle joint. In this phase the subject has been seated
with the foot suspended. The protocol included ten repetitions of 30 seconds where
the subject followed the same trapezoidal cue used in Exp.1 but this time the exer-
cise was articulated in the following way: each subject performed the same exercise
related to knee joint and he activated the ankle for a dorsi-flexion when knee was
completely extended or flexed, while he performed a plantar-flexion when knee
was in the central rest phase. High-density surface EMG signals were recorded
with the same matrices used in Exp.1. In addiction, an elastic band bounded on
both sides (under the knee and on the top of the right feet) was used to simulate
a resisting force during ankle flexion-extension (see Figure 2.6). This was useful to
keep a similar ankle muscular activation with the subject seated in a different position.

The aim of the Exp.2 was to test the performances of the proposed method, comparing
the extracted control signals with an angle signal. In order to record an angular signal
from both knee and ankle joint, two electrogoniometers were employed (SG110 and
SG150, Biometrics Ltd). Both goniometers were placed during the Exp.1 with the
subject standing, as shown in Figure 2.7. Angular variations have been acquired
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(a)

(b) (c)

FIGURE 2.6: Figure shows the principal phase of Exp.2: (a) Combination of
Knee extension and Ankle dorsiflexion; (b) Knee during resting phase and
Ankle plantar flexion; (c) Combination of Knee flexion and Ankle dorsiflexion.

with a general purpose probe (DuePro, OTBioelettronica, Turin, Italy) linked to the
electrogoniometers. Thus, data were transmitted via bluetooth to the probe station
and sent to the EMG signals amplifier (the same of Exp.1) using two BNC-BNC cables.
The whole system has been realized in order to synchronize the EMG and angle
signals acquisition.

(a)

(b)

FIGURE 2.7: Detail of electrogoniometers placement. (a) Overall positioning
for Knee (SG150, Biometrics Ltd) and Ankle (SG110, Biometrics Ltd). (b)

Electrogoniometer placement on Ankle joint.
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2.4 Data Processing

All recorded signals have been processed offline after the recording phase. In total,
96 and 224 monopolar EMG signals were recorded from ankle and knee joint, respec-
tively. For all signals of each trial, the power line interference was removed with a
notch filter. After that, signals were digitally band-pass filtered (Butterworth digital
filter, fourth-order, pass-band 20-400 Hz) and the single differentials (SD) signals
were evaluated considering one or two inter-electrode distance, namely hereafter
1 IED and 2 IED. After that, SD signals were visually inspected in order to remove
channels corresponding to residual artifacts or missing contact (bad-channels). Once
the bad channel was selected for a trial, it was removed for all of them.
Furthermore, from the SD signals (both IED) the root mean square (RMS) feature of
EMG signals was calculated using non-overlapped 250 ms length windows. Hence,
the signals were down-sampled to 4Hz. The choice to calculate the RMS feature was
suggested from literature. In fact, as proved in [25], the joint angle can be predicted
with good results using the RMS feature. In addiction, all evaluated RMS signals have
been averaged between all trials in order to obtain a single averaged RMS dataset.
Thereafter, to realize some inferences for each joint the recorded signals were pooled
together linking the electrodes of all matrices counter-clock wise.
This produced two general matrices with the following configurations:

Knee Joint Matrix

• Vastus Lateralis Matrix (cols from 1 to 8);

• Rectus Femoris Matrix (cols from 9 to 12);

• Vastus Medialis Matrix (cols from 13 to 20);

• Biceps Femoris Matrix (cols from 21 to 28).

Ankle Joint Matrix

• Tibialis Lateralis Matrix (cols from 1 to 4);

• Gastrocnemius Medialis Matrix (cols from 5 to 8);

• Gastrocnemius Lateralis Matrix (cols from 9 to 12).
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(A) (B) (C) (D)

FIGURE 2.8: Matrices positioning on interested muscles, right leg.(A) Ankle
front view. 32 electrodes matrix on tibialis anterior;(B) Ankle back view. 32
electrodes matrices placed on gastrocnemius medialis (left side) and lateralis
(right side);(C) Knee front view. 32 electrodes matrix on rectus femoris and a
two 64 electrodes matrices placed on vastus lateralis (left side) and medialis

(right side);(D) Knee back view. 64 electrodes matrix on biceps femoris.

At this point, from these configurations (196 electrodes for knee joint and 84 for ankle
joint with 1 IED, 84 and 36 electrodes with 2 IED respectively), 8 channels subsets
with 1 IED and 5 with 2 IED were extracted for both knee and ankle joint from the
complete configurations. To do this, a uniform selection (UNI) method, similar to a
previous approach that select equally spaced electrodes [26] was used. Hereafter, the
attribute Complete will be used to denote the configuration that include all channels
of the high-density grid. Instead, the attribute Reference followed by the number of
selected electrodes will indicate a general sub-configuration. Furthermore, in attempt
to prove the robustness of this method for shift issues, shifted configuration have
been evaluated for a portion of Reference configurations. Regarding the muscle fibers
direction, both transverse (shortened T) and longitudinal (shortened L) displacements
have been considered. Thus a transverse shift will correspond to select the electrode
on the left-side from the channel considered, a longitudinal shift will select the
electrode below the channel considered.
For example, a reference configuration composed of 28 electrodes and transversally
shift will be namely as Reference28T. All selected channels subsets are shown in Table
2.1 and Table 2.2.
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Knee Joint, 1 IED Channels Ankle Joint, 1 IED Channels

Complete 196 Complete 84
Reference56 56 Reference24 24

Reference56T 56 Reference24T 24
Reference28 28 Reference12 12

Reference28T 28 Reference12T 12
Reference28L 28 Reference12L 12
Reference14 14 Reference6 6

Reference14T 14 Reference6T 6
Reference14L 14 Reference6L 6

TABLE 2.1: Summary of the electrodes configurations selected for Knee and
Ankle joint with IED=10mm. Capital letters T and L indicate a shift in
direction transverse or longitudinal to the muscle fiber, with respect to the

selected reference configuration.

Knee Joint, 2 IED Channels Ankle Joint, 2 IED Channels

Complete 84 Complete 36
Reference28 28 Reference12 12

Reference28T 28 Reference12T 12
Reference14 14 Reference6 6

Reference14T 14 Reference6T 6
Reference14L 14 Reference6L 6

TABLE 2.2: Summary of the electrodes configurations selected for Knee and
Ankle joint with IED=20mm. Capital letters T and L indicate a shift in
direction transverse or longitudinal to the muscle fiber, with respect to the

selected reference configuration.
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Moreover, for absolute clarity, a few channels subsets configurations are shown in
Figure 2.9. All selected electrodes subsets can be appreciated in Appendix A.

FIGURE 2.9: Examples of reconstructed matrices for Knee and Ankle
joints. Only colored electrodes were selected A) Knee Joint - Reference
56, IED=10mm, B) Ankle Joint - Reference 12, IED=10mm, C) Knee Joint -

Reference 14, IED=20mm, D) Ankle Joint - Reference 6, IED=20mm.

For the Exp.1, RMS signals of all configurations were factorized into the product of a
channel weighting matrix W and the activation signals matrix F(t). Muscular activa-
tions have been processed one joint (and thus one DOF) at a time, as suggested from
DOF-wise approach. In order to decompose each input matrix, a NMF algorithm [18]
with dimensionality of the activation function equal to 2 was applied. The method
employs at the beginning a multi-random initialization phase, as widely explained
in Chapter 2.2.1. The number of initialization procedures was 10. Afterwards, the
factorization based on ALS algorithm (Chapter 2.2.2) occurred.
For the knee joint, the algorithm was also applied with dimensionality of the activa-
tion function in the range 1-3 in order to verify the correctness of DOF-wise approach.
In all cases, to minimize the phenomena of local minima, the factorization was run 10
times with different initial values for W and F(t) matrices and the launch with the
lowest cost function was selected. As discussed in Chapter 2.1, the NMF outcomes
suffer of indeterminacy especially in order. Thus, it was necessary to reorder both
activation signals and channel weighting vectors, so that the muscular activation of
extensors appeared before that of flexors. At this point, reconstructed signals were
calculated multiplying the estimated W and F(t) matrices.
The quality of reconstruction was quantified by the multivariate coefficient of de-
termination R2, calculated similarly to [27]. Usually this indicator is between 0 and
1, where the lower limit means signals completely different while the upper one
indicates a complete similarity. It is expressed as:

R2 = 1− RSS
TSS

= 1− ∑n
i=1(yi − f̂i)

2

∑n
i=1(yi − ȳ)2 (2.11)

where RSS represents the residual sum of squares and TSS the total sum of squares.
More precisely, yi is the i-th recorded sample, f̂i is the i-th reconstructed sample and
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ȳ is the mean of the whole observation. In this work of thesis, the R2 indicator was
calculated between each channel of input matrix and of reconstructed matrix. In
addiction, an averaged value between channels was assessed in order to compare
different channels subsets.
Furthermore, channel weighting vectors obtained from the factorization of different
subsets of electrodes were compared with the common channels of the complete
configuration applying a normalized dot product (NDP)[22]. This was useful to
verify the similarity between weights with a channel reduction or with a channel
shift. For what concerns the estimated activation signals, the peak of a normalized
cross-correlation function (NCC) between the reference configurations and the com-
plete one has been calculated, with the aim of investigate if the number of electrodes
influences the shape of the primitives extracted.
Finally, for each channel subset configuration the multi-DOF estimated synergy ma-
trix was created by joining two channel weighting vectors extracted from signals
of ankle movements and two from knee movements. The synergy matrix W has a
number of rows equal to the electrodes of the selected configuration and four columns
to represent the extracted synergies.

With regard to Exp.2, the input matrix for complete configuration included 320
monopolar EMG signals. It was organized in order to have inside ankle signals at
first and then knee signals. All signals were processed in the same way of Exp.1 but
the bad channels to remove were the same selected after visual analysis in Exp.1 data
processing. In addiction, in this phase the calculated RMS signals were not averaged
since each of 10 recorded trials of EMG signals was correlated with its own recorded
angular signal. At this point, the activation signals matrix F(t) can be calculated
simply as

F(t) = W+ · Y(t) (2.12)

where Y(t) is the EMG input matrix and W+ is the Moore-Penrose pseudoinverse of
weighting channel vectors matrix W [22], assembled in Exp.1.
The advantage of the method employed is evident. In fact, supervised methods need
to perform a training phase where both EMG signals and a control signal are recorded.
These control signals can be for example force or position, as shown in [21] and [26].
The recorded data are then used to train an algorithm and create an association
between input and output. The proposed method, similar to [22], collects only EMG
data and then, by the application of a NMF algorithm, is able to extract directly the
activation signals. In addiction, it is not entirely unsupervised but semi-supervised.
This is due to the fact that it is necessary to be aware of which DOF is active at the
beginning.
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The activation signals matrix calculated in (2.12) has the following structure:

F(t) =


f+1 (t)
f−1 (t)
f+2 (t)
f−2 (t)

 (2.13)

where the first and second rows represent the ankle control signals during extension
(or dorsiflexion) and flexion (or plantar flexion), while the last two rows are about the
knee control signals in the same phases. Thus the matrix has 4 rows and 120 columns,
due to the calculated RMS samples. Each component of (2.12) is normalized to its
maximum value. From the four control signals related to each movement phase for
two DOFs, the final control signals were calculated as:

f1(t) = f+1 (t) − f−1 (t)

f2(t) = f+2 (t) − f−2 (t)
(2.14)

In addiction, the extracted activations signals have to be multiplied by some scaling
factors. These coefficients were determined because the final control signals matrix
F(t) = [ f1(t); f2(t)] has to match the range of joint angles of each DOF performed[29].
For this reason, during the Exp.2, the subject performed also two single joint move-
ments in order to calibrate the electrogoniometers. Angle signals from knee and ankle
joint were low-pass filtered with a Butterworth digital filter, fourth-order with 10 Hz
cut frequency and then down-sample to 4 Hz (the same of EMG).
In order to quantify the goodness of the extracted control signals from different
subsets channel configuration and from different joint (knee or ankle) compared to
the angular signal recorded during the complete movement, the R2 indicator (2.11)
was evaluated for each trial.
After the phase of control signals extraction and comparison with the data recorded
from the electrogoniometers, a statistical test was necessary to investigate which
factors influence the trend of R2 performance indicator. For this reason, a three-way
analysis of variance (ANOVA) test was applied to all R2 values pooled together for
ankle and knee. The selected factors for the statistical test were number of subjects
(for each subject 10 repetitions for each configuration were considered), channels
configurations and joints (ankle or knee). The ANOVA test was repeated for both
datasets with 1IED and 2IED. For all tests, statistical signficance was set at p < 0.05.
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Chapter 3

Results

In this chapter all outcomes of this work of thesis are showed.

3.1 First Experiment

The aim of the Exp 1 was to perform separately knee and ankle joint movements
in order to estimate a multi-DOF synergy matrix for subsequent phase. To verify
the correctness of this method, a few analysis regarding both weighting vectors and
primitives extracted were realized.

3.1.1 Dimensionality Analysis

In order to justify the DOF-wise approach in the experimental setup, data recorded
from knee joint have been factorized obtaining the whole number of synergies ex-
tractable. For a number N of interested muscles in knee joint equal to 4, the maximum
number of synergies extracted corresponds to N-1. For this reason, the factorization
was repeated a few times with dimensionality of activation function from 1 to 3. This
study was applied only on knee joint because of the lower number of interested
muscles in the ankle joint; in fact in this case N=3 and the maximum number of
extracted synergies is 2, as performed from the DOF-wise approach. Data of both
1IED and 2IED were factorized for all subjects. Figure 3.1 (left side) provides a useful
information for what concerns the variance of the EMG pattern with 1IED (through
the R2 parameter) in function of the factorization dimension, corresponding to the
number of synergies extracted. The graph shows the variance trend for each reference
configuration. In general, it is evident that only one weighting vector is not able to ex-
plain the EMG pattern. Indeed, moving from one to two synergies, the performances
increase of a 25% roughly. From two basis vectors (DOF-wise approach) to three the
variance trend shows a change in slope, due to the fact that the R2 values increases
not more than 2%. In order to compare the situation with a different dimension,
Figure 3.1 on the right side focuses on the last part of the global trend. The use of
DOF-wise approach (2 synergies) yielded a mean R2 (between 10 runs) of 97,04% for
the Complete Configuration and 97,45% ± 0.5% for the Reference Configurations Group.
Thus, two vectors suffice to explain >95% of the variance. Using three synergies for
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the data factorization, the mean R2 reaches 98,2% and 98.5% ± 0.2% for the Complete
Configuration and Reference Configurations Group, respectively.

FIGURE 3.1: Trend of the averaged explained variance of the EMG pattern
for 1IED (for all channels subset) as a function of the factorization dimension
for Knee Joint, Subject 2. The graph on the left side shows a global trend,
while the one on the right focuses on the change of slope, between 2 and 3

synergies.

For what concerns EMG Knee signals evaluated with 2IED, the analysis led to the
same conclusion, as showed in Figure 3.2. Indeed, with two synergies (DOF-wise
approach) the Complete Configuration presents a mean R2 (between 10 runs) of 97,77%.
This value is almost identical to that one of the average of 5 Reference Configurations,
with R2 of 97,96% ± 0.2%. Increasing the factorization dimension from 2 to 3, the
Complete Configuration shows a mean R2 of 98,46% and 98,52%± 0.2% for the Reference
Configurations Group.
Summing up, for the knee joint the NMF algorithm was employed with different
factorization dimension and the variance of the EMG pattern explained with the
DOF-wise approach was very similar if compared with the result obtained with a
traditional NMF. The same situation held true for all selected channels subsets, for
both 1IED and 2IED.

3.1.2 Factorization Performance

The NMF algorithm was applied separately to both knee and ankle EMG dataset for
all patients. This is due to the DOF-wise approach. Indeed, in order to estimate a
complete synergy matrix W for each selected channels subset, it is necessary to extract
the sub-optimal weighting vectors (or sinergies) for knee and ankle joint. For this
reason, after the factorization with the parameters explained in Chapter 2.4, for each
channels configuration (for both 1IED and 2IED) the reconstruction performances
were evaluated. It is worth recalling that a general reconstructed signal has been
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FIGURE 3.2: Trend of the averaged explained variance of the EMG pattern
for 2IED (for all channels subset) as a function of the factorization dimension
for Knee Joint, Subject 2. The graph on the left side shows a global trend,
while the one on the right focuses on the change of slope, between 2 and 3

synergies.

calculated as the product between the synergy matrix and the activation signals
vectors extracted with the data decomposition. For this purpose, the coefficient of
determination R2 was evaluated keeping in mind that a reasonable reconstruction
percentage is about 90%.

The following figures, 3.3 and 3.5, show the goodness of the NMF algorithm for
knee joint dataset (Subject 2). Both represent in the left side the reconstruction trend of
the signals included within each configuration as a function of selected (the effective
number of residual channels after the bad channel removal is reported on the x-axis)
electrodes. Therefore, for each sub-configuration the R2 trend indicates the quality of
reconstruction moving from electrodes placed on Vastus Lateralis (leftmost side on
the graph) to those on Biceps Femoris (the righmost one), according to the electrodes
organization explained in Chapter 2.4 and showed, in example, in Figure 2.9. Regard-
ing to the right side of the Figures, a bar plot graph with averaged R2 value across
channels of each analyzed configuration is showed. This allows to identify globally
the goodness of the proposed method and to evaluate the variability of the R2 for
each configuration. With reference to Figure 3.3, it is evident that the reconstruction
performances oscillate around 97,5%. Despite this outcome Complete Configuration,
Reference56 and Reference56T show a wider variability. Indeed, observing the trend of
the R2 for these configuration, some channels of Rectus Femoris show a lower recon-
struction value. In order to appreciate the difference reconstructed electrodes signals,
a comparison between the worst and the best channel of the Complete Configuration
is showed in Figure 3.4.
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FIGURE 3.3: Figure shows the goodness of the signal reconstruction (percent-
age of R2) after the non-negative factorization(Subject 2)-Knee Joint,1IED.
On the left side are represented the reconstruction trends of each channels
subset across residual channels (expressed on x-axis). On the right side a bar
plot with averaged reconstruction values for each configuration is showed.

FIGURE 3.4: Comparison between different results from NMF. Top: recon-
struction with R2=99.4% related to Electrode 40 of Complete Knee Configu-
ration - 1IED (Rectus Femoris). Bottom: reconstruction with R2=85.35%
related to Electrode 54 of Complete Knee Configuration - 1IED (Rectus

Femoris).
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For what concerns the reconstruction of knee joint with 2IED (Figure 3.5), the
mean R2 value across six channels subsets is 97.5% roughly. Unlike the dataset cal-
culated with 1IED, in this case there is a smaller variability. In fact, looking at each
configuration, the coefficient of determination does not drop below a 90%.

FIGURE 3.5: Figure shows the goodness of the signal reconstruction (percent-
age of R2) after the non-negative factorization(Subject 2)-Knee Joint,2IED.
On the left side are represented the reconstruction trends of each channels
subset across residual channel (expressed on x-axis). On the right side a bar
plot with averaged reconstruction values for each configuration is showed.

Observing the case of ankle joint dataset, globally the reconstruction performances
does not change. In addiction, a slight growth for what concern the mean R2) across
channels subsets can be observed. Figure 3.6 and Figure 3.7 show the goodness of
NMF algorithm for ankle joint. In this case, within each R2 trend, the information is
related to Tibialis Anterior (leftmost side on the graph) and Gastrocnemius Lateralis
(the righmost one), according to the electrodes organization explained in Chapter
2.4 and showed, in example, in Figure 2.9. For both 1IED and 2IED ankle signals
dataset, the overall mean performance is about 98,5%. More specifically, for a wide
number of selected channels subsets the values of coefficient of determination slowly
decrease in the middle section of the graph, corresponding to the electrodes placed
on gastrocnemius medialis.



Chapter 3. Results 34

FIGURE 3.6: Figure shows the goodness of the signal reconstruction (percent-
age of R2) after the non-negative factorization(Subject 2)-Ankle joint,1IED.
On the left side are represented the reconstruction trends of each channels
subset across residual channel (expressed on x-axis). On the right side a bar
plot with averaged reconstruction values for each configuration is showed.

FIGURE 3.7: Figure shows the goodness of the signal reconstruction (percent-
age of R2) after the non-negative factorization(Subject 2)-Ankle joint,2IED.
On the left side are represented the reconstruction trends of each channels
subset across residual channel (expressed on x-axis). On the right side a bar
plot with averaged reconstruction values for each configuration is showed.
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3.1.3 Weighting Vectors Comparison

In this section, an analysis of extracted synergies (or weighting/basis vectors) is
proposed. The NMF algorithm applied with a DOF-wise approach calculated 2
synergies for each considered joint, one for the extensors muscles and one for the
flexors. As explained in Chapter 2.1, BSS problem suffers of ambiguity in order and
the extracted synergies can be reversed. For this reason, it was necessary reorder
them in a coherent way in order to keep the extensors synergy before the flexors one
in time.
The first analysis was to assess the weights amplitude across interested muscles using
color maps. This was useful to confirm or disprove if the calculated synergies are
consistent with the muscles (it was expected to see a major activation of extensors
muscles for the extensors synergy, rather than of flexors). Figure 3.8 shows an
example of weights amplitude distribution for what concerns the knee joint with
1IED. The most representative channels subsets in terms of number of electrodes are
presented. The figure is organized in the following way: each row includes, for the
same configuration, two maps: one for the extensors synergy (left side) and one for the
flexors synergy (right side). All color maps have a number of elements corresponding
to the electrodes of each channel subsets. Every weights of two maps in a row
are normalized to the maximum value between extensors and flexors synergy. In
addiction, colorless elements with a cross marker indicates the bad channels removed
during processing phase. On the x-axis an information about muscles is provided
(with coherence with what explained in Chapter 2.4), whereas on y-axis the muscle
fiber direction (from proximal at the top to distal at the bottom) is indicated.

FIGURE 3.8: Colormaps of extracted weighting vectors from NMF for a
representative subject, Knee Joint 1IED. Each row shows in the left side
column the weights map related to the synergy of extensors muscles and in
the right side column that one of the synergy of flexors muscles. Each map in
a row is normalized to the maximum values between the weighting vectors
for a specific configuration. Colorless elements with cross marker indicate a

bad channel removed.
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Observing Figure 3.8 for the Complete Configuration (colormaps A,B) it is evident
the separation from extensors and flexors muscles. In the map A, the most activated
region is that on the middle of Vastus Lateralis. The weights amplitude decreases
moving proximally and medially. In addiction, the nearest zone to the knee shows
less activation if compared with the rest of the muscle. Also Vastus Medialis presents
a major activation in the middle section, whereas Rectus Femoris shows weights with
lower amplitude. In the map B, all extensors muscles keep a low activation, and this
is consistent with the synergy considered. For what concerns the flexor, the most
activated region consists is a slice in the medial zone that covers the muscle in vertical.
This part appears more activated in comparison with the rest of Biceps Femoris and
this has explanation in the matrix placement. In fact, that activation is related to the
Semitendinosus muscle, partially covered because of the size of the matrix employed.
By looking at the others colormaps in Figure 3.8, it is clear that down-sampling the
number of electrodes or shifting them transversally, the global behavior is the same.
Also the weights amplitude distribution for 2IED confirms the same situation. Figure
3.9 compares the Complete Configuration and Reference28. It is evident that, even if
the signals dataset has been calculated with twice the IED, the weighting vectors
amplitude held the same distribution respect the case with 1IED.

FIGURE 3.9: Colormaps of extracted weighting vectors from NMF for a
representative subject, Knee Joint 2IED. Each row shows in the left side
column the weights map related to the synergy of extensors muscles and in
the right side column that one of the synergy of flexors muscles. Each map in
a row is normalized to the maximum values between the weighting vectors
for a specific configuration. Colorless elements with cross marker indicate a

bad channel removed.

For what concerns the ankle joint, there a few differences in terms of activation
as compared with knee joint. Figure 3.10 and Figure 3.11 show the colormaps for
1IED and 2IED, respectively. In the colormaps with 1IED, the only extensor (Tibialis
Anterior) in the map A presents a major amplitude medially. This happens for the
channels subsets inside the maps C and E as well. Regarding the lateral region
instead, the Complete Configuration shows a lower weighting vectors amplitude in the
most proximal electrodes if compared with Reference24 or Reference24T. Looking at
the flexors synergy, in general Gastrocnemius lateralis has weights with the highest
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amplitude. More specifically, Reference24 (map D) indicates a uniform distribution;
on the opposite the Complete Configuration (map B) shows a non-uniformity.
Here again, the dataset with 2IED confirms the same observed behavior of 1IED, as
clearly visible in Figure 3.11.

FIGURE 3.10: Colormaps of extracted weighting vectors from NMF for a
representative subject, Ankle Joint 1IED. Each row shows in the left side
column the weights map related to the synergy of extensors muscles and in
the right side column that one of the synergy of flexors muscles. Each map in
a row is normalized to the maximum values between the weighting vectors
for a specific configuration. Colorless elements with cross marker indicate a

bad channel removed.

FIGURE 3.11: Colormaps of extracted weighting vectors from NMF for a
representative subject, Ankle Joint 2IED. Each row shows in the left side
column the weights map related to the synergy of extensors muscles and in
the right side column that one of the synergy of flexors muscles. Each map in
a row is normalized to the maximum values between the weighting vectors
for a specific configuration. Colorless elements with cross marker indicate a

bad channel removed.

Thus, for both studied joint it has been demonstrated that a data factorization
based on the DOF-wise approach (2 synergies for joint) allowed to verify a correct
separation between extension and flexion movement phase.
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Furthermore, in order to quantify the total contribution of each synergy inside
a given muscle, the sum of all common weights for all of them has been calculated.
Thus, every muscle is defined by two values; one related to the presence of the first
synergy and the other related to the second one. To realize a comparison, each couple
of values has been normalized to the maximum. The following Figures show for all
channels subsets (both joints) a pair of bar plot related to each muscle. In addition,
normalization values for each bar plot couple are indicated in Table 3.1, 3.2, 3.3, 3.4.
Figures 3.12 and 3.13 are referred to knee joint for 1IED and 2IED respectively. The
first one indicates globally a correct behavior in a wide number of configuration;
this means that the extensors show low values for what concerns the flexor sinergy,
and vice-versa. Although Vastus Lateralis, Medialis and Biceps Femoris present
correct values, Rectus Femoris highlights an important contribution also in flexor
synergy. This could be motivated with the fact that, during the exercise, the subject
co-activated the muscles. In any case this does not happen in 2IED configuration, as
showed in Figure 3.13. Here the presence of rectus femoris in the flexors synergy is
restricted.

FIGURE 3.12: Comparison between the different contribution of the extracted
synergies across muscles for all channels subsets of Knee joint, 1IED. Each

couple of bars has been normalized to the maximum value.
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FIGURE 3.13: Comparison between the different contribution of the extracted
synergies across muscles for all channels subsets of Knee joint, 2IED. Each

couple of bars has been normalized to the maximum value.

With regard to the ankle joint, Figure 3.14 and Figure 3.15 highlight a sub-optimal
behavior if compared with the knee. In this case it is noticeable that the Tibialis Ante-
rior has a contribution from flexors synergy approximatively equal to zero, whereas
the Gastrocnemius Medialis shows in almost all configuration a limited contribution
from extensors synergy.

FIGURE 3.14: Comparison between the different contribution of the extracted
synergies across muscles for all channels subsets of Ankle joint, 1IED. Each

couple of bars has been normalized to the maximum value.
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FIGURE 3.15: Comparison between the different contribution of the extracted
synergies across muscles for all channels subsets of Ankle joint, 2IED. Each

couple of bars has been normalized to the maximum value.

Knee Joint, 1 IED VL RF VM BF

Complete 2.0327 0.2626 1.4196 1.3177
Reference56 0.5614 0.0922 0.4015 0.3627

Reference56T 0.5619 0.0584 0.3895 0.3906
Reference28 0.3207 0.0432 0.2124 0.1839

Reference28T 0.2543 0.0336 0.2153 0.1855
Reference28L 0.3295 0.0465 0.2202 0.1965
Reference14 0.1472 0.0222 0.107 0.0927

Reference14T 0.1706 0.011 0.1105 0.1009
Reference14L 0.1824 0.0225 0.1208 0.0878

TABLE 3.1: Normalization values of synergies vectors across muscles de-
picted in Figure 3.12, Knee Joint 1IED.

Knee Joint, 2 IED VL RF VM BF

Complete 1.5547 0.231 1.1096 0.993
Reference28 0.5649 0.0806 0.3416 0.3293

Reference28T 0.4221 0.0646 0.3784 0.3355
Reference14 0.2697 0.0408 0.1867 0.1752

Reference14T 0.2927 0.0441 0.119 0.1551
Reference14L 0.3298 0.0444 0.2107 0.1715

TABLE 3.2: Normalization values of synergies vectors across muscles de-
picted in Figure 3.13, Knee Joint 2IED.
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Ankle Joint, 1 IED TA GM GL

Complete 2.0327 0.2626 1.4196
Reference56 0.5614 0.0922 0.4015

Reference56T 0.5619 0.0584 0.3895
Reference28 0.3207 0.0432 0.2124

Reference28T 0.2543 0.0336 0.2153
Reference28L 0.3295 0.0465 0.2202
Reference14 0.1472 0.0222 0.107

Reference14T 0.1706 0.011 0.1105
Reference14L 0.1824 0.0225 0.1208

TABLE 3.3: Normalization values of synergies vectors across muscles de-
picted in Figure 3.14, Ankle Joint 1IED.

Ankle Joint, 2 IED TA GM GL

Complete 1.5547 0.231 1.1096
Reference28 0.5649 0.0806 0.3416

Reference28T 0.4221 0.0646 0.3784
Reference14 0.2697 0.0408 0.1867

Reference14T 0.2927 0.0441 0.119
Reference14L 0.3298 0.0444 0.2107

TABLE 3.4: Normalization values of synergies vectors across muscles de-
picted in Figure 3.15, Ankle Joint 2IED.

In addition, a inter-configuration analysis was developed as measure of similarity
for what concerns the weighting vectors extracted. This process aims to investigate
if the basic assumption of linear instantaneous signals mixture can be confirmed.
Indeed, as explained in Chapter 1.6, high similarity between weights of different
channels subsets indicates that the combinations of activation signals at the electrodes
positions is approximatively linear instantaneous[22].
For this reason, common channels between the Complete Configuration and each Refer-
ence Configuration were extracted. At this point, after a normalization to the maximum
(calculated between the Complete Configuration and the Reference one to compare),
the NDP was applied. The process was repeated for every configuration of all IED
and joint. Logically, common bad channels were not considered for the computation.
The following Figures show the outcomes obtained for a representative subject (the
investigation was evaluated on datasets of all subjects). In general, each figure in-
cludes two columns with different graphs; left side column depicts configurations for
the extensors synergy, right side column instead is about flexors. Weights from two
categories have been compared using bars with different colors. In addiction, bars
position is still related to the electrode location (if a limited number of bad channels
has been selected). In fact, moving from the leftmost zone to the rightmost one,
depicted weights are related respectively to Vastus Lateralis, Rectus Femoris, Vastus
Medialis, Biceps Femoris for knee joint and to Tibialis Anterior, Gastrocnemius Medialis,
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Gastrocnemius Lateralis for ankle joint. With this assumption, it is supposed that for
knee joint column with extensors synergy shows low weights amplitude in the last
part of the graph (contribution of flexor muscle), while this should be happen from
the beginning until three-fourths of the graph for flexors synergy. Instead ankle joint
will show the highest weights amplitude in the first part (Tibialis Anterior) of extensors
synergy column and the same should be happen from middle section to the end of
flexors synergy column.

In Figure 3.16 and 3.17 it is possible to observe all channels subsets for what
concerns knee joint for 1IED of a representative subject. In general, trend of weights
amplitude are consistent with the previous concept. In this regard, it is noticeable that
amplitudes related to the extensors muscles in the flexors synergy column are not
so restricted as expected. This can be motivated with a little muscular co-activation
during knee flexion. Nevertheless, the weights similarity is high as proved by NDP
values depicted on each graph.

FIGURE 3.16: Weights comparison of common channels between Complete
and Reference configurations for Knee Joint, 1IED (Reference Configurations

1-4). Similarity was assessed through Normalized Dot Product (NDP).
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FIGURE 3.17: Weights comparison of common channels between Complete
and Reference configurations for Knee Joint, 1IED (Reference Configurations

5-8). Similarity was assessed through Normalized Dot Product (NDP).

Channels subsets of 2IED knee joint dataset showed in Figure 3.18 confirm what
has been said for 1IED basis vectors. Moreover, in this case the amplitudes in flexors
synergy column appear more limited for extensors muscles compared to previous
situation.

FIGURE 3.18: Weights comparison of common channels between Complete
and Reference configurations for Knee Joint, 2IED. Similarity was assessed

through Normalized Dot Product (NDP).
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Looking at Figure 3.19 and 3.20 the similarity analysis regarding ankle joint with
1IED is showed. In this case, even if the NDP values are globally extremely high,
the comparison with Reference24T shows for the both synergies NDP values out of
global distribution. By focusing on this channels subset, it is noted a huge difference
for what concerns a few couples of values in the region of Tibialis Anterior and both
Gastrocnemius. This can be due to some residual bad channels.

FIGURE 3.19: Weights comparison of common channels between Complete
and Reference configurations for Ankle Joint, 1IED (Reference Configurations

1-4). Similarity was assessed through Normalized Dot Product (NDP).

FIGURE 3.20: Weights comparison of common channels between Complete
and Reference configurations for Ankle Joint, 1IED (Reference Configurations

5-8). Similarity was assessed through Normalized Dot Product (NDP).
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FIGURE 3.21: Weights comparison of common channels between Complete
and Reference configurations for Ankle Joint, 2IED. Similarity was assessed

through Normalized Dot Product (NDP).

Regarding to the coherence of weights trend amplitude, the extensors synergy
highlights that the contribution of flexors is quiet null, whereas there is a limited
presence of extensors in the first part of flexors synergy. This considerations interest
the weights vectors of 2IED Ankle Joint, as visible in Figure 3.21.
Summing up, the analysis of similarity showed for both studied joints NDP values
extremely high. This confirms the basic hypothesis expressed in this work of thesis.
In addiction, Table 3.5 summaries the averaged NDP values across channels subsets,
differentiating between extensors and flexors synergy.

Joint NDP Extensors Synergy NDP Flexors Synergy

Knee - 1IED 0.9916 0.9960
Knee - 2IED 1 0.9997
Ankle - 1IED 0.9806 0.9856
Ankle - 2IED 0.999 0.9932
TABLE 3.5: Average NDP values for Knee and Ankle configurations across

all subjects.
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3.1.4 Activation Signals Comparison

The outcome of NMF algorithm consists in the product between synergy matrix and
activation signals vectors, as said previously. This section focuses on the analysis of
extracted primitives, in order to verify that their properties are not related to channels
subsets selected. Figure 3.22 and Figure 3.23 show non-negative factorization results
for the Complete Configuration of knee and ankle joint, respectively. Each of them
presents as first column the normalized weighting vectors. This representation is
slightly different compared to the previous one, but however is useful to identify the
weights amplitude trend of each synergy across channels and to highlight in which
position the extensors synergy decreases in amplitude and vice versa. The number
of effective considered elements after bad channels removal is indicated on x-axis.
Second column shows instead the activation signals vectors as a function of samples
(or time by dividing for the sampling frequency of 4 Hz, as explained in Chapter 2.4).
It is noticeable that in this graph the extensors synergy is depicted temporally before
the flexors one; this is consistent with the temporal execution of the movement. For
what concerns the rows, they indicate 1IED and 2IED configuration, respectively.

FIGURE 3.22: NMF Outcomes for Knee Joint for a representative subject.
Left column shows synergies vectors across channels, right column the primi-
tives as a function of samples. First row (A) is related to 1IED, second (B) to

2IED.
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Looking at Figures 3.22, it is evident that weights amplitude of extensors is higher
than flexors for both inter-electrode distances. More specifically, the lateral region
of Vastus Lateralis shows the greatest amplitude while flexors muscles reach values
just over 0.5. This difference is evidences also in the primitives column. In fact,
activation signal of flexors is always lower than extensors. For what concerns the
primitives shape, all activation signals vectors are very similar by comparing different
IED. In addiction, flexors primitives is slightly visible also within extensors primitive
region and this is consistent with the flexors weights amplitude in the first part of left
column.
Outcomes for ankle joint showed in Figure 3.23 highlight that, contrary to knee joint,
weights amplitudes trend present a sharp difference between extensors and flexors.
Moreover, weight values for flexors (Gastrocnemius Muscles) are lower if compared
with knee flexors (Biceps Femoris). Also in this case, the shape of extracted primitives
is very similar for both IED and the presence of flexors primitive within extensors
region is restricted compared with knee.

FIGURE 3.23: NMF Outcomes for Ankle Joint for a representative subject.
Left column shows synergies vectors across channels, right column the primi-
tives as a function of samples. First row (A) is related to 1IED, second (B) to

2IED.
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Regarding the extracted channel subsets, in order to evaluate the similarity be-
tween primitives, following figures show the activation signals extracted for every
sub-configuration. It is evident that primitives shape does not depend from the
number of electrodes used.

FIGURE 3.24: Overview of extracted primitives for every channels subsets
of a representative subject, Knee Joint 1IED.

FIGURE 3.25: Overview of extracted primitives for every channels subsets
of a representative subject, Knee Joint 2IED.
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FIGURE 3.26: Overview of extracted primitives for every channels subsets
of a representative subject, Ankle Joint 1IED.

FIGURE 3.27: Overview of extracted primitives for every channels subsets
of a representative subject, Ankle Joint 2IED.

Moreover, it was necessary to quantify the effective similarity of primitives be-
tween different configuration. For this reason, the Complete Configuration of each
dataset was compared with all channels subsets by using a normalized cross corre-
lation (NCC), as said in 2.4. The similarity indicator considered was the maximum
value of each correlation. Following figures show each evaluated comparison for
a representative subject; in general, left side column of every figure is related to
extensors primitive while on the right side the flexors primitive is depicted.
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FIGURE 3.28: Analysis of similarity between activation signals of Complete
configuration and those of Reference configuration for a representative sub-
ject, Knee Joint 1IED (Subsets 1-4). Maximum value of Normalized Cross

Correlation is depicted for each graph.

FIGURE 3.29: Analysis of similarity between activation signals of Complete
configuration and those of Reference configuration for a representative sub-
ject, Knee Joint 1IED (Subsets 5-8). Maximum value of Normalized Cross

Correlation is depicted for each graph.
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FIGURE 3.30: Analysis of similarity between activation signals of Complete
configuration and those of Reference configuration for a representative subject,
Ankle Joint 1IED (Subsets 1-4). Maximum value of Normalized Cross

Correlation is depicted for each graph.

FIGURE 3.31: Analysis of similarity between activation signals of Complete
configuration and those of Reference configuration for a representative subject,
Ankle Joint 1IED (Subsets 5-8). Maximum value of Normalized Cross

Correlation is depicted for each graph.
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FIGURE 3.32: Analysis of similarity between activation signals of Complete
configuration and those of Reference configuration for a representative sub-
ject, Knee Joint 2IED. Maximum value of Normalized Cross Correlation is

depicted for each graph.

FIGURE 3.33: Analysis of similarity between activation signals of Complete
configuration and those of Reference configuration for a representative sub-
ject, Ankle Joint 2IED. Maximum value of Normalized Cross Correlation is

depicted for each graph.
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It is evident that the number of channel is not relevant for the primitives shape. In
fact, for every channels subsets, the similarity analysis with the Complete Configura-
tion led to NCC values very high. This consideration, coupled with the fact that also
shifted configuration were included in the investigation, allows to confirm again that
the activity recorded on muscles surface can be approximated as linear combination
of activation signals. In addiction, it proves that the extracted primitives are robust if
used as control signal.

3.2 Second Experiment

The aim of Exp 2 was instead to couple two different joint in a complete movement
in order to extract a control signal using the weights matrix estimated in the Exp 1. In
addiction, the goodness of result was assessed comparing a post-processed control
signal with angle signals, recorded during Exp 2.

3.2.1 Control Extraction

Signals recorded during Exp 2 are organized in ankle data followed by knee data.
Before every analysis, they have been processed from raw data to RMS. Figure
3.34 shows an example of complete exercise where it is possible to appreciate the
activations of all involved muscles in time.

FIGURE 3.34: Figure shows RMS signals with 1IED (subset with 24 chan-
nels for ankle and 56 for knee) as a function of time (Exercise 2, Subject 4).
Signals are organized with ankle EMG on the top, knee EMG from middle to
bottom region. Green boxes indicate the activation of knee muscles, while red

boxes refer to ankle muscles.
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In fact, as explained in Chapter 2.3.2, knee extension and maintenance phase is cou-
pled with an ankle dorsiflexion as highlighted by red and green dotted lines boxes on
left side. Then, knee returns to rest phase (indeed it is not visible a relevant activation)
and ankle performs a plantarflexion. Finally knee executes a flexion and, during
maintenance phase, ankle conducts a dorsiflexion again as depicted inside the colored
boxes on right side. At this point both joint comes back to rest position.

The extraction of control signals occurs employing the equation 2.12 expressed in
Chapter 2.4. Thus, from every RMS matrices are extracted four signals related to
ankle and knee joint. In example, Figure 3.35 shows the control signals of Complete
Configuration (1IED), evaluated from 10 trials realized by a representative subject.
Within each graph, first and second rows corresponds to control signals of ankle joint.
They are related to extensors and flexors, respectively. The last two rows instead
refers to knee joint. Observing each graph, it is noticeable that the control signals
trend reflects the behavior discussed in Figure 3.34. This supports the employed
method based on the product for the Penrose-Moore pseudo-inverse of the estimated
synergies matrix. In addiction, signals trend is globally the same to indicate a good
execution of the multi-DOF movement.

FIGURE 3.35: Figure shows the calculated control signals for an exercise
including 10 trials with Complete electrodes Configuration - 1IED, Subject 3.
Each graph includes control signals for ankle (first two, extensors and flexors)

and knee joint (last two, extensor and flexors).
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For completeness, an example of Complete Configuration with 2IED of a different
subject from previous one is depicted in Figure 3.36. It is evident that trend and
temporal coherence remained unchanged.

FIGURE 3.36: Figure shows the calculated control signals for an exercise
including 10 trials with Complete electrodes Configuration - 2IED, Subject 4.
Each graph includes control signals for ankle (first two, extensors and flexors)

and knee joint (last two, extensor and flexors).

As said previously, the calculation with relation 2.12 led to four control signals.
However, in order to pilot a multi-DOF exoskeleton, it is necessary to provide sep-
arately a signal to control each joint. For this reason, control signals of each joint
have been combined to obtain only two signals. With the purpose of verify a robust
control with all selected channels subset, next figures compare the outcomes achieved
with Complete Configuration (the largest) and Reference Configuration composed of 6
electrodes for ankle and 14 for knee (the smallest one).
In particular, each figure depicts on left side the construction of ankle control signal
and, on the other side, the one of knee. Every joint control signal is obtained as dif-
ference between calculated raw signals (for each joint extensors and flexors control).
Each couple of control signals presents a large number of peaks and a not-smooth
trend. Thus, in order to enhance it and increase the goodness of each joint control
signal, a moving average filter was applied. Effects of filtering are easily visible: black
line indicates the signal before filtering, red one the same but filtered.
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FIGURE 3.37: Example of joint control signals construction from signals
calculated with relation 2.12 for Complete Configuration - 1IED, Patient
3. Black lines indicate signal before a moving-average filter, red lines post-

filtering.

FIGURE 3.38: Example of joint control signals construction from signals
calculated with relation 2.12 for the smallest Reference Configuration - 1IED,
Patient 3. Black lines indicate signal before a moving-average filter, red lines

post-filtering.
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Figure 3.37 and 3.39 show similar results, both with regards to the extensors and
flexors controls and shape of final joint signal control. This represents an achievement
that strengthens the fact that a robust control can be reached also using a very limited
number of electrodes. In addiction, an analysis of similarity was conducted through a
normalized cross correlation (NCC) between filtered joint control signals of Complete
and Reference configuration. For what concerns ankle joint, similarity was assessed
in 99,74% while knee reached 99,46%.
The same considerations has been repeated considering the control signals calculated
for 2IED.

FIGURE 3.39: Example of joint control signals construction from signals
calculated with relation 2.12 for Complete Configuration - 2IED, Patient
4. Black lines indicate signal before a moving-average filter, red lines post-

filtering.

In this case, signals from a different subject have been considered in order to
highlight any difference regarding the shape of calculated control signals, due to the
different execution from patient to patient. Also this time, Complete Configuration and
the smallest Reference Configuration are compared in Figure 3.39 and 3.40, respectively.
Observing both figures, there are a few differences from previous case. Now the
ankle extensors control reaches similar value in both dorsiflexion. In addiction, knee
extensors and flexors controls appear very similar to 1IED case but, for either subjects,
knee flexors control shows a limited activation in the temporal extensor region as said
in result for Exp 1. Moreover, the comparison between the considered configurations
led to the same conclusions: normalized cross correlation for ankle joint control signal
was assessed in 99,66% while knee joint was 99,29%.
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FIGURE 3.40: Example of joint control signals construction from signals
calculated with relation 2.12 for the smallest Reference Configuration - 2IED,
Patient 4. Black lines indicate signal before a moving-average filter, red lines

post-filtering.

3.2.2 Recorded Angle Signals

Angle signals have been recorded through electrogoniometers. A calibration with
single joint movements has been realized before the experiment starts, as explained
in Chapter 2.4. At this point, EMG recording were accompanied by angle signals
during each trial. Thus, 10 signals related to complete movement for both ankle and
knee joint were recorded.
In example, Figure 3.41 and Figure 3.42 show all repetitions of angles recorded for
a representative subject. Looking at ankle joint, patient respects the same path in
almost every trials. It is noticeable that just before first dorsiflexion, angle signal
of almost all subject indicates a small and fast plantarflexion. This is probably due
to the movement complexity; indeed within this interval patient simultaneously
performs an extension of knee. The transition leads to an ankle descending and this
is consistent because ankle dorsiflexion must take place only with knee extended.
Moreover, comparing this specific region of Figure 3.41 and 3.42, a match between
hold phase of knee extended and ankle dorsiflexion can be appreciated. In addiction,
another point of consideration is the different amplitude in terms of angle from first
and second dorsiflexion. This is simply due to the movement development. Just
before the second dorsiflexion, ankle of subject is completely flexed. Thus, moving
towards the opposite condition, he can’t able to control perfectly the range of motion
and the second dorsiflexion does not correspond with the one.
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FIGURE 3.41: Figure shows all recorded angle signals for ankle joint during
Experiment 2. Averaged values of principal phases of the movement are

indicated with the graph.

FIGURE 3.42: Figure shows all recorded angle signals for knee joint during
Experiment 2. Averaged values of principal phases of the movement are

indicated with the graph.



Chapter 3. Results 60

For each holding or rest phase, the mean value across every repetitions was calcu-
lated. For what concerns knee joint, the global trend is slightly more homogeneous
compared to ankle. This is due to the fact that knee joint movement is dominant and
it is easier to perform.
Finally, a common aspect is that both joint show an offset at the beginning. This
is coherent with the calibration of electrogoniometers that presented the same gap.
In addiction, initial inclination of both joint has been measured with a traditional
goniometer.

3.2.3 Reconstruction Performances

The fundamental aim of Exp.2 was to validate the proposed method useful to perform
a control signal for a lower limb exoskeleton. In this regard, an analysis to goodness
of the extracted control was necessary. For this reason, calculated control signal for
each joint was compared with the angle recorded from each electrogoniomer. The
comparison was realized for every repetition of each channels subset by calculating
the R2 indicator as measure of similarity.
Angle signals are expressed in degrees while the extracted controls are EMG, weighed
by a synergy matrix. For this reason before the comparison, control signals were
multiplied by some scaling factors in order to obtain a result expressed in degrees. In
addiction, employed scaling factors were chosen in order to match angle and control
signals. Further, rescaled control signals sometimes showed a rugged trend with
peaks and imperfections. Thus they were filtered by using a moving average filter in
order to achieve a smoother trend.

Following figures show the outcomes obtained from signals comparison. In general,
within each graph have been depicted the calculated control signal from equation
2.12 and 2.14, the filtered control signal to smooth the control trend (it has been
superimposed) and the angle signal from electrogoniometers related to ankle or knee
joint. The coefficient of determination has been assessed comparing the angle signal
and filtered control signal. For each joint, two different investigations were developed:
performances evaluation for a given trial across every channels subsets and R2 trend
across repetitions for the largest electrodes configuration. The first one was useful
to joint goodness and stress the robustness of this method, the other tho verify if a
change in performance can be related to number of repetitions.
Regarding the first analysis for 1IED, Figure 3.43 shows all configuration of a specific
trial for ankle joint of a representative subject. Inside each graph, red line indicates
the recorded angle signal, the green one and the black dotted line instead depict
the control signal before and after filtering, respectively. Looking at the R2 values
across every channels subsets, it is noticeable that no one configuration polarizes the
performance value. In fact, all R2 are very similar each other. Nevertheless, the global
performance does not exceed 80%.
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FIGURE 3.43: Comparison of performance regarding the ankle control signal
goodness across all channels subsets for a specific common repetition with

1IED, Patient 3.

This can be visually explained; it is evident that the control signal follows the angle
trajectory in the middle region of movement, whereas it are not able to map the short
plantarflexion at the beginning. This could be due to a restricted muscular activation.

In contrast to the ankle, knee joint performance across channels subsets are definitely
higher. Observing Figure 3.44 it is possible to appreciate that R2 values achieve 95% in
almost every configuration. In general, knee control signal in this case is able to follow
the angle cue in each phase of the movement. The only remarkable consideration
is about the extension maintenance phase: for a wide number of channels subset,
control signal overshoots the angle trajectory in amplitude. In addiction, the signal
before filtering highlights a sawtooth pattern in that plateau. This could be due to
the isometric contraction. Moreover, Reference56 and Reference14 lose the contact with
recorded angle trajectory during the final plateau, probably for a wrong activation.
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FIGURE 3.44: Comparison of performance regarding the knee control signal
goodness across all channels subsets for a specific common repetition with

1IED, Patient 3.

For what concerns the second investigation, Figure 3.45 and Figure 3.46 depict a
whole set of repetitions with respective coefficients of determination for the Complete
Configuration of ankle and knee joint.
Ankle movements show a variable performance from 68% to 78%. It is noticeable that
sometimes also the plantarflexion phase does not fit exactly the angle signal, even if
the global trend is always respected. In addiction, occasionally wrong activation lead
to overshoot and undershoot phenomena but the filtering effect is able to compensate
them. On the opposite knee joint in Figure 3.46 keeps very high R2 values, even if
trial 1 presents the lowest matching with 88%. The presence of this out-layer can be
explained with a twice overshoot amplitude, compared with other trials.

The same analysis has been performed also with extracted control signals of dataset
with 2IED. For completeness, all results are reported from Figure 3.47 to Figure 3.50.
It is evident that the considerations related to dataset with 1IED persist also doubling
the inter-electrode distance. Thus, ankle control signal across configurations keeps the
performance value below 80% while knee values reach in almost all cases 95%. The
difference of R2 values between the considered joint is also related to the complexity
and range of movement. In fact, the control of knee during the exercise is surely
easier than those of ankle. Moreover, knee explores a range of movement wider than
ankle dorsi and plantarflexion; this allows to equalize each transition and to avoid
change in direction as happen in the first part of ankle control signal.
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FIGURE 3.45: Comparison of performance regarding the ankle control signal
across a whole set of repetitions, 1IED - Patient 3.

FIGURE 3.46: Comparison of performance regarding the knee control signal
across a whole set of repetitions, 1IED - Patient 3.
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FIGURE 3.47: Comparison of performance regarding the ankle control signal
goodness across all channels subsets for a specific common repetition with

2IED, Patient 4.

FIGURE 3.48: Comparison of performance regarding the knee control signal
goodness across all channels subsets for a specific common repetition with

2IED, Patient 4.
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FIGURE 3.49: Comparison of performance regarding the ankle control signal
across a whole set of repetitions, 2IED - Patient 4.

FIGURE 3.50: Comparison of performance regarding the knee control signal
across a whole set of repetitions, 2IED - Patient 4.
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Summing up, results showed that the control signals extracted from a multi-DOF
movements match the angle recorded from both joint during the exercise in a sub-
optimal way. For each joint the average performance value has been calculated across
every subjects. Outcomes provided mean R2 of 75% for ankle and 95% for knee in
case of 1IED, whereas 2IED dataset led to 73% for ankle and 93% for knee.

3.3 Statistical Test

The analysis of performance of this work of thesis involved a significant number of
factors. In fact, R2 values have been calculated by considering a given subject, config-
uration, interested joint and also specific repetition. All this variables participated to
define a range of values for the coefficient of determination. A three-way analysis of
variance (ANOVA) test was performed. Selected factors for the statistical test were
number of subjects (5), selected channels subsets (from the Complete Configuration to
the smallest Reference one) and joint (Knee or Ankle). This test aims to identify which
factors influence the R2 behavior. The analysis was repeated for both dataset with
1IED and 2IED. In addiction, statistical significance for all test was set at p < 0.05.
Results are reported in Tables 3.6 and 3.7. Both test led to the same conclusions. R2 val-
ues are not influenced by the electrodes configuration used. Conversely, performance
values are dependent by subjects and joint.

Factors p-value

Subjects p < 0.05
Channels Subsets 0.9701

Joint p < 0.05

TABLE 3.6: ANOVA test results for 1IED dataset. Input data are R2 values,
while factors are Subjects (5), Channels Subsets (9) and Joint (2).

Factors p-value

Subjects p < 0.05
Channels Subsets 0.8314

Joint p < 0.05

TABLE 3.7: ANOVA test results for 2IED dataset. Input data are R2 values,
while factors are Subjects (5), Channels Subsets (6) and Joint (2).
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Chapter 4

Conclusion and Future Work

This work of thesis aimed to provide a robust control signal for a lower-limb exoskele-
ton by using high-density surface EMG and performing a dimensionality reduction
of the electrodes number. The control extraction represented the final part of this
project. In fact, at first it was necessary to verify the main assumption underlying
the employed model. Thus, changing the boundary conditions from that has been
demonstrated in [22], it was necessary to verify the hypothesis that a muscle signal
mixtures included into EMG signals recorded on muscular surface can be approxi-
mated as linear instantaneous. In this way, it is possible extract the activation signals
directly from recorded surface EMG.
For this reason, this research focused on two main aspects. The first one was to
investigate the similarity of results obtained with different electrodes configurations,
the second one to validate the method quantifying the control signal goodness.
This strategy influenced the experimental setup that has been split in two experiments.
During Exp.1, each subject performed simple movements of knee and ankle joint
separately. Exp.2 instead couples the two joint. In this phase, each patient carried out
a complete exercise articulating both joint.
Data recorded during Exp.1 were factorized through Non-Negative Matrix Factoriza-
tion (NMF) algorithm. It has been used in order to decompose a EMG signals matrix
in two matrices, one for synergies and one for primitives signals. The product of
resulting matrices approximates the input dataset. The factorization was repeated
for all selected channels subsets, reducing the number of electrodes from 196 to 14
for knee and 84 to 6 for ankle. In addiction, input matrices were constructed also
doubling the inter-electrode distance during the processing phase.

Experiment 1 led to important results; first of all, the factorization algorithm used
allowed to achieve performance of signals reconstruction greater than 90%. This indi-
cates that NMF, as in other field, is a suitable method for data mining. Moreover, an
investigations on weighting vectors amplitude was conducted. In this regard, an high
similarity between weights of different channels subsets has been found. The same
results have been achieved by verifying the correlation between primitives extracted
from configurations with a wide or limited number of channels. This confirmed the
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main hypothesis formulated in this work of thesis: EMG signals recorded on muscu-
lar surface include signal mixtures that are approximately linear instantaneous. With
this condition, the activation signals extracted are not influenced from the electrodes
number or placement.
The second experiment instead allowed to extract the control signal for each joint
starting from the synergies matrix, one for each channels configuration, estimated
during Exp.1. At this point, with the purpose to quantify the goodness of the control,
a comparison between estimated control signals and angle signals recorded from two
electrogoniometers during all trials was performed. Naturally, calculated controls
were converted in angles by using some scaling factors before the comparison.
Analysis of performance showed that the control extracted for knee joint, for both
1IED and 2IED, matched the recorded angle with accuracy of 95% while ankle control
signal reached a little less than 80%, defending the fact that ankle movements were
harder to reconstruct.

Thus, this thesis proposed a useful method for lower-limb that overcomes the
necessity of collect both EMG and kinematics (supervised method) as control strategy.
It is not completely unsupervised but semi-supervised, because during the Exp.1 re-
lated with the synergies matrix estimation it is necessary to know which DOF (in this
case which joint) is active during the signals recording. Beyond that, the employed
method allowed to extract the control signal of each joint simply multiplying the
EMG input signals and the inverse of the estimated synergies matrix. In addiction,
the employed algorithm showed a really restricted computational time in the range
of a few minutes.
The whole research highlighted also some critical aspects that need to be improved
with further development. First of all, the experimental setup was conducted by
using cumbersome instrumentation. A large number of cables and connectors is
not certainly appropriate in a clinical perspective, so it is necessary to move toward
wearable technologies. This necessity is supported by the main result of this research,
which is the fact that activation signals can be extracted with a limited number of
electrodes.

In addiction, the experiments were conducted on able-bodied and non pathological
subjects. The adopted DOF-wise approach requests to distinguish a given degree
of freedom for each considered joint. This was easily performed from every pa-
tients. Nevertheless, this action can be difficult for a pathological subject. In fact,
he is not necessarily able to execute an ankle dorsi or plantarflexion rather than a
pronation/supination. In this case DOF-wise approach could lead to wrong synergy
matrix and, consequently, to a poor control. In this direction, recently Farina et al.
proposed to modify the existent model including sparseness constraints to the matrix
of activation signals [30]. The concept of sparseness refers to the representation of
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data vectors by using only a restricted number of units that are out of a large pop-
ulation. Numerically, this means that there are a few representative elements with
non-zero values whereas everyone take values close to zero. Thus, in a normalized
scale, a vector with the highest sparseness will show only a non-zero element. As the
opposite, all equal elements lead to a null sparseness [31]. This correction limits the
solutions space; indeed the solution related to a single DOFs is the sparser one within
the infinite solutions.
As showed in [30], the reformulation of adopted model could simplify the calibration
phase (performed in this thesis as Exp.1) and each patient would not be obliged to
distinguish the activation of a single DOFs rather than an other.

In conclusion, the important confirmation resulted from this work of thesis for
what concerns the reliability of sEMG signals as control for a lower-limb exoskeleton
and future researches that aim to improve the existent models, certainly will enhance
the use a exoskeleton for rehabilitation purposes and many other applications.
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Appendix A

Channels Subsets Representation

A.1 1IED Configurations - Knee and Ankle Joint

FIGURE A.1: Reference 56 channels, Knee Joint 1IED

FIGURE A.2: Reference 56 channels with trasversal shift, Knee Joint 1IED

FIGURE A.3: Reference 28 channels, Knee Joint 1IED
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FIGURE A.4: Reference 28 channels with trasversal shift, Knee Joint 1IED

FIGURE A.5: Reference 28 channels with longitudinal shift, Knee Joint 1IED

FIGURE A.6: Reference 14 channels , Knee Joint 1IED

FIGURE A.7: Reference 14 channels with trasversal shift , Knee Joint 1IED
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FIGURE A.8: Reference 14 channels with longitudinal shift, Knee Joint 1IED

FIGURE A.9: Reference 24 channels, Ankle Joint 1IED

FIGURE A.10: Reference 24 channels with trasversal shift , Ankle Joint
1IED

FIGURE A.11: Reference 12 channels, Ankle Joint 1IED
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FIGURE A.12: Reference 12 channels with transversal shift, Ankle Joint
1IED

FIGURE A.13: Reference 12 channels with longitudinal shift, Ankle Joint
1IED

FIGURE A.14: Reference 6 channels, Ankle Joint 1IED

FIGURE A.15: Reference 6 channels with transversal shift, Ankle Joint 1IED
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FIGURE A.16: Reference 6 channels with longitudinal shift, Ankle Joint
1IED

A.2 2IED Configurations - Knee and Ankle Joint

FIGURE A.17: Reference 28 channels, Knee Joint 2IED

FIGURE A.18: Reference 28 channels with trasversal shift, Knee Joint 2IED
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FIGURE A.19: Reference 14 channels, Knee Joint 2IED

FIGURE A.20: Reference 14 channels with transversal shift, Knee Joint
2IED

FIGURE A.21: Reference 14 channels with longitudinal shift, Knee Joint
2IED

FIGURE A.22: Reference 12 channels, Ankle Joint 2IED
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FIGURE A.23: Reference 12 channels with transversal shift, Ankle Joint
2IED

FIGURE A.24: Reference 6 channel, Ankle Joint 2IED

FIGURE A.25: Reference 6 channels with transversal shift, Ankle Joint 2IED

FIGURE A.26: Reference 6 channels with longitudinal shift, Ankle Joint
2IED
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