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Summary

In this thesis the Examination Timetabling Problem (ETP) in the Darmstadt University
of Technology (TU Darmstadt) is presented and a Mixed-Integer Linear Programming
(MILP) model is proposed for it. Our model concentrates on the conflicts of students.
An exam-based conflict graph in which edges represent incompatibilities between exams
is used. An exact MILP approach is directly using a MIP solver to solve the model,
which is usually not able to solve real instances due to the complexity. In order to achieve
high-quality solutions within a short computational time, we propose a scalable approach
based on decomposing the entire problem into subproblems, which can be easily handled
using the exact MILP approach. This approach concentrates on dealing with the conflicts.
The decomposition of the problem then corresponds to the decomposition of the conflict
graph. For the test instances in this thesis, the scalable approach considerably improves
the solutions even in shorter time, compared with the exact MILP approach.
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Chapter 1

Introduction

The Examination Timetabling Problem (ETP) is a type of educational timetabling prob-
lem which has been well researched. It deals with the assignment of exams to timeslots
and rooms, subject to a set of constraints. One of the most common constraints is to
avoid conflicts, i.e., no student is required to write two exams at the same time. This
difficult combinatorial problem must be faced by educational institutions at the end of
each semester. ETP problems are proven to be NP-complete. Solving a real-world ETP
problem manually often requires a large amount of time, expensive resources, as well as
administrative experience.

Educational institutions may consider different constraints, which result in many vari-
ants of ETP problems. In this thesis, we discuss the particular ETP problem in the Darm-
stadt University of Technology (TU Darmstadt). The post-enrollment model is employed.
That is, the problem contains the information of students’ enrollments. Due to the complex-
ity of this information, the traditional manual timetabling usually considers only the cur-
riculum of degree programs, whose deficiencies were discussed in [Bergmann et al., 2014].

In this thesis, we first propose a Mixed-Integer Linear Programming (MILP) model for
our ETP problem. An exact approach is directly using a MIP solver to solve the model.
The MIP solver used in this thesis is CPLEX of version 12.8.0 and the software is the IBM
ILOG CPLEX Optimization Studio (CPLEX Studio), which are introduced in Chapter 5.
However, for real instances of this problem, MIP solvers are not able to find an optimal
or high-quality solution in reasonable time. Besides, if only a small part of the entire
problem is considered, then the exact MILP approach is still considerable. Therefore, we
propose a scalable approach that decomposes the entire ETP problem into a hierarchy of
subproblems. Each subproblem considers only a subset of exams and is handled using exact
MILP approach. An exam-based conflict graph in which edges represent incompatibilities
between exams is introduced. The decomposition of the problem then corresponds to the
decomposition of the conflict graph. This approach is referred to as hierarchical construc-
tion approach in this thesis, as it constructs the timetable, layer by layer, by solving a
sequence of subproblems. Moreover, the hierarchical construction approach concentrates
on dealing with conflicts.

This thesis is structured as follows. In Chapter 2 we present a brief review and discussion
of the research on examination timetabling. The main aim of this chapter is to illustrate
the diversity of solution methods used in research of timetabling, which may potentially

1



1 – Introduction

inspire future research on our problem. Chapter 3 formally presents the ETP problem in
TU Darmstadt and the mathematical formulation of the MILP model. Chapter 4 describes
the hierarchical construction approach and the decomposition techniques employed on the
conflict graph. Results, in Chapter 5, show that the hierarchical construction approach
considerably improves the solutions to the entire problem even in shorter time, compared
with the exact MILP approach. Our conclusion, together with some issues and potential
future works, is to be found in Chapter 6.
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Chapter 2

Background Works

In this chapter, we present a brief review and discussion of the research on examination
timetabling. We first discuss the definitions of the ETP problem from the literature and
the complexity of problem. Then, we provide an overview of the solution methods that
appeared in the literature. The main aim of this chapter is to illustrate the diversity of
solution methods used in research of timetabling, which may potentially inspire future
research on our problem.

[Qu et al., 2009] is a very comprehensive survey on examination timetabling and it
provides an exhaustive list of surveys on educational timetabling and also summarizes the
techniques widely used in the research of timetabling prior to it. We recommend the reader
to refer to this paper for additional details on the research of exam timetabling.

The similarity between different types of timetabling problem has been declared in
many research papers, since all can be considered as assigning events (exams) to timeslots
and resources (e.g., rooms). Thus, this chapter focuses on exam timetabling, while some
relevant research and techniques in other types of timetabling are also included.

2.1 Overview on examination timetabling
In [Qu et al., 2009] the Examination Timetabling Problem (ETP) is defined as assigning
a set of exams into a finite number of timeslots (periods) and rooms, subject to a set of
constraints.

Since different educational institutions may have different rules and expectations, a
large variety of constraints exist in many variants of ETP problems and some of them
may even contradict each other. This causes a heavy challenge in the research on exam
timetabling. The constraints are usually categorized into two types: hard constraints and
soft constraints. The hard constraints cannot be violated under any circumstances, while
the soft constraints are desirable and are not absolutely critical. A solution that satisfies all
of the hard constraints is usually said to be feasible. Then, the violation of soft constraints
is used to measure the quality of a feasible solution, so the objective is to minimize this
violation. In practice, it is usually impossible to find a feasible solution that satisfies all
the soft constraints. Usually many different soft constraints are considered even in one
variant of ETP problems, so ETP problem is typically a multi-objective problem.

3



2 – Background Works

Some concepts in regard to the conflict in timetable are given first. The term a pair
of conflicting exams or exams with conflict potential refers to a pair of exams that have
common students. In a timetable a first order conflict (direct conflict) arises if a pair of
conflicting exams is scheduled in the same timeslot. Second order conflicts arise from the
conflicting exams that are schedule “too close” to each other but not in the same timeslot.
In addition, a conflict graph can be created to indicate the conflict potentials among a set
of exams. The conflict graph is an undirected graph with vertices being the exam set, and
each pair of conflicting exams is connected by an edge.

Nearly in all variants of ETP problems, the conflict is considered. The first order conflict
is forbidden so that no student is required to write two exams at the same time, which
forms a hard constraint. Then, the most common soft constraint is to reduce second order
conflicts, in other words, to spread conflicting exams properly so that students can have
enough revision time between exams. However, in some relaxed cases, even the first order
conflict is handled by soft constraints.

Thus, to handle the conflict, the essential information that we should include in the
dataset of the problem is the students’ enrollments for exams. For each exam we should
have a list of students that will take it, not only the number of students. However, since the
exam timetable usually should be published before students enroll for the exams, the en-
rollments are estimated, and the most common approach is using the students’ enrollments
for the courses. The problem model including students’ enrollments is described as post-
enrollment. Due to the complexity of this information, the traditional manual timetabling
usually considers only the curriculum of degree programs, like in TU Darmstadt. Neverthe-
less, the post enrollment model is the most common and the most widely reported model
for automated timetabling [McCollum et al., 2012]. So, in this thesis the post-enrollment
model is employed. [Bergmann et al., 2014] described some defects of curriculum based
model.

[Qu et al., 2009] summarized a list of the most common hard and soft constraints that
occur in research, and we present it in Table 2.1 and 2.2. They can be roughly grouped
as time related (No. 1 in Table 2.1 and Nos. 1-7 in Table 2.2) or resource related (No.
2 in Table 2.1 and Nos. 8-11 in Table 2.2). The constraints vary from one institution to
another depending on their own rules, expectations and facilities.

Table 2.1: Primary hard constraints in ETP

Primary hard constraints
1. No first order conflict.
2. Resources need to be sufficient (e.g., number of students below room

capacity, enough rooms for all exams).

From the research papers we observe that the rules on room and time assignment
especially vary a lot. An institution may have one of the following three room assignment
rules:

1. Each exam is assigned to exactly one room.

2. Room-splitting: One exam can be split into several rooms.

3. Room-sharing: Several exams can share one room simultaneously.
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Table 2.2: Primary soft constraints in ETP

Primary soft constraints
1. Reduce second order conflicts, i.e., spread exams as evenly as possible.
2. Groups of exams required to take place at the same time, on the same

day or at the same location.
3. Exams to be consecutive, i.e., exams that should be scheduled back to

back.
4. Schedule all exams, or largest exams, as early as possible.
5. An ordering (precedence) of exams needs to be satisfied.
6. Limited number of students and/or exams in any timeslot.
7. Time requirements (e.g. exams (not) to be in certain timeslots).
8. Conflicting exams on the same day to be located nearby.
9. Exam may be split over similar locations, when room splitting is allowed.
10. Only exams of the same length can share the same room in the same

timeslot, when room sharing is allowed.
11. Resource requirements(e.g., room facility).

For rule 2 and 3, soft constraint 9 and 10 respectively need to be considered. Similarly,
one of the following three time assignment rules will be employed:

1. Each exam is assigned to exactly one timeslot.

2. Timeslot-splitting: One exam can be split into several continuous timeslots.

3. Timeslot-sharing: Several exams can use the same room and timeslot as long as the
sum of the exam durations is below the length of the timeslot, and then they will be
scheduled sequentially manually.

A main challenge in ETP problem is the fact that exams have different durations. Rule
2 and 3 are advantageous in this case. They give more flexibility on the time so that a
solution with higher quality may exist in search space. However, on the other hand, they
highly enlarge the solution search space. Even though the splitting and sharing rules can
be both employed in one problem, it usually does not happen in practice.

Since different institutions may have different and even contradictory rules, there are
no universally accepted complete models so far.

2.2 Complexity
Many variants of ETP problems are proven to be NP-complete. By our definition, the ETP
problem needs to do both time and room assignment, which forms a 3-index assignment
problem. Some early papers in this field consider only time assignment as part of ETP
problem. The basic problem is to assign exams to a limited number of timeslots with
the constraints that there should be no first order conflict ([Carter and Laporte, 1996]).
This basic problem can be easily mapped to a graph coloring problem, which is a well-
known NP-complete problem, by considering timeslots as colors. Thus, this basic problem
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is easily proven to be NP-complete and the other variants are at least as difficult as the
basic problem. However, in this thesis we did not provide a derivation of the complexity
of our ETP problem.

2.3 Previous surveys and competitions
The first survey on examination timetabling was presented in [Carter, 1986]. It dis-
cussed many practical applications of exam timetabling algorithms, while none of those
approaches was implemented in more than one institute. The survey was updated in
[Carter and Laporte, 1996] which summarized the approaches used on exam timetabling
between 1986 and 1996. The criteria for discussion of this paper, was that the method
should be either tested on the real data or implemented in real-world applications.

To our knowledge, [Qu et al., 2009] is the newest survey on examination timetabling.
On the basis of the paper [Carter and Laporte, 1996], [Qu et al., 2009] concentrated on the
research between 1996 and 2009. The different approaches were classified and discussed.
In addition, the paper presented a re-naming of the widely studied benchmark datasets to
avoid a significant amount of confusion which had been a problem for many years. The
paper also presented a range of potential future research directions and open issues in exam
timetabling research.

Other than the surveys above, which concentrate on the exam timetabling, there are
several surveys concerning the educational timetabling that we would like to recommend.

[Schaerf, 1999] looked at the formulations of school, course and exam timetabling and
stated that the difference between the latter two are relatively small.

[Kristiansen and Stidsen, 2013] is a comprehensive survey on educational timetabling,
which is concentrated on the four main education planning problems: University Course
Timetabling, High School Timetabling, Examination Timetabling and Student Sectioning.
It contains a section for exam timetabling, which is based on [Qu et al., 2009], and some
new research papers are presented. It pointed out a difference between university course
timetabling and exam timetabling: the former pursues a compact timetable whereas the
latter pursues more spreading between events for each student.

The following two conferences are dedicated to the art of timetabling: the International
Conference on the Practice and Theory of Automated Timetabling (PATAT) and the Mul-
tidisciplinary International Scheduling Conference: Theory & Application (MISTA). Both
conferences are held every second year.

Besides the surveys and conferences mentioned above, there have been three Interna-
tional Timetabling Competitions (ITC) on educational timetabling problems respectively
in 2003, 2007 and 2011. The second competition introduced three tracks along with asso-
ciated benchmark datasets and one track is Examination Timetabling. To bridge the gap
between theory and practice in exam timetabling, it presented a new model that better
represents the complexity of the real-world situation in many institutions and the datasets
are based on real-world instances as well. In this model, each exam uses exactly one times-
lot and room-sharing rule is employed. The objective function is a weighted sum of several
types of penalties, which are contributed by different soft constraints. The winner of the
examination track of ITC2007 is [Müller, 2016]. More details of ITC2007 can be found on
the website http://www.cs.qub.ac.uk/itc2007/.
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In addition, the webpage http://www.cs.nott.ac.uk/~pszajp/timetabling/exam/
continuously collects together benchmark instances, solutions and software tools for exam-
ination timetabling.

2.4 Examination timetabling benchmark data
Due to the high interest in examination timetabling, various different benchmark problems
have been established and widely studied. The following are some well-known benchmarks
of exam timetabling, which are all named from the universities or competitions:

• Toronto benchmark data

• Nottingham benchmark data

• Melbourne benchmark data

• The second international timetabling competition (ITC2007) benchmark data

• Yeditepe benchmark data

• Purdue benchmark data

In this section, we only give a brief description of some of them. ITC2007 benchmark
data has been briefly introduced in the previous subsection. [Qu et al., 2009] exhaustively
described the former three benchmarks, clarified which papers dealt with which problems
and summarized which of the methods that have appeared in the literature are the best on
those benchmarks at that time. The links to all of the benchmark datasets can be found
on http://www.cs.nott.ac.uk/~pszajp/timetabling/exam/.

2.4.1 Toronto benchmark data
[Carter et al., 1996] introduced a set of 13 real-world exam timetabling problems. The
dataset of each problem merely contains the students’ enrollments, i.e., a list of students
for each exam. Since the original datasets are generic, many variants of these problems
appeared in research by giving different objectives and additional time and resource set-
tings (e.g., number of timeslots, maximal seating capacity per timeslot). [Qu et al., 2009]
collected a complete list of all five variants that were studied in research papers and named
them from Toronto a to Toronto e. In all variants only time assignment is considered. Fur-
thermore, exam and timeslot durations are not considered and it simply assumes that each
exam requires one timeslot. The constraint that there should be no first order conflict is
included in all variants. In later variants, the maximal room capacity per timeslot (i.e., the
maximal number of students in each timeslot) is considered. As for the objective, Toronto
a is to minimize the number of timeslots needed for the problem, which is equivalent to a
typical graph coloring problem. All the other variants have a aim to spread properly the
conflicting exams, but have different evaluation functions.

In addition, [Qu et al., 2009] stated that five of the thirteen instances actually have two
versions of the data that were circulated and were tested by different approaches during
the years. They examined the data and found that in the second version of the datasets,

7
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duplicate exams have been assigned to some students in three instances. Thus, for these
three instances they presented again a corrected second version of datasets. To avoid future
confusion, they presented a re-naming of the datasets, and clarified which research papers
have dealt with which dataset.

2.4.2 Purdue benchmark data
As we mentioned before, institutions may have different constraints, and therefore, [Müller, 2016]
introduced a new benchmark of exam timetabling, which contains nine real-world datasets
from Purdue University. The main differences between the ETP model in this benchmark
and the ITC2007 ETP model are:

• Direct conflicts are allowed, but minimized.

• The room-splitting rule is employed instead of room-sharing.

• Rooms have two capacities, based on the seating mode.

• Penalties are calculated differently.

The benchmark datasets can be found on the website http://www.unitime.org.

2.5 Examination timetabling approaches
Generally, there are two types of methods: exact methods and heuristic methods. The exact
methods concentrate on the formulation of a mathematical model for the ETP problem.
Then, the model is encoded in the constraint programming, and solved by a commercial
or open-source solver, or a well-known exact method for this mathematical model. The
first part of this thesis focuses on an exact method. A MILP model is proposed and solved
by a MILP solver. However, considering the size of real instances, exact methods usually
needs a significant amount of computation time in both finding a good feasible solution
and proving the optimality. Therefore, heuristic methods are demanded, which instead do
not guarantee to reach the optimal solution.

Typically there are two types of heuristic methods. On the one hand, there are con-
struction heuristics that produce a feasible solution from the scratch. On the other
hand, there are improvement heuristics that try to improve a given feasible solution.
([Pochet and Wolsey, 2006])

Graph coloring heuristics are the construction heuristics that have been heavily studied
in the early decades, as [Welsh and Powell, 1967] linked timetabling to graph coloring. The
basic ETP problem of assigning timeslots to exams with the constraint that no conflicting
exams are in the same timeslot, obviously corresponds to the vertex graph coloring on the
conflict graph, which assigns colors to vertices so that no adjacent vertices have the same
color. The basic graph coloring heuristics first order the exams by how difficult they are
to be scheduled and then assign them, one by one, into the timeslot. The research focuses
on the ordering strategies, and a broad range of them appear in the timetabling literature.
[Qu et al., 2009] listed some of the widely used ordering strategies. Five of them were
tested on the Toronto benchmark instances in [Carter et al., 1996].

8
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Many metaheuristics are used in timetabling as improvement heuristics, and most
widely used are local search (including Simulated Annealing, Tabu Search, Variable Neigh-
borhood Search, Large Neighborhood Search, and etc.) and population-based metaheuris-
tics (including Evolutionary Algorithms, Memetic Algorithms, Ant Algorithms, Artificial
Immune Algorithms, and etc.). Especially population-based metaheuristics are attracting
a high level of research attention in the recent decades. The effort required to tune the pa-
rameters of metaheuristics for specific problems to obtain high-quality solutions is usually
very high, which is one significant drawback of metaheuristics.

In addition, the following techniques are integrated in many methods.
Since the timetabling needs to handle different constraints, multi-criteria techniques

have been studied recently in timetabling. In the majority of approaches, weighted costs
of violations of different constraints are summed and used to measure the quality of the so-
lutions, which may have some deficiencies in real-world cases. Alternatively, multi-criteria
techniques consider a vector of constraints instead of a single weighted sum.

Decomposition techniques are also employed in some methods. The idea of decom-
position is that large problems are broken into small subproblems, for which optimal or
high-quality solutions can be found by relatively simple techniques or in short time, since
the search spaces of the subproblems are significantly smaller than that of the original
problem ([Carter, 1983]). One way of decomposing the problems is to find the largest
clique in the conflict graph. [Carter et al., 1996] integrated this technique into the graph
coloring heuristics by scheduling the largest clique first. The reason is that, in a sense, the
largest clique represents the most difficult group of exams to schedule since they are all in
conflict. There are also other decomposition techniques, which are not be covered in this
thesis.

One of the current trends in timetabling is the use of hybridization of different solution
techniques. A common approach usually consists of a construction phase, realized by
an exact or heuristic method, to find a feasible solution and a sequence of improvement
heuristics to further improve it. [Merlot et al., 2002] employed constraint programming to
generate initial solutions, and then a Simulated Annealing and a Hill Climbing method
were used to improve the solutions. The winner of ITC2007 examination timetabling track
[Müller, 2016] used an Iterative Forward Search algorithm for construction phase and then
the Hill Climbing and Great Deluge to improve the solutions.

In the recent decades, hyper-heuristics are also attracting an increased level of research
attention. Most of the heuristic methods are designed for one particular problem based
on the knowledge of the search space. Such methods usually work poorly with other
problems or even with another slightly different variant of problem. Hyper-heuristics are
motivated by the goal of automating the design of heuristic methods to solve hard com-
putational search problems ([Burke et al., 2013]). They can be described as heuristics to
choose heuristics. That is, they operate on a search space of heuristics rather than directly
on the search space of solutions. [Burke et al., 2013] did a comprehensive survey on the
hyper-heuristics, and the reader can refer to it for more details.

2.5.1 MILP based approaches
In this subsection, we introduce several approaches in the literature of timetabling that
employ the MILP model.
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[Al-Yakoob et al., 2010] proposed a MILP model for the ETP problem in the Kuwait
University (KU), which, to our knowledge, is the first MILP based approach in exam
timetabling. Because the sizes of instances were relatively small, they were exactly solved
by CPLEX (version 9.0), and the results are of significant improvements compared to the
existing manual approach in KU.

[McCollum et al., 2012] proposed a MILP model for the ETP problem presented in
ITC2007. In this model, the conflict graph is introduced to indicate the conflict potentials
on exam pairs. The MILP model was also encoded in CPLEX Studio and the encoding
can be found on the website http://www.cs.nott.ac.uk/~pszajp/timetabling/exam/.
The author reported that it is not capable of solving ITC2007 instances.

In [Parkes and Ozcan, 2010] the same code with CPLEX 11 was used to exactly solve
some of the smallest instances from Yeditepe University in Turkey and the author reported
that the optimality has not been proven for any solutions of ETP instances in the Toronto
and ITC2007 benchmarks.

Based on [McCollum et al., 2012], [Arbaoui et al., 2015] proposed new preprocessing
stages and an improved MILP model so as to speed up the solving process. The prepro-
cessing mainly concentrates on analyzing the data and then building a generalized conflict
graph. Between two exams there is always the implicit competition for resources, which
may also make it impossible to schedule two exams without common students simulta-
neously. Thus, a generalized conflict graph is introduced to indicate all exam pairs that
cannot be scheduled simultaneously, not only those caused by the student conflicts. Be-
sides, the MILP model was improved by adding some cuts.

[Bergmann et al., 2014] proposed a MILP model for the ETP problem in the Hamburg
University of Technology (TUHH). In the model, room-splitting and timeslot-sharing rules
are employed. It defines one timeslot to be 10 hours so that the complexity of problem is
reduced. The Gurobi MIP solver was used to solve the real instances in TUHH. However,
due to the size of instance, the best integer solution found by the solver within the time
limit was not good enough. Thus it was further improved by a tabu-search based heuristic.

Based on a MILP formulation of ETP problem, [Bargetto et al., 2016] proposed a
matheuristic solution approach that integrates a search phase realized by an exact algo-
rithm (in this case the MILP solver) on a subset of the original problem into a well-known
metaheuristic procedure. As metaheuristic, the Large Neighborhood Search (LNS) with
multiple neighborhoods was employed. Based on the fundamental local search, LNS tries
to reduce the risk of being trapped in a local optimum by using a very large neighbor-
hood, and it still moves to the best solution in the neighborhood. In this approach, finding
the optimum in the neighborhood is done by a MILP solver (CPLEX 12.6 is used in this
paper). It is tested on the instance from Politecnico di Torino.

Based on the MILP model in [McCollum et al., 2012], the master thesis [Kadura, 2016]
proposed a MILP model for the ETP problem in TU Darmstadt. Our MILP model is based
on that, and a significant number of modifications and improvements have been made.

[Penn et al., 2017] proposed a MILP model for master operating theater timetabling in
hospital and it is solved by FICO Xpress Optimization Suite. The problem is quite similar
to exam timetabling.
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Chapter 3

MILP model for ETP

In this chapter we formally introduce the ETP problem in TU Darmstadt and then pro-
pose a MILP model for it. To begin with, the ETP problem in TU Darmstadt is discussed
and described verbally. Then, the parameters and the mathematical model composed of
the variables, the objective function and the constraints for the optimization problem are
presented. Our modeling is based on the MILP model proposed in the research paper
[McCollum et al., 2012], which is for ETP problem in ITC2007, and the master thesis
[Kadura, 2016] in TU Darmstadt. Some concepts and notations are retained from those
papers. However, many individual parts of the model are significantly extended and mod-
ified, so that the model is suitable for ETP problem presented in this thesis. The main
differences will be highlighted, however the reader should refer to [McCollum et al., 2012]
for more details of the problem description and MILP model for ETP in ITC2007.

We use the following conventions of notations to help render the formulation more
readable:

• Sets are upper case.

• Parameters are lower case.

• Variables are upper case.

• For matrices, a superscript is used to indicate the type of each dimension. For exam-
ple, sE and sR are used for exam and room sizes respectively.

3.1 Problem description
3.1.1 General conditions and assumptions
In ETP problem, the three entities that we need to connect are exams, timeslots and rooms.

In this problem, timeslots have the same length and organized in two dimensions (in-
spired by [Penn et al., 2017]). The entire exam session is composed of a set of days
D = {1, ..., nD}, where nD is the total number of days. Then, in one day the working
hours, which should be continuous, (e.g., 10 hours from 8:00 to 18:00), are split into nT

continuous timeslots of equal duration (e.g., 2 hours). The index set of timeslots is denoted
as T = {1, ..., nT}. Thus, a timeslot is indicated by two indices day d and timeslot t.

11



3 – MILP model for ETP

Each room has a seating capacity and an availability matrix, which states during which
timeslots the room can be used. In this problem, an exam is allowed to be split into
several rooms. A group of rooms that can be used together by one exam is defined as a
location(e.g., a campus or a building), and each room belongs to a location. Sometimes, it
is not necessary to assign a specific room to an exam, instead, we can assign a room type
and the specific room of that type can be chosen manually later. Thus, in oder to reduce
the complexity, in this problem rooms are grouped into room types, and we classify rooms
according to the seating capacity and location. Each room type has a seating capacity,
location and availability matrix, which is derived from the availability of each room and
states the number of available rooms of that type in each timeslot.

A pair of timeslot and room are defined as a resource block (as a pair of timeslot and
frequency channel is defined as a resource block in 4G mobile communication). Thus, the
ETP problem is to allocate a number of resource blocks to each exam. The room and time
assignment rules in this problem are that room-sharing and timeslot-sharing are forbidden
while room-splitting and timeslot-splitting are allowed. Hence, each resource block can
only be used by one exam.

Thus, each exam has the following properties:

• Exam duration represented as a number of timeslots.

• Minimal and maximal number of rooms into which it can be split.

• Exam size: number of students enrolled in the exam.

• A list of students enrolled in the exam.

The time for handing out and collecting the papers has already been counted in the exam
duration, so no interval is needed between two adjacent exams.

Since each exam can only use an integer number of timeslots, the timeslot length is
somewhat crucial in the problem. A finer granularity gives more flexibility, but at the
same time increases the problem complexity.

Our model concentrates on the student conflicts. Given the exam set E and students’
enrollments, a conflict graph can be created. The conflict graph GC = (E, AC) is an
undirected graph with vertices being the set of exams E. The set of undirected edges AC

contains an edge a = (i, j) if and only if exams i and j have a conflict potential, which
means they have students in common. Since the edges are undirected, to prevent double
counting and without loss of generality, we let AC contain only arcs a = (i, j) with i < j.
A weight is associated to each edge a = (i, j) ∈ AC and in this thesis it is defined to
be the number of common students. However, if desired this model can be extended by
defining edge weights that depend also on other parameters, e.g., the credit points of the
two exams.

The benefit of introducing the conflict graph is that it makes the model more generic,
so that with slight modification this model can fit many other variants of ETP problems.
There may be other reasons for forbidding two exams to be scheduled in the timeslot, not
only the conflict of student. Such as, two exams need to use the same specified rooms, or
two exams need the same proctor. To fit those cases, we only need to extend the conflict
graph.

12



3.1 – Problem description

Even if a pair of exams has no conflict potential, it may still be impossible to schedule
them simultaneously. Because, other than the conflict potential, between two exams there
is also the implicit competition for resources.

In addition, the exams in TU Darmstadt are not jointly scheduled, instead, with some
large exams preassigned by the university, each department schedules their own exams.
Some resources, like rooms, are shared by all departments. In this thesis we consider the
ETP problem in the department ETIT in TU Darmstadt.

The main differences on the conditions between our model and the model in [McCollum et al., 2012]
is highlighted as follows:

• For room assignment, room-splitting is allowed in our model but no room-sharing.

• In [McCollum et al., 2012] the timeslots are not required to be of equal duration,
and the timeslots on the same day are not required to be continuous. Then, the
time assignment rule is that every exam should be assigned into exactly one timeslot
with the constraint that the exam duration should not exceed the timeslot dura-
tion. As explained in the previous chapter, in the case that the exams have different
durations, our time assignment rule may create better solution at the cost of the in-
crease of the solution search space. To deal with the various types of exam duration,
[Bergmann et al., 2014] used another strategy. They created timeslots of equal and
very long duration, which should exceed the duration of any exam, and employed the
timeslot-sharing rule. The reason why we did not employ that strategy is the fact
that our rooms will not be available in such a long timeslot as many of them are
shared with other departments

• Since every day has equal number of timeslots of equal duration, it becomes possible
to organize the timeslots in a 2-dimensional matrix with one index indicating the day.
The benefit is that it simplifies the implementation of the constraints concerning only
the day of exams but not the exact time and reduces the complexity of model.

3.1.2 Hard constraints
The hard constraints considered in this problem are:

• Resource availability constraint: A room can be used only if it is available in that
timeslot.

• Preassignment constraint: Some exams are preassigned to specific resource blocks or
a group of resource blocks (e.g., a specific day or some specific timeslot in any day).

• Time hard constraint: Every exam must be allocated to the required number of
continuous timeslots.

• Room split hard constraint: The number of rooms allocated to each exam must satisfy
the demand.

• Location constraint: Every exam must be at exactly one location.

• Room capacity constraint: Exam size cannot exceed the total number of seats in the
allocated rooms.

13
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• Direct conflict constraint: Direct conflict is forbidden. No student should write two
exams simultaneously.

• Exam coincidence constraint: Some exam pairs need to take place at the same time.

The time hard constraint and room split hard constraint jointly enforce another hard
constraint: Complete allocation constraint, which is that all exams must take place.

In [McCollum et al., 2012], some hard constraints above are stated as relaxable-
hard. In the case that the problem instance is infeasible, a relaxed problem can be
created by allowing the relaxable-hard violations and minimizing them. A solution
to the relaxed problem may help in identifying and repairing the sources of infeasibility.
However, in this thesis, we do not study this relaxation and those constraints are always
considered to be hard.

3.1.3 Soft constraints
As we discussed before, the violation of soft constraints is used to evaluate the quality of
a feasible solution, so it contributes a penalty to the objective function. The objective
function, which needs to be minimized, is a weighted sum of all types of penalties.

The penalties considered in this problem can be divided into two classes: allocation
penalty and conflict penalty. The allocation penalties contributed by each exam depend
only on its own room and/or timeslot allocation. However, the conflict penalties are caused
by the second order conflicts, which depends only on the time gap between conflicting
exams, but not the timeslot allocation. In [McCollum et al., 2012] the second class of
penalty is referred as “pattern penalties" because we can also consider that they arise from
restrictions on sequences of enrollment for each student.

The following allocation penalties are considered in this problem:

• Time penalty: A penalization on assigning an exam into a timeslot. For each exam,
there is a different penalty associated with each timeslot. The overall time penalty is
calculated by summing up such penalty caused by the time allocation of each exam.

• Room penalty: A penalization on assigning an exam into a room. Similarly, for
each exam, there is a different penalty associated with each room type for using one
room of that given type. The overall room penalty is calculated by summing up such
penalty caused by the room allocation of each exam.

• Room split penalty: A penalization on assigning an exam into multiple rooms.
Each exam can use one room without penalty, and every additional room will cause
a penalty of one. In other words, the penalty of splitting an exam is equal to the
number of additional rooms used by it.

The time and room penalties may consider the preference of proctors, the availability
of resources and other potential factors. The constraint that exams with large size are
preferred to be scheduled early is also considered in this problem. Instead of introducing
another penalty, we encode it also in the time penalty, as it is indeed one type of preference
on timeslots. In the experiments, the time and room penalties are actually not used, so in
this thesis we do not specify how the penalty value should be defined. They are included
in the model for completeness and potential future research.
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3.2 – Sets and parameters

The conflict penalties are penalization on the second order conflicts. The following
conflicts are considered in this problem:

• Two-in-a-row (back-to-back conflict): Two conflicting exams are scheduled back
to back on the same day, i.e., one exam begins immediately after the other ends.

• Two-in-a-day: Two conflicting exams are scheduled on the same day, including the
case that they are back to back.

• Exam spread: The time gap between two conflicting exams, which counts only the
number of days, is smaller than or equal to a specified minimal value. It includes also
the case that they are on the same day, which means a gap of zero.

The penalty for one type of conflict counts the number of occurrences of that type of
conflict, so each pair of conflicting exams will contribute a penalty equal to the number of
common students if it have a conflict. Thus, the penalty can be calculated by traversing
the conflict graph, and the penalty for one type of conflict is the sum of edge weight of the
edges having that type of conflict.

In [McCollum et al., 2012] the conflict penalties are divided into exclusive types. For
example, the two-in-a-day is defined as the case that two conflicting exams are scheduled
on the same day but not back to back. Therefore, if two exams are scheduled back to
back, the penalty will be counted only as part of the two-in-a-row penalty. However, in
this thesis we do not use exclusive types. If two exams are scheduled back to back, the
penalty will be counted three times. The advantage is that it reduces the complexity of
model.

3.2 Sets and parameters

To provide a better overview of the notation used in the model, we present a list of all sets,
indices and parameters as follows.
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3.2.1 Sets

E = {1, ..., nE} is the set of all exams, where nE is the total number of
exams.

ES : Set of exams to be scheduled. ES ⊆ E. The rest of the exams in E will
not be considered in the optimization.

EP : Set of exams that are preassigned to specific resource blocks or a group
of resource blocks. EP ⊆ ES .

R = {1, ..., nR} is the set of room types, where nR is the total number of
room types.

L = {1, ..., nL} is the set of locations, where nL is the total number of
locations.

D = {1, ..., nD} is the set of days, where nD is the total number of days in
the exam session.

T = {1, ..., nT} is the set of timeslots in each day, where nL is the total
number of timeslots per day.

AC : Set of edges of the conflict graph with the exam set ES , GC = (ES , AC).
Since the edges are undirected, to prevent double counting and without
loss of generality, we let AC contain only arcs a = (i, j) with i < j.

Hcoin: Set of pairs of exams (i, j) that must take place at the same time. For
an exam pair (i, j) in this set, the order of i, j makes no difference.

In order to have a compact model, we will define variables and constraints only for the
exam set ES and the conflict graph is also defined only for ES . However, the parameters
related to the other exams are still retained in the model.

Instead of removing the exams that do not need to be scheduled and the parameters
related to them, we keep them in the model for two reasons. First, a feasible instance should
be able to provide resources required by all exams, not only the exams to be scheduled.
The feasibility of the instance data will be checked before solving it and the details of
feasibility testing will be explained in Section 3.6. Second, this option is required in the
heuristic approach that will be introduced in the next chapter.

Besides, Hcoin is not specified in the experiment instances, but it is included in the
model for completeness.

3.2.2 Indices

e: Indices for exams, e ∈ E, ES or EP .
r: Indices for room types, r ∈ R.
l: Indices for locations, l ∈ L.
d: Indices for days, d ∈ D.
t: Indices for timeslots, t ∈ T .
(i, j): A tuple of indices of two exams, used to represent an exam pair. (i, j) ∈

Hcoin or AC .
a: Indices for conflict edges, which are exam pairs with conflict potential,

a = (i, j) ∈ AC where i, j ∈ ES and i < j.
16



3.3 – Variables

3.2.3 Parameters
sE

e : Size of exam e ∈ E, i.e., number of students that sit in exam e
dE

e : Duration of exam e ∈ E, including time for preparation and follow up,
represented as the number of timeslots.

bE
e : Minimal number of rooms into which exam e can be split, ∀e ∈ E.

mE
e : Maximal number of rooms into which exam e can be split, ∀e ∈ E.

uR
r : Number of available rooms of type r ∈ R.

sR
r : Seating capacity of a room belonging to room type r ∈ R, i.e., number

of seats in the room.
vRL

rl : Indicates the location of room. Equal to 1 if room type r is in location
l, 0 otherwise, ∀r ∈ R, l ∈ L.

uRDT
rdt : Resource availability. It is the number of available rooms of type r in

timeslot t on day d, ∀r ∈ R, d ∈ D, t ∈ T . It is introduced because the
availability of each room may change over time.

pERDT
erdt : Preassignment. It is the number of rooms of type r in timeslot t on day

d pressigned to exam e, ∀e ∈ EP , r ∈ R, d ∈ D, t ∈ T .
The weights and parameters for soft constraint penalties:

wT
edt: A weight that specifies the penalty for exam e using timeslots t on day

d, ∀e ∈ E, t ∈ T, d ∈ D.
wR

er: A weight that specifies the penalty for exam e using one room of type r,
∀e ∈ E, r ∈ R.

wRS : Weight for room split penalty.
w2R: Weight for two-in-a-row (back-to-back conflict) penalty.
w2D: Weight for two-in-a-day penalty.
wES : Weight for exam spread penalty.
g: The preferred minimal gap in days between two exams with conflict

potential. An exam pair with conflict potential that is scheduled closer
than g days contributes to the exam spread penalty.

wC
a : Weight for each edge a = (i, j) ∈ AC . In this thesis, it is defined to be

the number of students taking both of the two exams i and j.

3.3 Variables
3.3.1 Primary decision variables
The primary integer decision variables are:

XER
er = number of rooms of type r assigned to exam e,

∀e ∈ ES , r ∈ R (3.1)

BEDT
edt =

{
1, if exam e begins in timeslot t on day d,
0, otherwise.

∀e ∈ ES , d ∈ D, t ∈ T (3.2)
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3 – MILP model for ETP

Obviously, those variables respectively give the information which room type and how
many rooms are assigned to an exam and which timeslot is assigned to it as the beginning
timeslot. An unique assignment is fixed when those variables are determined. XER

er takes
non-negative integer values, while BEDT

edt is binary.

3.3.2 Secondary variables
The term secondary variables means that the values of those variables will be directly
forced given any legal assignment to the primary variables. These variables are used to
write the constraints and to compute the objective function.

In order to encode the direct conflict constraints and compute the time penalty, we will
use the variables:

XEDT
edt =

{ 1, if exam e is in timeslot t on day d,
0, otherwise.

∀e ∈ ES , d ∈ D, t ∈ T (3.3)

When the assignment is fixed, the value of those variables can be determined from the
beginning time of the exams BEDT

edt and the duration of the exams dE
e . If BEDT

edt is one
for exam e in timeslot t on day d, XEDT

edt must be forced to be one for all dE
e successive

timeslots from t. It will be enforced by constraints (3.28).
In order to encode the resource availability constraints and preassignment constraints,

we will use the variables:

XERDT
erdt = number of rooms of type r in timeslot t on day d allocated to exam e,

∀e ∈ ES , r ∈ R (3.4)

and their values determined by

XERDT
erdt ≡ XER

er XEDT
edt , ∀e ∈ ES , r ∈ R, d ∈ D, t ∈ T (3.5)

In order to encode the location constraints, the following variables are introduced to
indicate the location of each exam.

XEL
el =

{ 1, if exam e is in location l,
0, otherwise.

∀e ∈ ES , l ∈ L (3.6)

Their values are determined from XER
er by the rule: if at least one room in location l is

allocated to exam e, then XEL
el is forced to be 1.

The penalties for violations of the various soft constraints are encoded as non-negative
variables as follows:
CT : Time penalty
CR: Room penalty
CRS : Room split penalty
C2R: Two-in-a-row (back-to-back conflict) penalty
C2D: Two-in-a-day penalty
CES : Exam spread penalty
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3.4 – Objective

Because the last three penalties depend on the relative position of all exam pairs with
conflict potential in the schedule, we can compute those penalties by summing the penalty
component caused by each conflict edge. Thus, we again define the binary variables C2R

a ,
C2D

a and CES
a to indicate whether edge a = (i, j) ∈ AC incurs a penalty.

C2R
a =

{
1, if edge a = (i, j) incurs a two-in-a-row penalty,
0, otherwise.

∀a = (i, j) ∈ AC (3.7)

and the same rule applies to C2D
a and CES

a .
All those relations will be formulated as linear constraints.
We also indicate that the six variables for the six types of penalty are not strictly

necessary, because their values will be directly computed from the values of the other
variables. However, before solving the model CPLEX will simplify it by removing the
redundancy, so those penalty variables can remain in our model in order to clearly indicate
the sources of the penalty. Also for the same reason, they can be relaxed to be real values
if desired, while the rest of the secondary variables should be forced to be integer or binary.

3.4 Objective
Minimize

CT + CR + wRSCRS + w2RC2R + w2DC2D + wESCES (3.8)
The objective function measures the quality of the solutions. It is the weighted sum of
all penalties, which are caused by the violation of various types of soft constraints. As in
[McCollum et al., 2012], there are no additional weights for the time and room penalties
CT and CR since the associated weights were already included in their definitions. As
we discussed previously this problem is multi-objective, but the weighted sum approach
is employed in this model for simplicity. By giving different weights, institutions can lay
emphasis on different penalties.

3.5 Constraints
3.5.1 Hard constraints
The hard constraints are presented as follows.

The range constrains for decision variables:

XERDT
erdt , XER

er ≥ 0 (3.9)
XEL

el , XEDT
edt , BEDT

edt ∈ {0,1} (3.10)
C2R

a , C2D
a , CES

a ≥ 0 (3.11)
CT , CR, CRS , C2R, C2D, CES ≥ 0 (3.12)

The secondary variables for the penalties, CT , CR, CRS , C2R, C2D, CES , can be relaxed to
be real values if desired, since their values will be directly computed from the values of the
other variables. The rest of the variables can only take integer or binary values.

19



3 – MILP model for ETP

Resource availability constraints:∑
e∈ES

XERDT
erdt ≤ uRDT

rdt , ∀r ∈ R, d ∈ D, t ∈ T (3.13)

XER
er ≤ uR

r , ∀e ∈ ES , r ∈ R (3.14)

The total number of used rooms of type r in any timeslot and the number of rooms used
by any exam should be limited by the number of available rooms.

Preassignment constraints:

XERDT
erdt ≤ pERDT

erdt , ∀e ∈ EP , r ∈ R, d ∈ D, t ∈ T (3.15)

Exams in the set EP can only be assigned to preassigned resource blocks.
Time hard constraints: ∑

d∈D

∑
t∈T

BEDT
edt = 1, ∀e ∈ ES (3.16)

∑
d∈D

∑
t∈T

XEDT
edt = dE

e , ∀e ∈ ES (3.17)

Every exam must begin exactly once and be allocated to the required number of timeslots.
Constraint (3.28) will guarantee that the allocated timeslots are continuous.

Room split hard constraints:∑
r∈R

XER
er ≥ bE

e , ∀e ∈ ES (3.18)
∑
r∈R

XER
er ≤ mE

e , ∀e ∈ ES (3.19)

Every exam e must be allocated to at least bE
e rooms and at most mE

e rooms.
Location constraints: ∑

l∈L

XEL
el = 1, ∀e ∈ ES (3.20)

Every exam must be allocated to exactly one location.
Room capacity constraints:

sE
e ≤

∑
r∈R

sR
r XER

er , ∀e ∈ ES (3.21)

The rooms allocated to each exam should provide a sufficient total seating capacity.
Direct conflict constraints:

XEDT
idt + XEDT

jdt ≤ 1, ∀a = (i, j) ∈ AC , d ∈ D, t ∈ T (3.22)

Direct conflict is not allowed. Every exam pair with conflict potential cannot take place
at the same time.

Exam coincidence constraints:

XEDT
idt = XEDT

jdt , ∀(i, j) ∈ Hcoin, d ∈ D, t ∈ T (3.23)

20



3.5 – Constraints

Every exam pair in Hcoin must be scheduled simultaneously.
The following constraints link the secondary decision variables to the primary decision

variables: ∑
d∈D

∑
t∈T

XERDT
erdt = dE

e XER
er , ∀e ∈ ES , r ∈ R (3.24)

XERDT
erdt ≤ XER

er , ∀e ∈ ES , r ∈ R, d ∈ D, t ∈ T (3.25)
XER

er vRL
rl ≤ uR

r XEL
el , ∀e ∈ ES , r ∈ R, l ∈ L (3.26)

XERDT
erdt ≤ uRDT

rdt XEDT
edt , ∀e ∈ ES , r ∈ R, d ∈ D, t ∈ T (3.27)

XEDT
edt =

t∑
t′=max{t−(dE

e −1),1}
BEDT

edt′ , ∀e ∈ ES , d ∈ D, t ∈ T (3.28)

Constraint (3.28) ensures that dE
e continuous timeslots will be allocated to exam e. If

BEDT
edt is one for exam e in timeslot t on day d, XEDT

edt must be forced to be one for all dE
e

successive timeslots from t, i.e., from t to t + (dE
e − 1). An equivalent approach is that,

XEDT
edt must be forced to be one if BEDT

edt has a value of one for any one of the dE
e timeslots

before t, i.e., from t − (dE
e − 1) to t. Note that it should count only the part of timeslots

in set T if t − (dE
i − 1) < 1, so the value XEDT

edt can be obtained by the sum of BEDT
edt′ in

the range t′ = {max{t− (dE
e − 1), 1}, ..., t}.

In MIP, cuts or cutting planes are constraints that reduce the feasible region for the LP
relaxation but not the feasible region of the original problem. They cut away non-integer
solutions that would otherwise be solutions of the continuous relaxation. The addition of
cuts usually reduces the number of branches needed in the branch-and-bound approach
to solve a MIP and, therefore, speed up the solving process. Thus, the following cuts are
included in the model. The following constraints enforce that a exam cannot be scheduled
to begin in a timeslot if there are no enough successive timeslots on that day.

BEDT
edt = 0, ∀e ∈ ES , d ∈ D, t ∈ T, t ≥ nT − dE

e (3.29)

3.5.2 Soft constraints
Allocation penalties

The overall time penalty is calculated by summing up the time penalty caused by the time
allocation of each exam:

CT =
∑

e∈ES

∑
d∈D

∑
t∈T

wT
edtX

EDT
edt , (3.30)

as allocating exam e into timeslot t on day d causes a penalty of wT
edt in the time penalty

and XEDT
edt indicates the time allocation.

Similarly, the overall room penalty is calculated by summing up the room penalty caused
by the room allocation of each exam:

CR =
∑

e∈ES

∑
r∈R

wR
erXER

er , (3.31)

as allocating exam e into one room of type r causes a penalty of wR
er in the room penalty

and XER
er indicates the room allocation.
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Room split penalty:

CRS =
∑

e∈ES

(∑
r∈R

XER
er − 1

)
(3.32)

It is the total number of additional rooms.

Conflict penalties

The overall two-in-a-row penalty is the sum of violations on each edge weighted by the
edge weight, i.e., the number of common students:

C2R =
∑

a∈AC

wC
a C2R

a (3.33)

The minimization of C2R within the overall objective will automatically force C2R
a towards

zero. Then the following constraints forces it to be one when necessary:

BEDT
idt + BEDT

jd(t+dE
i ) ≤ 1 + C2R

a (3.34a)

BEDT
id(t+dE

j ) + BEDT
jdt ≤ 1 + C2R

a (3.34b)

∀a = (i, j) ∈ AC , d ∈ D, t ∈ {1, ..., (nT − dE
i − dE

j + 1)}

Those constraints state that C2R
a will be forced to be one if exam j directly follows exam

i or it happens in the inverse order.
Similarly, the following constraints compute the two-in-a-day penalty and exam spread

penalty.
Two-in-a-day penalty:

C2D =
∑

a∈AC

wC
a C2D

a (3.35)

∑
t∈T

(
BEDT

idt + BEDT
jdt

)
≤ 1 + C2D

a

∀a = (i, j) ∈ AC , d ∈ D

(3.36)

C2D
a is forced to be one if exams i and j are on the same day; otherwise, the minimization

of C2D forces it to be zero.
Exam spread penalty:

CES =
∑

a∈AC

wC
a CES

a (3.37)

d+g∑
d′=d

(
XED

id′ + XED
jd′

)
≤ 1 + CES

a

∀a = (i, j) ∈ AC , d ∈ {1..(nD − g)}
(3.38)

CES
a is forced to be one if the gap between exams i and j is smaller than or equal to g

days; otherwise, the minimization of CES forces it to be zero.

22



3.6 – Instance feasibility testing

Penalty lower bound

From constraint (3.32) we can see that the room split penalty has an obvious lower bound:

CRS ≥
∑

e∈ES

(
bE

e − 1
)

(3.39)

since bE
e is the minimal number of rooms assigned to exam e. Thus, the room split penalty

contributes a lower bound to the objective function:

wRS
∑

e∈ES

(
bE

e − 1
)

(3.40)

3.6 Instance feasibility testing
Given the complexity of the problem, it is possible that the user may specify a problem
instance that is infeasible. Although for some instances CPLEX identifies the infeasibility
in a short time, it is not always true. In order to avoid wasting time in solving an infeasible
instance, the data feasibility should be tested before optimization. In most cases, the
infeasibility is caused by the insufficiency of resources, so in this thesis only the following
conditions for checking the sufficiency of resources are used.

uRDT
rdt ≤ uR

r , ∀r ∈ R, d ∈ D, t ∈ T (3.41)
dE

e bE
e ≤

∑
r∈R

∑
d∈D

∑
t∈T

pERDT
erdt , ∀e ∈ EP (3.42)

∑
e∈E

dE
e bE

e ≤
∑
r∈R

∑
d∈D

∑
t∈T

uRDT
rdt (3.43)

Conditions (3.41) state that the number of available rooms of type r at any time cannot
be larger than the total number of available rooms of type r. Conditions (3.42) state that
the number of resource blocks preassigned to exam e cannot be smaller than the minimal
number required by exam e. Conditions (3.43) state that the total number of available
resource blocks cannot be smaller than the minimal number required by all exams in E,
not only exams to be scheduled.

The modeling language OPL provides “assertions” to verify the consistency of the model
data. The data feasibility testing can be implemented with this function.
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Chapter 4

Hierarchical Construction
Approach

After having established the MILP model for ETP problem, we can encode it in CPLEX
Studio and then solve it with CPLEX. However, as we will show in Chapter 5, the real
instances cannot be exactly solved in reasonable time, and neither a high-quality solution
can be found. As is known, optimizing a MIP model involves two aims:

1. Finding a better integer feasible solution.

2. Improving the best bound so as to prove that there is no better solution undiscovered.

For our instances, both two directions consume a significant amount of workload.
Our key aim is to achieve high-quality solutions within a short computational time,

so a heuristic approach is required. Many early heuristics were based on a simulation of
the human way of solving the problem [Schaerf, 1999]. When scheduling exams manually,
the administrators usually schedule them one by one until all exams have been scheduled.
Thus, an intuitive approach is to divide the exams into several subsets and schedule them
sequentially. Besides, if only a small part of the entire problem is considered, then the
exact MILP approach is still considerable. Therefore, we would like to find a construc-
tion heuristic approach that consists of a sequence of search phases realized by an exact
algorithm (MILP solver) on a subset of the original problem. In summary, we propose the
hierarchical construction approach that decomposes the entire ETP problem into a hierar-
chy of subproblems. The subproblems are still ETP problems but each of them schedules
only a subset of the exams so that for each subproblem an optimal or high-quality solution
can be found by the MILP solver in short time. Then, the solution to the entire ETP
problem can be obtained by solving the sequence of subproblems using the exact MILP
approach.

Since the time and room penalties are actually not specified in the experiment instances,
the conflict penalties contribute to the major part of the objective function. Besides,
the exam coincidence constraints (3.23) and the preassignment are not used in the entire
ETP problem. Thus, our heuristic approach concentrates on dealing with the conflicts:
eliminating first order conflicts and reducing second order conflicts. The decomposition of
the problem then corresponds to the decomposition of the conflict graph.
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4 – Hierarchical Construction Approach

The decomposition techniques, based on the conflict graph, used to create the hierarchy
will be introduced in Section 4.1. In Section 4.2 we will improve the MILP model by adding
some cuts, and in Section 4.3 the hierarchical construction algorithm will be completely
illustrated and several issues will be discussed.

4.1 Decomposition techniques
The basic idea of the hierarchical construction approach is to decompose the total exam
set into multiple hierarchical layers and then sequentially schedule each layer by solving
an ETP subproblem formed by the layer. Except for the first layer, each layer is composed
of the entire previous layer, which has already been scheduled and will be fixed using the
preassignment constraints in the subproblem, and the other exams selected to schedule in
this layer. Therefore, the subproblem considers only the edges (conflict potentials) in the
layer.

We first introduce the methods to create the first layer, then with a slight modification
we obtain the method to create the other lower layers.

4.1.1 The first layer

A principal of forming the hierarchy is that the most “constrained” or “important” exams
should be scheduled first. By “important” we mean that the assignment of the exam has
a heavy effect on the solution quality.

It is reasonable to jointly schedule a set of exams in which most of the exam pairs
have conflict potential, which corresponds to a dense subgraph in the conflict graph. In
an undirected graph, a clique is a complete subgraph in which every pair of vertices is
connected by an edge in graph. In the conflict graph of ETP a clique corresponds to a set
of mutually conflicting exams. The maximum clique is the one with maximum cardinality.
In conclusion, a reasonable choice of the first layer is the maximum clique as they, in a
sense, represents the most difficult group of exams to schedule.

The Maximum Clique Problem (MCP) is to find a clique of the largest size in a given
graph. It is a well-known NP-hard problem and can also be formulated as a MILP problem.
Many exact algorithms for solving the Maximum Clique Problem have been proposed. Most
of them employ some form of branch-and-bound approach, which is generally a regular
approach for MIP problem, combined with some novel pruning techniques tunned to this
problem, like in [Pattabiraman et al., 2013]. However, since we are already using CPLEX
solver for MIP problem, we will also model this problem with OPL and then solve it with
CPLEX. The time for finding maximum clique with our instances is actually negligible.

For simplicity, the MCP problem is formulated directly with the undirected conflict
graph GC = (E, AC) with the total exam set E, but the reader should be aware that this
model is valid for any undirected graph. The complement graph of GC = (E, AC) is the
graph ḠC = (E, ĀC), where ĀC = {(i, j)|i, j ∈ E, i < j, (i, j) /∈ AC}, i.e., it contains all
node pairs not directly connected by an edge. Note that, as we mentioned in the previous
chapter, in order to prevent double counting for undirected edges and without loss of
generality, we consider only node pairs (i, j) with i < j.
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4.1 – Decomposition techniques

An equivalent interpretation of the MCP problem is to find the largest subset of vertices
in which every pair of vertices is connected. Thus, the problem can be formulated as

maximize
∑
i∈E

xi (4.1)

s.t. xi + xj ≤ 1,∀(i, j) ∈ ĀC (4.2)
xi ∈ {0,1},∀i ∈ E (4.3)

where the binary variable xi is used to indicate whether node i is selected into the set. The
constraints enforce that if the node pair is not directly connected, then they should not be
both selected.

In the experiments, MCP is actually not used to form the first layer, but the introduction
of MCP will help the reader to easily understand the derivation of the following approaches.

As the conflict penalties considers the edge weights, the edge weights should be consid-
ered when we form the first layer. Therefore, the maximum weight clique would be a more
reasonable choice.

The Maximum Weight Clique Problem (MWCP) is to find a clique of the largest weight
in the graph. A graph can have both node weights and edge weights, which causes two
variants of MWCP problem. One defines the clique weight as the sum of weights of all
nodes in the clique, and the other defines it as the sum of edge weights. In this thesis
the term MWCP problem always indicates the second variant. By slightly modifying the
model for MCP, we can obtain the model for the MWCP problem:

maximize
∑

(i,j)∈AC

wC
ijyij (4.4)

s.t. xi + xj ≤ 1,∀(i, j) ∈ ĀC (4.5)
xi ≥ yij , xj ≥ yij ,∀(i, j) ∈ AC (4.6)
xi + xj ≤ 1 + yij ,∀(i, j) ∈ AC (4.7)
xi ∈ {0,1},∀i ∈ E (4.8)
yij ∈ {0,1},∀(i, j) ∈ AC (4.9)

where the additional binary variable yij is introduced for computing the weight of the
subgraph, and it indicates whether the edge (i, j) is selected into the subgraph. Obviously,
an edge is selected iff the two nodes of this edge are selected.

yij = 1⇔ xi = 1 and xj = 1, ∀(i, j) ∈ AC (4.10)

Thus, the additional constraints (4.6) and (4.7) are introduced to link variables yij to xi

and xj . The constraints (4.6) enforce that xi and xj are forced to be one if yij is one, and
the constraints (4.7) enforce that yij is forced to be one if both xi and xj are one.

The time for solving MWCP with our experiment instances is still negligible.
In the case that the maximum weight clique contains relatively few exams, another

approach is needed so that the first layer can have a proper size. In order to select a
larger subgraph, we should consider not only the cliques but also other subgraphs that are
sufficiently dense.
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The term “quasi-clique” is used to describe a sufficiently dense subgraph. In this thesis,
we provide two definitions of quasi-clique and one of them is stricter than the other.

First, a quasi-clique with a specified minimal density d is defined as a subgraph whose
density is not less than d. For a graph, the graph density is defined as the ratio between the
number of edges in the graph and the maximal number of edges. Thus, assuming the size of
the (undirected) subgraph is n, an equivalent definition is that the number of edges cannot
be less than 1

2dn(n − 1). This definition is referred to as definition 1. Similarly, we will
find the maximum weight quasi-clique, with a specified minimal density d, to form the first
layer. The problem is referred to as Maximum Weight Quasi-Clique Problem (MWQCP1,
1 indicates quasi-clique definition 1) and formulated as:

maximize
∑

(i,j)∈AC

wC
ijyij (4.11)

s.t.
∑

(i,j)∈AC

yij ≥
1
2d

(∑
k∈E

xk

)(∑
l∈E

xl − 1
)

(4.12)

xi ≥ yij , xj ≥ yij ,∀(i, j) ∈ AC (4.13)
xi + xj ≤ 1 + yij ,∀(i, j) ∈ AC (4.14)
xi ∈ {0,1},∀i ∈ E (4.15)
yij ∈ {0,1},∀(i, j) ∈ AC (4.16)

Constraint (4.12) constrains the number of edges in the subgraph, whose size is derived
from the sum of variables xi. MWQCP1 is not linear, instead it is a MIP problem with
convex quadratic constraints, which can also be solved by CPLEX.

Then, we used also a stricter definition, which constrains the number of edges of each
node, not simply the total number of edges of the subgraph. By definition, every node
in a clique of size n is connected to all other n − 1 nodes within the clique. Thus, a
quasi-clique of minimal density d with n nodes is defined as a subgraph where each node
is connected to at least d(n − 1) nodes. It is denoted as definition 2, and the Maximum
Weight Quasi-Clique Problem with definition 2 (MWQCP2) is formulated as:

maximize
∑

(i,j)∈AC

wC
ijyij (4.17)

s.t. d

(∑
k∈E

xk

)
−

 ∑
(i,j)∈AC

yij +
∑

(j,i)∈AC

yji

 ≤M (1− xi) ,

∀i ∈ E (4.18)
xi ≥ yij , xj ≥ yij , ∀(i, j) ∈ AC (4.19)
xi + xj ≤ 1 + yij ,∀(i, j) ∈ AC (4.20)
xi ∈ {0,1},∀i ∈ E (4.21)
yij ∈ {0,1}, ∀(i, j) ∈ AC (4.22)

M is a upper bound of the left-hand side of the inequality and it can be chosen as d(nE−1),
where nE is the cardinality of E as introduced in the previous chapter.
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The parameter d has the same meaning, the minimal density of the subgraph, in both
two definitions. However, the number of edges can only be integer. Thus, the minimal
number of edges in definition 1 is d1

2dn(n − 1)e, where dae denotes the smallest integer
≥ a (a > 0) . In definition 2, the minimal number of edges of each node is dd(n− 1)e and,
hence, the minimal number of edges of the subgraph is d1

2ndd(n − 1)ee ≥ d1
2dn(n − 1)e.

In both two definitions and with any density, the set of quasi-cliques includes the set of
cliques. Both two definitions of quasi-clique are generalization of the concept of clique, and
a clique can be considered as a quasi-clique (in both two definitions) with a density of 1.

As we can see from the definitions, with the same minimal density d, the set of quasi-
cliques in definition 1 completely includes the set of quasi-cliques in definition 2, and
both includes the set of cliques. Therefore, MWQCP1 is a relaxation of MWQCP2, and
MWQCP2 is a relaxation of MWCP. Due to the relaxation, the time for solving MWQCP1
and MWQCP2 increases a lot, and, in fact, in the experiment the optimum was not found
within the time limit for both two problems. Thus, the best solution found within the
specified time limit will be used to form the first layer.

In addition, the following two constraints are added into all the models introduced
above:

xi = 1,∀i ∈ EC (4.23)
xi = 0,∀i ∈ EF (4.24)

Obviously, those constraints restrict the feasible set of the problems by specifying which
nodes must be selected and which are forbidden to be selected. Now, the problems are
generalized to search for maximum weight clique or quasi-clique in the set of subgraphs
that contain all nodes in EC and does not contain any node in EF . Those generalized
problems are introduced to create the other lower layers, and the complete procedures will
be introduced in the next subsection.

Furthermore, as MWQCP1 and MWQCP2 cannot be exactly solved in short time,
we propose again an alternative approach to form the first layer. With those additional
constraints we can further make a restriction of MWQCP1 and MWQCP2 by specifying
EC to be the maximum weight clique, because the maximum weight quasi-clique very likely
contains the maximum weight clique. The restriction is referred to as MWC restriction.
The restricted problems can be solved within a moderate time for our experiment instances.
Thus, this approach contains two stages. First, we need to solve the MWCP problem,
whose solving time is negligible. Then, knowing the maximum weight clique, the restricted
MWQCP1 or MWQCP2 problem is solved to eventually form the first layer.

In conclusion, in this subsection we proposed three methods (MWCP, MWQCP1 and
MWQCP2) to select a set of exams to form the first layer of the multi-layer heuristic, and
in all methods the selection of exams is formulated to a MIP problem and then solved by
CPLEX. When the quasi-clique methods are used, a density of the first layer needs to be
specified. Besides, the MWC restriction can be added into the quasi-clique methods in
order to reduce the computation time.

In the experiments, the proposed construction methods of layer 1: MWCP and unre-
stricted and restricted MWQCP1 and MWQCP2 with several values of minimal density
were respectively used, and the results will be presented and compared in Chapter 5.
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4.1.2 The other lower layers
After having scheduled one layer, we need to select other unscheduled exams, together with
the scheduled exams, to form the next layer. As we said before, in this ETP subproblem
the assignment of the scheduled exams will be fixed using the preassignment constraints in
the MILP model and the other unscheduled exams are selected to jointly schedule in this
layer. Since we are concentrating on dealing with the conflicts, it is straightforward that
we should schedule first the exams connected to the subgraph of scheduled exams in the
conflict graph. As well, to schedule one exam, we should jointly consider the other exams
that form a dense subgraph together with it.

Therefore, given the scheduled layer, the procedure to form the next layer is presented
in Algorithm 1.

Algorithm 1 Layer construction

INITIALIZATION: Given the conflict graph and the scheduled layer;

1. We first find in the conflict graph the neighborhood of the subgraph of scheduled
exams. The neighborhood of a subgraph is defined as the set of all nodes that are
not in the subgraph and are connected to at least one node in the subgraph.

2. - If the neighborhood is empty (in the rare case that the conflict graph is dis-
connected), we find the maximum weight clique in the subgraph of unscheduled
exams.

- Otherwise, for each exam in the neighborhood, we find in the subgraph of un-
scheduled exams the maximum weight clique containing that exam. It is done
by formulating a generalized MWCP problem with EC being that exam and EF

being the set of scheduled exams.
Finally, all these cliques are selected to form the next layer together with the scheduled
exams.

In the construction of the lower layers, only the MWCP approach is used, while relaxing
it to be a quasi-clique is not considered.

4.2 Improved MILP model with clique cuts
As explained in the previous chapter, cuts are useful for reducing the computation time. In
[Arbaoui et al., 2015] the clique cuts were added into their improved MILP model. Since
some cliques will be found in the phase of selecting exams for layers in our heuristic
approach, it is better to improve the MILP model by including the clique cuts:∑

e∈c

XEDT
edt ≤ 1, ∀d ∈ D, t ∈ T, c ∈ C (4.25)

where c is a clique, which is a set of exams, and C is a set of cliques. This constraint simply
enforces that in any timeslot at most one of all exams in a clique can take place as they
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are all connected to each other in the conflict graph. This constraint is a cut for the MILP
problem, since the direct conflict constraints (3.22) already enforce that there should be
no direct conflict.

4.3 Hierarchical construction algorithm
Using the decomposition techniques discussed previously, we decompose the total exam
set into multiple hierarchical layers. In each iteration, given a partial timetable and a new
layer created by the previous iteration, an ETP subproblem is formulated with the MILP
model. The exam set to be scheduled ES is the current layer. Among them, the exams
in the previous layer have already been scheduled and, hence, are preassigned according
to the partial solution. The exams not in the layer will not be considered. Then, the
subproblem is solved by CPLEX, and depending on the result we will prepare the data
for the next iteration. If an integer feasible solution is found then we update the partial
timetable and select other unscheduled exams to form the next layer. Otherwise, if the
subproblem is found to be infeasible, we have to go back to the previous layer and extend
the layer to include all unscheduled exams. Thus, the timetable is extended, layer by layer,
until all exams have been scheduled.

The complete hierarchical construction algorithm is presented in Algorithm 2. As men-
tioned before, in the experiments the following layer 1 construction methods will be used:
MWCP and unrestricted and restricted MWQCP1 and MWQCP2 with several values of
minimal density. This algorithm is also implemented in CPLEX Studio.

In general, there are two drawbacks in decomposition techniques ([Qu et al., 2009]).
First, early assignments may lead to later infeasibility, which is actually also a problem
encountered in other constructive methods. Thus, in our heuristic algorithm the back-
tracking to previous layer is added to handle this drawback. Second, globally high-quality
solutions may be missed as certain soft constraints cannot be evaluated when the problems
are decomposed, which will be discussed in the following.

The substance of this hierarchical construction approach is that it explores only a part of
the search space of the entire ETP problem that most likely contains high-quality solutions.
Since it avoids the exhaustive exploration of the search space, it can find a high-quality
solution in short time, but does not guarantee to reach the optimal solution. Obviously, the
choice of the part to be explored plays an important role in this approach, and it directly
controls the trade-off between the computation time and the quality of the final solution.

The sizes of the layers certainly control the size of the part of search space to be explored,
and, hence, have a crucial effect on the performance of this approach. If we define small
layers, the number of layers is large and the subproblems can be easily solved. However,
the part of the search space that we explored is relatively small. In contrast, if we use large
layers, the number of layers is small and the time for solving each subproblem will be very
long. Thus, the sizes of the layers must be well tuned.

Besides, A subproblem may still not be small enough to be exactly solved in short time,
so in that case the best integer solution found within a specified time limit is used. For
simplicity, we give the same time limit to each subproblem. However, it brings an issue
that the complexity of subproblems should be balanced. Moreover, it is straightforward
that different values of time limit need to work with different hierarchies to produce a good
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solution. The time limit and the maximal number of layers are used to limit the overall
computation time.

In addition, parameter tuning can also be an issue, since it plays a significant role in the
approach. When the hierarchical construction approach is used, the following parameters
need to be specified:

• The construction method of layer 1, three options: MWCP, MWQCP1 and MWQCP2.

• When quasi-clique methods are used, we need to specify the minimal density and
whether the MWC restriction is employed.

• The time limit for solving each subproblem.

• The maximal number of layers is usually irrelevant, but it is included in the approach
for completeness.

The parameters, other than the time limit for subproblems, together control the hierarchy,
and then the performance of this approach directly depends on the hierarchy and the time
limit for subproblems.

Besides, in the case that no subproblem is infeasible during the scheduling, the hierarchy
can actually be determined before scheduling.
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Algorithm 2 Hierarchical Construction Algorithm

INITIALIZATION:

- Give the dataset of the entire ETP problem.

- Define the layer 1 construction method, the maximal number of layers Kmax and time
limit for ETP subproblem Jmax.

- Initialize the set of scheduled exams to be empty.

1. Create layer 1 using the defined method, and prepare the dataset for the ETP sub-
problem in layer 1 and save it in a file. ES is set to be the exam set of layer 1 and
EP = ∅ in layer 1. Define the layer number k = 1.

2. Formulate the ETP subproblem in layer k and solve it using CPLEX with time limit
Jmax. If an integer feasible solution is found within Jmax, go to step 3; otherwise, go
to step 4.

3. Update the sets of scheduled exams to be the exam set of layer k. Next,

- If all exams have been scheduled, report the solution and exit.
- Otherwise, create layer k + 1:

∗ If k < Kmax − 1, then create layer k + 1 using Algorithm 1.
∗ Otherwise, set layer k + 1 to be the total exam set E.

Prepare the dataset of layer k + 1. ES is set to be the exam set of layer k + 1,
EP is set to be the exam set of layer k and they are preassigned according to
the partial solution. Set k = k + 1 and go to step 2.

4. - If we are in layer 1, report that no solution has been found for the entire ETP
problem and exit.

- Otherwise, we have to go back to previous layer. Modify dataset of layer k − 1
by extending layer k−1 to be the total exam set E. Update the set of scheduled
exams correspondingly. Set k = k − 1 and go to step 2.
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Chapter 5

Experiments and Results

Tests were done on one login node of Lichtenberg High Performance Computer (Lichtenberg
HPC) in TU Darmstadt, which has 4 Intel Xeon E5-4650 (Sandy Bridge, AVX) processors
(= 4x8 = 32 CPU cores) with 2.7 GHz and 128 GB RAM. Since the computer is shared by
many users, we consistently monitored the processes during our process running so that
we guaranteed that CPU load consumed by other processes were negligible.

The software IBM ILOG CPLEX Optimization Studio (CPLEX Studio) of version
12.8.0 is used for encoding the MIP model and implementing the heuristic algorithm. The
modeling language used in CPLEX Studio is IBM ILOG Optimization Programming Lan-
guage (OPL), and a script language IBM ILOG Script is also provided for controlling the
optimizations. CPLEX Studio provides two solvers: CPLEX and CP. The CPLEX solver
is used in this thesis. The reader is recommended to refer to the CPLEX documentation
provided by IBM for more details of the software, OPL and CPLEX solver. The CPLEX
solver worked with the following configuration for all MIP problems:

• MIP emphasis: integer feasibility.

• MIP search method: dynamic search + heuristic.

• Parallel mode: deterministic, using up to 32 threads.

Dynamic search is similar to the traditional branch-and-cut method but implemented in
a different way, and the integrated heuristic is employed periodically to find an potential
integer solution for the MIP problem. Tuning CPLEX parameters is not a part of this
thesis, so it was just the default configuration except for the MIP emphasis. In the exper-
iments we used several values for the time limit. Besides, the data of the search tree is set
to be compressed and stored on disk, so the size of the search tree can be considered as
unlimited.

The test instances is introduced in Section 5.1, and then the results on the instances
respectively using the exact MILP approach and the hierarchical construction approach
are presented and discussed in Section 5.2.
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5 – Experiments and Results

5.1 Instances

Unfortunately we did not get a dataset of students’ enrollments in ETIT TU Darm-
stadt. Therefore, we used one of the Toronto benchmark datasets, named as ear83IIc
in [Qu et al., 2009], because it contains only the students’ enrollments and the problem
size is close to our real scenario. The characteristics of the Toronto ear83IIc is shown in
Table 5.1, where the conflict density is the density of the conflict graph.

Table 5.1: Characteristics of the Toronto ear83IIc

Exams Students Enrollments Min Ex Size
189 1108 8057 1
Max Ex Size Edges Conflict

density
232 4849 0.27

Based on that, we add other parameters to make a complete dataset of our problem. We
made two instances, named respectively as ear83IIc-1 and ear83IIc-2, which have different
room configurations. [Parkes and Ozcan, 2010] assigned a maximal capacity per timeslot
of 350. So, in configuration 1 we created 5 rooms with that total capacity. Configuration
1 has 5 room types with different capacities, each of which has only one room, and it
considers only one location. Room configuration 1 is shown in Table 5.2. Configuration
2 is the real scenario in TU Darmstadt, and it has 19 room types located in 2 campuses.
The total capacity per timeslot is 1609. Room configuration 2 is shown in Table 5.3.

Table 5.2: Room configuration 1

Capacity 150 100 50 30 20
No. Rooms 1 1 1 1 1

In both instances, the exam session has 20 days (4 weeks with 5 days per week). Each
day has 10 hours and is divided into 5 timeslots of 2 hours.

Since the Toronto benchmark did not consider exam durations, each exam is randomly
assigned a duration of 1 or 2 timeslots (i.e., 2 or 4 hours, which is common in TU Darm-
stadt) with equal probability. The minimal and maximal number of rooms into which each
exam can be split is respectively set to be 1 and 4. However, if exam size exceeds capacity
of any room, then its minimal number of rooms is set to be 2.

All rooms are available in any timeslot. Weights in the objective function for different
penalties are all set to be 1 and the preferred minimal gap g is set to be 1 day. The exam
coincidence constraint (3.23) and the time and room penalties are actually not used. The
instances have no preassigned exams.
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Table 5.3: Room configuration 2

Capacity Location No. Rooms
123 1 1
80 1 2
62 1 1
49 1 2
42 1 2
36 1 4
27 1 5
25 1 3
20 1 6
14 1 5
12 1 3
113 2 1
55 2 1
49 2 1
45 2 1
33 2 3
20 2 2
17 2 4
11 2 3

5.2 Results
5.2.1 Exact MILP approach
We first present the results with the exact MILP approach. The clique cuts proposed in
Chapter 4 are also included in the MILP model, but only the maximum weight clique is
considered. Table 5.4 shows the results on instance ear83IIc-1 with a 2-hour time limit,
including the penalty of the best integer solution (UB) and the best lower bound (LB).
The gap is defined as the relative distance between them:

gap := UB - LB
UB (5.1)

There are 8 exams larger than the largest room. Therefore, the lower bound of 8 is
contributed by the room split penalty, and CPLEX solver did not find a tighter lower
bound. The gap is very large because both the upper bound and the lower bound are very
poor. Later, we extended the time limit to 8 hours, but neither the upper bound nor the
lower bound was improved. Since ear83II-c has a higher complexity, CPLEX solver did
not find any integer solution for it within the 8-hour time limit.

5.2.2 Hierarchical construction approach
We tested the hierarchical construction approach on both two instances with several con-
figurations of layer 1 construction. All three construction methods of layer 1: MWCP,
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Table 5.4: Results on instance ear83IIc-1 in exact MILP approach

Best Integer Best Bound Gap
4023 8 99.80%

MWQCP1 and MWQCP2 were tested. For quasi-clique methods, two values of density,
0.9 and 0.8, were used, and both restricted and unrestricted cases were tested. We also
tested several values of time limit for solving subproblems, and the maximal number of
layers was set to be a large number so that it would be irrelevant. In all test cases, the
infeasibility of subproblems did not happen, so the backtracking was actually not used.

To begin with, we observe the hierarchy built with different configurations, since it
directly controls the final result. in Table 5.5 we present the results of the construction
of layer 1 with different configurations. There are totally nine configurations, which differ
on the construction method of layer 1, the minimal density in MWQCP, and whether the
MWC restriction is used in MWQCP. Since the decomposition of the problem does not
depend on the room configuration, both two instances have the same results, and, hence,
in the table the test instance is denoted as ear83IIc. The time limit for solving the problem
of construction of layer 1 was set to be 10 minutes, only the unrestricted MWQCP1 and
MWQCP2 did not reach the optimal solution no matter which value of density was used.

As we should expect, when we make a relaxation from clique to quasi-clique or from a
higher minimal density to a lower minimal density, we obtain a subgraph with higher (or
at least equal) weight. When the minimal density is set to be 0.8, for both MWQCP1 and
MWQCP2, the restricted problem has the same solution as the unrestricted. However,
since the unrestricted problem did not reach the optimal solution, no conclusion can be
made about the optimality. Because our decomposition is deterministic, starting from the
same layer 1 we would certainly build the same hierarchy, which, in consequence, leads
to the same timetable. Thus, in fact only seven hierarchies were built. In Table 5.6, we
present and number the seven hierarchies built with different configurations. In all cases,
the problem was decomposed into three layers. Besides, even though the size of layer 1
varies from 21 to 54, layer 2 and, in consequence, layer 3 do not change much.

Table 5.5: Results of layer 1 construction on ear83IIc with different configurations

Layer 1 Con-
struction
Method

MWCP MWQCP1 MWQCP2

Layer 1 Den-
sity

1 0.9 0.8 0.9 0.8

MWC Restric-
tion

- Yes No Yes No Yes No Yes No

Optimal Yes Yes No Yes No Yes No Yes No
Size 21 38 32 54 54 27 25 37 37
Weight 3322 7281 6240 10392 10392 4170 4906 7167 7167

Then, the results on the two instances using the hierarchical construction approach with
the seven hierarchies are presented respectively in Table 5.7 and 5.8. Two values of time

38



5.2 – Results

Table 5.6: Hierarchies on ear83IIc with different configurations

Layer 1 Construction
Method

MWCP MWQCP1 MWQCP2

Layer 1 Density 1 0.9 0.8 0.9 0.8
MWC Restriction - Yes No - Yes No -
Hierarchy No. 1 2 3 4 5 6 7
Layer 1 Size 21 38 32 54 27 25 37
Layer 2 Size 179 182 182 182 179 181 182
Layer 3 Size 189 189 189 189 189 189 189

limit have been tested: 10 minutes and 1 hour. The tables indicate the value of objective
function of final solutions with each hierarchy and each value of time limit. The hierarchies
are ordered by the size of layer 1. Besides, in all test cases, the subproblems in first two
layers did not reach the optimal solution, and only the problem in layer 3, which schedules
only fewer than 10 exams, was solved in seconds.

First of all, compared with the exact approach, this heuristic approach improves the
solutions in all test cases, even in a shorter time.

We first focus on the results on instance ear83IIc-1. As we stated before, the perfor-
mance of our hierarchical construction approach depends on both the hierarchy and the
time limit for subproblems and, hence, different values of time limit need to work with
different hierarchies to provide the best performance. For instance ear83IIc-1, the best hi-
erarchy working with the 10-minute time limit is the third, while the best with the 1-hour
time limit is the second. Since in all hierarchies the layer 2 and 3 are almost fixed, layer
1 defines the number of exams to be scheduled respectively in layer 1 and layer 2. As we
mentioned before, the best performance is achieved when the sizes of those two layers are
balanced, and the performance is worse if anyone of them is too larger than the other.
The results are compatible with this discussion. When the time limit is 10 minutes, with
increasing the size of layer 1, the solutions first are improved and then get worse. Another
observation is that, a hierarchy with a smaller layer 1 has a better performance in the
short run (short time for solving problem), but a worse performance in the long run. In
addition, increasing the time for solving subproblems always improves the solutions for all
hierarchies, and moreover, the difference on the quality of solution between hierarchies is
reduced. When the time limit is 1 hour, all hierarchies, except for the fourth, have almost
equally good performance.

Instance ear83IIc-2 has more resources (rooms) but, in consequence, higher complexity.
When the time limit is 10 minutes, it is hard to find any pattern in the results, and
the sixth hierarchy has the best performance. When the time limit is 1 hour, similarly,
all hierarchies, except for the first (MWCP), have almost equally good performance, and
the second hierarchy has the best performance. Even though this instance has a higher
complexity compared to the first instance, our heuristic approach still finds the solutions
of almost the same level of quality.

Another thing we observe in the experiments is that, in all test cases, the subproblem
in layer 3, which schedules only fewer than 10 exams, is solved in seconds, and the exams
are scheduled without increasing the penalties. This suggests that, as we wanted, our
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hierarchical construction approach puts the exams easy to schedule into lower layers.
In addition, from the results we can also see that tuning the parameters in this approach

for a specific instance may really require a significant amount of effort.

Table 5.7: Results on ear83IIc-1 in hierarchical construction approach with different hier-
archies and time limits

Hierarchy No. 1 6 5 3 7 2 4
Layer 1 Size 21 25 27 32 37 38 54
Time Limit 600s 3204 2631 2475 1497 1603 1738 2160
Time Limit 3600s 1497 1530 1419 1455 1523 1396 2096

Table 5.8: Results on ear83IIc-2 in hierarchical construction approach with different hier-
archies and time limits

Hierarchy No. 1 6 5 3 7 2 4
Layer 1 Size 21 25 27 32 37 38 54
Time Limit 600s 2995 1964 3759 1994 2260 2930 2525
Time Limit 3600s 2389 1509 1572 1488 1570 1423 1514

Because the test instances are not exactly real-world, we do not have results with
manual timetabling. Besides, it is also difficult to estimate a tight lower bound for our
ETP problem. Therefore, we can only compare the results of this heuristic approach with
that of the exact MILP approach. The conclusion is that, compared to the exact MILP
approach, the hierarchical construction approach heavily improves the solutions.
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Chapter 6

Conclusion and Future Work

In this thesis, we have presented the ETP problem in TU Darmstadt and proposed a
MILP model for it. In order to achieve high-quality solutions within a short computation
time, we have proposed the hierarchical construction approach. This approach decomposes
the entire ETP problem into a hierarchy of subproblems based on the conflict graph, so
that each subproblem can be easily handled using exact MILP approach. This approach
concentrates on dealing with the conflicts. The results of test on some instances show
that, compared with the exact MILP approach, the hierarchical construction approach
considerably improves the solutions to the entire problem even in shorter time.

However, there are still many issues that might be considered in the future research.
First, it is difficult to evaluate the performance of our hierarchical construction ap-

proach, since there are neither good solutions obtained by other approaches nor a tight
lower bound. Therefore, we should also apply our approach on the ITC2007 benchmark
problems, for which there is a significant number of good solutions found by other ap-
proaches.

Besides, some other constraints, e.g., preassignment, exam coincidence, time and room
penalty, have not been considered in our approach yet. They should be included in the
future research.

Another potential research direction is to improve the construction method for the
hierarchy. For example, we can also try different construction methods for the lower layers.

Furthermore, the performance of our hierarchical construction approach may be poten-
tially improved by using the generalized conflict graph. As we introduced in Chapter 2,
the generalized conflict graph considers also the incompatibilities between exams caused
by the competition for resources.

Additionally, for the moment, we give the same time limit to each subproblem, which
brings an issue that the complexity of subproblems should be balanced. However, the
hierarchy also depends on the structure of the conflict graph, so in some cases it may be
impossible to create a balanced hierarchy. Alternatively, we can use variable time limits,
while one drawback is that more parameters need to be tuned.

Parameter tuning is also one challenge in this approach and it needs a high level of
attention in the future research. The machine learning techniques may potentially be used
for the parameter tuning, like in [Battistutta et al., 2017].

41



42



Bibliography

[Al-Yakoob et al., 2010] Al-Yakoob, S. M., Sherali, H. D., and Al-Jazzaf, M. (2010). A
mixed-integer mathematical modeling approach to exam timetabling. Computational
Management Science, 7(1):19.

[Arbaoui et al., 2015] Arbaoui, T., Boufflet, J.-P., and Moukrim, A. (2015). Preprocessing
and an improved mip model for examination timetabling. Annals of Operations Research,
229(1):19–40.

[Bargetto et al., 2016] Bargetto, R., Della Croce, F., and Salassa, F. (2016). A matheuris-
tic approach for an examination scheduling problem. In Proceedings of the 11th Interna-
tional Conference on the Practice and Theory of Automated Timetabling, pages 467–471.

[Battistutta et al., 2017] Battistutta, M., Schaerf, A., and Urli, T. (2017). Feature-based
tuning of single-stage simulated annealing for examination timetabling. Annals of Op-
erations Research, 252(2):239–254.

[Bergmann et al., 2014] Bergmann, L. K., Fischer, K., and Zurheide, S. (2014). A linear
mixed-integer model for realistic examination timetabling problems. In Proceedings of
the 10th International Conference on the Practice and Theory of Automated Timetabling,
pages 82–101.

[Burke et al., 1995] Burke, E., Elliman, D., Ford, P., and Weare, R. (1995). Examination
timetabling in british universities: A survey. In International Conference on the Practice
and Theory of Automated Timetabling, pages 76–90. Springer.

[Burke et al., 2013] Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan,
E., and Qu, R. (2013). Hyper-heuristics: a survey of the state of the art. Journal of the
Operational Research Society, 64(12):1695–1724.

[Carter, 1983] Carter, M. (1983). A Decomposition Algorithm for Practical Timetabling
Problems. Department of Industrial Engineering, University of Toronto.

[Carter, 1986] Carter, M. W. (1986). Or practice—a survey of practical applications of
examination timetabling algorithms. Operations research, 34(2):193–202.

[Carter and Johnson, 2001] Carter, M. W. and Johnson, D. G. (2001). Extended clique
initialisation in examination timetabling. Journal of the Operational Research Society,
52(5):538–544.

[Carter and Laporte, 1996] Carter, M. W. and Laporte, G. (1996). Recent developments
in practical examination timetabling. In Burke, E. and Ross, P., editors, Practice and
Theory of Automated Timetabling, pages 1–21, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

[Carter et al., 1996] Carter, M. W., Laporte, G., and Lee, S. Y. (1996). Examination

43



Bibliography

timetabling: Algorithmic strategies and applications. Journal of the Operational Re-
search Society, 47(3):373–383.

[Kadura, 2016] Kadura, A. (2016). Modellierung der klausurterminplanung am beispiel
der tu darmstadt.

[Kristiansen and Stidsen, 2013] Kristiansen, S. and Stidsen, T. R. (2013). A comprehen-
sive study of educational timetabling, a survey. Department of Management Engineering,
Technical University of Denmark.(DTU Management Engineering Report, (8.2013).

[McCollum et al., 2012] McCollum, B., McMullan, P., Parkes, A. J., Burke, E. K., and Qu,
R. (2012). A new model for automated examination timetabling. Annals of Operations
Research, 194(1):291–315.

[Merlot et al., 2002] Merlot, L. T., Boland, N., Hughes, B. D., and Stuckey, P. J. (2002). A
hybrid algorithm for the examination timetabling problem. In International Conference
on the Practice and Theory of Automated Timetabling, pages 207–231. Springer.

[Müller, 2016] Müller, T. (2016). Real-life examination timetabling. Journal of Scheduling,
19(3):257–270.

[Pardalos and Xue, 1994] Pardalos, P. M. and Xue, J. (1994). The maximum clique prob-
lem. Journal of global Optimization, 4(3):301–328.

[Parkes and Ozcan, 2010] Parkes, A. J. and Ozcan, E. (2010). Properties of yeditepe ex-
amination timetabling benchmark instances. In Proceedings of the 8th International
Conference on the Practice and Theory of Automated Timetabling, pages 531–534.

[Pattabiraman et al., 2013] Pattabiraman, B., Patwary, M. M. A., Gebremedhin, A. H.,
Liao, W.-k., and Choudhary, A. (2013). Fast algorithms for the maximum clique problem
on massive sparse graphs. In International Workshop on Algorithms and Models for the
Web-Graph, pages 156–169. Springer.

[Penn et al., 2017] Penn, M., Potts, C. N., and Harper, P. R. (2017). Multiple crite-
ria mixed-integer programming for incorporating multiple factors into the development
of master operating theatre timetables. European Journal of Operational Research,
262(1):194–206.

[Pochet and Wolsey, 2006] Pochet, Y. and Wolsey, L. A. (2006). Production planning by
mixed integer programming. Springer Science & Business Media.

[Qu et al., 2009] Qu, R., Burke, E. K., McCollum, B., Merlot, L. T., and Lee, S. Y. (2009).
A survey of search methodologies and automated system development for examination
timetabling. Journal of scheduling, 12(1):55–89.

[Schaerf, 1999] Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelli-
gence Review, 13(2):87–127.

[Welsh and Powell, 1967] Welsh, D. J. A. and Powell, M. B. (1967). An upper bound
for the chromatic number of a graph and its application to timetabling problems. The
Computer Journal, 10(1):85–86.

44


	List of Tables
	List of Figures
	Glossary of Symbols
	Introduction
	Background Works
	Overview on examination timetabling
	Complexity
	Previous surveys and competitions
	Examination timetabling benchmark data
	Toronto benchmark data
	Purdue benchmark data

	Examination timetabling approaches
	MILP based approaches


	MILP model for ETP
	Problem description
	General conditions and assumptions
	Hard constraints
	Soft constraints

	Sets and parameters
	Sets
	Indices
	Parameters

	Variables
	Primary decision variables
	Secondary variables

	Objective
	Constraints
	Hard constraints
	Soft constraints

	Instance feasibility testing

	Hierarchical Construction Approach
	Decomposition techniques
	The first layer
	The other lower layers

	Improved MILP model with clique cuts
	Hierarchical construction algorithm

	Experiments and Results
	Instances
	Results
	Exact MILP approach
	Hierarchical construction approach


	Conclusion and Future Work
	Bibliography

		Politecnico di Torino
	2018-07-14T18:56:19+0000
	Politecnico di Torino
	Roberto Tadei
	S




