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Abstract

It has been demonstrated that robotic assisted rehabilitation has many

advantages over conventional strategies. Nevertheless lot of studies have been

performed in this field, still a significant work is required to find an optimal

strategy to control a robotic device. In this study, an sEMG based control

strategy that exploits combined information from pattern recognition and

proportional myolectric control methods for a lower limb exoskeleton control

has been developed and tested in order to improve the drawbacks deriving

from the use of this two control methods separately. sEMG signals are recorded

using adhesive disposable bipolar electrodes, while two electrogoniometers

are used in order to record ankle signal from knee and ankle joint. Seven

different movements of activities of daily living (ADL) are taken into account:

gait, sitting down, standing up, stair ascending, stair descending, rest (standing

position) and rest (sitting position). Eight lower limbs muscles are selected:

Tibialis Anterior, Gastrocnemius Lateralis and Medialis are mainly responsible

to actuate the ankle joint movements, while Rectus Femoris, Vastus Lateralis

and Medialis, Biceps Femoris and Semitendinosus are associated to knee joint

activity. Eight able-bodied male subjects participated for the data collection

procedure. Two classifiers and two regressor are studied in this work: Support

Vector Machines (SVM) and K-Nearest Neighbour (KNN) classifers, Multiple

Linear Regressor (MLR) and Generalized Regression Neural Networks (GRNN).

Four different combined model were tested: SVM-GRNN, KNN-GRNN, SVM-

MLR and KNN-MLR. The performances in prediction of these models are then

compared to two standard techniques of regression, i.e. only GRNN and MLR.

Two processes were conducted: a training and testing phase in order to find

the best classifier and regressor models and a validation phase in order to ana-

lyze the performances of the different systems. The EMG signal is segmented

using 250ms windows with 75% of overlap and a subset of six features (Root

Mean Square, Zero Crossing, Integrated EMG, Willison Amplitude, Number of

Turns, Waveform Length) is used to charachterize each window. This way con-

structed feature vector is used as input for SVM, KNN and GRNN models, while



List of Tables

for the MLR only the Logarithm of Variance feature is used. In order to find

the best classifier parameters for each subject a tuning process is executed on

both SVM and KNN classifiers. For the training and testing phase, the subject

is asked to perform different repetition of the 7 movements.

A Leave One Out Cross-Validation is performed on 10 trials of the different

movements and the classifier model that has the highest average accuracy on

a cycle of the Cross-Validation is selected for performing the validation phase.

This process is repeated for both KNN and SVM classifiers. Similarly, for the

two models of regressors a LOOCV on the same 10 trials is performed and the

model that has the highest R2 value for each class reconstruction in a cycle

of the cross-validation is selected for performing the validation phase. This

process is repeated for both ankle and knee joints. The standard regressor

models are instead trained using all the 10 trials. Two different validation

approaches are examined.

The first validation method consisted on comparing the performances of

the combined and standard models using two previously segmented trials

for each movement. For both ankle and knee joints the quality of angle pre-

diction is improved (p<0.05) using a the combined approach, in particular

the best performances are registered with KNN-GRNN (R2 = 0.8459±0.1127

and N RMSE = 0.1231±0.0385 for knee joint and R2 = 0.6066±0.1184 and

N RMSE = 0.1178±0.0201 for ankle joint).

In the second validation method, the subject was asked to perform a se-

quence of movements in order to simulate a daily scenario. In this phase

there is evidence of a decrasing in the performances for both the classification

and the prediction of the angles due to the different modality of movement

execution.Also in this case the combined approach has better prediction per-

formances (p<0.05) with respect to the stanard one, in particular KNN-GRNN

model has demonstrated the highest quality of prediction (R2 = 0.5296±0.2133

and N RMSE = 0.2237±0.0514 for knee joint and R2 = 0.2888±0.1060 and

N RMSE = 0.1600±0.0188 for ankle joint).
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1 Introduction

1 Introduction

Nowadays Stroke and Spinal cord Injuries is one of the main causes of serious long-

term disability [21]. The majority of victimes suffers from neurological and sensory-motor

deficits, so that they need a period of rehabilitation in order to achieve functional inde-

pendence. This type of neurological injury results in an important lower limb muscles

weakness with a substantial impairment in motor control. This kind of patients often have

significant limitations in performing a normal movement. Physical therapy and rehabilita-

tion surely are a mean to improve the motor functions and to recover the ability to perform

daily living activities. This rehabilitation strategy requires that a patient have to perform

repetitive motion, specifically using the muscles affected by the neurological injury [9].

With this view, robotic assisted rehabilitation has many advantages over conventional

strategies, in particular: reduced dependence on clinical staff, (ii) measured forces and

torques with sensors can quantitatively assess the level of motor recovery, (iii) robotics can

help in empowering the patient idependence and self-consciousness.

Due to physical disability, assistance through an automated technical system may

potentially enhance the physical activities of a patient during rehabilitation, as discovered

by Mosher in the 1960s. He introduced the Human Machine Interface (HMI) as a control

system and effectively demonstrated the system’s use in the mechanism of lower-limb

orthoses.

In addition, the usage of robotic interventions in training tasks is expected to improve

the recovery at a faster rate, and to resume daily activities sooner; this is the reason why

different kind of technologies have been designed. Many disabled people have difficulty to

access current assistive robotic systems and rehabilitation devices, which have a traditional

user interface (such as joysticks and keyboards), and for that reason more advanced hands-

free human–machine interfaces are necessary. A lot of studies have been performed in

order to find an intuitive control strategy that uses the EMG signal in order to control

the robotic device using only the user intention in the form of a muscular contraction. It

is clear that impaired people are able to generate repeatable activation patterns during

different lower limb common activities. These patterns can be used in a control system,

known as a myoelectric control system, to control rehabilitation devices or assistive robots.

12



1 Introduction

The most important advantage of myoelectric control over other types of control system,

such as body-powered mechanical systems, is its hands-free control. The signal is non-

invasively detected from the surface of the skin, and can be adapted for proportional speed

control. Myoelectric control is now a competent alternative for mechanical body-powered

systems and has potential in different applications fields of research. Although several

studies are conducted in order to find the best control strategy for controlling a lower limb

rehabilitation exoskeleton, still a lot of work has to be performed. The aim of this study is

indeed to develop a control strategy for myoelectric-driven lower limb exoskeletons that

are applicable in a daily-living condition and can have the potential to increase the quality

of life for the user.

13



1 Introduction

1.1 Electromiographic Signal (EMG)

In this chapter the nature of the EMG signal origin and the main techniques of detection

are briefly presented.

Electromyographic signals are electrical potentials that are generated in skeletals mus-

cles during contraction. All body movements are driven by muscles that apply forces to the

skeleton when contracting. The principal function of the skeletal muscles is to produce

the movement of the different parts of the body such as locomotion, standing posture, and

a lot of actions throughout the daily live. These movements generated first in the nervous

system which consist of two parts: central nervous system (CNS) and peripheral nervous

system (PNS) [22].

Motor intention takes origin in the premotor and motor cortex. Inside the motor cortex,

the pyramidal tract spreads impulses (in the form of nerve action potentials) that control

the execution of determined voluntary movements. These impulses move from motor

cortex to the lower motorneurons, located into the ventral horn of the spinal cord (which

is the lower part of the central nervous system). Spinal cord gives rise to the peripheral

nerves that reach out into muscles, where a Neuromuscular Junction is formed [1]. Figure

1 shows how a nerve impulse is generated by the CNS and propagated to the muscle, in

order to perform a voluntary movement.

Figure 1: Propagation of a nerve impulse from motor cortex to the muscle. Taken from [1]
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The fundamental functional unit of a muscle is the Motor Unit (MU), that is made up

of a motor neuron and the skeletal muscle fibers innervated by that motor neuron’s axonal

terminals [23] (Figure 2).

Figure 2: Pysiological structure of a motor unit. Taken from [2]

Each muscle contains a certain number of motor units basing on its size: from 100 for

small hand muscle to 1000 for the largest muscles in the lower limb [24]. The number of

motor unit is proportional to the force needed. Fine force requires small numbers of motor

unit while course motion needs large force as well as large number of motor units.

Figure 3: Representation of generation of a motor unit action potential. Taken from [3]
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The depolarizations of the muscle fibers of one MU overlap in time and the resultant

signal present at the detection site will constitute a both spatial and temporal superposition

of the contributions of individual action potentials. The resultant signal (Figure 3) is known

as Motor Unit Action Potential (MUAP). Motor units must fire repeatedly to maintain or

increase the force generated by a muscle. In this way, during a sustained contraction each

motor unit generates multiple MUAPs. The collection of MUAPs generated by one motor

unit is called a motor unit action potential train (MUAPT) [4]. An electrode in a conducting

medium measures the electric potential field. Due to the property of superposition of

electric fields, the electrode will measure the total electric potential, which is the spatial

and temporal sum of potential contributions from all excited muscle fibres of any motor

unit. Therefore, the composite EMG signal is simply the summation of the MUAPTs of all

recruited motor units (Figure 4):

E MG(t ) =
NmX
i=1

MU APT j (t )+n(t )

where: MU APT j (t ) is the j t h MUAPT; Nm is the number of active motor units; n(t ) is

the background noise.

Figure 4: Physiological and mathematical model for the composition of a detected EMG signal.
Taken from [4]
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1.1.1 EMG Signal Detection

Basically, two techniques are used to detect the motor unit action potential (MUAP)

generated by muscle contraction; intramuscular EMG (iEMG) and surface EMG electrodes

(sEMG). The signals detected by those two techniques are not similar due to the difference

in the recording sites and the amount of the biological tissues that separate the muscle and

the recording sites. These amounts of biological tissues are known as volume conductor.

The volume conductor characteristics mainly determine the properties of the recorded

signal, reguarding to the frequency content and to the distance that limits the signal

detection.

• Intramuscular EMG (iEMG). In the iEMG detecting approach, the needle electrodes

are inserted directly into the muscle. In this technique, the measured signal is

detected near to the source and contains the local action potential of a few muscle

fibers that belongs to tens of MUs. The volume detected by the (iEMG) is very

specific and this makes this technique robust to crosstalk. With this invasive method

it is easier to identify the contributions of the single MUAP, as the filtering effect

(Low-Pass) of the skin, subcutaneous layer and fat layer is reduced. In this way

the morphology of the signal is preserved. The potential of using iEMG recording

technique to record the electrical activity of muscles is to examine the physiology

and pathology of the motor unit. The current clinical use of intramuscular EMG

signals relates to the diagnosis of myopathies, of diseases of the alpha-motor neuron

and of the neuromuscular junction. [25]. However, this methodology can only be

performed by a doctor and therefore not practicable in the rehabilitation field (that

requires dynamic condition of movement).

• Surface EMG (sEMG). The sEMG signal consists of the muscle activity of several num-

bers of MUAP, and contains global information about muscle.Facile applicazione

e riposizionamento. The use of surface electromyography (SEMG) is having a no-

table diffusion both for the characteristics of non-invasivity and for the potential

offered by modern techniques of numerical analysis of the electromyographic signal

which can provide useful quantitative information on conditions of activity of the

examined muscular district. Recently, sEMG has been used for different types of ap-
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plications: evaluation of muscular strength, isometric tests, muscular fatigue studies,

performance analysis in sports medicine, biofeedback of muscle contraction, and,

obviously, for robotic myolectric control.

1.2 sEMG Electrode configuration

There are basically two type of recording configuration: Monopolar and Bipolar de-

tection configurations. In Monopolar configuration, the electrical activity using surface

electrodes can be acquired by placing an electrode on the muscle that we want to analyze

and a "reference" electrode located in an point which is either electrically quiet (like a bone

prominence) or contains electrical signals that are not correlated (in the sense that there is

a weak physiological or anatomical relation) with the signals that are being detected [3]. A

schematic representation of this recordind technique can be seen in Figure 5.

Figure 5: Schematic representation of monopolar acquisition. Taken from [3]

The monopolar configuration allows to record a wide volume conductor, it preservs all

the informations contained in the EMG signal but it has the drawback of high sensibility to

interferences and noise.

In Bipolar detection configuration (Figure 6) two detection electrodes are used in order

to detect the difference of two potentials in the muscle tissue of interest, with respect to
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the reference electrode. The differential amplifier then amplifies the recorded signal.

Figure 6: Schematic representation of bipolar acquisition. Taken from [3]

Bipolar configuration offers better immunity to interference because it filters out

Common Mode components that has external origin. For the same reasons it is also

robust to crosstalk because it is a more selective technique. These are the main reasons

that lead to the use of this specific configuration strategy in order to analyze EMG signal in

this work.
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1.3 Control strategies based on Myoelectric Control

Electromyographic (EMG) signal contains different informations about the force of a

muscle contraction or even the type of a movement made by a subject. These important

features of the signal could be used to build an EMG based control system that employs the

EMG signal recorded from different muscles to control exoskeleton, active orthoses and

prostheses. This approach is known as myoelectric control. It is developed basing on the

signals recorded from the human body in order to catch the human movement intention

directly.

Not able-bodied subjects, like amputees or post-stroke patients, are able to generate

repeatable myoelectric signal patterns during different muscle contractions or dynamic

limb motion [26]. These patterns can be used with the aim of controlling rehabilitation

devices or assistive robots. The most important advantage of myoelectric control with

respect to other types of control system, such as body-powered mechanical systems, is its

hands-free control [27] and it is only actuated according to user’s intention.

Myoelectric control systems can be divided into two macro groups: pattern recognition

(PR) and non-pattern recognition based approaches (Figure 7).

Figure 7: Different types of Myolectric control systems. Taken from [5]
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For what concerns the first group, the desired classes of movements are discriminated

by classifiers that are able to identify a task basing on EMG set of features, and the perfor-

mances of the system depend directly on classification accuracy. In contrast, non-pattern

recognition based controllers, which are mainly constructed on threshold control or pro-

portional control, uses EMG informations (principally its amplitude) in order to create a

relation between muscular activity and electrical or mechanical information to actuate a

motor (like torque, position or angles). In the next subsection, an overview of these systems

is presented.

1.3.1 Pattern recognition based control

Pattern recognition-based EMG control techniques aim to discriminate different classes

of motions by using time or frequency relevant informations contained in the EMG signal.

These techniques are base on the hypotesis that the set of features representing a particular

muscular activation’s pattern is repeatable under specific electrode place [28]. Using a

pattern classification technique, different patterns can be obtained from EMG signals and

used to identify the intended movements. Therefore, once a pattern has been detected, the

robotic system is activated and the desired movement is performed. In general, an EMG

pattern recognition-based prosthetic control approach consists of EMG measurements,

feature extraction (eventually feature reduction) and classification (Figure 8).

Figure 8: Pattern recognition flow. Taken from [6]

At first, EMG measurements are performed in order to capture more and reliable

myolectric signals, and to create a robust dataset in order to train and validate the classifier.

Then the EMG signal is segmeneted in windows with length in the range 50-250 ms [12] and
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for each window a set of features is extracted. The explored features include: time-domain

(TD), frequency-domain (FD) and time-frequency domain (TFD) features.

The most common time-domain features, such as the mean absolute value (MAV),

variance (VAR), root mean square (RMS), number of zero crossings (ZC), number of slope

sign changes (SSC) and wavelength (WL), are used in order to investigate the information

content in the transient burst of myoelectric activity. One of TD features major advantage

is that they are easy and fast to be calculated because there is no presence of mathematical

transformations. However, because TD features are based on signal amplitude, they are

relatively sensitive to noise and artifacts.

Frequency domain (FD) features are used in order to extract information about muscle

fatigue, force production, changes in motor-unit recruitment and firing patterns [27]. FD

features are more difficult and time-spending to be calculated because they requires first

the evaluation of the power spectral density (PSD) of the signal. Among the most common

FD features it is possible to include Mean Frequency (MNF) and Median Frequency (MDF).

Time-frequency domain (TFD) features used in sEMG classification include feature that

are calculated from time-frequency analysis of the EMG signal in order to find information

of how the frequency content of the signal changes in the time. Among the most used

TFD feature it is possible to find short time Fourier transform (STFT), continuous Wavelet

transform (CWT) and other wavelet transformations.

If the exctracted feature vector results too high dimensional, it could be necessary to

perform feature reduction algorithms (dimensionality reduction with PCA or LDA) in order

to select only the most significant features and to reduce the effect of overfitting, when

limited amount of training data is available.

In the final classification stage, the mapping between feature vectors into specific

classes of movements is performed. Different type of classifiers are used in the state of

the art applications, from linear models like Linear Discriminant Analysis (LDA), Support

Vector Machines (SVM), to more complex systems like Artificial Neural Networks (ANN),

Multi Layer Perceptron (MLP), Fuzzy Logic (FL) and Neuro-Fuzzy models [29].

One of the most important drawbacks of this control scheme is that the classifier pro-

vides only the estimation of the executed movement but not directly the level of contraction

that is needed to control velocity or force of a robotic device, since the classification output
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is a discrete value. Furthermore, it does not allow for a simultaneous control of several

DOFs and smooth transitions from one movement to another, that are required for a

natural scenarion, are not possible with PR approach.

1.3.2 Non pattern recogniton based control

Contrary to pattern recognition, this type of strategy estimates, instead, continuous

multivariate outputs comprising all DOFs simultaneously. This allows for an independent

simultaneous and proportional estimation since the output of this strategy is a continuous

variable. Among with different non pattern recogniton based control methods it is possible

to mention the followings:

• On–off myoelectric control: The conventional on–off control is suitable for maxi-

mum 2 DOFs. The simplest strategy consists of a threshold on EMG signal amplitude

in order to make a selection of the DOF to be actuated (for example flexion if flexors

muscles activity is above the threshold and extension if extensors muscle activity

is above the threshold). With this scheme the velocity of the movement is kept

constant.

• Proportional myoelectric control: in this control scheme, the control signal (volt-

age or current) applied to the motor of the robotic device, is proportional to the

amplitude of EMG signals. In this way also the velocity of the movement can be

controlled proportionally to the level of contraction or activity of the muscle.

• Regression myoelectric control: this strategy is one of the most recent developed

control strategies in order to provide both simultaneous an proportional control. In

this control scheme, the prediction is made not basing only the EMG amplitude, but

on different features of the signal. The aim of the regression is to approximate the

function that relate the chosen features to the biomechanical information (like joint

angle). There are different types of regression methods, from linear models (where

the approximation function is linear) to non-linear methods.
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1.4 Lower Limb Exoskeletons

Exoskeletons are defined as wearable systems created to help the wearers to perform

a task. Among the different exoskeletons applications we can find: picking and placing

heavy objects, carrying heavy loads, reducing the effort in physically demanding tasks and

apply rehabilitation treatments to patients who suffers of trauma like strokes. Lower limbs

Exoskeletons can also be implied in assisting the patient for carrying out normal activities

of daily living such as, in particular, walking, ascending/descending stairs, perform sit-to-

stand transitions and generally moving in daily life when the physical ability is decreased

[30]. In this paragraph only exoskeletons with rehabilitation purposed are discussed.

Rehabilitation is needed for persons with movement disorders, which can derive from

a different medical conditions such as cerebrovascular accidents, cerebral palsy and stroke.

These condition force the patient to depend on wheelchairs for mobility reducing their

independence during daily living activities. A lower limb rehabilitation exoskeleton could

be a possible solution t.o perform therapy in order to recover the limbs activity. It has

been studied that task-oriented repetitive movements can improve muscular strength

and coordination in patients with physical impairments [10]. For that reason, different

treadmill-based exoskeletons have been designed in order to train the patient to relearn

the motion function by applying forces to the joint when the user does not follow the ideal

trajectory of the movement.

Among this type of exoskeletons it is possible to mention Lokomat [7], LOPES [8] and

ALEX [9] exoskeletons (Figure 9). Other types of lower limb exoskeletons can be found

in [30].

Nevertheless, this type of exosketons requires the constant supervision of the clinical

staff and does not empower the user independence or to help him to perform activities

of daily living. Furthermore, it is known that patient’s involvement in voluntary task is

important to improve results in rehabilitation process.
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Figure 9: Lokomat [7], LOPES [8] and ALEX [9] exoskeletons

For this reason, ambulatory exoskeletons with control strategies based on Emg signals

such as H2 [10] or HAL (Hybrid Assistive Limb) [11] (Figure 10) can be more effective to

reinstate neuroplasticity and improve motor functions.

Figure 10: H2 [10] and HAL [11] exoskeletons
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These exoskeletons are designed to be driven with myolectric control: different studies

are carried out in order to find the best control strategies to improve the quality of the

rehabilitation with myolectric control, but there is still the need to do to some work in this

field.

2 Aim of the study

In nowadays literature, both pattern recognition and non pattern recognition methods

presents some drawbacks: with using only PR there is not the possibility to finely and

simoultaneously control multiple DOFs, while with the other class of methods there is

no information about a specific movement and the control is based only on the EMG

informations that make the robotic movement less intuitive to be performed. To over-

come this problem, a new method is proposed in order to incorporate both simultaneous

control of multiple degrees of freedom (DoFs) and pattern recognition methods. Ankle

flexion/extension and knee flexion/extension) are considered in this study in order to

extract a control for a lower limb exoskeleton that has the possibility to actuate this 2 DOFs.

In particular two classifier are first trained and tested: Support Vector Machine (SVM) and

K Nearest Neighbour (KNN) classifiers. Then the classifier is associated to a regressor in

order to create a continuous and simultaneous control command to both ankle and knee

joint. In this case, Multiple Linear Regressor (MLR) and Generalized Regression Neural

Network (GRNN) are used. This choice is motivated by the fact that there was the intention

to study the performances of angle prediction with both a linear and non linear model.

Both this two regressor are trained for each DoF and each class of movement in order to

associate EMG features to their corresponding angle outputs. Basing on the output of

the classifier, only the class-specialized model or regressor is selected in order to make

the angle prediction. The aim of the study is to demostrate that with this approach, the

performances of angle estimation are improved with respect to the standard regression

technique.
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3 Experimental Protocol

In this section the experimental protocol established for the recording of electromyo-

graphic signals and used for acquiring suitable data sets for training, validation and testing

of pattern recognition and regression methods is described in details. In particular in

the following sections it has been analyzed what concerns the technical specifications of

the equipment used for recording EMG and angle signals from the selected muscles, the

electrodes and goniometers placement procedure, the movements involved in the study

and the subjects choice

3.1 Movement Description

The purpose of this work is to study movements that each individual normally perform

during common activities. This type of actions are the so called activities of daily living

(ADLs) and these are the most important movements to be restored with a view to a

neurorehabilitation expected scenario for a post-stroke patient.

For that reason and for what concerns lower limbs rehabilitation, 5 movements are

selected in this study: Gait, Sitting down, Standing up, Stair ascending, Stair descending.

Moreover, in order to achieve a complete perspective on the final control of the exoskeleton,

also two rest conditions are included in the study, in particular Rest in standing position

and Rest in sitting position. For the Stair ascending and descending movements, a custom-

made step of 18cm of height is used in order to simulate a conventional step of a staircase.

The planned experimental protocol forsees that this movement have to be performed as it

is described below:

• Gait : the subject, in rest position, must start with his feet together, then he starts

the gait cycle with the swing of the dominant leg and performs a natural walk along

the laboratory space. The movements ends with the subject putting his feet together

again.

• Stair ascending : the subject must start to climb the step with his dominant leg.

Then, when the subject has completed the task, after 1.5 s of rest, he has to return

back to his initial position moving first the contralateral leg.
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• Stair descending : similarly to the stair ascending movement, the subject must start

to descend the step with his dominant leg. Then, when the subject has completed

the task, he has to return back to his initial position starting the movement with the

contralateral leg.

• Sitting down and Standing up : starting in standing position, the subject must sit on

a normal chair, rest for about 1.5 seconds and then stands up to the initial position

and resting again.

• Rest in sitting/standing position : the subject is asked to rest in the required position

for 30s.

All this movement are meant to be repeated cyclically in order to achieve enough data

for training, testing and validating the system. Each repetition of a movement is from now

on called a trial.

3.2 Muscle Selection

To evaluate the selected Activities of Daily living (ADLs), 8 lower limb muscles are

selected: Vastus Medialis (VM), Vastus Lateralis (VL), Rectus Femoris (RF), Biceps Femoris

(BF), Semitendinosus (ST), Tibialis Anterior (TA), Gastrocnemius medialis (GM) and Gas-

trocnemius Lateralis (GL). In fact all this muscles play an important role in the considered

ADLs: Knee flexion/extension and ankle flexion/extension. In particular, Biceps Femoris

and Semitendinosus play a crucial role in stretching the hips, flexing the legs and rotating

the knee joints externally, especially when a person is standing up from a chair. Gastrocne-

mius Medialis and Lateralis are mainly concerned with standing and walking activities [31].

Rectus femoris, Vastus Medialis and Lateralis are powerful knee extensors, which has a

role in flexing the hips, and the Tibialis Anterior muscle activity is mainly regarding to the

flexion of the ankle and enabling the foot eversion [32].

A bipolar electrode is associated to each muscle. The configuration of the acquisition

setup is shown in Figure 11 and summarized in Table 1. For the electrodes placement

procedure, see section 3.4
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Figure 11: Channels and muscles

CHANNEL MUSCLE ABRREVIATION

1 Rectus Femoris RF

2 Vastus Lateralis VL

3 Gastrocnemius Medialis GM

4 Vastus Medialis VM

5 Biceps Femoris BF

6 Semitendinosus ST

7 Tibialis Anterion TA

8 Gastrocnemius Medialis GM

Table 1: Channels, Muscles and abbrevations
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3.3 Technical Specifications

3.3.1 EMG recording system

EMG was sampled using the OT Bioelettronica DuePro device (Figure 12), a wearable

EMG device designed for having the possibility to record up to 14 EMG signals and 2

auxiliary signals (e.g. force, angle) with a total of 8 wireless probes. In this particular case

of study, only 4 EMG probes are used to record the signals from 8 muscles and 1 DueBio

probe, conigured in Load Cell mode, is used to acquire signals from the electrogoniometers.

Figure 12: Left: DuePro system. Right: Techical specifications of the system.

EMG signals normally have a bandwidth of 500Hz. DuePro does the EMG sampling at

2048 Hz, which is a common sampling frequency for surface EMG signals according to the

Nyquist criterion. In this project the EMG data acquisition system is designed to be used

with sEMG technique using bipolar electrodes in order to suppress the common signal

in the detection sites. The electrodes used to acquire signals, compatible with DuePro

probes and distributed by the same producer of the device, are disposable adhesive surface

electrodes (24mm of diameter) with a bipolar connector (Figure 13).
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Figure 13: Left: Disposable adhesive bipolar electrode. Right: Due probe connected with 2 bipolar
electrodes, one for each channel.

3.3.2 Electrogoniometers

Biometrics LTD’s "SG" series twin axes Goniometers permit the simultaneous measur-

ment of angle in two planes, but in this work only the rotation in flexion/extention degree

of freedom is considered. In particular models SG110 (ankle flexion/extension) and SG150

(knee flexion/extension) are used in combination with the DueBio probe that records the

output of the goniometers. (Figure 14)

Figure 14: Left: SG150 and SG110 electrogoniometers. Right: Sensors plugged into DueBio probe
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The working mechanism of this two sensors is the same. Between the two endblocks

inside the protective spring, there is a composite wire that has a series o strain gauges

mounted around the circumference. As the angle between the two endblocks changes, the

change in the strain along the length of the wire is measured using a Wheatston bridge

circuit.

3.4 Electrode placement

Surface Electromyography for the Non-Invasive Assessment of Muscle project (SE-

NIAM) has defined some recommendations for sensor locations [20] that are used in this

work in order to obtain measure repeatability. In particular, for the muscles involved in

this case of study, the correct position for bipolar electrodes is summarized in Table 2. For

each subject only the dominant leg is sensorized, and therefore only the muscles of this

leg are studied in this work. The selected Inter Electrode Distance in this work is 25mm.

In order to optimize skin-electrode impedance, the skin area were the electrodes must

be positioned is shaved and then cleaned using an abrasive paste. An important concern

is that for each subject the electrodes should be placed correctly and at the same place

every time, so that the classification procedure and the signal processing is done under the

hypotesis of repeatability.

Muscle Electrode Position

Rectus Femoris
The electrodes need to be placed at 50% on the line from the anterior spina iliaca superior

to the superior part of the patella

Vastus Medialis
Electrodes need to be placed at 80% on the line between the anterior spina iliaca superior

and the joint space in front of the anterior border of the medial ligam

Vastus Lateralis
Electrodes need to be placed at 2/3 on the line from the anterior spina iliaca superior

to the lateral side of the patella

Biceps Femoris
The electrodes need to be placed at 50% on the line between the ischial tuberosity

and the lateral epicondyle of the tibia.

Semitendinosus
The electrodes need to be placed at 1/3 on the line between the tip of the fibula

and the tip of the medial malleolus.

Tibialis Anterior The electrodes need to be placed at 1/3 on the line between the tip of the fibula and the tip of the medial malleolus.

Gastrocnemius Medialis Electrodes need to be placed on the most prominent bulge of the muscle.

Gastrocnemius Lateralis Electrodes need to be placed at 1/3 of the line between the head of the fibula and the heel.

Table 2: Electrodes sites positioning from SENIAM guidelines [20]

After positioning the electrodes as shown in Figure 15, for the final configuration a

further reinforcement is applied by using an adhesive tap on the connectors in order to
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avoid electrodes displacement and movement artifacts.

Figure 15: Anterior and Posterior view of electrodes placement on a test subject.

3.5 Electrogoniometer placement

For the electrogoniometer placement, the recommendations in Biometrics Goniome-

ters Operating manual are followed. In order to properly attach the endblocks of the

sensors to the leg or foot segment, a medical bi-adhesive foam is used.

• Ankle (sensor SG110): starting with the subject in standing neutral position with the

foot on a flat surface, the proximal block of the sensor is aligned with the leg axis

while the distal enblock is fixed on the lateral side of the foot after alignment with

the foot axis. The spring have to pass near a landmark that can be assumed as the

center of the rotation, i.e. the malleolus(Figure 16 on the right)

• Knee (sensor SG150): starting with the subject in standing neutral position with

the foot on a flat surface and with the leg fully extended, the proximal block of the

sensor is aligned with the leg axis and laterally attached, while the distal enblock is

fixed laterally on the thigh after alignment with the thigh axis. The sensor must be in

position of maximum extension of the spring (Figure 16 on the left)
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In order to avoid sensor detachment during the movements, an additional adhesive tape is

applied on the top of the sensors enblocks.

Figure 16: Left: Knee Goniometer Placement. Right: Ankle Goniometer Placement
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3.6 Final Setup

After having applied the goniometers and the electrodes, also the Due and DueBio

probed has been connected and fixed on the subject with adhesive tape. In this way we

have a final setup configuration that allows the subject to permorm all the movements in

the most natural and repeatable way. Some examples of the final setup on a subject are

presented in the Figure 17

Figure 17: Anterior, Sagittal and Posterior views of the final setup.
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3.7 Test Subjects

The entire experimental protocol was carried out on a total of 8 able-bodied male

volunteers. To have a more generally valid result, the chosen subjects have different age

and antropometric characteristics. For the same purpose, it is also worth noting that 2

subjects on the total of 8 are left footed, and coherently on what had been said in the

previous sections, always the dominant leg is selected. The age of the subject is in the

range 22-27 years and the weights in the range 65-86 Kg.
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4 Algorithm Description

In this chapter all the main points that are involved in the proposed strategy flow (see

Section 2) are presented, starting from the recording and filtering of the EMG and angle

signals, the segmentation of the different tasks through the biomechanical information

given by the goniometers, the detailed explanation of pattern recognition and regression

tools used in this work and the proposed validation strategy.

4.1 Data Preparation

4.1.1 Emg and angle signals digital filtering

The purpose of this filtering procedure is to make a smooth representation of the signals

amplitude and to remove eventual movement artifacts or high frequency noice.

The EMG signal is filtered with a Butterworth band-pass filter of order 4 with the

technique of zero-phase digital filtering in order to avoid EMG morphology distortion. The

chosen band has cut-off frequencies fHP = 20 H z and fLP = 500 H z.

The Angle signal is filtered with a Butterworth low-pass filter of order 4 with the tech-

nique of zero-phase digital filtering with a cut-off frequency of fLP = 10 H z.

An example of EMG and signals during a gait is presented in Figure 18

Figure 18: EMG, Knee and Ankle angle signals of a subject during gait.
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4.1.2 Angle calibration

Since the output signal from the electrogoniometer is still a voltage singal, there is the

need to find the relation between voltage and angle. This relation, that is the calibration

curve of the sensor, can be found by two calibration movements:

• Knee angle calibration : the subject is asked to stay in standing position with the leg

in total extension (180°). Then he is asked to sit down on a chair in order to have 90°

of knee flexion. The relation between voltage and angle is linear, due to the design

charachteristics of the electrogoniometer. In this way we can find the calibration

curve as the line that passes between the two points [mV90,90] and [mV180,180],

where mV90 and mV180 are the value in mV (averaged on a time interval chosen by

the operator) corresponding to an angle of respectively 90° and 180°.

• Ankle angle calibration : the subject is asked to stay in sitting position with the foot

in total plantar flexion (30°). He is asked to reach the neutral position and then

to maximally extend the foot to -50° in our reference system. The calibration can

be calculated curve as the line that passes between the two points [mV30,30] and

[mV(−50),−50], where mV30 and mV(−50) are the value in mV (averaged on a time

interval chosen by the operator) corresponding to an angle of respectively 30° and

-50°.

This calibration procedure is repeated for each subject.
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4.2 Trial Segmentation

Recorded EMG signals were processed to isolate the epochs corresponding to the

task execution (trials) in order to create a proper dataset for the classifiers and regressors

training and testing.

The task epoch identification was performed using the knee angle signal in order to

find the starting and ending point of a trial. In the following sections, it is described the

implemented algorithm for the different movements.

4.2.1 Standing-Sitting trials segmentation

The task requires that the subject alternately perform a sitting movevent and a standing

movement interspersed with phases of rest (Figure 19), so we have to discriminate between

the two movements and to cut off the rest phases.

Figure 19: EMG and Knee angle signals of a subject during standing-sitting task.

The algorithm follows this steps:

• First, the derivative of the angle signal with a step of 256 samples is calculated (as

the difference between the signal and itself delayed by 256 samples), in order to

find the variation of the slopes during time. The derivative signal (ang l eder ) has
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positive values when a standing movement is performed, and negative when a sitting

movement occurs (Figure 20).

Figure 20: Signals of knee angle and its derivative

• Then a threshold value is set to thr = 0.05max(|ang l eder |), in order to transform

the derivative signal into a rectangular signal (ang l er ect ) through thresholding. In

particular, the thresholding was done putting :

ang l er ect =


+1, if ang l eder ≥ thr

−2, if ang l eder ≤−thr

• In this way we have a signal that describes the onset and offset of the two interested

movements, in fact when ang l er ect = 1 we have the activation interval of standing

movement and when ang l er ect = −2 we have the onset of the sitting movement

(Figure 21). Moreover, an additional control is added in order to eliminate eventual

onsets that lasts less than 1024 samples (0.5s) due to noise artifacts. From this signal

it is easy to find the starting and ending points of each trial for both the movements.
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Figure 21: Movement Activation interval signal

The result of the final segmentation can be seen in Figure 22, in which the portion of

signal that is highlighted in red corresponds to te segmented trials.

Figure 22: Example of segmented Standing-Sitting task for a subject. In red, EMG portions corre-
sponding to a segmented trial

41



4 Algorithm Description

4.2.2 Gait trials segmentation

For this task, basing on the knee angle information, the aim is to find the starting and

ending point of a single gait during a walk (Figure 23).

Figure 23: EMG and Knee angle signals of a subject during gait task

It is chosen to consider as segmented trial a cycle of gait that starts from the point of

maximum extension of the knee to the subsequent point of maximum extension (Heel-Off

to Heel-Off cycle). The first and last cycles are not considered for avoiding the transition

phases.

The algorithm follows this steps:

• First of all, the local maxima of the angle signal (ang l esi g ) are found, and sorted in

amplitude ascending order.

• The total number of steps (nsteps) made in the task, can be found by counting the

number of local minima (maximum knee flexion) that exceeds a threshold set to

thr = 0.9(mean(ang l er ect )). The local maxima before the first minimum and after

the last one are not considered (Figure 24) .
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Figure 24: Knee angle signal with highlighted local maxima

• The starting and ending points of a gait cycle could be found as the first (nsteps −1)

local maxima, sorted in ascending order of position on the x-axis. Since we don’t

consider the first and last steps, the total number of segmented trials in this task is

nsteps −2.

The result of the final segmentation can be seen in Figure 25, in which the portion of

signal that is highlighted in red corresponds to te segmented trials.
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Figure 25: Example of segmented gait task for a subject. In red, EMG portions corresponding to a
segmented trial

4.2.3 Stair Ascending and Stair descending trials segmentation

The algorithm used to segment this two tasks is the same because also the trend of

the angle signal during the movements is similar. Moreover, both the two task require to

perform the movement and then to recover the initial position after a rest phase (Figure

26). For the sake of simplicity, only an example of Stair ascending trial segmentation is

shown. In this case the aim of the algorithm is to isolate the trial of the movement from the

rest phases and the recover movements.
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Figure 26: EMG and Knee angle signals of a subject during stair ascending task.

In order to do make what was said earlier, the subsequent steps are followed:

• First of all, the angle signal is low-pass filtered with a Butterworth filter of order 4

and fcut = 1H z in order to suppress all the variation of the signal and to take into

account only its envelope (Figure 27).

Figure 27: Angle signal and filtered angle signal
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• On the filtered signal, the local maxima and minima are evaluated. Since it is known

that the subject always start the exercise with a stair ascending (or descending)

movement, we can say that the interested trials correspond to the odd patterns

while the recover movements corresponds to the even patterns. A pattern occurs in

correspondance of a local minima, therefore only the odd minima are considered

from now on (the first trial is not taken into account).

• For each minima we know that the task is completed between the two adjacent

local maxima (one before and one after the minimum) where the rest phase occurs.

So, after evaluating the two adjacent maxima for each minmum point, the signal is

isolated in the intervals defined by these three points. In particular we know that the

starting point of the trial is contained in the interval between the first maximum (M1)

and the minimum (m), while the ending point is cointained between the minimum

and the second maximum (M2) (Figure 28)

Figure 28: Zoom on a single trial in the interval [M1;M2].

• Two threshold are calculated in order to find the exact starting and ending points

of a trial: thr 1 is the mean value on 1024 samples of the angle signal in the rest

interval [M1-512;M1+512] and thr 2 is the mean value of the angle signal in the rest

interval [M2-512;M2+512]. This thresholds define the amplitude of the angle signal

respectively before and after the subject has completed the movement.
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• The starting point of a trial is calculated as the first point in which the angle amplitude

in the interval [M1;m] is less than or equal to 98% of thr 1. Similarly, the ending point

of a trial is calculated as the first point in which the angle amplitude in the interval

[m;M2] is greater than or equal to 98% of thr 1.

The result of the final segmentation can be seen in Figure 29, in which the portion of

signal that is highlighted in red corresponds to te segmented trials.

Figure 29: Example of segmented stair ascending task for a subject

4.2.4 Rest trials segmentation

For what concerns the two Rest tasks, there is no need to use the biomechanical

information to segment the trials because the subject is always in the same position for

about 30s. Having said that, it is chosen to simply segment the whole signal in epochs of

1.4s, that is an average duration compared to the other tasks.
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4.3 Feature Extraction and Selection

It is agreed that the analysis window length with the processing delay time should be

less than 300ms [12]. Smith et al. [33] proved that the optimal window length should be in

the range of 150 to 250ms for real-time myolectric control. There are basically two different

methods of data windowing: overlapped and adjacent windowing (Figure 30).

Figure 30: Left: Adjacent windowing of an EMG signal; Right: Overlapped windowing.
τ represents the computational delay [12].

In order to find the best windowing strategy and the best feature to extract and select,

two Pilot studies have been performed: different types of window length and overlapping

sizes have been tested, and the parameter choice was based on the combination that gave

the best perfomances in terms of classification accuracy.

Having said that, after the Pilot studies, windows of 250ms (512 samples with f s =
2048 H z) with overlap of 75% are chosen in this work. Moreover, using the overlapped

windowing strategy, it is possible to have a more dense control commands with respect to

adjacent windowing: if adjacent windows of 250ms are selected, it means that a command

is sent to the actuator in (250 + τ) ms (where τ is the computational time ) after a subject

starts a movement, and so we don’t have too much margin on the computational time

to stay within the real-time maximum delay; differently, with 75% of overlap we send a

command every (62.5 + τ) ms and so we have enough time to do the processing.

With the same pilot studies, different time-domain features, and also different com-

binations of them, have been taken into account in order to find the best subset that

maximize the performances of the classifier.

In total, 6 features are used. As each of the 8 channels has its own set of features, this
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gives a 48 feature vector for each selected window. It is worth noting that no frequency-

domain or time-frequency domain features have been tested due to an excessive computa-

tional complexity, and consequently an excessive computational time, required from their

calculation.

The features taken into account in this study and both their definition and mathemati-

cal formulations are presented in the following lines (taken and adapted from [34]). Note

that in this formulas xi represents the i th signal sample in a segment and N denotes the

length of the EMG window.

• Root Mean Square (RMS)

Root mean square (RMS) is another popular feature in analysis of the EMG signal [35].

It is modeled as amplitude modulated Gaussian random process whose relates to

constant force and non-fatiguing contraction. It is also similar to standard deviation

method. The mathematical definition of RMS feature can be expressed as:

RMS =
vuut 1

N

NX
i=1

x2
i (1)

• Zero Crossing (ZC)

Zero crossing (ZC) is a measure of frequency information of the EMG signal that is

defined in time domain [36]. It is a number of times that amplitude values of the

EMG signal cross zero level. It is defined as:

ZC =
N−1X
i=1

u(xi xi+1) (2)

u(x) =


1, if x ≥ 0

0, otherwise

• Integrated EMG (IEMG)

Integrated EMG (IEMG) is normally used as an onset detection index in EMG non-

pattern recognition and in clinical application [37]. It is related to the EMG signal

sequence firing point. Definition of IEMG feature is defined as a summation of
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absolute values of the EMG signal amplitude, which can be expressed as

I AV =
NX

i=1
|xi | (3)

• Willison Amplitude (WA)

Willison amplitude (WAMP) is a measure of frequency information of the EMG

signal.This is the number of times that the difference between two consecutive EMG

amplitudes exceeds a certain predefined threshold T that is dependent on the setting

of gain value of instrument (in this work T=0.5 µV ). Moreover, it is related to the

firing of motor unit action potentials (MUAP) and muscle contraction force.

W AMP =
NX

i=1
f (|xi+1 −xi |) (4)

f (x) =


1, if x ≥ T

0, otherwise

• Number of Turns (NT)

NT is a number of times that slope of the EMG signal changes sign, or rather, the

number of signal peaks. The count of changes between the positive and negative

slopes among three sequential segments is performed with the step function. This

can be mathematically expressed as:

N T =
N−2X
i=1

u[(xi+1 −xi )(xi+1 −xi+2)] (5)

u(x) =


1, if x ≥ 0

0, otherwise

• Waweform Length (WL)

Waveform length (WL) is a measure of complexity of the EMG signal. It is defined as

cumulative length of the EMG waveform over the time segment. Some literatures
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called this feature as wavelength (WAVE). It can be calculated by:

W L =
N−1X
i=1

|xi+1 −xi | (6)

For what it concerns the Linear Regressor, we have to use a set of features that can

guarantee a linearity relationship between angles and EMG. It is studied by Hahne et

al. [38] that a feature of the EMG that satisfies this hypotesis is the logarithm of the

variance (LOG(VAR)) of the EMG, that is mathematically defined as it follows.

• Logarithm of Variance of EMG (LOG(VAR))

Variance of EMG (VAR) is a power index. Generally, variance is defined as an average

of square values of the deviation of that variable; since the mean value of EMG signal

is close to zero, variance of the EMG signal can also be defined as

V AR = 1

N −1

NX
i=1

x2
i (7)

But, as it has been said before, the logarithmic value of this feature is used:

LOG(V AR) = log(
1

N −1

NX
i=1

x2
i ) (8)
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4.3.1 Feature scaling

Scaling a feature matrix before applying a classification method is very important. The

main advantage of scaling is to avoid attributes in greater numeric ranges dominating

those in smaller numeric ranges. Another advantage is to avoid numerical difficulties

during the calculation. In particular since kernel values in SVMs usually depend on the

inner products of feature vectors and KNN distances depend on exponentiation of the

vector, large attribute values might cause numerical problems and to govern on the smaller

values. Having a bounded range of features values assures that all the features will equally

contribute. For that reasons, it is recommended to linearly scale each feature to the range

[-1; +1] or [0; 1] [39]. Furthermore, it is mandatory to use the same scaling method to scale

both training and testing data, and in particular to scale the test set with the same scaling

values used to scale the training set. Otherwise it can easily happen a drastic reduction of

the classifier performances that is not due to a wrong modelling of the problem but rather

to an improper use of the scaling method.

In this work the Min-Max scaling is used to scale the features in the range [0:1]:

x 0
i =

xi −min(xi )

max(xi )−min(xi )
(9)

where xi is the i th column of the feature matrix, i.e. the vector that contains all the

values of a specific feature for the dataset samples, and [min(xi );max(xi )] represents the

range in which the feature values span.
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4.4 Support Vector Machines (SVM)

Support Vector Machines are a useful technique for data classification. A classification

task usually involves separating data into training and testing sets. Each instance in the

training set contains one target value (i.e. the class labels) and several attributes (i.e. the

features or observed variables). The goal of SVM is to produce a supervised model (based

on the training data) which predicts the target values of the test data given only the test

data attributes [39].

The basic idea of the SVMs is to construct a hyperplane as the decision plane, which

separates the positive and negative classes with the largest margin, where the margin is

the sum of the distances from the hyperplane to the closest data points of each of the two

classes (Figure 31). These closest data points are called Support Vectors (SVs) [40].

Figure 31: Linear separating hyperplanes with maximum margin. The support vectors are circled
(taken from [13])

.

Given a training set of instance-label pairs (xi , yi ) with i = 1, ..., l where xi ∈ ℜn and y ∈
{1,−1}l the support vector machines (SVM) require the solution of the following optimiza-

tion problem:
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min
w,b,ξ

1

2
wT w+C

lX
i=1

ξi

sub j ect to yi (wTφ(xi )+b) ≥ 1−ξi , ξi ≥ 0

where w ∈ ℜn is the weight vector, C ∈ ℜ+ is the regularization constant, and the

mapping functionφ projects the training data into a suitable feature space so as to allow for

nonlinear decision surfaces. SVM, in fact, is normally able to classify data that are linearly

separable. But, defining the Kernel Function as K (xi , x j ) ≡ φ(xi )Tφ(x j ), it is possible to

map the data in a higher dimensional with a nonlinear transformation where it is possible

to find the optimal separating hyperplane (Figure 32).

Figure 32: Mapping data into feature space F with kernel function (taken from [14]). In the normal
space data are nonlinearly separable, so SVM is not able to find the best separating
hyperplane. With the mapping in the feature space, data becomes linearly separable and
so SVM is effective.

The most common basic Kernel that can be found in the literature are the following:

• Linear : K (xi , x j ) = xT
i x j

• Polynomial : K (xi , x j ) = (γxT
i x j + r )d , γ> 0

• Radial Basis Function (RBF) : K (xi , x j ) = exp(γ||xi −x j ||2), γ> 0
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• Sigmoid : K (xi , x j ) = tanh(γxT
i x j + r ), γ> 0

where γ,r,d are the hyperparameters of the Kernel functions.

In this work RBF kernel is used. The choice of Radial Basis Function is based on the fact

that it nonlinearly maps samples into higher dimensional space and could be efficient in

classifying nonlinearly separable data. Furthermore, RBF has lower model complexity and

fewer hyperparameters to tune than most other kernels. Finally, RBF is ideally suited for

cases where the number of features is not very large with the data, as is the case of sEMG

signal classification.

4.4.1 Multiclass SVMs

Support vector machine (SVM) originally separates the binary classes with a maximized

margin criterion. However, real-world problems often require the discrimination for more

than two categories. In practice,the multi-class classification problems are commonly

decomposed into a series of binary problems such that the standard SVM can be directly ap-

plied. Two representative ensemble schemes are one-versus-rest (1VR) and one-versusone

(1V1) approaches [41]:

• One-versus-rest (1VR) approach: constructs k separate binary classifiers for k-class

classification. The m-th binary classifier is trained using the data from the m-th

class as positive examples and the remaining k − 1 classes as negative examples.

During test, the class label is determined by the binary classifier that gives maximum

output value. One of the common problem of the one-versus-rest approach is the

imbalanced training set. Suppose that all classes have an equal size of training

examples, the ratio of positive to negative examples in each individual classifier is

1
k−1 . In this case, the symmetry of the original problem is lost [42].

• One-versus-one (1V1) approach: Another classical approach for multi-class clas-

sification is the one-versus-one (1V1) or pairwise decomposition. It evaluates all

possible pairwise classifiers and thus induces k(k−1)
2 individual binary classifiers.

Applying each classifier to a test example would give one vote to the winning class. A
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test example is labeled to the class with the most votes. The size of classifiers created

by the one-versus-one approach is much larger than that of the one-versus-rest.

However, with 1V1 approach the computational effort is smaller and so it makes

possible to train faster the classifiers. Moreover, compared with the one-versus-rest

approach, the one-versus-one method is more symmetric [42].

For the aim of this study, all the classification processing with SVM are performed using

the software LIBSVM (Chang and Lin, 2011 [43]) and its extension for Matlab that has

already included the possibility of studying multiclass problems using 1V1 approach.

4.4.2 SVM Parameter Tuning

To determine the value of the parameters for the RBF kernel (γ) and the penalty pa-

rameter of the error term (C ), cross validation was used along with grid search. In a k-fold

cross-validation, a data set is divided into k groups of equal size. A group is sequentially

left out while the rest of the data is used to train the classifier. The accuracy of the classifier

is then tested on the left out group. This process is continued such that each group of the

whole training data set is predicted once and the cross validation accuracy is the average

of all the testing accuracies achieved. Thus cross-validation accuracy is the percentage of

data which are correctly classified. In this study, a particular case of k-fold cross-validation

is used : the Leave-One-Out cross validation, where only a trial is used as test set and the

ramaining as training set (in this paticular case, 9 trials for training and 1 for test). Different

pairs of (C, γ ) were tried for cross validation and the one with highest accuracy was chosen.

The process was started with a course grid search with the two Pilot studies and, after

identifying a region of better accuracy, a finer grid search was performed on that region for

each subject. In particular it is found from the Pilot studies that the region in which the

better results are seen is [2−3,23] for both C and γ parameters.

Therefore the parameters are chosen by performing a grid search in that region where

C and γ vary from 2−3 to 2−3 in a logarithmic scale with a step size of 0.5.

The algorithm has 2 stopping condition, one on the maximum number of iteration to

perform, set to 300 cycles, and another on the maximum number of times that the best

accuracy doesn’t change, set to 50 times (this is a strategy to avoid unnecessary cycles
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and to speed up the tuning if we are close to the asymptotic value). An example of this

procedure can be seen in Figure 33.

Figure 33: Tuning of SVM parameters for a test subject

.

4.5 K-Nearest Neighbor Classifier (KNN)

k – Nearest Neighbor (kNN) is one of the instance-based supervised learning ap-

proaches, that is widely used in classifying the objects based on the closest or nearest

neighbor training examples. The classification rules are generated by the training samples

themselves without any additional data. The KNN classification algorithm predicts the test

sample’s category according to the K training samples which are the nearest neighbors to

the test sample, and judge it to that category which has the largest category probability.

The training examples are vectors in a multidimensional feature space, each with a

class label. The training phase of the algorithm consists only of storing the feature vectors

and class labels of the training samples. In the classification phase an unlabeled vector (a

query or test point) is classified following this steps (Figure 34):

• An integer k is chosen;

• All the distances between the query point and training samples are calculated and

sorted in ascending order;

• The query point is assigned to the class C if it is the most frequent class label among

the k nearest training samples;
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Figure 34: Example of KNN classification. The test sample (green circle) should be classified either
to the first class of blue squares or to the second class of red triangles. If k = 3 (solid line
circle) it is assigned to the second class because there are 2 triangles and only 1 square
inside the inner circle. If k = 5 (dashed line circle) it is assigned to the first class (3 squares
vs. 2 triangles inside the outer circle). Taken from [15]

The commonly used metrics to find the distance between the query point and the

training samples are:

• Minkowsky : d(x,y) = p
qPn

i=1(xi − yi )p

• Euclidean : d(x,y) =
qPn

i=1 |xi − yi |2

• Cityblock : d(x,y) =Pp
i=1 |xi − yi |

• Mahalanobis : d(x,y) =
p

(x−y)TΣ−1(x−y), where Σ is the covariance matrix

In order to find the best k parameter and distance for each subject, a tuning process

was performed.

58



4 Algorithm Description

4.5.1 KNN Parameter Tuning

Likewise the SVMs case, also for the KNN classifier two design choices must be taken:

the first on the value of k parameter and the second on the type of similarity metrics (d(x,y))

that can be used for the classifier. Also in this case a Leave-One-Out cross-validation is

used to measure the classifier performances, and the pair of k and d that leads to the

maximum accuracy is chosen. In this tuning process k values from 1 to 20 are tested, and,

for what concerns the distance metric, Mahalanobis, Euclidean, Minkowsky and Cityblock

distances are chosen to be tested. This choice is derived from the results of the Pilot studies.

The algorithm has 2 stopping condition, one on the maximum number of iteration to

perform, set to 200 cycles, and another on the maximum number of times that the best

accuracy doesn’t change, set to 30 times.

An example of this procedure can be seen in the Figure 35.

Figure 35: Tuning of KNN parameters for a test subject

.
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4.6 Multiple Linear Regressor (MLR)

In statistics, linear regression is a linear approach to modelling the relationship between

a dependent variable and one or more explanatory variables (or independent variables). If

we have more than one independent variable, the model is called Multiple linear regres-

sion. This term is distinct from multivariate linear regression, where multiple correlated

dependent variables are predicted, rather than a single scalar variable [44].

If the goal is prediction (like in this case where we want to predict angles from EMG)

linear regression can be used to fit a predictive model to an observed data set of values of

the response and explanatory variables. After developing this model, if additional values of

the explanatory variables are collected without a response value, the fitted model can be

used to make a prediction of the response [16]. The final aim of linear regression is to find

the line (or the hyperplane in higher dimensional cases) that minimizes the squared error

between each observation and the model itself (Figure 36).

Figure 36: Left: Example of simple linear regression with one independent variable [16];
Right: In a three-dimensional setting, with two predictors and one response, the least
squares regression line becomes a plane (taken from [17])

.

In multiple linear regression, there are p explanatory variables (features) for T time

instances, and the relationship between the dependent variable and the explanatory

variables is represented by the following equation:

yi = w0 +w1x1i +w2x2i + ...+wp xpi (10)
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or, in general, with the matricial form :

Y = WT X+w0 (11)

where w0 is the intercept value, W ∈ℜp×1 is the Weight matrix, X ∈ℜp×T is the feature

matrix and Y ∈ℜ1×T contains the observed angle data. The least mean squares solution for

finding W is obtained by minimizing the following error (or cost) function:

J (w) = 1

2

X
t

(y(t )−wT x(t ))2 (12)

This minimization problem could be solved through Gradient Descent method, that is

an iterative process to find a global minimum, or using the closed form solution known as

Normal Equation:

W = (XXT )−1XYT (13)

By adding a column of 1 values inside X, also the intercept value w0 is calculated

with this formula that basically constitutes the training of the regressor. To evaluate the

prediction of angles (Ŷ) using a new test data Xtest , we have to use the weight matrix W

found from the traning as it follows:

Ŷ = WT Xtest (14)
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4.7 Generalized Regression Neural Networks (GRNN)

GRNN is a type of supervised Feed-Forward NN and is one of the most popular neural

networks. Donald F. Specht first introduced it in 1991 [45]. GRNNs are known for their abil-

ity to train quickly on sparse data sets. Rather than categorizing data, GRNN applications

are able to produce continuous valued outputs. One of the main advantages of the GRNN,

with respect to other Back Propagation based NNs, is that the training of the network is

faster because data only needs to propagate forward once.

GRNNs work well on interpolation problems and are suitable for estimation of contin-

uous variables, as in standard regression techniques. This type of network uses a single

common radial basis function kernel to do the estimation.

The regression performed by a GRNN is the conditional expectation of Y; in other words,

its output is the most probable scalar Y given specified input vector x.

Hereinafter the mathematical and structural fundamentals of GRNN are shortly re-

ported. More details can be found in chapter 3 of Artificial Neural Networks (Joao Luis

Garcia Rosa, 2016) [18]. Assume f(x, y) as the joint continuous probability density function

of a vector random variable X, and a scalar random variable Y. Let x be a particular mea-

sured value of the random X. The regression of Y given x (also called conditional mean of Y

given x) is given by:

E [Y /x] =
R∞
−∞ Y f (x,Y )d yR∞
−∞ f (x,Y )d y

(15)

For a nonparametric estimate of f(x, y), one of the most common cinsisten estimators

is used, i.e. a Gaussian function (or Radial Basis Function (RBF)). The good choice for

probability estimator f̂ (x, y) is based on sample values xi and yi of the random variables X

and Y is given by:

f̂ (x, y) = 1

(2π)
(p+1)

2σ(p+1)

· 1

n

nX
i=1

e− (x−xi )T (x−xi )

2σ2 e− (y−yi )2

2σ2 (16)
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where p: is the dimension of the vector variable.

n: is the number of training pairs (xi → yi ).

σ: is the single learning or smoothing parameter chosen during network training.

yi : is desired scalar output given the observed input xi .

The topology of a common GRNN presented in Figure 37 consists of four layers.

Figure 37: The basic GRNN architecture, taken from [18]

The first layer of the network is the input layer. The input units provide all of the scaled

measurement variables X to the neurons that consitutes the second layer.

The second layer represents the first hidden layer (also called Pattern layer). It consists

of N processing elements or nodes, where N is the number of sample within a training data

set and each node represents the input vector, Xi . Each input vector is associated with the
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vector assigned with the j th sample in training data and, inside the node, it is subtracted

from the vector assigned to the node itself, i.e. X j . This difference is then squared and the

result is given into the RBF kernel. The outputs of the pattern layer are then passed to the

summation units. It is worth noting that the second hidden layer always has exactly one

more node than the output layer.

The third layer represents the second hidden layer (also called Summation layer) which

consists of two nodes. The input to the first node is the sum of the first hidden layer

outputs, weighted by the observed output y j corresponding to X j . Instead, the input of

the second node is the summation of the first hidden layer activations.

Finally, the fourth layer is the output layer. It receives the two outputs from the hidden

layers and divides them in order to provide the prediction result.

4.8 Training and testing

In this section it is described how both the classifiers and regressors are trained and

tested, and the design choices for selecting the best models to perform the validation phase

of the system. In this phase 10 trials for each of the 7 movements are taken into account.

4.8.1 Classifiers

First of all, the Feature Matrix and the label Vector are evaluated for the dataset. After

finding the best parameters for each subject, as explained in sections 4.4.2 and 4.5.1, for

both the SVM and KNN classifiers the training and testing is performed with a Leave-One-

Out cross validation (LOOCV) in order to prevent overfitting. In particular, 9 trials for each

class are given to the classifier for training and 1 trial for test in repetition such that each

trial of the dataset is predicted once, and so for a total of 10 cycles. For each cycle of the

cross validation, the related classifier accuracy on the prediction of the test set is calculated

from the confusion matrix (see Results).

The model of classifier, for both KNN and SVM, chosen for the validation phase is

the one related to the cycle of LOOCV that had the best performance in terms of average

accuracy on the 7 classes. This choice is supported by the fact that it is possible that a not

well segmented or performed trial in the training or in the test set could negatively polarize

the performances of the classifier during the validation phase. Instead, with this strategy
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we have the reasonable certainty that only the best trials are taken into account inside the

trained model.

4.8.2 Regressors

It is worth noting that two different regressors are constructed, one for ankle joint

and one for knee joint: this is motivated by the fact that different muscles are involved

in this two different joints, and it is a mistake to predict an angle of a joint with muscles

that interest the other joint. In particular, for the knee regressor only the features related

to channels of Biceps Femoris, Semitendinosus, Rectus Femoris, Vastus Medialis and

Lateralis are selected; while for the ankle regressor only the features related to the channels

of Tibialis Anterior, Gastrocnemius Medialis and Lateralis are taken into account. It is

reminded that the GRNN regressor is trained with the same subset of 6 feature used for the

training of the classifiers, while the MLR uses only the LOG(VAR) feature for the selected

channels.

Moreover, for each DOF and for both GRNN and MLR models, two types of regressor

are trained: a class-specialized regressor and a general regressor.

• The class-specialized regressor contains 7 different models, one for each class in

this study, and the prediction of each model is specific for a movement. The training

and testing of this regressor is performed with a Leave-One-Out cross validation

(LOOCV), using 10 trials (the same used for the training of the classifiers) in total, 9

for the training and 1 for the test. Similarly to the classifier case the model that has

the best performances (highest R2 value) in terms of prediction for each movement

class in a cycle of the test phase is chosen for performing the validation phase.

• The general regressor, instead, consists of a unique model and is able to make a

prediction for all the movements. This regressor is trained using all the 10 trials.

4.9 Validation phase

In this phase the aim is to compare the performances of a system composed by a

classifier in chain with the class-specialized regressor and a system based only on a not

specialized regressor.
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For the class-specialized regressor, the prediction of the validation angle is made in this

way: first the classifier recognize the movement and, basing on the predicted class, triggers

the correspondent model in the specialized regressor to make the angle prediction from

the EMG. Since we have 2 classifer models and 2 regression model, for each DOF a total of

4 different combinations are tested (SVM-MLR, KNN-MLR, SVM-GRNN, KNN-GRNN) in

this study.

Two different procedures of validation are proposed:

• First Method: in the first validation method, two new trials for each movement are

taken into account. After the classification procedure, the angle of both DOFs are

predicted with the specialized regressor and then with the not specialized regressor.

• Second Method: in the second validation method, the subject is asked to perform a

sequence of movements in order to simulate a daily scenario. The selected sequence

is : rest stand - sitting - standing - sitting - rest sitting - standing - (stair ascending /

stair descending) x2 - gait. To identify the movement epochs within the the signal

and to label the tasks for the classification, a first rough segmentation is manually

performed by the operator and then refined using the same algorithms described in

section 4.2, Once the final segmentation of the tasks is found, the classification takes

place and then the predictions of angles with the specialized regressor and the not

specialized regressor is performed.
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5 Results and Discussion

5.1 Performance Metrics Definitions

5.1.1 Classifier Performances Evaluation Metrics

A common way of reporting classification results in a multiclass supervised setting, is

to compile a Confusion Matrix, also referred to as a Contingency table or Accumulation

matrix. Each column of the matrix represents the instances in a predicted class while each

row represents the instances in an actual class (or viceversa). Each entry of the diagonal of

the confusion matrix is the number of elements that are correctly classified by a classifier,

while the other entries represent the misclassification errors between class i th and class

j th .

Figure 38: Example of multiclass confusion matrix. Taken from [19]

From this matrix, two performance metrics can be calculated considering a problem of

C classes:

• Class Accuracy: Expressed in percentage, represent the number of correct classifica-

tion for the i th class. It can be defined as the ratio between the number of correct

classification for class i and the total number of elements within that class:

Accur ac yi =
ξi ,i

CP
i=1

ξi , j
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• Average or Overall Accuracy: Expressed in percentage, represent the total number

of correct classification. It can be defined as the ratio between the trace of the matrix

and the total number of elements that are classified:

Accur ac y =

CP
i=1

ξi ,i

CP
i=1

CP
j=1

ξi , j

5.1.2 Regressor Performances Evaluation Metrics

The goodness of fit describes how well a model fits a set of observations. Measures

of goodness of fit typically summarize the discrepancy between observed values and the

values expected under the model in question. In this case we are interested to study how

well a regressor can predict an angle basing on EMG features. Two metrics are used in this

study:

• Coefficient of Determination (R2): is a measure used in statistical analysis that

assesses how well a model explains and predicts future outcomes. It is indicative of

the level of explained variability in the data set. The coefficient of determination,

also commonly known as "R-squared" is used as a guideline to measure the accuracy

of the model. Given y = [y1, ..., yn] as the vector containing the observed values

and ŷ = [ŷ1, ..., ŷn] the vector containing the predicted values, the coefficient of

determination is defined as:

R2 = 1−
Pn

j=1(y j − ŷ j )2Pn
j=1(y j − y)2

and represents the ratio of variations explained by the model to the total variations

present in the observed data. In our case, R2 values are evaluated separately for knee

joint and ankle joint angle predictions.

• Root Mean Square Error (RMSE): is a frequently used measure of the difference

between values predicted by a model and the values actually observed from the

environment that is being modelled. These individual differences are also called
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residuals, and the RMSE serves to aggregate them into a single measure of predictive

power.

The RMSE of a model prediction (ŷ) with respect to the observed value (y) is defined

as the square root of the mean squared error:

RMSE =
sPn

j=1(y j − ŷ j )2

n

Nonetheless, a non dimensional form of RMSE (NRMSE) is useful when we have to

compare variables with different units, or like in this case, movements with different

Ranges of Motion (ROM). For that reason, a normalization approach is used:

N RMSE = RMSE

(max(y)−mi n(y))

where (max(y)−mi n(y)) is indeed the ROM of the movement.

For the ankle joint the considered Range Of Motion is [-50°,30°] while for the knee

joint is [90°,180°].
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5.2 Classifiers Cross-Validation

In this section the results derived from the 10 cycles of the Leave-One-Out Cross-

Validation are presented for all the 8 selected subjects. A boxplot graph is shown with the

distribution of the accuracy rate for each of the 7 classes along the 10 cycles and a bar

diagram with average value of accuracy and range intervals. This two type of graphs are

shown for both SVM and KNN.

5.2.1 Knn LOOCV results

It is clear from Figure 39 that the median value of accuracy for each of the 7 classes

is always greater than 93% for almost all the subjects and this indicates a good stability

of the classifier due to a good choice of its parameters. We can see also some outliers

with classification accuracy below 80% : this can be motivated by a not properly correct

execution of the exercise by a specific subject.

Figure 39: Boxplot containing Knn Cross-Validation Accuracy values evaluated for each class in test
subjects
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From the bar diagram in Figure 40 instead, we can have an overview on the average

performances of the classifier. The average performances of the classifier are always

above 94% with peaks of 100% of accuracy. Choosing the classifier model with the highest

average accuracy on all 7 classes in a cycle of the cross-validation allows to keep only the

well performed trials as training set and to eliminate the worst.

Figure 40: Boxplot containing Knn Cross-Validation Accuracy values evaluated for each class in test
subjects

With this two type of representation, we are able to analyse only the overall perfor-

mances of the classifier but it is not possible to see how the misclassification errors are

distributed and which are the classes that are mainly confused. In order to achieve that,

the confusion matrices for exemplificative subjects 1, 3, 5 and 7 are presented (Figure 41).

These matrices are the sum of all the 10 confusion matrices derived from each cycle of the

cross-validation, in the way that it is possible to see the overall misclassification errors.
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Figure 41: Confusion Matrices of Subject 1 (top left), 3 (top right), 5 (bottom left) and 7 (bottom
right). The average Accuracy of the KNN classifier is indicated on the top of the matrix

By analyzing these three confusion matrices, there is the confirmation that the overall

performances of the classifier are robust and widely acceptable. It is worth noting, however,

that the most of the classification errors are between Standing and Sitting class and Stair

Ascending with Standing class. This seems to be reasonable because in this movement,

the involved muscles follow the same scheme of activation: the sitting movement can be

seen as the inverse of the standing movement from the point of view of muscular patterns.

Also for the stair ascending movement, if only the dominant leg is studied, the muscular

pattern seems to be similar with respect to the standing movement. Nevertheless, this

misclassification errors are reasonably in small amount, and the average performance of

the classifier still can be considered as satisfying.

72



5 Results and Discussion

5.2.2 SVM LOOCV results

From Figure 42 it can be noted that the median value of accuracy for each of the 7

classes is always greater than 92% for almost all the subjects. The accuracy of the SVM

classifier, in this phase of study results to be very similar to the KNN one with also the

presence of outliers of accuracy below 80% and in some cases also below 60%. Since these

are only outliers, the motivation of this could be found in a not correct execution of one

trial in the dataset.

Figure 42: Boxplot containing Knn Cross-Validation Accuracy values evaluated for each class in test
subjects
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Similarly, we can found an overview of the average performances of the SVM classifier

along the cycles of LOOCV and it is possible to see in Figure 43 that the results of the

classification seems to be reasonably reliable and stable for each class and for each subject.

There are peaks of 100% of accuracy also in this case in all the studied subjects, and this is

a signal of a correct choice of the SVM parameters and robustness of the classifier.

Figure 43: Boxplot containing Knn Cross-Validation Accuracy values evaluated for each class in test
subjects

Similarly to the KNN case, the confusion matrices for subjects 1,3 and 5 are presented

for demonstration purposes (Figure 44). Also in this case these matrices are the sum of all

the 10 confusion matrices derived from each cycle of the cross-validation, in the way that

it is possible to see the overall misclassification errors.

74



5 Results and Discussion

Figure 44: Confusion Matrices of Subject 1 (top left), 3 (top right), 5 (bottom left) and 7 (bottom
right). The average Accuracy of the SVM classifier is indicated on the top of the matrix

Analyzing these three confusion matrices, there is the confirmation that the overall

performances of the SVM classifier are robust. We can see that also in this case the most of

the classification errors are between Standing and Sitting class and Stair Ascending with

Standing class, even if on a smaller scale. Nevertheless, this misclassification errors are

reasonably in small amount, and the average performance of the classifier still can be

considered as satisfying.
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5.3 Regressors Cross-Validation

In this section the results derived from the 10 cycles of the Leave-One-Out Cross-

Validation for the two regressor models are presented considering all the 8 selected subjects.

It is chosen to show a boxplot graph, for both R2 and N RMSE values in order to analyze

the performances of prediction for each of the 7 classes.

5.3.1 GRNN LOOCV results for ankle joint

From Figure 45 it is possible to see that the perfomances of prediction in terms of R2

value with the the Neural Network are not robust, they are distributed in all the range

and their trend differs from subject to subject. However, very good reconstructions with

R2 ≥ 0.8 are present: this can be motivated by the fact that in the cyclic repetitions of the

movements, the subject doesn’t follow the same angular patterns and so the regressor is

not always able to perfectly predict the angular trend with the chosen emg features.

Figure 45: Boxplot containing GRNN Cross-Validation R2 values evaluated for each class in test
subjects for Ankle joint
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We can see that the class that has the overall worst performances and cannot be well

reconstructed is the Stair ascending class and for subject 5 and 8 also the Gait movement.

These are two complex movements and probably the muscle activation in each cycle could

be not maintained similar or the chosen features used to predict this movement are not

explicative and robust in every trial.

It is also worth noting that for the rest movement the R2 value is near to zero: this is

because R2 is not a good metric of performance for movement with constant trend because

it is a value that consider the variability of the observed data. From that point of view it

is considered to present also the NRMSE values, because with this indicator we can have

an idea of how much the predictor is erring with respect of the Range Of Motion of the

considered joint. In fact, from Figure 46 we can see that for all the classes and for all the

subjects the NRMSE values are below 0.3, and this is an indicator that even if the prediction

is not accurate, the error is inferior to the 30% of the Range of Motion the ankle joint.

Figure 46: Boxplot containing GRNN Cross-Validation NRMSE values evaluated for each class in
test subjects for Ankle joint
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In order to be reasonably sure that the model of GRNN is able to make a prediction also

in the validation phase, only the models that has the best performances, for each class in a

cycle of cross-validation, are selected and merged in a unique class-specialized model. In

this way, only the reliable predictions are considered and only the most significative trials

are included in the training of the regressor.

5.3.2 GRNN LOOCV results for knee joint

From Figure 47 it is possible to see that the perfomances of prediction in terms of R2

value with the the Neural Network are not robust, they are distributed in all the range and

their trend differs from subject to subject, like in the case of Ankle joint.

Figure 47: Boxplot containing GRNN Cross-Validation R2 values evaluated for each class in test
subjects for Knee joint

The results in this case seem to have higher median values and an overall better per-

formances with respect to ankle angles reconstructions. One hypothesis to explain this

outcome is that this improvement in the prediction can be due to a higher number of
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muscles, involved in knee flexion and extension (5 muscles) compared to ankle flexion and

extension (3 muscles): this leads to a dimensionally higher feature vector (1x30 for knee

versus 1x18 for ankle) associated to each window of EMG and it can be the reason for a

more accurate prediction made by the network.

From the boxplot representing the distribution of NRMSE values in Figure 48 we can

see that for all the classes and for all the subjects the median of NRMSE values, is below

0.25 even though the R2 values are not always good. This is an indicator that even if the

prediction is not accurate, the error is inferior to the 25% of the Range of Motion the knee

joint.

Figure 48: Boxplot containing GRNN Cross-Validation NRMSE values evaluated for each class in
test subjects for Knee joint

Also in this case, only the model of GRNN for each class that had the best performances

in a cycle of the cross-validation are taken into account to perform the validation phase

in order to exclude the worst trials from the training set and to keep only the most robust

ones.
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5.3.3 MLR LOOCV results for ankle joint

The performances of MLR prediction for ankle joint are comparable to the GRNN

ones. The distribution of the performances in terms of R2 values has large variability both

between different subjects and between the different classes for a specific subject (Figure

49). This is an indicator that not always the Regressor is able to accurately reconstruct the

angle with only the LOG(VAR) feature.

Figure 49: Boxplot containing MLR Cross-Validation R2 values evaluated for each class in test
subjects for Ankle joint

However, it is also possible to note the presence of very good reconstructions with

R2 ≥ 0.8 for classes Sitting and Standing while for the Gait movement there is an overall

difficulty to accurately predict the joint angle with median values of R2 that span from

about 0.2 and 0.5. For this specific type of movement, the GRNN model presents better

performances with respect to MLR.

For the same reasons described above, also in this case the boxplot representing the

NRMSE values distribution is presented.
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Figure 50: Boxplot containing MLR Cross-Validation N RMSE values evaluated for each class in test
subjects for Ankle joint

It is worth noting that the results are comparable to the GRNN case. The NRMSE values

present small variability both between the subjects and between each class of movement.

All the values are contained in the range [0.1-0.25] like the GRNN case and so the error of

prediction is maintained below the 25% of the Range of Motion of the Ankle joint. Also

for the MLR, the Weight matrix associated to a specific movement that gives the best

performances is saved and then merged into a unique class-specialized model.
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5.3.4 MLR LOOCV results for knee joint

The performances of MLR prediction for knee joint are comparable to the GRNN

ones. The distribution of the performances in terms of R2 values has large variability both

between different subjects and between the different classes for a specific subject (Figure

51).

Figure 51: Boxplot containing MLR Cross-Validation R2 values evaluated for each class in test
subjects for Knee joint

It is possible to note the presence of very good reconstructions with R2 ≥ 0.8 for classes

Sitting and Standing, but also Stair Ascending movement presents good performances in

prediction for the most of the subjects. The most difficult tasks to predict seem to be the

Stair descending as we can se in subjects 5,6 and 8. This results are similar to the GRNN

case, even if for the latter the best performances have an absolute overall higher value on

the 7 subjects.

Also in this case the knee joint angle prediction results seem to have higher median

values with respect to ankle angles reconstructions. The hypothesis is the same as it is
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previously explained for the GRNN case: the higher number of dimensionality of features

and channels associated to the knee joint leads to a better representation of its activity

with respect to the ankle one (1x5 feature vector for the knee against 1x3 feature vector for

the ankle).

Figure 52: Boxplot containing MLR Cross-Validation N RMSE values evaluated for each class in test
subjects for Knee joint

The NRMSE values present small variability both between the subjects and between

each class of movement. All the values are contained in the range [0.1-0.25] like the GRNN

case and so the error of prediction is maintenied below the 25% of the Range of Motion of

the Knee joint.
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5.4 Validation - First method

In this section the results coming from the first validation method are presented. It

is reminded that in this phase two prevoiusly segmented trials, that are not used for the

cross-validation phase, are firstly classified by the two classifiers and the output (the

class prediction) is used to trigger the class-specialized regressor in order to perform the

prediction. Four different combination of classifier-regressor are tested (SVM-GRNN, KNN-

GRNN, SVM-MLR, KNN-MLR) and their performances in prediction on the concatenated

movements are compared to the performances of the general regressors (GRNN-MLR).

This phase is repeated for the two degrees of freedom. A statistical analysis with one-way

ANOVA and a post-hoc Tukey-Kramer test is then performed in order to study the statistical

significance of the results.

5.4.1 Classification

First of all, the results of the classification are presented for both the KNN and SVM

classifiers with a bar diagram in which is highlighted the accuracy for each class and the

average accucary on all 7 classes (Figure 53 and Figure 54).

Figure 53: Bar diagram with KNN validation accuracy values for each class in 8 subjects
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The performances for KNN results (Figure 53) are reasonably satisfying: except for

subject 6, the average classification accuracy is over 93% and also for all classes the accuracy

is about 90%. By analyzing more deeply the results, it can be noted that the class that has

the lowest accuracy rate is Standing and, also in this case, the error of misclassification is

due to a confusion with the Standing movement.

Figure 54: Bar diagram with KNN validation accuracy values for each class in 8 subjects

For what concerns SVM, the results are comparable with the KNN classifier. The average

accuracy is high (over 92%) for all the subjects and the specific accuracy for each class

follow the same trend of the KNN case. This result demonstrates a good classification

robustness for both the classifiers.
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5.4.2 Ankle angle predictions

The trend of the performances of prediction in terms of R2 and NRMSE values with all

the models among the 8 subjects is reported respectively in Figures 55 and 56.

Figure 55: R2 value trend for different models in 8 subjects, Ankle Joint

From Figure 55 it is evident that all the combined models demonstrate better perfor-

mances with respect to the two general regressors. The improvement derived from the use

of the combined approach in this case can be quantified in an increase of the R2 values of

about 0.27 in average for all the subjects.
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Figure 56: NRMSE value trend for different models in 8 subjects, Ankle Joint

This improving is less evident analysing the NRMSE, but it is possible to note that also

in this case we have an overall decreasing (about 0.05 in average) of NRMSE values by using

the combined approach.

For the sake of clarity, the reconstructed angle signals with all the different approaches

relative to subject 7 are presented below (Figure 57).

From this figure we can see how the prediction with the combined models have an

important improvement, in particular with SVM-GRNN and KNN-GRNN methods, where

also the morphology of the signal is conserved. With the SVM-MLR and KNN-MLR there

is also an improvement in terms of R2 and NRMSE value with respect to GRNN and MLR

models where the reconstruction is much more noisy. In fact both GRNN and MLR are

not able to accurately reconstruct the gait movement, an error that is corrected with the

combined approach. It is also clear that MLR models are not able to reach the angle peak

points.
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Figure 57: Ankle angle reconstruction in subjects 7 with different models. From top to bottom:
SVM-GRNN, KNN-GRNN, SVM-MLR, KNN-MLR, MLR and GRNN
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STATISTICAL ANALYSIS

What is qualitatively seen in the previous sections, it has been quantitatively confirmed

by the statistical analysis performed with a one-way ANOVA using R2 values. The result

of the test is that, comparing all the six methods, the null hypotesis is refused (p<0.05)

and then the difference between the groups means are significant. In order to see the

differences between the combined and standard approach, a Tukey-Kramer multiple com-

parison post-hoc test was performed (Table 3).

Multiple comparison test GRNN MLR

SVM-GRNN p < 0.01 p < 0.01

KNN-GRNN p < 0.01 p < 0.01

SVM-MLR p < 0.01 p < 0.05

KNN-MLR p < 0.05 p < 0.05

Table 3: First Method, Ankle joint: Tukey-Kramer multiple comparison test. p-values of the pairwise
comparison between combined methods and general regressors

This test revealed that all the combined models are significantly better (p<0.05) than

both GRNN and MLR models, and this confirms the thesis that using the combined ap-

proach can lead to better results in terms of prediction accuracy. The table below (Table 4)

mean and standard deviation of the R2 values on the 8 subjects are reported in order to

have the possibility of comparison among the methods.

R2 SVM-GRNN KNN-GRNN SVM-MLR KNN-MLR GRNN MLRR

Mean 0.6032 0.6066 0.5392 0.5291 0.2839 0.3050

STD 0.1338 0.1184 0.1179 0.1235 0.1814 0.1089

Table 4: First Method, Ankle joint: R2 Mean and Standard deviation values of the six methods
predictions

From this table it is possible to see that SVM-GRNN and KNN-GRNN are substantially

equivalent and are the most performing methods for ankle angle reconstruction. Statistical

analysis performed with NRMSE confirms the same results.
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5.4.3 Knee angle predictions

The trend of the performances of prediction in terms of R2 and NRMSE values with all

the models among the 8 subjects is reported respectively in Figures 58 and 59.

Figure 58: R2 value trend for different models in 8 subjects, Ankle Joint

From Figure 58 it is evident that, also in this case, all the combined models demonstrate

better performances with respect to the two general regressors. The improvement derived

from the use of the combined approach in this case can be quantified in an increase of the

R2 values of about 0.31 in average for all the subjects.
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Figure 59: NRMSE value trend for different models in 8 subjects, Ankle Joint

This improvement is evident also by analyzing NRMSE trends, and it is possible to note

that also in this case we have an overall decreasing (about 0.08 in average) of NRMSE values

by using the combined approach.

For the sake of clarity, the reconstructed angle signals with all the different approaches

relative to subject 7 are presented below (Figure 60).

From this figure we can see how the prediction with the combined models have an

ingent improvement, in particular with SVM-GRNN and KNN-GRNN methods. With the

SVM-MLR and KNN-MLR there is also an improvement in terms of R2 and NRMSE values

with respect to GRNN and MLR models where the reconstruction is much more noisy. The

improvement in this case is more evident with respect to ankle joint, and it is possible to

see that the error in prediction made with the general regressors are corrected with the

combined approach: the prediction is smoother and it is more reliable to the measured

angles.
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Figure 60: Knee angle reconstruction in subjects 7 with different models. From top to bottom:
SVM-GRNN, KNN-GRNN, SVM-MLR, KNN-MLR, MLR and GRNN
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STATISTICAL ANALYSIS

It has been quantitatively confirmed by the statistical analysis performed with a one-

way ANOVA using R2 values that, comparing all the six methods, the null hypotesis is

refused (p<0.05) and then the difference between the groups means are significant. In or-

der to see the differences between the combined and standard approach, a Tukey-Kramer

multiple comparison post-hoc test was performed (Table 5).

Multiple comparison test GRNN MLR

SVM-GRNN p < 0.05 p < 0.01

KNN-GRNN p < 0.05 p < 0.01

SVM-MLR 0.1917 p < 0.01

KNN-MLR 0.2228 p < 0.01

Table 5: First Method, Knee joint: Tukey-Kramer multiple comparison test. p-values of the pairwise
comparison between combined methods and general regressors

This test revealed that SVM-GRNN and KNN-GRNN are significantly better (p<0.05)

than both GRNN and MLR models, and this confirms the thesis that using the combined ap-

proach can lead to better results in terms of prediction accuracy. SVM-MLR and KNN-MLR

instead are significantly better (p<0.05) than MLR model, while the statistical difference

with the GRNN model in not significant in this test even if the average R2 values (see

Table 6) for these two models on all the 8 subjects (0.7925 for SVM-MLR and 0.7883 for

KNN-MLR) are higher than the GRNN one (0.0659).

R2 SVM-GRNN KNN-GRNN SVM-MLR KNN-MLR GRNN MLRR

Mean 0.8442 0.8459 0.7925 0.7883 0.6701 0.3422

STD 0.1127 0.1099 0.0965 0.0984 0.0659 0.1269

Table 6: First Method, Knee joint: R2 Mean and Standard deviation values of the six methods
predictions

Also in this case it is possible to state that SVM-GRNN and KNN-GRNN are equivalent

and significantly are the best models for knee angle prediction in this study. Statistical

analysis performed with NRMSE confirms the same results.
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5.5 Validation - Second method

In this section the results coming from the second validation method are presented. It

is reminded that in this phase the movements are performed by the subject in a unique

task, then all the trials are segmented in order to eliminate the transition phases and then

concatenated. Firstly the classification by the two classifiers is performed and then the

output (the class prediction) is used to trigger the class-specialized regressor in order

to perform the prediction. Four different combination of classifier-regressor are tested

(SVM-GRNN, KNN-GRNN, SVM-MLR, KNN-MLR) and their performances in prediction on

the concatenated movements are compared to the performances of the general regressors

(GRNN-MLR). This phase is repeated for the two degrees of freedom. A statistical analysis

with one-way ANOVA and a post-hoc Tukey-Kramer test is then performed in order to

study the statistical significance of the results.

5.5.1 Classification

The results of the classification are presented for both the KNN and SVM classifiers

(Figure 61 and Figure 62).

Figure 61: Bar diagram with KNN validation accuracy values for each class in 8 subjects
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The performances for KNN results (Figure 53) less robust than the first method ones:

except for subject 5 and 8 with an average classification accuracy over 90%, for the other

subjects the average accuracy is in the range 81%-87%, a result that can be still considered

acceptable beacuse not all the classes are misclassified. Analyzing more deeply, it can be

noted that the classes that has the lowest accuracy rate are Standing and Stair Ascending.

The most of the misclassification errors are between this two classes and in some cases

(Subject 6) between the Rest tasks: this can be due to a subject that is not in total relax, but

probably there is residual activation coming from the previous movement beacause the

tasks are performed consequently.

Figure 62: Bar diagram with KNN validation accuracy values for each class in 8 subjects

For what concerns SVM, it is possible to note that this type of classifier is less stable

for a dynamic task with respect to KNN. The average accuracies are lower than KNN ones

for each subject, and spans in the range 81%-87%. There are some classes that are less

misclassified, like Gait and Sitting with peaks of class accuracy over 93%. The most of

misclassification errors comes from the same classes of KNN case, and can be explained

by the modality of execution of the task, which is different from the modality of training.
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5.5.2 Ankle angle predictions

The trend of the performances of prediction in terms of R2 and NRMSE values with all

the models among the 8 subjects is reported respectively in Figures 63 and 64.

Figure 63: R2 value trend for different models in 8 subjects, Ankle Joint

From Figure 55 it is evident that, also in this case, all the combined models demonstrate

better performances with respect to the two general regressors, even if the overall quality

of prediction is decreased with respect to the first validation method.
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Figure 64: NRMSE value trend for different models in 8 subjects, Ankle Joint

This improvent is also evident analyzing the NRMSE, and it is possible to note that in

this case we have an overall decreasing of NRMSE values by using the combined approach,

in particular with subjects 4 and 5.

For the sake of clarity, the reconstructed angle signals with all the different approaches

relative to subject 7 are presented below (Figure 65).

From this figure we can see that the quality of reconstruction is not as good as the

previous case of validation (Figure 57), but it is possible to note that the prediction with

the combined models have in any case a slight improvement, in particular with SVM-

GRNN and KNN-GRNN methods. With the SVM-MLR and KNN-MLR there is also an

improvement in terms of R2 and NRMSE value with respect to GRNN and MLR models

even if the reconstruction is not robust to the morphology of the angle signal.
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Figure 65: Ankle angle reconstruction in subjects 7 with different models. From top to bottom:
SVM-GRNN, KNN-GRNN, SVM-MLR, KNN-MLR, MLR and GRNN

98



5 Results and Discussion

STATISTICAL ANALYSIS

It has been quantitatively confirmed by the statistical analysis performed with a one-

way ANOVA using R2 values that, comparing all the six methods, the null hypotesis is

refused (p<0.05) and then the difference between the groups means are significant. In or-

der to see the differences between the combined and standard approach, a Tukey-Kramer

multiple comparison post-hoc test was performed (Table 7).

Multiple comparison test GRNN MLR

SVM-GRNN p < 0.01 p < 0.05

KNN-GRNN p < 0.01 p < 0.05

SVM-MLR p < 0.01 p < 0.05

KNN-MLR p < 0.01 p < 0.01

Table 7: Second Method, Ankle joint: Tukey-Kramer multiple comparison test. p-values of the
pairwise comparison between combined methods and general regressors

This test revealed that all the combined methods are significantly better (p<0.05) than

both GRNN and MLR models. In Table 8, R2 mean and standard deviation values of the six

models are reported.

R2 SVM-GRNN KNN-GRNN SVM-MLR KNN-MLR GRNN MLRR

Mean 0.2697 0.2888 0.2788 0.3123 0.0708 0.1015

STD 0.0744 0.1060 0.1164 0.0957 0.0710 0.0652

Table 8: Second Method, Ankle joint: R2 Mean and Standard deviation values of the six methods
predictions

In this case, as it has been said before, the quality of reconstruction is not satisfying

in any case, but it is possible to state that all the combined methods are equivalent and

outperform the two non specialized regressors. Statistical analysis performed with NRMSE

confirms the same results.
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5.5.3 Knee angle predictions

The trend of the performances of prediction in terms of R2 and NRMSE values with all

the models among the 8 subjects is reported respectively in Figures 66 and 67.

Figure 66: R2 value trend for different models in 8 subjects, Ankle Joint

From Figure 66 it is evident that all the combined models demonstrate better per-

formances with respect to the two general regressors. Also in this case we can note a

decreasing in the accuracy of prediction with respect to the first validation method, due to

the same reasons previously explained.
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Figure 67: NRMSE value trend for different models in 8 subjects, Ankle Joint

This improvement is evident also by analyzing NRMSE trends, and it is possible to note

that also in this case we have an overall decreasing of NRMSE values on all 8 subjects by

using the combined approach.

For the sake of clarity, the reconstructed angle signals with all the different approaches

relative to subject 7 are presented below (Figure 68).

From this figure we can see how the prediction with the combined models have an

ingent improvement, in particular with SVM-GRNN and KNN-GRNN methods. With the

SVM-MLR and KNN-MLR there is also an improvement in terms of R2 and NRMSE values

with respect to GRNN and MLR models where the reconstruction is much more noisy. In

particular, it is interesting to note that there is an improvement in the prediction even if

the classifier accuracy is lower. This is an evidence that this kind of approach has obviously

a dependence from the classifier but it seems to be robust to misclassifications.
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Figure 68: Knee angle reconstruction in subjects 7 with different models. From top to bottom:
SVM-GRNN, KNN-GRNN, SVM-MLR, KNN-MLR, MLR and GRNN
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STATISTICAL ANALYSIS

From one-way ANOVA using R2 values, comparing all the six methods, the null hypote-

sis is refused (p<0.05) and then the difference between the groups means are significant.

In order to see the differences between the combined and standard approach, a Tukey-

Kramer multiple comparison post-hoc test was performed (Table 9).

Multiple comparison test GRNN MLR

SVM-GRNN 0.3430 p < 0.01

KNN-GRNN p < 0.05 p < 0.01

SVM-MLR 0.4190 p < 0.01

KNN-MLR 0.0711 p < 0.01

Table 9: Second Method, Knee joint: Tukey-Kramer multiple comparison test. p-values of the
pairwise comparison between combined methods and general regressors

This test revealed that only KNN-GRNN is significantly better (p<0.05) than both GRNN

and MLR models, while all the combined models result significantly better than only MLR.

However, from Table 10 it possible to see that in this study on 8 subjects, all the combined

methods outperform the general regressors in terms of average R2 values.

R2 SVM-GRNN KNN-GRNN SVM-MLR KNN-MLR GRNN MLRR

Mean 0.4337 0.5296 0.4222 0.5082 0.2458 0.0776

STD 0.2009 0.2133 0.1827 0.1635 0.2128 0.1195

Table 10: Second Method, Knee joint: R2 Mean and Standard deviation values of the six methods
predictions

From this table it is evident that the KNN-GRNN model is the one that has the best per-

formances, and it is also the same that reveals statistical significance of the improvement.

This confirms that the combined approach results more performing than the standard one.

Statistical analysis performed with NRMSE confirms the same results.
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5.6 Processing Time Analysis

In order to study the application of a combined approach for real-time control of an

active prostheses or exoskeleton, a further analysis is performed in order to study if the

processing time spent for a prediction is suitable for an online apllication. The time delay to

extract a prediction from a window (epoch) is composed by: a delay for feature extraction,

a delay for classification and a delay to make the prediction with the regressor. The results

are summarized in Table 11.

(Time referred to analysis with MacBook Pro Retina with Intel Core i5 2.7 Ghz processor

and 8Gb DDR3 RAM, using Matlab).

Delay (ms) SVM-GRNN KNN-GRNN SVM-MLR KNN-MLR

Feature extraction 2.5875 2.5875 2.6511 2.6511

Classification 0.087 0.0783 0.087 0.0783

Prediction 6.4977 6.4977 0.0436 0.0436

Total 9.1722 9.1635 2.7817 2.773

Table 11: Processing delays for angle prediction from an EMG epoch.

All the delays are below 10ms and this makes the combined approach suitable for

real-time applications.
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6 Conclusions and Future Work

6.1 Conclusion

An sEMG based control strategy that exploits combined information from pattern

recognition and proportional myolectric control methods for a lower limb exoskeleton

control has been developed and test.

An experimental protocol has been developed for the recording of EMG signals and

joint angle signal in a laboratory. This protocol contains guidelines to assure that recorded

data sets are usable in the further work on pattern recognition and proportional control in

order to have measures repeatability. The EMG signals are recorded using DuePro system

with adhesive disposable bipolar electrodes, while for the angle signal two Biometrics

Electrogoniometers are used in association with a DueBio probe in order to record ankle

signal from knee and ankle joint. 7 different movements of activities of daily living (ADL)

are taken into account: gait, sitting down, standing up, stair ascending, stair descending,

rest (standing position) and rest (sitting position). In order to study this movements, 8 lower

limbs muscles are selected: TA, GL and GM that are mainly responsible to actuate the

ankle joint movements while RF, VL, VM, BF and ST are associated to knee joint activity.

The electrodes are positioned on this muscles following the SENIAM guidelines. The

electrogoniometers placement instead is performed following the Biometrics Operating

Manual. Eight able-bodied male subjects participated for the data collection procedure.

Four different combined model were tested: SVM-GRNN, KNN-GRNN, SVM-MLR

and KNN-MLR. The performances of these models are then compared to two standard

techniques of regression, i.e. GRNN and MLR.

The EMG signal in each trial is segmented using 250ms windows with 75% of overlap

and a subset of six features (RMS, ZC, IEMG, WA, NT, WL) is used to charachterize each

window. This way constructed feature vector is used as input for SVM, KNN and GRNN

models, while for the MLR only the LOG(VAR) feature is used.

Basically, two processes were conducted: a training and testing phase in order to find

the best classifier and regressor models and a validation phase in order to analyze the

performances of the different systems. After a tuning process to find the best classifier

parameters for each subject, a Leave One Out Cross-Validation is performed on 10 trials of

105



6 Conclusions and Future Work

the different movements and the classifier model that has the highest average accuracy on

a cycle of the Cross-Validation is selected for performing the validation phase. This process

is repeated for both KNN and SVM classifiers. Similarly, for the two models of regressors

a LOOCV on the same 10 trials is performed and the model that has the highest R2 value

for each class reconstruction in a cycle of the cross-validation is selected for performing

the validation phase. This process is repeated for both ankle and knee joints. The general

regressors are instead trained using all the 10 trials.

The first validation method consisted on comparing the performances of the combined

and standard models using two previously segmented trials for each movement. In this

phase both the KNN and SVM classifiers has shown good accuracy in recognizing the

movement (about 93% average accuracy on 8 subjects). For both ankle and knee joints

the quality of angle prediction is improved (p<0.05) using a the combined approach, in

particular the best performances are registered with SVM-GRNN (R2 = 0.8442±0.1127 and

N RMSE = 0.1232±0.0411 for knee joint and R2 = 0.6032±0.1338 and N RMSE = 0.1176±
0.0190 for ankle joint) and KNN-GRNN (R2 = 0.8459±0.1127 and N RMSE = 0.1231±0.0385

for knee joint and R2 = 0.6066±0.1184 and N RMSE = 0.1178±0.0201 for ankle joint).

In the second validation method, the subject is asked to perform a sequence of move-

ments in order to simulate a daily scenario. In this phase there is the evidence of a decrasing

in the performances for both the classification and the prediction of the angles due to

the different modality of movement execution. In particular it has been noted that the

KNN classifier is slightly more robust than SVM in predicting a movement in a dynamic

condition.

Nevertheless, also in this case the combined approach has better prediction perfor-

mances (p<0.05) with respect to the stanard one, in particular KNN-GRNN model has

demonstrated the highest quality of prediction (R2 = 0.5296 ± 0.2133 and N RMSE =
0.2237± 0.0514 for knee joint and R2 = 0.2888± 0.1060 and N RMSE = 0.1600± 0.0188

for ankle joint).
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6.2 Future work

This section explains the interesting topics for future work on this field of study and the

possibilities for making a real application for rehabilitation exoskeleton.

• Improvement of the quality of regression. From this study there is the evidence

that the combined approach givers better performances than the standard one.

Nevertheless, the results in terms of quality of prediction are not optimal and there is

the need to improve the regression accuracy. One solution can be found in a different

modality of training (like online or adaptive learning). One other important concern

is the feature selection: it could also be an hypothesis that the exctracted features are

not the best in order to maximize the regressor performances. For that reason a work

on feature extraction and selection for regressors models is suggested.

• Improvement of the quality of the classifiers prediction in dynamic sequences of

movements. From the second validation method result, it has been shown that the

classifiers had a slight decreasing in prediction accuracy due to the different condi-

tion of execution of movements. For that reason it is suggested to study more deeply

the robustness of classification when the test set is taken in different conditions with

respect to the training set. Also in this case an online learning approach is suggested.

• Study of the transition phases between movements. For a real-time application it is

important to find a strategy in order to process the transition phases among different

movements, giving the classifier robustness to changing signals and changing acti-

vation. One suggestion could be to study a post-processing of the class predictions

based on the majority vote.

• Implementation of the real-time control. After all the improvements of the control

strategy, the aim is then to implement the real-time control and first trying to control

a virtual model before testing on an exoskeleton.

• Exoskeleton control. The first stage of the study is indeed the final control of the

exoskeleton motors. It is also important to study the effect of the extracted con-

trol signal on the PID controllers of the exoskeleton and to find the better way to

maximize the robustness of the system.
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• Application on not able-bodied subjects. It is important to find out if this study

could be suitable for subjects with reducted muscular activity (like post-stroke pa-

tients). In this way this strategy could be used for rehabilitation purposes.
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