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Abstract

This Master’s Thesis proposes and evaluates the partial safety factors related to the
aleatoric and the model uncertainties, regarding the overall structural resistance for
non-linear analysis of slender reinforced concrete members.
Several experimental tests are found in literature, considering different types of
columns subjected to an axial load or an eccentric load. Forty experimental tests
have been selected in order to take into account of a slenderness range between five
to eighty.

For each experimental test, one structural model is defined, in order to evaluate
the aleatoric uncertainty on the non-linear analysis of reinforced concrete slender
members. The Latin Hypercube Sample is performed for each column in order to
sample a set of values which can be representative of the material aleatory charac-
teristic. Subsequently, the partial safety factor related to the aleatoric uncertainty
is evaluated.

Several structural models are defined, for each experimental test, in order to investi-
gate the model uncertainty influence on the non-linear analysis of reinforced concrete
slender structures, considering different possible approach available to describe the
mechanical behaviour of reinforced concrete members. Consequently, the numerical
results are compared to the experimental results. Then, a statistical treatment of
the resisting model uncertainties is performed, following a Bayesian approach. Sub-
sequently, the mean value and the coefficient of variation, which characterized the
resisting model uncertainty, are identified. Finally, the partial safety factor related
to the resisting model uncertainty is evaluated.
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Chapter 1

Structural reliability

1.1 Basis requirement

Eurocode 0 (EC0) [1] established principles and requirements both for the safety and
the durability of the structures. It describes the basis of their design and verification
and gives guidelines related to structural reliability aspects.
Durability is defined, for both materials and structures, as the capability to preserve
physical and mechanical characteristics. This essential property defines an adequate
safety level, which shall be maintained over the design working life of the structures.
The following basis requirements should be met:

• suitable materials shall be chosen;

• an appropriate design and detail level shall be considered;

• control procedures shall be specified for the design, production and execution.

Therefore, a structure shall be executed in such a way that, during its intended life,
considering an appropriate level of reliability and taking into account economical
aspects, it will:

• sustain all actions and influences likely to occur during its execution and use;

• remain fit for the use for which it is required.

1.1.1 Design working life

The structure design working life is defined as the period of time during which a
desired level of functionality and structural stability need to be maintained (see [1]).
Design working life depends on the structural typologies (see Tab. 1.1).



1.1 Basis requirement

Design working life
category

Indicative design
working life (years)

Examples

1 10 Temporary structures

2 10 to 25 Replaceable structural
parts

3 15 to 30 Agricultural and other sim-
ilar structures

4 50 Building structures and
other common structures

5 100 Monumental building struc-
tures, bridges and other
civil engineering structures

Table 1.1: Indicative design working life (EC0 [1])

1.1.2 Design situations and limit states

According to EC0, the structural safety and performance may be assessed in rela-
tion to the limit states that may be occur during the design working life (see [1]).
The limit state is the condition in which not all design requirements are satisfied
by the structure. Structural requirements are distinguished in the different design
situations. The relevant design situations shall be selected taking into account the
circumstances at which the structure is required to fulfil its function.
Those situations shall be classifies as follows:

• persistent design situations, which refer to the conditions of normal use;

• transient design situations which refer to temporary conditions applicable to
the structure, e.g. during execution or repair;

• accidental design situations, which refer to exceptional conditions applicable
to the structure or to its exposure, e.g. to fire, explosion, impact or the
consequences of localised failure;

• seismic design situations, which refer to conditions applicable to the structure
when subjected to seismic events.
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1.1 Basis requirement

The selected design situations shall be sufficiently severe and varied, in order to en-
compass all conditions that can reasonably be foreseen to occur during the execution
and use of the structure.

Ultimate limit states

The Ultimate Limit States (ULS) are the design conditions that concern: the safety
of people, the safety of structure, the safety of environment and, in some circum-
stances, the protection of the contents (see [1]).
In the ULS, states prior to structural collapse is considered instead of the collapse
itself.
The following ULS should be verified:

• loss of the equilibrium ot the structure or any part of it, considered as a rigid
body;

• failure by excessive deformation, transformation of the structure or any part
of it into a mechanism, rupture, loss of stability of the structure or any part
of it, including supports and foundations;

• failure caused by fatigue ot other time-dependent effects.

Serviceability limit states

The Serviceability Limit States (SLS) are the design conditions that concern the
functions of the structure or structural members under normal use, the comfort of
people and the appearance of the construction works (see [1]).
The verification of SLS should be based on the following criteria:

• deformations that affect:

– the appearance;

– the comfort of the users;

– the functioning of structure, which includes the function of machines or
services.

• vibrations:

– that causes discomfort to people;

– that limits the effective functionality of the structure.

3



1.2 Assessment of structural reliability

• damages that is likely to adversely affect:

– the appearance;

– the durability;

– the functioning of the structure.

Structural robustness

The term robustness is used to indicate the ability of a structural system to resist
to a damage under extreme loads (see [1]). This requirement is aimed to prevent
an initial local failure from spreading progressively and resulting in the collapse of
a disproportionately large part of the structure.
A limit state can leads to reversible or irreversible consequences. ULS are irreversible
when: the structure or a part of it loss equilibrium; the maximum resistance capac-
ity of a section or a junction is reached; an element or a junction is broken by fatigue
or other time-dependent effects.
Differently, the SLS can be reversible or irreversible and it includes: localized damage
that can reduce durability or affects the efficiency or appearance of structural and
non-structural elements; unacceptable deformations that affect functionality or ap-
pearance; excessive vibrations that affect people or non-structural elements. When
a limit state is reached, the structure may need to be recovered, or consolidated, or,
in the most extreme cases, demolished.

1.2 Assessment of structural reliability

The previous sections define the purpose of the design: the structural safety. A
structure can be evaluated as safe if it will fulfil all its functions and requirements
during its design working life. This processes implies the evaluation of the structure
resistance (R) and the corresponding action (S). The evaluation of R and S need a
structural model and a structural analysis method. Using a deterministic method,
this request can be express as follows:

S ≤ R (1.1)

In this way, it is also important, to define how a limit state is reached, then, when a
structure is no more able to fulfil its functions. A limit state can be defined as follows:
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1.2 Assessment of structural reliability

S = R (1.2)

However, S and R are not deterministic values, but they are affected by uncertain-
ties, which are related to the used of : mathematical models, geometrical models,
material behaviour and loads (which are random in nature). The consequently
randomness of S and R can be characterized by their mean values (µS and µR),
their standard deviations (σS and σR), and probability density functions (fS(s) and
fR(r)). In presence of uncertainties, the basic requirements are not simple to satisfy.
For this reason, the probabilist approach and the definition of structural reliability
need to be introduced (see [2]).
The structural reliability, also known as structural probability of success, can be de-
fined as the probability that the structure will fulfil all its functions during a period
of time.

Psuccess = P [S ≤ R] (1.3)

Therefore, the probability of failure is the converse of the reliability, and this can be
expressed as follows:

Pfaillure = 1− Psuccess = P [S > R] (1.4)

In this way, a structure can be evaluated as reliable if the probability, that the
structure will fulfil all its functions during its design working life (Psuccess), is higher
then a acceptable fixed value (P ∗).

P ∗ ≥ Psuccess = P [S ≤ R] (1.5)

Those relations define a probabilistic space of random variables. The probability
of a point (X), which represents the structure and all the input parameters, to be
found in the failure domain (U) or in the safety domain (S) can be expressed as
follows:

Pfaillure = P [X ∈ U ]

Psafety = P [X ∈ S]
(1.6)
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1.2 Assessment of structural reliability

Structural safety is assured when Pfaillure is a small value, which is different than
zero. EC0 gives those values, and for ULS, it can be between 10−5 and 10−6 (see
[1]).

1.2.1 Semi-probabilistic method

In this method, the failure probability (Eq. (1.4)) is replaced by the verification of
the Eq. (1.1), where, instead of the aleatory values of R and S, the characteristic
values Rk and Sk, and the corresponding partial safety factors γR and γS are used.
Hence, for the verification of a generic limit state, the following expression is used:

γSSk ≤
Rk

γR
(1.7)

where Rk and Sk are defined as the lower and the upper fractiles respectively:

P [R < Rk] = p ←− lower fractile

P [S > Sk] = p ←− upper fractile
(1.8)

Figure 1.1: Characteristic values in full-probabilistic method

Fig. 1.1 shows those values in the safety and failure domain.
EC0 [1] suggests the values of p to be adopted. The lower fractile, related to the
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1.2 Assessment of structural reliability

resistance (Rk), should be p = 5%, which means that the resistance value has a 5%
of probability to be lower. The upper fractile, related to the action (Sk), should be
p = 5%, which means that the action value has a 5% of probability to be higher.

1.2.2 Fist-Order Reliability Method (FORM)

In the precedent paragraph, the failure domain (U) was introduced and it was de-
fined as the subspace of the variable X in which S ≤ R is not verified. The safety
and the failure domains are showed in Fig. 1.2.

Figure 1.2: Limit State Concept [2]

Therefore, the probability of failure was expressed by the first of Eq. (1.6). Using
the Joint Probability Density Function (JPDF) fx(x) of the vector X, which rep-
resents all the aleatory parameters that are involved, the failure probability can be
rewritten as follows:

Pf =
∫
U
fx (x) dx (1.9)

The solution of this integral is not evident and it is necessary a numerical integration
which is time-consuming. For this reason, many authors proposed the assessment of
the reliability by means of a reliability index (β). This index, which has the standard
deviation dimension, measures the minimum distance between the vector X mean
value and the failure domain contour (G(R, S) = 0). Hence, the problem implies
the evaluation of β, that can be found evaluating the minimum distance point on
the limit state surface. This point is called design point.
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1.2 Assessment of structural reliability

The linear limit state equation in two variables is considered (Fig. 1.3):

G(X) = R− S = 0 (1.10)

where R and S are supposed to be normal distributed (N(µ, σ2)). A set of reduced
variables is introduced as:

R′ = R− µR
σR

S ′ = S − µS
σS

(1.11)

where µ and σ are mean and standard deviation values respectively, which are as-
sociated to the corresponding variable. The new variables R′ and S ′ are normal
distributed (N(0, 1)). If Eqs. (1.11) are substituted into Eq. (1.10), the limit state
equation in the reduced coordinate system becomes:

σRR
′ − σSS ′ + µR − µS = 0 (1.12)

The last expression represents the equation of a line. The distance from the origin
point to this line is β (Fig. 1.3(b)).

Figure 1.3: Linear limit state: (a) original coordinates, (b) reduced coordinates

Using simple trigonometry, it is possible to calculate the distance of the limit state

8



1.2 Assessment of structural reliability

line (Eq. (1.12)) from the origin as:

β = µR − µS√
σ2
R − σ2

S

(1.13)

Reliability values prescribed by EC0

Tab. 1.2 shows the value of β and the corresponding values of failure probability.

Pf 10−1 10−2 10−3 10−4 10−5 10−6 10−7

β 1.28 2.32 3.09 3.72 4.27 4.75 5.20

Table 1.2: β values and corresponding Pf values [1]

In order to define the reliability of the structure itself, EC0 establishes Consequence
Classes (CC), by considering the consequences of failure or malfunction of the struc-
ture. Those classes are showed in Fig. 1.4.
Moreover, EC0 defines three Reliability Classes (RC), which are associated with

Figure 1.4: Definition of consequences classes (CC) [1]

the three consequences classes CC1, CC2, and CC3. The values of β are suggested
considering a design working life either of 1 year or 50 years (Fig. 1.5).

1.2.3 Full-probabilistic method

This approach considers the material resistance and the permanent and variable
loads as aleatory variables, with their Probability Density Functions (PDF).
The performance function (G(X)) describes the failure and the safe domains as fol-
lows:

9



1.2 Assessment of structural reliability

Figure 1.5: Reccomended minimum values of reliablity index β (ULS) [1]


G(X) > 0, → success

G(X) < 0, → failure
(1.14)

Hence, the failure probability can be written as:

Pf =
∫
G(X)≤0

f(x) dx (1.15)

The reliability problem can be solved by the last integral, however the evaluation of
Eq. (1.15) rarely lead to a closed form solution. A resistance-action bi-dimensional
space is considered, such as the linear limit state in two variables in Fig. 1.3(a),
where R and S are independent variables, and the corresponding PDFs (fR(r) and
fS(s)) are known. Eq. (1.15) can be rewritten as:

Pf =
∫
G(X)≤0

f(x) dx =
∫∫

[R−S≤0]
fR,S(r, s) dr ds (1.16)

As R and S are independent variables, it results:

fR,S(r, s) = fR(r) · fS(s) (1.17)

Therefore, Eq. (1.16) can be considered as follows:

Pf =
∫∫

[R−S≤0]
fR,S(r, s) dr ds =

∫ ∞
0

fS(s) · FR(s) ds (1.18)

Hence, Pf can be evaluated by a convolution integral of two functions, where fS(s)
is JPDF related to the variable S, and FR(s) = P [R < S] is the Cumulative Distri-
bution Function (CDF) related to the variable R. Fig. 1.6 illustrates the geometrical

10



1.3 Simulation techniques

meaning of this integration.

Figure 1.6: Geometrical meaning of the integration Eq. (1.18)

1.3 Simulation techniques

The treatment of aleatory and model uncertainties, which will be discus in Chapter
3, requires a strong background in probability and statistics.
In the simplest form of the basic simulation, each random variable in a problem
is sampled several times, in order to represent its real distribution according to its
probabilistic characteristics. The method commonly used for this purpose is called
the Monte Carlo (MC) simulation technique [2].

1.3.1 Monte Carlo simulation technique

In a probabilistic approach, the uncertainty linked to the input parameter, such
as material properties, applied loads and geometric properties, are modelled with
various probability distributions. In this way, the first step of MC method is the
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1.3 Simulation techniques

definition of the problem in terms of all random variables [2].
Hence, the limit state function of this problem can be written as:

G(X) = G(X1, X2, X3, ..., Xn) (1.19)

where Xi are the problem variables. Consequently, it is necessary quantifying the
probabilistic characteristics of all the random variables in terms of their PDFs, which
depends on the parameter nature. The next paragraphs describe the Monte Carlo
methodology.

Creating the sample: random number generation

For the creation of a sample of interest, a domain of definition of possible inputs is
established and the inputs are randomly generated from a well-defined probability
distribution. The random variables to be generated could be continuous or discrete.

Running the Numerical Model

All the generated values X can be substituted in G function to verify if the corre-
sponding G value is positive (success) or negative (failure). This process needs a
huge number of values, which means that for a failure probability of 10−6, N = 108.9

samples are required in order to achieve a good accuracy of results.

Analysing the data

The probability of failure is obtained as follows:

Pf = P [G(X) ≤ 0] = lim
N→∞

n

N
(1.20)

where n is the number of failure cases (G(X) ≤ 0) and N is the total number of MC
simulations. The value of this ratio is generally small, and the estimated probability
is subjected to uncertainty. Moreover, the variance value of this ratio decreases
when N increases; hence, the related uncertainty decreases when N increases.

Advantages and limitations of using Monte Carlo

The main advantage of Monte Carlo is its easy numerical implementation, especially
for complex cases where the analytical expressions are too complicated. The results
are reliable and accurate. However, it may take a lot of time, depending on the
complexity of the problem and the number of samples drawn.
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1.3 Simulation techniques

1.3.2 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) is a form of stratified sampling that can be applied
to multiple variables. The method is commonly used to reduce the number of
samples necessary in a Monte Carlo simulation, to achieve a reasonably accurate
random distribution [2]. MC simulation provide statical answers to problems by
performing many calculation with randomized variables, and analysing the trends
in the output data. The concept behind LHS is based on the same approach: the
variables are sampled using a sampling method, and then randomly combined sets
of those variables are used for one calculation of the target function. The sampling
algorithm ensures that the distribution function is sampled evenly, but still with
the same probability trend. Fig. 1.7 reports the difference between a pure random
sampling (red line) and a stratified sampling of a log-normal distribution (blue line).
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Figure 1.7: Cumulative frequency plot

The process is described in the following paragraphs.

Sampling

In this method, n different values, from each k random variables X1,...,Xk, are sam-
pled. The range of each variable is divided into n non-overlapping intervals on the
basis of equal probability of occurrence, which means that the area of each interval
under the density function should be equal to the probability value of:
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1.3 Simulation techniques

P (X) = 1
n

(1.21)

In case of a normal distribution and for a sample size n=10, the probability density
function should be divided into five portions of equal probability:

P (X) = 0.10 (1.22)

Consequently, the interval limits can be easily be determined from the cumulative
distribution function in Fig. 1.8.

Figure 1.8: Sampling in LHS

Then, n different values (between 0 and 1) in n non-overlapping intervals are ran-
domly selected for each random variable, consequently one value per interval is gen-
erated. Next step is to convert these random variables into cumulative probabilities

14
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for each of the n intervals by the following linear transformation:

Pm =
( 1
n

)
Um +

(
m− 1
n

)
(1.23)

where m is the integer counter between 1 and n corresponding to the interval num-
ber, Um is the random number generated between 0 and 1, and Pm is the cumulative
probability value for the mth interval obtained from the randomly generated num-
ber. Only one generated value falls into each of the n intervals since:

m− 1
n

< Pm <
m

n
(1.24)

where (m− 1)/n and m/n are the lower and the upper bound for the mth interval.
Then, Pm values are inserted in the inverse distribution function (F−1

X ) to obtain
the specific values of the sample:

Xk,m = F−1
X (Pm) (1.25)

Grouping

The generated values for each random variable are paired together. To achieve
this, random permutation of n numbers corresponding to n generated values is used
for each variable. Finally, grouping is accomplished by associating those different
random permutation. Each value must be used once.

1.4 Statistical tests

In this work, statistical tests have been used in hypothesis testing as goodness of
fit of a log-normal distribution, in other word, those tests establish if an observed
distribution differs from a theoretical distribution [3].
The Pearson’s chi-squared test and the Anderson-Darling test have been used, and
they are explained in the following paragraphs.

Pearson’s chi-squared test

This test uses the statistic variable χ2, which is a normalized sum of squared de-
viations between observed and theoretical values (see [4]). It can be expressed as
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follows:

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
(1.26)

where:

• n is the classes number in which the sample is divided;

• Oi are the observed values;

• Ei are the expected values.

The test compare χ2 to the critical value, from the chi-squared distribution, defined
for a particular degree of freedom and a choose confidence level.
The Degree Of Freedom (DOF) is defined as:

DOF = n− s− 1 (1.27)

where s is the number of distribution parameters. For example, a log-normal distri-
bution has 2 parameters
The confidence level is defined by the p-value.

Anderson-Darling test

This test compares the data cumulative distribution function (F (X)), to the the-
oretical cumulative distribution (P (X)) (see [5]). The test statistic is defined as
follows:

A2 = n
∫
ALLX

(P (X)− F (X))2

P (X)(1− P (X))dP (X) (1.28)

This is a parameter that represent the area between F (X) and P (X).
The test compare the value of A2 to the critical value, for a specified significance
level.

Those tests are implemented in MATLAB [6]. Using the function [h, p] =
adtest(x) and [h, p] = chi2gof(x) , where x is the vector of the observed values.
When:
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• h = 1, x is not from a population with a normal distribution;

• h = 0, x is from a population with a normal distribution;

• p (p-value) is the corresponding confidence level.
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Chapter 2

Structural instability

2.1 Introduction

Failures of many structures are caused by either material failure or structural insta-
bility [7].

The first type of failure can usually be adequately predicted by analysing the struc-
ture on the basic of equilibrium conditions or in terms of equations of motion, that
are written for the initial undeformed configuration of the structure itself.
On the other hand, a large number of structures can suffer a change in their defor-
mation during loading. This change is usually accompanied by a major or minor
reduction of stiffness and, consequently, the prediction of failures needs equations of
equilibrium formulated on the basis of the deformed configuration of the structure
itself. Since the deformed configuration is not known in advance, but depends on the
deflections to be solved, the problem is non-linear. This change of shape may affect
the distribution and the magnitude of the internal forces and the loading capacity
of the structural element.

Structural failures caused by failure of the material (typical for shorten columns)
are governed by the value of the material strength (the crushing of the concrete) or
yield limit (the excessive yielding of the tensile reinforcement), and it is independent
of the structural geometry and size.
At the same time, the load at which a structure becomes unstable can be, in sim-
ple way, treated as independent of the material characteristics; but it depends on
structural geometry and size, in particular by slenderness, and it is governed firstly
by the stiffness of the material. In fact, when failure instability occurs, the material



2.2 Buckling with stable brunching

does not reach its strength limit.

In general, the columns behaviour is affected by the following parameters: the slen-
derness, the loading system, the shape of the column, the bearings, the material
properties, and the amount of reinforcement.

In the following paragraphs it is treated a description of instability problems. The
second order effects are considered relevant just in one direction. Moreover, the
effect of torsion are neglected.

A distinction between columns and beam-columns is needed [8]. A column is defined
as a structural element loaded by a concentric axial load only. A beam-column is
defined as a beam loaded with axial load and an applied moment, either owing to
an eccentrically applied axial load or a transverse load.

2.2 Buckling with stable brunching

This form of instability, also known as Euler instability, occurs in axially loaded
elastic element such as columns. In this case, the unbuckled and the buckled states
are very close to each other. At the same time, the buckled structure is still able to
sustain loads larger than the critical (see [9]).
The buckling structural deformation is completely different from the structural de-
formation in the pre-buckling states. For example, a rectilinear column axially
loaded, remain rectilinear in the pre-buckling loaded state, while it bends at buck-
ling.
It is theoretically possible that the column could remain rectilinear under load larger
than the critical. However, these equilibrium states are unstable and cannot be
maintained if any disturbance, however small, is applied to the structure.
The existence of various equilibrium branches, that depart from the critical state,
implies that a symmetric and stable equilibrium bifurcation occurs at buckling.

Fig. 2.1 shows a hinged supported beam subjected to a compressive force (N)
applied at the centre of gravity. Starting from an unload condition, the load can be
increase. In the N −w plane, where w is the axial shortening, the loading path will
firstly be represented by the rectilinear segment OB, in which N increasing from
zero up to the critical value Nc. This segment describes the linearly elastic short-
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2.2 Buckling with stable brunching

ening of the column. The equilibrium configuration is given in a deformed shape
which is similar to the initial straight shape configuration. In the N − v plane,
where v is the transversal displacement, the loading path will be represented by the
linear segment O′B′, along the N axis. This means that, if N < Nc, the equilibrium
configuration does not show any inflection, and the deformed shape is similar to the
undeformed configuration.

Figure 2.1: Buckling with stable brunching: (a) the deflection of the axially loaded
column, (b) N − w plane, (c) N − v plane

Furthermore, when the axial load reaches the critical load (N = Nc), the N − w

curve suddenly bends, but N continues to be an increasing function of the shorten-
ing w. This curve shows also the deformability increase, when N > Nc.
Other informations can be obtained in the N − v plane, where N = Nc, in point
B’. There are two symmetrical branches B′C ′ corresponding to the buckled column,
which represent the stable buckled states.
The unstable rectilinear equilibrium states are then represented by points along the
vertical axis (blue line), in which suppose a pure compression.
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2.3 Columns

2.3 Columns

2.3.1 Instability of linear elastic columns

As first example, it is considered a column of length l on two simple supports and
concentrically loaded [8]. If secondary order effects are token into account, the axial
force N causes a bending moments which can not be found until the deflections are
determined. The column is therefore statically indeterminate, and it is necessary to
solve the differential equation for the deflection curve of the column.
In fig. 2.2 is showed a simply supported column.

Figure 2.2: Simply supported column concentrically loaded

The section rigidity EI is constant along the column.
As the secondary effects are taken into account, the moment equilibrium gives as
follow:

M −Nu = 0 (2.1)

where u is the displacement along the transversal direction of the column axis. The
bending moment (M) is determined by the well-know formula:

M = −EI d
2u

dx2 (2.2)

which inserted in the Eq. (2.1) gives the following differential equation:

EI
d2u

dx2 +Nu = 0 (2.3)

This is an ordinary homogeneous second order differential equation, which must be
solved using the following boundary conditions:

u(x = 0) = 0 u(x = l) = 0 (2.4)
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2.3 Columns

It can be introduced the factor α as follows:

α2 = N

EI
(2.5)

The Eq. (1.3) can be rewritten as:

d2u

dx2 + α2u = 0 (2.6)

The complete solution of Eq. (2.6) is:

u = Acos(αx) +Bsin(αx) (2.7)

The two constants A and B are determinate from the boundary conditions (discard-
ing the trivial solution A=B=0) and as a result, the solution of Eq. (2.7) is given by:

sin(αl) = 0 → αl = π + nπ (n = 0, 1, 2, ...) (2.8)

The axial loads (N) obtained through this solution are the eigenvalues and the corre-
sponding solutions u(x) are eigenfunctions. The eigenfunctions give the information
about the column deformed shape, but the deformed magnitude can not be deter-
minate. When n = 0, αl = π, which gives the first and lowest value of N, which
corresponds to the Euler’s equation:

NCR = π2EI

l2
(2.9)

The corresponding eigenfunction is shows in Fig. 2.3.
The Euler’s equation (2.9) can be use to define the critical buckiling stress:

σb = N

A
= π2EI

Al2
= π2Eρ2

l2
(2.10)

Introducing the slenderness factor λ, defined as the ratio of the length of the column
over the radius of gyration of the transversal section, the Eq. (2.10) can be rewrite as:

σb = π2E

λ2 (2.11)
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2.3 Columns

Figure 2.3: First eigenfunction for a simply supported column

Firstly this equation means that when the material characteristics are fixed, the
strength critical value (σc) depends only by λ. Secondly, it shows that the critical
buckling stress (that can be seen as the load-carrying capacity) goes to infinity when
l→ 0.

Figure 2.4: The Euler hyperbola with a cut off at the limited strength fc

Since this condition can not be physically possible and the materials have lim-
ited strength, the Euler’s equation has to be cut off at the corresponding material
strength (see Fig. 2.4).
Therefore, for slender columns, critical stress is usually lower than the compressive
strength. As contrary, a stocky column has a critical buckling stress higher than the
compressive strength, which means that the element reaches the material capacity.
The red curve in Fig. 2.4 identifies an interaction between the two types of failures.
If there was no interaction, a critic slenderness λc could be identified as:

24



2.3 Columns

λc = π

√
E

fc
(2.12)

2.3.2 Instability of inelastic columns

Structural problems related to instability can occur when applied loads generate
stress beyond the elastic limits. In this case the structure behaviour depends on two
non-linearities: the rigidity decrease due to the compression force and the deforma-
bility increase of the material due to stress beyond the linear limits.

Engesser’s method

Engesser’s method is based on the Euler’s equation, with a modification of the mod-
ulus of elasticity (see [8]). He introduces the tangent modulus of the stress-strain
relationship at the current stress level. Therefore,the corresping inclination is used
as elastic modulus (Eσ) of the material (see Fig. 2.5).

Figure 2.5: Stress-strain curve for a soft material

Hence, the critical stress can be calculated as:

σcr = Ncr

Ac
= π2Eσ(

l
i

)2 (2.13)

For a reinforced concrete column, it possible to consider a parabolic stress-strain
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behaviour of the concrete. The tangent modulus is determined as:

Eσ = E0

√
1− σ

fc
(2.14)

which can be inserted into Eq. (2.13) to derive the critical stress (σcr).
As this column is reinforced, the influence of the steel can be token into account as
a contribution calculated on the basis of the critical stress assumed for the concrete.
Thus, the critical load (Ncr) for the column can be calculated as:

Ncr = σcrbh+ σsAs (2.15)

However, this simplification returns a σcr value that is underestimated since the
stiffness of the reinforced column is higher than the stiffness of the unreinforced
column.

Ritter’s method

Ritter took the Engesser’s method introducing a simplification. His theory deter-
mined the stiffness-stress relation of concrete as follows:

Eσ = E0

(
1− σ

fc

)
(2.16)

which leads a difference between the stiffness corresponding to a parabolic law (cal-
culated with Engesser’s method) and the Ritter stiffness (see Eq. (2.16)).
Substituting the Eq. (2.16) into Eq. (2.13) leads to:

σcr,Ritter = fc

1 + fc

π2Ec0

(
l
i

)2 (2.17)

2.4 Beam-Columns

2.4.1 Instability of linear elastic beam-columns

In this section, the solution of the linear elastic problem for beam-columns is briefly
introduced (see [8] and [9]) . The load carrying capacity for beam-columns loaded
with either an eccentric axial load or a concentrically axial load along with lateral
loading will be derived.
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Beam-columns loaded with an eccentric axial load

Figure 2.6: Statical system of an eccentrically loaded beam-column

The equilibrium equation for the deflected beam-column loaded with an eccen-
tric axial load is:

M −M0 −Nu = 0 (2.18)

where M0 is the first order moment. With Eq. (2.2), Eq. (2.18) becomes:

EI
d2u

dx2 +N(u+ e) = 0 (2.19)

This is an inhomogeneous second order differential equation, which must be solved
with the following boundary conditions:

u(x = 0) = 0 u(x = l) = 0 (2.20)

The complete solution is the sum of the homogeneous and an inhomogeneous solu-
tion.
Eq. (2.19) may be rewritten as:

d2u

dx2 + α2(u+ e) = 0 (2.21)

The solution of this equation is:

u = Asin(αx) +Bcos(αx) + e (2.22)
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The two costants A and B can be determined by means of the boundary conditions,
Eqs. (2.20):

B = 0 and A = e

sinαl
(2.23)

The values of those two costants can be inserted into Eq. (2.22), that gives:

u = e

(
1 + sin(αx)

sinαl2

)
(2.24)

This solution can be inserted into the equilibrium equation for the deflected beam-
column, Eq. (2.18) and consequently the combination of N and M can be determined.

Beam-columns loaded with concentrated lateral load

Fig. 2.7 shows a simply supported beam-column under a concentrated lateral load
(V ) applied in the mid spam of the element.

Figure 2.7: Beam-column with concentrated lateral load

The equilibrium of the bending moments, in the left and right-hand portions, gives
respectively:

M −Nu− V

2 x = 0

M −Nu− V

2 (l − x) = 0
(2.25)
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Sobstituting Eq. (2.2) in Eqs. (2.25):

EI
d2u

dx2 +Nu+ V

2 x = 0

EI
d2u

dx2 +Nu+ V

2 (l − x) = 0
(2.26)

Eq. (2.26) may be rewritten as:

d2u

dx2 + α2u+ V

2EI x = 0

d2u

dx2 + α2u+ V

2EI (l − x) = 0
(2.27)

The general solutions of those equations are:

u = A cosαx+B sinαx− V

2N x

u = C cosαx+D sinαx− V

2N (l − x)
(2.28)

The constants of integration A, B, C and D are determined from the boundary
conditions, at the end of the beam and at the point of load V application. Since the
deflections at the ends of the beam column are zero:

A = 0

C = −D tanαx
(2.29)

At the point of application of the load, the deflections given by Eq. (2.23) have to
be the same. Moreover, a common tangent is the second condition of this problem.
These conditions give:

B =
V sinα l

2
Nα sinαl

D = −
V sinα l

2
Nα tanαl

(2.30)

Substituting A, B, C and D into Eqs. (2.28):

u =
V sinα l

2
Nα sinαl sinαx− V

2N x 0 ≤ x ≤ l

2

u =
V sinα l

2
Nα sinαl sinα l2 −

V (l − x)
2N

l

2 ≤ x ≤ l

(2.31)
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This solution can be inserted into the equilibrium equation for the deflected beam-
column Eq. (2.25), hence, the combination of V, N and M can be determined.

2.5 Procedures for columns

The analysis methods for reinforced concrete structures subjected to second order
effects are formulated by Euro Code 2 (EC2) [10].
In general, the verification for instability is made by showing that, under the most
unfavourable conditions of design actions, it is possible to achieve a stable state of
equilibrium between the external and internal force, by taking account of second
order deformations.
All structures are subjected to geometrical imperfections, which leads to accidental
eccentricity in columns and beam-columns. Considering this problem, an additional
eccentricity (ea) needs to be introduced in the most unfavourable direction:

ea = l0
300 (2.32)

In this way, in a column of constant cross-section, subjected to an equal eccentricity,
with the same sign at both ends, the total eccentricity to be token into account in
the analysis is (see Fig. 2.8):

etot = e1 + e2 = e0 + ea + e2 (2.33)

where:

• e0 = MSd1/NSd is the first order eccentricity;

• MSd1 is the first order applied moment;

• NSd is the applied axial load;

• e2 is the second order eccentricity.

EC2 shows three methods to be used for the analysis and the design of columns
and beam-columns, in which the second order effects ar consider, but with different
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Figure 2.8: Eccentricities in a column

degree of accuracy.
The most accurate method is:

• General method;

and the other two are simplified methods:

• Method based on nominal stiffness;

• Method based on nominal curvature.

EC2 shows that if the λ of the column is higher than a critical value λlim, second
order effects can not be neglected, otherwise they could be ignored. The recom-
mended value of λlim is:

λlim = 20AB C√
n

(2.34)

where:

• A= 1
1+0.2ϕef

where ϕef is the effective creep ratio;

• B=
√

1 + 2ω where ω is the percentage of reinforcement;
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• C=1.7-rm where rm is the ratio between the first order end moments at
the column extremities;

• n= NEd

Acfcd
is the relative normal force;

• rm = M01
M02

is the moment ratio, with |M02|>|M01|

Column slenderness is evaluated as the ratio of the effective length over the gyration
radius of the un-cracked concrete section:

λ = l0
i

(2.35)

The effective length (l0), so called effective buckling length, is evaluated for isolated
columns and it depends on the end conditions. Fig. 2.9 shows three columns char-
acterized by different l0, owing to different end conditions.

Figure 2.9: Effective lenght for columns on different end conditions

2.5.1 General method

This method represents the best approximation of the real column behaviour. It
is based on non-linear analysis, which is carried out ensuring that equilibrium and
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compatibility are satisfied. As this method is used as a verification, the column have
to be pre-dimensioned in advance.
Firstly, a model column have to be defined from a generally restrained column. A
model column is a cantilever column, clamped at the base, that is characterized by
a length equal to l0 which is the determinant length of the real column, however
constrained. In the most general case a variable section is considered.
The finite element method is used for this analysis, hence the first step is the sub-
division of the column in segments having height equal to the biggest depth of the
section. Each segment is subjected to an horizontal force (V ), a bending moment
(Mn) and a vertical force (Nn). The vertical force is given by the applied top force
combined with the self-weight of the column it self.
Fig. 2.10 shows the column displacement (yn), and the bending moment:

• yn column displacement;

• bending moments:

– M1n first order contribution, which is trapezoidal, starts from M0 and
increases due to the horizontal force;

– M2n second order contribution given by force Nn due to the eccentricity.

• 1/τn curvature diagram.

The displacement of the point n can be approximated given by the Taylor series:

yn = yn−1 + xy′n−1 + x2

2 y
′′
n−1 (2.36)

From Eq. (2.36) it is possible to derive the mean slope as follows:

y′n−1 = 1
2x (yn − yn−2) (2.37)

and the curvature:

y′′n−1 = 1
τn−1

(2.38)

Substituting Eq.(2.37) and (2.38) in Eq. (2.36):
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Figure 2.10: Cantilever column with variable cross-section

yn = yn−1 + x
1

2x (yn − yn−2) + x2

2
1

τn−1
= 2yn−1 − yn−2 + x2

τn−1
(2.39)

The same expression can be written for the point (n− 1):

yn−1 = 2yn−2 − yn−3 + x2

τn−2
(2.40)

Writing the Eq. (2.40) for the point n=3:

y2 = 2y1 + x2

τ1
(2.41)

As y0 = 0, Eq. (2.40) can be written also for the point n = 2 and if a symmetrical
deformation for x < 0 is supposed, the obtained results is:

y1 = −y1 + x2

τ0
→ y1 = x2

2τ0
(2.42)

The displacement for each point can be expressed as a function of the curvatures:
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y1 = x2

2τ0

y2 = x2

2τ0 + x2

τ1
= x2

(
1

2τ0 + 1
τ1

)
y3 = x2

(
4

2τ0 + 1
τ1

)
− x2

(
1

2τ0

)
= x2

(
3

2τ0 + 2
τ1

+ 1
τ2

)
...

yn = x2
(
n

2τ0 + n−1
τ1

+ n−2
τ2

+ ...+ 2
τn−2

+ 1
τn−1

)
(2.43)

Considering 1/τi = 1/τ0, it is assumed that all sections have the same curvature of
the first element, resulting in:



y1 = 0.5x2 1
τ0

y2 = 0.5 (2x2) 1
τ0

y3 = 0.5 (3x2) 1
τ0

...

y3 = 0.5 (nx2) 1
τ0

(2.44)

As the first order bending moments are known, the total bending moment can be
expressed as follows:


M0 = M10 + Vnyn + Vn−1yn−1 + ...+ V1y1

M1 = M11 + Vn (yn − y1) + Vn−1 (yn−1 − y1) + ...+ V2 (y2 − y1)

...

(2.45)

Moreover, the axial loads and concrete capacity are:

N0 = F0 + F1 + F2 + ...+ Fn Nc0 = Ac0fc

N1 = F1 + F2 + F3 + ...+ Fn Nc1 = Ac1fc

...

(2.46)

where Fn are the axial loads at each sections. Knowing the value of Mi and Ni, it
is possible to calculate the curvature in each point as a function of those values:

1
τi

= f (Mi, Ni) (2.47)

The procedure has to be iterated till the results do not change significantly from one
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step to the next. If the results do not converge, it means that there is no equilibrium
and the failure occurs.
Finally, the load capacity of a column can be reported in a interaction diagram
between the external first order moment M1 and the axial load N .

2.5.2 Method based on nominal stiffness

This method takes into account a geometric non linearity and a material linear
behaviour (see [10]). The material non linearity is considered evaluating the distri-
bution of flexural stiffness on the elements. The rigidity can be estimate as follows:

EI = KcEcdIc +KsEsIs (2.48)

where:

• Kc is a factor that takes into account of cracking and creep effects;

• Ks is a factor that takes into account of the reinforcement contribution;

• Ecd is the design value of the concrete Young modulus;

• Ic is the moment of inertia of the concrete area;

• Is is the moment of inertia of the reinforcement area;

• Es is the design value of the reinforcement Young modulus.

The value of Kc depends on the reinforcement ratio ρ. If:

• ρ≥2 %�:

– Ks=1;

– Kc= K1K2
1+ϕef

;

– K1 =
√

fck

20 ;

– K2 = n λ
170 ≤ 0.2;

– n = NEd

Acfcd
;

– ϕef is the effective creep ratio.

• 1%�≤ ρ ≤ 2 %�:
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– Ks=0;

– Kc= 0.3
1+0.5ϕef

;

– ϕef is the effective creep ratio.

Hence it is possible to evaluate the second order moment (M2) as follows. The first
order moment (M0Ed) is evaluated taking into account the design value of the axial
load (NEd) and the eccentricity (e1). The total design moment, that includes the
second order moment, can be expressed as an amplification of the first order moment:

MEd = M0Ed

1 + β(
NB

NEd

) − 1
 (2.49)

where:

• M0Ed is the first order moment evaluated by means of a linear analysis;

• β = π2

c0
, where c0 is a factor that depends on the 1st order distribution;

• NEd is the design value of the axial load;

• NB = π2EI
l20

is the buckling load based on nominal stiffness, Eq. (2.48).

Finally, the second order moment is:

M2 = MEd −M0Ed (2.50)

2.5.3 Method based on nominal curvature

This method is mainly used for isolated columns loaded by a constant normal force
and a defined effective length, (see Fig. 2.9) (see [10]).
The method evaluates the total bending moment (MEd) based on a deflection, that
is calculated considering l0 and an estimated maximum curvature.
The total design bending moment is:

MEd = M0Ed −M2 (2.51)

It is recalled that M0Ed is the first order moment due to e1, that includes also ge-
ometry imperfections. While the nominal second order moment M2 is:
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2.5 Procedures for columns

M2 = NEde2 (2.52)

where NEd is the design value of the axial force. The others parameters are evalu-
ated as follows:

e2 = 1
r

l20
c

(2.53)

where c is a factor which is approximately equal to π2. The estimated curvature is
defined as follows:

1
r

= KrKϕ
1
r0

(2.54)

where:

• Kr is a correction factor which depends on axial load,

Kr = nu−n
nu−nbal

≤ 1

where:

– n is the relative axial force;

– nu = 1 + ω;

– nbal = 0.4, which is the value of n at maximum moment resistence.

• Kϕ is a factor that takes into account the creep,

Kϕ = 1 + βϕef

where:

– ϕef is the effective creep ratio;

– β = 0.35 + fck

200 −
λ

150 ;

– λ is the slenderness ratio.

• 1
r0

= εyd

0.45d = fyd

Es

1
0.45d

where d is the effective depth of a cross-section.
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Chapter 3

Safety format for non-linear FEM
analysis

3.1 Introduction

Nowadays, for realistic modelling, the use of non-linear models is widespread and
inevitable, in order to solve the problem of load capacity of reinforced concrete struc-
tures. Those models have to be appropriate to represent the material behaviour,
the geometry and all the other structural parameters. Sometimes, the classic design
approach does not fulfil the purpose of this type of analysis. From this point of
view, for a actual structural analysis, the mean values of the material parameters
are used. Consequently, the objective of a non-linear analysis is to formulate the
most probable resistance of a structure, thus the resistance mean value. It means
that the goal is to determine the actual structural behaviour.
However, the numerical simulation of structure and material are subjected to uncer-
tainties to deal with. Those uncertainties are non-negligible because the aim of this
type of analysis is to represent the actual structure. Attentions on those problems
have to be spent in order to ensure that all results and conclusions made by the
analysis are realistic. (see [11] and [12]).

The uncertainties affect the analysis of structure reliability. The role plays by those
uncertainties depends on their nature, which is influenced by both the context and
the application. They can be distinguished as aleatory and epistemic uncertainties.
As defined by [12] "The word aleatory derives from the Latin alea, which means
the rolling of dice. Thus an aleatoric uncertainty is one that is presumed to be the
intrinsic randomness of a phenomenon." . This kind of uncertainty concerns the



3.2 Model uncertainties

intrinsic randomness of the variables that are related to the structure. For instance,
those type of uncertainties are representative of the uncertainty of a repeated mea-
sure (concrete strength), because it leads to random and systematic errors in the
measurement of this physical quantity.
As defined by [12] "The word epistemic derives from the Greek επιστηµη (episteme),
which means knowledge. Thus, an epistemic uncertainty is one that is presumed as
being caused by lack of knowledge (or data)." . Therefore, this kind of uncertainty
is related to the definition of the structural model. The theoretical model made
during the design phase may be incomplete or inexact due to lack of knowledge or
due to accepted simplifications. For example, the connection model between two
structural elements can be supposed to be a hinge. During the construction phase,
it is not sure that this connection will act as a hinge. This case is a clear example
of epistemic uncertainty.

3.2 Model uncertainties

Empirical relations between relevant variables (Xi) are the basis of a calculation
model, which can be express as follows:

R = f (X1, X2, X3, ..., Xn) (3.1)

In case of a complete and exact model (f (...)), and if Xi are supposed exacts, the
outcome R can be evaluated without any error. However, this is not an ordinary
situation, because in most cases the model is incomplete and inexact, and Xi are
never exacts. This is a result of a lack of knowledge, or a deliberate model simpli-
fication. The difference between the real outcome and the model prediction can be
expressed as follows:

R = f ′ (X1, X2, X3, ..., Xn; θ1, θ2, θ3, ..., θn) (3.2)

where θi are variables which contain the model uncertainties and are treated as ran-
dom variables. Their statistical properties can be evaluated from experiments and
observations.(see [13])

40



3.2 Model uncertainties

It is important to define model uncertainties, and a methodology for their qual-
ification and their treatment in practical applications.
Generally, model uncertainty can be obtained by a comparison of physical tests and
model results. Fig. 3.1 shows a general concept for the assessment of model uncer-
tainties.
All the parameters that affect test and model results and real structure behaviour

Test uncertainty 

Test results

 Uncertainty of test method (accurancy, etc.)
 Uncerainty in execution of an individual 

specimen/test (differences in actual dimension 
and those measured ore described, etc.)

 Other effect (not covered by tests sush as time-
variant effects)

Model results

 Model simplifications (boundary conditions, 
assumed stress distribution, etc.)

 Description of input data (tensile strength, 
internal dimension, etc.)

 Computational option (type of finite elements, 
discetisation, boundary conditions, etc.)

Observed uncertainty

MODEL UNCERTAINTY

Structure-specific conditions

 Production quality and control of execution
 Boundary conditions
 Loading conditions
 Size effect

Comparison 

Figure 3.1: General concept of the assessment of model uncertainties [14]

depend on both structural members and failure mode.

• Test results: test methods based on general experience and calibration accu-
racy.

• Model results: the chose of a particular FEM model, all the uncertainties
related to input data and all the possible simplifications.

• Structural conditions: it leads to investigate the differences between real struc-
tures and tests under ideal conditions.

This approach has led to the definition of appropriate safety formats, which are still
under discussion.
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3.3 Safety Formants for non-linear analysis fib in MC2010

3.3 Safety Formants for non-linear analysis fib in
MC2010

3.3.1 Introduction

In 1995, König at al. [15] proposed a generalized safety format for non-linear anal-
ysis. It is based on the assumption that in structures only the sensitivity of the
overall structural behaviour has to be investigated. It is also assumed that the ma-
terial property scattering and action scattering are known and evaluable by means
of their aleatoric distribution functions. In this way, the global safety factor γG,
which is a coefficient related to the overall structural resistance, was introduced.
The first approach, that allowed to evaluate γG, was defined by Holicky and Sykora
[16]. It can be obtained as the ratio between the mean value Rm and the design
value Rd of the structural resistance distribution:

γG = Rm

Rd

≈ exp (αRβVR) (3.3)

where Rm is the mean resistance evaluated by means of a non-linear analysis with
material properties mean values. The design value Rd is defined by means of a
probabilistic relationship (Euro Code 0 [1]):

Rd = Rm exp (−αRβVR) (3.4)

where:

• β is the reliability index;

• αR is the FORM (first order reliability method) resistance sensitivity factor;

• VR is the coefficient of variation related to the resistance distribution.

The values β = 3.8 and alpha = 0.8 are used for an expected structural life of fifty
years. The coefficient of variation VR, related to the structural resistance, can be
obtained by a Monte Carlo simulation.
It can be underlined that:
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3.3 Safety Formants for non-linear analysis fib in MC2010

• the global resistance factor γR may not be unique;

• the hypothesis of log-normal distribution may not be verified.

Because log-normal hyphotesis and γR depend on the analysed structure and on the
faillure mode.

The fib MC2010 [17] proposed the design conditions to be used in the safety format
for non-linear analysis:

Fd ≤ Rd (3.5)

where:

• Fd is the design value of the actions;

• Rd is the design value of the resistance.

There are three different approaches to evaluate the design resistance Rd in Eq.
(3.5), based on different typology of probabilistic theory implementation:

• the probabilistic method;

• the global resistance methods;

• the partial factor method.

3.3.2 Probabilistic method

The value of Rd can be evaluated by the general safety format, which follows the
probabilistic analysis. The design value can be expresses as:

Rd = R(αβ)
γRd

(3.6)

where:

• γRd is the model uncertainty factor;
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3.3 Safety Formants for non-linear analysis fib in MC2010

• β is the reliability index;

• α is a resistance sensitivity factor (which is α < 1 and reduced β);

• R is the resistance predicted by non-linear structural model, which corresponds
to β.

This safety format method can be complicated and time-consuming.

3.3.3 Global resistance methods

This method proposes to evaluate Rd by dividing the resistance R (frep) with either
the global resistance factor γR or the model uncertainty factor γRd. Rrep is the struc-
tural resistance evaluated by a non-linear analysis in which a representative values
for the material resistances frep are chosen.

Rd = R(frep)
γRγRd

(3.7)

In fib MC2010 are demonstrated two methods for the derivation of Rd: the global
resistance factor method and the method of Estimation of a Coefficient of Variation
of Resistance (ECOV method).

The global resistance factor method

The global resistance factor is evaluated as the ratio between the representative and
the design values of the material properties. The mean value for the yield stress of
the steel is considered:

fym = 1.1fyk (3.8)

where fyk is the characteristic yield stress.
While the concrete properties are evaluated as follows:

fcm = 1.1fck
γs
γc
≈ 0.85fck (3.9)

where fck is the characteristic compressive strength. The value of fcm is reduced to
take into account the great random variability of concrete.
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3.3 Safety Formants for non-linear analysis fib in MC2010

The proposed partial factor of global resistance is γR = 1.2. While the proposed
model uncertainty factor is γRd = 1.06.

Method of estimation of the resistance coefficient of variation

This method is based on the hypothesis that the random distribution of resistance
of RC structures R can be modelled by a two-parameter log-normal distribution.
This distribution can be identified by two random parameters: mean resistance Rm

and coefficient of variation of resistance VR.
Firstly, it is needed to estimate the mean and the characteristic values of resistance
using two non-linear analyses, which can be calculated using corresponding values
of material parameters:

Rm = r(fym, fcm, ...) Rk = r(fyk, fck, ...) (3.10)

where the function r represents the non-linear analysis and fm and fk are mean and
characteristic values of material, respectively. The characteristic value Rk can be
obtained as an acceptable approximation :

Rk = Rm exp(−1.65VR) (3.11)

Thus, the coefficient of variation VR can be estimated by the following expression:

VR = 1
1.65 ln

(
Rm

Rk

)
(3.12)

Finally, the global resistance factor can be estimated as:

γR = Rm

Rd

= exp(αRβVR) (3.13)

The parameter α and β are fixed: 0.8 and 3.8, respectively. As regards the model
uncertainty factor, under the hypothesis of well validated numerical models, it is
assumed as γRd = 1.06. This value can be inserted in Eq. (3.7), which is used to
evaluate the design resistance Rd.
This method depends on the reliability of mean and the characteristic value of the
material parameters used in the analysis.
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3.4 Safety Formats for non-linear analysis after fib in MC2010

3.3.4 Partial Factor Method (PFM)

In this method, the structural analysis is based on extremely low value of material
parameters, which are the design values. Thus, the design resistance Rd is calculated
as follows:

Rd = r(fd, ...) (3.14)

where r(fd, ...) is a non-linear analysis function.
The partial factor method can cause deviations in structural response, for example
the failure mode. Therefore, this method should be avoided. However, it can be
used for safety resistance estimation in absence of a more refined solution.

3.4 Safety Formats for non-linear analysis after fib
in MC2010

After the fibModel Code 2010, two contributions were formulated. The first method
was proposed in 2011 by Schlune et al. [11]. The second method was published in
2013 by Allaix et al. [18].

3.4.1 Schlune method

The methods described in fib Model Code 2010 have been tested for non-linear
analysis of both beams and columns, which are subjected respectively to bending
moments and normal forces.

This new method obviates the need to use a safety format for all types of rein-
forced concrete structures that can also be subjected at shear failures. This safety
format is based on the global resistance method. For what concern the material pa-
rameters, the mean yield strength of steel reinforcement (fym) and the mean in situ
concrete compressive strength (fcm,is) are used. The taken geometric parameters
are the nominal values anom. The design resistance Rd is calculated as:

Rd = R (fym, fcm,is, anom)
γR

(3.15)

In the same way of the previous methods, a log-normal resistance distribution is
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3.4 Safety Formats for non-linear analysis after fib in MC2010

assumed, Thus, γR is evaluated as:

γR = exp (αRβVR)
θm

(3.16)

The factor θm takes into account the model uncertainties, and it is defined as the
mean ratio between the experimental and predicted resistances. It can vary between
0.7 and 1.2 and it depends on the failure mode. The Coefficient Of Variation (COV)
in Eq. (3.16) is evaluated as follows:

VR =
√
V 2
g + V 2

m + V 2
f (3.17)

where Vg, Vm e Vf are the COV respectively of the geometrical, the model and the
material uncertainties. Values of Vg and Vm are proposed. If the main material
parameters are the concrete compressive strength and the steel yield stress, Vf can
be evaluated as:

Vf ≈

√(
Rm−R∆fc

∆fc

)2
σ2
fc

+
(
Rm−R∆fy

∆fy

)2
σ2
fy

Rm

(3.18)

where:

• σfc is the standard deviation of concrete compressive strength and σfy is the
standard deviation related on yield stress of the steel;

• ∆fc, ∆fy are the finite variations of the material resistances;

• R∆fc, R∆fy are the resistances results of non-linear analyses performed using
the values (fcm−∆fc) for the concrete compressive strength and (fym−∆fy)
for the yield stress.

Thus, the coefficient of variation VR can be estimated by means of three non-linear
analyses: the first one performed with the mean values of material parameters and
the other two performed with the values (fcm −∆fc) and (fym −∆fy), respectively.

3.4.2 Global safety format (GSF)

This method, as the Schlune method, is based on the global resistance methods
and on the assumption that the random distribution of resistance fits a log-normal
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3.4 Safety Formats for non-linear analysis after fib in MC2010

distribution. The non-linear analysis is performed using the mean values of the ma-
terial resistance (fm) and the nominal values of the geometrical dimensions (anom).
Then, the design values Rd is evaluated dividing the result of the analysis by both
the global resistance factor γR and the model uncertainty factor γRd.

Rd = R (fm, anom)
γRγRd

(3.19)

The global resistance factor is derived, as already explained, from:

γR = exp (αRβVR) (3.20)

where the coefficient of variation of the structural resistance VR is estimated from a
probabilistic simulation using the Monte Carlo method. This method is performed
by a non-linear analysis up to failure, using a finite element model, for each sample
of random variables. It leads to obtain a distribution of the structural resistance R
from which is possible to estimate VR.
The value of the model uncertainty factor γRd takes into account the differences be-
tween the real behaviour of the structure and the numerical model behaviour of the
structure. In this way, γRd can be evaluated by a comparison between experimental
tests and numerical calculations, but also through probabilist considerations. If the
distribution of resistance model uncertainty θR is given, γRd can be evaluated as
follows:

γRd = 1
exp (−α̃RβVθR) = exp (α̃RβVθR) (3.21)

where α̃R = 0.4αR is the sensitivity factor for the resistance model uncertainty and
VθR is the COV of the resistance model uncertainty θR.
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Chapter 4

Database of RC slender columns

4.1 Investigators and experiments

In this section is presented a database of experimental tests performed on slender
columns, which data have been taken from literature. The experimental columns
are characterized by a rectangular (or square) section.

1. Kim, J.K. and Yang, J. K. 1993 [19]

In this investigation, 30 tests on simply supported columns were reported. Two
of the columns failed at the ends and are therefore disregarded from the list. The
investigation contained three different levels of compressive strength (low, medium
and high). For the purposes of the analysis, just 8 columns, with a low compressive
strength, were considered. Furthermore, two different reinforced ratios were tested,
1.98% and 3.95%. Columns characterized by a reinforced ratio of 3.95% present
reinforcement placed at the centre of the cross-section. The data are reported in the
appendix, section A.1.

2. Mehmel, A., Schwarz, H.,Kasparek, K. H. and Makovi, J. 1969 [20]

This investigation contained 16 tests. Fourteen of these present the same eccentricity
in both ends and two have different eccentricities at the ends. For this reason, those
two columns, were disregarded. Three different types of reinforcement were used and
the cross-section had three different sizes. The data are reported in the appendix,
section A.2.



4.1 Investigators and experiments

3. Drysdale, R. G. and Huggins, M. W. 1971 [21]

This investigation contained 58 tests, but just 4 columns were considered because
those tests are characterized by short term loading to failure and eccentricity along
principal axes of inertia. Those columns were characterized by a square cross-section
and a reinforcement ratio of 3.14%. The data are reported in the appendix, section
A.3.

4. Khalil, N., Cusens, A. R. and Parker M. D. 2001 [22]

In this investigation 20 columns were tests. Just 11 columns are considered because
they are characterized by a short-term load. The considered columns have a constant
width of 152mm. The slenderness and the reinforcement ratio were varied. The data
are reported in the appendix, section A.4.

5. Saenz, L. P. and Martin, I. 1963 [23]

This test campaign were performed at the University of Havana with 52 rectan-
gular section concrete columns. Reinforcement ratio and slenderness were varied.
Columns were restrained at the ends, but the authors declared that there were
no certainty that absolute fixedness was developed. The data are reported in the
appendix, section A.5.

6. Foster, S. J. and Attard, M. M. 1997 [24]

In this investigation, the data related to 68 eccentrically loaded conventional and
high-strength concrete columns were reported. Just 26 conventional concrete columns
were considered. The columns were 150 x 150 mm at the mid-section and two dif-
ferent percentage of steel reinforcement ratio were used. The data are reported in
the appendix, section A.6.

7. Pancholi, V. R. 1977 [25]

The tests were performed on 38 columns and those included creep investigations.
Hence, just 29 columns were considered. Those elements were characterized by
a high slenderness ratio, two different dimensions of square cross-section and two
different reinforcement ratios. The load were applied at the centre of gravity of the
section, then no eccentricity were considered. The data are reported in the appendix,
section A.7.
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8. Dracos, A. 1982 [26]

This paper included short and long term studies, hence, just 36 columns were con-
sidered. Slenderness, cross-section, reinforcement ratio and eccentricity were varied.
All columns were simply supported. The data are presented in the appendix, section
A.8.

9. Iwai, S., Minami, K. and Wakabayashi, M. 1986 [27]

A total of 396 column with rectangular cross sections, including square sections,
were testes. The ratio of column length to minimum depth ranged from 6 to 26.
Loads were applied monotonically at each column end with equal eccentricities at
various angles from an axis of symmetry. For this reason just 11 columns were
considered. The data are reported in the appendix, section A.9.

10. Chuang, P. H. and Kong, F. K. 1997 [28]

In this investigation, 26 eccentrically loaded simply supported columns were tested.
Normal strength concrete as well as high strength concrete was used, then, just
20 columns were considered. The concrete cross-section had two different sizes
and three types of reinforcement and reinforcement ratio were used. The data are
reported in the appendix, section A.10.

11. Barrera, A. C., Bonet, J. L., Romero, M. L. and Miguel, P. F. 2011
[29]

In this experimental program, 44 rectangular columns with different sections were
executed. The length of the columns are 3 m for all the specimens and these were
subjected first to a constant axial load and later to a monotonic lateral force up
to failure. These specimens symbolize two semi-columns connected by a central
element, which represents the stiffener effect of an intermediate floor or the connec-
tion between a column and the foundation, represented by a stub element. Normal
strength concrete as well as high strength concrete was used, then, just 23 columns
were considered. The data are reported in the appendix, section A.11.

12. Baumann, O. 1935 [30]

The experimental investigation made by Baumann was subdivided into two sections,
a pilot series and a main series. Both series consider both axially and eccentrically
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loaded columns. The pilot series consists of 12 tests and the main series of 31 tests.
The columns in the pilot series and in the first 15 tests of the main series were
simply supported. In the remaining data of the main series, the end conditions were
changed, and, consequently all these columns were disregarded. The cross-section
was varied in many of the tests.The data are presented in the appendix, section A.12.

Fig. 4.1 shows column types, with end supports and applied loads.

Figure 4.1: Column types

In Tab. 4.1 the number and the type of tests made by each investigator is presented.

4.2 Verification of EC2 requirements for columns

All columns were verified for the EC2 [10] requirements. These requirements ensure
safety, serviceability and durability, and they are satisfied by following the rules
given in the following paragraph.

4.2.1 Column requirements

This requirements deal with columns for which tha larger dimension b is not greater
than 4 times the smaller dimension h.
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References Investigators Year Number and
type of tests

[19] Kim, J.K. and Yang, J. K. 1993 8 B
[20] Mehmel, A., Schwarz, H.,Kasparek, K. H.

and Makovi, J.
1969 14 B

[20] Drysdale, R. G. and Huggins, M. W. 1971 4 B
[22] Khalil, N., Cusens, A. R. and Parker M.

D.
2001 11 B

[23] Saenz, L. P. and Martin, I. 1963 52 D
[24] Foster, S. J. and Attard, M. M. 1997 23 B
[25] Pancholi, V. R. 1977 29 A
[26] Dracos, A. 1982 36 A
[27] Iwai, S., Minami, K. andWakabayashi, M. 1986 4 A and 7 B
[28] Chuang, P. H. and Kong, F. K. 1997 20 B
[29] Barrera, A. C., Bonet, J. L., Romero, M.

L. and Miguel, P. F.
2011 23 C

[30] Baumann, O. 1935 14 A and 13 B

Table 4.1: Investigated columns

Longitudinal reinforcement

• Longitudinal bars shall have a diameter of not less than φmin. The recom-
mended value is 8 mm.

• The total amount of longitudinal reinforcement shall not be less than As,min.
The recommended value is 0.002Ac.

• The area of longitudinal reinforcement shall not exceed As,max. The recom-
mended value is 0.04Ac.

A minimum areas of reinforcement are given in order to prevent a brittle failure,
wide cracks and also to resist forces arising from restrained actions.

Transverse reinforcement

• The diameter of the transverse reinforcement shall not be less than 6 mm or
one quarter of the maximum diameter of the longitudinal bars, whichever is
the greater.
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• The transverse reinforcement shall be anchored adequately.

• The spacing of the transverse reinforcement along the column shall at max-
imum of scl,tmax. The recommended value is the least of the following three
distances:

– 20 times the minimum diameter of the longitudinal bars;

– the lesser dimension of the column;

– 400 mm.

• Every longitudinal bar placed in a corner shall be held by transverse reinforce-
ment. No bar within a compression zone shall be greater than 150 mm from
a restrained bar.
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Chapter 5

Structural models for RC slender
columns

5.1 Material behaviour

In order to analyse the behaviour of RC column, some basic assumptions regarding
the material behaviour for concrete and steel reinforcement have to be introduced.
All material parameters were used as input for the column modellings.

5.1.1 Concrete

Compression behaviour

The Razvi-Saatcioglu model [31] is assumed for the stress-strain relationship of
concrete in compression. This model makes a distinction between confined and
unconfined concrete behaviour. The unconfined concrete strength (fcm) should be
determined from a standard cylinder test results. Differently, the confined concrete
strength (fccm) takes into account of the contribution of transversal reinforcement.
This phenomena is take into account because a triaxial state of stress is consid-
ered. A column subjected to longitudinal compression develops longitudinal strains.
Consequently, transversal tensile strains are generated by these loading. Transverse
strains, caused by later pressure, counteract the tendency of material to expand in
lateral direction, and this results an increasing of strength (Eq. (5.1)).

f ′cc = f ′c + k1f1 (5.1)

where k1 is a function of the Poisson’s ratio and f1 is the lateral pressure, which
depends on the diameter of the stirrups and their spacing. Fig. 5.1 shows those



5.1 Material behaviour

different behaviours for confined and unconfined concrete. From the literature, pre-

Figure 5.1: Razvi-Saatcioglu model [31]

vious reported in Chapter 4, only the information related to fcm is available. The
fccm values are calculate by the Razvi-Saatcioglu formula. All the other parameters,
necessary to describe the compressive behaviour of concrete, were evaluated by EC2
[10] prescriptions as following reported:

Young’s Modulus Ecm = 22
[
fcm

10

]0.3
Compressive strain at the peak
stress fcm

εc1(%�) = 0.7f 0.31
cm < 2.8

Compressive strain at 0.85% of
fcm


εc0.85 = 3.5 fcm ≤ 58 [MPa]

εc0.85 = 2.8 + 27
[

98−fcm

100

]4
fcm > 58 [MPa]

Table 5.1: Concrete parameters by EC2 [10]

The values of ultimate compressive strain in the confined concrete (εcu) and in the
unconfined concrete (εccu) are evaluated by Razvi-Saatcioglu model [31].

Tension behaviour

Stress-strain curve of concrete in tension is considered with a bilinear law (Fig. 5.2).

A linear behaviour is assumed until the tensile strength (fctm) is reached.
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Figure 5.2: Concrete tensile behaviour

The value of this strength is derived from fcm by EC2 [10] prescription:
fctm = 0.30 (fcm − 8 [MPa])

2
3 fcm ≤ 58 [MPa]

fctm = 2.12 ln
(
1 +

(
fcm

10

))
fcm > 58 [MPa]

(5.2)

After the peak value, a linear tension softening branch is followed. On first attempt,
the softening has been considered dependant on fcm, as reported by many authors
(see [32]) This slope is graphically defined as:

SLOPE = fctm
εctmu − εctm

= fctm

εctm
(
εctmu

εctm
− 1

) (5.3)

In Fig. 5.3 is defined the ratio εctmu/εctm which values depends on fcm.

Figure 5.3: Softening slope

However, the concrete tensile behaviour has been calibrated in each software, start-
ing form the first attempt, with the aim to best fit the experimental results.
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5.1.2 Steel reinforcement

Steel reinforcement behaviour is considered equal in both compressive and tensile
field. It is characterized by a bilinear law.
A elastic behaviour is assumed until the yield tension value (fym) is reached. The
elastic slope is the Young’s modulus (Es), which is always considered equal to 210000
[MPa]. The value of fym is given in the database.
When the ultimate tension strength (fsu) is not declared by the authors, it is sup-
posed to be as follows:

fsu = 1.03fym (5.4)

The value of fsu is supposed to correspond at a strain value of 0.070. Fig. 5.4 shows
the steel reinforcement stress-strain law.

Figure 5.4: Steel reinforcement stress-strain law

5.2 Softwares

In this work, three different software have been used: DIANA FEA, ADINA, and
OpenSees.

Each software is characterized by different hypotheses and mechanical parameters,
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which are related to equilibrium, compatibility and constitutive laws. Moreover,
the meshes are defined after a calibration procedure.The standard Newton-Raphson
iterative procedure, which is based on the linear approximation hypothesis, is used
to solve the non-linear system of equation. Perfect bond between the reinforcement
and the surrounding concrete is assumed.
Tab. 7.6 shows a summary of the main hypotheses assumed in the definition of 2D
non-linear numerical models.

ADINA DIANA OpenSees
Equilibrium Standard Newton-Raphson

Finite Elements Fiber Elements
Compatibility -Isoparametric 2 nodes (1X1 Gauss points -Force-based approach

integration scheme with linear interpolation) 5 integration points

-Macro element -Discrete reinforcements

Moment-curvature Stress-strain
law law

CONCRETE
Costitutive Compression: Razvi-Saatcioglu model

laws Tension: (3 different solutions):
1. Elastic - brittle

2. Elastic - linear tension softening

3. Elastic - perfectly plastic

REINFORCEMENTS STEEL
Tri-linear elastic with hardening

Table 5.2: Summary of the basis hyphoteses assumed in the definition of non-linear
numerical method

5.2.1 DIANA

DIsplacement ANAlyser (DIANA) is a Finite Element Analysis (FEA) solver devel-
oped and distributed by DIANA FEA BV [33]. The used element is a beam element,
which can have axial deformation, shear deformation and curvature. DIANA offers
three classes of beam elements, Class-III is used in this analysis. Class-III are fully
numerically integrated Mindlin beam elements. For those type of elements, the nor-
mal strain (εxx) varies linearly over the cross-section area and the transverse shear
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strains are forced to be constant. Since the actual transverse shear stress and strain
vary quadratically over the cross-section area, the shear strain is an equivalent con-
stant strain on a corresponding area.
The L12BEA element (Fig. 5.5) has been used.

Figure 5.5: L12BEA

The L12BEA is a two-node, three-dimensional class-III beam element. Basic vari-
ables are the translations ux, uy, and uz and the rotations φx, φy, and φz in the
nodes. The interpolation polynomials for the displacement can be expressed as
follows: 

ui(ξ) = ai0 + ai1ξ

φi(ξ) = bi0 + bi1ξ
→ i = x, y, z (5.5)

Due to these polynomials the strains are constant along the center line of the beam.
The solution domain is divided into a finite number of elements, which are connected
by nodal points at the inter-element boundaries. In this way the solution domain is
discretized and represented as a patch of elements. The unknown displacements in
each element are approximated by continuous functions expressed in terms of nodal
variables. The functions over each finite element are called interpolation functions.

5.2.2 ADINA

Automatic Dynamic Incremental Nonlinear Analysis (ADINA) is a commercial en-
gineering simulation software program that is developed and distributed worldwide
by ADINA R & D, Inc. [34]. This program is used to solve non-linear structural
problems.
Adina uses the Finite Element Method (FEM)in order to solve engineering prob-
lems.
The elements used in the analysis for the modelling of the columns was the beam
elements, which is a two-nodes Hermitian beam with a constant cross-section and
initially straight. This element can be employed for large displacement analysis
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(which take into account of geometry non-linearities), for which case the displace-
ments and rotations can be large. Moreover, material non-linearities are taken into
account.
The material and the section behaviour of the beam were described using a moment-
curvature input.
The beam element cross-section, and the local coordinate system, is showed in Fig.
5.6. The cross-section coordinate system has its origin on the line connecting the
beam end-nodes.

Figure 5.6: Beam element

The formulation of the beam is a generalization of the Euler-Bernoulli beam formu-
lation. Moreover, the cross-section of the beam is assumed to be rigid in its own
plane, hence, no distortion of the cross-section is considered. The two nodes and the
origin of the local coordinate system (s,t) are located at the centroid of the beam
cross-section.
The displacements and rotations are interpolated from the nodal displacements and
rotations using the following expressions:

u = L1u
1 + L2u

2

v = H1v
1 +H2θ

1
t +H3v

2 +H4θ
3
t

θt = H1,rv
1 +H2,rθ

1
t +H3,rv

2 +H4,rθ
2
t

(5.6)

where the nodal displacements and rotations are u1, v1, θ1
t for node 1 and u2, v2, θ2

t

for node 2, and in which L1, L2 are the linear interpolation functions andH1, H2, H3,
and H4 are the cubic interpolation functions (Hermitian displacement functions).

61



5.3 Models for non-linear simulations

5.2.3 OpenSees

Open System for Earthquake Engineering Simulation (OpenSees) is an object-oriented,
software framework created at the Pacific Earthquake Engineering Center [35]. This
software is used for the development of applications to simulate the performance
of structural systems. The element used in the analysis for the modelling of the
columns were fiber beam elements, which takes into account of a distributed plas-
ticity. Moreover, the force-based approach has been used, which means:

• Equilibrium between element and section forces is exact;

• Section forces are determined from the basis forces by interpolation within
the basic system. Interpolation comes from static equilibrium and provides
constant axial force and linear distribution of bending moment, in the absence
of distributed element loads;

• A low number of nodes can be used.

5.3 Models for non-linear simulations

5.3.1 Geometry models

This analysis requires accurate geometrical models, which depend on the character-
istics of the specimens. It will follows a description of the models:

• Type A. The load is applied through the center of gravity of its cross-section
(which is an axial load), hence, the specimens are not subjected to a first order
eccentricity e0. However a RC column is never a perfectly straight element,
and it presents some imperfections, which generate an unwanted eccentricity.
This eccentricity have to be considered in the models. A model calibration
process owed to consider a eccentricity of 0.5mm.
All specimen present massive elements at both ends, those parts were modelled
considering a linear behaviour.

• Type B. Those columns presents an eccentric load along an axis of symmetry
of the cross-section. Hence, the first order eccentricity (e1) were considered
into the models. Also those columns presented massive elements at both ends,
hence, those parts were modelled considering a linear behaviour.
In Fig. 5.7 is presented a model example of this type of column.
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5.3 Models for non-linear simulations

• Type C. A constant axial load is applied, and in this case no additional im-
perfection were considered into the model. A lateral force is applied in the
column mid spam.
Those columns present a stub element in the point of application of the
transversal load, which is modelled as a linear behaviour element. At both
ends two steel elements, which allow the free rotation of the specimen, were
models considering a linear behaviour.
In Fig. 5.8 is presented a model example of this type of column.

5.3.2 Load models

For Type A, and Type B columns, the axial load or the eccentric load is applied up to
the failure of the columns. A load path with displacement control were considered.
For Type C columns, the axial load is applied and maintained constant during the
tests. Later a transversal load is applied up to the failure of the column. A load
path with displacement control were considered.
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5.3 Models for non-linear simulations

Figure 5.7: Geometrical model for type B column
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5.3 Models for non-linear simulations

Figure 5.8: Geometrical model for type C column
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Chapter 6

Assessment of the Global
Resistance Factor for slender RC
members

6.1 Introduction

As described by JCSS Probabilistic Model Code [13], the description of each mate-
rial property consists of a mathematical model (for example, the σ−ε function), and
parameters, which are random variables (for example, the concrete strength). More-
over, all the relationships between the parameters, described in Paragraph 5.1.1, are
a part of the material model.
Generally, material properties are defined as the properties of material specimens
of defined size and conditioning, sampled according to given rules. Then, the vari-
ability of the mean and standard deviation is a typical form of global parameters
variation, considered by the coefficient of variation. In Tab. 6.7 are reported the
COV values given by [13].

6.1.1 Procedure for the assessment of γR
The Global Safety Format (GSF) can be used for the evaluation of the resistance de-
sign value (Rd) of a structure. This value can be calculated performing a non-linear
analysis, using the mean values of the material resistance(fm) and the nominal val-
ues of the geometrical dimensions (anom). Then, Rd can be evaluated dividing Rm

by both the global resistance factor (γR) and the model uncertainty factor (γRd);
this expression is reported in Eq. 3.19.



6.2 Investigated columns

The aim of this chapter is the assessment of the global resistance factor for slender
RC members. This value can be derived by means of the following relation:

γR = exp (αRβVR) (6.1)

where:

• β is the reliability index. Considering a design working life of 50 years, and
consequences class 2 (CC2, see Tab. 1.2), the proposed β is 3.8. CC2 means
that, in case of failure, medium consequences for loss of human life, economic,
social or environmental occurs.

• αR is the resistance sensitivity factor (which is α < 1 and it reduces β), and
is taken equal to 0.8.

Considering the given values of those two parameters, the corresponding failure
probability is pf = 10−3.

• VR is the COV, related to the structural resistance, which can be obtained by
means of LHS method (see Paragraph 1.3).

VR can be evaluated for each column; as a result, it is possible to calculate a γR for
each column. A a consequence, appropriate evaluations lead to propose a unique
γR.

6.2 Investigated columns

The database, described in Chapter 4, contains all the essential informations about
258 columns. This database is dividend into 5 groups of slenderness. These groups
are reported in Tab. 6.1.

For each groups, 8 columns are selected considering the following criteria:

• All the EC2 requirements, previously reported in paragraph 4.2, shall be sat-
isfied. However, in some cases, the limitations imposed by the experimental
testing on the columns with a high value of slenderness implies that the re-
quirements are not completely satisfied. Consequently, in this selection, the
number of columns affected by this limitation were minimized.

• The column slection criteria are summarized in Fig. 6.1.
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6.2 Investigated columns

Slender intervals Number of columns
3-10 29

10-25 66

25-40 93

40-55 42

55-80 28

Table 6.1: Slenderness groups

Figure 6.1: Column selection

In the following tables, the selected columns are reported, together with their
main informations about: literature reference, test number identification (Test No.),
slenderness (λ), reinforcement ratio (100ρ), and typology (see Fig. 4.1).
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6.2 Investigated columns

No. Reference Test No. λ 100ρ Type
1 [24] 2L20-30 9.7 2.04 B
2 [24] 2L20-60 9.7 2.04 B
3 [27] C000 5.7 3.96 A
4 [24] 2L8-120R 9.7 2.04 B
5 [27] C020 5.7 3.96 B
6 [24] 4L8-30 9.7 4.09 B
7 [24] 4L20-120 9.7 4.09 B
8 [24] 4L8-120R 9.7 4.09 B

Table 6.2: Investigated columns, λ [3-10]

No. Reference Test No. λ 100ρ Type
9 [30] III 22.9 1.60 A
10 [27] B020 15.7 3.96 B
11 [29] N30-10.5-C0-3-30 23.6 3.23 D
12 [20] 3.3 21.4 1.10 B
13 [28] A-17-0.25 17.0 3.27 B
14 [20] 5.1 21.5 3.10 B
15 [29] H60-10.5-C0-1-30 23.6 1.44 D
16 [30] Va 23.1 2.50 A

Table 6.3: Investigated columns, λ [10-25]

No. Reference Test No. λ 100ρ Type
17 [30] I 32.1 1.60 A
18 [23] 24D-2 30.0 2.50 E
19 [28] C-31.7-0.25 31.7 3.35 B
20 [27] RL300 25.0 2.64 B
21 [30] 2 25.8 0.60 A
22 [20] 4.1 30.0 1.20 B
23 [30] 8 25.6 0.60 B
24 [30] VI 32.8 1.60 A

Table 6.4: Investigated columns, λ [25-40]
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No. Reference Test No. λ 100ρ Type
25 [23] 15E -2 40.0 2.50 A
26 [26] S28 48.1 4.18 B
27 [30] 9 40.2 0.80 B
28 [26] S30 48.1 4.18 B
29 [30] 12 40.2 0.80 B
30 [30] 6 40.7 0.80 B
31 [30] 15 40.4 0.80 A
32 [30] 3 40.7 0.80 A

Table 6.5: Investigated columns, λ [40-55]

No. Reference Test No. λ 100ρ Type
33 [26] S25 57.7 4.18 B
34 [25] 17A 65.0 5.44 A
35 [25] 5 60.0 4.52 A
36 [25] 6 60.0 4.52 A
37 [25] 8 79.0 5.44 A
38 [25] 20 70.1 5.44 A
39 [25] 18 70.1 5.44 A
40 [25] 7 79.0 5.44 A

Table 6.6: Investigated columns, λ [55-80]

6.3 Evaluation of VR

6.3.1 Application of LHS

The LHS method is performed for each selected column, considering the following
variables:

• fc, compressive strength of concrete;

• fy, yield strength of steel reinforcement;

• Es, Young’s modulus of steel reinforcement.

The other material parameters depend on the material parameters listed above.
A log-normal distribution is assumed for each material variable [13], with the mean
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and the COV values reported in Tab. 6.7.

fc fs Es

mean f ∗c f ∗y E∗s

COV 15% 5% 3%

Table 6.7: Distribution parameters

The mean values of f ∗c and f ∗y are given for each column. The mean values of E∗s is
taken equal to 210000[MPa] for each column.
The LHS process is explained in Paragraph 1.3.2. A sample size of 30 were used to
model those variables. Tab. 6.9 shows the ranked values obtained using the variable
mean values (Tab. 6.8) associated to Test No. 2L8-120R.

fc [MPa] fs [MPa] Es [MPa]
mean 56.00 480.00 210000
COV 15% 5% 3%

Table 6.8: Distribution parameters for column no 2L8-120R

Each row represents a set of input variables that are inserted into the 2L8-120R
column model, and, consequently, 30 values of mean resistance Rm are obtained.
This process is accomplished for the 40 columns, obtaining 40 distribution of resis-
tance (N).

6.3.2 Characterization of probability distributions

As the GSF is based on the assumption that a random distribution of resistance
fits a log-normal distribution (see [13]), the 40 distributions, obtained in the previ-
ous phase, are tested considering Pearson’s Chi-squared test and Anderson-Darling
tests. In Fig. 6.2 are reported the frequency histogram, the probability plot, and
the p-value, for a log-normal fit related to the distribution resistance related to 2L8-
120R column.
In Appendix B, the frequency histogram, the probability plot and the p-values, for
some resistance distribution, are reported.

72



6.3 Evaluation of VR

fc [MPa] fy [MPa] Es [MPa]
1 54.89 504.36 217146
2 66.99 434.37 204039
3 41.25 485.23 215249
4 59.85 455.61 212603
5 53.26 458.46 209109
6 44.56 493.52 211032
7 48.23 514.65 202747
8 53.79 441.47 208206
9 73.05 521.49 218361
10 69.19 496.75 210603
11 43.46 471.90 209559
12 71.20 468.21 204650
13 57.69 461.94 208432
14 51.36 459.14 211622
15 56.65 473.92 213860
16 50.09 476.58 206049
17 50.88 501.67 207357
18 63.19 534.65 221167
19 61.04 487.90 197867
20 61.98 465.83 222031
21 55.88 494.95 212523
22 46.15 479.38 216445
23 57.03 448.13 201702
24 65.12 509.91 205294
25 54.61 484.29 206706
26 60.32 478.17 213448
27 58.30 490.53 199767
28 49.40 481.80 215129
29 52.23 452.65 203228
30 47.72 470.17 210316

Table 6.9: Input variables that characterize the material variability in column no
2L8-120R
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(a) Probability Plot (b) Probability Density Function

Figure 6.2: Log-normal fit - 2L8-120R

The resistance distribution fits a log-normal distribution for all the 40 columns
considered, which confirms the assumption made by [13].

6.3.3 Evaluation of VR
The VR can be evaluated, for each column, using the mean value and the stan-
dard deviation of the resistance distribution. This two distribution parameters can
be obtained by means of the Maximum Likehood Estimator method (MLE). MLE
attempts to find the parameter values that maximize the likehood function of the
distribution.
Then, COV is obtained as follows:

VR = σR
µR

(6.2)

The obtained values are reported in Tab. 6.10.
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no VR γR no VR γR no VR γR no VR γR

1 0.11 1.40 11 0.12 1.46 21 0.11 1.41 31 0.10 1.37
2 0.11 1.41 12 0.12 1.42 22 0.09 1.30 32 0.10 1.37
3 0.10 1.35 13 0.08 1.26 23 0.06 1.19 33 0.07 1.24
4 0.12 1.45 14 0.09 1.33 24 0.09 1.33 34 0.08 1.27
5 0.09 1.31 15 0.12 1.43 25 0.09 1.31 35 0.09 1.32
6 0.10 1.37 16 0.10 1.35 26 0.08 1.28 36 0.09 1.31
7 0.10 1.34 17 0.09 1.31 27 0.09 1.32 37 0.08 1.27
8 0.10 1.37 18 0.09 1.32 28 0.07 1.24 38 0.09 1.30
9 0.10 1.36 19 0.07 1.24 29 0.09 1.30 39 0.09 1.31
10 0.09 1.31 20 0.10 1.35 30 0.09 1.32 40 0.08 1.27

Table 6.10: VR and γR for each columns

6.4 Evaluation of γR
It is possible to evaluate γR, for each column, by means of Eq. 6.1.
Values are reported in Tab. 6.10.

6.4.1 γR dependence on slenderness factor

In Fig. 6.3 γR is plotted in function of the slenderness λ.

Figure 6.3: γR - λ
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The blue line is the linear trend, which best fits the γR-λ points.
This trend shows that γR decreases when λ increase. This means that when the
slenderness increase, the aleatoric uncertainty is less relevant in the failure prob-
lem. The instability failure is the dominant failure, which does not depends on the
material uncertainties, but it depends on the geometric characteristics, which are
assumed as deterministic parameters.

In conclusion, the results lead to define two different values of the aleatory un-
certainty factor, which depends on the slenderness parameter. For slenderness from
3 to 40, the proposed value of αR is equal to 1.35. For slenderness from 40 to 80,
the proposed value of αR is equal to 1.30.
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Chapter 7

Assessment of the Model
Uncertainties Factor for slender
RC members

7.1 Introduction

Non-linear analysis are used to predict the actual structural response, but they are
characterized by a certain level of uncertainty, mainly related to the definition of the
resistance model. The essential structural characteristic behaviour is represented by
a numerical model, which neglects some aspects. Hence, this is epistemic uncer-
tainty, which is related to a lack of knowledge.
The aim of this Chapter is to evaluate the model uncertainties factor (γRd), which
takes into account all the resisting model uncertainties of 2D Non-Linear Analysis
(NLA) performed on slender RC members. This factor is used in the global resis-
tance method, to define the design structural resistance (Rd), as it is expressed in
Eq. 3.19.

The resisting model uncertainty (θi) can be estimated as follows:

θi = Ri(X, Y )
RNLA,i(X) (7.1)

where X is the vector of all the variables included into the resistance model, Y is the
vector of all the variables that are neglected into the model, but affect the resisting
mechanism. However, θi takes into account also of all the effects related to Y .



7.2 Description of the simulation

Then, a probabilistic model has to be defined in order to characterise the random
variable θ, estimating its mean value (µθ) and its variance (σ2

θ).
This process leads to the definition of the resistance model uncertainties factor (γRd),
using the following expression:

γRd = 1
µθ exp (−αRβVθ)

(7.2)

where Vθ is the COV related to the resisting model uncertainties.

The following paragraphs describe all the steps of the process that leads to the
definition of γR.

7.2 Description of the simulation

The selected experimental tests, reported in Chapter 6, are used to perform simu-
lations, in order to estimate the resistance model uncertainties and calibrate γRd,
considering different plausible solution strategies and various types of software.

Three different software are used, in order to reproduce the structural response
of the experimental tests:

• Diana [33];

• Adina [34];

• OpenSees [35].

A differentiation, with respect to the concrete tensile mechanical behaviour, in the
definition of non-linear analysis models, is considered:

• elastic-brittle (Brittle);

• elastic with post peak Linear Tension Softening (LTS);

• elastic-perfectly plastic (Plastic).

The Brittle and the Plastic behaviour are considered as the upper and the lower
approaches. The LTS is calibrated in each software, with the aim to best fit the ex-
perimental results. The calibration procedure is performed modifying the extension
of the softening branch, and consequently the fracture energy.
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Figure 7.1: Concrete tensile mechanical behaviour

Hence, for each structural member, 9 different structural models are defined, com-
bining the three different types of software with the three different concrete tensile
behaviour.

As 40 columns have been selected, 360 non-linear structural models have been sim-
ulated, as it is showed in Fig. 7.2.

Figure 7.2: Distinction between the 9 models, for the 40 investigated columns
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7.3 Assessment of the model uncertainty factor related to the resistance
model

7.3 Assessment of the model uncertainty factor
related to the resistance model

In this section, all the outcomes derived from the 360 simulations are treated to
assess γR.

7.3.1 Estimation of model uncertainties

The model uncertainties (θi) are estimated as follows:

θi = Rexp,i

RNLA,i

(7.3)

where Rexp,i is the ith experimental ultimate resistance, and RNLA,i is the corre-
sponding ith outcome of the non-linear analysis.
The values of Rexp,i and RNLA,i are reported in Tab. 7.1 and Tab. 7.2.

No. Ref.
Rexp RNLA,1 RNLA,2 RNLA,3 RNLA,4 RNLA,5 RNLA,6 RNLA,7 RNLA,8 RNLA,9

[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]

1 [24] 750.00 910.90 910.90 916.20 728.25 742.50 691.58 691.58 694.28 694.55

2 [24] 700.00 978.80 978.80 985.50 734.77 734.77 736.39 736.39 736.39 739.53

3 [27] 559.58 611.60 611.60 611.60 545.12 545.12 560.59 560.59 560.59 560.59

4 [24] 1092.00 1587.00 1587.00 1587.00 1087.32 1090.88 1152.72 1152.72 1152.72 1152.72

5 [27] 327.32 396.00 396.00 402.90 319.90 336.91 325.74 325.74 328.47 329.02

6 [24] 1100.00 1351.00 1351.00 1353.00 1110.90 1110.90 1032.90 1032.90 1032.90 1032.90

7 [24] 900.00 1037.00 1037.00 1046.00 787.50 787.50 826.10 826.10 830.68 830.68

8 [24] 1247.00 1608.00 1608.00 1608.00 1211.34 1211.34 1319.47 1319.47 1319.47 1319.47

9 [30] 343.23 341.80 341.80 341.80 332.43 332.43 347.26 347.26 347.26 347.26

10 [27] 271.46 298.60 298.60 308.60 219.20 227.24 257.02 257.02 263.74 263.74

11 [29] 280.00 11.64 11.90 11.90 23.50 23.50 16.18 16.18 16.61 17.60

12 [20] 782.57 827.30 827.30 835.90 787.46 787.46 856.35 856.35 856.35 866.52

13 [28] 1181.44 1273.00 1273.00 1307.00 1322.10 1322.10 1367.39 1367.39 1367.39 1393.92

14 [20] 735.50 745.60 745.60 793.50 725.35 725.35 810.84 810.84 810.84 853.75

15 [29] 412.00 13.90 13.90 13.90 17.10 17.10 17.88 17.88 17.88 20.52

Table 7.1: Rexp,i values for each column and RNLA,i results for each model , part
1 (The Test No. is reported in Paragraph 6.2 )
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model

No. Ref.
Rexp RNLA,1 RNLA,2 RNLA,3 RNLA,4 RNLA,5 RNLA,6 RNLA,7 RNLA,8 RNLA,9

[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]

16 [30] 684.50 603.60 662.30 744.40 608.60 608.60 680.67 680.67 680.67 680.67

17 [30] 264.78 259.90 259.90 259.90 252.44 252.44 257.96 257.96 257.96 257.96

18 [23] 198.39 184.60 184.60 184.60 188.00 192.09 192.80 192.80 192.80 192.80

19 [28] 333.38 207.40 219.60 219.60 224.81 262.75 248.41 248.41 280.08 280.08

20 [27] 474.32 334.00 351.00 351.00 381.42 395.45 414.92 414.92 423.26 423.26

21 [30] 696.27 763.20 763.20 763.20 621.28 632.08 762.03 762.03 762.03 762.03

22 [20] 367.75 297.70 346.80 346.80 210.94 403.02 397.50 397.50 391.66 455.72

23 [30] 235.36 197.40 217.70 217.70 191.17 224.47 216.24 216.24 236.75 247.32

24 [30] 392.27 361.00 361.80 361.80 327.27 327.94 363.18 363.18 363.19 363.19

25 [23] 161.03 121.40 121.90 121.90 127.00 130.00 129.32 129.32 129.32 129.32

26 [26] 44.00 53.89 53.89 58.64 55.42 54.88 49.88 49.88 49.88 55.75

27 [30] 205.94 163.70 184.50 184.50 205.25 205.25 161.11 161.11 205.94 208.73

28 [26] 48.00 54.91 54.91 59.78 56.10 56.10 58.49 58.49 53.40 66.69

29 [30] 112.78 153.50 153.50 172.50 114.70 114.70 115.22 115.22 112.15 176.78

30 [30] 225.55 185.70 204.10 204.10 153.40 223.21 187.40 187.40 227.58 243.97

31 [30] 549.17 509.40 509.40 509.40 394.35 394.35 560.26 560.26 560.26 560.26

32 [30] 666.85 511.40 511.40 511.40 456.60 456.60 563.42 563.42 563.42 563.42

33 [26] 36.00 39.53 39.53 43.59 31.21 32.73 42.26 42.26 42.26 48.98

34 [25] 31.88 32.65 32.65 32.80 25.96 25.96 37.10 37.10 37.10 37.10

35 [25] 72.74 67.62 67.62 67.82 53.88 53.88 78.71 78.71 78.71 78.71

36 [25] 72.24 70.34 70.34 70.64 51.97 51.97 82.31 82.31 82.31 82.31

37 [25] 31.88 26.60 26.64 26.64 23.27 23.27 30.98 30.98 30.98 30.98

38 [25] 37.86 29.10 30.17 30.17 27.43 27.43 39.76 39.76 39.76 39.76

39 [25] 33.88 29.09 30.16 30.16 24.37 24.37 39.84 39.84 39.84 39.84

40 [25] 29.89 27.61 27.61 27.61 20.61 20.61 32.27 32.27 32.27 32.27

Table 7.2: Rexp,i values for each column and RNLA,i results for each model , part
2 (The Test No. is reported in Paragraph 6.2 )

In Tab. 7.3 and Tab. 7.4 all the θi values are reported.
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No. Ref. Test No. θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

[-] [-] [-] [-] [-] [-] [-] [-] [-]

1 [24] 2L20-30 0.82 0.82 0.82 1.03 1.01 1.01 1.08 1.08 1.08
2 [24] 2L20-60 0.72 0.72 0.71 0.95 0.95 0.94 0.95 0.95 0.95
3 [27] C000 0.91 0.91 0.91 1.03 1.03 1.03 1.00 1.00 1.00
4 [24] 2L8-120R 0.69 0.69 0.69 1.00 1.00 1.00 0.95 0.95 0.95
5 [27] C020 0.83 0.83 0.81 1.02 0.97 0.97 1.00 1.00 0.99
6 [24] 4L8-30 0.81 0.81 0.81 0.99 0.99 0.99 1.06 1.06 1.06
7 [24] 4L20-120 0.87 0.87 0.86 1.14 1.14 1.14 1.09 1.08 1.08
8 [24] 4L8-120R 0.78 0.78 0.78 1.03 1.03 1.03 0.95 0.95 0.95
9 [30] III 1.00 1.00 1.00 1.03 1.03 1.03 0.99 0.99 0.99
10 [27] B020 0.91 0.91 0.88 1.24 1.19 1.19 1.06 1.03 1.03
11 [29] N30-10.5-C0- 1.42 1.39 1.39 0.71 0.71 0.67 1.02 1.00 0.94
12 [20] 3.3 0.95 0.95 0.94 0.99 0.99 0.97 0.91 0.91 0.90
13 [28] A-17-0.25 0.93 0.93 0.90 0.89 0.89 0.88 0.86 0.86 0.85
14 [20] 5.1 0.99 0.99 0.93 1.01 1.01 0.97 0.91 0.91 0.86
15 [29] H60-10.5-C0- 1.24 1.24 1.24 1.01 1.01 1.05 0.96 0.96 0.84
16 [30] Va 1.13 1.03 0.92 1.12 1.12 1.12 1.01 1.01 1.01
17 [30] I 1.02 1.02 1.02 1.05 1.05 1.05 1.03 1.03 1.03
18 [23] 24D-2 1.07 1.07 1.07 1.06 1.03 1.03 1.03 1.03 1.03
19 [28] C-31.7-0.25 1.61 1.52 1.52 1.48 1.27 1.27 1.34 1.19 1.19
20 [27] RL300 1.42 1.35 1.35 1.24 1.20 1.20 1.14 1.12 1.12
21 [30] 2 0.91 0.91 0.91 1.12 1.10 1.10 0.91 0.91 0.91
22 [20] 4.1 1.24 1.06 1.06 1.74 0.91 0.91 0.93 0.94 0.81
23 [30] 8 1.19 1.08 1.08 1.23 1.05 1.05 1.09 0.99 0.95
24 [30] VI 1.09 1.08 1.08 1.20 1.20 1.20 1.08 1.08 1.08
25 [23] 15E -2 1.33 1.32 1.32 1.27 1.24 1.24 1.25 1.25 1.25
26 [26] S28 0.82 0.82 0.75 0.79 0.80 0.80 0.88 0.88 0.79
27 [30] 9 1.26 1.12 1.12 1.00 1.00 1.00 1.28 1.00 0.99
28 [26] S30 0.87 0.87 0.80 0.86 0.86 0.79 0.82 0.90 0.72
29 [30] 12 0.73 0.73 0.65 0.98 0.98 0.74 0.98 1.01 0.64
30 [30] 6 1.21 1.11 1.11 1.47 1.01 1.01 1.20 0.99 0.92

Table 7.3: The θi value for the different structural models, part 1
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No. Ref. Test No. θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

[-] [-] [-] [-] [-] [-] [-] [-] [-]

31 [30] 15 1.08 1.08 1.08 1.39 1.39 1.39 0.98 0.98 0.98
32 [30] 3 1.30 1.30 1.30 1.46 1.46 1.69 1.18 1.18 1.18
33 [26] S25 0.91 0.91 0.83 1.15 1.10 0.86 0.85 0.85 0.73
34 [25] 17A 0.98 0.98 0.97 1.23 1.23 1.32 0.86 0.86 0.86
35 [25] 5 1.08 1.08 1.07 1.35 1.35 1.35 0.92 0.92 0.92
36 [25] 6 1.03 1.03 1.02 1.39 1.39 1.39 0.88 0.88 0.88
37 [25] 8 1.20 1.20 1.20 1.37 1.37 1.37 1.03 1.03 1.03
38 [25] 20 1.30 1.25 1.25 1.38 1.38 1.38 0.95 0.95 0.95
39 [25] 18 1.16 1.12 1.12 1.39 1.39 1.39 0.85 0.85 0.85
40 [25] 7 1.08 1.08 1.08 1.45 1.45 1.45 0.93 0.93 0.93

Table 7.4: The θi value for the different structural models, part 2

7.3.2 Probabilistic analysis of the resisting model uncertain-
ties

In this sections, the probabilistic analysis of θi is presented.

7.3.3 Bayesian updating

The Bayesian approach is used for the probabilistic treatment of the resisting model
uncertainty for non-linear analysis.
The model uncertainty values, evaluated in the previous phase for a specific model,
represent the prior information. The new information consists of the numerical out-
comes related to the other models, and it is used to update the prior results. In
other words, the prior information, related to each structural model, is updated con-
sidering the data obtained from the other models. Then, the posterior distributions
are evaluated.
The Bayesian updating is described in the following steps:

• F (Mj) j = 1, ..., 9 is the marginal distribution assessed considering the differ-
ent models equiprobable;

• the prior distribution functions F (θ|Mj) for each resisting model Mj are as-
sessed;
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• for each structural model Mj, assessment of the statistical parameters, that
are assumed determinism and summarized into the vector z, of the distribution
function FMj

(θ|Mj) averaging the statistical parameters of the models; in this
way, nine FMj

(θ|Mj), j = 1, ..., 9, are estimated and each one represents the
new information, deriving from the results of the other eight models, for the
structural model Mj;

• the posterior distribution functions F (θ|Mj, z) are assessed for each structural
model Mj, and represent the posterior data;

• assessment of the posterior distribution function F (θ|Z) with the estimation
of the distribution parameters, which are assumed deterministic and summa-
rized into the vector z, averaging the statistical parameters of the posterior
distribution of the different structural models.

The resisting model uncertainties for RC structures are modelled by unimodal log-
normal distribution F (θ|Mj), according to [13].

Prior New Posterior
Structural distribution distribution distribution
model F (θ|Mj) FMj

(θ|Mj) F (θ|Mj, z)
µθ [-] σθ [-] Vθ [-] µθ [-] σθ [-] Vθ [-] µθ [-] σθ [-] Vθ [-]

1 1.05 0.21 0.20 1.03 0.17 0.17 1.10 0.21 0.19
2 1.02 0.19 0.19 1.03 0.18 0.17 1.08 0.20 0.19
3 1.01 0.20 0.20 1.03 0.17 0.17 1.08 0.21 0.19
4 1.16 0.22 0.19 1.01 0.17 0.17 1.17 0.21 0.18
5 1.11 0.18 0.17 1.03 0.17 0.17 1.13 0.19 0.17
6 1.10 0.22 0.20 1.03 0.17 0.17 1.13 0.21 0.18
7 1.00 0.12 0.12 1.03 0.18 0.18 1.04 0.17 0.17
8 0.99 0.09 0.09 1.03 0.19 0.18 1.02 0.18 0.17
9 0.96 0.13 0.13 1.04 0.18 0.17 1.03 0.19 0.19

Table 7.5: Statistical parameters and coefficients of variation of the prior, posterior
and new information functions

In Tab. 7.5 are reported the values of statistical parameters (the mean value and
variance) of the prior distributions (F (θ|Mj)), of the new informations (FMj

(θ|Mj)),
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and of the posterior density functions (F (θ|Mj, z)). The statistical parameters of
those functions are estimated by means of the maximum likehood technique and are
reported in Tab. 7.5. It can be noticed that the mean values of the posterior distri-
butions are higher than the corresponding prior distribution values, this is related
to the updating by the new informations.
As an example, in Fig. 7.3(a) is reported the probability plot, while in Fig. 7.3(b)
is reported probability density function and the histogram, both for the model un-
certainties related to Model 5. The Anderson-Darling test has been performed,
reporting a p-value=0.05.

(a) Probability Plot (b) Probability Density Function

Figure 7.3: Log-normal fit - Model 1

In Fig. 7.9(a) is reported the probability plot, while in Fig. 7.9(b) is reported prob-
ability density function and the histogram, both for the new information related to
Model 5. The Anderson-Darling test has been performed, reporting a p-value=0.15.
Similar results are achieved for the other models. The probability plot shows the
uncertainty model distributions, and the corresponding new informations, are fitted
by a log-normal distribution.
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(a) Probability Plot (b) Probability Density Function

Figure 7.4: Log-normal fit - Model 1

In Tab. 7.6 the average statistical parameters of the posterior distribution are
reported.

Posterior distribution
F (θ|Z)

µθ [-] σθ [-] Vθ [-]
1.09 0.20 0.18

Table 7.6: Average statistical parameters of the posterior distribution

The prior, the new, and the posterior probability density functions and the cumu-
lative distribution functions are plotted in Fig. 7.5.
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(a) Probability Density Function

(b) Cumulative Distribution Function

Figure 7.5: Prior, new, and posterior information PDFs and CDFs

7.3.4 Partial safety factor evaluation

At this point, the partial safety factor γRd, for the resisting model uncertainties of
2D non-linear slender RC members, can be evaluated by means of Eq. 7.2, for a
required reliability level.
The parameters µθ and Vθ, used un the 7.2 are the average statistical parameters of
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the posterior distribution, which are reported in Tab. 7.6.
Considering, in case of a new structures, a CC2, which means medium consequences
of structural failure, and a design working life of 50 years (β = 3.8), the value of
γRd is equal to 1.14. Different class of consequences and different design working
life can be also considered. For new structures, all the results are reported in Tab.
7.7. Whereas, the values for a existing structures are reported in Tab. 7.8. Those
values of γRd are evaluated considering the hypothesis of non-dominant resistance
variable, hence, assuming the FORM sensitivity factor (αR) equal to 0.32.

New
structures

Service Consequences Reliability FORM Partial safety
life of failure index β factor αR γRd

[Years] [-] [-] [-] [-]
50 Low 3.1 1.10
50 Moderate 3.8 0.32 1.15
50 High 4.3 1.17

Table 7.7: Partial safety factor values for model uncertainties in non-linear analysis
of reinforced concrete slender members - New structures

Existing
structures

Residual Reliability FORM Partial safety
service life index β factor αR γRd

[Years] [-] [-] [-]
50 3.1 - 3.8 1.10 - 1.15
15 3.4 - 4.1 0.32 1.11 - 1.16
1 4.1 - 4.7 1.16 - 1.20

Table 7.8: Partial safety factor values for model uncertainties in non-linear analysis
of reinforced concrete slender members - Existing structures

The range γRd values for existing structures is suitable to be chosen owing to the
residual service life and to the costs for an upgrading of the structure.

7.3.5 γRd dependence on other factors

To demonstrate that the uncertainty distributions do not depend on other factors
involved in the analysis, the following graphs, related to the Model 1 are plotted.
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Figure 7.6: fc - γRd

Figure 7.7: fy - γRd
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Figure 7.8: 100ρ - γRd

Figure 7.9: λ - γRd
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The graphs show that the relation between the model 1 uncertainty distribution
and fc, fy, 100ρ, and λ do not follow any trend, hence, those parameters are not
involved in the model uncertainty factor assessment. Same results can be proved for
the other 8 model uncertainty distributions.
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Chapter 8

Conclusions

This Master’s Thesis work proposes and evaluates the partial safety factors related
to the aleatoric and the model uncertainties, regarding the overall structural resis-
tance for non-linear analysis of slender reinforced concrete members.
Several experimental tests have been found in literature, considering different types
of column subjected to an axial load or an eccentric load.

For each experimental test, one structural model have been defined, in order to
evaluate the aleatoric uncertainty on the non-linear analysis of reinforced concrete
structures.
The aleatory uncertainty are related to the material uncertainty, which aleatory be-
haviour can be described by a log-normal distribution.
The Latin Hypercube Sample method has been performed for each columns, taking
into account of the material log-normality, in order to obtain a set of material param-
eters, which takes into account of their intrinsic aleatory characteristic. Those sets
have been used as input into the non-linear models, in order to evaluate the resulting
resistance distribution of each column model. This leads to a total number of 1200
non-linear analysis. Those distributions lead to define a aleatory uncertainty factor
for each columns. The analysis results show that αR decreases when the slenderness
increase. This means that when the slenderness increase, the aleatoric uncertainty
is less relevant in the failure problem. When the slenderness increase, the instabil-
ity failure becomes the dominant failure, which does not depends on the material
uncertainties, but it depends on the geometric characteristics, which are assumed as
deterministic parameters. Hence, the results lead to define two different values of
the aleatory uncertainty factor, which depends on the slenderness parameter. For
slenderness from 3 to 40, the proposed value of αR is equal to 1.35. For slenderness



from 40 to 80, the proposed value of αR is equal to 1.30.

Several structural models have been defined for each experimental test, in order to
investigate the model uncertainty influence, on the non-linear analysis on reinforced
concrete slender members. Then, three different software codes and three different
constitutive laws for the behaviour of concrete in tension have been adopted, which
lead to a total number of 360 non-linear analysis. The resistance model uncertain-
ties have been evaluated and characterized by appropriate log-normal distributions.
Then, the Bayesian approach has been used in the probabilistic analysis, in order
to assess a posterior uncertainty distribution, which has mean value and coefficient
of variation equal to 1.09 and 0.18 respectively.
Finally, the value of the partial safety factor related to the resisting model uncertain-
ties, in agreement with the safety format for non-linear analysis, have been assessed
for each reliability level corresponding to new or existing structures, of the failure
consequences and of the hypothesis of non-dominant resistance variables.
Then, the partial safety factor related to the resisting model uncertainties presents
a range of variation for new structures between 1.10 and 1.17, and for existing struc-
tures between 1.10 and 1.20.
In conclusion, for both new and existing ordinary structures, in the hypotheses of
non-dominant resistance variable, of moderate consequences of structural failure and
for service life of 50 years, a partial safety factor for the resisting model uncertain-
ties for non-linear analysis of reinforced concrete slender members equal to 1.15 is
suggested.
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Experimental data



A.1 Kim, J. K., and Yang, J. K. 1993

A.1 Kim, J. K., and Yang, J. K. 1993
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Figure A.1: Data taken from [19]
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Figure A.2: Data taken from [20]
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Figure A.3: Data taken from [21]
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Figure A.4: Data taken from [22]
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Figure A.5: Data taken from [23], part 1
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Figure A.6: Data taken from [23], part 2
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Figure A.7: Data taken from [24]
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Figure A.8: Data taken from [25]
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Figure A.9: Data taken from [26]
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Figure A.10: Data taken from [27]
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Figure A.11: Data taken from [28]
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Figure A.12: Data taken from [29]
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Figure A.13: Data taken from [30]
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Appendix B

Probability density functions,
probability papares and p-values
related to the 40 columns



B.1 2L20-60

B.1 2L20-60

(a) Probability Plot (b) Probability Density Function

Figure B.1: Log-normal fit - 2L20-60

B.2 4L20-120

(a) Probability Plot (b) Probability Density Function

Figure B.2: Log-normal fit - 4L20-120
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B.3 B020

B.3 B020

(a) Probability Plot (b) Probability Density Function

Figure B.3: Log-normal fit - B020

B.4 5.1

(a) Probability Plot (b) Probability Density Function

Figure B.4: Log-normal fit - 5.1
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B.5 24D-2

B.5 24D-2

(a) Probability Plot (b) Probability Density Function

Figure B.5: Log-normal fit - 24D-2

B.6 4.1

(a) Probability Plot (b) Probability Density Function

Figure B.6: Log-normal fit - 4.1
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B.7 S28

B.7 S28

(a) Probability Plot (b) Probability Density Function

Figure B.7: Log-normal fit - S28

B.8 6

(a) Probability Plot (b) Probability Density Function

Figure B.8: Log-normal fit - 6
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B.9 17A

B.9 17A

(a) Probability Plot (b) Probability Density Function

Figure B.9: Log-normal fit - 17A

B.10 20

(a) Probability Plot (b) Probability Density Function

Figure B.10: Log-normal fit - 20
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