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Summary

The research was developed in the medical image processing to segmen-
tation of specific regions of the brain. These segmentations can help to
improve the accuracy and time saving in Arnold-Chiari malformation diag-
nosis.

Currently are used the manual approaches to Chiari diagnosis by the
neurosurgeons while the computer vision systems can be more effective. One
automatic approach can have same behaviour in different images, therefore,
their behaviour are more predictive than manual approaches.

We focus on a recommended diagnosis method, that is based on rec-
ognizing the Posterior Fossa Midline, Intracranial Midline and Cerebellum
Midline areas. In this method the neurosurgeons decide about Chiari mal-
formations types by these regions anatomy. Today, the main problem is the
different manual segmentation regions by different neurosurgeons. There-
fore, we tried to suggest one automatic approach that decreased these errors.

Our research proposes a method based on Atlas-Based Segmentation to
segment regions and detected some their features that can be helped in
classification Chiari type.

This work is divided into 8 chapters. The first three chapters are de-
scribed the Brian anatomy, Arnold-Chiari malformation diagnostic and pathol-
ogy and chapter 4 are described computer vision systems approaches. Chap-
ter 5 describes the proposed method for segmentation. The subsequent
chapters are the validation and features analysis.



Introduction

Arnold-Chiari is a malformation of the skull and cerebellum. In this
malformation, the cerebellum parts are extended into the upper spinal canal
and below the foramen magnum. In some case, part of the skull can be
smaller than normal and pushed the cerebellum into the foramen magnum
and spinal canal, it creates the pressure on the cerebellum and brain that
can be disturbed on their functionally. Generally, Chiari cause is the genetic
mutations or maternal diet during fetal development and in some patients,
it can be occurred thought traumatic injury, disease, or infection. In the
past, was it was difficult to diagnose, generally there was one Chiari case in
every 1,000 births. But today with the medical image technology and image
processing have been positive effect on diagnostics.

The current standard for Chiari malformation diagnose is a check patient
history, observation of symptoms and diagnostic tests such as: X-ray, that is
able to detect frequent anomalies, The Magnetic Resonance Imaging (MRI),
that generates high quality image to extent of Chiari malformation and it
development and CT scan to find about cerebral ventricles size and revealing
blockages on foramen magnum and the possibility of evaluating the posterior
fossa or spinal cord.

Proposed Study

The proposed study is divided into two parts, the first is the brain seg-
mentation of the regions of interest, the second is the extraction and anal-
ysis of features, which may be able to help in the automatic identification
of Chiari types. So this method does not need a manual selection of an
initial area, differentiating it from semi-automatic segmentation schemes.
Used the Atlas-Based Segmentation technique, and used with the Demons
method, where the test patient images are compared with a reference im-
age, previously drawn by the doctor or radiologist. This method generates
as output three masks segmentation: Cerebellum Mask (MC), Brain Mask
(MB) and Mask of the Posterior Fossa(MPF). Only the masks would be of
great help to who should identify the disease. With the masks we extracted
important morphological characteristics, in order to be able to classify in



corresponding classes with the types of the disease.
Has been developed new diagnose method to improve Chiari malforma-

tions diagnose. This method tries to understand about Chiari malforma-
tions and their type thorough identifying the cerebellum (MC), posterior
fossa (MPF) and brain (MB) and In this study, we try to propose as auto-
mated approach for this diagnose aid method. This approach is based on
the Atlas-Based Segmentation and extract features.
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Chapter 1

Brain Anatomy

In this chapter, we can see the anatomical structure of the brain to
better understand the segmentation algorithm and its relation to Arnold-
Chiari Syndrome in subsequent chapters.

The brain is an organ of nervous system central to control the body ac-
tivates, interpreting and coordinating the information which receives. It has
bilaterally symmetric structure (Figure 1.1) that surrounded by its meninges
into cranium to protect the central nervous system.

Figure 1.1: The brain bilateral symmetric structure.

The brain is able to grow during the life. The brain weighs at the birth
has less than 400 g, and when adult increase between 1, 250 g and 1, 450 g.
Also, its weighs can be different in males and females. However, the males
brain weigh generally is more than the females [5].

There are three large regions in brain: cerebrum, cerebellum, and brain-
stem.The Figure 1.2 shows the regions.



Figure 1.2: The main parts in brain: cerebrum, cerebellum, and brainstem.

1.1 Cerebrum

The Cerebrum is the superior and major part of the brain. The cerebrum
consists of four different lobes, the Frontal, Occipital, Parietal and Temporal
(Figure 1.3), that are able to processing different sensory information.

Figure 1.3: The main brain lobes: Frontal, Occipital, Parietal and Temporal.

Its surface layer calls the cerebral cortex, that composes of a highly
folded collection of gray matter. In deep cortex, there are the white matter
(Figure 1.4). Its function is a transportation cortex and cortical responses
information to other regions of the central nervous system (CNS). The cere-
brum situates in the cerebral hemispheres that called right and left lateral
ventricles [25].

Figure 1.4: The grey and white matter in the cortex

12



1.1.1 Frontal lobe

The frontal lobe is largest cerebral lobe of cortex. It is situated at the
front of the brain. The central and lateral sulcus separated it from parietal
and temporal lobe respectively. It contains the most dopamine-sensitive
neurons that is responsible for selecting sensory information which arrive
from the thalamus to the forebrain. It has main role in voluntary movement,
regulates activities such as walking and expressive language [11]. In addition,
the frontal lobe is able to calculate the future consequences resulting from
current actions in order to solve problems and is responsible for emotional
control and our personality.

1.1.2 Occipital lobe

The occipital lobe is located in the back of brain. It is the visual pro-
cessing center to receives and interprets information from the eyes.

1.1.3 Parietal lobe

The parietal lobe is located above temporal lobe and behind the frontal
lobe. It has main role to integrate and process sensory information that
receives from various parts of the body, such as taste, temperature, pain and
touch. Also it is part of the processing language, mathematical operations,
and spatial orientation.

1.1.4 Temporal lobe

The temporal lobe is located behind the ears. It has role to receives
sensory information to comprehend or understand their meanings in visual
memory and language comprehension. Then, the temporal lobe is able to
processing auditory information and memory encoding.

1.2 Cerebellum

The cerebellum is located above the brainstem, just below the occipi-
tal lobe. It is composed in two cerebellar hemispheres right and left. The
cerebellum outer and deep similar to cortex this means that it consists of
folded gray matter and white matter. Cerebellum has a main role in bal-
ance, equilibrium and body control, and it is responsible for fine movement
coordination, muscle tone and sense of body position [9].

13



1.3 Brainstem

The brainstem consists of the midbrain, pons, and medulla oblongata
that shows in the Figure . It Is responsible for some automatic functions
such as breathing, heart rate, body temperature, and etc.

Figure 1.5: The main brainstem parts: midbrain, pons, and medulla.

The brainstem connects cerebrum with cerebellum and other hindbrain
structures by the midbrain. To transfer the neural messages between the
brain and spinal cord by pons and medulla. Then, it is important role to
connect the brain motor and sensory system [1].
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1.4 Skull

The skull protects the brain and vision, taste, hearing, equilibrium, and
smell organs from injury. It consists of 8 cranial and 14 facial bones. The
skull inside consists of three areas: anterior fossa, middle fossa, and posterior
fossa, also a hole where pass the cranial nerves, arteries, veins that is called
the Foramen magnum. It is main hole that connects the brain to spinal
cord. The Figure 1.6 shows the skull areas structure.

Figure 1.6: The Skull structure.
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Chapter 2

Arnold-Chiari Syndrome

Arnold-Chiari syndrome or Arnold-Chiari malformation, refers to a rare
congenital malformation of the central nervous system (CNS). This con-
dition is caused by a lower displacement of the cerebellar tonsils, passing
through the occipital opening at the base of the skull (posterior fosse, Fig-
ure 2.1), leading in many cases to hydrocephalus as a consequence of the
obstruction of cerebrospinal fluid circulation. It was first described by the
Austrian pathologist Hans Chiari at the end of the 19th century. Him de-
scribed three distinct types of this disorder: type I, II and III. Subsequently,
other researchers added another type to the syndrome in question, type IV
[3].

Figure 2.1: Chiari Malformation.

Type I syndrome is typically asymptomatic during childhood. When
there are symptoms, it is characterized by headache, sore throat, unsteady
ambulation. The malformation consists of the descent, or herniation of the



cerebellar tonsils in the upper part of the vertebral column through the
foramen magnum of at least 3-5 mm [10] (Figure 2.2). In some cases, the
lower part of the bulb can descend.

Figure 2.2: Chiari Malformation type 1. The herniation of the cerebellar tonsils
in yellow through the posterior fosse in blue.

In type II a lumbar myelomeningocele or tonsillar hernia may be found
below the foramen magnum. This can lead to paralysis below the spinal
defect. This type is more common in females, and the symptomatology,
when present, makes a serious debut in the neonatal period or during early
childhood and more subtly in adolescence [10].

Figure 2.3: Chiari Malformation type 2. The herniation of the cerebellar tonsils
in red through the posterior fosse in blue.
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Arnold-Chiari syndrome type III is rare, associated with the presence
of syringomyelia. It can be considered a ’cervical bifid spine’ in which the
entire cerebellum is herniated through a bone defect involving the foramen
magnum, to form a myelo cerebellum syringomyelia (Figure 2.4). It mani-
fests at birth and is burdened by a poor prognosis both for early mortality
and for severe neurological disability at a distance [35]. The syndrome type
III is linked to an occipital encephalocele, containing a variety of abnormal
neuroectodermal tissues. In this type the symptoms described in type I and
II, besides neurological deficit are observed [4].

Figure 2.4: Chiari Malformation type 3. With the syringomyelia indicated.

The type IV, later described, is characterized by the absence of cerebellar
development, which is incompatible with life.
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Chapter 3

Neuroradiological Diagnosis

The Nuclear Magnetic Resonance (NMR) is a crucial diagnostic tool for
patient diagnosed with Chiari Malformation. Radiology is a necessary part
of the diagnostic considerations on the continuous patient treatment. There
are key areas in the process of pathology diagnosing that require improve-
ments to contribute to the early and adequate identification of disease at the
beginning. The MRI is essential for the subsequent therapeutic choice. If
the diagnosis is not correct, it can also happen that surgery performed in a
technically perfect is not effective. For example, the descent of the cerebellar
tonsils is caused by the anchored marrow extending the tonsils downwards
or to an intracranial hypertension that ”pushes” the tonsils from top to bot-
tom, the decompression intervention (aimed at the enlargement of a small
cranial fossa) may be unsuitable to solve the problem [27].

The presence of the malformation is detected by the brain image that
shows the position of the cerebellar tonsils in the area of the cerebrospinal
junction. In the figure 3.1 is possible to see the fourth ventricle (A), ba-
sion (B), medulla oblongata (C), cerebellar tonsils (D), opistion (E) and
cerebellar hemispheres (F) are anatomical landmarks.



Figure 3.1: Cerebellar tonsils in the area of the cerebrospinal junction

The figure 3.2 shows the image of a sagittal MRI and the line that
joins basion and opisthion defines the lower limit of the posterior cranial
fossa, constituting the reference point (B) from which the degree of tonsillar
ectopia (A) is measured.

Figure 3.2: Reference point (B) from which the degree of tonsillar ectopia (B).

To verify if the lowering of the cerebellar tonsils may be have caused
by alterations or interruptions of the cerebrospinal fluid flow through the
foramen magnum, a brain resonance is performed with a study of the liquor
flow or of the liquor dynamics ( kinetic resonance or cine resonance or res-
onance with fluximetry or phase-contrast resonance), used to measure the
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regularity and quantity of the flow of liquor at the brain level [37].

The Chiari malformation diagnosis is advisable to deepen the radiologi-
cal studies to exclude the possible coexistence of other malformations such
as: syringomyelia, hinge malformations, anchored medulla, etc. Therefore,
for this purpose it is also useful to perform a complete vertebral column
resonance [23]. When a syringomyelia is diagnosed (Figure 3.3), it is advis-
able to continue the diagnostic procedure to investigate the presence of other
concomitant diseases such as scoliosis, hernias, canal stenosis, anchored mar-
row.

Figure 3.3: Cervical spinal MRI with syringomyelic cavity indicated by arrow.

MRI does not necessarily correspond to the clinical picture, very low
tonsils or an accentuated syringomyelia can lead to few symptoms and,
vice versa, slightly lowered tonsils or a small syringomyelia can cause se-
vere symptoms. Furthermore, the neurological examination serves to assess
whether the symptoms complained of by the patient may be attributable to
other diseases that the patient suffers from.

3.0.1 Neuroradiological diagnostic criteria

The main diagnostic criterion for MR images was found to be the her-
niation of one or both of the cerebellar tonsils of 5 mm below the margin of
the foramen; or 3-5 mm of herniation accompanied by syringomyelia, despite
the debate remains open especially for the increasingly frequent finding of
cases of Chiari 0 and ”borderline”. This last condition is highlighted when
the cerebellar tonsils engage the foramennous with a descent between 3 and
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5 mm, requiring a careful clinical and radiological evaluation over time,
especially if associated with a syringomyelia or a kinking (kneeling of the
bulbomidullary junction). Symptoms such as headache or signs of motor
deficiency. Therefore, radiology remains a valid criterion but, only associ-
ated with a clinical evaluation, today the clinical history of a typical Chiari
malformation is not understood and can be analyzed only by evaluating
many cases, year after year. Furthermore, the natural history of the disease
remains to be studied, and therefore it is not entirely clear what happens
with a patient who has the malformation but, do not have symptoms. The
3-5 mm criterion is a good guiding criterion, in the great majority of cases,
but sometimes there are exceptions that must be interpreted.

In conclusion, Cine-RM is a non-invasive examination that is carried
out for research purposes and which can be a valid tool for indications of
operability and be used as a prognostic criterion in the immediate.

3.1 Morphological Analysis

The most recent research assigns the herniation to a mismatch in the
growth of the neural and bony elements of the posterior fossa [38]. This
defect would eventually constitute a short and low posterior fossa, which
would not be able to contain the nerve structures that develop.

Among the first studies about this evidence, are those of Marin [26] that
in 1981 showed that the encondral basicranium of fetuses with rhomboence-
brain malformations, such as Chiari malformation, was shorter than normal,
attributing this to the underdevelopment of the occipital bone.

With the diffusion of magnetic resonance MRI in the 1990s, radiological
comparison studies also expanded. Stovner [35] studied the cranial dimen-
sions on lateral radiographs in 33 adult patients with Chiari I Malformations
and verified by MRI and in 40 controls. In this study, the size of the posterior
cranial fossa was significantly lower in patients than in controls.

Other studies were published including the one by Misao Nishikawa et
al. which analyzed the encumbrance of the structures within the posterior
cranial fossa as a possible pathogenesis of Chiari malformation of type I [23].

In this publication the morphology of the brainstem and cerebellum
within the posterior fossa (neural structures of the midbrain, bridge, cere-
bellum and medulla oblongata) and basicranio were considered considering
their embryological development. Thirty Chiari patients and 50 control cases
in a prospective study were studied by neuroimaging.

These studies are important because they were among the first to es-
timate the encumbrance of the posterior cranial fossa structures using a
”volume ratio” in which the volume of the posterior cranial fossa (mesen-
cephalon, bridge, cerebellum and medulla oblongata) was compared to the
volume of the posterior cranial fossa enclosed by bone structures and the
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tentorium (ratio between PFBV and PFCV).
The study proposed here is that of using a series of important features of

the cerebellum, posterior fossa and the brain, in order to find a correlation
with each type of Chiare malformation. These characteristics may be mor-
phological or geometric, which should be separated by segmentation of the
respective regions, thus generating a mask for each region, cerebellum (MC),
posterior fossa (MPF) and brain (MB). Therefore, a possible classification
for each patient based on the medical image.

The next chapter, will be approached the study and selection of the
automatic segmentation method for MC, MB, MPF regions, and the analysis
of the most appropriate features for a possible classification of the disease.

23



Chapter 4

Computer Aided Diagnosis

The computer technologies, medical images developments have helped
to improve the different medical applications such as computer aided diag-
nosis (CAD), image-guided intervention, minimally invasive surgeries and
drug monitoring treatment and disease management. One of the remark-
able function in medical image applications, is the segmentation to find the
interest anatomical parts in the image. Generally, to find the automatically
solution for many medical problems in computer vision fields, it is necessary
to use the segmentation methods. These methods have been divided in two
main groups: the general segmentation algorithm, that is most frequently
used in simple medical segmentation problems and the Atlas-Based segmen-
tation that frequently is used in complex segmentation problem.In this work
is necessary to use a powerful segmentation method, because it is a complex
problem to solve with general methods and an automatic method does not a
medical interaction [14]. Therefore, we focus on the registration Atlas-Based
Segmentation.

4.1 Atlas-Based Segmentation

The atlas-based segmentation tries to find the similar image parts be-
tween the moving and reference image (previously segmented by the doctor
or radiologist). This method is usually used for brain segmentation to indi-
vidualize more complex regions. There are several atlas-based segmentation
methods, that the main difference between them is their registration algo-
rithm.

4.1.1 The registration method

The registration based segmentation is the robust approach that tries to
adapt the transformation between the template that is known as reference
image and the transformed that is known as floating or moving image. The



registration tries to map any image to the template image. The Figure 4.1
shows this process.

Figure 4.1: Registration process block diagram

According to the registration functional, is divided in several groups:
The mono, multi, intra-subject and inter-subject model registration. When
the reference and moving image is the same modality (generated by same
medical device), the registration process is called mono-model registration
and in different modality, the process is called multi-modality registration
[32]. Also, the intra-subject registration defines when the reference and mov-
ing image belong to the same patient, and when they belong to the different
patients, the registration process is called the inter-subject registration.

The different registration techniques are based comparing some variables
between two images, such as the features, intensity, transformation, proba-
bilistic density, and etc.

4.1.2 The Probabilistic method

The Probabilistic method uses the statistical or probabilistic approaches
to image registration such as the estimation of the image intensity, probabil-
ity density function (PDF), which defined at different points on the image
domain. In order to this aim, it is applied several PDF estimation techniques
for example using kernel functions, yielding a smoothed PDF estimate to
alignment moving image entropies with template image.

4.1.3 Intensity vs feature methods

In these methods, is necessary moving the floating image to align with
the template image, until the both images are matched. For this aim, it was
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defined a cost function between two images and tries to minimize it. The
cost function can be defined according to the Equation 4.1.

Cost Function = −Similarity Measure, (4.1)

The Intensity method considers the intensity patterns for the similarity
measure valuation. In the other side, the feature method tries to com-
pare some features such as: points, lines, surfaces and contours between
two images. In order to these valuations, it is necessary some mathematic
approaches such as: the correlation metrics, squared intensity difference,
distance measures, etc. In the Figure 4.2 shows the feature extracted and
distance map.

Figure 4.2: Feature based registration parameters. a) Moving image b) Bones
feature c) Distance map.

The Intensity vs feature methods are useful and fast but, these are not
robust.

4.1.4 Transformation models

The transformation approach introduced in the computer vision field in
1995 that used the geometric transformations to match the floating image
with the template image. The transformation can be the rigid, non-rigid,
affine, projective, curved form, etc. These transformations can be applied
in local part of image (local mode) or in whole image (global mode).

26



There are two main groups of transformation, rigid and non-rigid. The
rigid transformations are a linear transformation that are based on the rota-
tion and translation, these transformations preserve the distances between
two points (pixels). There are several important linear transformations such
as: the affine, that tries to map a parallel line onto parallel lines, projective
that tries to map each line to line. However, these transformations have a
simple process, they are not effective in medical applications. Then, gener-
ally the non-rigid transformation techniques are used in medical applications
such as: soft-tissue deformation during imaging or surgery, images registra-
tion, etc. The non-rigid transformations are not linear transformations, that
are based on the shape change and warping [8]. These transformations use
deformed forces and deforming the moving image to match it on the tem-
plate image. The deformed forces can be based on the elastic, fluid and
diffusion models. The Figure 4.3 shows some transformations.

Figure 4.3: Transformations: a) translation, b) rotation, c) scaling, d) shear, e)
affine and f) nonlinear.
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Chapter 5

The proposed method

As mentioned in the chapter 4, the intra cranial midline area, posterior
fossa midline area and cerebellum midline area segmentations are necessary
to the Chiari diagnostic. Currently, the manuals approaches are utilized
to segment these regions, but one important disadvantage of manuals ap-
proaches, are their user dependency. Clearly, some difference in the masks
that are segmented by two different users, can be directly effect on diagnostic
and increasing the clinical risk.

Then, the manuals approaches do not have enough robustness and it is
recommended the automatic approaches, where the segmentation has predic-
tive behaviour and avoiding the clinical risk. Also, the precise segmentation
can be a part of the large algorithms that recognizing the type of Chiari
through extraction of some region segmented features and classified. In this
study, we focus on the segmentation algorithm and extracting some factures
that may be useful for creating the classification in future.

5.1 Introduction

The segmentation algorithm is based on some general and Atlas-Based
segmentation methods. Then, the algorithm is divided in three main parts:
pre-processing, processing and post processing (Flowchart 5.1).



Figure 5.1: The proposed algorithm flowchart

The pre-processing algorithm step tries to adjust the images intensity
distribution, in order to achieve the most similarity intensity distribution
between the reference and moving image. This step is necessary to reduce
the errors in processing algorithm. The processing algorithm step uses the
Atlas-Based Segmentation to segment the interest regions. Finally, the post
processing tries to control the segmented regions to correct their errors.

5.2 Pre-processing Approaches

In this section, is introduced several pre-processing approaches that was
tested on the images to find the efficient pre-processing approaches which are
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most similarity between the reference and moving image and consequently
the accurate segmentation in the processing step. The pre-processing ap-
proaches can be consisted of the intensity enhancement, filtering, reduce the
background and bias effects in the images and general segmentation method.

5.2.1 Extract the Image Background

For improving the processing results, the pre-processing tries to eliminate
the effect of some pixels that do not have useful information. We know
that the segmentation focus on brain pixels. Then, the pixels that are
out of the skull can be considered as to background and creating the same
background intensity in template and moving images. This can be effected
on the precision registration results and reducing their errors. The Figure
5.2 shows the background effect.

Figure 5.2: Extract the Image Background: a) input image, b) image without
background effect.

5.2.2 Level Set segmentation with bias correction

The image contrast is one important quality factors in the processing
algorithm. The level set is one approach that is able to create more con-
trast in brain image and reduce errors that due to inhomogeneous intensity
images[13]. Therefore, level Set segmentation with bias correction function
can be used to segment the reference and moving images, in the three regions
for simplifying the registration algorithm work.

The Level Set segmentation with bias correction as input, can be written:

I = bJ + n (5.1)

where I, b, J and n are the image intensity, true signal to be restored,
the bias field and addictive noise respectively.
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To reduce the bias effect in image and segmented it. It used the local
classification and piecewise constant approaches [21] [41]. Therefore, the n
is assumed as the Gaussian noise with mean zero and variance. The J is
assumed as the piecewise constant:

J(x) = ci, xεΩi (5.2)

where i = 1, 2, .., n. Assumed the cluster center mi ∼ b(x)ci. The level
set energy formulation changes:

F (φ, b, c)
∆
=

∫
(

N∑
i=1

∫
k(x− y)|I(y)− b(x)ci|2Mi(φ(y))dy)dx+

n∑
i=1

R(φi)

(5.3)
where F and φ are energy function and level set function respectively.

The k is the weighting function that defined by Gaussian kernel:

K(u) =

 1
ae
−|u|2

2δ2 for |u| < φ

0 otherwise
(5.4)

where a is the constant value. R is the regulation term that is defined:

R(φ)
∆
= v

∫
|∇H(φ)|dx+ µ

∫
(|∇φ| − 1)2dx (5.5)

H is Heaviside function. µ and v are the constant. Mi is the function
of φ when

∑n
i=1Mi(φ) = 1. Also, if is defined the Mi in three phase where

N = 3 and the φ is seted in two level: φ1 and φ2. The Mi can be written:

M1(φ1, φ2) = H(φ1)H(φ2)

M2(φ1, φ2) = H(φ1)(1−H(φ2))

M3(φ1, φ2) = (1−H(φ1))

(5.6)

Minimized F and discrete in time, can be calculated through a numerical
approach gradient descent, therefore, fixed the b and c:

∂φ

∂t
= −∂F

∂φ
(5.7)

and replacing the b and c:

b =
(IJ (1)) ∗K
J (2) ∗K

(5.8)
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The ∗ represent the convolution operation. The J (1) and J (2) is defined:

J (1) =

N∑
i=1

ciMi(φ) (5.9)

J (2) =

N∑
i=1

c2
iMi(φ) (5.10)

The c = (ci, ..., cN ) finds to fix the φ and b when minimized F (φ, c, b):

ci =
(b ∗K)IMi(φ)dx

(b2 ∗K)Mi(φ)dx
(5.11)

The Figures 5.3 and 5.4 show the level set effect on reference and moving
images.

Figure 5.3: Applying the level set: a) reference image, b) level set image.

Figure 5.4: Applying the level set: a) moving image, b) level set image
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5.2.3 Contrast Enhancement

The contrast limited adaptive histogram equalization (CLAHE) is one
powerful contrast approach in medical images [17]. This method applies the
histogram equalization on each region of the image to enhancement the con-
trast and prevents the over amplification of noise, that adaptive histogram
equalization can give rise[29] [34],[43]. The Figure 5.5 shows the adaptive
histogram equalization effect:

Figure 5.5: a) reference image, b) CLAHE on reference image, c) moving image,
d) CLAHE on moving image.

5.2.4 Filtering

The Filters are used to smoothing the images. Then, choose the Gaus-
sian or median filters [31].

The Gaussian filter is result of the Gaussian kernel 5.12 convolution and
image.
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G(x, y) =
1

2πσ2
exp−x

2 + y2

2σ2
(5.12)

The G is the 2D Gaussian kernel. x, y are image coordinates and σ is
the standard deviation of the distribution [33].

The median filter replaces each pixel with the median of the neighbor-
hood [15], [16]. These Filters are demonstrated in the Figures 5.7 and 5.6.

Figure 5.6: a) reference image, b) Gaussian filter result.

Figure 5.7: a) reference image, b) Median filter result.

Choice the best pre-processing among the all of approaches above, is very
important because it can increase or decrease the segmentation errors. The
best pre-processing can be defined that the methods have same behaviour
in all images, do not need much time and do not have errors which can be
propagated in the processing algorithm.

34



5.3 The processing algorithm

The processing algorithm uses the registration method to achieve the
segmentation regions, through the minimization of the similarity function
between reference and moving images. Therefore, in the current section,
introduced the Demons and multi-image Demons algorithms registration.

5.3.1 Demons Registration

The Demons is a non-ridged registration method, that first time pro-
posed by Thirion in 1998 [19]. There are several Demons algorithms with
different calculation in deformed forces, but all of them are based on the
optical flow estimation to optimize the energy function [24], [40], [22].

5.3.2 Optical Flow

The optical flow was proposed by American psychologist James J. Gib-
son in the 1940 [12]. He described the visual stimulus provided to animals
moving through the world. The method uses several applications such as
robotics, control of navigation, object segmentation and etc [2]. It can use
the partial derivatives with respect to the spatial and temporal coordinates,
in order to calculated the motion between two image frames in time. The
method estimations that the real point intensity is constant in time. There-
fore, the intensity I in an image sequence can be written:

I(x(t), y(t), t) = I(x(to), y(to), to) = C, (5.13)

the I ,t and c are intensity, time and constant respectively. Consequently,
the time derivative in equation 5.14 can be obtained:

∂I(x(t), y(t), t)

∂t
=
∂I

∂x

dx

dt
+
∂I

∂y

dI

dy
+
∂I

∂t
= 0. (5.14)

Defined the point velocity:

v = (
dx

dt
,
dy

dt
) (5.15)

The equation 5.14 can be separated in two parts: image gradient and
point velocity:

∇I.v = −∂I
∂t
. (5.16)

Therefore, the motion is estimated by the spatial gradient and the tem-
poral derivative of the image intensity.
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5.3.3 Demons Pushing Force

In order to find the intensity similarity, The Demons uses the optical
flow method. The f and m were considered the two frames of a motion
sequence. Calculated the motion vector v to find the m more similar to f .
Therefore, the motion intensity point can be written:

∂I

∂x

∂x

∂t
+
∂I

∂y

∂y

∂t
+
∂I

∂z

∂z

∂t
= −∂I

∂t
(5.17)

Considered:

∂I

∂t
= f −m (5.18)

And the motion vector that is the instantaneous velocity from m to f
defines:

v = (
∂x

∂t
,
∂y

∂t
,
∂z

∂t
) (5.19)

Therefore, the equation 5.17 can be written:

v.∇f = m− f (5.20)

The Demons pushing force can be defined with the motion vector:

vp =
(f −m)∇f

|∇f |2 + (g − f)2
(5.21)

The vp is the motion vector that control the pushing force. It means that
when vp is positive, the motion vector pushes inward. when vp is negative,
the motion vector pushes outward.

In the classical Demons registration proposed by Thirion, the motion
vector corresponds to the inverse of instantaneous displacement d (5.22)
and in the diffeomorphisms Demons (log Demons) registration, that is pro-
posed by Mauna Kea Technologies [28], the exponential of motion vector
corresponds the inverse of instantaneous displacement (5.23).

vp = −d (5.22)

exp(vp) = −d (5.23)
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5.3.4 Demons energy

The algorithm aim is optimizing the energy functional, where there is
most similarity between the moving and reference image. Therefore, the
energy functional is defined:

E(c, d) = sim(F,Moc) + (
σi
σx

)2Reg(d), (5.24)

The sim(F,Moc) corresponds to the energy term, that represents the
similarity relationship between two images. Reg(d) corresponds to the reg-
ularization term, that tries to prevent an ill-posed problem with unstable
and non-smooth solutions. The d is the instantaneous displacement or the
displacement field. The c represents the d o exp(vp). The F and M are
the reference and moving images. The σi and σx are the intensity and
transformation constant uncertainty. Finally, the o represents the image
transformation.

5.3.5 Demons Algorithm

In order to reach the efficient and robust registration. The algorithm
uses the iterative solution. The algorithm chooses the initial displacement
filed based on the equation 5.22 or 5.24. calculating the pushing force to
update the displacement filed and minimizing the energy function. This
process continues until to convergence. The Flowchart 5.8 shows the Demons
Algorithm.
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Figure 5.8: Demons Flowchart
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5.3.6 Demons multi-image Algorithm

The multi-image algorithm uses more than one images which create from
the reference and moving images, to find the best displacement filed in
Demons, and improving the processing results. The multi-image algorithm
inputs can be created with several approaches such as gradient, the Lapla-
cian, entropy operation, etc. The approaches are applied in two different
modalities:

5.3.7 First Modality

In the first modality is created more images from reference and moving
image by Laplacian, gradient, local range filter, adaptive histogram equal-
ization and k means classification.
The k-means classification tries to put the images pixels value in three
classes.

5.3.8 Second Modality

In the second modality is created more images extraction features and
local entropy approaches, adaptive histogram equalization and k- means
classification.

In sum up, applied all modalities, we can have more than one reference
and moving images, that arrived from the Demons inputs. This process
shows in Flowchart 5.9.
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Figure 5.9: Demons multi-image Flowchart

40



The figures 5.10 show the Demons multi-image Algorithm results. The
parameters applied with σi = 1,σx = 1 and iteration number = 600 param-
eters:

Figure 5.10: Demons multi-image Algorithm results and the MB(blue), MC(red)
and MPF(green) segmented: a) reference image, b) moving image, c) warped on
reference image, d) warped on moving image.
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The figure 5.11 shows the Demons multi-image energy and difference
between registered and reference image:

Figure 5.11: The figure shows the difference between reference image and
registered image. The graphic shows the energy function in each iteration.
The Demons are applied with σi = 1,σx = 1 and iteration number = 600.
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The figure 5.12 shows the displacement and transformation Fields:

(a) A tiger

Figure 5.12: The figure shows the displacement and transformation Fields:
a) moving image displacement, b) moving image transformation, c) reference
image displacement, d) reference image transformation.

The figures 5.13 and 5.14 compare the Demons and multi image Demons
algorithm.
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Figure 5.13: The MC and MPF segmented in first patient with both algorithm.
The red masks show the Demons algorithm results, and the green masks show the
multi image results. The algorithms parameters are: σi = 1,σx = 1 and iteration
number = 600.
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Figure 5.14: The MC and MPF segmented in second patient with both algorithm.
The red masks show the Demons Algorithm results and the green masks show the
multi image results. The algorithms parameters are σi = 1,σx = 1 and iteration
number = 600.

5.4 The post processing algorithm

The post processing algorithm controls the segmented masks and trying
to minimize their errors.

5.4.1 Region growing

The Region growing is a simple iterative segmentation method. This
method consists of a specific threshold and initial seed point. The segmen-
tation starts of the initial seed point, that growing by comparing all unallo-
cated neighbourhood pixels to the region. Therefore, the process starts to
calculate the difference between a pixel intensity value and the regions mean
until its difference is smaller than specific threshold [30], [6].

5.4.2 Active contour

Active contour or snakes were introduced by Kass, Witkin and Ter-
zopoulos in 1987 [18]. It is the typically segmentation method that uses to
detection the weight boundary or edge in medical images[16] . The snake is
based on the energy minimization that is controlled by the internal, external
and image force [42]. The snake v is defined parametrically:
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v(s) = [x(s), y(s)], sε[0, 1] (5.25)

where x, y are the image coordinates and s is the arc-length. The energy
function defines:

E =

∫ 1

0
Eint(v(s)) + Eimage(v(s)) + Econ(v(s))ds (5.26)

where Eint, Eimage and Econ are the internal, external and the image
energy respectively.

The internal energy consists of elastic and bending energy. It can be
defined:

Eint =
1

2
(α|v(s)′|2 + β|v(s)′′|2) (5.27)

where v(s)′ is the tangential direction at the point that calculates the
elastic force snake and α is the weighting parameter that controls snake s
elasticity.The v(s)′′ is the curvature at the point that calculates the bending
force snake and β is weighting parameter that controls snakes bending [7].

The image energy is based on the some image feature function to push
the snake toward. Therefore, it can be written:

Eimage = wlineEline + wedgeEedge + wtermEterm (5.28)

The wline, wedge and wterm are weights of these features. The Eline, Eedge

and Eterm represent the lines that defined by image intensity, the edge im-
age is defined by image gradient and the curvature of level lines respectively.

5.4.3 The post processing MC algorithm

The MC segmented mask can have some errors, especially to segment
the tonsillar herniation (5.15). These errors can be result of some morphol-
ogy difference between the reference and moving image. Therefore, it is
necessary to correct the errors from post processing step.
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Figure 5.15: Patient with tonsillar herniation

This algorithm segments the brainstem, to analyse the cerebellum left
limitation where the cerebellum is separated of others anatomy parts and
possibility of tonsillar herniation. If the tonsillar herniation exists, the al-
gorithm must try to detect it and create the correct cerebellum boundary.

The algorithm uses the region growing and level set approaches to seg-
ment the spinal cord, and finding the joint point between the spinal cord
and cerebellum. Then, the algorithm tries to detect the brainstem by the
line that passes from the joint point between the spinal cord and initial
part of cerebellum mask. This step helps us finding the tonsillar herniation
and creating correct cerebellum boundary. Finally, according to the new
boundary and applying the active contour, the algorithm can be correct the
processing errors and segment the cerebellum. This process demonstrated
in Flowchart 5.16.

47



Figure 5.16: The MC correction flowchart.

The Figures 5.17 and 5.18 show the correction algorithm results of the
two patients.
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Figure 5.17: Compared the MC segmented before and after correction algorithm
of the first patient. The red masks show the results before the correction and green
masks show the results after the correction.

Figure 5.18: Compared the MC segmented before and after correction algorithm
of the second patient. The red masks show the results before correction and green
masks show the results after correction.
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5.4.4 The post processing algorithm for MPF

The MPF segmentation can have any error in the principle boundaries.
These errors have directly effect in correct posterior fossa area, this segmen-
tation can be excluded or included of correct posterior fossa area.

For the segmentation correction firstly, is necessary to divide the MPF
segmented in two vertical parts. The right part is corrected by the cere-
bellum edge precedent segmented in the algorithm. The figure 5.19 demon-
strates the segmentation error, referent edge and correct segmentation.

Figure 5.19: Confrontation between the MPF segmented before and after cor-
rection algorithm. The red masks show the results before correction with vertical
errors and green masks show the results after correction.
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The MPF left part is corrected by medulla precedent segmented, the
medulla edge works as a MPF boundary. Where the MPF edge is more
than boundary, the edge is decreased and vice versa.

Figure 5.20: Compared the MPF segmented before and after correction algorithm.
The red masks show the results before correction with vertical errors and green
masks show the results after correction.

In second step, for the top and bottom part segmentation, the MPF is
divided in two horizontal parts. The top part is corrected by two reference
points. The first point and second point get from the medulla and cerebel-
lum last pixel segmented respectively. Finally, these points are connected
through a line. The figure 5.21 shows the respective edges.
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Figure 5.21: Compared the MPF segmented before and after correction algorithm.
The red masks show the results before correction with up parts errors and green
masks show the results after correction.

The bottom part is corrected through MB boundary that is segmented
with processing algorithm. It shows in figure 5.22.

Figure 5.22: Compared the MPF segmented before and after correction algorithm.
The red masks show the results before correction with bottom parts errors and green
masks show the results after correction.
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Chapter 6

Results Analysis

To reach the best results and choice the most effective pre-processing
and processing algorithm, we did several analyses that will be described in
this chapter.

We created 30 tests with different pre-processing and processing algo-
rithms, valuated their results to find the algorithm with lowest error. Each
algorithm applied on the 15 sagittal MRI subjects. The result of each test
was valuated with 5 indicators that compare the segmentation mask with
reference mask that was drawn by the neurosurgeon.

6.1 Performance Indices

In order to validate the segmentation masks, it was used some indictors
that compare the segmentation with a reference mask which is drawn by the
neurosurgeon. In this section, we focus on each indictor function.

6.1.1 Different Mask Areas

This indicator calculates the different areas percentile between the seg-
mentation and reference mask [39]. Therefore, if this value is high, there are
a high error in the segmentation:

area =
(
∑N

x=1

∑M
y=1 |Maskseg(x, y)−Maskref (x, y)|)
(
∑N

x=1

∑M
y=1Maskseg(x, y))

∗ 100 (6.1)

where Maskseg(x, y) and Maskref (x, y) are the segmentation and refer-
ence mask respectively. x and y are the image coordinates. M , N are the
image dimensions



6.1.2 Difference Mask

The different Mask indicator uses the equation 6.2 to calculate the dif-
ference between two masks:

Difference =
(
∑N

x=1

∑M
y=1 |Maskseg(x, y)−Maskref (x, y)|)

NM
(6.2)

where Maskseg(x, y) and Maskref (x, y) are the segmentation and the
reference mask respectively. x and y are the image coordinates. M , N are
the image dimensions.

6.1.3 The Mean Square Error

The Mean Square Error(MSE) indicator uses the equation 6.3 to calcu-
late the segmentation error:

MSE =
(
∑N

x=1

∑M
y=1(Maskseg(x, y)−Maskref (x, y)))2

NM
(6.3)

where Maskseg(x, y) and Maskref (x, y) are the segmentation and refer-
ence mask respectively. x and y are the image coordinates. M , N are the
image dimensions.

6.1.4 Difference Centroid Masks

This indicator calculates the difference between the segmentation and
the reference centroid masks:

DifferenceCenter =
√

(xcseg − xcref )2 + (ycseg − ycref )2 (6.4)

where xcseg and xcref are the horizontal center coordinate of segmenta-
tion and reference mask . ycseg and ycref are the vertical center coordinate
of segmentation and reference mask .

6.1.5 Difference Orientation Masks

This indicator calculates the difference orientation between two masks.

Differenceorientation = |(Oseg −Oref )| (6.5)

where Oseg and Oref are the orientation of segmentation and reference
mask.
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6.1.6 Similarity Shape

This indicator calculates the similarity ratio between two masks:

similarityratio =
(
∑N

x=1

∑M
y=1(Maskseg(x, y)−Maskref (x, y))2)

(
∑N

x=1

∑M
y=1Maskseg(x, y))2

(6.6)

where Maskseg(x, y) and Maskref (x, y) are the segmentation and refer-
ence masks respectively. The x and y are the image coordinates. The M ,
N are the image dimensions.

6.1.7 Difference Perimeter Masks

This indicator calculates the difference perimeter between two masks.
The Perimeter is calculating by using the distance around the boundary of
the region.

DifferencePerimeter = |(Pseg − Pref )| (6.7)

where Pseg and Pref are the Perimeter of segmentation and the reference.

6.2 Processing Algorithm Valuation

For selecting the best processing algorithm and its parameters, we com-
pared the mean and variance indicators, that was calculated between the
algorithm segment and reference masks segmented in15 subjects.

Therefore, in the first step, we had several tests to find the efficient
parameters and try to valuate indictors between demons and multi-image
method. According to these tests, we choice the multi-image algorithm for
processing with global transformation, σi = 1,σx = 1 and iteration number
= 600. The tables 6.1 and 6.1 show the indicators results in two difference
tests.
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Evaluation Indicators extracted from all images (200 Iterations)

MPF MB MC

Different Mask Areas ( pixels mean) 13.4004 7.2307 17.9940

Different Mask Areas (pixels variance) 28.8854 24.3073 85.3675

Difference Mask (pixels mean) 0.0054 0.0146 0.0042

Difference Mask (pixels variance) 4.3021e-06 6.1800e-05 3.0397e-06

The Mean Square Error (pixels mean) 0.0051 0.0146 0.0042

The Mean Square Error (pixels variance) 4.0927e-06 6.1800e-05 3.0397e-06

Difference Center Masks (pixels mean) 2.0321 2.3982 2.1271

Difference Center Masks (pixels variance) 1.0063 3.7466 2.4970

Difference Orientation Masks (degrees mean) 5.6767 2.5351 46.8488

Difference Orientation Masks (degrees variance) 37.7299 2.5068 3.9565e+03

Similarity Shape (mean) 0.0088 0.0039 0.0101

Similarity Shape (variance) 4.8630e-06 1.2726e-06 1.1818e-05

Difference Perimeter Masks ( pixels mean) 8.7885 11.0391 12.6805

Difference Perimeter Masks (pixels variance) 73.2685 119.5983 104.9044

Table 6.1: Evaluation Indicators extracted from all images (200 Iterations)
The test applied on Demons Algorithm with: σi = 1,σx = 1.

Evaluation Indicators extracted from all images (600 Iterations)

MPF MB MC

Different Mask Areas (pixels mean) 12.3856 6.8947 15.8970

Different Mask Areas (pixels variance) 21.2243 11.3247 44.9643

Difference Mask (pixels mean) 0.0050 0.0126 0.0038

Difference Mask (pixels variance) 4.2168e-06 3.0602e-05 2.1650e-06

Mean Square Error (pixels mean) 0.0050 0.0126 0.0038

Mean Square Error (pixels variance) 4.2168e-06 3.0602e-05 2.1650e-06

Difference Center Masks (pixels mean) 1.8551 2.0617 1.8112

Difference Center Masks (pixels variance) 1.0028 2.0285 1.2024

Difference Orientation Masks (degrees mean) 5.6283 2.1958 42.6120

Difference Orientation Masks (degrees variance) 40.3787 2.1765 3.6977e+03

Similarity Shape (mean) 0.0085 0.0038 0.0098

Similarity Shape (variance) 3.4195e-06 1.2258e-06 1.0267e-05

Difference Perimeter Masks (pixels mean) 6.8757 10.1570 11.5971

Difference Perimeter Masks (pixels variance) 49.3263 60.4104 68.6171

Table 6.2: Evaluation Indicators extracted from all images (600 Iterations)
The test applied Demons Algorithm with: σi = 1,σx = 1
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6.3 Preprocessing Valuation

After the valuation of the processing algorithm, applied different pre-
processing method and valuated the indicators results to find the efficient
pre-processing algorithm. These algorithms use the level set, Gaussian, me-
dian filters and histogram equation to create more similarity contrast and
intensity between the moving and reference images. Finally, the results show
that the median filter has been more efficiently respect the others. The ta-
ble 6.3 show one pre-processing test indicators results that was applied the
Level set and CLAHE on moving and reference images.

Evaluation Indicators extracted from all images with preprocessing

MPF MB MC

Different Mask Areas (pixels mean) 13.4976 6.6325 17.2465

Different Mask Areas (pixels variance) 16.9310 7.7229 43.9124

Difference Mask (pixels mean) 0.0055 0.0123 0.0042

Difference Mask (pixels variance) 3.6304e-06 2.5817e-05 2.2939e-06

Mean Square Error (pixels mean) 0.0055 0.0123 0.0042

Mean Square Error (pixels variance) 3.6304e-06 2.5817e-05 2.2939e-06

Difference Center Masks (pixels mean) 2.1265 1.9077 2.0396

Difference Center Masks (pixels variance) 1.3320 1.8362 1.3507

Difference Orientation Masks (degrees mean) 7.3697 2.1338 67.0878

Difference Orientation Masks (degrees variance) 53.9270 4.7212 5.9983e+03

Similarity Shape (mean) 0.0086 0.0039 0.0103

Similarity Shape (variance) 1.9958e-06 6.1515e-07 4.5446e-06

Difference Perimeter Masks (pixels mean) 7.4909 8.5235 12.5106

Difference Perimeter Masks (pixels variance) 46.0611 38.7546 70.6977

Table 6.3: Evaluation Indicators extracted from all images with preprocess-
ing

The test applied preprocessing and Demons Algorithm with: σi = 1,σx = 1 and

iteration number = 600

6.4 Evaluation Method Description

In this section is demonstrated the final algorithm, the algorithm is de-
scribed in Flowchart 6.1 and tables show the indicators results in 3 different
subjects and all of subjects.
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Figure 6.1: Final algorithm Flowchart.

The tables below show the final algorithm indicators results for three
different patents.
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Evaluation Indicators extracted by final algorithm from Subject 1

MPF MB MC

Different Mask Areas (pixels) 11.93 6.33 15.83

Difference Mask (pixels) 0.0046 0.0118 0.0045

The Mean Square Error (pixels) 0.0046 0.011 0.0045

Difference Center Masks (pixels) 1.47 0.80 0.80

Difference Orientation Masks (degrees) 3.56 1.39 3.18

Similarity Shape 0.0096 0.0038 0.0097

Difference Perimeter Masks (pixels) 5.15 8.95 14.15

Table 6.4: Indicators calculated for the subject 1 image
Subject 1 Indicators.

Evaluation Indicators extracted by final algorithm from Subject 2

MPF MB MC

Different Mask Areas (pixels) 15.99 6.06 10.80

Difference Mask (pixels) 0.0069 0.0123 0.0028

The Mean Square Error (pixels) 0.0063 0.011 0.0023

Difference Center Masks (pixels) 1.47 2.77 0.89

Difference Orientation Masks (degrees) 14.26 3.07 2.13

Similarity Shape (pixels) 0.0092 0.0038 0.0091

Difference Perimeter Masks (pixels) 17.52 18.56 14.62

Table 6.5: Indicators calculated for the subject 2 image
Subject 2 Indicators.

Evaluation Indicators extracted by final algorithm from Subject 3

MPF MB MC

Different Mask Areas (pixels) 17.71 4.72 16.76

Difference Mask (pixels) 0.0073 0.0090 0.0047

The Mean Square Error (pixels) 0.0068 0.0079 0.0042

Difference Center Masks (pixels) 2.76 2.25 1.87

Difference Orientation Masks (degrees) 1.42 1.179 4.706

Similarity Shape 0.010 0.0038 0.010

Difference Perimeter Masks (pixels) 12.34 0.33 9.18

Table 6.6: Indicators calculated for the subject 3 image
Subject 3 Indicators.

The table 6.7 shows the final algorithm indicators results for all images:
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Evaluation Indicators extracted by final algorithm from all images

MPF MB MC

Different Mask Areas (pixels mean) 14.1948 5.2537 14.4075

Different Mask Areas (pixels variance ) 9.2279 2.7454 21.0766

Difference Mask (pixels mean) 0.0058 0.0098 0.0035

Difference Mask (pixels variance ) 2.5574e-06 9.6606e-06 1.3071e-06

Mean Square Error (pixels mean) 0.0053 0.0087 0.0031

Mean Square Error (pixels variance ) 2.3904e-06 1.0127e-05 1.3781e-06

Difference Center Masks (pixels mean) 1.8211 1.4477 1.4691

Difference Center Masks (pixels variance ) 0.4932 0.6787 0.4731

Difference Orientation Masks (degrees mean) 5.4998 1.9270 27.7219

Difference Orientation Masks (degrees variance ) 27.3333 3.6634 3.2530e+03

Similarity Shape (mean) 0.0095 0.0038 0.0106

Similarity Shape (variance ) 1.2049e-06 6.2504e-07 2.8334e-06

Difference Perimeter Masks (pixels mean) 11.0961 13.3828 12.5161

Difference Perimeter Masks (pixels variance ) 36.7400 82.2154 49.4336

Table 6.7: Evaluation Indicators extracted by final algorithm from all images
The test applied for method described.

The Figures below show the final algorithm results for five different pa-
tients:

Figure 6.2: Valuation of the final algorithm results, with reference masks that are
drawn by the neurosurgeon. The red masks show the final algorithm results and
the green masks show the reference masks of the first patient: a) MC Masks, b)
MPF Masks and c) MB Masks.
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Figure 6.3: Valuation of the final algorithm results, with reference masks that are
drawn by the neurosurgeon. The red masks show the final algorithm results and
the green masks show the reference masks of the second patient: a) MC Masks, b)
MPF Masks and c) MB Masks.

Figure 6.4: Valuation of the final algorithm results, with reference masks that are
drawn by the neurosurgeon. The red masks show the final algorithm results and
the green masks show the reference masks of the third patient: a) MC Masks, b)
MPF Masks and c) MB Masks.

Figure 6.5: Valuation of the final algorithm results, with reference masks that are
drawn by the neurosurgeon. The red masks show the final algorithm results and
the green masks show the reference masks of the fourth patient: a) MC Masks, b)
MPF Masks and c) MB Masks.
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Figure 6.6: Valuation of the final algorithm results, with reference masks that are
drawn by the neurosurgeon. The red masks show the final algorithm results and
the green masks show the reference masks of the fifth patient: a) MC Masks, b)
MPF Masks and c) MB Masks.
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Chapter 7

Extraction and Analysis of
Features

Extracting the important characteristics of an image, shows the differ-
ences and similarities between the forms to be classified.

Some characteristics are defined by a visual appearance in the image.
Among these features may include the brightness of a particular region or
the texture of a region. Another definition is the delimitation of its frontier
through the form of objects. Qualitative and quantitative techniques are
developed to describe and represent the shape variation of objects, such as
circularity, among others. With the establishment of measures of distance,
area and perimeter various geometric attributes of objects can be developed.

The indexes to characterize the posterior fossa, cerebrum and cerebellum
segmented by the algorithm are:

• Curvature;

• Area: Number of pixels in the region;

• Perimeter, distance around the boundary of the region;

• Centroid: Center of mass of the region;

• Orientation: Angle between the x-axis and the major axis of the ellipse
that has the same second moments as the region;

• Smallest convex polygon that can contain the region;

• Eccentricity of the ellipse that has the same second-moments as the
region;

• Length (in pixels) of the major axis of the ellipse, that has the same
normalized second central moments as the region;



• Length (in pixels) of the minor axis of the ellipse, that has the same
normalized second central moments as the region;

• Solidity: Proportion of the pixels in the convex hull that are also in
the region.

For the implementation of the algorithm of extraction of the features of
form was developed a script in Matlab, where as a result we have a matrix
with the value of each feature for each image. In the Table 7.1 we have the
indexes calculated for the subject 1 in Figure 7.1

Figure 7.1: MPF, MB, MC extracted masks from subject 1

Features Extracted from Subject 1

MPF MB MC

Curvature 97,91 227,09 86,85

Area ( in pixels) 257800 1215600 160600

Centroid 2,06 174,73 216,48

Perimeter 191,08 439,47 168,77

Orientation -51,42 -30,80 75,04

Solidity 0,95 0.93 0,93

Eccentricity 0,50 0,66 0,80

Smallest convex polygon 183,49 109,95 225,92

Length of the major axis ( in pixels) 62,53 146,82 61,85

Length of the minor axis ( in pixels) 53,79 110,02 36,68

Table 7.1: Indexes calculated for the subject 1 image
Subject 1 indexes
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7.1 Features selection

The high number of available features can impair the accuracy of the
generated models for classification, requiring the use of techniques to select
the most relevant features to make the models more robust. The selection
of features (or index) proposes, by Fisher Ratio, that the analysis should be
able to select the most discriminating (i.s less noisy) feature.

Fisher’s exact test is a test of statistical significance used for the analysis
of contingency tables.It is a method of a class of exact tests, so called because
of the significance of the deviation of a null hypothesis (eg, p-value) that
can be accurately calculated, rather than depending on an approximation
that becomes exact in the limit according to sample size increases to infinity,
as in many statistical tests [20]. Although in practice it is employed when
sample sizes are small, it is valid for all sample sizes.

To calculate the significance of each feature, the total probability of
observing data as extreme if the null hypothesis is true, we have to calculate
the values of p.

p =
(xi − xi+1)2

(σxi + σxi+1)
(7.1)

The value of p is computed between each combination of features, with a
class relation. Thus, each fisher ratio demonstrates how much each feature
from a class is independent from another feature of other classes. The Fisher
ratio is shown along with a Boxplot graph, which is useful for visualizing
the position of features in the features versus classes space. Below we have
two figures (Figure 7.2, 7.3 ), which shows the Fisher’s ratio calculated for
two features.
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Figure 7.2: Boxplot and Fisher ratio - Curvature MC vs Classes

Figure 7.3: Boxplot and Fisher ratio - Eccentricity MPF vs Classes

It is clearly the difference in the significance level between the two fea-
tures. The Length index of the Curvature MC (Figure 7.2), shows to be sep-
arable in each class, with a significant distance between them, that means
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that it is good index to carry out the classification in the respective classes.
On the other hand the Eccentricity MPF (Figure 7.3) proves to be a not
separable index between the classes, thus, generating always an error in the
selection of the correct class.

Finally we will have a matrix with Fisher’s ratio, where it was calculated
for each combination of the 4 classes, among the 30 features. Now for
each feature, we select those that will have the highest Fisher’s ratio, thus
selecting those with more significance. In the Table 7.2 we can see the
selected features.

More Significance Features Extracted

Feature Mean Fisher Ratio

Length of the major axis MC / Length of the major axis MPF 4.08

Length of the major axis MC 16.13

Area MC / MPF 4,53

Length of the major axis MC / Length of the minor axis MPF 6,5

Table 7.2: Selected Features with more significance
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Chapter 8

Conclusion

The aim of this research, was been to find the efficient automatic ap-
proach to understand about Chiari malformations and their type thorough
identifying the cerebellum (MC), posterior fossa (MPF) and brain (MB).
This approach can help to reduce the manual approaches segmentations
errors that due to user dependency. Also, it is able to recommend some
features to analyse the Chiari types. In order to this purpose, is suggested
the multi-image Demons registration method that totally is independent of
the user and with using more than one reference and moving images can be
more efficiently. In additional, we try to apply pre-processing algorithm to
improve the registration functional and post processing to decrease errors
where registration is not able to correct them.

In the first step, the algorithm is applied on 15 different patients, and
is valuated with 5 indicators to find about it robustness behaviour and its
difference with neurosurgeon manual segmentations. The results show that
the autumnal segmentation is efficient.

In second step, we try to extract some segmented masks features, in
order to be vaulted their relationship with Chiari types. In the features
analyses, the algorithm tries to find best features that can be create most
separation among classes (Chiari types). The advantage of this analyse is
that calculate some proprieties that there is not possibility to calculate with
manual approaches and It can be led to efficient diagnostic method. The
results of this analyse shows that the Chiari types haves relationship with
some features.

In this research can be continent in future, to create a classification
Chiari malformations types based on the segmented masks and features
that extract of them and studying deeply motivation of the features effect
on Chiari identification.
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