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Summary

This work aims to study the equilibrium properties of a repeated prediction market when
a noise trader comes into play.
Bottazzi and Giachini [1] have completely probed the system where two fractional Kelly
traders invest in such a market, finding sufficient conditions for dominance, disappearance
or coexistence of the agents.
I have extended these conditions in the case in which there is a noise trader, other then
the two Kelly ones.
Then, numerical simulations have been run in order to confirm the analytical results.
It has been found that for some set of parameters the noise trader vanishes, for example
when the believes of one or two agents are close to the truth; but there are also set
of parameters for which the noise trader dominates or survives, coexisting with a Kelly
trader. It is then not trivial to neglect the presence of agents that act irrationally in such a
market, and to suppose that the market kicks them out after a transient: it is possible that
they survive or even dominate, affecting the prices and consequently their informational
efficiency.
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Chapter 1

Introduction

1.1 Description of the problem
Repeated prediction markets in which people can bet repeatedly on a binary event are of
large interest because they share many similarities with other financial markets. Bottazzi
and Giachini showed the equivalence of a repeated prediction market with an economy
where two Arrow securities are exchanged [1].
The probability π∗ of the event to occur is considered to be constant over time and un-
known to the agents betting in this market.
Each agent has a certain amount of wealth and, at each time step, all of them have to
decide how much of it to invest on each of the two possibile outomes; notice that each
agent has to bet all of his wealth at every time step. All the investment is then collected,
the prices are decided by the market clearing condition, and after the outcome has been
revealed, the wealth of each agent is updated.
The rules the agents invest according to depend on their believes πi, which are their per-
sonal estimates of the true probability π∗.
In my work, rational agents bet following a variant of the Kelly rule, the fractional Kelly
rule.
While the former maximizes the expected value of the logarithm of capital at each time
step and is risky in the short or medium run, the latter is related to myopic agents that
maximize a CRRA utility function with price dependent relative risk aversion coefficient:
it is a safer policy, which may let more then one agent survive in the market.
Since the case in which two fractional Kelly traders invest in this market has been com-
pletely exploited [1], I focussed to study what happens when a third noise (i.e. irrational)
trader joins the game. The fraction of wealth the noise trader invest is not deterministic
given the parameters, instead it is a random variable.

1.2 The model
Let’s now define the quantities of the model and their relationships.

• st =
{

1 with prob π∗

0 with prob 1− π∗
is a random variable describing whether the event occurs
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or not.

• ωit is the wealth of Kelly agent i at time t, i ∈ {1,2}.

• w̃t is the wealth of the irrational agent at time t.

• pt is the price of the first security at time t, 1− pt is the price of the second one.

• αi(pt) = ciπi + (1 − ci)pt, i.e. the fractional Kelly rule, is the fraction of ωit that
agent i invests in the first security at time t, where πi is his belief of π∗ and ci is a
"mixing" parameter that can be considered a good approximation of the behavior of
a risk averse agent.

• ηt ∼ Unif [0,1] is the random variable describing the fraction of ω̃t that irrational
agent invests in the first security at time t.

Then, the dynamic of the wealths is the following:

w1
t = α1(pt)

pt
w1
t−1 = c1π1+(1−c1)pt

pt
w1
t−1

w2
t = α2(pt)

pt
w2
t−1 = c2π2+(1−c2)pt

pt
w2
t−1 if st = 1

w̃t = η
pt
w̃t−1

w1
t = 1−α1(pt)

1−pt
w1
t−1 = 1−c1π1−(1−c1)pt

1−pt
w1
t−1

w2
t = 1−α2(pt)

1−pt
w2
t−1 = 1−c2π2−(1−c2)pt

1−pt
w2
t−1 if st = 0

w̃t = 1−η
1−pt

w̃t−1

Since in this framework the supply equals the demand and the total wealth is conserved
(and then normalizable), the number of shares issued for each outcome is equal to 1:

w1
t + w2

t + w̃t = 1

at every time t.
Solving this implicit equation with respect to pt, it is easy to obtain themarket clearing condition,
which establishes the prices of the two shares at each time t:

pt = c1π1w1
t−1 + c2π2w2

t−1 + ηw̃t−1

c1w1
t−1 + c2w2

t−1 + w̃t−1

In this work I will focus on the case in which c1 = c2 = c, so the equation for the price
reads:

pt = c(π1w1
t−1 + π2w2

t−1) + ηw̃t−1

c(w1
t−1 + w2

t−1) + w̃t−1

Figure 1.1 shows the part of the plane in which the system can move at every time step.
Let’s define the following dictionary:
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1 – Introduction

• If an agent’s wealth limit limt→∞ wt = 1 almost surely, the agent is said to dominate.

• If an agent’s wealth limit limt→∞ wt = 0 almost surely, the agent is said to vanish or
disappear.

• If an agent is not going to vanish nor dominate in the long run, he is said to survive.

• Agents who survive together are said to coexist.

0.0 0.2 0.4 0.6 0.8 1.0
w1

0.0

0.2

0.4

0.6

0.8

1.0

w
2

w1+w2=1

Figure 1.1. Region of the plane that the system can explore
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Chapter 2

Theoretical analysis

In this section I will focus on the definiton of the quantities of interest and on their
interpretation in order to derive sufficient conditions for determining if an agent dominates
or vanishes.

2.1 Quantities of interest
Let’s define the conditional expect drift of the log difference of the individual wealth for
each of the three agents betting in the market:

µN (w1
t−1, w

2
t−1) = E

[
log w̃t

w̃t−1
− log 1− w̃t

1− w̃t−1

∣∣∣∣w1
t−1, w

2
t−1

]

µi(w1
t−1, w

2
t−1) = E

[
log wit

wit−1
− log 1− wit

1− wit−1

∣∣∣∣w1
t−1, w

2
t−1

]
where i = 1,2.
The first is related to the irrational agent, while the other to the rational ones.
Their meaning is mainly hidden in the limit where the agent, that the quantity is referred
to, has almost w = 0 or w = 1 at time t− 1.
One can prove that1, for the considered system:

lim
w̃t−1→0

µN (w1
t−1, w

2
t−1) = π∗

[
log k + 1

π1 + kπ2−1
]
+(1−π∗)

[
log k + 1

1− π1 + k(1− π2)−1
]

= µ0
N (k)

lim
w̃t−1→1

µN (w1
t−1, w

2
t−1) = π∗

[
log k + 1

(1− c)(k + 1) + c(π1 + kπ2)+

+ c(π1 + kπ2)
(1− c)(k + 1) log c(π1 + kπ2)

(1− c)(k + 1) + c(π1 + kπ2)

]
+

1See the appendix for the derivation
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+(1−π∗)
[

log k + 1
k + 1− c(π1 + kπ2)+k + 1− c(π1 + kπ2)

(1− c)(k + 1) log k + 1− c(π1 + kπ2)− (1− c)(k + 1)
k + 1− c(π1 + kπ2)

]
= µ1

N (k)

where k = w2
t−1

w1
t−1
∈ (0,+∞).

And, considering i, j = 1,2 with i /= j (i.e. if i = 1 then j = 2 and vice versa):

lim
wi

t−1→1
µi(w1

t−1, w
2
t−1) = π∗

[
log πiγ −

(
cπj + (1− c)πi

γ − 1 + 1
)

log(cπj + (1− c)πi + γ − 1)+

+cπj + (1− c)πi
γ − 1 log(cπj + (1− c)πi) + 1

]
+ (1− π∗)

[
log((1− πi)γ)+

−γ − cπ
j − (1− c)πi
γ − 1 log(γ−cπj−(1−c)πi)+1− cπj − (1− c)πi

γ − 1 log(1−cπj−(1−c)πi)+1
]

= µ1
i (γ)

where γ = 1−wi
t−1

wj
t−1
∈ (1,+∞).

lim
wi

t−1→0
µi(w1

t−1, w
2
t−1) = π∗

[(cπi + (1−c)cπj

c+ρ
(1−c)ρ
c+ρ

+ 1
)

log
(
cπi + (1− c)cπj

c+ ρ
+ (1− c)ρ

c+ ρ

)
+

−
(cπi + (1−c)cπj

c+ρ
(1−c)ρ
c+ρ

)
log
(
cπi + (1− c)cπj

c+ ρ

)
+

−
(cπi + (1−c)cπj

c+ρ
(1−c)ρ
c+ρ + ρ

+ 1
)

log
( 1

1 + ρ

(
cπi + (1− c)cπj

c+ ρ
+ (1− c)ρ

c+ ρ
+ ρ

))
+

+
(cπi + (1−c)cπj

c+ρ
(1−c)ρ
c+ρ + ρ

)
log
( 1

1 + ρ

(
cπi + (1− c)cπj

c+ ρ

))]
+

+(1− π∗)
[(1− cπi − (1−c)cπj

c+ρ
(1−c)ρ
c+ρ

)
log
(

1− cπi − (1− c)cπj
c+ ρ

)
+

−
(1− cπi − (1−c)cπj

c+ρ
(1−c)ρ
c+ρ

− 1
)

log
(

1− cπi − (1− c)cπj
c+ ρ

− (1− c)ρ
c+ ρ

)
+

−
(1− cπj − (1−c)cπj

c+ρ + ρ

(1−c)ρ
c+ρ + ρ

)
log
( 1

1 + ρ

(
1− cπi − (1− c)cπj

c+ ρ
+ ρ

))
+

+
(1− cπj − (1−c)cπj

c+ρ + ρ

(1−c)ρ
c+ρ + ρ

− 1
)

log
( 1

1− ρ

(
1− cπj − (1− c)cπj

c+ ρ
− (1− c)ρ

c+ ρ

))]
= µ0

i (ρ)

where ρ = 1−wj
t−1

wj
t−1
∈ (0,+∞).

12



2 – Theoretical analysis

2.2 Theorems
Now I am going to expose sufficient conditions that guarantee dominance, disappearance
or coexistence of agents, based on the functions above defined. This approach has been
already applied by Bottazzi and Giachini [1] in the case of absence of the noise trader, i.e.
when only two fractional Kelly traders bet in the market: I generalize their results to this
2D system, in the presence of the noise trader.
The following propositions can be proved 2:

1. If µ1
N (k) > 0 and µ0

N (k) > 0 ∀k ∈ (0,+∞), then the the noise trader will dominate
and agents 1 and 2 vanish with probability 1.

2. If µ1
i (γ) > 0 ∀γ ∈ (1,+∞) and µ0

i (ρ) > 0 ∀ρ ∈ (0,+∞), then agent i will dominate
and agent j and the noise trader will vanish with probability 1.

3. If µ1
N (k) ≤ 0 and µ0

N (k) ≥ 0 ∀k ∈ (0,+∞), then the the noise trader will survive
with probability 1, and his wealth keeps oscillating over time.

4. If µ1
i (γ) ≤ 0 ∀γ ∈ (1,+∞) and µ0

i (ρ) ≥ 0 ∀ρ ∈ (0,+∞), then agent i will survive
with probability 1, and his wealth keeps oscillating over time.

5. If µ1
N (k) < 0 and µ0

N (k) < 0 ∀k ∈ (0,+∞), then the noise trader will vanish with
probability 1. The system collapses then on the line w1 +w2 = 1, and its behavior is
the one completely analyzed in [1].

6. If µ1
i (γ) < 0 ∀γ ∈ (1,+∞) and µ0

i (ρ) < 0 ∀ρ ∈ (0,+∞), then agent i will vanish with
probability 1 and the system collapses then on the line wi = 0.
The behavior of the collapsed system can be predicted considering the propositions
1., 3., 5. and evaluating µ1

N and µ0
N along the direction the system collapsed to, i.e.

k → 0 if i = 2 and k → +∞ if i = 1.

In the next section I will provide examples and simulations that show the validity of the
above propositions.
Moreover, examples when these propositions can not be applied will be given and explained
by means of heuristic arguments.

2See the appendix for the derivation
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Chapter 3

Numerical simulations

The purpose of this chapter is to explore the system, to show the possibility of different
asymptotic results, and to verify their coherence with the analytical results.

3.1 Dominance of a Kelly trader
Let’s fix the parameters of the problem as follows:

• π∗ = 0.5

• c = 0.9

• π1 = 0.9

• π2 = 0.7
Now it is possible to study the sign of each µji (with i = {1,2, N} and j = {0,1}) in order to
see if some proposition could be applied to understand the system behavior at equilibrium.
It is evident in figure 3.1 that both µ0

1(ρ) and µ1
1(γ) are negative for every value of ρ and

γ. Then, we expect that agent 1 will vanish as a consequence of proposition 6. Moreover,
we know that the system collapses on the vertical axis (where w1 = 0), so we can study
the sign of µ0

N (k) and µ1
N (k) along k = w2

t−1
w1

t−1
→ +∞.

We can see from figure 3.2 that the expect drift of the log difference of noise trader’s wealth
for large k is negative in both its limits, which means that the noise trader is expected to
vanish, and then agent 2 to dominate.
Notice that one could have looked at µ0

2(ρ) and µ1
2(γ) from the beginning: it is indeed clear

from figure 3.3 that they are positive for every value of ρ and γ, so one would have got
the same prediction as a consequence of proposition 2. Numerical simulation of the system
confirms these results.
I have initialized the system with M = 1000 different initial conditions, uniformly dis-
tributed in the simplex in which the system is confined (i.e. w1 + w2 + w̃ = 1, with
0 < w1, w2, w̃ < 1). Then I let them evolve until the equilibrium has been reached 1.

1See the appendix for the method used to be sure that equilibrium has been reached
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Figure 3.1. Expect drift of the log difference of agent 1’s wealth

0 20 40 60 80 100
k

0.2

0.1

0.0

0.1

0.2 1
N(k)
0
N(k)

Figure 3.2. Expect drift of the log difference of noise trader’s wealth

The equilibrium distribution of w2 is shown in 3.4, and the average over theM realizations
is Eeq[w2] = 1, while, obviously, Eeq[w1] = Eeq[w̃] = 0.
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3 – Numerical simulations
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Figure 3.3. Expect drift of the log difference of agent 2’s wealth
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Figure 3.4. Distributon of w2 at equilibium
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3.2 Dominance of the noise trader

One way for the noise trader to dominate is the one in which both the Kelly traders have
their believes sufficiently far from the truth and a coefficient c big enough, in order to have
a much stronger dependence of αi(pt) = cπi + (1− c)pt on πi instead on pt. Then let’s set:

• π∗ = 0.5

• c = 0.9

• π1 = 0.95

• π2 = 0.99

In figure 3.5 it is possible to see that µ0
N (k) and µ1

N (k) are positive ∀k, so proposition 1
can be applied: we expect the noise trader to dominate while both Kelly traders vanish.
Plot 3.7 confirms that agent 2 is going to vanish (proposition 5). Instead, from figure 3.6 no
information can be gathered, since no hypothesis of the propositions are satisfied; anyway,
this is not in contradiction with what it has been found previously.
Numerical simulations confirm this result: equilibrium distribution of w̃ is shown in 3.8
and Eeq[w̃] = 1.

0 20 40 60 80 100
k

0.2

0.4

0.6

0.8

1.0

1.2

1
N(k)
0
N(k)

Figure 3.5. Expect drift of the log difference of noise trader’s wealth
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Figure 3.6. Expect drift of the log difference of agent 1’s wealth
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Figure 3.7. Expect drift of the log difference of agent 2’s wealth
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Figure 3.8. Distributon of w̃ at equilibium

3.3 Coexistence between the noise trader and a Kelly
trader

A different and very interesting case is the one which concerns the coexistence of the noise
trader with a Kelly trader. Such a situation can be realized setting the parameters as
follows:

• π∗ = 0.1

• c = 0.001

• π1 = 0.99

• π2 = 0.95

Notice first that, differently from the above examples, π∗ is not the mean value of the
fraction of wealth invested by the noise trader η anymore, and that it is way farer from
π1 and π2. Moreover, c has been set very small with respect to others parameters: in this
way αi(pt) has a very strong dependence on pt, and a very weak one on πi.
As usual, let’s check if some proposition is applicable.
Figure 3.9 shows that µ0

1(ρ) and µ1
1(γ) are negative ∀ρ, γ: agent 1 is then expected to lose

all of his wealth and disappear as a consequence of proposition 6, and the system is going
to collapse on the axis w1 = 0 which corresponds to k → +∞, ρ→ +∞ and γ → +∞.
At this point, looking at 3.10 it is possible to see that µ0

N (k → +∞) > 0 while µ1
N (k →

+∞) < 0: then the noise trader is expected to coexist with agent 2 and their wealths w̃

20



3 – Numerical simulations

and w2 are expected to oscillate together (they always sum to 1) as a consequence of propo-
sition 3. Figure 3.11 confirms this results, since µ0

2(ρ → +∞) > 0 and µ1
2(γ → +∞) < 0

and proposition 4 could have been applied.
I have been simulating the process in order to compute equilibrium distributions of the
wealths and to check if what has been predicted so far actually holds.
It turned out that agent 1 vanishes with probability 1, as expected. In figure 3.12 the
equilibrium distribution of w2 and w̃ are shown; their expected values have been numeri-
cally computed to be Eeq[w2] ≈ 0.59 and Eeq[w̃] ≈ 0.41, while their variance and standard
deviation (which are obviously the same for both the agents) are: V eq[w2] = V eq[w̃] ≈ 0.04
and StdDeveq[w2] = StdDeveq[w̃] ≈ 0.20.
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0.00010
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1.0

0.5 1
1( )

Figure 3.9. Expect drift of the log difference of agent 1’s wealth
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Figure 3.10. Expect drift of the log difference of noise trader’s wealth

3.4 Not applicability of the propositions related to
dominance or vanishing

The last example I am going to present enlightens that there are sets of parameters for
which the propositions studied until now are not enough to determine uniquely the equi-
librium properties of the system: indeed, as said, they are sufficient but not necessary. As
usual, let’s fix the parameters:

• π∗ = 0.5

• c = 0.1
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3 – Numerical simulations
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Figure 3.11. Expect drift of the log difference of agent 2’s wealth

• π1 = 0.95

• π2 = 0.05

Proposition 4 can be applied to both agents, as shown in figures 3.13 and 3.14: both the
Kelly traders are expected to survive with probability 1.
At this point, two ways are left opened for the system to reach the equilibrium: the noise
trader could disappear or coexist with both the Kelly traders. Anyway, in this case, no
hypothesis of the propositions are satisfied by µ0

N (k) nor µ1
N (k) (figure 3.15): while µ1

N (k)
is negative ∀k, µ0

N (k) is negative for values of k inside the interval (k1; k2) and positive
for values of k outside that interval, with k1 ≈ 0.14 and k2 ≈ 7.08. Notice that these two
angular coefficients are symmetric with respect to the bisector k = 1: this follows from the
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Figure 3.12. Distributon of w2 and w̃ at equilibium

fact that π1 and π2 are symmetric with respect to π∗.
Figure 3.16 represents the equilibrium distributions of the wealths obtained by numerical
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simulations, and it is evident that it confirms that the two Kelly agents coexist, as predicted,
and that the noise trader disappears. Here Eeq[w1] = Eeq[w2] ≈ 0.50, V eq[w1] = V eq[w2] ≈
0.01 and StdDeveq[w1] = StdDeveq[w2] ≈ 0.11.
The heuristic argument I am going to propose to explain this behavior is the following.
It has been seen by means of proposition 4 that the system will not collapse on the axis
w1 = 0 nor w2 = 0, and that the agents bet according to the same, but symmetric, rule:
1 − αi(pt) = αj(pt), i, j = {1,2}, i /= j. It is then reasonable to expect that the system
will spend most of the time in the region of the plane in which w1 and w2 are "similar",
or, at least, have the same order of magnitude, i.e. k = w2

w1 = O(1). But this region it’s
just the one in which µ0

N (k) is negative: in this slice of plane, µ1
N (k) and µ0

N (k) share the
same negative sign, which means that the noise trader is going to vanish.
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Figure 3.13. Expect drift of the log difference of agent 1’s wealth
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Figure 3.14. Expect drift of the log difference of agent 2’s wealth
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Figure 3.15. Expect drift of the log difference of noise trader’s wealth
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Figure 3.16. Distributon of w1, w2 and w̃ at equilibium
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Conclusion

In this work I have studied the equilibrium properties of a repeated prediction market in
which two fractional Kelly agents and a noise trader invest.
The peculiarity of a noise trader is that he bets according to a rule which has a random
component: I have focussed on the most entropic agent, i.e. the one who invests according
to a uniform random variable in (0,1).
It has been shown that there are situations (which translate into sets of parameters) for
which the noise trader is not trivially thrown out of the market, as someone could intuitively
think: instead, he could coexist or even dominate.
The choice of the most entropic agent as the irrational one makes sense because, if I would
have found that his presence in the market is not negligible, then the same could be true
for other wiser irrational ones. Indeed, what it has been shown in this work is that noise
traders can heavly influence the market, the stock prices and their informational efficiency,
and they can not safely neglected.
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Appendix

3.5 Derivation of the limits of µN

µN (w1
t−1, w

2
t−1) = Est,η

[
log w̃t

w̃t−1
− log 1− w̃t

1− w̃t−1

∣∣∣∣w1
t−1, w

2
t−1

]
=

= Eη

[
π∗ log

(
η(w1

t−1 + w2
t−1)

α1(pt)w1
t−1 + α2(pt)w2

t−1

)
+(1−π∗) log

( (1− η)(w1
t−1 + w2

t−1)
(1− α1(pt))w1

t−1 + (1− α2(pt))w2
t−1

)]

k = w2
t−1

w1
t−1

3.5.1 µ1
N(k)

In this case w̃t−1 → 1. Then,

pt = c(π1w1
t−1 + π2w2

t−1) + η(1− w1
t−1 − w2

t−1)
c(w1

t−1 + w2
t−1) + (1− w1

t−1 − w2
t−1) ≈ η

And
α1(pt → η) ≈ cπ1 + (1− c)η

α2(pt → η) ≈ cπ2 + (1− c)η

Substituting these expressions one obtains:

µ1
N (k) = Eη

[
π∗ log

(
η(1 + k)

c(π1 + kπ2) + η(1− c)(1 + k)

)
+(1−π∗) log

( (1− η)(1 + k)
(1 + k)− c(π1 + kπ2)− η(1− c)(1 + k)

)]
Now the integral over η has to been performed to compute the expected value.
One can separate the logarithms of fractions into differences of logarithms in order to
simplify the calculations. Here three types of integral appear:

1. ∫ 1

0
log(aη + b) dη = − b

a
log b+

(
b

a
− 1

)
log(b+ a)− 1

2. ∫ 1

0
log(a1(1− η) + b1) dη = − b1

a1
log b1 +

(
b1

a1
− 1

)
log(b1 + a1)− 1
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3. ∫ 1

0
log(−a2η + b2) dη = b2

a2
log b2 −

(
b2

a2
− 1

)
log(b2 − a2)− 1

The first "π∗ term" is of the first kind, with a = (1 + k) and b = 0; the second one is of the
first kind too, with a = (1− c)(1 + k) and b = c(π1 + kπ2).
The first "1− π∗ term" is of the second type, with a1 = (1 + k) and b1 = 0; the second one
is of the third type, with a2 = (1− c)(1 + k) and b2 = (1 + k)− c(π1 + kπ2).
Merging these partial results, one gets the final one.

3.5.2 µ0
N(k)

In this case w̃t−1 → 0. Then,

pt ≈
π1 + kπ2

1 + k

And
α1
(
pt →

π1 + kπ2

1 + k

)
≈ cπ1 + (1− c)π

1 + kπ2

1 + k

α2
(
pt →

π1 + kπ2

1 + k

)
≈ cπ2 + (1− c)π

1 + kπ2

1 + k

Substituting these expressions and manipulating it is possible to get:

µ0
N (k) = Eη

[
π∗ log

(
η(1 + k)
π1 + kπ2

)
+ (1− π∗) log

( (1− η)(1 + k)
1 + k − π1 − kπ2

)]
Two kinds of integral appear here.
The first logarithm gives an integral of the first type, with a = 1+k

π1+kπ2 and b = 0.
The second one gives an integral of the second type, with a1 = 1+k

1+k−π1−kπ2 and b1 = 0.
The final result is then given by merging these results.

3.6 Derivation of the limits of µi

µi(w1
t−1, w

2
t−1) = Est,η

[
log wit

wit−1
− log 1− wit

1− wit−1

∣∣∣∣w1
t−1, w

2
t−1

]
=

= Eη

[
π∗ log

(
αi(pt)(1− wit−1)

αj(pt)wjt−1 + η(1− wit−1 − w
j
t−1)

)
+(1−π∗) log

( (1− αi(pt))(1− wit−1)
(1− αj(pt))wjt−1 + (1− η)(1− wit−1 − w

j
t−1)

)]

3.6.1 µ1
i (γ)

In this case wit−1 → 1. Then,

pt = c(π1w1
t−1 + π2w2

t−1) + η(1− w1
t−1 − w2

t−1)
c(w1

t−1 + w2
t−1) + (1− w1

t−1 − w2
t−1) ≈ πi
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And,
αi(pt → πi) ≈ πi

αj(pt → πi) ≈ cπj + (1− c)πi

Let’s now define
γ = 1− wit−1

wjt−1
∈ (1,+∞)

Substituting these expressions in the expected value:

µ1
i (γ) = Eη

[
π∗ log

(
πiγ

(cπj + (1− c)πi) + η(γ − 1)

)
+(1−π∗) log

( (1− πi)γ
(1− cπj − (1− c)πi) + (1− η)(γ − 1)

)]
Now the integral over η has to be performed in order to evaluate the average.
The first term is an integral of the first type (referring to the previous section), where
a = γ−1

πiγ and b = (cπj+(1−c)πi)+η(γ−1)
πiγ .

The second term is instead an integral of the second type, where a1 = γ−1
(1−πi)γ and b1 =

1−cπj−(1−c)πi

(1−πi)γ .
As usual, merging this integrals gives the final result.

3.6.2 µ0
i (ρ)

In this case wit−1 → 0.
Define ρ = 1−wj

t−1
wj

t−1
∈ (0,+∞). Then:

pt = c(π1w1
t−1 + π2w2

t−1) + η(1− w1
t−1 − w2

t−1)
c(w1

t−1 + w2
t−1) + (1− w1

t−1 − w2
t−1) ≈

cπjwjt−1 + η(1− wjt−1)
cwjt−1 + 1− wjt−1

= cπj + ηρ

c+ ρ

And,

αi
(
pt →

cπj + ηρ

c+ ρ

)
≈ cπi + (1− c)cπ

j + ηρ

c+ ρ

αj
(
pt →

cπj + ηρ

c+ ρ

)
≈ cπj + (1− c)cπ

j + ηρ

c+ ρ

Substituting, one gets:

µ0
i (ρ) = Eη

[
π∗ log

((cπi + (1− c) cπj+ηρ
c+ρ )(ρ+ 1)

cπj + (1− c) cπj+ηρ
c+ρ + ηρ

)
+(1−π∗) log

( (1− cπi − (1− c) cπj+ηρ
c+ρ )(ρ+ 1)

1− cπj − (1− c) cπj+ηρ
c+ρ + (1− η)ρ

)]

Let’s start with the first addend: both the numerator and the denominator give integrals
of the first type.
For the numerator, we have a = (ρ+ 1)(1− c) ρ

c+ρ and b = cπi + (1−c)cπj

c+ρ .
For the denominator, we have a = ρ+ ρ(1−c)

c+ρ and b = cπj + (1−c)cπj

c+ρ .
The difference of this two integrals gives the term which is multiplied by π∗.
In the second addend, the numerator of the logarithm gives an integral of the third type,
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while the denominator of the second type.
For the numerator, we have a2 = ρ(1−c)(ρ+1)

c+ρ and b2 = (ρ + 1)(1− cπi − cπj(1−c)
c+ρ ). For the

denominator, we have a1 = ρ+ ρ(1−c)
c+ρ and b1 = 1− cπj − cπj(1−c)

c+ρ + ρ.
Now the term multiplied by 1− π∗ has been obtained.
Summing these two terms, one gets the final result.

3.7 Derivation of the Propositions
Since

wit
wit−1

/= 1 ∀st

and
w̃t
w̃t−1

/= 1 ∀st

there is no possibility for a deterministic fixed point to exist.
Let’s define now zit = log wi

t

1−wi
t
and z̃t = log w̃t

1−w̃t
. Notice that there are no set of w1

t−1 and
w2
t−1 for which the values zit − zit−1 or z̃t − z̃t−1 diverge, i.e. these are bounded increments

processes.
Moreover, notice that

lim
z→+∞

E
[
zit − zit−1

∣∣∣∣zit−1 = z,
1− wit−1

wjt−1
= γ

]
= µ1

i (γ)

lim
z→−∞

E
[
zit − zit−1

∣∣∣∣zit−1 = z,
1− wjt−1

wjt−1
= ρ

]
= µ0

i (ρ)

lim
z→+∞

E
[
z̃t − z̃t−1

∣∣∣∣z̃t−1 = z,
w2
t−1

w1
t−1

= k

]
= µ1

N (k)

lim
z→−∞

E
[
z̃t − z̃t−1

∣∣∣∣z̃t−1 = z,
w2
t−1

w1
t−1

= k

]
= µ0

N (k)

Then, if µ1
i (γ) > 0 ∀γ and µ0

i (ρ) > 0 ∀ρ, Theorem 3.1 of [2] assures that zit diverges to
+∞, and so proposition 2 is proved.
The same is true for the noise trader: if µ1

N (k) > 0 and µ0
N (k) > 0 ∀k, z̃t diverges to +∞,

and so proposition 1 is proved.
If µ1

i (γ) < 0 ∀γ and µ0
i (ρ) > 0 ∀ρ, Theorem 2.2 of [2] assures that zit is persistent, and, if

π∗ ∈ (0,1), zit can both increase or decrease. Proposition 4 is then proved.
For what regards the noise trader, if µ1

N (k) < 0 and µ0
N (k) > 0 ∀k, z̃t is persistent.

Moreover, z̃t can always increase or decrease, so proposition 3 is proved.
At the end, if µ1

i (γ) < 0 ∀γ and µ0
i (ρ) < 0 ∀ρ Corollary 3.1 of [2] tells us that zit diverges to

−∞. Moreover, in this situation, the 2D system reduces to a 1D one, in which there is only a
Kelly trader and the noise trader. Then, other propositions can be applied considering only
values of γ, ρ, k corresponding to the new system with reduced dimensionality. Proposition
6 is then proved.
For the same reason, if µ1

N (k) < 0 and µ0
N (k) < 0 ∀k, then z̃t diverges to −∞, and the

system collapses to the one studied in [1], i.e. where only two Kelly traders invest.
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3.8 Reaching equilibrium
In all my numerical simulations, I have applied this method to be sure that the system
had reached the equilibrium.
First, I let the simulation run for T time steps. Then, I save the updated w1

T , w2
T , w̃T and

let the simulation run for T steps more. After this passage, the system has evolved for 2T
time steps in total.
I compare the distributions of the updated wealths w1

2T , w2
2T , w̃2T with the previous ones:

if they are very close, I stop the simulation and I say that the equilibrium has been reached.
If they are not close, I save w1

2T , w2
2T , w̃2T and let the simulation run for 2T steps more,

and so on.
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