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Summary

In the context of out of equilibrium dynamics of isolated interacting quantum many-body
systems, we study the mean-field discretized and nonlinear Gross-Pitaevskii equation of
motion for a fully connected (or all-to-all coupled) Bose-Hubbard model describing a large
population of bosons on a lattice of generic dimension V , with potential experimental ap-
plications ranging from ultra-cold atomic gases in optical traps to systems of Josephson
junctions. Considering a quench on the system Hamiltonian, we describe the time evolu-
tion of a system initialized to the Mott insulating phase and taken to the strong superfluid
regime, finding a sharp change in the dynamical behavior when varying the quench inten-
sity across a critical value, that is a dynamical phase transition. Our results generalize
the study presented in some previous papers focusing on the particular V = 2 case [1–
6], V = 3 case [7–9] and 1D lattice [10] and place particular emphasis on the long-time
relaxation of some dynamical order parameters in the large V limit. On the side of the dy-
namical phase transition corresponding to a quench towards the strong superfluid regime,
we find such relaxation to consist of a π-synchronization of the classical bosonic phases,
that we find to compete against the possible site-dependent disorder of the Hamiltonian
in what, in analogy with the notorious Kuramoto model for nonlinear coupled oscillators,
can be referred to as a synchronization transition. Additionally, in support of the validity
of the mean field approximation far from the transition, we report a study beyond mean
field based on the Bogoliubov-de Gennes method.

The work is organized as follows. In chapter 1 we introduce the work reviewing the
state of the art, motivating the study and outlooking the results. In chapter 2 we introduce
the system Hamiltonian and derive the correspondent Heisenberg dynamical equations,
sequently obtaining the Gross-Pitaevskii equation within mean-field approximation. In
chapter 3 we find the stationary configurations (that is fixed points) in the non-disordered
case and describe the topology of the set that they constitute in the phase space for all
the possible numbers of sites V . In chapter 4 we study the short-time stability of the
stationary configurations linearizing the Gross-Pitaevskii equation and diagonalizing the
associated Jacobian matrix. In chapter 5 we numerically observe the long-time chaotic
dynamics for small V and the thermalization of some dynamical order parameters for large
V , introducing the notion of π-synchronization of the bosonic phases and studying how it
can be destroyed by the disorder. In chapter 6 we study the quantum fluctuations beyond
mean-field with the Bogoliubov-de Gennes method, arriving to a better comprehension of
the limitations of the mean-field approximation. Finally, in chapter 7 we conclude briefly
reviewing our results and outlooking possible future directions of study.
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Chapter 1

Introduction

The theory of interacting many-body quantum systems at equilibrium is well-established,
accounting for the explanation of notorious physical phenomena such as quantum phase
transitions, that are sharp changes of the ground state of an Hamiltonian when its param-
eters are changed across some critical values. Paradigmatic is the Bose-Hubbard (BH)
model, describing a system of bosons on a lattice at T = 0 temperature and taking into
account an in-situ particle repulsion and a site-to-site tunneling (or hopping). Depend-
ing on the values of the parameters of its Hamiltonian, the ground state of the system
can either be in a Mott Insulator (MI) phase, characterized by integer boson densities,
existence of a gap for particle-hole excitation and zero compressibility, or in a SuperFluid
(SF) phase, characterized by long range coherence [11, 12].

On the other hand, the behavior of such quantum many-body systems is far less un-
derstood when it comes to the out of equilibrium regime, whose relevance has rapidly
grown triggered by the significant experimental progresses of the last two decades. In
this context, a particularly promising experimental setup to simulate theoretical models
is represented by gases of ultra-cold neutral atoms confined in optical traps [13–20] (for
a review on ultra-cold gases see reference [21], for a review on cold atoms out of equilib-
rium see reference [22]). In addition, huge advances in the engineering of the Josephson
junctions make them another promising possibility for the simulation of such models [23].
To take these systems to the non-equilibrium regime, the most established protocol (both
at the theoretical and at the experimental level) is the so called quantum quench, con-
sisting of a sudden change of the Hamiltonian describing the system from Hi to Hf at
time t = 0 [24–31]. This corresponds to initializing the system to the ground state of the
Hamiltonian Hi at t = 0 and letting it evolve for t > 0 under the Hamiltonian Hf , that is
out of equilibrium. In the case of cold atoms in optical traps, this can be achieved tuning
the confining lasers whereas for Josephson junctions-based setups it could be allowed by a
sudden change of the involved magnetic fluxes. Importantly, thanks to the high degree of
isolation from the environment on the experimental timescales, such systems can be con-
sidered to be almost isolated. Their study reveals the emergence of interesting behaviours
among which we recall the quantum Dynamical Phase Transitions (DPTs), identified by
a sharp change of the dynamical behavior for different quench strength [29–32] (for a re-
view on out of equilibrium dynamics of isolated interacting quantum systems see reference

1



Andrea Pizzi et al. Non-equilibrium in the fully connected Bose-Hubbard model

[33]), and synchronization phenomena [34].
A well-established approach to the study of the dynamics of interacting many-bosons

systems on a V -dimensional lattice consists in reducing the Heisenberg equation of motion
to the discrete nonlinear Gross-Pitaevskii Equation (GPE) via a Mean-Field (MF) sub-
stitution of the 2V bosonic creation and annihilation operators a†

j and aj (j = 1, 2, . . . , V
labeling the lattice site) with the 2V c-numbers ψj and ψ∗

j [2, 4, 5, 8, 10, 34, 35]. Under
this approximation, Polkovnikov et al. studied the time evolution of bosons on a one-
dimensional chain [10] whereas other groups, motivated by analytical tractability [1–9]
and experimental viability [36–40], focused on the study of bosonic dimers and trimers
(corresponding to V = 2 and V = 3 respectively). Already for a small number of sites
V and at the MF level the dynamics of such systems is particularly rich, revealing for
instance the emergence of macroscopic self-trapping [1, 2, 36] and chaos [8, 9, 41].

The primary goal of the present work is to extend the aforementioned MF results to
the case of a Fully Connected (FC) (that is all-to-all coupled) BH model with a generic
number of sites V , also complementing the study done, without recurring to the GPE, by
Sciolla and Biroli on the same model in the V → ∞ limit [29, 30]. Considering a quantum
quench from a small to a large hopping strength, we investigate the out of equilibrium
dynamics in the strong SF regime of a system initialized to the MI phase. Focusing on
the individuation of the Fixed Points (FPs) of the discrete GPE and on the study of their
stability we are able to identify regions of the parameters space leading to qualitatively
completely different time evolutions of the initial MI, spotting out the existence of a
DPT. For small V we observe chaotic behaviours on both sites of the transition whereas
for large V we show some macroscopic variables (namely the Dynamical Order Parameters
(DOPs)), to thermalize, that is to relax to some finite value at long-time (unless some
residual fluctuations). Indeed, this is a common feature of isolated interacting many-
body quantum systems, that we stress to occur even in absence of a thermal bath and a
reservoir [42–50]. In particular, on the side of the DPT with large hopping strengths (that
is tunneling rates), we observe the tendency of the phases of the MF bosonic variables
to acquire a certain degree of π-alignment, such that the phases can be divided into two
halves with respective preferred orientation θ0 and θ0 + π. We refer to such tendency as
π-synchronization, and introduce a π-alignment parameter S to quantify it.

Indeed, in a bosonic system more in general the phases of the c-numbers associated
within MF to the bosonic variables can be interpreted as phases of classical nonlinearly
coupled oscillators that may, in some circumstances, synchronize. For instance, Wit-
thaut et al. have recently demonstrated that a particular class of bosonic models can
be recasted, in MF, to the notorious Kuramoto model for classically coupled nonlinear
oscillators, where the competition between coupling and site dependent disorder drives a
synchronization transition [34, 51–53]. Inspired by this idea, in analogy with Kuramoto
dynamics, we introduce a site-dependent disorder in the model and look at how it affects
the aforementioned π-synchronization, remarkably finding evidences of a synchronization
transition driven by the competition between the site-to-site coupling (that is hopping
strength) and the disorer also in the case of the Bose-Hubbard model. We stress that the
occurrence of synchronization among the phases of the MF bosonic variables is somehow
an intrinsic property of the isolated quantum system, i.e. it is not due to the presence of

2



1 – Introduction

dissipation and external driving as usually considered for populations of quantum dissipa-
tive oscillators [54–58]. Additionally, using the Bogoliubov-de Gennes method we study
the dynamics of the Quantum Fluctuations (QFs) beyond MF [59], finding that the MF
approximation is more reliable for quenches to the strong SF regime, that is far from the
MF DPT.
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Chapter 2

Model

The goal of this chapter is to derive some approximated and tractable Dynamical Equa-
tions (DEs) describing the time evolution of a system of interacting many-body bosons
on a FC lattice, that is a lattice where particles can hop from one site to whatever other
site with equal tunneling rate. The choice of a FC model is motivated by the analytical
tractability allowed by its symmetries and by the fact that it represents an approximate
(MF) description of a finite-dimensional system [29, 30]. By means of a MF approxima-
tion consisting of the substitution of the bosonic operators with c-numbers, we are able
to recast the Heisenberg equations of motion into a classical, nonlinear and discrete GPE
of motion for coupled oscillators with variable lengths and phases.

2.1 Hamiltonian
We consider a disordered version of the BH model for bosons on a V -dimensional lattice,
described by the following Hamiltonian

H = −
V∑

i,j=1
i /=j

ti,ja
†
iaj + u

2

V∑
j=1

nj(nj − 1) − µ
V∑
j=1

nj −
V∑
j=1

ωjnj (2.1)

where a†
j and aj are respectively the bosonic creation and annihilation operators at

sites j, satisfying the bosonic commutation relation ([ai, a†
j ] = δi,j), nj = a†

jaj the number
operator associated to the j − th site, ti,j the hopping strength for hops between sites i
and j, u the energy scale of the on-site two-body interaction and µ the chemical potential
setting the average number of particles in the system. The term −

∑V
j=1 ωjnj has been

added to the usual BH Hamiltonian to take into account an possible disorder of the
chemical potential. We assume the ωj to be independent Gaussian random variables of
mean 0 and standard deviation σω (in practice, we will consider explicitly such disorder,
that is σω /= 0, only in chapter 5 when studying its competition against the intrinsic
tendency of the system to synchronize). To ensure Hermitianity of the Hamiltonian (2.1),
we assume of course ti,j = tj,i. Importantly, we limit our study to the case of repulsive
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in-situ interaction, that is to u > 0. Throughout the following we implicitly assume the
indexes i, j, k to label the lattice sites and to run over {1, 2, . . . , V }, unless differently
specified.

2.2 System initialization: the quench
It is tautological that, being interested in the study of the non-equilibrium dynamics, we
first have to take the system out of equilibrium. A well-established protocol to do it is the
quench, that is the sudden change of some parameter of the Hamiltonian with consequent
change of the latter from Hi to Hf [24, 26–31]. We assume to prepare the system at time
t = −∞, to let it thermalize to the ground state |GSi⟩ of Hi, to perform the quench at
t = 0 and to observe its time evolution for 0 < t < Tex where Tex is the typical timescale of
the experiment. Thanks to the high degree of isolation achievable in experiments [21], we
assume Tex to be much smaller than the timescale over which the system will relax to the
new ground state |GSf ⟩ of Hf . Theoretically, the quench protocol results in considering
|GSi⟩ as Initial Condition (IC) for the unitary dynamics generated by Hf .

In particular, we are interested in the quench from small to large hopping strengths,
that is from a MI regime to a SF regime. The equations considered throughout all the
following are associated to t > 0 and to Hf .

2.3 Heisenberg equations of motion
The time dynamics of the system can be investigated within Heisenberg formalism. In
particular, Heisenberg equations for the creation and annihilation operators at site k reads

dak

dt = i
~ [H, ak]

da†
k

dt = i
~ [H, a†

k]
(2.2)

i being the imaginary unit, ~ the reduced Planck constant and [A,B] = AB − BA
the commutator of the operators A and B. In the following, we consider ~ = 1, meaning
that frequencies and energies are measured in the same units. With straightforward
calculations and after a proper gauge transformation (detailed in appendix A.1) we get

dak
d(it) = +

V∑
j=1

tj,kaj − unkak + ωkak

da†
k

d(it) = −
V∑
j=1

tj,ka
†
j + ua†

knk − ωka
†
k

(2.3)

Total number of particles conservation, system isolation and mixed states

At this point, some important remarks should be done. It is immediate to check that the
Hamiltonian (2.1) commutes with the total number of particles operator N̂ =

∑V
j=1 nj ,

that is thus conserved in time. The BH Hamiltonian is typically used to describe systems

6



2 – Model

at equilibrium and in the grand-canonical ensemble [11, 12], where a change of chemical
potential µ is assumed to correspond to a change of the total expected number of particles
N , thanks to a particle exchange with a reservoir. However, such assumption is not valid
when considering the time dynamics generated by the Hamiltonian (2.1), since this is
actually not containing any term explicitly describing the exchange of particles with a
reservoir, accordingly with the fact that [H,N ] = 0 and that N is a constant of motion.
Our time dynamics will therefore certainly fail in predicting the fluctuations of N that are
typical of the grand-canonical ensemble (and of order 1/

√
N) or the readaptation of N to

a change of µ. Nevertheless, the out of equilibrium dynamics of (2.3) is still meaningful
since, as we said, the system can be considered as almost isolated on the experimental
timescales. Conversely, on the timescales of the initialization of the system preceding the
quench there is no isolation from the environment (thermal bath and particle reservoir),
so that the system is in general described by a mixed state [60]. In this context, we denote
the expectation value of an operator • with ⟨•⟩ = Tr[ρ(t)•], ρ(t) being the density matrix
associated to the system state at time t.

The fully connected model

We will particularly focus on the FC model, that is the one for which

ti,j = τ/V ∀i /= j (2.4)

As detailed in appendix A.1, thanks to a gauge transformation, we can actually safely
consider also ti,i = τ . Notice that the Hamiltonian (2.1) for the FC model reads

H = −τV Ψ̂†Ψ̂ + u

2

V∑
j=1

nj(nj − 1) − µ
V∑
j=1

nj −
V∑
j=1

ωjnj (2.5)

where

Ψ̂ = ⟨aj⟩V = 1
V

V∑
j=1

aj (2.6)

⟨•j⟩V = 1
V

∑V
j=1 •j denoting (more in general) the average over the sites of the site

dependent quantity •j . From 2.5, we clearly see that, at least in the non-disordered case
of ωj = 0, the minimization of the expected energy is associated to the maximization of
the expected value ⟨Ψ̂†Ψ̂⟩.

2.4 Mean-field approximation: the Gross-Pitaevskii
equation

Being nonlinear and operatorial, the DEs (2.3) reveal to be hardly tractable. To deal with
c-numbers rather than with operators we are interested in taking the expectation value of
such equations. It is however easy to convince ourselves that, because of nonlinearities, it

7
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is not possible to get closed DEs for a finite set of expectation values. Indeed, the expres-
sion of d⟨ak⟩

dt depends on ⟨nkak⟩, and the expression of d⟨nkak⟩
dt depends on further other

expectation values and so on so forth, in a way that could be referred to as proliferation.
A paradigmatic and widely accepted workaround for this issue is provided at the MF level
when N/V ≫ 1 by supposing{

⟨njaj⟩ ≈ |⟨aj⟩|2⟨aj⟩
⟨nj⟩ ≈ ⟨a†

j⟩⟨aj⟩ = |⟨a†
j⟩|2

(2.7)

that is considered to hold when in the SF regime and whose validity will be further
investigated in chapter 6.

Notice that ⟨a†
j⟩ and ⟨aj⟩ are in general different from zero since the system state is

not an eigenstate of N̂ . In practice, in the following we directly consider specific ICs on
⟨aj⟩ for each j = 1, 2, . . . V , that we assume to correspond to the ground state of the
Hamiltonian preceding the quench at t < 0. We call

⟨aj⟩ = ψj = √
ρje

iθj (2.8)

with ρj ∈ R+ and θj ∈ (0, 2π) and observe as immediate consequence of the assumption
(2.7) that N

V = 1
V

∑V
j=1⟨a†

jaj⟩ ≈ 1
V

∑V
j=1 ρj = ⟨ρj⟩V = ρ0, ρ0 being the average number of

particles per site.
From equation (2.3) and under the approximation (2.7) we obtain the MF DEs

dψk
d(it) = +

V∑
j=1

tj,kψj − u|ψk|2ψk + ωkψk

dψ∗
k

d(it) = −
V∑
j=1

tj,kψ
∗
j + u|ψk|2ψ∗

k − ωkψ
∗
k

(2.9)

that are the discrete version of the nonlinear Gross-Pitaevskii Equation (GPE).
As detailed in appendix A.2, from equation (2.9) we can derive the following DEs for

the squared modulus and the phase of ψk (respectively ρk and θk)
dρk

dt = 2
∑V
j=1 tj,k

√
ρjρk sin (θk − θj)

dθk

dt =
∑V
j=1 tj,k

√
ρj

ρk
cos (θk − θj) − uρk + ωk

(2.10)

From now on we focus only on the FC system, for which it is possible to conveniently
compact the DEs similarly to what is commonly done in the Kuramoto model for classical
coupled oscillators [53], that is defining the following complex DOP

Ψ = ⟨Ψ̂⟩ = 1
V

V∑
j=1

⟨aj⟩ = 1
V

V∑
j=1

√
ρje

iθj (2.11)

and writing it in modulus phase form as

Ψ = reiφ (2.12)

8



2 – Model

with r ∈ R+ and φ ∈ (0, 2π). Considering the real and the imaginary part of rei(φ−θk) =
1
V

∑V
j=1

√
ρje

i(θj−θk), we readily find the following two useful relations

{
r cos(φ− θk) = 1

V

∑V
j=1

√
ρj cos(θj − θk)

r sin(φ− θk) = 1
V

∑V
j=1

√
ρj sin(θj − θk)

(2.13)

so that the dynamical system (2.10) can be compactly written as


d
√
ρk

dt = τr sin (θk − φ)
dθk

dt = τr√
ρk

cos (θk − φ) − uρk + ωk
(2.14)

where we stress r and φ to be in general not constant, since they evolve consistently
with all the variables {ρk, θk}k=1,...,V . Summing over k the first equation of (2.14) we get

d⟨ρk⟩V
dt

= dρ0

dt
= 0 (2.15)

that is we find the expected average number of particles per site (or, equivalently, the
expected total number of particles) to be a constant of the GPE.

Unless differently specified, we will consider throughout the text the non-disordered
case, that is the one for which ωk = 0 ∀k = 1, 2, . . . , V , for which 2.14 reads


d
√
ρk

dt = τr sin (θk − φ)
dθk

dt = τr√
ρk

cos (θk − φ) − uρk
(2.16)

We notice that, considering the rescaled time t̃ = τt, equation (2.16) can be rewritten
as


d
√
ρk

dt̃
= r sin (θk − φ)

dθk

dt̃
= r√

ρk
cos (θk − φ) − η ρk

ρ0

(2.17)

where η = uρ0
τ . We notice the equations (2.17) to be invariant under a rescaling

ρk → αρk (under which r →
√
αr) and to have as only parameter η. Therefore, we

conclude that the only relevant quantity for the dynamics is η = uρ0
τ . It is therefore

mathematically convenient to consider only one free parameter, that we decide to be τ .
In the following we therefore consider τ in units of uρ0, setting u = 1 and ρ0 = 1 in (2.16)
without loss of generality. Notice that this is just a mathematical trick and that, still, we
are actually interested in the regime assumed by the MF, that is ρ0 ≫ 1. Notice that,
being interested in the case of repulsive in-situ interaction only (that is u > 0) and being
τ written in units of uρ0, then τ > 0. The assumption of u, τ > 0 is fundamental for
the present work, since a negative u, τ would lead to a rather different mathematics and
physics.

9
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System initialization

In the case of a quench from the MI to the SF regime, the system at initial time t = 0 is
in a MI phase. The corresponding MF configuration in this case is [10]{

ρk = ρ0

θk = Uk(0, 2π)
∀ k = 1, 2, . . . , V (2.18)

Uk(0, 2π) being a random number distributed uniformly between 0 and 2π.

2.5 V → ∞ limit and continuous equations
For the study of synchronization phenomena it is relevant and instructive to consider
the V → ∞ limit, in which the discrete site index k = 1, 2, . . . , V can be replaced by a
continuous variable s ∈ (0, 2π), so that the DEs (2.16) transform to

∂
√
ρ(s,t)
∂t = τr sin (θ(s, t) − φ)

∂θ(s,t)
∂t = τr√

ρ(s,t)
cos (θ(s, t) − φ) − ρ(s, t)

(2.19)

where

reiφ = 1
V

V∑
k=1

√
ρke

iθk V→∞−−−→ 1
2π

∫ 2π

0

√
ρ(s)eiθ(s) (2.20)

In this way we passed from a system of 2V ordinary differential equations in the 2V
variables {ρk, θk}k=1,...,V , to a system of 2 integro-differential equations in the variables
ρ(s, t) and θ(s, t). Notice that for equation (2.19) to be valid we require as assumption
that there exists a permutation of the sites indexes such that the functions ρ(s, t) and
θ(s, t) are continuous, that is such that ρk V→∞−−−→ ρk+1 and θk

V→∞−−−→ θk+1 ∀k = 1, . . . , V
and ρV

V→∞−−−→ ρ1 and θV
V→∞−−−→ θ1.

2.6 Analogue classical system
As a result of having taken the expectation value of equation (2.3) under the approximation
(2.7), our quantum model has been recasted into a classical one where the variables are
V c-numbers or 2V real numbers. Indeed, considering a classical Hamiltonian

HCL = −
V∑
i,j

tj,k
√
ρiρj cos(θi − θj) + u

2

V∑
i

ρ2
i −

V∑
i

ωiρi (2.21)

with classical conjugated variables θk and ρk for k = 1, . . . , V we get that the Hamilton
equations of motion dρk

dt = +∂HCL

∂θk
and dθk

dt = −∂HCL

∂ρk
correspond to the GPE (2.10). At

the MF level, studying the time dynamics of the expectation values of the quantum
bosonic operators corresponds to studying the time dynamics of V coupled clocks (that is

10



2 – Model

oscillators) of modulus √
ρk and phase θk with k = 1, . . . , V and described by the classical

Hamiltonian (2.21). In MF, we can therefore visualize the variables of the problem as
clocks, representing them in a polar plot using one marker for each site as in figure (2.1).
The k-th blue marker is at distance √

ρk from the origin and have a phase θk, whereas
one additional red marker at distance r from the origin and with phase φ represents the
DOP Ψ = reiφ. Additionally, as a reference we plot a red circle centered in the origin and
of radius √

ρ0.
In the case of interest of the FC model, we also notice that it is possible to rewrite the

energy as

HCL = −V τr2 + u

2

V∑
j=1

ρ2
j (2.22)

The state of the system minimizing HCL under the constraint of 1
V

∑V
j=1 ρj = ρ0 is

easily found to be {
ρk = ρ0

θk = φ
∀ k = 1, 2, . . . , V (2.23)

that is the SuperFluid Configuration (SFC) [10]. We get thus that, in MF, the ground
state of the system is always the SFC, consistently with the fact that the GPE holds in
the SF regime only. In the present work we are mainly interested in the out of equilibrium
dynamics, that is the time evolution of states that are initialized not to the SFC.

We finally observe that, since HCL is conserved, (2.22) gives the following useful rela-
tion

2τr2 = u

V

V∑
j=1

ρ2
j + 2E (2.24)

E being the average MF energy per site. The value of E is constant in time and
determined by the system IC, that is by the state of the system at t = 0+.
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Figure 2.1 |Graphical representation of the bosonic variables. a, The k-th site is associated to
the complex variable ψk = √

ρke
iθk , represented in a polar plot as a blue marker at a distance √

ρk

from the origin and with phase θk. b, Considering V = 100 sites means considering V = 100 blue
markers plus one red marker representing Ψ = reiφ, at a distance r from the origin and with phase
φ. The reference red circle is centered in the origin and of radius √

ρ0.
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Chapter 3

Stationary configurations

In the previous chapter we introduced, for the Fully Connected Bose-Hubbard Model
(FCBHM) and within the MF approximation, the GPE of motion (2.9), that we rewrote
as a system of ordinary differential equations (2.16) for the 2V real variables √

ρk and
θk, with k = 1, 2, . . . , V . The first main goal of the present work is to understand the
different possible dynamical solutions that such equations can originate for various ICs and
in various regions of the parameters space. Naturally, we attempt to do it within the area
of mathematics that goes under the name of Dynamical Systems Theory (DST). When
an explicit exact solution of a system of DEs is not viable, DST typically approaches
the problem by looking at its FPs, that is at that solutions that are constant in time.
Actually, we will conveniently define the FPs in a proper corotating frame of reference,
that is unless a rotation of all the phases at a constant rate.

We introduce here some terminology that will be widely used throughout the whole
text. We call configuration the 2V -dimensional set of variables (θ1, . . . , θV ,

√
ρ1, . . . ,

√
ρV )

associated to a given state of the system, Stationary Configuration (SC) the configuration
corresponding to a FP of the DEs and phase space the 2V -dimensional space Φ = [0, 2π]V ×
(R+)V in which the configurations live. We define Stationary Set (SS) the set of the SCs
and trajectory the oriented line that a system follows in the phase space during its time
evolution.

The importance of the individuation of the FPs lies in the fact that they are the first
key ingredient to obtain information on the dynamics of the system. Indeed, the main
features of the dynamics will already emerge in chapter 4 when linearizing the GPE around
the SCs, whereas unveiling the topology of the SS will give us considerable intuition on
the role of nonlinearities of the GPE in chapter 5. In particular, in the present chapter
we observe that the topology of the SS heavily depends on the number of lattice sites V ,
and that if and only if V ≥ 4 there exist a continuous, connected manifold of infinitely
many SCs in the phase space.
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3.1 Stationarity condition
As we already mentioned, it is convenient to adopt a definition for stationarity that allows
a global phase rotation, that is a common rotation of all the phases θ1, θ2, . . . , θV at a
constant rate. Therefore, we say a configuration to be stationary for the equation (2.16)
if it fulfills the condition

d
√
ρk

dt = τr sin (θk − φ) = 0
dθk

dt = τr√
ρk

cos (θk − φ) − ρk = Ω for k = 1, 2, . . . , V and t ≥ 0 (3.1)

with Ω whatever real number.
For a SC we therefore readily find that the modulus and phase of the complex DOP

(2.11) read

{
r(t) = r(0)
φ(t) = φ(0) + Ωt

(3.2)

As we already stated in chapter 2, r and φ have to be consistent with the considered
configuration for all times t > 0. We understand that for a SC the consistency condition on
r and φ has to be checked only at initial time t = 0, since for later times it is automatically
ensured by (3.2). Of course we can always consider to be in a reference frame such that
φ(0) = 0. Furthermore, also the consistency condition on the average number of particles
per site ρ0 = 1 has to be checked only at initial time, since ρ0 is a conserved quantity of
motion. Summing up, the stationarity condition plus the consistency conditions read

d
√
ρk

dt = τr sin (θk − φ) = 0
dθk

dt = τr√
ρk

cos (θk − φ) − ρk = Ω
1
V

∑V
j=1

√
ρje

iθj = r
1
V

∑V
j=1 ρj = 1

for k = 1, 2, . . . , V and t = 0 (3.3)

3.2 Stationarity in the two-site model
The easiest case we can consider is of course the one with the lowest V . Excluding the
trivial case of V = 1, we are therefore lead to start considering a system with just V = 2
sites. The V = 2 model is relevant in describing the so called bosonic dimer, that can be
realized in experiments for instance with the so called bosonic junction, composed of two
Bose-Einstein condensates in a double well potential [36–39]. In the present section we
review the main results of the V = 2 model, that have already been extensively studied
in the past two decades [1–6] and that will reveal to be instructive when considered in
relation to the V > 2 cases.

Instead of using the stationarity condition (3.3), we prefer in this case to find a new
condition from scratch in such a way that we can explicitly enforce the constraint on the
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total number of particles conservation and reduce the dimension of the DEs. Equations
(2.16) read 

∂θ1
∂t = −ρ1 + τ

2

√
ρ2
ρ1

cos (θ2 − θ1)
∂θ2
∂t = −ρ2 + τ

2

√
ρ1
ρ2

cos (θ1 − θ2)
∂ρ1
∂t = −τ√

ρ2ρ1 sin (θ2 − θ1)
∂ρ2
∂t = −τ√

ρ1ρ2 sin (θ1 − θ2)

(3.4)

Where τ
2 = t1,2 = t2,1. Considering explicitly the conservation of the total number of

particles (that reads ρ1 + ρ2 = 2ρ0), it is easy to reduce (3.4) to a 2-dimensional system
of DEs for the phase difference θ = θ2 − θ1 and the normalized population imbalance
δ = ρ2−ρ1

ρ0 
∂θ
∂t = −δ − τ

2
δ√

1− δ2
4

cos θ

∂δ
∂t = 2τ

√
1 − δ2

4 sin θ
(3.5)

where as usual we consider without loss of generality ρ0 = 1. Since |δ| = ±2 corre-
sponds to the case of all particles in the same site, that is V = 1, we consider |δ| < 2.
The stationarity condition reads

−δ = τ
2

δ√
1− δ2

4

cos θ

2τ
√

1 − δ2

4 sin θ = 0
(3.6)

Notice that, with respect to the condition (3.3), here the global phase rotation rate Ω
is not appearing since the considered variable is the phase difference. Still, of course, the
condition (3.6) allows a global phase rotation.

The second equation of (3.6) is solved by θ = 0 and by θ = π. In the two cases, the
first equation of (3.6) reads 

−δ = τ
2

δ√
1− δ2

4

for θ = 0

+δ = τ
2

δ√
1− δ2

4

for θ = π
(3.7)

that is solved by the following four SCs
θ = 0 δ = 0 SFC
θ = π δ = 0 SPAC
θ = π δ =

√
4 − τ 2 PAC+

θ = π δ = −
√

4 − τ 2 PAC−

(3.8)

where SFC stays for SuperFluid Configuration, SPAC for Symmetric π-Aligned Con-
figuration and PAC for π-Aligned Configuration. Of course PAC+ and PAC− exist only
for τ < 2, since δ and θ are real variables. Notice that we are implicitly assuming τ in
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units of uρ0, and that thus the condition of existence of PAC+ and PAC− is actually
τ < 2uρ0, that clearly depends on the interplay between the hopping strength τ and the
in-situ interaction uρ0. Notice as well that in finding the SCs we assumed a repulsive
interaction, i.e. u > 0 (that is τ > 0, since τ is written in units of uρ0). In the case of
attractive in-situ interaction (u < 0), some of the SCs would be analogue to (3.8) and
some others would not, leading to new mathematics and physics, that we do not address
in the present work.

3.3 Stationary configurations for V > 2
From the first equation of (3.3) we find that only two kinds of SCs are possible: the ones
with r = 0 and the ones with sin(θk − φ) = 0 ∀k = 1, . . . , V . We treat these 2 classes of
SCs separately.

3.3.1 r = 0 configurations
The first class of SCs is the one with r = 0, for which the stationarity condition (3.3)
reads 

d
√
ρk

dt = 0
dθk

dt = −ρk = Ω∑V
j=1

√
ρje

iθj = 0
1
V

∑V
j=1 ρj = 1

for k = 1, 2, . . . , V and t = 0 (3.9)

that is readily reduced to{
ρk = 1∑V
j=1 e

iθj = 0
for k = 1, 2, . . . , V and t = 0 (3.10)

Particularly relevant is the one for which the sites are divided in two equal groups with
opposite phases, that is clearly present only in the case of even V > 2 (V = 4, 6, . . . ) and
that reads 

ρk = 1 ∀k = 1, 2, . . . , V
θk = 0 ∀k = 1, 2, . . . , V/2
θk = π ∀k = V/2 + 1, . . . , V

at t = 0 (3.11)

Of course, the configuration (3.11) is defined unless a permutation of the indexes k
(as obvious for a FC model) and an arbitrary global phase shift. For obvious reasons,
we talk in this case about Symmetric π-Aligned Configuration (SPAC). Another relevant
configuration is instead defined for whatever V > 2 and reads{

ρk = 1
θk = 2π

V k
for k = 1, 2, . . . , V and t = 0 (3.12)
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that we call Uniform Configuration (UC) and that is again defined unless a permutation
of the indexes k and an arbitrary global phase shift. In this case the word uniform is used
to stress that the phases are distributed in (0, 2π) with uniform spacing 2π/V . Observe
that the definition of UC can be extended also to V = 2, for which it corresponds to the
SPAC, and that for V = 3 the UC is the only possible SC with r = 0. For V > 3 the
condition (3.10) is instead generally satisfied by an infinity of SCs, of which the UC and
the SPAC are just particular examples. To see this explicitly, we consider the example of
V = 4, for which the most generic SC with r = 0 (unless a global phase rotation and a
permutation of the sites) can be written as

ρk = 1 ∀k = 1, 2, 3, 4
θ1 = +π−∆

2
θ2 = −π−∆

2
θ3 = +π−∆

2 + π

θ4 = −π−∆
2 + π

(3.13)

that we call Delta Configuration (DC) and where ∆ ranges continuously from π/2
(corresponding to the UC) to π (corresponding to the SPAC). It is easy to imagine that
for V = 6, 8, 10, . . . there is as well a continuum of SCs with r = 0 ranging from the UC
to the SPAC whereas for V = 5, 7, 9, . . . again there is a continuum of SCs with r = 0,
of which the UC is part and the SPAC is not, since for an odd V the latter is not even
defined. A graphical representation of the SPAC, UC, DC and others r = 0 configurations
is shown in figure (3.1) whereas a more thorough analysis of the structure of the SS is
given in section 3.4 together with its schematic representations in figure (3.2).

3.3.2 Aligned (superfluid) and π-aligned configurations
The second class of SCs is characterized by sin(θk − φ) = 0 ∀k = 1, . . . , V , that is by
θi − θj ∈ {0, π} ∀i, j at time t = 0. Observe that the SPAC is the only SC belonging to
both the classes of SCs, having r = 0 and satisfying θi − θj ∈ {0, π} ∀i, j at the same
time.

The most trivial SC with such property is the one for which all the phases are aligned,
that is {

ρk = 1 ∀k = 1, 2, . . . , V
θk = 0 ∀k = 1, 2, . . . , V

(3.14)

that is as always defined unless a global phase rotation and for which we get r = 1
and Ω = τ − 1. We call this SC the SFC. Notice that, maximizing r, the SFC represents
the absolute minimum of the classical energy (2.22), that is the SFC is the ground state
of the Hamiltonian for t > 0. This is in accordance with the assumption that, for t > 0,
the system is in the SF regime.

Another possible SCs in this class have instead a fraction α ∈ (0, 1) of the sites with
associated phase φ and the remaining fraction 1 −α with phase φ+π and will be referred
to as π-Aligned Configurations (PACs). Since α ∈ { 1

V ,
2
V , . . . ,

V−1
V }, in general several
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of these PACs exist. Notice that the study of such SCs heavily depends on assuming a
repulsive in-situ interaction, i.e. u > 0 (that is τ > 0, since τ is written in units of uρ0).
An attractive in-situ interaction (u < 0) would in general lead to different stationary
PACs, and is not addressed in the present work. In appendix B a detailed analysis of the
condition (3.3) for this kind of SCs is reported for completeness, but here we just focus
on the case for which V is even and α = 1/2, that is for which half of the sites have phase
φ and the other half have phase φ+ π, that is

ψk =
{

+
√

1 + δ if k = 1, ..., V/2
−

√
1 − δ if k = V/2 + 1, ..., V

at t = 0 (3.15)

that is as usual defined unless a global phase rotation. Without loss of generality we
can assume δ ∈ (0, 1), since a negative δ would actually be reabsorbed in our study just
with an initial π rotation of the reference frame. For the configuration (3.15), the DOP
(2.11) at initial time reads

reiφ = 1
V

V∑
j=1

√
ρje

iθj =
√

1 + δ −
√

1 − δ

2 at t = 0 (3.16)

that is {
r(0) =

√
1+δ−

√
1−δ

2
φ(0) = 0

(3.17)

where r > 0 consistently with the assumption δ > 0. Enforcing the two groups of
phases to rotate at the same rate, the stationarity condition (3.3) reads

− (1 + δ) + τ
r√

1 + δ
= − (1 − δ) − τ

r√
1 − δ

(3.18)

from which in few easy steps we get

2δ = τδ√
1 − δ2

(3.19)

that is solved either by δ = 0 (corresponding to the SPAC) or by δ =
√

1 −
(
τ
2
)2. The

former solution is present for whatever τ , the latter only if τ < τc = 2 (remember that
τ is in units of uρ0). The SF and the PAC with α = 1/2 are clearly showing a strong
analogy with the two-site problem. A graphical representation of the PAC is shown in
figure (3.1).

3.4 Topology of the stationary set
We have seen how rich the stationary set can be and we aim in this section at summarizing
the previous results systematically, categorizing the SS for all the possible V .
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Figure 3.1 |Graphical representation of some stationary configurations. a, SuperFluid Con-
figuration (SFC); b, Symmetric π-Aligned Configuration (SPAC); c, generic π-Aligned Configuration
(PAC) with α > 1/2; d, generic π-Aligned Configuration (PAC) with α < 1/2; e, Uniform Con-
figuration (UC) for V = 20; f,g, other examples of configurations with r = 0 for V = 20; h,
Delta Configuration (DC) for V = 4. In a-d we use thicker and larger blue markers to indicate the
overlapping of the markers of several different sites. The black arrow reminds that the stationary
configurations experience in general a global phase rotation at angular frequency Ω.

• V = 2
The SFC is stationary whereas the SPAC coincides with the UC and is always
present. The two PACs are present if τ < 2 (that is if the in-situ interaction is large
with respect to the hopping strength). Notice that these two PACs are actually
equal unless a permutation of the sites and we therefore decide not to distinguish
them;

• V = 3
The SFC and the UC are stationary, the SPAC is not defined (being V odd) and
two PACs, one corresponding to α = 1/3 and one to α = 2/3 are possibly stationary
(depending on the value of τ);

• V = 4
The SFC, UC and SPAC are stationary and as usual there can be other stationary
PACs. Moreover, the DC corresponds to a continuum of infinitely many SCs ranging
from the UC (for ∆ = π/2) to the SPAC (for ∆ = π);

• V = 5, 7, 9, . . .
The SCs are analogue to the ones of V = 4 apart from the fact that the set of r = 0
SCs does not include the SPAC, since this is not defined for an odd V ;
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• V = 6, 8, 10, . . .
The SCs are completely analogue to the ones of V = 4.

Notice that, of course, the dimension of the manifold of the r = 0 SCs and the number
of PACs grow with V . In figure (3.2) we schematically represent the phase space and the
SCs for various numbers of sites V . We notice that, depending on V , the structure of the
SS changes, with the emergence for V ≥ 4 of a continuum of SCs with r = 0 of which
the UC is part and the SPAC is part only if V is even. With an abuse of nomenclature
we will often refer to this manifold with the word line, that is actually accurate only for
V = 4. We call isolated stationary configuration a SC that is isolated in the geometrical
sense from any other SC, that is such that every path in the phase space going to any
other SC necessarily contain some non-stationary configuration. We see that the SFC
and the PACs (SPAC excluded) are always isolated SCs whereas the UC and the SPAC
are isolated for V < 4 and non isolated for V ≥ 4. The distinction of isolated and non
isolated SCs will reveal to be fundamental when considering the effects of nonlinearities
of the GPE in chapter 5.

Phase space
Stationary

configurations

V = 2

SFC

SPAC=UC

PAC

V = 3

SFC

SPACUC

PACs

V = 5, 7, 9, ...

line of
 r

=
0
 S

C
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V = 4, 6, 8, ...

SFC

SPACUC

PACs

a b c d

line of
 r

=
0
 S

C
s

SFC

UC

PACs

Figure 3.2 |Schematic representation of the stationary configurations in the phase space.
The structure of the Stationary Set (SS) depends on the number of sites V . a, for V = 2 the SS
is composed of SPAC, SFC and PAC; b, for V = 3 also the UC is present; c, for V = 4, 6, 8, . . .
the SS contains as well a continuous line of r = 0 SCs connecting the UC with the SPAC; d, for
V = 5, 7, 9, . . . the SPAC is missing. We notice all the SCs with r /= 0 to be isolated and the SCs
with r = 0 to be non isolated if and only if V ≥ 4.
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Chapter 4

Stability of the stationary
configurations

In the previous chapter we found the SCs of the DEs (2.16), that is the configurations
that are preserved in time unless a global phase rotation at a constant rate. It is natural
to wonder about the behavior of a system that is initialized close to a SC but not exactly
on it. This is relevant for instance in the case of a quench from the MI to the SF regime,
for which the IC is given by a MI phase (2.18). For increasing V , such IC clearly get
closer and closer to the UC, possibly coinciding with it only in the V → ∞ limit. On the
other hand, for a finite V it is fundamental to understand the effects on the time dynamics
(2.16) of the finiteness of the distance of the MI from the UC and, more in general, of the
IC from the closest SC. Such investigation can again be carried out in the context of DST
exploiting the linearization of the equations of motion (2.16).

In this chapter, after giving some simple and strong arguments on the role of the
conserved quantities in the out of equilibrium dynamics and after briefly reviewing some
basic issues concerning the linearization in DST, we diagonalize the Jacobian matrix
J associated to the linearized version of the DEs around the most relevant SCs and
for all possible V . Looking at the eigenvalues of the Jacobian matrix, we are able to
distinguish two regions of the parameter space corresponding to two qualitatively very
different behaviours of the system when initialized in the proximity of the UC or of the
SPAC. We call dynamical phase transition this transition between the two possible regimes
and notice that it corresponds to what in DST is commonly referred to as bifurcation.

Importantly, we observe that the results of this chapter are obtained considering a
repulsive in-situ interaction, that is u > 0. Having written τ in units of uρ0 this reduces
to considering τ > 0. A negative u would on the contrary lead to a negative τ , with
dramatic changes in the study of the stability of the SCs and in the respective physics.

4.1 The effects of conserved quantities
Before going through the Jacobian diagonalization, it is worth to formulate some simple
but powerful arguments based on the energy conservation of the mean field Hamiltonian
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(2.22) and on the total number of particles. The presence of two conserved quantities con-
strains the evolution of the system in a (2V −2)-dimensional manifold of the phase space,
with important consequences that we seek to understand in this section. Considering the
conservation of the expected energy (2.24) and the total number of particles we have

{
−τr2 + 1

2⟨ρ2
j⟩V = E

⟨ρj⟩V = 1
(4.1)

where E is a constant depending on the IC and where ⟨•j⟩V = 1
V

∑V
j=1 •j denotes the

average over the sites of the site dependent quantity •j . We can write ρj as ρj = 1 + δj
so that the condition on the total number of particles reads ⟨δj⟩V = 0 and (4.1) becomes

{
−τr2 + 1

2 + 1
2⟨δ2

j ⟩V = E

⟨δj⟩V = 0
(4.2)

Initializing the system with r(t = 0) = r0 and ρk = 1 ∀k = 1, 2, . . . , V , at time t = 0
we get ⟨δj⟩V = 0 and E = 1

2 − τr2
0, so that (4.2) reads
{

⟨δ2
j ⟩V = 2τ(r2 − r2

0)
⟨δj⟩V = 0

(4.3)

From (4.3) we observe some important facts. The first is that, since the left member
of the first equation is positive definite, for all times t > 0 we have

r(t) ≥ r0 (4.4)

that is r cannot be smaller than the initial r0. One consequence of the condition (4.4) is
that a system initialized close to the SFC will always stay close to the SFC. Indeed, since
r is bounded in (0, 1), if r0 = 1 − ϵ with ϵ positive and small then r(t) ∈ (1 − ϵ, 1) ∀t > 0,
that is the system stays close to the SFC (corresponding to r = 1). This is not surprising
since the SF is the ground state of the Hamiltonian after the quench (that is for t > 0).

The second implication of (4.3) is that an increase of r must be accompanied by a
spread of the ρk. For instance, if the system is initialized to the proximity of the UC or
of the SPAC (that is r0 ≈ 0), then its growth in time is possible provided that there is a
spread of the ρk around ρ0 = 1. Indeed, the goal of this chapter is to unveil the conditions
under which such growth of r with spread of the ρk is possible. On the other hand, if r is
initially small and if it stays small for all times t > 0, then the system can a priori visit
the neighborhoods of all the r = 0 manifold, as will be discussed in chapter 5.

4.2 The linearization procedure
Since the stationarity condition (3.3) allows a global rotation of the phases at rate Ω, we
now prefer to move to a frame rotating exactly at the angular speed Ω associated to the
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considered SC. In such frame, the equations of motion (2.16) read{
∂θj

∂t = −x2
j + τr 1

xj
cos (φ− θj) − Ω

∂xj

∂t = −τr sin (φ− θj)
(4.5)

where we consider the variable xj = √
ρj and where of course also the phase φ has

been redefined in the new rotating frame, accordingly to all the other phases. In such a
frame the phases of a SC are seen not to move at all, that is the definition of SC is the
usual one of dθk

dt = 0.
Before proceeding, we briefly recall here some very well-known results from DST. We

introduce

y⃗ =
(
y⃗(1)

y⃗(2)

)
=



θ1
θ2
...
θV
x1
x2
...
xV


∇⃗ =

(
∇⃗(1)

∇⃗(2)

)
=



∂
∂θ1
∂
∂θ2...
∂
∂θV
∂
∂x1
∂
∂x2...
∂
∂xV


(4.6)

So that by definition of y⃗(1), y⃗(2), ∇⃗(1), ∇⃗(2) we have y
(1)
j = θj , y

(2)
j = xj ,∇(1)

j =
∂
∂θj
,∇(2)

j = ∂
∂xj

. The Jacobian is the 2V × 2V -dimensional matrix defined by

Jj,k = ∇k

(
dyj
dt

)
j, k = 1, . . . , 2V (4.7)

whereas a SC is identified by a 2V -dimensional vector y⃗(SC) such that
(
dy⃗
dt

∣∣∣
SC

= 0. If
the IC is y⃗0 ≈ y⃗(SC), then it is relevant to linearize the DEs around y⃗(SC) so that we can
write

dϵ⃗

dt
≈ Jϵ⃗ (4.8)

where ϵ⃗ = y⃗− y⃗(SC) and where J is evaluated at the given y⃗(SC). Solving the linearized
equation (4.8) is extremely easy and gives

ϵ⃗(t) = eJtϵ⃗(0) (4.9)

A basis of Jacobian eigenvectors {v⃗1, v⃗2, . . . , v⃗2V }, where the eigenvector v⃗n is associ-
ated to the n-th eigenvalue λn of the Jacobian matrix, can be used to decompose ϵ as
ϵ(t) =

∑2V
n=1 αn(t)v⃗n so that its time evolution is readily given from (4.9) by

αn(t) = αn(0)eλnt (4.10)

23



Andrea Pizzi et al. Non-equilibrium in the fully connected Bose-Hubbard model

We therefore understand that the dynamics of the system in the surroundings of a SC
is ruled by the eigenvalues of the Jacobian matrix associated to the linearized equations of
motion in that given SC. In this sense, the possible eigenvalues can therefore be classified
in three categories: 1) λn = 0, for which αn(t) = αn(0) = cst; 2) λn with Re{λn} > 0,
for which |αn(t)| grows exponentially and to which we refer to as unstable eigenvalue; 3)
λn is such that Re{λn} < 0, for which |αn(t)| decays to 0 exponentially and to which we
refer to as stable eigenvalue. In DST it is common to classify the SCs accordingly to the
associated Jacobian eigenvalues and, among all the possible cases [61], we report here the
one of interest to us, that are

• iλn ∈ R ∀n ∈ {1, 2, . . . , 2V }
That is all the non-zero eigenvalues are purely imaginary numbers. In this case the
SC is said to be a linear center, and the solution of the linearized equations is a state
cycling periodically and closeby the SC when initialized in its surroundings;

• ∃ n,m ∈ {1, 2, . . . , 2V } such that Re{λn} > 0,Re{λm} < 0
That is there exist at least one eigenvalue with positive real part and at least one
eigenvalue with negative real part. In this case the SC is said to be a saddle, and the
solution of the linearized equations is a state diverging exponentially fast from the
SC when initialized in its surroundings (unless in case of initialization exactly along
the eigenvectors associated to the stable eigenvalues, that belongs to the realm of
mathematics rather than to the one of physics).

Importantly, we talked about linear center since the above arguments on the eigen-
values is a priori exact only for the linearized DEs. Analogously, we say a SC to be a
nonlinear center (or, more simply, a center) of the dynamics if, even for the nonlinear DEs,
there exist trajectories of the system looping arbitrarily close around the SC. Notice that
a nonlinear center is also a linear center whereas the vice versa is in general true (spiral
trajectories are a common example of linear centers that are not nonlinear centers).

Since if the SC is a saddle (linear center) the system will (will not) drift away ex-
ponentially fast from it, with some abuse of nomenclature we will often refer to it as
stable (unstable) SC. Our goal in this chapter is therefore to linearize the Jacobian matrix
associated to the SCs that we have already found in chapter 3. The argument on the con-
servation of the expected energy and total number of particles of section 4.1 guarantees
that the SF configuration is a nonlinear center of the dynamics for all the points of the
parameters space (that is all τ > 0), whereas the UC (that is relevant for the initialization
to a MI) and the SPAC can a priori either be linear (and possibly nonlinear) centers or
saddles, the latter corresponding to the growth in time of r with consequent spread of the
ρk described in section 4.1.

4.3 Stability in the two-site model
Again we briefly review the well-known results of the V = 2 case [1–6]. Continuing on
the line followed for the individuation of the SCs in section 3.2, we consider the reduced
system of DEs (3.5) and write a 2 dimensional Jacobian with respect to the 2-dimensional
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variable y⃗ =
(
θ
δ

)
. For the various SCs we find the following Jacobian matrices and

associated eigenvalues λ1,2

• y⃗(SFC) = (0, 0)T

J =
( 0 − τ

2 − 1
2τ 0

)
→ λ1,2 = ±2i

√
τ

2

(
τ

2 + 1
)

(4.11)

that is the SFC is always a linear center of the system, since the eigenvalues of the
Jacobian matrix are purely imaginary complex conjugated numbers for whatever
value of τ > 0, confirming the validity of the argument of section 4.1.

• y⃗(SPAC) = (π, 0)T

J =
( 0 τ

2 − 1
−2τ 0

)
→ λ1,2 = ±2

√
τ

2

(
1 − τ

2

)
(4.12)

that is the SPAC is a linear center of the system for τ > τc = 2, a saddle for
τ < τc = 2, since for τ < τc one eigenvalue is positive and one is negative.

• y⃗(PAC,±) =
(
π,±

√
4 − τ 2

)T
, existing only if τ < τc = 2

J =
( 0 − 4

τ2 − 1
−2τ 0

)
→ λ1,2 = ±2i

√
τ

2

(
1 + 4

τ 2

)
(4.13)

that is the PACs are always linear centers of the system when they exist, i.e. for
τ > τc = 2.

Remember that, as explained in section 2.4, we are as always considering τ in units of
uρ0 and exploiting the invariance of the DEs under a rescaling of ρ0, considering u = 1
and ρ0 = 1 without loss of generality. We therefore recall that τc = 2 actually means
τc = 2uρ0 and stress that the dynamics of the system is ruled by the ratio η = uρ0/τ ,
that is by the competition between hopping strength τ and in-situ interaction uρ0.

Notice that considering the 4×4-dimensional Jacobian (4.7) would just have generated
2 additional non relevant eigenvalues of value 0, as it will be shown in section 4.7.

As already noticed in section 3.4 and figure (3.2), we observe the SCs to be isolated in
the phase space, as obvious since they are finite in number. An important consequence
of the isolation of the SCs together with the presence of a conserved quantity of the
motion (the energy) is that the linear centers are actually also nonlinear centers [61].
This information is powerful and communicating us that the solution of the linearized
DEs is accurate when close to a SC, no matter if this is a saddle or a linear center, and
that therefore the presence of spirals is therefore excluded even for the whole nonlinear
dynamics (3.5). This can be understood clearly looking at figure (4.1.l), where we show the
energy landscape in the surroundings of the SPAC for τ > τc and one possible trajectory (in
blue). Since energy is conserved and the SPAC is isolated, the trajectory must necessary
be a cycle around the SPAC even in the nonlinear case. To complement the study of the
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FPs of the system, we report in figure (4.1a-h) the graphical representation of the flux
lines (given by the field dy⃗

dt at each point of the phase space) and of the trajectories in the
phase space for various τ (and u = ρ0 = 1 as usual). Trajectories are obtained numerically
integrating the equations of motion (3.5) for different ICs.

The study of the dynamics would be very much facilitated by the presence of one
attractive SC (that is with all the associated Jacobian eigenvalues negative), especially
if its basin of attraction is extended to the whole phase space allowing to state with
certainty that for long-times the system relaxes to the SC. This is the case for instance
in the notorious Kuramoto model, whose solution is indeed starting from this observation
and focusing on long-time [53]. However, we have found the phase space of the two-site
BH model to be characterized by the presence of centers and saddles only. As we will see
in the following sections, this is more in general a distinctive feature of the FCBHM for
all V ≥ 2. Still, as already noticed in section 4.2, the dynamics is dramatically different in
the surroundings of a center rather than a saddle, and it is therefore still very interesting
to look if and for which values of the model parameters the nature of a SC changes from
saddle to center or vice versa. Indeed, we have that

• SPAC is a saddle or a center respectively for τ < τc = 2 and τ > τc = 2. This means
that if the system is initialized to be arbitrarily close to SPAC at t = 0, then it will
evolve in completely different ways depending on τ < τc = 2 or τ > τc = 2.

• SF is always a center. Therefore, a system initialized to be close to SF at t = 0 will
always stay close to it, no matter of τ .

We anticipate that several of the results obtained for the two-site system will be in
close analogy with what observed for the V > 2 case treated in the following sections.

Locked and unlocked solutions

Notice that, because of periodic boundary conditions in θ, a trajectory exiting from one
side of the θ domain is reentering into the other side. That is, if a trajectory passes through
(π, δ∗) and (−π, δ∗), then it is periodic and θ increases (or decreases) of an amount 2π at
each period. Let’s call such kind of trajectories unlocked, in the sense that one of the two
oscillators overcomes the other infinitely many times and always in the same direction,
i.e. winds around the origin more often than the other one. Conversely, let’s say locked all
the other trajectories, that are the ones forming closed orbits in the phase space (notice
that the closure of an orbit can also occur through the domains limit θ = π and θ = −π
thanks to periodic boundary conditions). In locked trajectories, the phase difference θ is
periodic remains therefore bounded. That is there is no oscillator overcoming the other,
and they wind around the origin the same number of times and in the same direction.

For τ < τ ′
c ≈ 1 there are both locked and unlocked trajectories (separated by a sea-

paratrix trajectory) whereas for τ > τ ′
c ≈ 1 only locked trajectories are present. We say

τ ′
c ≈ 1 since τ ′

c does not emerge from the linear stability analysis but only from numerics.
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Figure 4.1 |Two-site Bose-Hubbard phase portrait. a-h, Representation of trajectories (blue
lines), flux (green arrows) and FPs (red dots) in the (θ, δ) phase space associated to the dynamical
system (3.5) for uρ0 = 1 and τ = 0, 0.02, 0.2, 0.6, 1.0, 1.6, 2.6, 10 respectively. Accordingly with the
linearization study reported in section 4.3, we observe FP0 = (0, 0) to be a center for whatever τ ,
FPπ to be a center for τ > τc = 2 and a saddle for τ < τc, FP± to be present only for τ < τc

and to be centers. Periodic oscillatory solutions correspond to closed blue orbits, where the closure
is possibly meant to be throught the boundaries θ = ±π because of periodic boundary conditions on
the phase. i,l, landscape of the classical energy HCL 2.21 around FPπ = (π, 0) and representation
of some trajectories (in blue) for τ = 1 (i) and τ = 3 (l). The conservation of the energy and the
isolation of FPπ make the latter a nonlinear center.
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4.4 Jacobian for V ≥ 3
Apart from V = 2 sites, to our knowledge, stability studies of FCBHM through lineariza-
tion of the GPE have been done only for V = 3 sites [7, 9]. One of the primary goals
of the present work is to extend these studies to the generic V case performing an ex-
act diagonalization of the (2V × 2V )-dimensional Jacobian matrix J associated to the
DEs (4.5). Notice that the frame angular speed Ω depends on the particular considered
SC, since it has to match the global angular speed of the phases of the configuration.
Nevertheless, we do not really care about it since Ω will cancel out when computing the
Jacobian matrix, without the need of explicitly finding it. Considering that the first and
the second halves of the variable y⃗ are referring to the phases {θk}k=1,...,V and to the
moduli {xk = √

ρk}k=1,...,V respectively, it is convenient to distinguish the following 4
terms of the Jacobian (4.7)



Jj,k = ∂
∂θk

(
dθj

dt

)
Jj+V,k+V = ∂

∂xk

(
dxj

dt

)
Jj+V,k = ∂

∂θk

(
dxj

dt

)
Jj,k+V = ∂

∂xk

(
dθj

dt

) j, k = 1, . . . V (4.14)

In the following we implicitly assume that the indexes k and j run over 1, 2, . . . V . To
build the Jacobian matrix we need to evaluate the following partial derivatives



∂
∂θk

r cos (φ− θj) = − 1
V xk sin (θk − θj) for k /= j

∂
∂θk

r cos (φ− θj) = 1
V

∑V
i/=j xi sin (θi − θj) = r sin (φ− θj) for k = j

∂
∂θk

r sin (φ− θj) = 1
V xk cos (θk − θj) for k /= j

∂
∂θk

r sin (φ− θj) = − 1
V

∑V
i/=j xi cos (θi − θj) = −r cos (φ− θj) + xj

V for k = j
∂
∂xk

r cos (φ− θj) = 1
V cos(θk − θj) for k /= j

∂
∂xk

r cos (φ− θj) = 1
V for k = j

∂
∂xk

r sin (φ− θj) = 1
V sin(θk − θj) for k /= j

∂
∂xk

r sin (φ− θj) = 0 for k = j

(4.15)
that can be compacted in


∂
∂θk

r cos (φ− θj) = − 1
V xk sin (θk − θj) + δk,jr sin (φ− θj)

∂
∂θk

r sin (φ− θj) = 1
V xk cos (θk − θj) − δk,jr cos (φ− θj)

∂
∂xk

r cos (φ− θj) = 1
V cos(θk − θj)

∂
∂xk

r sin (φ− θj) = 1
V sin(θk − θj)

(4.16)

δk,j being the Kronecker delta (δk,j = 1 if k = j, δk,j = 0 else). Using the expressions
(4.16), the Jacobian (4.7) associated to the linearization of the GPE (4.5) is found to be
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given by
Jj,k = − τ

V

[
xk

xj
sin (θk − θj) − δk,j

rV
xj

sin (φ− θj)
]

Jj+V,k+V = − τ
V sin(θk − θj)

Jj+V,k = − τ
V [xk cos (θk − θj) − δk,jrV cos (φ− θj)]

Jj,k+V = −2δk,jxk + τ
V

1
xj

cos(θk − θj) − δk,jτr
1
x2

k
cos(φ− θk)

(4.17)

In particular, for the case of stationary configurations with r = 0 (comprising the UC,
the SPAC and the DC) the Jacobian (4.17) simplifies to

Jj,k = − τ
V sin (θk − θj)

Jj+V,k+V = − τ
V sin(θk − θj)

Jj+V,k = − τ
V cos (θk − θj)

Jj,k+V = + τ
V cos(θk − θj) − 2δk,j

(4.18)

We now seek to exactly find the 2V eigenvalues of the Jacobian matrix (4.17) system-
atically for all the SCs that we have found in chapter 3 in order to study their stability.
Possibly, we will find as well the eigenvectors of the Jacobian, conveying important infor-
mation on how the state is diverging from the SC in the case the latter is a saddle.

An observation on the neglection of 1/V in the Jacobian

It is tempting to consider the large V limit and to neglect the terms scaling as 1/V in
the Jacobian (4.17), as done for instance in reference [34]. This is however not possible
and to understand why we observe that the eigenvalues of the Jacobian matrix are the
roots of its characteristic polynomial, that basically consists of a determinant, that for a
n-dimensional matrix is given by sums of products with n factors. The implications of
this observation are readily understood considering the case of a matrix with entries all
equal to (1+ 1

n). It is easy to convince ourselves that in this trivial case the determinant is
a sum of terms of the kind (1 + 1

n)n, that for n → ∞ tend to the Neper number e ≈ 2.718
rather than to 1 (such sum is then equal 0, obviously, but this is not the point of the
argument). Therefore, we keep all the terms of the Jacobian.

4.5 Stability of the uniform configuration
We start considering the case of the UC, that is we evaluate the Jacobian matrix (4.17)
for θk = 2π

V k and xk = √
ρk = 1 ∀k = 1, . . . , V . As it will become clear going through the

mathematics, the following treatment for the UC case is valid only for V ≥ 3. Still, the
UC for the V = 2 case corresponds to the SPAC and will be, therefore, covered in section
4.7. Moreover, an exhaustive analysis of the V = 2 case has already been reported in the
study of the two-site problem of sections 3.2 and 4.3. The eigenvalue problem associated
to the Jacobian matrix J reads

Jy⃗ = λy⃗ (4.19)
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and, in order to write it in a handy fashion, we notice that the multiplication of the

Jacobian matrix J times a 2V -dimensional column vector y⃗ with y⃗ =
(
y⃗(1)

y⃗(2)

)
and y⃗(1) and

y⃗(2) V -dimensional column vectors, reads

{
(Jy⃗)j = − τ

V

∑V
k=1 sin(θk − θj)y(1)

k + τ
V

∑V
k=1 cos(θk − θj)y(2)

k − 2y(2)
j

(Jy⃗)j+V = − τ
V

∑V
k=1 sin(θk − θj)y(2)

k − τ
V

∑V−1
k=1 cos(θk − θj)y(1)

k

(4.20)

Since the sine and the cosine functions can be written in terms of exponentials and
since θk = 2π

V k, the form of (4.20) suggests us to consider the Discrete Fourier Transform
(DFT), that for a V -dimensional vector v⃗ is given by

ṽq = 1
V

V∑
k=1

eiqθkvk q ∈ Z (4.21)

where we denoted with q the Fourier wavenumber. It is easy to verify that ṽq1 = ṽq2 if
q1−q2
V ∈ Z, so that it is possible to restrict, without loss of generality, q ∈ {0, 1, 2, . . . , V −1}

and to refer to q = V − 1 as to q = −1. We are thus interested in the evaluation of the
following terms

 1
V

∑V
i=1 sin(θk − θj)vi = 1

V

∑V
i=1

ei(θk−θj)−c.c.
2i vi = ṽ1e

−iθj −cc
2i = Im

{
ṽ1e

−iθj
}

1
V

∑V
i=1 cos(θk − θj)vi = 1

V

∑V
i=1

ei(θk−θj)+c.c.
2 vi = ṽ1e

−iθj +cc
2 = Re

{
ṽ1e

−iθj
} (4.22)

where Re{•} and Im{•} denote respectively the real and the imaginary part of the
c-number •. Having introduced the DFT in (4.21) and having evaluated the terms of
(4.22) , we can write the expressions of (4.20) in the following compact form

(Jy⃗)j = −τ Im
{
ỹ

(1)
1 e−iθj

}
+ τ Re

{
ỹ

(2)
1 e−iθj

}
− 2y(2)

j

(Jy⃗)j+V = −τ Im
{
ỹ

(2)
1 e−iθj

}
− τ Re

{
ỹ

(1)
1 e−iθj

} (4.23)

that allows us to write the eigenvalue problem (4.19) as

λy
(1)
j = −τ Im

{
ỹ

(1)
1 e−iθj

}
+ τ Re

{
ỹ

(2)
1 e−iθj

}
− 2y(2)

j

λy
(2)
j = −τ Im

{
ỹ

(2)
1 e−iθj

}
− τ Re

{
ỹ

(1)
1 e−iθj

} (4.24)

The solution of (4.24) will provide us with the Jacobian eigenvalues λn (with n =
1, 2, . . . , 2V ) containing information on the stability of the UC. To approach equation
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(4.24) we aim to perform a DFT on it. To do that, we evaluate the following terms



(
Im
{
Ae−iθj

})
1 = 1

V

∑V
j=1

A−A∗e2iθj

2i = −iA2(
Re
{
Ae−iθj

})
1 = 1

V

∑V
j=1

A+A∗e2iθj

2 = A
2(

Im
{
Ae−iθj

})
−1 = 1

V

∑V
j=1

Ae−2iθj −A∗

2i = +iA∗

2(
Re
{
Ae−iθj

})
−1 = 1

V

∑V
j=1

Ae−2iθj +A∗

2 = A∗

2(
Im
{
Ae−iθj

})
q = 1

V

∑V
j=1

Aei(q−1)θj −A∗ei(q+1)θj

2i = 0 q = 0, 2, 3, ..., V − 2(
Re
{
Ae−iθj

})
q = 1

V

∑V
j=1

Aei(q−1)θj +A∗ei(q+1)θj

2 = 0 q = 0, 2, 3, ..., V − 2

(4.25)

A being whatever complex number and (•j)q being an alternative notation for the
DFT of the function •j with respect to the Fourier wavenumber q (that is (•j)q = •̃q).
Importantly, we notice that the expressions for q = ±1 of (4.25) are valid if and only if
V ≥ 3, since

∑V
j=1 Ae

±2iθj /= 0 for V = 2. We therefore assume for the following treatment
that V ≥ 3. Performing the DFT of (4.24) for q = ±1 gives

{
λỹ

(1)
1 = i τ2 ỹ

(1)
1 +

(
τ
2 − 2

)
ỹ

(2)
1

λỹ
(2)
1 = i τ2 ỹ

(2)
1 − τ

2 ỹ
(1)
1

(4.26)
{
λỹ

(1)
−1 = −i τ2 ỹ

(1)
−1 +

(
τ
2 − 2

)
ỹ

(2)
−1

λỹ
(2)
−1 = −i τ2 ỹ

(2)
−1 − τ

2 ỹ
(1)
−1

(4.27)

that are 2-dimensional eigenvalue problems for ỹ(1)
1 , ỹ

(2)
1 and for ỹ(1)

−1, ỹ
(2)
−1 respectively

and where the subscripts ±1 refer to the Fourier wavevector q whereas the superscripts
1,2 refer to the bipartition of y⃗ in the two halves. We can rewrite the problems (4.26) and
(4.27) in matricial form as

(
i τ2

(
τ
2 − 2

)
− τ

2 i τ2

)(
ỹ

(1)
1
ỹ

(2)
1

)
= λ

(
ỹ

(1)
1
ỹ

(2)
1

)
(4.28)

(
−i τ2

(
τ
2 − 2

)
− τ

2 −i τ2

)(
ỹ

(1)
−1
ỹ

(2)
−1

)
= λ

(
ỹ

(1)
−1
ỹ

(2)
−1

)
(4.29)

With respective characteristic polynomials P±1(λ), eigenvalues λ±
+1 and λ±

−1 and eigen-
vectors v±

+1 and v±
−1 equal to

P1(λ) = λ2 − iτλ− τ P−1(λ) = λ2 + iτλ− τ (4.30)

λ±
1 = iτ ±

√
4τ − τ 2

2 λ±
−1 = −iτ ±

√
4τ − τ 2

2 (4.31)

v±
1 =

(
∓
√
τ(4 − τ), τ

)T
v±

−1 = v±
1 (4.32)
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Having found 4 of the 2V eigenvalues, we proceed looking for other non-zero eigen-
values, that is for λ /∈ {0, λ+

1 , λ
−
1 , λ

+
−1, λ

−
−1}. Performing the DFT of equation (4.24) for

q /= ±1 we get {
λỹ

(1)
q = −2ỹ(2)

q

λỹ
(2)
q = 0

for q = 0, 2, 3, . . . , V − 2 (4.33)

that, assuming λ /= 0, is solved by ỹ
(1)
q = ỹ

(2)
q = 0 ∀q = 0, 2, 3, . . . , V − 2. We

observe that, if λ /∈ {λ+
1 , λ

−
1 , λ

+
−1, λ

−
−1}, then ỹ

(1)
1 = ỹ

(2)
1 = ỹ

(1)
−1 = ỹ

(2)
−1 = 0, since equa-

tions (4.28) and (4.29) need still to be satisfied. This implies that y⃗ = 0, being all its
Fourier components equal to 0. Thus, we conclude that the only non-zero eigenvalues are
λ+

1 , λ
−
1 , λ

+
−1, λ

−
−1, and that λ0 = 0 is an eigenvalue with algebraic multiplicity ma = 2V −4.

Additionally, it is actually possible to explicitly find the eigenvectors associated to
λ0 = 0. In fact, equation (4.33) for λ = 0 gives ỹ(2)

q = 0 for q = 0, 2, 3, . . . , V −2. Moreover,
again we can say that because λ0 /∈ {λ+

1 , λ
−
1 , λ

+
−1, λ

−
−1}, then ỹ(1)

1 = ỹ
(2)
1 = ỹ

(1)
−1 = ỹ

(2)
−1 = 0.

Therefore the only constraints on the eigenvectors with eigenvalue λ0 are that y⃗(2) = 0
and ỹ

(1)
1 = ỹ

(1)
−1 = 0. The eigenvectors of the Jacobian with eigenvalue λ0 = 0 are thus

readily obtained as v⃗q =
(
v⃗(1,q)

v⃗(2)

)
with{

v
(1,q)
j ∝ eiq

2π
V
j

v
(2)
j = 0

q ∈ {0, 2, 3, . . . , V − 2} (4.34)

It is easy to convince ourselves that, because of the above mentioned constraints, there
are no other eigenvectors corresponding to λ0.

Summing up, the eigenvalues of the Jacobian matrix and their respective algebraic
multiplicities for the UC for a number of sites V ≥ 3 are

λ0 = 0 ma = 2V − 4 (4.35)

λ+
1 = iτ +

√
4τ − τ 2

2 ma = 1 (4.36)

λ−
1 = iτ −

√
4τ − τ 2

2 ma = 1 (4.37)

λ+
−1 = −iτ +

√
4τ − τ 2

2 ma = 1 (4.38)

λ−
−1 = −iτ −

√
4τ − τ 2

2 ma = 1 (4.39)

For completeness we report the characteristic polynomial of the Jacobian matrix, that
is easily given by P (λ) =

∏2V
i=1(λ− λi), reading

P (λ) = λ2V−4
(
λ4 + τ(τ − 2)λ2 + τ 2

)
(4.40)

Having found all the eigenvalues, it is possible to argue on the stability of the UC.
We see that for τ < τc = 4 some eigenvalues (λ+

1 , λ
+
2 ) have positive real part and some
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others (λ−
1 , λ

−
2 ) negative real part, making the UC a saddle point of the dynamics. For

τ > τc = 4 instead λ+
1 , λ

−
1 , λ

+
2 , λ

−
2 are all purely imaginary, making the UC a linear center

of the dynamics. We then conclude that for τ < τc = 4, a system initialized closeby the UC
(and not exactly on the UC) will drift away from it exponentially fast. The case τ > τc is
actually delicate, since it is not guaranteed that the UC is also a nonlinear center and will
require the attention of the chapter 5. As always, we stress that we have considered τ in
units of uρ0, and that therefore τc = 4 actually means τc = 4uρ0, from which we explicitly
see that the competition between the hopping strength τ and the in-situ interaction uρ0
is determinant for the dynamics of the system.

We have therefore found that, depending on the value of the ratio between the hopping
strength τ and the in-situ interaction uρ0, for a system that is initialized in the proximity
of the UC (for instance as in the case of MI to SF quench for large V ), two qualitatively
very different dynamical behaviours are possible. Since the transition between these two
regimes is very sharp, and precisely occurring at τ

uρ0
= 4, such change of behavior is

referred to as Dynamical Phase Transition (DPT) [47] and will be further discussed in the
following.

4.5.1 Stability of r = 0
We have found that for τ < τc = 4 the system will drift away from the UC when initialized
close to it. Still, it is not clear how this affects the time evolution of r. Information on
such drift are contained into what we call unstable eigenvectors of the Jacobian, that is
the eigenvectors associated to the eigenvalues with positive real parts, that is v+

−1 = v+
1 .

Indeed, after an possible short transient, the system aligns along the direction defined by
these two eigenvectors. To be explicit, we consider a configuration initialized close to the
UC as {

θj = 2π
V j + δθ,j

xj = 1 + δx,j ∀j = 1, . . . , V
(4.41)

being δθ,j , δx,j ≪ 1 ∀j = 1, 2, . . . , V . For such configuration we observe that we can
write reiφ as

reiφ = 1
V

V∑
j=1

xje
iθj = 1

V

V∑
j=1

(1 + δx,j)eiδθ,jei
2π
V
j (4.42)

that corresponds to a DFT of the term (1 + δx,j)eiδθ,j . Approximating the exponential
at linear order we obtain

reiφ ≈ δ̃x1 + iδ̃θ1 (4.43)

that is r and φ can be written in terms of the unstable Fourier modes, so that it is
easy to conclude that for τ < τc = 4

reiφ ∼
(

−i
√
τ(4 − τ) + τ

)
e

√
4τ−τ2

2 t (4.44)
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where we used the symbol ∼ to point out that the exponential divergence will occur
after an possible short transient during which the system aligns with the unstable eigen-
vector. Considering only the exponential dependence, we have therefore that r ∼ et/tU

where the characteristic time scale for the exponential divergence is tU =
√

4τ−τ2

2 that,
close to the transition, gives tU ∼

∣∣∣1 − τ
τc

∣∣∣β with β = 1/2.
As we observed in section 4.1, because of the conservation of the expected energy and

total number of particles, the increase of r will necessarily correspond to an increase of the
spread of the number of bosons at each site ρk. In a lattice model one could maybe talk
about the growth of a boson number wave, but in a FC model, where no metric is defined,
this is not possible. In particular, from equation (4.3) we get for a system initialized in
the proximity of the UC (relevant for instance for a MI to SF quench when V ≫ 1) that{

Var[ρj ] = 2τr2

⟨ρj⟩V = 1
(4.45)

where Var[ρj ] denotes the variance over the sites of the number of bosons ρj at each
site. We thus get that such variance grows exponentially as ∼ e2t/tU .

We conclude our analysis by pointing out that the linear stability holds only for short
times. Determining until what value r will grow and how it will then behave for τ < τc = 4
is not easy and requires the study of the full, nonlinear GPE (2.9), that will be addressed
in chapter 5.

4.5.2 Numerical results
We numerically solve the DEs (2.16) with the matlab built in adaptive ordinary differ-
ential equations solver ode45. We check the stability of the UC by initializing the system
to a configuration close to the UC and looking at its time evolution. Since we consider
IC ≈ UC and IC /= UC, then 0 < r0 = r(t = 0) ≪ 1 and we are interested in looking
whether r grows exponentially or not and for which values of the hopping strength τ .

In particular, we consider as IC the following configuration{
θk = 2π

V k

ρk = 1 + A sin(θk)
(4.46)

A = 10−7 being an arbitrarily small value giving r0 = 2.50 × 10−8. The choice of
the sinusoidal noise is due to the fact that the eigenvalues causing instability for the UC
are associated with Fourier wavenumber q = ±1 as seen in subsection 4.5. Of course,
the following results hold for a generic random noise and that the sinusoidal noise and
the choice of the magnitude of A is just arbitrary. We observe, as expected, a sharp
transition at τc = 4, with an initial exponential growth of r for τ < τc in accordance with
the predicted time scale tU ∼

√
1 − τ

τc
found in subsection 4.5.1. Moreover, we observe

that larger r correspond to larger variances of the number of bosons per site ρj (c in
comparison with b,d,e), according to the arguments of section 4.1. Notice as well that,
since we cannot claim the UC to be a nonlinear center for τ > τc, we cannot a priori
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Figure 4.2 |Dynamical phase transition for the uniform configuration. a, Time evolution of
r =

∣∣∣ 1
V

∑V
j=1

√
ρje

iθj

∣∣∣ for V = 1000 sites, for τ = 3, 3.5, 3.9, 3.99, 3.999, 4, 4.01 and initializing
the system in the proximity of the UC as in (4.46). As expected we observe an initial exponential
growth of r only for τ < τc = 4, highlighting the DPT due to the emergence of positive real parts
in some of the non-zero Jacobian eigenvalues. b-e, Graphical representation of the bosonic variables
for different τ and times, corresponding to the red dots in a. For graphical clarity, only a sample of
300 sites is represented.

consider the system configuration to remain similar to the one of figure (4.2b-e) even for
later times. Indeed, we will observe in chapter 5 that at long-times the nonlinearities of
the DEs can take the system to other new configurations, such as the partially π-aligned
ones.

4.6 Stability of the superfluid configuration

Analogously to what we have done for the UC, we now study the stability of the SFC,
that is the configuration for which θk = 0, ρk = 1 ∀k = 1, 2, . . . , V . The argument of
section 4.1 is actually sufficient to state that the SFC is a nonlinear center of the dynamics
for whatever τ > 0 but, for completeness, we report here a direct study of its stability
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diagonalizing the respective Jacobian matrix. For the SF, the Jacobian (4.17) reads


Jj,k = 0
Jj+V,k+V = 0
Jj+V,k = − τ

V + τδk,j

Jj,k+V = + τ
V − (2 + τ)δk,j

(4.47)

and is therefore built up of V × V -dimensional blocks. It is therefore still natural to

write a 2V -dimensional column vector y⃗ as y⃗ =
(
y⃗(1)

y⃗(2)

)
, y⃗(i) being a V -dimensional column

vector. The eigenvalue problem (4.19) can therefore be written as

Jy⃗ =
(

+τ ỹ(2)
0 − (2 + τ)y⃗(2)

−τ ỹ(1)
0 + τ y⃗(1)

)
= λ

(
y⃗(1)

y⃗(2)

)
(4.48)

where ỹ
(i)
0 = 1

V

∑V
j=1 y⃗

(i)
j . Looking for non-zero eigenvalues, that is λ /= 0, we can

multiply by λ the first equation of (4.48) getting

{
+τλỹ(2)

0 − (2 + τ)λy⃗(2) = λ2y⃗(1)

−τ ỹ(1)
0 + τ y⃗(1) = λy⃗(2) (4.49)

From the second equation we readily get λỹ(2)
0 and, plugging it into the first equation

we get

−(2 + τ)
(
−τ ỹ(1)

0 + τ y⃗(1)
)

= λ2y⃗(1) (4.50)

from which we find that ỹ(1)
0 = 0, so that

−τ(2 + τ)y⃗(1) = λ2y⃗(1) (4.51)

giving λ1,2 = ±i
√
τ(2 + τ). These are the only non-zero eigenvalues and can therefore

be used to argue on the stability of the SFC. Since for whatever value of τ the non-zero
eigenvalues are purely imaginary complex conjugate numbers, the SFC is a linear center
of the dynamics. Since the SFC is an isolated SC (as observed in section 3.4 and figure
(3.2)) and since the dynamical system is conserving energy and number of particles, we
can actually claim the SFC to be as well a nonlinear center. We conclude thus that
initializing the system to a configuration in the neighborhoods of the SFC the former
will cycle around the latter for whatever τ . This result generalizes the one shown for the
two-site model. As we already noticed in section 4.1, the SFC is actually not only a linear
center, but a nonlinear center as well.

36



4 – Stability of the stationary configurations

4.7 Stability of the symmetric π-aligned configura-
tion

We aim now at studying the stability of the SPAC, that is the one defined for an even V
by θk = 0 for k = 1, 2, . . . V/2, θk = π for k = V/2 + 1, . . . V and ρk = 1 ∀k = 1, . . . V .
Again our goal is to diagonalize the Jacobian matrix corresponding to such configuration
and to look at its eigenvalues to obtain information on the configuration stability. The
Jacobian (4.18) simplifies to 

Jj,k = 0
Jj+V,k+V = 0
Jj+V,k = − τ

V νkνj

Jj,k+V = + τ
V νkνj − 2δk,j

(4.52)

where νk = 1 for k = 1, . . . , V/2 and νk = −1 for k = V/2 + 1, . . . , V . The Jacobian
matrix is therefore composed of blocks of dimension V/2 × V/2 characterized by equal
entries unless the terms given by the Kronecker delta δk,j . It is therefore natural to write
a 2V -dimensional column vector y⃗ as

y⃗ =


y⃗(1)

y⃗(2)

y⃗(3)

y⃗(4)

 (4.53)

y⃗(i) being a V/2-dimensional column vector. The eigenvalue problem (4.19) reads then

Jy⃗ =


+ τ

2

(
ỹ

(3)
0 − ỹ

(4)
0

)
− 2y⃗(3)

− τ
2

(
ỹ

(3)
0 − ỹ

(4)
0

)
− 2y⃗(4)

+ τ
2

(
−ỹ(1)

0 + ỹ
(2)
0

)
− τ

2

(
−ỹ(1)

0 + ỹ
(2)
0

)

 = λ


y⃗(1)

y⃗(2)

y⃗(3)

y⃗(4)

 (4.54)

where we introduced ỹ
(i)
0 = 2

V

∑V/2
j=1 y⃗

(i)
j .

Looking for non-zero eigenvalues, that is for λ /= 0, we readily obtain y⃗(2) = −y⃗(1) and
y⃗(4) = −y⃗(3), reducing the problem to{

+τ ỹ(3)
0 − 2y⃗(3) = λy⃗(1)

−τ ỹ(1)
0 = λy⃗(3) (4.55)

The second equation of (4.55) implies all the components of y⃗(3) to be equal, that is
y

(3)
j = ỹ

(3)
0 ∀j = 1, . . . , V/2 and τ ỹ

(1)
0 = −λỹ(3)

0 . From the first equation of (4.55) we get
then that also all the components of y⃗(1) are equal, and we are thus left with

−τ (τ − 2) ỹ(1)
0 = λ2ỹ

(1)
0 (4.56)
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Since we look for non-trivial solutions (that is with non-zero y⃗), we consider ỹ(1)
0 /= 0

and finally obtain the eigenvalues

λ± = ±
√
τ (2 − τ) (4.57)

Having found all the non-zero eigenvalues, we can state with certainty that the eigen-
values of the Jacobian matrix and their respective algebraic multiplicities ma for the SPAC
for an even number of sites V are

λ0 = 0 ma = 2V − 2 (4.58)

λ+ =
√
τ (2 − τ) ma = 1 (4.59)

λ− =
√
τ (2 − τ) ma = 1 (4.60)

corresponding to all the roots of the characteristic polynomial of the Jacobian matrix,
that thus turns out to be

P (λ) = λ2V−4
(
λ2 + τ(τ − 2)

)
(4.61)

Having found all the eigenvalues, it is possible to study the stability of the SPAC. We
see that for τ < τc = 2 λ+ > 0 and λ− < 0, that is the SPAC is a saddle point of the
dynamics. For τ > τc = 2 instead λ+, λ− are purely imaginary, making the SPAC a linear
center. We then conclude that for τ < τc = 2 a system initialized arbitrarily close to the
SPAC drifts away from it exponentially fast. For τ > τc it is instead non-trivial to guess
how the system behaves when initialized close to the SPAC, since being the SPAC non
isolated (for V ≥ 4) we cannot a priori claim it to be a nonlinear center.

Also for a system initialized in the proximity of the SPAC we have therefore spotted
out the existence of a DPT occurring at τc = 2. Once more, we stress that τ is written
in units of uρ0 and that, therefore, actually τc = 2uρ0, from which the role of the in-situ
interaction, that is competing against the hopping strength, is clearly emerging.

4.7.1 Numerical results
Again we numerically solve the DEs (2.16) initializing the system closeby the SPAC and
looking at it at later times, particularly focusing on the time evolution of r.

We consider as IC the following configuration
θk = 0 + ξk for k = 1, . . . , V/2
θk = π + ξk for k = V/2 + 1, . . . , V
ρk = 1 + A sin(θk)

(4.62)

ξk being a Gaussian random number with zero mean and varianceA = 10−7. The choice
of the noise is in this case just arbitrary and leads to r0 = 4.95 × 10−9. Qualitatively
similar results are obtained for whatever IC close to the SPAC. We observe, as expected,
a sharp transition at τc = 2, with an exponential growth of r at short times and for τ < τc
as shown in figure (4.3).
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Figure 4.3 |Dynamical phase transition for the symmetric π-aligned configuration. a, Time
evolution of r =

∣∣∣ 1
V

∑V
j=1

√
ρje

iθj

∣∣∣ for V = 1000 sites, for τ = 1.5, 1.9, 1.99, 1.999, 2, 2.01 and
initializing the system in the proximity of the SPAC as in (4.62). As expected we observe an initial
exponential growth of r only for τ < τc = 2, highlighting the DPT due to the emergence of positive
real parts in some of the non-zero Jacobian eigenvalues. b-e, Graphical representation of the bosonic
variables for different τ and times, corresponding to the red dots in a. For graphical clarity, only a
sample of 300 sites is represented.

4.8 Stability of the delta configuration for V = 4
In sections 4.5 and 4.7 we studied the stability of the UC and of the SPAC, spotting out
the existence of two critical values of the hopping strength, that are τc = 4 (V ≥ 3) and
τc = 2 (V ≥ 2) respectively. In section 3.4 and figure (3.2) we also noticed that the UC
and the SPAC are connected by a line of SCs with r = 0 in the phase space, and it is
therefore natural to wonder about how can the τc change along this line, expecting it to
range from 4 (at the extremity of the line corresponding to the UC) to 2 (at the extremity
of the line corresponding to the SPAC) in a continuous manner. To carry on analytical
calculations on this line (that we recall to be a proper line only for V = 4 and a higher
dimensional manifold for V = 6, 8, . . . ), we consider the DC for V = 4.
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With the help of a symbolic manipulation software we find the exact characteristic
polynomial of the Jacobian matrix (4.18) associated to the considered DC

P (λ) = λ4
(
λ4 + τ(τ − 2)λ2 + τ 2 sin(∆)

)
(4.63)

From the characteristic polynomial we want as usual to understand if and when the SC
is unstable. In analogy with the study of sections 4.5 and 4.7 the non-zero eigenvalues can
either be purely imaginary or not. The former case corresponds as usual to a linear center
whereas the latter corresponds to a saddle (in fact, since the trace of the Jacobian (4.18)
is 0, in this case some of the non-zero eigenvalues have positive real part and some have
negative real part). One way of looking at the critical condition for which the stationary
configuration passes from being a saddle to being a linear center is therefore to look at
when purely imaginary non-zero eigenvalues are roots of the characteristic polynomial
P (λ). We set therefore λ = iα with α ∈ R and look for real roots of

p(α) = α4 − τ(τ − 2)α2 + τ 2 sin(∆) (4.64)

For τ < 2 the equation (4.64) has not solutions, meaning that the stationary con-
figuration is a saddle of the dynamics for whatever ∆. For τ ≥ 2 the equation reads
α4 −aα2 +b = 0 with a, b ≥ 0. The minimum of p(α) is in α∗ =

√
a
2 , so that p(α∗) = b− a2

4
and that (4.64) has real solutions (corresponding to purely imaginary roots of P (λ)) only
for b ≤ a2

4 . The critical condition reads therefore b = a2

4 , finally giving

τc = 2 (1 + sin(∆)) (4.65)

so that the DC corresponding to a given ∆ is a saddle if τ < τc = 2 (1 + sin(∆)) and
a linear center if τ > τc = 2 (1 + sin(∆)). Of course, we correctly find that τc = 2 for the
SPAC (∆ = π) and that τc = 4 for the UC (∆ = π/2).

4.9 Stability of the uniform configuration in the V →
∞ limit

The UC stability has already been studied for whatever V > 2 (including thus the V → ∞
limit), but it is nevertheless instructive to perform the study passing from the continuous
equations (2.19) obtained in the V → ∞ limit. Indeed, we expect some of the equations
that we are about to derive to be potentially useful to analytically approach the nonlinear
equations leading to the emergence of thermalization phenomena for large V (details in
chapter 5).

Accordingly with the hypothesis of regularity for the functions ρ(s, t) and θ(s, t), that
is needed in the V → ∞ limit, we focus here on the UC, for which{

θUC(s, t) = s+ Ωt
ρUC(s, t) = 1

(4.66)
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As in the finite V case, such configuration is obviously a SC of the DEs (2.19). We
move to the frame rotating at angular frequency Ω = −1 and consider a state close to the
UC, but different from it, that we write in the form{

θ(s) = s+ ξ(s)√
ρ(s) = 1 + δ(s)

(4.67)

so that the equations of motion (2.19) read{
∂δ(s,t)
∂t = τr sin (θ(s, t) − φ)

∂ξ(s,t)
∂t = τr

1+δ(s,t) cos (θ(s, t) − φ) − 2δ(s, t) − δ(s, t)2 (4.68)

where reiφ can be expressed as reiφ = 1
2π
∫ 2π

0 (1 + δ)eiξeis =
(
(1 + δ)eiξ

)
1, where we

denoted [A(s)]q = 1
2π
∫ 2π

0 A(s)eiqsds. Thus, (4.68) reads{
∂δ
∂t = −τ Im

{(
(1 + δ)eiξ

)
1 e

−iθ}
∂ξ
∂t = τ

1+δ Re
{(

(1 + δ)eiξ
)

1 e
−iθ}− 2δ − δ2 (4.69)

We Fourier transform the first equation of (4.69) getting
∂δ1
∂t = i τ2

(
(1 + δ)eiξ

)
1

∂δ−1
∂t = −i τ2

(
(1 + δ)eiξ

)
−1

∂δq

∂t = 0 ∀q ∈ Z \ {−1, 1}
∂ξ
∂t = τ

1+δ Re
{(

(1 + δ)eiξ
)

1 e
−iθ}− 2δ − δ2

(4.70)

To go from the DEs (2.19) to (4.70) we have introduced no approximations. The form
of (4.70), with the DFT, is particularly convenient since for q /= ±1 we have δq = cst.
Importantly, this is true for the whole nonlinear dynamics. In this section we are however
interested just in the study of the linear dynamics, for which we proceed linearizing (4.70)
to get, for q = ±1 

∂δ1
∂t = τ

2 (iδ1 − ξ1)
∂δ−1
∂t = τ

2 (iδ−1 − ξ−1)
∂ξ
∂t = τ

2 (δ1 + iξ1) − 2δ
(4.71)

Fourier transforming also the equation for θ (that is ξ), we get finally that the problem
can be rewritten separately for q = 1 and q = −1 as(

δ±1
ξ±1

)
= J±1

(
δ±1
ξ±1

)
(4.72)

with J±1 =
(

±i τ2 − τ
2

τ
2 − 2 ±i τ2

)
. As usual, to study the stability of the considered UC we

look at the eigenvalues of the Jacobian matrix J±1, finding
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λ+
1 = iτ +

√
4τ − τ 2

2 λ−
1 = iτ −

√
4τ − τ 2

2 (4.73)

λ+
−1 = −iτ +

√
4τ − τ 2

2 λ−
−1 = −iτ −

√
4τ − τ 2

2 (4.74)

correctly recasting the problem to the finite V case and spotting the existence of a
DPT at τc = 4.

4.10 The dynamical phase transition as a classical bi-
furcation

The study of the eigenvalues of the Jacobian matrix obtained linearizing the DEs shown
us that it is possible to individuate, corresponding to each SC, a critical value τc of the
hopping strength such that{

0 < τ < τc ⇒ ∃λ1, λ2 s.t. Re{λ1} > 0,Re{λ2} < 0
0 < τc < τ ⇒ ∀λ : iλ ∈ R

(4.75)

or, using the language of DST, such that{
0 < τ < τc ⇒ The stationary configuration is a saddle
0 < τc < τ ⇒ The stationary configuration is a linear center

(4.76)

We found that

τc =


0 for the SFC
2 for the SPAC
4 for the UC

(4.77)

In DST these sharp changes of the nature of the FPs, due for instance to the emergence
of a positive real part of some of the Jacobian eigenvalues as in our case, are referred to as
bifurcations. In the context of non-equilibrium quantum dynamics we have instead talked
about dynamical quantum phase transitions, in order to highlight how a tiny change of a
model parameter across a critical value can imply a sharp change in the system dynamics.
We therefore understand that in our case the dynamical quantum phase transition cor-
responds to a bifurcation in the associated classical MF dynamical system. Notice that,
differently from equilibrium thermodynamical transitions, the transitions that we found
are valid for whatever V , i.e. not necessarily for V → ∞.

4.11 Final remarks
In this chapter we have studied the stability of the SCs in the context of DST by mean
of linearization. When the system state is close to a SC, it is in fact possible to exactly
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4 – Stability of the stationary configurations

solve the linearized DEs, finding the time dynamics to be ruled by the eigenvalues of the
Jacobian matrix associated to the considered SC. Distinguishing the case in which one
or more of the Jacobian eigenvalues have positive real part from the one in which all the
non-zero Jacobian eigenvalues are purely imaginary, we were able to correctly discriminate
whether r = 0 is stable or not for the representative cases of the UC (for whatever V ≥ 3),
the SPAC (for even V ≥ 2), the SFC (for whatever V ) and the DC (for V = 4). We found
that for each of these SCs there exists a τc such that for 0 < τ < τc the SC is a saddle of
the dynamics and r grows exponentially in time (until entering in the nonlinear regime)
whereas for τ > τc the SC is a linear center. However, we also pointed out that in the
τ > τc case the true solution of the nonlinear DEs could in general be different from the
one of the linearized DEs. Finding explicit solutions of the nonlinear DEs is hard, but it
is possible in some cases to claim the solution of the linearized DEs to be accurate. As
seen, this is for instance true in the case of the two-site model, for which the fact that
the energy is conserved and that the FPs are isolated made us state the linear centers to
be also nonlinear centers, that is the oscillatory behavior around a center not to change
significantly when considering nonlinear terms in the DEs. Also, for whatever V , the
argument of section 4.1 proves that the SF configuration is always a nonlinear center.
However, we have seen in section 3.4 and figure (3.2) that for V > 3 the phase portrait
can be much richer, revealing the presence of several SCs and, among them, a continuum
of SCs with r = 0. In the proximity of this continuum of SCs, the nonlinearities of the
DEs play a fundamental role and lead in particular circumstances to the emergence of
synchronization, as we are going to discover in the next chapter.
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Chapter 5

Long-time nonlinear dynamics

Aiming to better understand the dynamics generated by the DEs (2.14), in the previous
chapters we investigated the structure of the phase space, finding the SCs of the dynam-
ics in chapter 3 and studying their stability in chapter 4. We spotted the existence of
DPTs, understanding that the SCs can either be linear centers or saddles of the dynamics
depending on the considered SC and on the values of the hopping strength τ (that we
wrote in units of ρ0u) and we have seen that for V > 3 the SCs with r = 0 constitute a
continuum in the phase space that includes the UC and, if V is even, the SPAC. We have
remarked that trajectories starting close to a saddle are drifting away from it exponen-
tially rapidly, and we have pointed out that, unless in the case of an isolated SC, a linear
center is in general not a nonlinear center. In this chapter we aim to better understand
which are the effects of the nonlinearities of the DEs (2.14) on the long-time dynamics of
the system. We will discover that for V ≥ 3 the dynamics is in general chaotic and that,
nevertheless, in the V → ∞ limit, some macroscopic dynamical order parameters may
relaxe to well-defined values (unless some residual fluctuations). Initializing the system
in the vicinity of the UC, we will observe it to be characterized by two different DOPs on
the two sides of the DPT separated by τc = 4, pointing out the tendency of the phases of
the system to asymptotically acquire some degree of what we call π-alignment, in partic-
ular for τ > τc. Additionally, we investigate the effects of disorder on such π-alignment
considering σω > 0 in the DEs (2.14) and pointing out the existence of a synchronization
transition driven by the competition between disorder and hopping strength τ .

5.1 τ < 4 long-time dynamics
We are interested in numerically studying the long-time behavior of the system when
initialized in the in the neighborhoods of the UC and for τ < τc = 4. We consider as IC
the following configuration{

θj = 2π
V j + ξj

ρj = 1
∀j = 1, 2, . . . , V (5.1)

where {ξj}j=1,...,V are independent identically distributed Gaussian random numbers of
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mean 0 and standard deviation σθ = 0.06. Observe that for 2π
V ≪ 0.06 (that is V ≫ 100)

the IC (5.1) is statistically analogue to the MI (2.18), that has completely random phases.
In figure (5.1) we characterize the configuration with the modulus r of the DOP Ψ (2.12).
Starting from approximately 0, since τ < 4, r initially diverges exponentially. For long-
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Time t
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SFC
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140

V = 3
V = 30
V = 300

a c

Figure 5.1 |Long-time nonlinear dynamics for τ > 4. b, modulus r of the DOP Ψ versus time
for V = 3, 30, 300 and τ = 2 < τc = 4. The system is initialized in the proximity of the UC as in
(5.1), and is observed to drift away from the IC with an initial exponential growth of r followed by
subsequent fluctuations of r. For large V the fluctuations reduce and r stabilize around a finite value
∼ 0.38. Notice that r = 1 corresponds to the SFC and that even for V → ∞ there are some residual
fluctuations of r. a, c, graphical representation of all the V = 300 bosonic variables at initial time
(a) and at time t = 100 (c).

times we observe chaotic oscillations for V ≥ 3, consistently with the literature [8, 9, 41],
and find that the time fluctuations of r at large times are decreasing with V . For V → ∞
r is still exhibiting some residual fluctuations around a value ∼ 0.38, linked to the variance
(with respect to the sites) of the bosons numbers per site {ρk}k=1,...,V by equation (4.3).
Notice that the growth of r is not indicating at all a tendency of the system to reach the
SFC (for which r = 1). This is clear from section 4.1, where we shown that initializing the
system to the proximity of the UC it will never reach the SFC because of the conservation
of the expected energy and number of particles in the non-equilibrium dynamics. The
system can indeed eventually relax to the SFC, but only on much longer timescales and
thanks to the interaction with the environment, that is not described by our model.

5.2 τ > 4 long-time dynamics
As we already noticed, for τ > 4 the UC is a linear center but not necessarily a nonlinear
center, so that if the system is initialized close to the UC then it can in principle move
along the line of r = 0 SCs still satisfying the energy conservation (4.3). To track the
position of the system in the phase space with respect to the line of r = 0 SCs we introduce
a π-synchronization DOP S defined at each time t > 0 as

S(t) = 2
(

⟨cos(θj − φ)2⟩V − 1
2

)
(5.2)

The choice of the above parameter is inspired by the order parameter that is typically
considered in the study of liquid crystals at equilibrium and considers as ordered all the
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configurations where the phase differences between two sites are equal to 0 or to π [62].
Indeed, we see that S = 0 for the UC and S = 1 for the SPAC (besides the PACs and the
SFC). Looking at the evolution of S we are therefore able to quantify the position in time
of the system on the line of r = 0 SCs that for V ≥ 3 starts from the UC and possibly
reaches the SPAC if V is even. We have a particularly easy intuition of the parameter S
and of the line of r = 0 SCs in the case of V = 4, that is reported in figure (5.2).
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Figure 5.2 |Stationary configurations for V = 4. a, Graphical representation of the DC, with
angle ∆ ranging from π/2 to π. b, Schematic representation of the phase portrait with the stationary
configurations (in red). Varying ∆ from π/2 to π, the DC moves continuously on a stationary
manifold (represented by the red line) from the UC to the SPAC passing through the DC1 and the
DC2. The isolated red dots represent the SF (that is always stationary) and other possible stationary
PACs (present or not depending on the value of τ). c, Table with acronyms, r, ∆, α, τc, S and
graphical representation of some relevant SCs. In the table entries, "-" stays for undefined and "?"
for unknown.

To study the effects of nonlinearities of the DEs (2.16) in terms of position of the
system along the line of r = 0 SCs, we numerically solve them considering τ = 5, (5.1)
as IC and looking at the (long) time evolution of the π-alignment DOP S, that we plot
in figure (5.3). In a-g the red bottom line (S = 0) and top line (S = 1) correspond to
the system being respectively in the UC and in the SPAC, as explicitly written in a and
g only. For V = 3 (a) we observe the system to oscillate at S ≈ 0, in accordance with
the phase portrait of figure (3.2), showing the UC to be an isolated SC and, therefore, a
nonlinear center. For V = 4 (b) we observe the system to chaotically oscillate between
the UC and the SPAC. For V = 5 (c) we observe the system not to reach anymore S = 1,
in accordance with the fact that for odd V the continuum of r = 0 SCs is not including
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Figure 5.3 |Nonlinear dynamics and the synchronization. a-g, π-alignment parameter S versus
time for V = 3, 4, 5, 6, 30, 100, 500 respectively and for τ = 5. The system is initialized in the
proximity of the UC as in (5.1) and for V > 3 is observed to move along the continuous line of r = 0
SCs ranging from the UC (S = 0) to the SPAC (S = 1). For V ≥ 4 we observe a chaotic dynamics
and for large V we observe S to stabilize around a finite value ∼ 0.6, unless some residual fluctuation
not decaying for V → ∞. h, i, graphical representation of 300 bosonic variables out of the V = 500
total ones at initial time t = 0 (h) and at time t = 10000 (i), together with a polar histogram for
the phases, with 10◦ wide bins. A finite and stable S at large time indicates stable π-alignment of
the phases (i).

the SPAC. For V = 6 (d), analogously to V = 4, the system oscillates between the UC
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and the SPAC. For large V (30, 100 and 500 in e, f and g respectively) we observe S to
fluctuate around a finite value ∼ 0.6. In h and i we report the graphical representation
of the bosonic variables of 300 sites out of the total V = 500 ones for t = 0 and t = 10000
respectively and the corresponding polar histogram for the phases, with 10◦ wide bins.
We point out how a finite S (i) corresponds to a certain degree of π-alignment of the
phases. Also, we observe fluctuations of S at long-times to decrease with V down to some
residual value for V → ∞. Interestingly and differently from what happens to r, the
growth of S in time is found to be not exponential. This is a further confirmation that
the emergence of such π-synchronization is intimately linked to the nonlinear terms of the
DEs, since exponential divergences are a signature of a linear dynamics. Summing up,
we observe that a system initialized in the proximity of the UC has a robust shift to a
partially π-aligned configuration, in what we refer to as synchronization. We stress that,
interestingly, since the system is isolated, the stabilization of S for large V is an intrinsic
property and is not due to the presence of driving and dissipation, as typically considered
in literature [54–58].

In figure (5.4) we show with a schematic the movement of the system in the phase
space for τ > 4, for a system that is initialized in the proximity of the UC and for a large
and even V (the schema for a odd V would be very similar though). For τ = 2 < τc = 4
(a), the system drifts away from the r = 0 SCs and relaxes to a region of the phase space
with r ∼ 0.38 with consequent spread of the number of bosons per site ρj (corresponding
to figure (5.1)). For τ = 5 > 4 (b), the system moves closeby the continuous line of the
r = 0 SCs while progressively shifting towards the SPAC and increasing the π-alignment
parameter S (corresponding to figure (5.3)). For large times, the system reaches an area
of partially π-alignment characterized by S ∼ 0.6. The figure also shows a trajectory
around the SFC (c), to recall that if the system is initialized in the proximity of the SFC
it will then remain close to it, being the SFC isolated and, therefore, a nonlinear center.
This is indeed not surprising, since the SFC is the ground state of the Hamiltonian of the
system for t > 0 (that is after the quench towards the SF regime)

5.3 Competition between hopping strength and dis-
order

In section 5.2 we have discovered that the nonlinearities of the DEs can lead for long-times
to a π-synchronization of the phases of the bosonic variables, when these are treated within
the MF approximation and the GPE. This is indeed a more general fact, since whatever
quantum model describing a large number of bosons on a lattice can be recasted, within
the MF substitution of the bosonic creation and annihilation operators at each site with
c-numbers, into a model for nonlinearly coupled classical oscillators (in general of variable
phase and length), for which synchronization is a universal and fundamental concept
[63]. Recently, this idea has been exploited by Witthaut et al. to show that the GPE
associated in MF to a particular class of models for bosons on a lattice coincides, under
particular circumstances, to the DEs of the notorious Kuramoto model [34]. The latter
is a paradigmatic model describing a system of nonlinearly all-to-all coupled oscillators
in presence of disorder, that is accounted for by the introduction of random natural
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SFC

r=1

Figure 5.4 |Schema of the trajectories in the phase space for V ≫ 1. Schematic representation
of the motion of the system in the phase space under the nonlinear DEs, up to long-times and for
V ≫ 1. The two blue lines a and b represent trajectories in the phase space in case of initialization
of the system in the proximity of the UC for τ = 2 and τ = 5 respectively. For τ < 4 (τ > 4), the
system drifts away from (move close to) the manifold of the r = 0 SCs, finally evolving in a region
of the phase space characterized by a finite r (S). In the case of same initial configuration of figure
(5.1) (figure (5.3)), the state at long-time is characterized by r ≈ 0.38 (S ≈ 0.6). Conversely, a
system initialized in the vicinity of the SFC never gets far from it (c), since the latter is a nonlinear
center of the dynamics.

frequencies of the oscillators [51–53]. A sharp synchronization transition separates two
regions of small and large disorder, corresponding respectively to the presence and the
absence of a finite fraction of the oscillators with locked (that is synchronized) phases at
long-times.

Inspired by these works, we naturally wonder about how the introduction of some
disorder into the DEs can affect, and possibly destroy, the long-time π-synchronization
observed for the non-disordered case in section 5.2. Therefore, for the first time after
the introduction of equation (2.16), we now recover the disordered Hamiltonian (2.1) and
respective GPE (2.14), relaxing the assumption of ωj = 0 and considering instead random
ωj with finite spread σω. Considering V = 4000 sites and a quench from the MI phase
to the SF regime, we initialize the system to the MI configuration (2.18), that is with
random phases, and look at the time evolution of the π-synchronization parameter S for
various σω. In figure (5.5) we observe that the disorder strength σω competes against the
π-synchronization. In (a) we see that the value around which the DOP S fluctuates for
long-times decreases with the disorder (that is with σω). In order to average out such
fluctuations, we consider a time average of S between t = 400 and t = 600 and plot it
in (b) for τ = 5 and against σω, finding the existence of a crossover between a region of
π-synchronized long-time configurations (for small σω) and a region of completely random
phases at all times (for large σω). Being such crossover rather sharp (with onset located
at σω ≈ 1.5 × 10−2), we refer to it as a synchronization transition, in analogy with the
Kuramoto model. However, differently from the latter, in (c) we notice that the critical
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disorder strength σω,c needed to destroy the π-synchronization is not growing with the
hopping strength τ . A second important difference between our model and the Kuramoto
model is of course that we obtain a π-alignment instead of the usual alignment, that is
somehow intuitive since the DEs for the phases (2.14) have a cosine instead of a sine.
Also, further analysis should clarify whether the critical disorder strength σω,c at which
the synchronization transition occurs depends on the chosen initial conditions or not.

5.4 Promising directions for analytical approach
Numerical evidence shows that, unless some residual fluctuations, a well-defined value of
the DOP S exists at large times for V ≫ 1 and, at least, for τ > τc = 4. Capturing this
fact analytically from the DEs is a crucial challenge to gain further comprehension of the
origins of the emergence of the π-synchronization in the FCBHM and, more in general,
of synchronization in isolated quantum systems. From one side, the nonlinearities of
the DEs are the fundamental ingredient to understand the long-time behavior and the
emergence of π-synchronization for a system initialized in the surroundings of the UC.
From the other side, as explained in chapter 4, for τ > 4 the number of bosons per site
ρj remains close to ρ0 for all j = 1, . . . , V , making the continuum limit of sections 2.5
and 4.9 the ideal framework to work in, so that the V ≫ 1 limit would be implicitly
assumed. Additionally, the fact that the system is FC allowed us to write the DEs (2.16)
in terms of r and φ, in analogy to the notorious Kuramoto model [53]. Possibly, such
analogy could be further exploited, using ideas from the Kuramoto model as treating r
as a parameter or as considering a function p(θ, t) describing the density of oscillators at
the angle θ at time t (a partial differential equation describing the dynamics of p(θ, t)
would then be the continuity equation). Alternatively, starting from equation (4.70) and
keeping the crucially important nonlinear terms, one should try to understand how the
even components of the Fourier transforms of the perturbation to the phases ξ (that are
associated to π-alignment and to S) are evolving and growing in time.
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Figure 5.5 |Synchronization transition in V ≫ 1 fully connected Bose-Hubbard model. a-c,
π-Synchronization parameter S for V = 4000 sites after a quench from the MI phase (corresponding
to ρk = 1 and to independent random phases θk for all k = 1, 2, . . . , V as in (2.18)) to the SF regime.
S fluctuates in time around a value that decreases with σω as shown for σω = 5, 10, 15, 20 × 10−3

in (a). To discard the time fluctuations of S, we plot the long-time average ⟨S⟩t = 1
200
∫ 600

400 dtS(t)
versus σω for a given τ = 5 (b) and versus τ and σω (c), highlighting the existence of a sharp
crossover that we call synchronization transition. d-h, Graphical representation of the complex
variables ψk = √

ρke
iθk for 200 sites (out of the total V ) at initial time t = 0 (d) and at time

t = 500 for τ = 5 and σω = 0, 5, 10, 20 × 10−3 (from (e) to (h) respectively). The respective phase
histograms with bins width 10◦ enable us to easily visualize the amount of long-time π-synchronization
in each case.
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Chapter 6

Quantum fluctuations beyond
mean-field

To pass from the dynamics (2.3) to (2.9) and possibly to (2.14) we exploited the MF
approximation (2.7). In this way we have found that the system undergoes very different
time dynamics depending on the value of the hopping strength τ , in what we have referred
to as a DPT. However, we have so far not yet investigated whether the MF assumption
is valid for all the considered τ or not. By means of the Bogoliubov-de Gennes method,
we address such important issue in this chapter, finding that, at least for large τ , QFs
are expected not to grow exponentially in time, thus legitimating the MF assumption.
Additionally, we conclude arguing on the validity of the Bogoliubov-de Gennes method,
claiming it to particularly accurate for τ > τc.

6.1 Linearized dynamical equations for the quantum
fluctuations

We decompose the bosonic annihilation and creation operators at site k ∈ {1, 2, . . . , V }
as

{
ak = ψk + bk

a†
k = ψ∗

k + b†
k

(6.1)

where ψk is the MF term (just a c-number) undergoing the dynamics (2.9) and where
the operators bk and b†

k describe QFs beyond MF associated to the k-th site. Considering
the non-disordered (ωk = 0) case, inserting (6.1) into the exact Heisenberg dynamics (2.3)
and subtracting the mean field dynamics (2.9) we find

dbk

d(it) = + τ
V

∑V
j=1 bj − (ψ∗

k + b†
k)(ψk + bk)(ψk + bk) + |ψk|2ψk

db†
k

d(it) = − τ
V

∑V
j=1 b

†
j + (ψ∗

k + b†
k)(ψ∗

k + b†
k)(ψk + bk) − |ψk|2ψ∗

k

(6.2)
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that is


dbk

d(it) = τ⟨bk⟩V − ψ2
kb

†
k − 2|ψk|2bk − 2ψkb†

kbk − ψ∗
kb

2
k − b†

kbkbk
db†

k

d(it) = −τ⟨b†
k⟩V + (ψ∗

k)2bk + 2|ψk|2b†
k + 2ψkb†

kbk + ψ∗
k(b

†
k)2 + b†

kb
†
kbk

(6.3)

Assuming bk and b†
k to be small, we linearize equation (6.3) finding the Bogoliubov-de

Gennes equation [59] 
dbk

d(it) = τ⟨bk⟩V − ψ2
kb

†
k − 2|ψk|2bk

db†
k

d(it) = −τ⟨b†
k⟩V + (ψ∗

k)2bk + 2|ψk|2b†
k

(6.4)

that can be written in matricial form as

d

d(it)B⃗(t) = JQF (t)B⃗(t) (6.5)

where B⃗(t) = (b1, b2, . . . , bV , b
†
1, b

†
2, . . . , b

†
V )T is a 2V -dimensional column vector of op-

erators. Information on the dynamics of the QFs (6.5) can be easily obtained in the case of
stationary MF solutions, for which JQF is time independent. In this case, to understand
the dynamics of the QFs, we are interested in diagonalizing the 2V -dimensional matrix
JQF . The eigenvalue problem associated to JQF reads

JQF v⃗n = λnv⃗n (6.6)

where v⃗n is a 2V -dimensional column vector. Of course, as recalled in section 4.2,
the linearized dynamics (6.5) for the QFs is easily solved writing B⃗ in the basis of the
eigenvectors of the matrix JQF , that is

B⃗(t) =
2V∑
n=1

cnv⃗ne
iλnt (6.7)

Furthermore, thanks to the symmetries of (6.7) and as explained in appendix C.2, it
is possible to reduce (6.7) to

B⃗(t) =
V∑
n=1

(
cn

(
v⃗

(1)
n

v⃗
(2)
n

)
eiλnt + c†

n

(
v⃗

(2)
n

v⃗
(1)
n

)∗

e−iλ∗
nt

)
(6.8)

where the {cn}n=1,...,V are time independent operators set by the IC and where we have

decomposed v⃗n as
(
v⃗

(1)
n

v⃗(2)

)
, with v⃗(1,2)

n V -dimensional column vectors. We observe that the

first and the second halves of the vector B⃗ have to be one the Hermitian conjugate of
the other, that is Bk = B†

V+k for k = 1, . . . , V . We refer to this property as physical
consistency. Of course, the eigenvectors v⃗n by their own can possibly be not physically
consistent, and what matters is that still their linear combination (6.8) guarantees the
consistency of B⃗.

54



6 – Quantum fluctuations beyond mean-field

From (6.8) we clearly understand that the eigenvalues of JQF with negative imaginary
parts correspond to QFs exponentially growing in time (notice the imaginary unit ap-
pearing in the left hand side of equation (6.5) and, thus, in the exponents of (6.8)), that
is

QFs ∼ exp
(

− min
n=1,...,2V

Im{λn}t
)

= exp
(

max
n=1,...,2V

Re{iλn}t
)

(6.9)

As SCs we naturally consider the ones treated in the previous chapters, that are the UC,
the SFC and the SPAC. For such configurations we have ψk = eiθk (that is ρk = ρ0 = 1),
and the eigenvalue problem (6.6) can therefore be rewritten as

{
+τ⟨v(1)

k ⟩V − e+i2θkv
(2)
k − 2v(1)

k = λv
(1)
k

−τ⟨v(2)
k ⟩V + e−i2θkv

(1)
k + 2v(2)

k = λv
(2)
k

(6.10)

As usual we can assume to be in the frame corotating with the phases of the considered
SC, so that the θk are constants. Moreover, we consider as usual τ (and the respective
critical values) to be written in units of the in-situ interaction uρ0, and ρ0 to be set to 1
thanks to the invariance of the DEs under the rescaling of ρ0 discussed in section 2.4.

6.2 Uniform configuration
In the case of UC one has θk = 2π

V k. We multiply the first equation of (6.10) times e−iθk

and the second times e+iθk to get

{
τ⟨v(1)

k ⟩V e−iθk − (λ+ 2)v(1)
k e−iθk = eiθkv

(2)
k

τ⟨v(2)
k ⟩V e+iθk + (λ− 2)v(2)

k eiθk = e−iθkv
(1)
k

(6.11)

Performing the average over k, that is ⟨•⟩V , on (6.11) we get

{
−(λ+ 2)ṽ(1)

−1 = ṽ
(2)
+1

+(λ− 2)ṽ(2)
+1 = ṽ

(1)
−1

(6.12)

where ṽ(1)
q and ṽ

(2)
q denote respectively the DFT of v(1)

k and v
(2)
k with respect to the

Fourier wavenumber q ∈ Z. Equation (6.12) is solved either by ṽ
(1)
−1 = ṽ

(2)
+1 = 0 or by

λ = ±
√

3 for ṽ(1)
−1, ṽ

(2)
+1 /= 0. Since the eigenvalues λ = ±3 are real and, in this sense, do

not destabilize the QFs (that is do not make them growing exponentially), we proceed
looking for other eigenvalues of JQF . Since (6.12) needs still to be satisfied, the other
eigenvalues are associated to eigenvectors such that ṽ(1)

−1 = ṽ
(2)
+1 = 0. In the system (6.10),

we isolate v(1)
k from the second equation and substitute it into the first, getting

+τ ṽ(1)
0 − e+i2θkv

(2)
k = (λ+ 2) e+i2θk

(
+τ ṽ(2)

0 + (λ− 2) v(2)
k

)
(6.13)

55



Andrea Pizzi et al. Non-equilibrium in the fully connected Bose-Hubbard model

analogously, again from the system (6.10), we can isolate v(2)
k from the first equation

and substitute it into the second, getting

−τ ṽ(2)
0 + e−i2θkv

(1)
k = (λ− 2) e−i2θk

(
+τ ṽ(1)

0 − (λ+ 2) v(1)
k

)
(6.14)

We can rewrite the previous two equations as{
+e−i2θkτ ṽ

(1)
0 = (λ+ 2) τ ṽ(2)

0 +
(
λ2 − 3

)
v

(2)
k

−e+i2θkτ ṽ
(2)
0 = (λ− 2) τ ṽ(1)

0 −
(
λ2 − 3

)
v

(1)
k

(6.15)

from which, since we are considering here λ2 /= 3, we finally getv
(2)
k = e−i2θk τ ṽ

(1)
0 −(λ+2)τ ṽ(2)

0
λ2−3

v
(1)
k = e+i2θk τ ṽ

(2)
0 +(λ−2)τ ṽ(1)

0
λ2−3

(6.16)

A consistency condition can be obtained taking the DFT with respect to q = 0 of
(6.16), reading {

ṽ
(2)
0 = − λ+2

λ2−3τ ṽ
(2)
0

ṽ
(1)
0 = + λ−2

λ2−3τ ṽ
(1)
0

(6.17)

that is solved by {
ṽ

(2)
0 = 0 or λ2 + λτ + 2τ − 3 = 0
ṽ

(1)
0 = 0 or λ2 − λτ + 2τ − 3 = 0

(6.18)

that, since λ cannot in general be a solution of both λ2 + λτ + 2τ − 3 = 0 and
λ2 − λτ + 2τ − 3 = 0, reduces to

λ2 + λτ + 2τ − 3 = 0
ṽ

(1)
0 = 0
ṽ

(2)
0 = c1

or


λ2 − λτ + 2τ − 3 = 0
ṽ

(1)
0 = c2

ṽ
(2)
0 = 0

(6.19)

Where c1, c2 are constants. We have therefore found the only 4 eigenvalues different
from 0 and correspondent eigenvectors (6.16), that are

λ1,2 = −τ±
√

(τ−2)(τ−6)
2

v
(2)
k = −c1(λ1,2 + 2)
v

(1)
k = c1(e+i2θk)

or


λ3,4 = +τ±

√
(τ−2)(τ−6)

2
v

(2)
k = c2(e−i2θk)
v

(1)
k = c2(λ3,4 − 2)

(6.20)

For completeness, we report the characteristic polynomial of JQF corresponding to the
above mentioned eigenvalues, that is

P (λ) = (λ2 − 3)V−2
(
λ4 − (6 − 4τ + τ 2)λ2 + (3 − 2τ)2

)
(6.21)

We therefore find that for τ ∈ (2, 6) there are eigenvalues (λ2, λ4) with negative imagi-
nary part, meaning that the QFs are growing exponentially in time, whereas for τ /∈ (2, 6)
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there are only real eigenvalues, meaning that the QFs are not exponentially growing and
that the MF can be considered to be valid for much longer times (remember that in
equation (6.5) we kept an imaginary unit i factorized out of the matrix JQF ).

6.3 Superfluid and symmetric π-aligned configurations
In the case of SF and SPAC we have ψ2

k = (ψ∗
k)2 = 1 so that the eigenvalue problem (6.10)

reads {
+τ ṽ(1)

0 − v
(2)
k − 2v(1)

k = λv
(1)
k

−τ ṽ(2)
0 + v

(1)
k + 2v(2)

k = λv
(2)
k

(6.22)

Performing the site average ⟨•⟩V on (6.22) we get{
(τ − 2 − λ) ṽ(1)

0 = ṽ
(2)
0

(τ − 2 + λ) ṽ(2)
0 = ṽ

(1)
0

(6.23)

that is easily turned into {(
(τ − 2)2 − λ2) ṽ(1)

0 = ṽ
(1)
0(

(τ − 2)2 − λ2) ṽ(2)
0 = ṽ

(2)
0

(6.24)

from which we find that either λ2 = (τ − 2)2 − 1 = (τ − 1)(τ − 3) or ṽ(1)
0 = ṽ

(2)
0 = 0.

In the second case equation (6.22) reads(
−2 −1
1 2

)(
v

(1)
k

v
(2)
k

)
= λ

(
ṽ

(1)
0
ṽ

(2)
0

)
(6.25)

that gives eigenvalues λ = ±
√

3. For completeness, we report the characteristic poly-
nomial P (λ) of the matrix JQF

P (λ) = (λ2 − 3)V−2
(
λ2 − (τ − 2)2 + 1

)
(6.26)

We therefore find that for τ ∈ (1,3) there are eigenvalues with negative imaginary part,
meaning that the QFs are growing exponentially in time, whereas for τ /∈ (1, 3) there are
only real eigenvalues, implying that the QFs are not growing exponentially in time and
that the MF can be considered to be valid, at least for longer times.

6.4 Delta configuration
To study analytically the QFs for configurations belonging to the continuum of SCs ranging
from the UC to the SPAC, we consider now the DC for V = 4. With the help of a software
for symbolic manipulation, we get the following exact characteristic polynomial associated
to the matrix JQF

P (λ) = (λ2 − 3)2
[
λ4 − (6 − 4τ + τ 2)λ2 + (3 − 2τ)2 − τ 2 cos2(∆)

]
(6.27)
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with ∆ ∈ (π2 , π).
In appendix C.1 we study the roots of (6.27), finding that there exists some eigenvalue

of JQF with negative imaginary part if and only if

τ ∈
( 3

2 − cos(∆) ,
3

2 + cos(∆)

)
∪ (4 − 2 sin(∆), 4 + 2 sin(∆)) (6.28)

where ∪ denotes union between sets. The condition (6.28) represents therefore a
condition for the linear instability of the QFs since, as said, the QFs grow as QFs ∼
exp

(
max

n=1,...,2V
Re{iλn}t

)
. In figure (6.1a) we plot the exact value of max

n=1,...,2V
Re{iλn} as

obtained in appendix C.1. We find that in the region of the parameter space 3
2−cos(∆) <

τ < 4 + 2 sin(∆), that is a range of τ around the DPT at τc, the QFs are linearly unstable
(apart from a relatively narrow region between 3

2+cos(∆) and 4 + 2 sin(∆)). Interestingly,
we observe that corresponding to the UC (∆ = π/2) and the SPAC (∆ = π), the rate of
increase of the QFs is maximum at the transition, that is at τ = τc = 4, 2 respectively.

6.5 Stationary configurations with r = 0 and V > 4
In the previous section, we considered V = 4 and the DC in order to analytically treat the
continuum of SCs ranging from the UC to the SPAC. We show numerically that similar
results are observed even in the case of larger V , and in particular of V = 300. We
consider the following r = 0 SC for an even V

ρk = 1
ρk+V = 1
θk = ηk

θk+V = θk + π

∀ k = 1, . . . , V/2 (6.29)

where ηk is a Gaussian random number with mean 0 and standard deviation σθ. Notice
that, despite being defined with some random numbers, the configuration (6.29) has by
construction r = 0 and ρk = 1, being thus a SC. For V → ∞ and computing easy
Gaussian integrals we get that the π-alignment parameter for such configuration is equal
to S = e−2σθ . Setting σθ = −1/2 log(S) the configuration (6.29) will thus correspond to
a SC with r = 0 and given S, so that varying S between 0 and 1 it will correspondingly
range from the UC to the SPAC, continuously moving on the manifold of r = 0 SCs. For
each S we can then numerically evaluate and diagonalize the corresponding Jacobian JQF
and look at the minimum imaginary part of its eigenvalues. For a better comparison of
the results with the case of V = 4 (that is the DC, for which S = cos(π − ∆)), we define
∆ in the V > 4 case as ∆ = π− arccos(S). In figure (6.1b) we plot the numerical value of
− min
n=1,...,2V

Im{λn}, that is of max
n=1,...,2V

Re{iλn}, that is found to be in a stunningly close
analogy with the V = 4 case of the DC. Considering the quench from the MI phase to
the SF regime, for which the IC is in the proximity of the UC, we peculiarly find that
the QFs are increasing at the fastest rate in correspondence of the MF DPT, that is for
τ ≈ τc = 4.
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Figure 6.1 |Linear stability of the quantum fluctuations. a,b, For different ∆ and τ we plot
max

n=1,...,2V
Re{iλn}, where {λn}n=1,...,2V are the eigenvalues of the matrix JQF for the considered

SC. For V = 4 (a), ∆ is the parameter used in the definition of the DC (3.13) and the eigenvalues λn

are exactly computed as in section 6.4 and appendix C.1. For V = 300 (b), ∆ is defined as in section
6.5 as π − arccos(S), the considered configuration is (6.29) and the eigenvalues λn are computed
numerically on a (150 × 150)-dimensional uniformly spaced grid in the (∆, τ) plane. As usual, notice
that ∆ = π/2 corresponds to the UC whereas ∆ = π corresponds to the SPAC. Interestingly, we
observe a stunning similarity between the exact results for V = 4 and the numerical results for
V = 300, finding in both cases that the QFs are linearly unstable for τ ∈

(
3

2−cos(∆) ,
3

2+cos(∆)

)
and

for τ ∈ (4 − 2 sin(∆), 4 + 2 sin(∆)) (white lines), linearly stable elsewhere (as analytically proven
for V = 4 in appendix C.1). For comparison, we report in green in the upper horizontal axis
the π-alignment parameter S and, in (a) for V = 4, the line of critical hopping strength (4.65)
τc = 2 + 2 sin(∆).

6.6 Limitations of the approach and final remarks

In this chapter, we studied the stability of the QFs thanks to an expansion at linear order
of the DEs (2.3) around the MF solution. The linearization led us to spot out the existence
of saddles and linear centers of the dynamics of the QFs depending on the considered SC
and on the hopping strength τ (written as usual in units of uρ0). However, we point out
some potential limitations of the results of the present chapter. Firstly, we observe as usual
that a linear center is not necessarily a nonlinear center, so that a priori the QFs could
grow even when max

j=1,...,2V
Re{iλj} = 0. Conversely, when max

j=1,...,2V
Re{iλj} > 0, we cannot

a priori say how large QFs will be at long-times. In fact, we can just state that they cannot
remain arbitrarily small, but only the whole nonlinear dynamics (6.3) can determine to
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what extent QFs will grow, so that there could be some SCs with max
j=1,...,2V

Re{iλj} > 0
and for which MF has still some validity. Furthermore, the results of this chapter have
been obtained considering the special case of the SCs. In general, if the configuration of
the system is non-stationary, the matrix JQF is time dependent (through the ψk and the
ψ∗
k) and the dynamics of the QFs is coupled to the MF dynamics (2.9). In chapter 4 we

have seen that a SC is unstable for τ < τc, for which the system rapidly drifts away from
it. In such case we expect the present study on the linear stability of the QFs to lose
relevance, since the coupling with the MF study could a priori have important effects in
this case. Conversely, the approach is expected to be particularly relevant for τ > τc and
for large V , for which the system slowly drifts along the manifold of r = 0 SCs (figure
(5.3)), making the dynamics for the QFs decoupled from the one of the MF variables
{θk, ρk}k=1,...,V .
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Chapter 7

Conclusions

In conclusion, we studied the non-equilibrium dynamics in the Bose-Hubbard (BH) model
(2.1) on a Fully Connected (FC) (or all-to-all coupled) V -dimensional lattice (2.4) with
potential experimental applications in cold-atoms and systems of Josephson junctions,
extending previous works on V = 2 (known as the bosonic junction or dimer), V = 3 (that
is the bosonic trimer) [1–9] and on a 1D lattice [10]. This study allowed us to unveil, at
the Mean-Field (MF) level, the presence of a Dynamical Phase Transition (DPT), that is
the existence of two qualitatively very different dynamical behaviours depending on the
model parameters, and the emergence of a π-synchronization of the phases of the bosonic
variables for large V , at long-times and under particular circumstances.

In the context of a quench to the SuperFluid (SF) regime, we performed in chapter
2 the MF substitution of the bosonic creation and annihilation operators at each site
with c-numbers (a†

k → √
ρke

−iθk and ak → √
ρke

iθk). This enabled us to pass from the
Heisenberg Dynamical Equations (DEs) for the bosonic operators (2.2) to the discrete and
nonlinear Gross-Pitaevskii Equation (GPE) of motion (2.9), semiclassically reformulating
the problem as a problem of V classical and nonlinearly coupled oscillators with variable
phases and lengths {θk,

√
ρk}k=1,...,V . Thanks to the symmetries proper of FC models,

we were able to write these semiclassical DEs in a compact form introducing the complex
Dynamical Order Parameter (DOP) (2.11) Ψ = reiφ = 1

V

∑V
j=1

√
ρje

iθj .
In chapter 3 we found the Stationary Configurations (SCs), that is the values of the

variables {θk, ρk}k=1,...,V that do not evolve in time (unless a global phase rotation at
constant rate affecting all the sites in the same way). Interestingly, we found that the SCs
can either have r = 0 and ρk = ρ0 ∀k = 1, . . . , V or θk − θj ∈ {0, π} ∀k, j = 1, . . . , V .
Among them, particularly relevant are the SuperFluid Configuration (SFC), for which
θk = 0 and ρk = ρ0 ∀k = 1, . . . , V , the Uniform Configuration (UC), for which θk = 2π

V k
and ρk = ρ0 ∀k = 1, . . . , V and the Symmetric π-Aligned Configuration (SPAC), for which
ρk = ρ0 ∀k = 1, . . . , V , θk = 0 ∀k = 1, . . . , V/2 and θk = π ∀k = V/2 + 1, . . . , V (defined
only for even V ). Of great interest is the UC, since for large V it is close to the initial
condition (2.18) that have to be considered when doing a quench from the Mott-insulating
phase to the SuperFluid (SF) regime. Interestingly, we found that for V ≥ 4 there exists
a continuum of infinitely many SCs with r = 0 of which the UC and (if V is even) the
SPAC are part.
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Linearizing the GPE around the relevant SCs and diagonalizing the associated Jacobian
matrix, in chapter 4 we studied the linear stability of the SCs, finding them to be either
saddles or linear centers of the dynamics for τ < τc and τ > τc respectively, τc being a
critical value of the hopping strength depending on the considered SC. In particular, we
found that τc = 0, 2, 4 (in units of the in-situ interaction uρ0) for the SFC, the SPAC
and the UC respectively. The finiteness of τc for the UC and the SPAC determines the
presence of two qualitatively different dynamical behaviours when τ is varied across τc, in
what we called a Dynamical Phase Transition (DPT). Therefore, in the particular case of
a quench from the Mott-insulating phase to the SF regime we observe two qualitatively
very different behaviours whether τ < 4 or τ > 4.

Thanks to numerical results together with arguments based on the conserved quantities
(energy and total number of particles) and on the topology of the phase space, in chapter
5 we investigated the long-time behavior of the nonlinear GPE for a system initialized in
the proximity of the UC (as in the case of quench from the Mott-insulating phase to the SF
regime). Having stressed the importance of nonlinear terms in the long-time dynamics,
we found that, despite the dynamics being in general chaotic for V ≥ 3, some DOPs
thermalize, that is relax to finite values (unless some residual fluctuations). This is the
case for r if τ < τc = 4 and for a certain π-synchronization parameter S (5.2) (mainly) if
τ > τc = 4. Looking at the time evolution of S we were able to understand that the system
can move close to the manifold of the r = 0 SCs, acquiring a finite degree of π-alignment
at long-times. Inspired by the notorious Kuramoto model for classical coupled oscillators
[34, 51–53], we considered the presence of some disorder in the Hamiltonian (2.1), finding
that the parameter S vanishes with a rather sharp crossover when increasing the disorder
strength, in what we called a synchronization transition.

In order to investigate the validity of the MF approximation, we finally considered in
chapter 6 the Bogoliubov-de Gennes equation (6.4) to study the time evolution of the
Quantum Fluctuations (QFs), finding that there exists a range of τ around the dynamical
phase transition for which the QFs are linearly unstable. Also, we claimed the latter
approach to be particularly reliable only for τ > τc, since for τ < τc the dynamics for the
QFs can not be decoupled from the one of the MF variables.

Further investigation on the considered system should aim to better understand the
phenomenon of π-synchronization occurring for τ > τc. As noticed in chapter 5, a promis-
ing direction for analytical investigation is represented by the continuum limit for V → ∞.
Moreover, as stressed in the main text, fundamental to capture the synchronization phe-
nomenon are the nonlinear terms, so that it is crucial to go beyond the linear equation
(4.71), ideally keeping all the nonlinear terms of equation (4.70). Further research should
also seek at clarifying the dynamics followed by the phase φ of the DOP Ψ, that is appar-
ently non-trivial. Indeed, numerical evidence suggests that for a system initialized with
r ≈ 0, Ψ tends to rotate in the complex plane in the opposite verse with respect to the
{ψk}k=1,...,V . Finally, as we pointed out in section 5.3, similarly to what we have done in
the present work and to what Witthaut et al. did in another recent work [34], the MF
derivation of the GPE describing the time evolution of a system of classical and nonlin-
early coupled oscillators of variable phases and lengths seems a promising approach to
address the emergence of synchronization phenomena in the out of equilibrium dynamics
of generic isolated quantum systems consisting of a large number of bosons on a lattice.
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Appendix A

Dynamical equations

A.1 Explicitation of the Heisenberg equation of mo-
tion

To compute the commutators of (2.2) we evaluate the following terms



[ni, ak] = −δi,kai
[ni, a†

k] = δi,ka
†
i

[ni(ni − 1), ak] = ni[ni, ak] + [ni, ak](ni − 1) = {−niai − ai(ni − 1)} δi,k
= {−aini + ai − ai(ni − 1)} δi,k = −2niaiδi,k

[ni(ni − 1), a†
k] = ni[ni, a†

k] + [ni, a†
k](ni − 1) =

{
nia

†
i + a†

i (ni − 1)
}
δi,k

=
{
a†
ini + a†

i + a†
i (ni − 1)

}
δi,k = +2a†

iniδi,k

[a†
iaj + a†

jai, ak] = −δi,kak − δj,kak

[a†
iaj + a†

jai, a
†
k] = δi,ka

†
k + δj,ka

†
k

(A.1)

so that it is possible to write (2.2) explicitly as

dak
d(it) = +

V∑
j /=k

tj,kak − unkak + (µ+ ωk)ak

da†
k

d(it) = −
V∑
j /=k

tj,ka
†
k + ua†

knk − (µ+ ωk)a†
k

(A.2)

where we considered ~ = 1. Obviously, the two equations of (A.2) are one the Her-
mitian conjugate of the other. Exploiting the gauge freedom we can safely operate the
following substitution for the bosonic creation and annihilation operators{

a†
j → a†

je
−iΩGt

aj → aje
iΩGt

(A.3)
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where ΩG is whatever real and constant frequency. In fact, the bosonic commutation
relations are still preserved, that is [akeiΩGt, a†

je
−iΩGt] = [ak, a†

j ] = δk,j , meaning that
aje

iΩGt and a†
je

−iΩGt are still respectively annihilation and creation bosonic operators at
the j-th site. Under the gauge transformation (A.3), (A.2) transforms into



dak
d(it) = +ΩGak +

V∑
j /=k

tj,kak − unkak + (µ+ ωk)ak

da†
k

d(it) = −ΩGa
†
k −

V∑
j /=k

tj,ka
†
k + ua†

knk − (µ+ ωk)a†
k

(A.4)

Saying tk,k = t0,0 ∀k and considering ΩG = µ− t0,0 we finally get



dak
d(it) = +

V∑
j=1

tj,kaj − unkak + ωkak

da†
k

d(it) = −
V∑
j=1

tj,ka
†
j + ua†

knk − ωka
†
k

(A.5)

that is (2.3).

A.2 From the dynamical equations for ψk and ψ∗
k to

the ones for ρk and θk

We can derive DEs for ρk = |ψk|2 and θk = ∠ψk starting from the ones for ψk and ψ∗
k (2.9).

We just have to write ρk = ψkψ
∗
k and θk = 1

2i log
(
ψk

ψ∗
k

)
and proceed with the following

straightforward computations

dρk
d(it) = ψ∗

k

dψk
d(it) + ψk

dψ∗
k

d(it)

= +
V∑
j=1

tj,kψjψ
∗
k − u|ψk|4 + ωk|ψk|2 −

V∑
j=1

tj,kψ
∗
jψk + u|ψk|4 − ωk|ψk|2

= +
V∑
j=1

tj,k
(
ψjψ

∗
k − ψ∗

jψk
)

= +2i
V∑
j=1

tj,k
√
ρjρk sin (θj − θk)

(A.6)
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dθk
d(it) = d

d(it)
1
2i log

(
ψk
ψ∗
k

)
= 1

2i

ψk

d(it)ψ
∗
k − ψ∗

k

d(it)ψk

|ψk|2

= 1
2i|ψk|2

 V∑
j=1

tj,kψjψ
∗
k − u|ψk|4 + ωk|ψk|2 +

V∑
j=1

tj,kψ
∗
jψk − u|ψk|4 + ωk|ψk|2


= 1

2i|ψk|2

 V∑
j=1

tj,k (ψjψ∗
k + ψj ∗ ψk) − 2u|ψk|4 + 2ωk|ψk|2


= −i

 V∑
j=1

tj,k
|ψj |
|ψk|

cos (θj − θk) − u|ψk|2 + ωk


(A.7)

that summing up read
dρk

dt = 2
∑V
j=1 tj,k

√
ρjρk sin (θk − θj)

dθk

dt =
∑V
j=1 tj,k

√
ρj

ρk
cos (θk − θj) − uρk + ωk

(A.8)

that is the system of DEs (2.10).

A.3 u → 0 limit in non-disordered fully connected
Bose-Hubbard model

We analyze here the simple case of u → 0, corresponding to infinite hopping strength
τ → ∞ if τ is written in units of uρ0 as in the main text. Since the nonlinear terms of
equation (2.3) are not present and there is thus no need of invoking the approximation
(2.7), the results we are going to obtain are exact. We consider for simplicity the non-
disordered case of ωk = 0 ∀k = 1, 2, . . . , V . Substituting u = 0 in equation (2.9) we easily
get

dψk
d(it) = +τΨ (A.9)

Summing equation (A.9) over k = 1, 2, . . . , V we find

dΨ
d(it) = +τΨ (A.10)

that is solved by Ψ(t) = Ψ0e
iτt, where Ψ0 is a constant c-number consistent with the

IC {ψk,0}k=1,...,V (notice that r(t = 0) = |Ψ0|). Putting this result back into (A.9) we get

∂ψk
∂t

= iτΨ0e
iτt (A.11)

that is finally solved by ψk(t) = Ψ0(eiτt−1)+ψk,0. We can wonder about the behavior
of the system for different ICs.
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• Ψ0 = 0
⇒ ψk(t) = ψk,0 ∀k,∀t > 0. Importantly, this configuration is robust with respect
to perturbations of the IC, that is if |Ψ0| = ϵ ≪ 1 then |ψk(t) − ψk,0| ∼ ϵ ∀t > 0,
i.e. the configuration remains close to the initial one. This is the case for instance
for the quench from the MI to the SF regime for large V , that corresponds to the
initialization of the system in the neighborhoods of the UC.

• ψk,0 = Ψ0 ∀k = 1, 2, . . . , V
⇒ ψk(t) = Ψ0e

iτt, that is all the phases are rotating at the same angular speed τ .
Importantly, again, this configuration is robust with respect to perturbations of the
IC, that is if |Ψ0 − ψk,0| = ϵk ≪ 1 ∀k = 1, . . . , V , then |ψk(t) − Ψ0e

iτt| = ϵk ∀t >
0, i.e. the configuration remains close to the initial one (at least unless a global
phase rotation). This result is not surprising since in this case corresponds to the
initialization of the system to the neighborhoods of the SFC configuration, that is
to the ground state of the system.

68



Appendix B

π-aligned stationary
configurations

We aim here at complementing chapter 3 and in particular section 3.3.2, finding in a
comprehensive way other possible π-aligned SCs. As already observed, to satisfy the first
equation of the system (3.3) if r > 0 we must have sin(θk − φ) = 0 ∀k = 1, 2, . . . , V . This
means that θi−θj ∈ {0, π} ∀i, j = 1, 2, . . . , V , that is that θi ∈ {φ, φ+π} ∀j = 1, 2, . . . , V .
It is therefore convenient to distinguish two sets of sites, that are the ones with phase equal
to φ and the ones with phase equal to φ + π. Since we already treated the case of all
phases aligned, we assume both sets to be non empty. We label each site with a binary
variable νk such that

νk =
{

+1 if θk = φ

−1 if θk = φ+ π
(B.1)

This labeling is particularly suitable since it allows us to write cos(θk − φ) = νk.
Because of the symmetry under permutation that characterizes the FC models, we can
without loss of generality assume the site indexes to be sorted in such a way that

νk =
{

+1 for k = 1, . . . , αV
−1 for k = αV + 1, . . . , V

(B.2)

where αV ∈ N. The stationarity and consistency conditions (3.3) read then

νk

τr√
ρk

− uρk = Ω ∀k = 1, 2, . . . , V
r = 1

V

∑V
k=1 νk

√
ρk

r > 0
1
V

∑V
j=1 ρj = ρ0

(B.3)

Notice that the condition r > 0 is equivalent to the condition φ = θ1 and that discard-
ing the case in which φ = θN is not restrictive because we could always recover it with
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a π-rotation of the reference frame. For simplicity, we look at the configurations with
ρk = ρk(νk), that is {√

ρk = x+ if νk = +1
√
ρk = x− if νk = −1

(B.4)

for which, setting ρ0 = 1 and u = 1 (without loss of generality as explained in section
2.4), the stationary condition reads

x3
+ + Ωx+ = +τr
x3

− + Ωx− = −τr
αx2

+ + (1 − α)x2
− = ρ0

r = αx+ − (1 − α)x−

(B.5)

that has to be solved in the unknown α ∈ { 1
V ,

2
V , . . . ,

V−2
V , V−1

V }, x+ > 0, x− > 0, r ∈
(0, 1),Ω ∈ R. In general 4 equations in 5 unknowns can be solved by multiple solutions,
that is several possible stationary configurations. We therefore decide to treat r as a
parameter and the other variables as unknown. In Eq. (B.5) we get from the fourth
equation that α = x−+r

x++x−
, we plug it into the third equation and get

x− + r

x+ + x−
x2

+ + x+ − r

x+ + x−
x2

− = 1 ⇒ r(x+ − x−) + x+x− = 1 ⇒ x− = 1 − rx+

x+ − r
(B.6)

where we assumed x+ /= r (in fact, the solution with x+ = r corresponds to the SFC,
that has already been discussed). From the first equation we get Ω = τr−x3

+
x+

. Moreover,
the conditions on α and x− can be turned into conditions on x+ as x+ > r and x+ < 1/r
respectively.

The stationarity condition therefore finally reads

(
ρ0−rx+
x+−r

)3
+ τr−x3

+
x+

ρ0−rx+
x+−r = −τr x+ ∈

(
r, 1
r

)
Ω = τr−x3

+
x+

x− = ρ0−rx+
x+−r

α = x−+r
x++x−

(B.7)

that has to be solved in its first equation in the only unknown x+ for all the possible
values of the parameter r ∈ (0,1). Having the solution of the first equation of (B.7) we
can then plug it into the second, third and fourth equations to get all the other unknowns.
In figure (B.1) we show the numerical solution of (B.7). For each τ and r we find Ω (not
shown), α and x+ of the stationary configurations. Importantly, we notice that only the
solutions with α multiple of 1/V are acceptable and that the plot should therefore be
interpreted as follow: we consider a vertical line for a given τ and look at the intercepts
with the lines of acceptable α (that is α = 1

V ,
2
V , . . . ,

V−2
V , V−1

V ). Each of such intercept
corresponds to a SC, to which it is associated a x+ given by the colormap in that point.
For instance, we see that for τ > 2 there is one SC for each acceptable α < 1/2 and
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there are no SCs with α > 1/2 whereas for τ < 2 there can also be SCs with α ≥ 1/2.
We stress once more that the plot is obtained solving (B.7) for all possible α and shows
therefore a continuum of solutions, but as said the α to be considered should be discretized.
Understanding which are the stationary PACs helps us to acquire a deeper intuition of
the structure of the phase space.
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Figure B.1 |Stationary π-aligned configurations. Numerical solution of stationarity equations
(B.7). For each r and τ we find the possible SC and plot x1 (colormap and correspondent yellow
contour lines) and α (red contour lines). The region of the (r, τ) plane with no colormap corresponds
to a region with no π-aligned SCs.
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Appendix C

Quantum fluctuations

C.1 Quantum fluctuations in the delta configuration
We rewrite the characteristic polynomial P (λ) (6.27) as

P (λ) = (λ2 − 3)2
[
λ4 − aλ2 + b

]
(C.1)

where {
a = (6 − 4τ + τ 2) > 0
b = (3 − 2τ)2 − τ 2 cos2(∆)

(C.2)

and where ∆ ranges from π/2 (corresponding to the UC) to π (corresponding to the
SPAC).

From the factor (λ2−3)2 appearing in (C.1) we readily obtain the eigenvalues λ = ±
√

3
with multiplicity 2, that are real and that therefore do not cause any exponential growth
in time of the QFs. The remaining factor λ4 −aλ2 +b gives instead 4 eigenvalues satisfying

λ2 = a±
√
a2 − 4b
2 = a

2

1 ±

√
1 − 4b

a

 (C.3)

We observe that complex conjugate imaginary eigenvalues (corresponding to QFs ex-
ponentially growing in time) are present in two cases, that are

1 : a2 − 4b < 0 (C.4)

2 : 1 <

√
1 − 4b

a2 ⇒ b < 0 (C.5)

We find that a2 −4b = τ 2 (τ 2 − 8τ + 12 + 4 cos2(∆)
)
, that is a fourth order polynomial

in τ with roots τ1,2 = 4 ± 2 sin(∆) (apart from τ = 0, to which we are not interested).
As well, we observe that the condition b < 0 reads |3 − 2τ | < −τ cos(∆). The conditions
(C.4) and (C.5), for which QFs will grow exponentially in time, read thus
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1 : 4 − 2 sin(∆) < τ < 4 + 2 sin(∆) (C.6)

2 : 3
2 − cos(∆) < τ <

3
2 + cos(∆) (C.7)

that for ∆ = π/2 and ∆ = π are in agreement with what we obtained respectively for
the UC and the SPAC in chapter 6.

C.2 Physically-motivated symmetries of JQF
As noticed in section 6.1, B⃗ has to be physically consistent, that is its first and second
halves have to be one the Hermitian conjugate of the other at all times under the dynamics
(6.3). This directly results in special symmetries of the matrix JQF and, therefore, of its
spectrum, that is its eigenvalues {λn}n=1,...,2V and eigenvectors {v⃗n}n=1,...,2V . To see this,
we write the eigenvalue problem associated to JQF , that is JQF v⃗ = λv⃗, for the generic
SC. From (6.4) we get{

+τ⟨v(1)
k ⟩V − ψ2

kv
(2)
k − 2|ψk|2v(1)

k = λv
(1)
k

−τ⟨v(2)
k ⟩V + (ψ∗

k)2v
(1)
k + 2|ψk|2v(2)

k = λv
(2)
k

(C.8)

To unveil the aforementioned symmetries we consider the equations (C.8), change their
sign, complex conjugate them, swap them and get+τ⟨

(
v

(2)
k

)∗
⟩V − ψ2

k

(
v

(1)
k

)∗
− 2|ψk|2

(
v

(2)
k

)∗
= −λ∗

(
v

(2)
k

)∗

−τ⟨
(
v

(1)
k

)∗
⟩V + (ψ∗

k)2
(
v

(2)
k

)∗
+ 2|ψk|2

(
v

(1)
k

)∗
= −λ∗

(
v

(1)
k

)∗ (C.9)

that is exactly the eigenvalue probelm (C.8) when exchanging v⃗(1), v⃗(2) and λ with(
v⃗(2)

)∗
,
(
v⃗(1)

)∗
and −λ∗ respectively. The immediate consequence is that

(
v⃗(2)

v⃗(1)

)∗

is an

eigenvector of JQF with associated eigenvalue −λ∗. It is therefore convenient to sort the
indexes of the eigenvalues (and associated eigenvectors) in such a way that we can claim
λn+V = −λ∗

n ∀n = 1, 2, . . . , V , and rewrite the expansion of B⃗ in the eigenvectors basis
(6.7) as

B⃗(t) =
V∑
n=1

(
cn

(
v⃗

(1)
n

v⃗
(2)
n

)
eiλnt + c′

n

(
v⃗

(2)
n

v⃗
(1)
n

)∗

e−iλ∗
nt

)
(C.10)

To guarantee the first and the second halves of B⃗ to be one the Herimtian conjugate
of the other, that is the physical consistence of B⃗, we take c′

n = c†
n, getting finally

B⃗(t) =
V∑
n=1

(
cn

(
v⃗

(1)
n

v⃗
(2)
n

)
eiλnt + c†

n

(
v⃗

(2)
n

v⃗
(1)
n

)∗

e−iλ∗
nt

)
(C.11)

that is (6.8). As explicit example, we observe that for the UC (section 6.2), we have
indeed {λ1, λ2} = {−λ∗

3,−λ∗
4}.
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