

POLITECNICO DI TORINO

Corso di Laurea Magistrale
 in INGEGNERIA INFORMATICA (COMPUTER

ENGINEERING)

Tesi di Laurea Magistrale

Designing a Microservice-oriented
application running on a Serverless

architecture

Relatore
prof. Giorgio Bruno

firma del relatore
...........................

Candidato
Enrico Balsamo

firma del candidato

………………………

A.A. 2017/2018

https://didattica.polito.it/laurea_magistrale/ingegneria_informatica/it/
https://didattica.polito.it/laurea_magistrale/ingegneria_informatica/it/

A one-man army, often a trope of action films,

a heavily armed and well-trained combatant

able to face numerous enemies alone

Summary

The goal of this work is to explore the distributed application architecture indicated by the

caption Microservices, and in particular the deployment type named serverless. To make it

possible the environment chosen to design, develop, deploy and test the components of such

an architecture is the one provided by Amazon and its Web Services (AWS), through the

creation of a prototypical application.

The document is structured and developed following a top-down, breadth-first approach. This

means that an argument may be talked about in all the chapters, according to the topic the

chapter deals with, at an increasing level of specificity, up to the final implementation in the

prototype, along with the considerations that need to be performed during all the phases of

a software's realization.

Behind the scenes, in fact, there has been a remarkable work in all the phases a software

product lives up to the release, described in the last chapter. The final result is a product with

its limits due to the limited dimensions of the development team, but almost production

ready, that has various advantages, most of all its limited development cost and flexibility.

The conclusions are straightforwardly positive, in fact there is little or no space for not

choosing to follow this approach to create a modern infrastructure for the application it is

going to be designed: if correctly approached, this architecture is flexible, cost-effective,

scalable with the team size and it matches the organization's structure.

Index

1 Microservices .. 1

1.1 Definition .. 1

1.2 Microservices vs Monolith ... 3

1.2.1 Advantages .. 3

1.2.2 Disadvantages ... 4

1.3 Scalability .. 4

1.3.1 X-Axis scaling ... 5

1.3.2 Y-Axis scaling ... 6

1.3.3 Z-Axis scaling ... 6

1.3.4 From Conway’s Law to Bounded Context ... 6

1.4 Persistency in microservices .. 8

1.4.1 Saga ... 10

1.5 Microservices Patterns ... 12

1.5.1 Database triggers .. 12

1.5.2 Event sourcing ... 13

1.5.3 Command Query Responsibility Segregation.. 13

1.5.4 Transaction log tailing ... 14

1.5.5 Communication among services ... 14

1.5.6 Service Registry ... 15

1.5.7 Service discovery ... 16

1.5.8 API Gateway .. 17

1.6 Deployment of Microservice .. 19

1.6.1 Multiple service instance per host .. 19

1.6.2 Service instance per host .. 20

1.6.3 Serverless Deployment ... 21

2 Serverless .. 23

2.1 Serverless computing ... 24

2.2 Function as a Service .. 25

2.2.1 Components of a serverless architecture ... 25

2.2.2 Ports and Adapters .. 26

2.2.3 API Gateway .. 28

2.2.4 Pub/Sub messaging ... 28

2.2.5 Message Queue ... 29

2.3 FaaS Architecture ... 29

2.3.1 Bounded Context in FaaS .. 29

2.3.2 Communication within the system ... 30

2.4 Commercial solutions ... 32

2.4.1 OpenWhisk .. 32

2.4.2 Amazon Web Services ... 32

2.4.3 Google Cloud Platform .. 33

2.4.4 Microsoft Azure ... 33

2.4.5 Considerations ... 33

2.4.6 Serverless framework .. 34

3 AWS Serverless .. 35

3.1 Services ... 35

3.1.1 Identity and Access Management (IAM) ... 35

3.1.2 API Gateway .. 35

3.1.3 Cognito .. 36

3.1.4 DynamoDB ... 36

3.1.5 Kinesis .. 37

3.1.6 Simple Cloud Storage Service (S3) ... 37

3.1.7 CloudFormation ... 37

3.1.8 Simple Notification Service (SNS) .. 38

3.1.9 Step Functions ... 38

3.1.10 AppSync ... 38

3.1.11 AWS Lambda Function invocation types ... 40

3.2 Saga .. 41

3.3 Authentication .. 45

3.3.1 jwt .. 46

4 Prototype ... 49

4.1 Used Book Store: the prototype .. 49

4.2 Bounded Contexts .. 50

4.2.1 Book ... 51

4.2.2 User ... 52

4.2.3 Offer .. 53

4.2.4 Cart .. 54

4.2.5 Order ... 55

4.2.6 Shipment ... 55

4.3 Distributed transactions and saga .. 58

4.3.1 The product availability problem .. 58

4.3.2 Shipment transactions .. 62

4.4 Considerations on API .. 65

4.4.1 AWS AppSync: the anti-REST ... 66

4.4.2 AWS API Gateway: the classic choice .. 67

4.4.3 The AppSync auth problem ... 68

4.4.4 Public Cart API – Part 1 .. 70

4.5 Considerations on CloudFormation ... 71

4.5.1 Public Cart API – Part 2 .. 72

4.6 UBS API ... 75

4.6.1 RESTful APIs ... 75

4.7 The projects’ structures ... 78

4.8 Java vs Node.js: Log In functions comparison .. 80

4.8.1 Considerations ... 86

5 Conclusions .. 87

6 References ... 91

7 Appendix ... I

7.1 Code ... I

7.1.1 Java projects gradle .. I

7.1.2 Java code samples ... V

7.1.3 Node.js code samples .. XX

7.1.4 Cart API CloudFormation .. XXIII

7.1.5 AppSync Courier Authentication check-token ... XXXIX

7.1.6 Java vs Node.js .. XL

Introduction

Information technology’s progress through years have always been server-centred.

First, the mainframes were created: big and expensive machines were all the business logic

happened that provisioned data ready to be consumed. In this environment, when it comes

to distributed web applications for example, an architecture prominently MVC raised, with

the creation and diffusion of PHP and JSP among others.

Virtualization came along, and with it the possibility to create virtual systems providing data

just like a server but entirely built as a software: software started mimicking servers.

Then, as familiarity with such systems grew, it was time for some big companies having big

data centers to provide virtual systems on demands: this paradigm is called Infrastructure as

a Service, and it deals with the distribution, indeed as a service, of virtual servers. This

approach led to the growth and expansion of the Cloud.

In the meantime, containerization was thought of and created, reducing the size and job of

virtual machines but actually keeping being some kind of virtualization of an environment, so

keeping the server as the model to follow. Platform as a Service was IaaS’s heir, not changing

the idea at the base.

The paradigm that instead broke the mould is serverless. Up until this point, the various

paradigms were just mimicking servers in one way or another: with this approach, the idea of

a server and the idea to think to servers disappears. In fact, in particular with Function as a

Service, the core becomes exactly the function, that is the logic, and not all the boilerplate

built around it to make it run.

Understanding this evolution is a key to comprehend the power of serverless: the caring

threshold moves up, or better, everything that is not strictly related to the business moves

down below it.

But it is not enough to fully comprehend what advantages a serverless architecture can

provide to your infrastructure: the most efficient way is to prove it by yourself. The patterns

to follow to design a proper serverless application are in some cases new to the classic

distributed application world, and all the phases of the creation of an application need to be

evaluated again.

These are the main reasons behind the choice to face serverless in this work. The goal is to

explore the new patterns, the reasons for their being and their application, what choices are

offered, understanding enough to obtain the tools to choose the best fit for each use case.

The real tools to explore this world is offered by various cloud players, each providing a kit

characterized by pros and cons, and in particular for this work the chosen provider is Amazon

and its Web Services. AWS has been on the market for more than a decade and their services

to create a serverless FaaS architecture are the most complete around.

As for the writer, dealing with this topic is a matter of Software Engineering. As such, the

choice about this work is not to include any line of code among the main chapters but

delegating them to the appendix: the crucial part is not the final realization, that is the code

running on the system, but its designing.

Furthermore, this work is structured following a top-down, breadth first approach: one

chapter after another almost the same themes are dealt with, changing perspective and

getting every time a step closer to the actual implementation.

In the last chapter, in fact, a prototypical application is realized: UBS, a hypothetical yet

finalized book store application where users can purchase and sell books. In the creation

phases of the prototype, from designing to deployment, several issues get faced up and

various patterns followed to solve them.

Before possibly dealing with serverless, though, the general microservices architecture needs

to be faced up to. Most patterns, in fact, come from this architecture, in that serverless could

theoretically be considered only a deployment style for it.

1

1 Microservices

1.1 Definition
The term “Microservice Architecture”1 has risen and spread in the last years to describe a new

way of designing, developing and deploying distributed applications. But, while many people

around the world talk and write about it, a strong and precise engineering definition still lacks.

There are no boundaries on the language to use or the technologies to meet the software’s

needs.

A microservices architecture is such when it is built on top of many small independent,

interoperable and interchangeable pieces of software, not directly communicating between

them and not knowing each other.

The benefit of structuring an architecture like this is that it improves the application’s

modularity, thus making the application easier to understand, develop, test, allowing

separation of concerns, so that each module can be assigned and developed in parallel, then

maintained, each by an independent, small and autonomous team.

Keeping in mind the previously highlighted points, you can say you are looking at a

microservices architecture, and you can define an architecture as a microservices one, if each

service it is built on meets some requirements:

- it is independently deployable

- it is easy to replace

- it is small

- its area of interest is bounded

1 The term "microservice" was discussed at a workshop of software architects near Venice in May, 2011 to
describe what the participants saw as a common architectural style that many of them had been recently
exploring. In May 2012, the same group decided on "microservices" as the most appropriate name.

2

A software built as microservices can be broken down into multiple component services. This

approach allows the system to be more robust by letting single services' failure happen and

be restored and fixed independently.

Each service deals with a single business capability. This lets the company go full-agile, and

instead of having teams made of people divided by their specific skill, building many smaller

teams covering all the skills they need to entirely build their service. The basic idea comes

from the computer programmer Melvin Conway in 1967 who stated what now is called the

Conway's law:

 "organizations which design systems ... are constrained to produce designs

which are copies of the communication structures of these organizations." (Conway,

1968)

Even though this statement is, at present day, 51 years old and most computer programming

paradigms have radically changed, it is still valid, maybe more than ever, on microservices

architecture.

Each service is smart in its logic but dumb in the result management. This means that all the

service must deal with is the transformation of the input and the production of the output.

What happens next is not its business, but another service's business (maybe its only).

So, it is natural to have distributed governance, not only for the process, but for the teams

themselves. Each team must be responsible for its own process and should decide by itself

what tools are the best for their workflow and this leads to teams producing useful tools for

other teams to reuse it, thus to improve deploy time and robustness.

Not only governance is decentralized, but also data management: each team must oversee all

the data its process deals with, and this has as result the chance to choose the best system for

the specific use.

Finally, independency leads to what maybe is the most propulsor to MSA: scalability. Scaling

up an entire monolith is obviously possible, but highly inefficient. With microservices, the

easiest approach for scaling up, the duplication can be very cost-effective, because only the

most requested services can be duplicated on demand.

3

1.2 Microservices vs Monolith2
Sometimes in science the best definition for something is based on what it is not: dark is

absence of light, empty is absence of matter. Though it might be not precisely like this for

microservices, thinking to monolithic architecture can help the comprehension.

A monolithic application is a big project made of thousands of components, strongly bound

between them, possibly running all together into the same system and deployment package,

spanning all the areas of interest of the business process.

It's a nice object, the finished project is very powerful and robust, but with dimensions come

cost and time. Though robust, its components are strictly coupled: while this makes

development phase faster and easier, this may lead to unpredictable changes during the

maintenance phase. Furthermore, when a small bugfix is ready to be released, the entire

system must be taken down, updated, and restarted.

1.2.1 Advantages
Comparing Microservices and Monolithic architectures, the advantages of the first are

evident. First, the system can be ready much sooner, because each service can be developed

in parallel; in fact, Continuous Delivery (Jez Humble, Continuous Delivery: Reliable Software

Releases Through Build, Test, and Deployment Automation, 2010) approach can be naturally

applied, so that the entire system can be produced in short cycles. This approach helps in

reducing the overall cost and the risk and of each delivery by allowing for more incremental

updates to applications in production.

Because of the independency between the services, the changes’ result can be predicted more

accurately. Moreover, if a change is made to a service, it is the sole component that needs to

be updated and delivered, tremendously improving availability and leading to smaller

downtimes: deploying a single service is usually a quicker action than doing it on a monolithic

application. Also, if a service breaks, the rest of the system can keep on living: the dead service

will be ignored, and the system’s failure will only be partial.

2 The term monolith has been in use by the Unix community for some time. It appears in The Art of Unix
Programming to describe systems that get too big.

https://www.amazon.com/gp/product/B003U2T5BA?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=B003U2T5BA
https://www.amazon.com/gp/product/B003U2T5BA?ie=UTF8&tag=martinfowlerc-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=B003U2T5BA

4

For inter-process communication, the usual choice is to adopt message oriented and human-

readable lightweight protocols. This helps the developers and the maintainers in

comprehending what is happening into the system.

1.2.2 Disadvantages
This architecture is not flawless. Although very interesting in the design, this is not the only

phase in a product’s lifecycle and so it is not the only one to be considered. The main

downsides can be summarized to these points:

- expensive remote calls

- coarser-grained remote APIs

- complexity and cumbersomeness

Microservices inter-process communication is more expensive because it happens between

separate systems. Moreover, rarely microservices communicate directly between them,

because they must be kept independent and be loosely coupled, and this is usually done by

adding a third party, another system whose only job is to put in touch the two parts.

Even when designing and developing a microservices architecture some difficulties must be

kept in consideration, and they mostly deal with bounding contexts and defining each services'

duties and rights. Having different developers (teams) taking charge of different

microservices, the risk is not following a spread standard and not creating a central know-

how.

1.3 Scalability
Scalability is one of the main topics pushing forward microservices despite classic software

models. It is defined as the capability of a system to handle a growing amount of work, or how

fast it is to accommodate that growth.

Classical scalability that regards Software can be differentiated between horizontal and

vertical. To scale horizontally means to add a node to the system equal to the previously

available ones. Vertical scaling deals with adding resources to each node.

5

In microservices scaling as such is achieved by redundancy of each microservice (horizontal

scalability) or by increasing compute power of each node (vertical scalability). But in this

context, the classical model is not the best fit.

In fact, an interesting model to be studied when talking about scalability in microservices is

the Scale Cube (Martin L. Abbott, 2009).

This model leaves behind vertical scalability because it is not (always) controllable by the

designer, and adds two additional levels, thus having a 3-way scaling:

- X-axis scaling, that matches the horizontal scaling

- Y-axis scaling, that splits the application into multiple, different services, each

responsible for the functions related to a context

- Z-axis scaling, that is quite like X-axis, but instead of "randomly" assigning the work to

one of the equal nodes, distribute the load by some logic, in most cases dividing data

in subsets.

Usually a microservices architecture takes advantage of only Y-axis scaling, but there are

situations in which all the three axes of the Scale Cube can be exploited:

- the full service is divided by context in multiple microservices

- each of these microservices has some replications by default and can scale up on Y-

axis on demand

- data flow can be partitioned among various data subsets, each of them associated to

a group of microservices replicas

1.3.1 X-Axis scaling
This is the simplest form of scaling, where an object gets replicated several times and, through

a load balancer, the load is split among them. Only the processing instances are replicated,

while the database is a shared one. This makes each instance's cache become very large in low

time, and the cost of maintaining them grows rapidly. As the system's complexity grows,

efficiency of applications designed in this manner decreases. Moreover, updating the

codebase is very time consuming, because the updating must be replicated to all the

instances.

6

Automatisms, though, can be applied to solve these issues and make the delivery faster and

more tolerable. In some cases, in fact, this type of scaling is applied to microservices too: each

microservice can be replicated at runtime to fulfil increasing load, and as the load diminishes,

the replicas are killed.

1.3.2 Y-Axis scaling
The application is subdivided into small pieces of application, having independent logics and

having, each of them, an own database. Moving the database into the subsystem itself solves

various problems. First, there are not big caches to be maintained. Delivering an update is less

time-consuming too, because only a single instance must be updated.

In microservices X-Axis is sometimes combined with Y-Axis, thus producing an architecture

having the overall system split into multiple subsystems, each of them existing as one or

multiple replicas.

An appropriate solution is in fact to have a central logic receiving many (or all) requests and

dispatching them to the correct subsystem. An additional logic can be given to this processor,

making it decide whether the replicas being present at that moment are enough to fulfil the

incoming requests or more replicas must be instantiated.

1.3.3 Z-Axis scaling
This model is very interesting to be studied but in practice is not very common. It has many

similarities to X-Axis scaling with the difference that the database is not a big, shared, one but

each instance has its own, dedicated to only a subset of data, making the instance itself

focused on only a subset of data. There must be an external processor receiving requests that

must have some knowledge on which instance is responsible for the subset of data the request

is about to correctly dispatch the request.

1.3.4 From Conway’s Law to Bounded Context
As previously mentioned, the key idea of such an architecture and its scalability is the

decomposition of the full services in many microservices. There can be defined various

concerns around which to make them orbit. With regards to the previously presented

7

Conway’s Law, one of the most common ways to split up the full service in chunks is by

business capability. Martin Fowler, in his Domain Driven Design, defines, among many others,

a key Design Pattern in microservices: Bounded Context (Evans, 2003).

Let's consider an online store: a user logs in, chooses one or more products he wants to

purchase, adds them to his cart, that he maybe had already populated with some other

products during a previous visit, then he decides to check-out and do the purchase. As far as

it concerns the user, the work is done. Still, on the back side, the order must be processed and

eventually a courier is chosen to perform the shipping. The courier will confirm his availability

to do the job after having logged in, possibly through a separated portal, confirm the pick-up

and then the delivery.

The agency providing this service will most probably be divided in departments as such:

- customer care, to interact with the customers

- product management, that handles the catalogue

- commercial product management, providing the price of the product, that might

change over time

- warehouse management, managing all the products' movements

- order management, whose purpose is to follow and process the order

- finance management, that handles income and outcome

- delivery management, to interface the warehouse with the external couriers

Following Conway's Law, we could identify these Bounded Contexts:

• Customer

• Product

• Commercial

• Warehouse

• Order

• Finance

• Delivery

8

These context, nevertheless, are not enough for correctly structuring the entire architecture.

At least a Cart context should be added to manage the carts. If the service should support

reviews to products, a Review context shall join the others.

The goals of such an organization are various and can be summarized in these three main

ideas:

• let each context focus its efforts on what it can do best

• make any context give its more appropriate meaning to each keyword

• security

An increase in security in fact is a side effect that is obtained through inaccessibility of the

resources privately accessed and treated by the other context's resources. Having private

resources forces the designers to create well defined public access points and interfaces to

both the external world and the other microservices. Moreover, there are other drawbacks

that mostly deal with data inefficiency.

1.4 Persistency in microservices
To ensure loose coupling and to maximize each microservice's performance, several databases

are created. In fact, even though thinning more and more, differences between each DBMS

exist, and to these must be added those between classic RDBMS and NoSQL exist and must be

accounted. While a microservice's data interactions are best fit on a PostGreSql database,

another can give its best by using a MongoDB database, and another might need to do queries

that best perform on graph databases. This is the so-called polyglot persistence architecture

(Scott Leberknight, 2008)3. Being free to use any of these at will is the best situation a designer

could dream of.

A problem arises, though: how to maintain data consistency?

In distributed systems data has the potential to become inconsistent with ease, mostly due to

the interactions among the systems that might happen during data flows, and sometimes

because of the parallel tasks that each system can run. When designing a distributed system

these problems must be taken care of. The standard approach to address this issue is to think

3 http://www.sleberknight.com/blog/sleberkn/entry/polyglot_persistence

9

to data flows directed to storage as transactions, that is, indivisible operations that can either

completely succeed or fail. If saving data to a single entity, achieving this is free. The problem

arises when many entities or even many databases are involved, and it is even worse when

the databases are spread across several systems.

A quite widely used algorithm addressing this problem is the two-phase commit protocol

(2PC), a type of commitment protocol that coordinates all the processes participating in a

distributed atomic transaction, deciding whether to commit or abort it. To make the recovery

in case of failure possible, the participants to the process are asked to log the protocol's states.

In the best-case scenario, that is even the most frequent one, the protocol consists of two

phases:

• commit-request phase, in which a coordinator invites the participants to take the

necessary steps for either committing or aborting and declare the result

• commit-phase, in which, according to the participants' results, the coordinator decides

whether to commit (if all the results are successful) or fail (otherwise). Then the

participants complete the job.

It has some limits, though: it is not fail proof, and in many cases of failure there is the need of

the intervention of a human to restore the correct state of the data. Furthermore, being a

synchronous protocol, each participant is considered busy until the coordinator frees them by

sending a result message. This last characteristic makes it not prone to be used on fast

microservices, even if the side effect for them is to lose something on data reliability. Side

note: it looks like there is no native support for this protocol on modern cloud frameworks

and services.

The protocols microservices architecture is more inclined to use are based on the eventual

consistency. Data is constantly changing, and a workflow might span several nodes and

services. Depending on the depth of the workflow, if any, you can rely on eventual consistency

or, in harder and intricate workflows, Compensating Transactions (CT)(Paul Robinson, 2013).

10

Eventual consistency is a model counting on asynchronous jobs: while they are being

performed, the overall state of data is inconsistent, but eventually, after all the jobs have been

terminated, data make sense.

1.4.1 Saga
Compensating transactions answer to the challenge of building a consistent model even in

case of system failures. Simply rolling back the data to how it was at the start of the transaction

might not result in correct data, because it could have been changed by other services, or

instances of the same ones, running in parallel with the failing ones. CT pattern proposes to

build special entities handling the recovery of the states by applying modifications reversing

those applied by the completed jobs of the workflow. In practice, though, instead of designing

aside of the original workflow a reverse workflow, it should be designed a more complex

workflow that considers the failures and has some paths to recover the system starting from

any possible point of failure.

Coordinating these compensating transactions by creating a logical workflow is defined by the

saga pattern (Richardson, Microservices Patterns, 2018). According to the definition, a saga is

a sequence of local transactions. Each local transaction updates the database and publishes a

message or event to trigger the next local transaction in the saga. If a local transaction fails

because it violates a business rule, then the saga executes a series of compensating

transactions that undo the changes that were made by the preceding local transactions.

To coordinate sagas an orchestrator can be defined to tell the participants what local

transactions to execute. Otherwise the coordination can be distributed by using message

queues or pub/sub events.

In the previously presented online store example this pattern could be applied to handle the

order creation process. This process spans at least two contexts, that is, Order and Customer.

If covering the entire purchase process, Shipping service should be added to the system.

Considering the Choreograph-based coordination and the usage of pub/sub pattern to

dispatch events, the process could be summarized in this way:

1. Order creates an order in pending state and publishes an OrderCreated event

11

2. Customer is subscribed to OrderCreated and internally tries to reserve the amount of

credit needed for the purchase; then in case of success publishes a CreditReserved or

a CreditNotSufficient event

3. Order receives the event and updates the state of the order to either approved or

cancelled

A coordination like this works and is quite used. There is not any third external dispatcher with

built in logic that is responsible for the flow. Still, it needs a strong coordination at design level,

and the debugging of such a process might become quite harder than an orchestrator-centred

coordination. Moreover, if the events become numerous the entire system can become

chaotic.

In an Orchestration-based saga, the process can be designed as this:

1. Order creates an order in pending state and starts a CreateOrderSaga

2. CreateOrderSaga sends a ReserveCredit command to Customer

3. Customer internally tries to reserve the amount of credit needed for the purchase and

sends a result

4. CreateOrderSaga in case of a successful result sends an OrderApprove to Order,

otherwise sends it an OrderReject

5. Order updates the state of the order to either approved or cancelled

This process is more straightforward but creates a stronger bond between the services.

Despite the strength of this saga pattern, it has some drawbacks, the most important one

being the complexity of the programming model. Each pattern, in fact, must be designed so

that in case of failure of the entire transaction, the overall system status goes back to a

coherent one, that might not be the one before the transaction started. Moreover, for this

transaction to be reliable, the change in the data and the publishing of the event (or call to

the subsequent command) must be atomic. For this to be possible, some patterns have been

studied:

• event sourcing

• database triggers

12

• transaction log tailing

• application events

1.5 Microservices Patterns
When designing applications or platforms, the problems that the designer faces, yet with their

differences and particularities, can be modelled and extracted from the real context, and then

be mapped to common problems that in software design literature have already been faced

and solved. The general and reusable solution, not finished in the source code or in the design

but described in both the problem and the solution, is what is defined Design Pattern. Some

remarkable patterns about microservices architecture are next to be defined. Many of them

deal with the open issues related to applying the previously described saga pattern: database

triggers and event sourcing are two best practices to obtain atomicity in the triggering of the

saga and the storing of the data that triggered it.

1.5.1 Database triggers
This pattern is bound to saga pattern (Richardson, microservices.io). It is the simplest solution

to obtain atomicity in the process of storing updated data and publish an event that is related

to it. The event is, in fact, the update of the data itself. Depending on the system's

implementation, this can be achieved in many ways:

• Amazon's DynamoDB and competitors' equivalent systems let systems be invoked on

the update of data

• if the previous option is not available, or if a stronger disjunction between contexts is

preferred, a proxy events database can be included in the system

• in the case of the usage of less sophisticated technologies, e.g. using only RDBMS

databases, the preferred way should be to adopt an EVENTS table in which data is

automatically inserted by triggers on the source tables, and make a process poll this

table waiting for events to be published.

13

1.5.2 Event sourcing
Saga related pattern, it is the main alternative to database triggers. This pattern forces the

user to change his mindset from a data-oriented to an event-oriented storage (Richardson,

microservices.io, s.d.). Its working, in fact, is based on persisting the state of a business entity

as a sequence of state-changing events - this solves the saga issue because storing a single

unit of data is, by definition, atomic. The complexity is moved to the reconstruction of the

entity current (or at a given time) state. To diminish the impact of this drawback, the system

can automatically create periodic snapshots: the reconstruction of the state is based on all the

events that have occurred after the latest snapshot.

The event store also behaves like a message broker, thus when a service saves an event to an

event store, it is also delivered to all the subscribers.

It must be underlined that the event store is the only source and destination of data regarding

the entity it is responsible for: it is the authoritative data source. In this way, concurrent events

cannot cause any conflict because they only represent a change in the state, they do not claim

to be bearer of full state information.

The consumers of the event store are either external systems and applications that subscribe

to the events produced, or materialized views that are as such maintained and that can

provide immediate eventual consistent data to those who request data at any moment, e.g.

for the presentation layer (cfr. Command Query Responsibility Segregation).

Some considerations must be accounted when designing a system using this pattern, and most

of them depend on the concept that event data are immutable: when an event has been

published, it cannot be revoked or changed. Binding this pattern with Compensating

Transaction pattern is almost mandatory and makes the latter easier to be implemented.

1.5.3 Command Query Responsibility Segregation
This pattern is based on the idea that the reader and the writer might be different processes

and use different models (Young, 2010). The mainstream approach for creating and

consuming data is CRUD. So, creating, reading, updating and deleting. Even modern

approaches for creating APIs are quite CRUD oriented, REST is the main example. As the model

becomes more sophisticated, the usage of CRUD becomes insufficient. Data retrieving might

14

be less direct, and some aggregations could be the actual data needed; when updating data

there might be some validation rules that only allow certain combinations of data to be stored,

or even data stored could differ from the data the client can furnish the backend. The

approach the designer use, anyways, is most of the times to match the data model to the data

flows, adding layers over layers. This can become confusing very easily. CQRS proposes to

separate Command and Query models, thus avoiding these models to be forced as equal. The

difference in these models can either be on the object itself, i.e. in its content, or in the

interface to access it.

This pattern gives its best with event-based programming models, e.g. the previously

mentioned Event Sourcing.

1.5.4 Transaction log tailing
This pattern is related to the usage of saga pattern. The working is quite simple in the idea:

sniffing the database's transactions log to make each transaction be published automatically

and atomically as an event. This pattern is transparent to the application, thus does not

require any changes to the codebase to be applied. Nevertheless, it is quite obscure and DBMS

specific: every database has its own transaction log system coding, so a different dispatcher

must be written for every database.

1.5.5 Communication among services
Let's now consider the previously discussed Scale Cube pattern(AKF Partners, 2017)4. When

scaling on the X-Axis, thus creating a service's replicas to correctly meet the growing load, the

APIs entry-point is constantly changing because the logical or virtual address of the process

itself keeps changing. A client cannot know in advance who oversees the meeting its request.

If the Z-Axis is applied too, the client must decide what service must deal the data it needs to

interact with, so in this case the client should be given some logics that possibly changes over

time and that the designer might not want to publicly share.

The Y-Axis case is the easiest to approach in theory, because the services are well defined.

4 https://akfpartners.com/growth-blog/splitting-applications-or-services-for-scale

15

Services typically need to call one another. Even though each service is responsible for only its

concern, to satisfy the end-user needs they need to communicate with each other.

In monolithic applications they are just simple objects and they can call one another in several

ways: maybe not directly because of scope limits but using some design patterns a way can

be found.

In a traditional distributed system, services have well defined, and predetermined, address

and entry-point, so some protocols can be defined to make remote procedure calls or modern

calls through APIs.

A microservice-based application instead runs on a virtual system or containerized

environment, having no predefined location. The size of the system changes too and so the

available replicas of each service do.

It needs to be defined a way to make the services know each other and make the API Gateway

correctly route incoming requests. This way is to have a single Service Registry that knows and

keeps updated this information (Richardson, microservices.io, s.d.).

1.5.6 Service Registry
Each service instance must be registered at start-up and removed at shutdown. If it has some

problems and it is no more available to perform its duty, the Service Registry must know it.

Being so important, the Service Registry must be highly available and very robust. And

obviously it must work on a fixed, well-known location.

To fill and to update the Service Registry appropriately, thus adding a service's rising instance

or removing a dying one, it needs to be defined a model. They are defined two ways for doing

this job: either the instance declares itself or a 3rd party registers the instance.

In case of self-registration, the service on start-up registers itself, declaring its entry-point

characteristics, and ensures it is discoverable. It is its duty to periodically renew its registration

too, to make the registry know it is still alive and it can correctly perform its duty: this lets the

registry decide that in case of missing periodic check-in the service's instance might have

incurred into some problems and must be removed from the registry (until a possible delayed

renewal). Just before shutdown, the service will have to declare it too and so unregister itself

16

from the registry. This approach is simple but needs the designer to implement it. Another

drawback is the tight coupling it causes between the service and the registry.

To solve these issues, it can be considered to use the 3rd party registration. In this model,

there is an object that runs along with the instance's service, declaring the start-up and the

shutdown, and perform more effective health-checks on the service. It has some drawbacks

too: it is yet another component to be installed and maintained, making the overall system's

structure even more complicated.

1.5.7 Service discovery
To make a client interact with the correct service the Service Registry should be used because,

as mentioned, it is the only reliable component that knows exactly the status of the services'

instances.

A crossroads rises: either the Service Registry is available for the clients to be queries or it is

in an area where the access is restricted: it must be decided whether to put it into a

Demilitarized Zone or in a restricted area. According to this decision, a pattern to do the

service discovery can be applied to the system.

There are two models:

• client-side service discovery

• server-side service discovery

If the access to the Service Registry is publicly allowed, the client-side service discovery pattern

must be applied. The client queries the Service Registry to obtain a service's location, maybe

caches the result, and queries the location for the service to be performed.

N.B.: having the Service Registry public doesn't mean that the registration APIs are public. It

can be configured to make only requests for registration/dropping available only if coming

from specific addresses ranges.

This approach has the main drawback to tightly couple the client to the Service Registry,

whose location is fixed and predefined. Changing a Service Registry's location forces the client

to be updated some-ways and it must be done for every available clients.

17

In this pattern there is not any component that is specialized in performing some load-

balancing: the only available one is the Service Registry, that must be chosen or designed

appropriately.

To avoid these drawbacks, or if the designer chooses not to expose the Service Registry for

hiding some information, the server-side service discovery pattern can be applied. All the

requests must be directed to a single, fixed and predefined, additional component that acts

as a Router to the requests:

1. receive an incoming request

2. analyse it to understand what service must deal with it

3. query the Service Registry (or a local cache) to identify the service's location,

performing some load-balancing

4. route back the response to the requester

It is evident that using this model there are more hops between the request and the response,

so it might be even slower than the client-side version. And like in all the other cases where a

component is added, the designer must be aware of the issues that come with the insertion

of the router. The router must support the necessary communication protocols to talk with

the clients.

Aside from these issues, there are several reasons why to prefer server-side over client-side,

one of them being the simplicity in the implementation, due to plug-and-play components

and the separation between client and services.

1.5.8 API Gateway
Each service holds its part of information and is accountable for it. But a client, on the other

side of the fence, needs data that comes from several contexts at a time. A client will hardly

need only data coming from a context but will need data related to them, coming from several

other contexts.

Keeping in mind the leading example, a customer visiting a web page displaying a product of

the online store, so using the web client, will see cross cutting concerns information:

18

• some information about the product itself, such as the name, some descriptive text

• available purchase options

• overall average rating

• some catching reviews

• information on the seller

• average rating of the seller

But the services are organized around Bounded Contexts. Information about a service's

concern cannot cross the service's boundaries to be fetched by another service's API. This

means that the granularity of the APIs publicly provided differs from the one of the actual total

APIs. In fact, it is preferable to avoid having the clients sending several requests to obtain the

data about a sole use case, if it is possible. Renouncing to this model might be a better solution,

in some cases: if a client needs to be constantly fetching a single domain's data to have real

time information, some separation should be considered.

The pattern to solve these problems is the API Gateway, that is, an interface interposed

between the services APIs and the clients. Its main job is to fetch and adapt the data to fit the

clients' needs, to hide confidential information and to deal with security too. In fact, being the

single entry-point to the system, it's best suited to block or consent queries.

On the public side, the API Gateway shows some APIs that allow the clients to retrieve all the

data they need without having deep knowledge of how the data is organized. In this way, the

data or information partitioning can be easily changed without making any single change on

the clients: only the API Gateway will have to be modified. Moreover, there is no need to share

a protocol from the client to the final service.

To this element of the system it is often given the role of API composer: API Composition is a

pattern in which data provided by different services can be joined through in-memory

processing to provide a single appropriate result.

Finally, the API Gateway is, or is the responsible to communicate with, an entity called Service

Registry that is the connoisseur of the internal APIs spread across the services.

19

Keeping it simple, the API Gateway is a component that acts as Router (cfr. Service Discovery),

Service Registry and most of the times as events dispatcher too.

1.6 Deployment of Microservice
In the previous sections the focus was on the general microservices architecture, how to make

microservices interact with each-other, how data should be structured and what patterns

have been studied to solve all the issues that come with the separation of concerns among

separate and independent entities.

What has not been yet talked about is how a microservice can, and should, be implemented,

how it is structured, deployed and what patterns exist focusing on it.

Basically, a service will run in on a virtual machine or a container containing all the

microservice structure will be defined and deployed on command. A service must be provided

with the appropriate CPU, memory and I/O resources. Each service can be written in a variety

of languages and moreover each of them can have its own specific deployment, scaling and

monitoring requirements. Despite this complexity, deployment must be fast, reliable and cost-

effective and the behaviour of each service's instance needs to be monitored.

1.6.1 Multiple service instance per host
On an architecture structured by using this technique, virtual hosts are shared among diverse

services' instances. Because of the usage of well-defined entry-point, it is difficult to make

many instances of the same service share the same host. This pattern is still useful, though,

because it allows to make deployable suits of services' instances. For example, two hosts could

be created to run the same services, one instance per host per service.

About JVM or Node.js services, the most common solutions, each service instance can either

be deployed on a separate process or on a common one. The two cases share the same pattern

but have some differences. In either case, the great advantage of this pattern is the efficient

resources usage it comes with: multiple services instances share the same host and operating

system. This means low overhead, even lower in the case when multiple instances share the

same process too. Another benefit of this pattern is the deployment ease: just copy the service

20

and run it. Because of the low overhead, starting a service is not so impactful on the

performance calculation.

Nevertheless, this pattern has some drawbacks. One major one is the almost total lack of

isolation between services instances: when sharing the same process, like in the second type

of approach where multiple services instances not only share the same host but the same

process too, there is no isolation and so, for example, they share the same JVM heap; a

misbehaving service could break the other services it shares the process with. In the same

scenario, it becomes very difficult to accurately monitor each service instance's resource

utilization, and it cannot be finely tuned or limited too. A misbehaving service could consume

all the resources dedicated to all the services running in its process.

1.6.2 Service instance per host
Deploying services following this technique leads to a total isolation among them, having each

service run on a dedicated host. What host means in such a situation is either a Virtual

Machine or a Container, so two sub-paths can be followed.

Choosing a path where a service instance is hosted per Virtual Machine, it is created a virtual

machine image for each service, and thus an instance is a virtual machine that is launched

using that specific image. Such an image contains not only all that is needed to run the service,

but also the operating system on which the service runs. The major benefit of this approach

is the complete isolation it is obtained: it has a fixed amount of CPU and memory and cannot

interact with other services or steal their resources, either correctly or wrongly behaving.

The overhead and the slowness in the delivery, though, are the main disadvantages to this

pattern. Building a new virtual machine image when a latest version of the service needs to

be deployed is hugely impactful on the delivery time. When it comes to running cost, it

becomes clear that this approach is not resource efficient. In fact, each service instance has

the overhead of the virtual machine, considering the entire operating system it runs on.

Moreover, in the typical Infrastructure-as-a-service where the services are deployed on

nowadays run fixed size VMs, so the service's virtual machine could be underutilized. Being

the cold-start of a virtual machine very slow, it is not prone to be created and destroyed

21

frequently, so it is preferable to run a slowly changing number of instances at a time. This

means that most of the time the resources payed for do not fit the need of the service.

Finally, there is no provision for the managing of the virtual machine, and this adds complexity

and cost to the designer.

As an alternative to this technique, due to the several disadvantages it comes with, an

alternative in the entity to make the service run on has been defined: instead of dedicating an

entire virtual machine to a service's instance, a container is enough to guarantee isolation and

improve performances.

Following the technique named Service instance per Container, in fact, each service instance

run in its own container, that is, a virtualization mechanism at the operating system level,

consisting of one or more processes running in a sandbox.

It has the same advantages as when running a service on a Virtual Machine, so the total

isolation from each other, the ease in monitoring the resources consumed, the encapsulation

of the technologies used by the service. Moreover, this approach solves the major issue of the

preceding one, that is the extreme overhead: creating, deploying and launching a container is

much quicker, and this solves the cost related issues previously discussed. This approach has

some drawbacks too, mostly related to the decrease in security with respect to virtual

machines. Also, unless using a provisioned container service, the containers infrastructure

must be managed, and possibly the virtual machines infrastructure it runs on too.

There is a final solution to solve these issues too, and it is the Serverless (Ken Fromm, 2012)5

Deployment.

1.6.3 Serverless Deployment
This is the most modern and appealing way to deploy a service. In fact, it solves all the

disadvantages of the previous pattern, simply because the infrastructure the services run on

are not to be managed but are provisioned. This means that (almost) only the code the service

runs to execute its tasks has to be taken care of.

There is some drawback too, such as the time-limit and the stateless they come with.

5 https://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/

23

2 Serverless

When talking about microservices deployment technologies, a kind of zooming in has been

done. The first considerable technology is what now is called monolith. Here, there are some

services that are built to be deployed and run altogether into a “huge” system. Each service

has its dedicated processes, technologies and package. They can share some resources, e.g.

databases, but they are independent on all the rest. They can call each other by using several

technologies and patterns that have been defined over the last decades. Then, the first ideas

to separate processes and spread them over several systems have been thought, and

distributed applications are born. Distributed technologies have moved from client/server

approaches to multi-server, and the first microservices patterns arose. Within this

architecture, microservices stopped sharing the same physical host and started sharing at first

virtual hosts directly, then by passing through containers. In this way, a system can consist of

several physical machines each running several virtual machines each orchestrating several

containers. Each container, usually, only runs a single service’s instance. In this way, a multi-

layer structure gets clearer and clearer:

1. physical layer

2. operating system layer

3. virtual machine layer (i.e., another operating system layer)

4. container layer

5. code

In this last approach, the service’ manager has to take care of the entire stack. Or at least, it

was like this. With this approach spreading more and more, the height of the stack that must

be maintained got lower and lower:

1. the first 2 layers get abandoned altogether by hosting the services on remote virtual

hosts, so that only remote virtual machines must be taken care of, installing all the

tools and the technologies needed to run the services

24

2. then it’s time for abandoning the virtual machine layer, by using remote technologies

that allow the service owner to only worry about the creation of a container that

encapsulates all the technologies the service needs to perform its duty

What happened is that the complexity of the system gets moved from the end-user to another

entity. This entity simply is the owner of another service: distributed technologies become

distributed services, and the previously mentioned stack of layers needed to run a service

becomes a stack of services to run the service onto.

The next obvious step is to abandon the creation of the container: most of the times the

containers only differ for the code they will run after deployed. The next step is for the service

owner to only take care of the code, the logics that are built around the business.

2.1 Serverless computing
In the introduction some of the keywords of the serverless computing model have been

suggested. In this model there is an actor, the cloud provider, that dynamically manages the

allocation of resources. With this approach, the service owner writes the code and deploy it

to the provider, tunes some settings, and then the provider takes care of scaling to provision

enough power to meet the load. This approach is now called Function as a Service (FaaS).

With this architecture, the remote services execute on stateless containers deployed and run

when some events occur, that die right after and that are fully managed by a third party.

In recent times, with the huge diffusion of smartphone and the recent mobile web usage

overtaking the desktop one, the need of having client application smart enough not to have a

server behind the data processing caused the birth of systems where, through APIs or

dedicated SDKs, clients were auto sufficient in data-processing. This approach is now defined

as Backend as a Service (BaaS). There is no code running on remote, only on clients.

 It is not required that the entire application is built serverless, in fact often only some specific

jobs are assigned to functions in case of FaaS or performed by clients on BaaS. If the

application is somehow hybrid, it is best combined with services running as microservices,

because these two types of architecture share most of the patterns.

25

2.2 Function as a Service
AWS Lambda must be mentioned right away because most of the merit for the diffusion this

architecture is reaching is due to it. It is the Amazon Web Services provisioned solution and

the most used one. In the Lambda introduction page, it is stated that

AWS Lambda lets you run code without provisioning or
managing servers. You pay only for the compute time you

consume - there is no charge when your code is not running.
With Lambda, you can run code for virtually any type of

application or backend service - all with zero administration.
Just upload your code and Lambda takes care of everything
required to run and scale your code with high availability.

You can set up your code to automatically trigger from other
AWS services or call it directly from any web or mobile app.

(Amazon AWS)

Leaving aside the marketing and the commercial sentences, there are some points that should

be underlined. First, it is highlighted the absence of long-lived server applications, that forces

the application to be stateless; then the possibility to choose (almost) freely the technologies

to adopt; then, the total difference in the way of deploying the application with respect to

monoliths or microservices; horizontal scalability is automatic and only needs to be tuned to

meet the requirements; last, the ways to interact with the services, to make them execute, is

specified and it is based on events or on direct remote calls.

2.2.1 Components of a serverless architecture
In a FaaS architecture, functions should not be called directly, they cannot. Their execution,

in fact, is triggered by some events, that mostly depend on the FaaS platform itself, although

some standard patterns are established.

In a typical FaaS architecture, an API Gateway can be found to map calls coming from the

external world, i.e. the clients or other services, to specific functions. The jobs these functions

perform are often dependant on streams of data, real time information the system must

quickly react to, thus the need of a Message Queue. Talking about messages, the handling of

26

a Pub/Sub communication could be either assigned to the Message Queue or to a specific

component dedicated to it.

2.2.2 Ports and Adapters
Before discussing the various components composing a FaaS service’s architecture, it needs

to be clarified the general pattern these functions are organized around. As already

mentioned, functions should not be publicly accessible but restricted, thus obtaining control

for monitoring, abstraction of security from the implementation of the business logics,

interoperability and independence from the communication technologies. It is as such created

a kernel of pure business logic.

The rest of the work for letting the world using the logic is responsibility of an external layer

that wraps the kernel. Thinking it in this way it is easier to obtain an onion-like structure

instead of a classic stack-like one. Lately, in fact, the most discussed patterns for building APIs

focus on the construction of layers in this fashion: while Layered architecture and Onion

architecture (Palermo, 2008) are in practice almost the same, the difference is in the way the

designer approaches to it. The key difference, in fact, is that thinking the architecture as

layered leads the designer to think the layers are dependant and somehow binds them. Just

making the layers circle instead of flat and wrapping one into another, though, is not sufficient

to obtain a correct Onion architecture. The keyword, here, is Dependency Inversion Principle

(Martin, 1996).

DIP does not introduce nothing new to classic Design Patterns, it just combines and applies

them to an architecture built on layers. It states that:

1. High-level modules should not depend upon low level modules. Both should depend

upon abstractions.

2. Abstractions should not depend upon details. Details should depend upon abstractions.

Plainly speaking, interfaces have been interposed between layers for communication. These

interfaces should be thought appropriately, that is, building them independent from the final

implementation.

Onion architecture applies DIP to the overall architecture, and defines the standard layers

needed for some APIs, listed from the core to the external:

27

• Domain Model, where all the business logic resides; this layer is agnostic in

communication

• Application services, where application specific logic resides

• Outer layer, consisting in anything that directly interacts with APIs, such as User

Interface or tests

Starting from an architecture subdivided as this, Alistair Cockburn arrived to identify a more

structured architecture that, at first, he called Hexagon Architecture, and later refined and

renamed it Ports and Adapters (Cockburn, Ports and Adapters, 2005).

Hexagon architecture consists of an external hexagon where the outer world resides, that is,

in this case, both user side components needed to make the application reachable and usable,

and database interfaces, and an internal hexagon consisting of the application core. The news,

here, is that the border of the internal hexagon can be considered a layer itself: it is where the

external and internal hexagons components meet each-other and it works as a ports layer.

The fact that this architecture is represented by using hexagons does not mean that the

number 6 is important in any way, and for the same reason the name of the pattern changed

to Ports and Adapters.

Fully combining the Onion architecture with the Ports and Adapters pattern leads to a

structure where, on one side of the ports, in the inner side of the hexagon, stands an onion

defined as before, so consisting, from the inside to the outside, of a Domain model, Domain

Services and finally Application services that communicate, through the ports, with the

external Adapters.

The adapters could be defined as either Driving, that is, those that tell the application to do

something, or Driven, that are told by the application to do something. User side adapters

belong to the first category; internal communication components, persistency objects and

systems that let the application communicate information to the users belong to the latter.

FaaS functions obviously belong to the core of this architecture, but the components they

communicate with are in fact adapters on the external side.

28

2.2.3 API Gateway
This is probably the main adapter among the Driving ones, because it creates and publishes

public entry-point that allow the various clients (or external services) to use the application.

Being an adapter, its job is to map the input it receives to an input that is comprehensible to

the destination, that must be kept as much communication agnostic as possible. It is also the

main responsible for the Authorization and the Authentication: part of the APIs it shows might

be not available to unauthenticated user or to those that are not part of a restricted group

(authorization), and part of them should be personalized, in the mapping phase, to refer to

the user itself (authentication).

2.2.4 Pub/Sub messaging
More than a component this is a pattern. It consists of 2 direct actor categories, i.e. the

publishers and the subscribers, and a transparent actor, the broker. In this messaging pattern,

the senders of the messages do not program to send the message they create directly to the

consumers, but instead categorize the messages into classes. In the same way, subscribers do

not know in advance all the characteristics of the messages they will receive but they know

that the messages are about the categories they are interested into.

What is happening when a message is created and published is that the publisher sends it to

a central actor, the broker, who is responsible for taking the subscriptions and dispatch the

messages; the broker, then, dispatches the messages by applying the filters the subscribers

communicated along with the subscription. These filters can be either topic-based, if there

are several named logic channels where the messages flow, or content-based, if the content

matches some constraints.

Following this pattern leads to loose coupling because the subscribers do not need to know

who the producer is, and the producer only publishes data, without being interested if anyone

is interested in consuming it. The topology of the components is not interesting for anybody,

the focus is on the messages themselves and their structure, that of course must be well

defined and as much immutable as possible.

But with loose coupling some issues come, most of them due to the inherent lack of

acknowledge systems between producers and consumers. Consumers might fail or be not

operative when an important data is produced and published. Some problems with security

29

arise too, because there might be published unauthorized messages, unauthorized receivers

could spoof private ones, or the broker could be overwhelmed by malicious data flows.

In a FaaS serverless environment, this pattern is generally one that enables the triggering of a

function: it is subscribed to some type of messages, and when one is published a new instance

of the function gets deployed and started, with the task to treat the message as input.

2.2.5 Message Queue
This is both a pattern and an adapter implementing it. It can be considered a relative to the

previously analysed pub/sub pattern, and in fact they are quite coupled. Where these patterns

differ is in one of the weak points of the pub/sub: while the latter can cause some

inconsistencies when there are no active subscribers, message queue instead stores the

messages not yet consumed. In fact, all the messages produced are temporarily stored in a

queue, could possibly be sorted and analysed, and then removed only after there is an

acknowledgment and a confirmation of the job completed by the producer.

This pattern helps with services where there are continuous flows of data and a real time

analysis must be performed.

2.3 FaaS Architecture
Summing up, FaaS is a type of serverless architecture, and architecture can be considered just

a way to deploy a service organized following microservices architecture. This leads to making

FaaS follow the general microservices’ patterns and the way of organizing the overall system’s

structure, apart from the deployment and the lowest level parts.

So, the centrality of Bounded Context is valid, communication between services is still

problematic and the ways to invoke services are almost the same: these patterns are shared

with microservices, but the way they are applied are different.

2.3.1 Bounded Context in FaaS
When discussing the most proper way to separate concerns and organize data models in

microservices, the Bounded Context pattern was highlighted as the most used pattern. The

main idea, again, is to build small groups of entities orbiting around a unique business entity.

30

For microservices it can be said that it is quite easy to obtain such a separation, and various

patterns, mostly regarding the deployment, can make it very straightforward to achieve this

goal.

For functions it is a little harder: there is not any container that can isolate groups of functions.

Alternative strategies must be applied, and they mostly depend on the platform the functions

are running on. In fact, it does not exist a defined standard for commercial products that host

functions, and it is not thinkable to leave the designer make its own implementation of a

platform the functions run on, because most of the advantages in this architecture would be

lost.

Actually, an Apache project exists, OpenWhisk, that allows anybody to create a platform on

which to run FaaS functions, and in fact IBM, sells to end-user a service, IBM Cloud Functions,

built on it. Anyway, OpenWhisk does not indicate a way to separate groups of functions to

build closed concerns, thus following Bounded Context.

The truth is, this pattern does not deal specifically with security. It does not state that contexts

must not access other domains’ data. Its focus is on the separation of concerns for what

regards the logic, the naming, the model. It is a pattern that first must be applied on the design

phase, and possibly in the technological implementation.

The way that is currently used on most of the commercial solutions hosting functions to

achieve a physical separation among domains is through authorization. For a totally

provisioned service, for example, where each component is one of the services available on

the platform, some roles and rights must be defined and assigned to each function: in this

way, functions cannot access other domain’s persistency objects.

2.3.2 Communication within the system
To meet its duties, the system needs its component to communicate between them somehow.

As already mentioned, the key pattern most of the communications should follow is Pub/Sub

messaging: designing the functions to invoke one-another does not lead to anything good. In

fact, one of the benefits FaaS architecture leads to is the ease to substitute components to

meet the same requirements or update them. When discussing about microservices, it has

been pointed out how they needed to be kept uncoupled by not linking them together

because of moving, non-fixed endpoints. This is still valid, partially: as long as the function

31

taking care of a task does not change, the entry-point stands still. Apart from this situation,

the reasons why loose coupling between functions must be applied do not change.

Designing communication between functions consists on applying the saga pattern. Both the

Choreograph-based and the Orchestration-based patterns are valid in FaaS too, and the usage

of one or another is situational.

Choreograph-based coordination comes free in terms of components to be created, applying

Pub/Sub pattern.

Orchestration-based coordination, on the other hand, solves the problems the spread

choreography comes with, that is, the tremendous quantity of events that flow. Applying this

pattern, a third element must be created and deploy along with the functions that use it.

Various solutions can be thought, and they differ on the level of specialization:

• a single Events-Dispatcher, that lives outside of any Bounded Context and that handles

all the events that deal with direct function to function calls

• dedicated Events-Dispatchers, that lives outside of any Bounded Context, whose only

job is to one specific function invoke another

• provisioned services

Both single and dedicated events dispatchers can be created in various ways. An interesting

one is by using a FaaS function. Differently to the functions this one should link, that cannot

fall out of the Bounded Context they live in, it is given special powers to cross over domains.

In case of single dispatcher, it must be built rock-solid to prevent any security-related issues

and not to make the whole system stop working. It must know how to translate a message

coming from a function, that is, what function must be called and how the input should be

translated, if needed. Then, of course, it must check if the caller can invoke the called. As the

system increases, this component can become quite huge and unmaintainable.

On the opposite, dedicated events dispatchers are built on purpose to serve a single caller-

called couple. There is not any dictionary that must be consulted in order to individuate the

destination. Only input translation, if any, and security check must be performed. Its obvious

downside is in maintenance because of the quantity of different components.

32

The alternative is to use provisioned services. They come with the platform hosting the

functions and at present day the only commercial solution is AWS Step Functions (more on

this later).

2.4 Commercial solutions
A serverless FaaS architecture needs a system to deploy functions on, and most of the

advantages this solution comes with deal with the ease of the deployment and the low

maintenance. As such, the most used, and the only for some time, is to use Systems as a

Service (SaaS) platforms that allow to mostly only write code and deploy it.

Before discussing the commercial solutions, a mention to the Apache opensource OpenWhisk

project must be done.

2.4.1 OpenWhisk
This project is a serverless event-based programming service that makes FaaS programming

deployable on hosts managed by the programmer. In fact, containers can be built and

deployed on clusters. As an alternative, IBM sells a SaaS hosting FaaS running on this project.

In either case, by using the proprietary CLI, functions, named actions, can be deployed.

2.4.2 Amazon Web Services
Amazon Web Services (AWS) is a collection of services offered by Amazon composing a pay-

per-usage platform.

AWS Lambda is the first service for hosting functions in commerce, being born in 2014,

November. Being part of AWS, it can be integrated with almost all the other services in the

platform. Integrating means that a function can both use other services (e.g. save a file on S3)

or be triggered by some events happening on other services (e.g. when a file is loaded to a S3

bucket).

33

2.4.3 Google Cloud Platform
This is probably the platform that changes the most day by day. The service to host functions,

Google Cloud Services, was born in March of 2017 and released as a beta, before going public

on October of the same year and being apparently merged with Firebase Cloud Functions right

after. The biggest issue with this platform is that only Node.js is supported as a language to

write functions.

It supports as event sources Pub/Sub for messages, Cloud Storage for data storage related

events, HTTP for web requests, Stackdriver Logging for events based on logs and finally

Firebase.

2.4.3.1 Firebase

This is the most widespread mBaaS system on commerce, and it is continuously improving

and evolving. It offers an advanced SDK for mobile and web platforms, that allow the final user

to directly interact in total security and efficiency with remote data, in real time. In fact, the

strength of mBaaS architecture is the clients can hook to some data and listen to all changes

happening to them.

Firebase also can host functions, to run code that should not or cannot run on end-user

devices. These functions can be triggered by changes happening on data, on files or via HTTP.

2.4.4 Microsoft Azure
Azure is the name of the cloud solutions offered by Microsoft, offer that is quite wider in

services than Google but not as close to Amazon. Azure functions is the service that hosts

FaaS and it supports various languages.

2.4.5 Considerations
Being able to execute functions in response to events is only as useful as what you can actually

do within the execution pipelines, that is, how many and how useful services around functions

are. Functions themselves, especially if written on a commonly supported language, do not

differ substantially according to the service they are host on. Some minor change can be

present on the costs and the latency, but availability and reliability are very high in every cases.

34

As such, a framework among other, serverless, has been created that hides the platform to

the developer, letting him ignore the lower level configuration.

2.4.6 Serverless framework
This framework is an abstraction layer on the FaaS. It lets the developer write the code of the

functions without worrying about the platform-specific configuration needed. As such, it

allows the developer to move the function from a service to another, at will (if there is any

reason why to perform such a task).

35

3 AWS Serverless

This chapter will focus on the services hosted on Amazon Web Services that allow the

developer to design a full Serverless architecture. In particular, FaaS will be explored, but

some interesting cues on BaaS will not be left behind.

First, the various services will be described, then it will be shown possible solutions to various

difficulties that are encountered when creating a FaaS architecture based on these services.

3.1 Services

3.1.1 Identity and Access Management (IAM)
This service is the responsible for authenticating and authorizing people and services all over

AWS cloud services. It grants fine-grained access control by giving the possibility to define

access by user, by group and by permission, to computing, storage, databases and services. It

can manage classic authentication, as well as multi-factor authentication, IP filtering and even

specific conditions like time of day can be used to control access. It can be incorporated with

federated access or existing identity systems.

3.1.2 API Gateway
This component is the AWS service implementing the API Gateway microservices’ component,

being the backbone on which the connectors between private o public connection engage to

communicate with AWS services. It provides RESTful APIs that can be configured to access

AWS services.

Behind the API entry points, API Gateway encapsulates access to services by method (API-

side) and integration (service-side) requests and responses, that is, by interposing

transformation that apply to the services’ input and output.

36

Providing the configurability of RESTful APIs, the API Gateway is organized in nested resources,

each exposing standard HTTP methods entry points; each HTTP endpoint can be set an

Authorizer, that is, an entity that checks authorization to the method. Authorizer can be either

Cognito or a Lambda function.

The mapping between the end-point and the Lambda function or service handling the request

can either be explicitly defined or left as proxy, that is, passing all the information about the

HTTP request itself. For all the integrations not acting like a Proxy, a mapping template can be

defined. AWS API Gateway service template supports JSONPath expressions and is written

using Apache Velocity Template Language (VTL), and thus interpreted by Velocity, a java-

based template engine that allows to reference and manipulate objects.

3.1.3 Cognito
Though it can be considered closer to mBaaS than to FaaS, this service can be quite convenient

to use to provide end-user authentication and authorization to the service. In fact, it can be

used in combination with API Gateway to control access to the entry points of the service.

Along with these uses, Cognito offers some private space combined with each user, where to

store private configuration or data that the user rarely modifies.

3.1.4 DynamoDB
This is the service that offers the main Database solution inside AWS. It is a highly available,

autoscaling nonrelational database service that offers super low latency. Being a nonrelational

database, it offers a flexible data model, supporting both document and key-value store

model. Access to data happens through a specific SDK calls: the flexibility in queries is not even

close to that of a relational database, and so the data model should be appropriately studied.

Data is identified by using a single partition key or a couple of keys, the second of which being

the sort key.

Additionally, DynamoDB Tables support secondary Indexes. Their creation grants better

performances for queries where accessing data by primary key is not available. An index can

be either local, if it points to subsets of data previously filtered by the partition key, or global,

if it applies to all the data. An index can be made of a hash key and a range key, whose purpose

37

matches that of the couple partition key - sort key. Maintaining indexes has an additional cost

that does not depend on the size of the table but on the provision granted to its usage.

Clearly, also DynamoDB integrates with AWS IAM for fine-grained access control of users.

DynamoDB also integrates with AWS Lambda to provide triggers, that enable the automatic

invocation of functions. It can be set AWS Lambda to be invoked when some data is written

on DynamoDB tables: since DynamoDB offers very low latency in writing, it can happen that

in very low time various rows are written, so AWS Lambda allows to set a maximum number

of rows to be handled per each function invocation, or just one.

3.1.5 Kinesis
This service offers a data stream where to publish continuous data coming from the external

world and needing to be transformed, analysed or stored by AWS Services.

3.1.6 Simple Cloud Storage Service (S3)
S3 is an object storage built to store and retrieve any amount of data from anywhere. It

provides comprehensive security capabilities supporting various forms of encryption and

protecting data via IAM. It offers Big Data analytics in place, the possibility to perform SQL-like

queries to access unstructured data.

It is one of the available sources of events for AWS Lambda, that can respond to changes to

the data stored.

3.1.7 CloudFormation
This service provides a common language to describe and provision all the resources being

part of an infrastructure in a cloud environment. This means that by composing a single text

file containing the structure of a service built with various AWS services, it can be automated

the creation of an entire stack of resources, spanning many regions and accounts, if needed.

Storing the file, for example on S3, and configuring CloudFormation to do it, the system can

be queried through some events to build and deploy the resources contained in the

configuration. If some error occurs, CloudFormation takes care of automatically rolling back.

38

3.1.8 Simple Notification Service (SNS)
SNS is AWS’s service that is the main responsible for dispatching messages to various

subscribers around the system, that is, both handling Pub/Sub messaging among services and

delivering notifications to end-users. It is organized around topics and supports various

subscribers, like Lambda Functions and HTTP end-points, and some sources both automatic

on events (e.g. S3) and via a proprietary SDK.

3.1.9 Step Functions
This service helps in organizing invocations of Lambda functions by allowing the creation of

finite state machines. A classic finite state machine can express an algorithm as a number of

states and their relationships, and their input and output. This service allows the coordination

of individual tasks by expressing the workflow as a finite state machine. Each state can make

decision based on their input, perform actions, and pass output to other states. States can

perform a variety of jobs based on their type:

• Perform a task

• Make a choice between branches of execution

• Stop an execution with a failure or success

• Pass data possibly injecting predefined values

• Provide a delay

• Begin parallel branches of execution

3.1.10 AppSync
This service deals with accessing resources and functions by interposing between the client

requests and the final functions a gateway. This service can in fact be almost thought to as an

alternative API Gateway:

• It is a middleman between frontend and backend

• It hides the backend resources to the frontend adding an abstraction layer

• It can transform data flowing through it

• It can handle security

39

In fact, it can be used in alternative to AWS API Gateway, or in conjunction with it. To better

define what AppSync is, GraphQL must be defined first, in fact, AppSync is an AWS provisioned

version of GraphQL.

3.1.10.1 GraphQL

Born inside Facebook in 2012, it was publicly released with Open Source license on GitHub in

2015. It is a data query language, providing an alternative to RESTful API: it allows clients to

define the structure of the data required and exactly the same structure of data is returned

by the server. In this way, useless excessively large amount of data flows can be avoided,

lightening the load on the network and reducing the data consumed on mobile plans.

The end-point provides various queries, for retrieving data, and some mutations, for writing

data, the clients can perform and their schemas. Queries will provide structured data: to each

composite node of the structure, a resolver can be associated to provide the required data.

When a request to some structured data arrives, resolvers are queried in depth, and the data

is combined. If a resolver returns some data the client didn’t request, GraphQL filters them

out.

REST APIs are structured around nested resources (the parts of the address) and the actions

that can be performed on each resource are limited to the CRUD ones, mapped to HTTP

method:

• POST means Create

• GET means Read

• PUT and PATCH mean Update with some differences between them

• DELETE means Delete

GraphQL, instead, proposes two actions mapped to Query (to read) and Mutation (to write)

but there is not any obligation into this separation: a resolver mapped to an object in a query

can be correctly used to write data. Resources are represented by structures that can be

nested to build sophisticated graphs.

Actually, apart from query and mutation, a third type (not interchangeable) exists, that is,

subscription: this should be used to make the client subscribe for some kind of events, mostly

by using a Pub/Sub channel.

40

The main advantage in using GraphQL instead of REST APIs is the tremendous decreasing in

the number of requests to the APIs is made to retrieve all the data needed for a single use-

case. As an example, let’s consider the leading one. To obtain all the information needed by

the client to show a Product page, it might need to perform these queries:

• to Product resource, to get the product’s specific information

• to Commercial resource, to get the price of the product

• to Customer resource, to check if and when the current user bought the product

• to Warehouse resource, to check the availability of the product

• to Reviews resource, to know the average rating of the product

• to Reviews resource again, to get some reviews

With RESTful APIs the client will need to perform at least 6 queries to only show some

information on a single product; with GraphQL only 1 query will be launched by the client,

breaking down the latency.

3.1.11 AWS Lambda Function invocation types
When building a serverless application on the AWS platform, the core components performing

actions are the Lambda functions, while event sources are the AWS services and the custom

applications that publish events for the Lambda functions to process. In addition to the AWS

services that Lambda support as event sources, custom ones can be defined by exploiting the

AWS Lambda invoke operation. These custom sources are decided by the designer whether to

trigger synchronous or asynchronous invocations. For event sources based on AWS services,

there is no choice left to the designer: it depends on the specific event source (there can be

many) the AWS service provides.

An additional classification can be followed to distinguish AWS Services event sources. In fact,

they can be based on streams or single events, whether the service can provide a continuous

stream of data and it should not be the responsible of invoking functions, or there is not a

strong logical binding in the successive events the service fires or if it can be indicated as the

responsible for launching invocations.

41

At present day, only Kinesis and DynamoDB can generate streams and can thus be set as

stream-based event sources for Lambda functions. Choosing a stream as a source for events,

an event source mapping

residing in the Lambda service

must be configured so that, at

a fixed time rate, the service

polls the stream to check

whether some data has been

published; then, the events

are pulled, and the function is invoked with the proper input. The responsibility, with this

approach, is on the Lambda service, that must be allowed to read the stream, by setting an

appropriate IAM Role.

For all other services, and actually

for DynamoDB too, streams are

not generated and so cannot be

used to publish events. The event-

source mapping is maintained

within the service firing the event,

that altogether holds the

responsibility for invoking the

function: it needs to be provided

an appropriate IAM Role that is

granted the permission to fire an Invoke event on the specific Lambda function.

3.2 Saga
It has already been discussed how to deal with cross-concerning transactions, that is, those

changes in data spanning various contexts, that cannot provide a predefined set of data

changes but that, instead, follow different paths based on the data stored in each context.

Working with microservices, a smart solution that has been proposed is to apply, on design

phase, the Saga pattern. It consists in engineering a flow of data actions that is either

42

orchestrated by a third component or choreographed and handled by the interested actors.

In both cases, a Pub/Sub pattern for delivering messages is advised to be used.

Considering the AWS services that compose an AWS-hosted serverless architecture, there’s

plenty to choose from. Almost any event that can trigger a function, in fact, could be used to

choreograph a saga.

Removing from the range of choices the uncomfortable ones, e.g. writing files on S3 and

triggering events by doing this, these are the most common options:

• using SNS to publish events that functions are subscribed to and using the message as

input

• exploiting DynamoDB events on the new data inserted

• using an orchestrator instead of a choreography and so making use of AWS Step

Functions

In the case of triggering Lambda by using DynamoDB, it must be taken in consideration the

possibility that many rows in low time are written, so it should be decided whether to set as

the maximum rows to be collected before invoking the lambda function to one or to design

the lambda function to possibly receive as input a set of data instead of data referring to a

single entity. The configuration to be set following this approach is not so straight-forward. It

must be taken in account that the chosen DynamoDB Table needs to be allowed to invoke the

lambda function, thus binding two possibly cross-concerning entities. Furthermore, in some

cases the event fired is not strictly logically bound to the storing or updating of some data. To

by-pass both these two issues, it can be set up an Events DynamoDB Table. Making a table like

this, though, can be more troublesome that useful: having a single huge table forces the

lambda functions to filter out the events they are not interested in, causing a huge amount of

useless invocations that consist in checking if the event is interesting and, if not, dying; so, it

should be taken in consideration to create several events tables, each covering various events,

possibly bound by the same context source or destination, up to a table per event. In this case,

the overall efficiency increases (there should be less misses, down to 0 if a table per event is

created), but the cost caused both by the cost of the service and the cost of maintenance can

become unsustainable.

43

The best situation where to apply the triggering by DynamoDB streams or events is when the

event is the writing of the data itself. In this way, the overhead in cost and in configuration is

the least possible, even considering the other event sources that can be exploited to fire a

lambda function invocation.

For the other cases, if a Choreograph-based coordination has been chosen to apply the saga

pattern, exploiting SNS should be considered. SNS is a service coordinating Pub/Sub messages

and channels, allowing the creation of specific topics. Alike the case where DynamoDB is used

providing events tables, the numerosity of topics can be appropriately designed to adjust the

ratio between configuration/maintenance cost and the cost relative to useless lambda

functions invocations. It should be taken in account, though, that there is no cost for delivering

messages to fire the invocation of functions, but only for the invocation itself, nor there is a

service cost for the existence of a topic. The easy outcome from these considerations is that

there is hardly a reason not to create a topic per event, even though the system gets bigger in

the number of components and the feeling is that it might be a waste to only have a subscriber

per topic.

All these choreograph-based coordination techniques for building a saga, have a noticeable

problem: lacking a single point where the coordination happens, and consisting of many

distributed components, removing a saga or changing it someway is not immediate.

Leaving behind choreography, the real alternative to DynamoDB events and SNS topic

subscriptions is to have an orchestrator taking charge of the job of dispatching messages and

getting under control the entire saga. For this purpose, there are various possibilities, but the

winning solution is to create a Step Functions state machine per saga. Actually, in all the cases

some sort of finite state machine is created and put in place.

A first approach to be considered is to have a lambda function, not belonging to any bounded

context, whose job is to create and follow a flow by successively synchronously invoking the

specific lambda functions performing the required job. A such created lambda function

should:

• be allowed to invoke the functions

• contain the business logic that lets it decide the path to follow

• complete its job in the execution time limit

44

This last is the weak point of this solution: in AWS, lambda functions have an execution time

limit that, by itself, is enough to complete state machines representing most use cases. The

real problem is that this lambda function could possibly be paired with an API Gateway entry-

point, whose execution time limit is very lower, that is, 30 seconds. This limit could be

bypassed by invoking the orchestrator function asynchronously, thus moving up the maximum

execution duration to 300 seconds. The other real issue is that a finite state machine must be

represented, and all the cases must be treated, such as lambda functions failing. Finally,

special cases like waiting some time or event before continuing the state machine is

troublesome or impossible to achieve.

And here comes in help Step Functions:

• it is cheap

• the creation of a finite state machine is its business

• it has not almost any execution limit

Building a saga by using Step Functions consists in defining the state machine by using the

Amazon States Language (ASL) and granting it all the permissions to let it invoke the lambda

functions representing the tasks of the state machine. Each saga is then represented by a

single Step Functions, having all the information inside and in a single place, thus helping the

maintenance and the updating of it. Changing the structure of the state machine of a saga, for

example by adding a state, only consists of updating the ASL code representing it. There is a

minor problem that should be kept in mind: Step Functions can only be invoked

asynchronously. This service offers some APIs to check the health state and the result of an

execution of a Step Functions instance.

Providing synchronous execution is possible and can be obtained by having a Lambda function

start the execution of SF, then polling the APIs to check the state, and then returning the result

to the caller. This solution is de facto the creation of a lambda-based Orchestrator where the

handling of the state machine is relegated to Step Functions, and so it must respect some of

the previously mentioned limits of this solution.

Though the focus into this paragraph was on the coordination between transactions, it must

be kept in mind that one of the strong point in this saga pattern is that when designing a multi-

context transaction, they must be designed, along with the main flow’s transactions, also

some compensating transactions that undo the changes that were made by the preceding

45

local transactions. Anyway, this is more related to the design phase than on the technology

implementing it.

3.3 Authentication
AWS offers a provisioned service, IAM, that allows to define fine-grained access to AWS

services and resources, by defining roles, groups and users. By associating this service with

Cognito, a world of possibilities is open for the designer to authenticate and authorize users

and personalize their experience using the service. Cognito authentication can also be

associated both with API Gateway to authorize requests to methods, and to AppSync, for

authorizing and authenticating (and customizing) queries at any level of depth in the GraphQL

structure.

In some cases, though, the designer might want not to exploit IAM and Cognito. Maybe an

authorization service has been already developed and it is available or there is the need to

develop an unorthodox kind of authorization. It is hard to find some cases where these AWS

provisioned services do not meet the developers’ use cases.

Anyway, AWS lets the developers not to use IAM in favour of custom authorizer. In some

cases, it is quite easy and straight-forward, in others the integration is more cumbersome.

When defining the

authorization mechanisms

to access HTTP Methods

exposed by API Gateway, it

can be set a Lambda

function as authorizer. In

this case, a specific data

format must be followed for

both the input and the

output of the function. It

can be set on the API Gateway to cache the result for some time, up to 5 minutes, to alleviate

the load on the function.

The business logic of such an Authorizer is totally up to the designer that can choose whatever

protocol or pattern he prefers. One of this that needs to be mentioned is jwt.

FIGURE 1 AWS SCHEMA FOR API GATEWAY AUTHENTICATION

46

3.3.1 jwt
JSON Web Token is JSON-based open standard (RFC 7519) for creating access tokens that

assert some claims. Clients presenting this jwt object will be trusted that the claims contained

in the object are true, without the need to go finding the rights that are associated to the

specific client making the

request. This can work because

the json object, the token, is

signed by the releaser’s private

key, so if the releaser is trusted,

then they are the token and the

claims coming with it.

The token is actually built of

three parts separated by a dot:

the header, a json object

encrypted in Base64Url containing the informations about the encryption algorithm, the

payload, a json object encrypted in Base64Url containing the claims, and the signature, that is

obtained by applying the chosen

digest algorithm on the

preceding part, that is, the

encoded header, a dot, and the

payload, by using a secret

private key. This private key can

either be a simmetric key in case

of simmetric algorithm like

HMAC, or the private key in a

public-key algorithm like RSA.

When a jwt arrives along with a request, first the signature is verified by applying the proper

algorithm. If it matches, the claims contained in the payload can be used right ahead to decide

whether to provide the service or not. Claims cannot be changed without knowing the secret

private key signing the signature, so the token can travel safely on a public network without

being compromised by a malicious part. The token itself does not guarantee in any way that a

FIGURE 3 JWT.IO VERIFYING AND DECODING A VALID JWT TOKEN

FIGURE 2 JWT.IO VERIFYING AND DECODING AN INVALID JWT TOKEN

47

man in the middle steals the token: some more caution has to be used, for example by

providing inside the token the ip of the client who obtained the token, or, more safely, by

making the token travel on secure HTTPS channel that provides all the security not covered by

this protocol.

49

4 Prototype

After studying in deep what microservices are and how a Microservices Architecture is

organized and represent data and actions, and then deepening how microservices can be

exploited by deploying the application by applying serverless, and in particular exploiting all

the services that Amazon makes available through their Web Services to build a serverless

application, I have studied a prototypical application to really elaborate an application using

these technologies, so that I could design a system exploiting the patterns previously

described, and clash against the issues they want to resolve, meeting the possibility to decide

whether one way or another was the best choice for my application. In some cases, I have

forced a path so that I could try out by myself a pattern or some services.

In this chapter, the prototype will be described and some of the problems faced will be dealt

with closely. These will deal both with technologies and with design.

4.1 Used Book Store: the prototype
UBS is a platform on which users can find their used books they are not interested in anymore

and find the used books they are looking for at advantage prices, without paying anything.

Books can in fact be purchased by paying with an internal virtual currency that flow within the

application moving from an account to another one: on UBS you sell books for user book score

(ubs) that you can use to purchase books from other users. The seller decides the price, that

is, the amount of ubs he values his book, and the other users who want to purchase the book

will compare all the offers, that is, the selling proposals, to choose who to buy from. If a user

is short of ubs, he can purchase some for real money. Each transaction in ubs is taxed, and the

tax is calculated based on the frequency of purchases and sales the interested users perform.

A user can purchase many books at a time, by collecting them in a cart before confirming and

creating the order. Adding an item to the cart, though, doesn’t guarantee the user that nobody

else will be able to complete the purchase before him.

50

Couriers and deliveries are managed by UBS, in fact they collect the books to be shipped where

the seller desires, and they deliver them to the purchasers. Couriers access the system through

a dedicated portal by using their credentials. They get notified by email and notifications when

the system assigns them a delivery. If they do not confirm or refuse the taking charge of it, all

the couriers get notified that there is an unassigned delivery they can take charge of, by

logging in and auto-assigning it to them.

4.2 Bounded Contexts
When discussing Bounded Context pattern, one of the key concepts that was expressed was

the different meaning a word could take when changing context. This is valid on the contrary

too: the same object can be defined and called differently on different contexts.

A remarkable example is the book: the UBS department dealing with the books catalogue can

effectively define it book, meaning what an author wrote; in the department where the users’

offers are dealt with, a book defines exactly the item sold by a user, instead; into the cart, it

will only be an item, because the cart is not interested in what it is, it prefers to only know

how many instances of the same item it contains and at most the price of each, and the same

applies for who works with orders and invoices; couriers will probably define it goods before

packing it, then it will match with the parcel if it is the only item.

Having these concepts clear in mind is strongly advised to be able to comprehend in depth

this pattern, the reasons why it is important to apply it, and be free from any chain that could

make the microservices be logically bond one-another that make the system design and

development harder than the necessary.

With this being said, there is not a rule that makes the division of the system in contexts one

way only.

I personally came out with these contexts:

• Book

▪ Book-Review

• User

• Offer

51

• Cart

• Order

• Shipping

FIGURE 4 UML CLASS DIAGRAM REPRESENTING THE OVERALL CLASSES NEEDED FOR THE PURCHASE PROCESS

4.2.1 Book
This context deals with the catalogue. The key object is the book, defined as what an author,

or more than one, wrote, in a specific edition. Practically, it is the logical item uniquely

identified by an ISBN. And it is exactly the ISBN that in UBS uniquely identifies a book in the

Book context.

UBS is not a www colossus, so at any moment in time it does not contain in its internal

database all the information on all the editions of all the books ever written and put in

commerce. It only stores data about the books that have ever been in sale on it by using

Google Books publicly available APIs (more on this later).

Internally books are stored onto a DynamoDB Table having as primary key the isbn. An

additional index is specified, built on the main author as partition key and isbn as range key.

52

4.2.1.1 Book-Review

Defined as a sub-context of Book, it deals with the reviews the users can write about books.

This context shares with the super one the concept of book. With the books lifecycle as

previously defined, it comes free (and natural) that a book review can exist only if it was ever

put in sale in UBS.

Data is stored on a DynamoDB Table having as partition key the isbn of the book the review

refers to, and an autogenerated uuid (universally unique identifier) as range key. This uuid

could identify a specific review by itself, being universally unique, but an index with such a

composition grants better performances on most of the queries that can be performed on the

table.

4.2.2 User
This context deals with the management of users, both sellers and buyers. In UBS in fact it

does not exist any separation between these two categories: anybody can both sell and buy

books from other users. A user owns some ubs, that is, a credit he can use to purchase books

and he can fill up by selling books or by buying with real world money. The DynamoDB Table

representing a user object is as so defined by only its username, uniquely identifying the user

within the system, and the credit associated to it. Additionally, a reputation score is stored as

attribute: this information is refreshed and recalculated to reflect how good of a user it is. It

increases by correctly using the application and decreases for misbehaviours, and it is used to

properly calculate the tax collected on the transactions involving him.

In this context also information about authentication reside, on a separated Table called

Registrations. Credentials are stored as a set of 3 attributes:

- username

- hashedPassword, that is the result of applying a hashing algorithm to the user’s

password and the

- salt, a random-length (between 8 and 16) randomly generated alphanumeric string

When the user logs in, he communicates his username and his password: the system applies

the same hashing algorithm to the password by using the salt associated to his username, and

whether allows or denies access.

53

4.2.3 Offer
In UBS, an offer is a specific entity put in sale by a user. Here ‘book’ changes meaning, and it

refers to the specific item that is put on sale. An offer may be considered a composed entity

made of the seller identifier, the book (meaning what Book means) identifier and a price.

Additional characteristic can indeed be associated with this entity to increase the information

about the book-item, such as its conditions and some pictures. Whether putting into it also

some information on the location the item will be sold from or not is something to be thought.

Based on the quantity of the same book a user can sell at a time, an uuid could be decided, in

design phase, whether it is needed to uniquely identify the offer or not. Furthermore, keeping

a unique identifier for this entity helps in some way the cross-concerning handling of this

entity: as it will be later expressed, a reference to an offer is useful to be carried around the

system.

In the DynamoDB Table this context’s data is stored, I have decided not to use this just

presented uuid as main partition key: the couple user-uuid compose the primary key for the

table. Partition key and range key suggest DynamoDB how to store data in the storage, and

this choice grants a better efficiency. Querying by uuid by itself is granted by an additional

global index made only of it as hash key.

The table so far defined does not provide any information on the status of an offer, meaning

whether the offer is still on sale, if it has been cancelled or finally sold. Adding an attribute to

the DynamoDB Table’s Item is not a viable solution: using a relational database adding a

column could be considered and put in place without adding consistent inefficiencies, on the

contrary it would have been simplified the overall system’s simplicity. On DynamoDB there is

not a way to query only data having a specific value on an attribute: the most efficient way to

achieve this is to tell the SDK to filter out the results not satisfying some predicate, but all the

items need to be retrieved first, it is a client-side operation. This means consuming throughput

without gaining any advantage by such a data architecture. On the other side, if this Offers

table was small, it should have been considered that maybe the most efficient way was to add

an attribute and use it to perform queries.

For these reasons, I have decided to define an additional DynamoDB Table, SoldOffers, where

Offers’ item is moved to after the sale has been processed. This data definition totally matches

Offers’ one.

54

4.2.4 Cart
A cart is a bond between some items and a user before he completes the purchase. By applying

this definition, the context is defined both in data and in actions that can be executed on it.

Particularly for this context’s data, it does not exist a unique way of storing. The technology

chosen for this purpose, in this case DynamoDB, suggests a direction to be followed but does

nothing more. If a technology that declaratively better perform with one data-structure or

another was chosen, the range of choice would close and the designer would be forced.

Going straight to the point, at least these choices to handle a cart system show themselves:

1. an item representing a cart in its whole

2. an item per item contained into a cart

By using a relational database, only the retrieving of the cart is efficient with the first option,

but there is a great disadvantage in all the other queries. In this case, the technology would

force the choice.

DynamoDB on the other side has advantage with both the models. By storing an item

structured as this

- username

- set of offers’ identifiers

retrieving of the entire cart is immediate, adding or removing an item from a cart is efficient,

checking if a user’s cart contains an item is simple by using the CONTAINS operator in the

condition on the SDK, but it is a client-side operation. And this is the reason why I’ve not

chosen this model. In some occasions, in fact, there might be the need to remove an item

from all the current carts contents. Performing this operation requires a full table scan to

retrieve all the items, then filtered by the SDK to get only the items containing the indicated

item, the removing in memory of the item from the cart, and the updating of the just changed

items on the Table.

By using the second data model, thus putting an item per each user-offer couple, the

execution of such an action is hugely easier: it consists of retrieving the interested items and

deleting them. If DynamoDB allowed to perform deletion on global secondary indexes or on

incomplete primary keys, this action would come almost free. Adding or removing a specific

item from a defined user’s cart are immediate actions. The only downside with respect to the

55

first data model is the retrieving of the cart, that requires a reconstruction of a single object

from many items. This is acceptable, though.

A Carts Table’s item, in UBS, consists of a primary key made of username and Offer’s uuid, and

the quantity of such an item contained in the cart. A global secondary index made of the offer’s

uuid as hash key is defined too, to allow queries where username is not available.

4.2.5 Order
After the user explored the available books, the offers for each book, and maybe by the sellers’

ratings chose some offer and added them to the cart, eventually the cart becomes an order.

So, this context deals with everything that happens between the moment the user decides to

make the purchase and when he obtains the items he desired.

An order is a bond between the buyer user, the seller user, and the items that the transaction

is involving, or it has involved. This logical disjunction suggests the presence of something that

indicates the status of the order. Unlike the Offer, where an additional table stores the offers

not in commerce anymore, for this context’s main data model I have considered sufficient an

attribute representing the status of the order. There is not a catalogue of orders that needs

to be browsed only if they are in a determined status: having all the orders in a unique list

regardless of their status is what users expect.

Exactly like Cart, it must be created a bond with a set of items: unlike Cart, though, the items

associated with an order are immutable. The need to perform queries to alter this set drops,

and so they can be an attribute of a single item that is enough to handle an entire order by

itself.

Summing up, orders are stored into a DynamoDB Table having an automatically generated

uuid as primary key. Two additional global secondary indexes are defined, each having one of

the two interested users in the transaction as hash key and the status as range key.

Furthermore, the total cost and the assigned tracking, if any, are stored.

4.2.6 Shipment
This context deals with all the information managed by the hidden type of users of UBS, that

is, the couriers. In fact, they use the application to declare the assignment of a shipment, the

picking up of a parcel, the final delivery. To make this possible, a separate authentication

56

system is present in UBS and managed into this context. The authentication process matches

the one in User Context.

The data model for this context, though, is quite more complex than those so far described.

Let’s analyse the data flow (it will be the main argument of a following paragraph):

1. an Order gets payed for and is ready to be picked up

2. the system chooses what courier to assign the parcel to and notifies it

3. the assignment can be either confirmed or refused, or no action is taken by the courier

in some time; anyway, a courier picks the parcel up

4. the parcel travels and a tracking system shows step by step the actions on the parcel

5. the parcel arrives at destination

To satisfy such a flow, at least three entities must be defined:

- Assignments

- Shippings

- Trackings

By using these three entities, all the delivery process should be covered.

Assignments deals with the first phase of the process, prior to the final picking up by a courier

of the parcel that must be delivered. Then, a shipping entity is created and whenever the

courier needs to publish some event about the parcel’s travel, an update is pushed into

Trackings.

So DynamoDB will handle for this context a Table for each of these entities defined so far.

Assignments table’s items are identified by using a primary key made of the courier as

partition key and an autogenerated assignment uuid that is actually uniquely identifying the

item without the need to exploit courier. A primary key defined as such, anyway, helps with

queries. The parcel’s id, a status and the timestamp of the moment of the assignments are

stored along. The couple made of the parcel identifier and the courier on most cases only exist

on one item at a time. A courier should not have two assignments for the same parcel. On

some occasions, though, there might be the need to ignore this limit: this is the reason why

an assignment uuid needs to exist. A global secondary index made of status as hash key and

courier as range key is useful to be defined, because it allows some queries to be more

efficient.

57

Shippings’ items are defined by a primary key made of courier as partition key and an

autogenerated uuid, shipping, as range key. Reusing Assignments’ assignment autogenerated

key would have been possible, but it is logically incorrect because there exists no bond

between the two attributes. The identifier of the parcel and a status are stored into the item

too.

Trackings’ items consist of a primary key totally matching Shippings’ one, and a set of updates.

An update is an object made of a timestamp, an optional code identifying a type of update

that the courier handles internally into its system, the location and a message.

When being notified about a pending shipment, couriers need to know some information on

the parcel they are assigned to delivery. This information consists at least of physical

information, that is, the three measures and the weight, the address they must pick up it from

and the address they must deliver it to. Because of the assignment process, putting this

information into Assignments or into Shippings is wrong and unfeasible. For this purpose, a

ParcelInfo DynamoDB Table is defined to contain all this information.

Still for the assignment process, the system needs to persist some information that allow some

rules to be applied to decide what courier to assign the parcel’s delivery to at first. In this case,

I have decided not to build a spaceship, doing something very basic: a circular buffer moving

its index on each assignment. To make it work, the circular buffer needs to be stored,

alongside with the last used index. Some more data and settings could need to be saved, so I

have defined a CouriersDataAndSettings DynamoDB Table having a designer defined dataKey

as partition key and a data object as data.

Into this Context also the demographic information about the couriers resides, consisting of a

unique id being the courier name, a visual name, an email where to send notifications, an

email and a phone number where an UBS system admin can contact them, and a score

representing the courier’s reliability. This data is stored into an appropriate DynamoDB Table,

Couriers.

Finally, a CourierRegistrations DynamoDB Table stores the information needed to handle the

registration and login processes. This table’s items consist of the courier identifier as partition

key, a hashed passphrase and the salt used to hash the original passphrase.

58

4.3 Distributed transactions and saga
In UBS, like in every application divided in contexts, the execution of distributed transactions

is an issue and it must be treated on time. On time means in the design phase through the

integration phase. When designing a context and defining its boundaries, the APIs exposed,

that is, the doors left open for using the data, must be accounted for. This does not mean that

the data model should reflect the APIs exposed, but that it should accommodate them. When

integrating several contexts altogether APIs might not be sufficient to satisfy a dataflow. In

fact, as already expressed several times in the preceding chapters, contexts should not know

each other. A careful reader might have noticed that in the paragraph about Shipping Bounded

Context, there is hardly a reference to the keywords used when describing the preceding

contexts; a new word actually arises, parcel, to identify what is probably the order in Order

Context. The transformation of the order in parcel is one of the flows that will be described in

this paragraph.

As already seen in the previous chapter, AWS makes available various ways to lead a saga,

proposing SNS to dispatch messages, DynamoDB Table’s triggers to fire events when data is

stored, and Step Functions to orchestrate a distributed transaction.

4.3.1 The product availability problem
Some of the problems related to the management of a warehouse exist in UBS too, despite

the word warehouse has not been used in describing UBS, and the reason for this being the

lack of an actual warehouse where items on sale are stored.

On UBS items being on sale are real objects. This means that they are finite, and their

availability is indeed low too. So much low that for each item there is only one instance put

on sale. But before considering the specific, boundary, case, let’s discuss a standard

warehouse problem.

In a system including a Warehouse Context managing the data of a warehouse, the data model

would be something like this:

- item identifier

- quantity

- position

59

Let’s ignore the position and focus on the couple id-quantity. An item’s stock can be refilled

when the provider sends some to be sold, and consumed sale after sale. Starting at 1000, after

a sale, the quantity becomes 999. So far so good. Sale after sale, though, the stock becomes

lower and lower. If the provider does not refill the warehouse, some problems might occur:

what happens when two people try to purchase the last item at approximately the same time?

It depends on how the purchase flow is managed.

Going back to UBS, the problem clearly remains: the total amount of the same item that can

be stocked at some time is not useful data; the problem is when the punctual amount is

singular.

Considering the solutions presented when discussing about distributed transactions and saga,

various solutions show up and they are built around Compensating Transactions pattern.

In a platform where the purchase is not mandatory to be performed right-away, but instead

the item chosen can be added to a cart without any warranty or obligation, this problem is

harder. Let’s consider, in fact, the opposite case, that is, there is no cart. In this case the user

chooses an item and starts the transaction to purchase it. He is giving his word to the system

that he will most probably complete the transaction. The system, in this case, can be designed

so that when this transaction starts, the item is locked and nobody else can make the

purchase. A timeout grants the unlock of the item if the user does not respect his word.

If the system does not include presale as a possibility, then the workflow becomes more

cumbersome. In fact, checking if an item can be purchased is no more feasible first. The

FIGURE 5 BPMN REPRESENTING THE PURCHASE FLOW IN A SYSTEM HAVING NO CART

60

process now involves an additional object, the cart, where at some time some no-more-

purchasable items could be present. To keep the service consistent, when an item’s stock

becomes 0 it should be removed from the carts it resides into.

So now the transaction involves 4 different contexts, and the flow bounces from one to

another. Using an orchestrator and defining a finite state machine makes it easier than sticking

to events.

In this case, the

orchestrator is AWS

Step Functions, and

the visual finite state

machine is the one

provided by the

service after

configuring it via ASL.

A first iteration of the

flow is the one depicted in the image above. In this state machine the service lock first the

offers, then the user’s ubs (credit) and, in case of success, completes the execution by

confirming the previously put locks. If whether the locking of the offers fail because one of

them is already interested in some transactions, or if the locking of the credit fails because it

is not sufficient to complete the purchase, the modifications so far performed are cancelled

and the data is restored.

Though working, the described model does not respect the saga pattern using the

compensating transactions pattern. In fact, it states that first the modification should be

performed, then, in case of failure, reverted: the system should be eventually consistent, the

consistency during the transaction is not important.

FIGURE 6 AWS CONSOLE SHOWING A GRAPHICAL VIEW OF AN AWS STEP

FUNCTIONS WRITTEN IN ASL REPRESENTING UBS'S PURCHASE FLOW

61

Fully applying this pattern to this process would lead to a finite state machine like the one

depicted below, where the readability is really improved and the quantity of data flowing from

and to persistency objects is reduced.

First the cart is confirmed: this is only a renaming of a getting cart operation. No changes are

applied during this task. Then the offers are removed from the store, from all the other carts

containing them and the user’s cart is emptied. These tasks are executed independently in

parallel. Each one of them does not mind the possibility that the other tasks might fail. It is an

optimistic pattern indeed. Depending on the overall result of these tasks, either the process

goes on or starts compensating transactions, one for each just completed ones.

Some attention should be paid on the fact that the compensating transaction should actually

do nothing if the transaction its compensation work on failed. If there was no failure, the finite

state machine moves to a state representing a task moving credit from the purchaser to the

seller. If it fails, the same previously described compensating transactions will take place and

FIGURE 7 AWS CONSOLE SHOWING A GRAPHICAL VIEW OF AN AWS STEP FUNCTIONS WRITTEN IN ASL

REPRESENTING AN HYPOTHETICAL UBS'S PURCHASE FLOW FULLY COMPLIANT TO COMPENSATING

TRANSACTION PATTERN

62

restore the system to the previous consistent state. Otherwise, the system reaches a new

consistent state.

MoveCredits task can be internally represented by a transaction performing two separate

actions:

1. update the purchaser’s credit by decreasing it by the amount to be paid

2. update the seller’s credit by increasing it by the same amount, minus the tax

Increasing the seller’s credit has no points of failure, there is not any constraint to be satisfied

to keep data consistent. On the opposite, decreasing the purchaser’s credit can only be

performed if it is greater than the amount to be decreased, otherwise it will fail. In this case

DynamoDB API comes to help, because they allow conditional updates to be performed,

helping in reducing concurrent modifications. In the very unlikely event that two different

purchases are performed by the same user and that the credit only allows for one purchase

to be performed, by using conditional updates one of the two purchases will fail. Furthermore,

by failing in this atomic way there is no need, in this specific case, to apply any compensating

transaction because the data has not changed.

4.3.2 Shipment transactions
In UBS users who want to sell or purchase books do not need to worry about making

arrangements with the counterpart, nor going to a post office when they need to send the

books they sold: managing shipments is up to UBS itself.

Because of this, UBS needs to automatically assign jobs to couriers, providing them the

required information for them to arrange the delivery. As mentioned in the Shipment

Bounded Context, UBS’s algorithm for doing this is very simple because it is based on a circular

buffer. In that same paragraph, it was underlined how the workflow representing the

shipment process needs various entities to be represented and persisted. But it actually

interests many contexts too, making most of the transactions regarding Shipment cross-

concern, and this makes it interesting to be studied in deep.

First, the assignment of the parcel starts in the Order context: it is in fact the completion of

the purchase, thus of the order, that defines one or more parcel.

63

UBS is a distributed bookstore not storing books into a warehouse but at the sellers’ houses.

This means that when a user purchases some books, they most probably will be delivered

from different places: an order will consist of many shipments, and so of many parcels.

After the payment, the order is confirmed, and many parcels defined. For each of them, an

event gets published, leaving Order context. For this case, I have preferred to exploit AWS SNS

rather than coordinating the transaction with an orchestrator: there is not any saga to apply,

it is the perfect scenario where to apply Pub/Sub pattern.

Then, the focus moves to the Shipment context: the parcel needs to be assigned to a courier.

It has been already stated that the assignation of a parcel to a courier is not a definitive action,

as the courier can refuse or be late in accepting it. Because of this, a flow is defined:

1. The system automatically generates the first assignation

2. If the courier refuses it, or if a timeout expires

a. All the other couriers get notified of a pending assignment

b. They are given the possibility to assign it to themselves

3. The parcel is assigned to a courier

Transposed as BPMN, the need of an orchestration results glaring.

Nevertheless, the orchestration only handles part of this, yet partial, flow. In fact, the

interaction with the courier is asynchronous: an AWS Step Functions state machine should not

wait, and cannot normally wait, for the user to interact with the system. The only state

FIGURE 8 BPMN REPRESENTING UBS' SHIPPING ASSIGNMENT PROCESS

64

interested in doing this is the Timer task handling the timeout, but it is a necessary exception

and it does not directly do that.

The orchestrated part of the total flow helps

solving the problem of the timeout. The other

solutions were to either not including a timeout,

thus having the system only let a courier accept

or refuse, or not pre-assigning a courier to the

parcel. With the first solution, if a courier ignored

the notification telling them that a pending

assignment was waiting for their acceptance,

neither a human-acceptable latency nor the

certainty that the parcel would be ever

dispatched are granted. The second solution is

acceptable but can cause starvation in some

couriers that might be not fast enough to accept

any job.

Unlike the purchase flow where a finite state

machine is defined to exploit a saga distributed transaction, this state machine does not

contain any distributed transaction at all: it is only a different usage for the same technologies.

After the shipment is assigned, the actual delivery needs to be performed. The Shipping

Context’s API allow the courier to declare some updates that compose the tracking system. A

user might desire to be notified for each of these updates. For this to be possible some

scenarios can be considered:

- When inserting an update into DynamoDB, it is contextually pushed to SNS for client

notifications and to SES for emails

- The generation of the notifications is separated from the insertion of the data

The first is very simple to accomplish and quite straightforward.

The second is useless and carries no real advantage with it, but still it is interesting to be

watched closer. In fact, to do it three different AWS components need to be created. The flow

should be this:

FIGURE 9 AWS CONSOLE SHOWING A GRAPHICAL

VIEW OF AN AWS STEP FUNCTIONS WRITTEN IN

ASL REPRESENTING UBS'S SHIPPING ASSIGNMENT

PROCESS

65

1. The courier causes an insertion into DynamoDB through some APIs

2. DynamoDB triggers by event sourcing the invocation of a Lambda Function

3. The Lambda Function dispatches notifications to the interested user(s) by using SNS

and SES

The only real usage for this approach is in the case when the APIs storing into DynamoDB the

updates cannot be updated or integrated with SNS and SES. In this unlikely case, the strength

of the Microservices architecture intervene and some new characteristic can be appended to

the system.

In the end, the courier deliveries the parcel, and the shipment is completed. Apart from

generating the required notifications, and this is equal to the preceding example, the order

that the parcel came from needs to be updated because also it is now completed.

The usage of Step Functions to put in place a finite state machine is out of the table here too,

the time interval such a transaction spans is too high. So, both because it’s nice to close the

circle as it started and because it is the smartest thing to do, an SNS event published by

Shipment can be used to notify to Order the completion of the order.

4.4 Considerations on API
In the preceding paragraph, and particularly in the example on the separation of responsibility

between the component updating the data and the one generating notifications, I intendedly

omitted any reference to the interface interposed between the user and the data

transformation. And by this I don’t mean the UI the user interacted with, but the layer just

below that.

Despite the fact that, starting from the 1st chapter, the API Gateway has been indicated like

the component having the responsibility of putting in communication the external world with

the business core, and that an AWS API Gateway service exists keeping the same name, it is

not the only choice available. GraphQL exists and AWS AppSync service has been created to

implement it, and it is an exceptionally good alternative.

Between the two alternatives, there is not a precise winner, but some distinctions to help in

deciding whether to use one or another can be made: as always, the result tells that the choice

is situational.

66

RESTful APIs have now been on top of the discussion table for several years, and they have

become the de facto standard for designing APIs. Integrating services among them is

becoming, maybe even thanks to the microservices approach spreading, a daily matter, even

in the industry for making machines communicate with MES and ERP software.

4.4.1 AWS AppSync: the anti-REST
GraphQL is the only real alternative for building as structured and human readable APIs as

with the REST pattern but offers some advantage that make it preferable in some occasions.

In fact, it allows the client to choose, at the request moment, what data it is interested to, and

only of it, if available, the response will be made. This clearly makes the decision of which

approach to follow pending to GraphQL in case when the client should reduce as most as

possible the bandwidth usage: mobile phones are the main use-case for this technology.

AppSync provides a GraphQL end-point easily configurable specially to communicate with

AWS services by using the default templates. Matching data with DynamoDB table is a matter

of minutes.

Let’s consider the previously discussed case when some notifications have to be fired when

the courier insert some updates on a shipment. It had been proposed a way to separate the

responsible for storing the updates into the persistency objects, DynamoDB, from the

component firing the notifications, and it was said that in most cases this approach was not

necessary. This was said having in mind an API Gateway based situation: already having a

Lambda function being invoked for storing the data, there is little sense in creating and

invoking one more for pushing notifications.

If the APIs were provided by a GraphQL application instead, following this approach would

come in handy and be perfectly legit and the best. In fact, customizing the GraphQL mutation

to also fire notifications would be easy if Apollo or an equivalent GraphQL gateway was used

(it would only consist on changing the code run to handle the mutation), but on AppSync it is

cumbersome and maybe almost impossible: the source for a query or a mutation is not

writable. AppSync in fact only allows for linking a query to an AWS Service. The only way to do

this would be by writing a Lambda function, thus losing most of the advantages of AppSync.

So, the choice of the technology providing the APIs leads to some choices in the design phase.

In this case, the smartest solution is to attach to the DynamoDB table the shipment’s tracking

67

updates are written a Lambda function invoked on each write operation. This Lambda function

only handles the generation and the pushing of the required notifications.

In terms of cost, in this example the overall cost would be approximately the same of the

opposite approach consisting in API Gateway invoking a Lambda that deals with the updating

of the DynamoDB Table and the generation of the notifications, because in both cases there

is the invocation of a single Lambda function and the writing into the storage, while both

AppSync and API Gateway are free. The solutions staying in the middle between these two are

more expensive because they involve the invocation of multiple Lambda functions instead of

one.

4.4.2 AWS API Gateway: the classic choice
API Gateway is a pattern that is surely not born with microservices. In a monolith, for example

on a Java Spring application running on a Tomcat, the methods mapped to various HTTP entry-

points compose an API Gateway themselves, dispatching the outer requests to internal

function calls.

On AWS, using API Gateway service allows for defining fine-grained APIs by setting resource

by resource, method by method, either the Lambda function or the external HTTP destination

or an internal service to be called.

Linking a method to a Lambda function is the standard choice but linking it to an AWS service

is very interesting and allows for various scenarios.

In fact, some GraphQL-like behaviours can be obtained by exploiting this possibility: it can be

mapped an HTTP call to check the authentication of the caller, then verify the data coming

along with the call, and finally write the data passed, possibly transformed, directly to

DynamoDB. All of this without even defining a Lambda Function. For most of the methods,

this approach can be followed, greatly reducing the quantity of Lambda functions composing

the system: most of what APIs do can be reduced to the CRUD actions, without any logic

behind apart from checking authorization and data consistency. And in cases where this is not

enough for handling the business logic, integration with a Lambda function is simple to

achieve. When there is the need to start an orchestration as the executor of an incoming

request, an integration with a Step Functions’ state machine can be exploited.

68

4.4.3 The AppSync auth problem
When defining the entry-points to the application, they can be categorized: if applying a REST

approach, first the resources need to be identified, then the methods for that resource, and

finally it must be defined whether each method is public, private or requires authentication.

In a standard GraphQL usage the authentication should be demanded to the web-server

hosting it. It is a bad practice to demand the authentication to GraphQL because it must be

managed by each query or mutation.

On AppSync it is about the same. The provisioned possibility consists on authenticating each

query, by using an annotation-like system, that makes the query be accessible only if the

request come from a client that is currently authenticated via IAM and matches specific IAM

prerequisites, e.g. is into a Users’ Pool.

If Cognito is not viable, or a custom authentication is desired, the configuration becomes

trickier. AWS documentation presents this possibility but does not explore it in depth, but still

a way can be found.

I explored this approach by using a Lambda function helping in the authorization phase.

Each entity in AppSync can be paired with an AWS Service set as resolver, spacing between

Lambda Function, DynamoDB or ElasticSearch. Having the possibility to set a resolver per

entity, when composing a structured entity many resolvers are called, both on cascade and in

parallel, based on the entity’s structure and on the usage of query or mutation.

How the auth can be achieved by using Lambda is not a one-way only, in fact there are two

possibilities:

A. Using Lambda Function to authorize, authenticate and do the job

B. Let Lambda Function only deal with the auth phase

Both approaches have their advantages, moving the complexity from one-side to another. A

lambda that handles the entire process is obviously more complex and the structure of the

query of GraphQL calling results flatter and easier to comprehend. On the contrary, having a

lambda function to only deal with authorization and authentication moves the complexity to

the GraphQL schema.

Let’s take as an example the Book-Review Context. In UBS its API are managed by an AppSync

instance. Here, only reading reviews is publicly accessible, while the other three operations of

the CRUD have restricted access.

69

A BookReview object is defined, containing all the required information.

Following the first approach, the query called to create a review has as resolver a Lambda

Function that:

1. Checks if the request comes with an authorization token

2. If it does, checks the validity of the token, otherwise returns forbidden status

3. Extrapolates the user associated with the token, to authenticate the data

4. Save data to DynamoDB

The query only passes through the request, injecting the HTTP Header containing the

authorization token, and translates the function’s answer to a BookReview object. The

configuration is quite straight-forward, but the Lambda function is bigger, both because it has

to deal with the saving in the data to DynamoDB accordingly to the request, and because

possibly it is created a single Lambda function for resolving many different AppSync queries:

the alternative would be to create a Lambda function per query, but there would be too much

of a repetition of the same code handling the authentication, that would lead to unsustainable

maintenance too; in fact, if the authorization mechanism changed, each and every lambda

function should be updated to meet the new requirements; furthermore, having a single

Lambda function managing many similar requests helps with the system’s readability.

When creating another authenticated entry-point applying the same approach, all that

changes is the 4th point of the function’s procedure. The second approach is based on this

idea, and so the 4th point is moved out of what the functions does. The configuration of the

query becomes harder: aside of BookReview, an additional AuthCreateBookReview object

should be defined, made of the same data that BookReview is made of, plus an additional

BookReview. To this inner BookReview it is associated a DynamoDB resolver that deals with

the data insertion.

The query is configured to return an AuthCreateBookReview instance, and to this entity the

Lambda function is associated as resolver. In the mapping template, it is injected as before

the HTTP Header containing the authentication token.

How does it work? GraphQL calls the resolvers on cascade from the most outer to the most

inner. When a resolver throws an Exception, the cascade stops. In this case, the resolver that

fires the Lambda function, when translating the function’s answer back to GraphQL, can throw

70

an unauthenticated Exception, avoiding the calling of the inner resolver inserting the review

to DynamoDB.

4.4.4 Public Cart API – Part 1
One of the strong points in the microservices architecture and the global movement around

it, is the fact that a service’s APIs, after becoming stable and working, sometimes become

public and reusable by other developers and services.

Having this in mind, I have made some arrangements to UBS Cart API to make it a service

publicly available and reusable by third parties. Supporting this choice, various reasons from

both the context itself and the microservices patterns show up:

- Cart is a Context totally independent from the others

- Cart only knows that there is a binding between an entity (the user) and various other

entities (the content), each with a different multiplicity

- Cart’s data does not depend on events but exclusively on API calls

This last point is very important because otherwise the coupling would not be enough loose

to easily guarantee the possibility to make a service out of this context.

For this purpose, some changes to the data model should be applied: data is still stored into a

single DynamoDB Table, but an additional attribute indicates the context the cart is valid into.

Defining the 3rd party user as domain, and keeping the rest of the model, what differ are the

primary key, the indexes and the access to the data itself. Using the user identifier as partition

key is not anymore viable because it is not unique across the various domains.

Because of how a cart is represented composing many items in the table, data is now

partitioned by using a composite key uniquely identifying a cart: it is made of a composition

of the domain and the identifier of the user inside that domain.

Product remains a range key as it was before, ranging into a domain representing a single

user’s cart.

Cart requires in its API a method to act on all carts containing an item, keeping in mind that

product is not unique among the entire service but only inside a domain too: this means that

an index needs to be created, having as hash key a composite key made of the product and

the domain; additionally, the user’s identifier can be set as range key.

71

To make the APIs more complete, it should manage not only one copy only products but stock

keeping unit (SKU) too. This forces the APIs to manage customization, storing and providing

methods for the settings of each domain. Furthermore, even though a SKU with a provision of

one can be considered a single copy product, the APIs provide fine-grained settings for each

product.

Finally, the authorization phase changes too. It is no more the customer who executes query

but an external service. This 3rd party is responsible for authorizing the user both internally

and on UBS Cart: the service authorizes, by using its private credentials, one of its users. The

jwt token Cart provides at login contains the domain as a claim and the user as the subject.

4.5 Considerations on CloudFormation
CloudFormation is a very powerful tool that can automate the process of the creation of a

group of AWS Services (resources), a stack, providing the tools to create templates that can

be customized when deployed.

Using it badly is easy, and I too have stepped against a wrong usage. In fact, at first, I have

tried to define the entire platform supporting UBS into a single configuration template. This is

wrong for various reasons:

- The readability of a file long more than 3000 lines is very low

- Such a single file leads to a monolith-oriented thinking, but UBS runs on a

microservices architecture

- If CloudFormation is going to be the main delivery tool, creating multiple stacks helps

with the continuous delivery because only the interested services are updated

- CloudFormation comes with a graphic tool both representing and usable for

configuring the template; making a huge template makes the resulting graph totally

incomprehensible (cfr. image below)

72

A more proper usage of this tool consists on applying the design patterns of microservices: it

should be applied a division both on Bounded Contexts and on layer, so a stack should be

created per layer per Bounded Context.

4.5.1 Public Cart API – Part 2
In the previous part of this paragraph, (cf. Public Cart API – Part 1), it has been proposed a way

to make UBS’s Cart API public and usable by 3rd party services. All the service’s data lived

together into a single DynamoDB Table and avoiding conflicts is based on the usage of some

composite keys built on the domain name, the unique service’s identifier.

It is a nice approach and it works, but when the services using these API become many, it can

become slower and a little confusing. Furthermore, if these APIs have a cost for the service,

with this approach it is cumbersome to identify the usage cost, unless registering every single

API call into a registry.

FIGURE 10 AWS CONSOLE SHOWING A GRAPHICAL VIEW OF AN A CLOUDFORMATION TEMPLATE REPRESENTING

A CONFUSING AND INCOMPREHENSIBLE, YET PARTIAL, GRAPH OF AWS SERVICES AND THEIR DEPENDENCY TO

DEPLOY UBS'S ARCHITECTURE

73

An interesting alternative is provided by CloudFormation, because it allows the automation of

the creation of stacks.

For these APIs, a stack built on the resources of the private Cart API can be identified:

- DynamoDB Table containing the carts

- DynamoDB Table containing the domain settings, i.e. if the products should be

managed as SKU or as single entities

- DynamoDB Table possibly containing each product’s settings

- An API Gateway providing APIs for both private methods (e.g. access to settings) and

authenticated methods (adding items, retrieving cart, authentication)

- All the Lambda functions involved

- IAM roles needed by the AWS Resources for interacting with each-other

FIGURE 11 AWS CONSOLE SHOWING A GRAPHICAL VIEW OF THE CLOUDFORMATION TEMPLATE DESCRIBING AND

PROVISIONING ALL THE AWS COMPONENTS NEEDED TO DEPLOY THE ARCHITECTURE PROVIDING A SUBSCRIBED

DOMAIN'S CART APIS

The configuration template containing the information needed by CloudFormation to create

this stack automatically is stored into an appropriate AWS S3 bucket. In order to invoke the

generation of the stack, an explicit CreateStack command must be prompted by using

CloudFormation APIs. Because of this, UBS publishes and manages some API to register the

domain to obtain some Cart APIs: when a new domain is registered, the Lambda function that

handles the signup contextually invokes the creation of a stack, customized for the domain; in

fact, the created stacks, right after the creation, only differ for their resources’ names,

74

customized by using the domain name passed as parameter to the template. The stack

identifier, StackId, returned by the asynchronous call to CreateStack is associated with the

domain.

FIGURE 12 BPMN REPRESENTING THE PROCESS OF THE AUTOMATIC CREATION OF A DOMAIN'S CART API BY

REGISTERING TO UBS AND USING CLOUDFORMATION TEMPLATE

Then, when the creation of the stack finishes, either because it completes or because it fails,

an event is published to an SNS topic (that has been set to be notified for the stack’s creation

events) and a Lambda function is invoked to terminate the association between the domain

and the stack, and to send the appropriate email notifications.

The main problem with this approach, that was present in the previously presented one too,

is the lack of integration between the service’s authentication and the Cart APIs. In fact, to be

able to interact with these APIs, a client needs to authenticate to them. Like with the other

approach, signing up and logging in can be integrated with the service’s one, so that when a

user logs in the service, the service logs him in the Cart APIs too. Then, based on how the APIs

75

are integrated into the service, either it caches the Cart authentication token or returns it to

the client. In fact, if the client directly interacts with the Cart, it needs to provide the

authentication token obtained during the authentication process; otherwise, if the service

shows some APIs to handle the cart only acting as a proxy to the Cart APIs, it can either inject

into the request the token associated with the client or make it passthrough if it had been

previously provided to the client.

When the client

needs to interact

with the Cart API,

considering the

service showing

proxy APIs, if the

service is the one

who owns the

authentication

token, it needs to

inject it on all the

requests.

This approach allows for a fine-grained cost analysis and so UBS can correctly invoice by usage

the 3rd party services that make use of CART APIs.

4.6 UBS API
UBS defines some APIs to allow the users access the methods of the system. Most of them are

RESTful APIs. Only reviews related APIs are built on GraphQL applications running on AWS

AppSync.

4.6.1 RESTful APIs
For the RESTful APIs, a resource per Bounded Context has been defined. Shipments represents

an exception, in fact part of its APIs is exposed into a sub-resource of the Orders resource.

FIGURE 13 BPMN REPRESENTING THE PROCESS OF LOG-IN TO CART API FOR A

SUBSCRIBED DOMAIN'S USER

76

The schema looks like this:

 /books
 GET
 /carts
 DELETE
 GET
 POST
 PUT
 /domain-settings
 PATCH
 PUT
 /login
 POST
 /registration
 POST
 /offers
 DELETE
 GET
 POST
 PUT
 /orders
 GET
 /shipments
 GET
 /assignments
 DELETE
 GET
 POST
 PUT
 /couriers
 PUT
 /login
 POST
 /registration
 POST
 /users
 GET
 /login
 POST
 /registration
 POST

4.6.1.1 Book

To make Book context's store only useful information, that is, only on books put on sale, the

database needs to be internally populated when a user wants to sell a book. When a new offer

is being created, UBS takes care of inserting into the database information on the book being

put on sale, if missing. This means that the creation of an item must not be a publicly available

action: there is nobody that can create a book, meaning putting information of a book onto

the system, nor update it or delete it. The only public action is read.

77

So, APIs of this context only consist of a read method. Being Book’s APIs made available

through HTTP RESTful protocol, a /books resource exists where the only exposed method is

GET, requiring an isbn query string parameter by which the book whose information the

requester wants to obtain specify it.

4.6.1.2 Cart

The API exposed on the /carts resource refer to the Public Cart API described previously

described (cf. Public Cart API – Part 1).

Adding an item to a cart and removing it are authorized methods mapped respectively to the

PUT and DELETE HTTP methods, requiring a product identifier. To retrieve the current content

of the cart, an authorized call to GET method needs to be done, without the need to pass any

query string parameter.

Sub-resources /domain-settings, /login and /registration handle all the rest of the Cart API,

already discussed in depth.

4.6.1.3 Offer

To manage the users’ offers, API have been designed and exposed on the /offers HTTP end-

point. This is a straight-forward CRUD REST resource, where the creation is assigned to the

POST method, the read to the GET method, the update to the PUT method and the deletion

to the DELETE method. The offer identifier needs to be passed in order to apply any change or

retrieve the offer, and it is automatically assigned on the creation.

4.6.1.4 Order

The order’s lifecycle is not managed at all by the user. By using the APIs an order can only be

read by making a GET HTTP request to /orders: in fact, it is created automatically by the

system, updated through some actions internal to the service, and never deleted.

4.6.1.5 Shipment

On the /shipments HTTP resource they are exposed the methods that allow both the couriers

and the customers to exchange information about the orders’ shipments. The only exposed

78

method on the resource is GET: an HTTP call to this end-point requires the shipment identifier

and returns all the information, including the tracking updates, relative to that shipment.

Then, various sub-resources are contained into /shipments:

- /assignments, where authorized REST CRUD requests can be made by the courier to

manage the pending and assigned assignments

- /couriers, where a courier can update its own information by making a PUT request

- /login and /registration to signup and login by using POST requests

4.6.1.6 User

At the actual state of UBS, there is no need for a user to know information on other users. So,

there is no API that exposes it: this context’s resource, /users, only provides a user information

on his credit through HTTP GET and allows a user to sign up and log in by making POST requests

to sub-resources /login and /registration.

4.7 The projects’ structures
There are a couple structures worth describing in an AWS serverless project: the AWS

components running the service, and the code running on the Lambda functions.

On AWS, UBS is made of

• 52 Lambda Functions

• 26 IAM Roles

• 15 DynamoDB Table

• 5 SNS Topics

• 3 Step Functions

• 2 CloudFormation templates

• 1 S3 Bucket

• 1 AppSync API

• 1 SES domain

• 1 API Gateway, consisting of 16 resources, 25 methods, 3 authorizers and 1 stage

79

The 52 Lambda functions (ordered by sanitized name) are divided like this:

Sanitized name Env. BOOK CART OFFER ORDER SHIPMENT USER

AcceptAssignment Node.js 8.10

AddToCart Java 8

AssignParcelToCourier Node.js 8.10

AssignShippingTrackingOrder Java 8

AuthorizeBookReviews Node.js 8.10

CancelPendingOrder Java 8

CartCheckToken Java 8

CartLogIn Java 8

CartSignUp Java 8

CheckAndLockCredit Java 8

CheckAndLockOffers Java 8

CheckToken Java 8

ChooseCourierForParcel Node.js 8.10

CloseBecauseDeliveredOrder Java 8

CompleteUserRegistration Java 8

ConfirmCart Java 8

ConfirmLockOffers Java 8

ConfirmSpentCredit Java 8

CourierCheckToken Node.js 8.10

CourierLogIn Node.js 8.10

CourierSignUp Node.js 8.10

CreateBook Java 8

CreateOffer Java 8

CreatePendingOrder Java 8

EmptyUserCart Java 8

FillCredit Java 8

GetAssignmentStatus Node.js 8.10

GetBook Java 8

GetCart Java 8

GetCredit Java 8

GetOffers Java 8

GetOrder Java 8

GetPendingAssignments Node.js 8.10

GetRunningShippings Node.js 8.10

GetShippingTracking Node.js 8.10

InvokeAssignmentStep Node.js 8.10

LogIn Java 8

NewCourierRegistered Node.js 8.10

NotifyAllCouriersForAssignment Node.js 8.10

NotifyAssignment Node.js 8.10

PutBook Java 8

RefuseAssignment Node.js 8.10

RemoveFromCart Java 8

RemoveOffersFromCarts Java 8

RequestConfirmationOrder Java 8

SignUp Java 8

UnlockCredit Java 8

UnlockOffers Java 8

UpdateCartDomainProductSettings Java 8

UpdateCartDomainSettings Java 8

UpdateCourierInfo Node.js 8.10

UpdateTracking Node.js 8.10

80

Most of the functions are written in Java; Courier Context functions are written in Node.js,

instead. It is also obviously possible to use several languages to write functions belonging to

the same context.

For the functions written Java a single Java gradle project exists. Nevertheless, because of the

nature of the architecture, it is actually divided in modules, consisting of a general utils module

and an additional module per context.

To help with the deployment, each of these gradle modules contain some gradle tasks that

allow the creation of a deployment package (a zip file containing all the classes), its upload on

Amazon S3 and finally the update of the Lambda functions of the context (rf. Appendix).

4.8 Java vs Node.js: Log In functions comparison
In both languages I have written a function to make the user log in. They are more or less

equivalent in what they do, so it is nice to compare their performances.

The test consists on the invocation of the function to log in the same user several times. To

test it in depth, various configurations have been considered:

- 300 times using 1 thread

- 300 times using 5 parallel threads

- 300 times using 10 parallel threads

- 300 times using 15 parallel threads

- 300 times using 20 parallel threads

Each test interleaved by 15 minutes. Then, to test the cold start deeper (more on this later), I

have reduced the interval between groups of calls by 2 minutes at a time starting from 12, and

invoking:

- 60 times using 1 thread

- 60 times using 5 threads

- 60 times using 10 threads

- 60 times using 15 threads

- 60 times using 20 threads

To avoid having the tests being influenced by API Gateway, I used AWS command line interface

to invoke functions, by using a Java Application for automation.

81

The first thing that can be noticed is how faster node.js is in processing the invocation under

any circumstances: the overall average invocation’s durations in my tests where 409.11ms for

Java, 28.75ms for node.js.

FIGURE 14 AVERAGE AWS LAMBDA INVOCATIONS' DURATION WITH JAVA (BLUE) AND NODE.JS (ORANGE)

This chart compares the average duration of invocations by minute. Zooming in on Y axis, this

is the result.

FIGURE 15 AVERAGE AWS LAMBDA INVOCATIONS' DURATION WITH JAVA (BLUE) AND NODE.JS (ORANGE)

CAPPED TO 130MS

82

In these two charts it can be noticed that there are apparently strange spikes in the Java

environment and analysing the data they can be linked to the first invocations of each group.

When reducing the domain, for example considering only the first group of tests (300

invocations in a row), that spans about 2 minutes for both the environments, it is clearer: the

first Java invocations are very slow respect to the subsequent ones. Also Node.js instances are

slower at first and then much faster, but the ratio between the duration times is not

comparable.

FIGURE 16 DISTRIBUTION OF THE DURATION TIME BY SECOND IN NODE.JS – 300 REQUESTS ON 1 THREAD

FIGURE 17 DISTRIBUTION OF THE DURATION TIME BY SECOND IN JAVA - 300 REQUESTS ON 1 THREAD

83

FIGURE 18 AVERAGE (GREEN), MINIMUM(BLUE) AND MAXIMUM(ORANGE) AWS LAMBDA INVOCATIONS'
DURATION WITH JAVA FOR 300 LOG-IN

FIGURE 19 AVERAGE (GREEN), MINIMUM(BLUE) AND MAXIMUM(ORANGE) AWS LAMBDA INVOCATIONS'
DURATION WITH NODE.JS FOR 300 LOG-IN

Ignoring the first seconds, the two environments behave comparably, even though Node.js

keeps looking much faster.

84

FIGURE 20 AVERAGE AWS LAMBDA INVOCATIONS' DURATION WITH JAVA (BLUE) AND NODE.JS

(ORANGE) WITHOUT COLD START

The problem, in fact, is cold start, that is, the time that the environment the function runs on

needs to prepare.

Various experiments I have read (16, 27, 38) and the ones I have personally run demonstrate

how the cold start of a Lambda function depends mostly on:

- Language

- Resources assigned to the function

- Idle time

It is hypothesized that it also depends on the AWS server and the time of day.

So, when a Lambda function has been idle for some time, the next invocation will suffer a lag

that will make it slower. What also happens is that if the Lambda function is allowed to run in

many parallel instances, each of them will experience this lag.

The following two charts show how the total and the maximum duration of the executions

changes varying the number of parallel requests and the idle time before the first call.

6 https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-
bf715d3b810
7 https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-
a15e26d12c76
8 https://hackernoon.com/im-afraid-you-re-thinking-about-aws-lambda-cold-starts-all-wrong-7d907f278a4f

85

These tests were performed grouping the requests in 15 groups consisting of 60 calls, varying

the number of parallel requests from 1 to 20 and decreasing the idle time by 2 minutes per

group, starting from 12.

FIGURE 21 TOTAL AWS LAMBDA INVOCATIONS' DURATION WITH JAVA FOR 900 LOG-IN REQUESTS DIVIDED IN

15 GROUPS VARYING THE PARALLEL REQUESTS COUNT AND THE WAIT TIME BETWEEN REQUESTS

As the wait-time between the calls, that is, the time Lambda function spends idle, decreases

to what in my experiments was 2 minutes, the need for a cold start disappeared and probably

the same JVM that was previously running some instances was reused.

FIGURE 22 MAXIMUM AWS LAMBDA INVOCATIONS' DURATION WITH JAVA FOR 900 LOG-IN REQUESTS DIVIDED

IN 15 GROUPS VARYING THE PARALLEL REQUESTS COUNT AND THE WAIT TIME BETWEEN REQUESTS

86

4.8.1 Considerations
Considering only the results of these tests, the huge difference in cold start and the relevant

time execution difference, the natural conclusion should be that Node.js is the absolute

winner in the comparison and that there is no point in considering Java for writing functions.

In fact, even though the latency could be considered a non-problem, on AWS time and cost

walk together, and considering the increasing of the resources associated to a Lambda

function is not a solution, because the cost increases with the resources too.

On the other hand, the differences in the language must be considered. Java has years of

existence on its back, there are tons of frameworks and libraries and, leaving cold starts aside,

it is consistent in performances and reliable.

Finally, personal preferences should be accounted for: I’m a long-time Java developer and it

is easier for me to write in Java. Coming from Java you need to get used to JavaScript strange

behaviours, the natural callback system and the total absence of typing.

87

5 Conclusions

In my opinion, Software engineering is about the design and not the code, and this is the

reason why there is no code in all the preceding chapters and sections. The code can be found

in the appendix after this chapter.

Nevertheless, the project this work accompanies can be effectively thought to as a made of

two parts: design and code.

The development process model chosen to be used on an application built following a

serverless architecture can definitely be the V-model.

The design part lives on several layers of the V-model, as it can be seen in this work, but also

on different levels of detail of the architecture:

- First, it needs to be designed a separation of contexts inside the business process

- Each process inside the business needs to be associated with a flow of data that must

be defined and designed, either living into a single Bounded Context or being cross-

concern

- Each data flow can be designed in several ways and it is usually made of smaller single

components

- For each component, the platform(s) the application is being developed on can grant

a set of choices to choose from

Then it’s time for the coding phase and the choices it comes with: the first choice stands on

the line between the two phases, that is, the language to use to develop the function. Watch

out, though: the development of the function as the final step is not always true, but only for

the minor part of the final components, that are actually Lambda functions or their

counterparts on platforms other than AWS. It needs to be highlighted and underlined that

serverless is not only FaaS. As it has been proven during this work, for most of the business

process, especially when no particular rules apply, properly configuring data access, exploiting

88

the provisioned authentication system and correctly writing the mapping templates between

the components, can be enough to cover most of the application.

The design phase, in any case, also permeates the code phase. Coding without a clear design

in mind, leaving behind, ignored, the design patterns that rule the development nowadays,

can only lead to a bad work.

Anyway, these two parts make up to the most part of the job that needs to be done to build

an application based on a serverless architecture, and they mostly deal with software, and in

particular with software whose specific purpose is to run the business process. All the lower

parts consisting of designing and developing the infrastructure, whether hardware or

software, is left behind. This leads to a reduction in the team size, so much consistent that the

prototypical application for this work, as incomplete, has been built by a single person. But

this also leads to much more flexibility, and any cost due to over-provision of the hardware is

totally removed.

About the cost, some estimations should be made. They can be divided in two parts: service

provisioning costs and service development cost. Developing your own hardware and

software infrastructure for provisioning your service faces lowly varying costs that hardly

match the real need of the system, in fact some calculations should be made for deciding the

hardware to be bought: it is not convenient to follow a trial and error approach for increasing

the resources associated to the system as they are no (more) sufficient to provide the service,

but on the same time over-provisioning should be avoided. Service provisioning costs do not

stop here, but also deal with maintaining the infrastructure both up-and-running and working.

On the other side, with a serverless approach, excluding a hardly used self-provisioned Apache

OpenWhisk, the costs only deal with the work that the service performs, mostly. To be fair,

an AWS hosted serverless application also faces some costs that are not very intuitive: I’m

talking about DynamoDB costs related to the reserved capacity applied on each table and on

each additional global secondary index, that if not properly tweaked and thought to in

advance can cause useless high costs. Additionally, DynamoDB and Lambda functions’

invocations might apparently look like they were the only costs of the entire application,

leaving aside for a moment the additional data storage on S3, that is nowadays used regardless

of the self-provisioned or AWS-hosted architecture. Truth is, API Gateway and AppSync come

with a price that depends on the data coming out and on the amount of API invocations. The

only free components are CloudFormation, IAM and Cognito, that do nothing alone but are

89

useful to integrate with the other components. Using Step Functions for orchestrating

functions comes with a price too, but it is quite limited, and the appropriate usage of this AWS

component leads to a low cost. SNS and SES for dispatching notifications or events comes with

a price too, but it is quite easy not to exceed the free tier.

About the development costs, it is a declared goal for serverless architecture to cut its costs

too, by allowing agile approach and continuous delivery. Each function can be independently

deployed and tested and the problems isolated. On the other hand, the size of the codebase

to maintain could increase remarkably if the design has some flaws.

For what concerns the coding phase, first of all it needs to be underlined that I have been a

professional Java developer for some years before starting this work and before approaching

JavaScript and Node.js. Nevertheless, I have hardly found a reason why not to advice to use

Node.js over Java. It is more efficient in random calls; the web is full of well done tools and

libraries; it does not need to be compiled, so the deployment during the final test phases is

way quicker. What I liked most about Java during the development of the project is Gradle. A

good plugin for automating the deployment process exists, and with some tweaking I have

succeeded to totally automate the updating of the functions by zipping the deployment

package, uploading it to S3 and using it to update the codebase of the Lambda functions I

wanted to. Being an interpreted language, Node.js does not need to compile the files the

developers write, and so a powerful tool like Gradle is not required; to obtain similar results

for automating the deployment, simple scripts, depending on the OS used, can be written and

launched, thanks to the powerful command line interface AWS provides.

Some considerations on the area of usage of the Lambda functions should be made too: as

previously mentioned in some occasions, building APIs is not strictly related to writing Lambda

Functions; for most cases, the usage of API Gateway or AppSync is enough to fulfil the goal.

AWS Lambda is a compute service: its purpose is to compute data, transforming the provided

input or using it to trigger a transformation to data stored somewhere else. This service should

be used for complex actions whose application is required frequently and that can be related

to events. Using it to build RESTful APIs is an overkill and leads to sub-optimal results.

90

This might be not widely understood, in fact it is easy to find on the web several people

opposing to this approach, evaluating it not cost-wise, requiring too much effort for the results

and sometimes even considering it a bait.

The poor reception is limited, anyway, but it has to be considered. Another symptom to this

is the low presence of questions posted on StackOverflow with tags related to FaaS. This can

be either because the development of functions on the various platform is very straight-

forward, or because they are not widely used, or because the general level of the developers

exploiting this approach is medium-high. I vote for the last two options, considering the level

of questions that I read every day visiting StackOverflow, and that I have explored most of the

official documentation on the AWS components that I have used.

The imperfection of the official docs and the low presence of these new AWS components on

StackOverflow (EC2 is very tagged, on the other side) have been one of the difficulties I have

met during the various phases of the project. Both on pure design and conceptual ideas and

during the implementation phase, some doubts were raised that I have hardly resolved by

myself after both research and trial-and-error, and that earned me some achievements on

StackOverflow as a side-effect.

Serverless is not only FaaS, and I would like to point it out one more time. Apart from the

previously mentioned ways to deploy a serverless architecture barely built on functions, there

is Backend as a service. It is way more used, at present day, than FaaS thanks to Google’s

Firebase and to how much it fits with everyday mobile applications, often requiring poor logics

and real time database access without latency or entities staying in the middle between the

client consuming and producing data and the data itself. A good client-side SDK, and perfect

and invisible automatisms for handling data storage and authentication are the keys of its

success.

In conclusion, I think that serverless is far from perfect, but the competition that the giants

are living and the increasing adoption by the customers can only improve this approach, that,

and I would like to underline it once more, should not be chosen blindly but opportunely

tailored on the needs the service has, measuring its advantages and disadvantages.

91

6 References

12factor. (n.d.). The twelve-factor app. Retrieved from 12factor: https://12factor.net/

Amazon AWS. (n.d.). Amazon AWS. Retrieved from Amazon AWS: aws.amazon.com

Amazon AWS. (n.d.). AWS Documentation. Retrieved from Amazon AWS:

https://docs.aws.amazon.com/

Amazon AWS. (n.d.). Netflix & AWS Lambda Case Study. Retrieved from Amazon AWS:

https://aws.amazon.com/it/solutions/case-studies/netflix-and-aws-lambda/

Amazon AWS. (n.d.). Serverless Computing and Applications. Retrieved from Amazon AWS:

https://aws.amazon.com/serverless

Anonymous. (2012, May 15). Why REST Keeps Me Up At Night. Retrieved from Programmable

Web: https://www.programmableweb.com/news/why-rest-keeps-me-

night/2012/05/15

Apache OpenWhisk. (n.d.). What Is Serverless Computing, and Why Should I Care? Retrieved

from Apache OpenWhisk: https://openwhisk.apache.org/serverless

Barr, J. (2013, July 1). Transaction library for DynamoDB. Retrieved from Amazon AWS:

https://aws.amazon.com/it/blogs/aws/dynamodb-transaction-library/

Bennage, C. (2017, February 28). Command and Query Responsibility Segregation (CQRS)

pattern. Retrieved from GitHub: https://github.com/mspnp/architecture-

center/blob/master/docs/patterns/cqrs.md

Buliani, S. (2016, February 26). Using Amazon API Gateway as a proxy for DynamoDB.

Retrieved from Amazon AWS: https://aws.amazon.com/it/blogs/compute/using-

amazon-api-gateway-as-a-proxy-for-dynamodb/

Can, S. (2017, November 28). 4 Advantages of using Java with AWS Lambda. Retrieved from

OpsGenie: https://engineering.opsgenie.com/4-advantages-of-using-java-with-aws-

lambda-21c0dc539de3

Chaubey, M. (2018, January 12). Scale Cube: Simplified Scale Model for Microservices.

Retrieved from DZone: https://dzone.com/articles/scale-cube-simplified-scale-model

92

Chris Richardson, F. S. (2016). Microservices, from Design to Deployment. NGINX.

Christopher Bennage, V. B. (2017, February 28). Event Sourcing pattern. Retrieved from

GitHub: https://github.com/mspnp/architecture-

center/blob/master/docs/patterns/event-sourcing.md

Cockburn, A. (2005). Ports and Adapters. Retrieved from Alistair Cockburn Wiki:

http://wiki.c2.com/?PortsAndAdaptersArchitecture

Cockburn, A. (2014, November 4). Hexagonal Architecture. Retrieved from Alistair Cockburn:

http://wiki.c2.com//?HexagonalArchitecture

Conway, M. E. (1968). How do Committees Invent? Datamation, 28-31.

Cui, Y. (2016, January 16). I’m afraid you’re thinking about AWS Lambda cold starts all wrong.

Retrieved from Hackernoon: https://hackernoon.com/im-afraid-you-re-thinking-

about-aws-lambda-cold-starts-all-wrong-7d907f278a4f

Cui, Y. (2017, July 18). Applying the Saga pattern with AWS Lambda and Step Functions.

Retrieved from theburningmonk.com:

https://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-

and-step-functions/

Dias, A. L. (2017, December 1). Microservices Design Patterns - API Gateway. Retrieved from

DZone: https://dzone.com/articles/7-important-microservices-design-patterns-every-

de

Evans, E. (2003). Domain-Driven Design. Addison Wesley.

Fowler, M. (2018, May 22). Serverless Architectures. Retrieved from Martin Fowler:

https://martinfowler.com/articles/serverless.html

Gilham, I. (2016, March 22). Triggering a Lambda from SNS using CloudFormation. Retrieved

from iangilham.com: https://iangilham.com/2016/03/22/Sns-trigger-lambda-via-

cloudformation.html

Graca, H. (2017, November 16). DDD, Hexagonal, Onion, Clean, CQRS, … How I put it all

together. Retrieved from Herberto Graca:

https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-

onion-clean-cqrs-how-i-put-it-all-together/

GraphQL. (n.d.). GraphQL. Retrieved from GraphQL: https://graphql.org/

Helfer, J. (2016, March 14). A guide to authentication in GraphQL. Retrieved from Apollo:

https://dev-blog.apollodata.com/a-guide-to-authentication-in-graphql-e002a4039d1

93

Huston, T. (n.d.). What is microservices architecture? Retrieved from SmartBear:

https://smartbear.com/learn/api-design/what-are-microservices/

James. (2018, March 9). Azure Functions – Significant Improvements in HTTP Trigger Scaling.

Retrieved from Azure Trenches: https://www.azurefromthetrenches.com/azure-

functions-significant-improvements-in-http-trigger-scaling/

James Lewis, M. F. (2014, March 25). Microservices. Retrieved from Martin Fowler:

https://martinfowler.com/articles/microservices.html

jwt. (n.d.). jwt. Retrieved from jwt.io: https://jwt.io/

Kumar, D. (2017, May 18). How to write GraphQL Apps using AWS Lambda. Retrieved from

Cloud Academy: https://cloudacademy.com/blog/how-to-write-graphql-apps-using-

aws-lambda/

Martin L. Abbott, M. T. (2009). The Art of Scalability.

Martin, R. C. (1996). Object Oriented Design Quality Metrics: an analysis of dependencies.

Maruti TECHLABS. (2017, May 4). What is Serverless Architecture? What are its criticisms and

drawbacks? Retrieved from Medium: https://medium.com/@MarutiTech/what-is-

serverless-architecture-what-are-its-criticisms-and-drawbacks-928659f9899a

Maruti TECHLABS. (n.d.). SERVERLESS ARCHITECTURE THE FUTURE OF BUSINESS COMPUTING.

Retrieved from Maruti TECHLABS: https://www.marutitech.com/serverless-

architecture-business-computing/

Masashi Narumoto, G. C. (2017, June 23). Compensating Transaction pattern. Retrieved from

Microsoft Azure: https://docs.microsoft.com/en-

us/azure/architecture/patterns/compensating-transaction

Matt McLarty, I. (2016, June 9). Learn from SOA: 5 lessons for the microservices era. Retrieved

from InfoWorld: https://www.infoworld.com/article/3080611/application-

development/learning-from-soa-5-lessons-for-the-microservices-era.html

Mauro, T. (2015, February 19). Adopting Microservices at Netflix: Lessons for Architectural

Design. Retrieved from NGINX: https://www.nginx.com/blog/microservices-at-netflix-

architectural-best-practices/

Mauro, T. (2015, February 19). Adopting Microservices at Netflix: Lessons for Architectural

Design. Retrieved from NGINX: https://www.nginx.com/blog/microservices-at-netflix-

architectural-best-practices/

94

Merson, P. (2015, November 12). Transaction across REST microservices. Retrieved from

StackOverflow: https://stackoverflow.com/questions/30213456/transactions-across-

rest-microservices

Mytton, D. (2017, August 10). Who has the serverless advantage? Retrieved from A cloud guru:

https://read.acloud.guru/aws-lambda-vs-google-cloud-functions-vs-azure-functions-

who-has-the-serverless-advantage-f6c2535e72f4

Nommensen, P. (2015, February 6). It’s Time to Move to a Four-Tier Application Architecture.

Retrieved from NGINX: https://www.nginx.com/blog/time-to-move-to-a-four-tier-

application-architecture/

Palermo, J. (2008, July 29). The Onion Architecture. Retrieved from Jeffrey Palermo:

http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

Pant, H. (2018, April 5). A brief history of serverless (or, how I learned to stop worrying and

start loving the cloud). Retrieved from freeCodeCamp:

https://medium.freecodecamp.org/a-brief-history-of-serverless-or-how-i-learned-to-

stop-worrying-and-start-loving-the-cloud-7e2fc633310d

Riady, Y. (2017, September 3). Serverless Authentication with JSON Web Tokens. Retrieved

from yos.io: https://yos.io/2017/09/03/serverless-authentication-with-jwt/

Richardson, C. (2018). Microservices Patterns. Manning.

Richardson, C. (n.d.). microservices.io. Retrieved from microservices.io:

http://microservices.io

Riggins, J. (2015, July 10). How To Design Great APIs With API-First Design. Retrieved from

Programmable Web: https://www.programmableweb.com/news/how-to-design-

great-apis-api-first-design-and-raml/how-to/2015/07/10

Samohkin, V. (2018, January 6). DDD Strategic Patterns: How to Define Bounded Contexts.

Retrieved from DZone: https://dzone.com/articles/ddd-strategic-patterns-how-to-

define-bounded-conte

serverless. (n.d.). serverless. Retrieved from serverless.com: https://serverless.com/

Severson, M. (2016, August 17). Introduction to CloudFormation for API Gateway. Retrieved

from jayway: https://blog.jayway.com/2016/08/17/introduction-to-cloudformation-

for-api-gateway/

Stenberg, J. (2014, October 30). Domain-Driven Design with Onion Architecture. Retrieved

from InfoQ: https://www.infoq.com/news/2014/10/ddd-onion-architecture

95

Stenberg, J. (2014, October 31). Exploring the Hexagonal Architecture. Retrieved from InfoQ:

https://www.infoq.com/news/2014/10/exploring-hexagonal-architecture

Stubailo, S. (2017, June 27). GraphQL vs. REST. Retrieved from Apollo: https://dev-

blog.apollodata.com/graphql-vs-rest-5d425123e34b

Threlkeld, R. (2018, April 24). GraphQL authorization with multiple data sources using AWS

AppSync. Retrieved from Hackernoon: https://hackernoon.com/graphql-

authorization-with-multiple-data-sources-using-aws-appsync-dfae2e350bf2

Wikipedia. (n.d.). Retrieved from Wikipedia: https://en.wikipedia.org/

Wittig, M. (2016, August 5). API Gateway Custom Authorization with Lambda, DynamoDB and

CloudFormation. Retrieved from cloudonaut.io: https://cloudonaut.io/api-gateway-

custom-authorization-with-lambda-dynamodb-and-cloudformation/

Woods, D. (2015, July 30). Microservices: the right way. Retrieved from Slide Share:

https://www.slideshare.net/danveloper/microservices-the-right-way

Yigal, A. (2017, August 8). AWS Lambda vs. Azure Functions vs. Google Functions. Retrieved

from logz.io: https://logz.io/blog/serverless-guide/

Young, G. (2010). CQRS Documents.

Ziemoński, G. (2017, February 27). Onion Architecture is interesting. Retrieved from DZone:

https://dzone.com/articles/onion-architecture-is-interesting

Ziemoński, G. (2017, January 17). Perfecting Your SOLID Meal With DIP. Retrieved from DZone:

https://dzone.com/articles/perfecting-your-solid-meal-with-dip

I

7 Appendix

7.1 Code

7.1.1 Java projects gradle

7.1.1.1 Root project build.gradle

Gradle build script containing all the scripts to build, create the deployment package, update

it to S3 and call the individual projects’ script to update the AWS Lambda function code.

import jp.classmethod.aws.gradle.lambda.AWSLambdaUpdateFunctionCodeTask
import jp.classmethod.aws.gradle.lambda.S3File
import jp.classmethod.aws.gradle.s3.AmazonS3FileUploadTask
import jp.classmethod.aws.gradle.s3.CreateBucketTask

apply plugin: 'java'
group 'balsick-aws'
def version = '1.0-SNAPSHOT'

repositories {
 mavenCentral()
}

buildscript {
 repositories {
 maven { url 'https://repo.spring.io/plugins-snapshot' }
 maven { url "https://plugins.gradle.org/m2/" }
 }
 dependencies {
 classpath 'io.spring.gradle:dependency-management-plugin:1.0.3.RELEASE'
 classpath "jp.classmethod.aws:gradle-aws-plugin:0.+"
 }
}
apply plugin: "io.spring.dependency-management"

task buildAllZips {
 subprojects {
 apply plugin: 'java'
 task buildZip(type: Zip) {
 task ->
 destinationDir = file("${rootProject.projectDir}/build/distributions")
 println "${project.name}"

II

 from task.project.compileJava
 from task.project.processResources
 into('lib') {
 from task.project.configurations.runtimeClasspath
 }
 }
 }
}

def myBucketName = 'it.balsick.cloud.aws.thesis.lambdafunctions'
def regionName = 'eu-west-1'

task uploadAllToS3 {
 subprojects {
 apply plugin: 'jp.classmethod.aws'
 aws {
 profileName = "s3"
 region = regionName
 }
 apply plugin: "jp.classmethod.aws.s3"
 apply plugin: "io.spring.dependency-management"

 task updateToS3(type: AmazonS3FileUploadTask, dependsOn: buildZip) {
 task ->
 bucketName myBucketName
 overwrite true
 def zipName = "${task.project.name}-${version}.zip";
 println "Zip file name:\t${zipName}"
 println "S3 uploading file: ${rootProject.projectDir}/build/distributions/${zipName}"
 file file("${rootProject.projectDir}/build/distributions/${zipName}")
 key zipName
 }
 }
}

apply plugin: "jp.classmethod.aws.s3"

task createBucket(type: CreateBucketTask) {
 bucketName myBucketName
 region regionName
 ifNotExists true
}

ext.updateLambdaFunctionsTask = { Project prj, List<String> functions ->
 apply plugin: "jp.classmethod.aws.lambda"
 lambda {
 region = regionName
 }
 functions.each {
 s -> task "updLambda-${prj.name}-${s}"(type: AWSLambdaUpdateFunctionCodeTask, dependsOn:
uploadAllToS3) {
 functionName = s
 s3File = new S3File()
 s3File.bucketName = myBucketName
 s3File.key = "${prj.name}-${version}.zip"
 }
 }
}

III

7.1.1.2 Utils build.gradle

Gradle build script for the Utils java project containing the dependencies that the other

projects use too.

group 'balsick-aws'
version '1.0-SNAPSHOT'

apply plugin: 'java-library'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

buildscript {
 repositories {
 maven { url 'https://repo.spring.io/plugins-snapshot' }
 }
 dependencies {
 classpath 'io.spring.gradle:dependency-management-plugin:1.0.3.RELEASE'
 }
}

apply plugin: "io.spring.dependency-management"

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.11.228'
 }
}

dependencies {
 api 'com.amazonaws:aws-lambda-java-core:1.1.0'
 api 'com.amazonaws:aws-lambda-java-events:1.1.0'
 api 'com.amazonaws:aws-java-sdk-cognitoidp:+'
 api 'com.amazonaws:aws-java-sdk-sns:+'
 api 'com.amazonaws:aws-java-sdk-cognitosync:+'
 api group: 'com.google.code.gson', name: 'gson', version: '2.8.2'
 api group: 'com.jayway.jsonpath', name: 'json-path', version: '2.3.0'
 api 'com.auth0:java-jwt:3.3.0'
}

IV

7.1.1.3 Context’s build.gradle example: Offer

Example of a context’s project gradle build script containing the task to update AWS Lambda

function code.

import jp.classmethod.aws.gradle.lambda.AWSLambdaUpdateFunctionCodeTask;

group 'balsick-aws'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.11.228'
 }
}

dependencies {
 implementation project(':utils')
 testCompile group: 'junit', name: 'junit', version: '4.12'
}

task updateLambdaFunctions {
 updateLambdaFunctionsTask(project, ['UsedBookStoreThesis-ConfirmLockOffersFunction-
1B22MW81BYO1C',
 'UsedBookStoreThesis-CheckAndLockOffersFunction-1CDMUDUAKB6M5',
 'UsedBookStoreThesis-UnlockOffersFunction-191ZKKQXQ2K00',
 'UsedBookStoreThesis-GetOffersFunction-1X9JIMXPBAO9E',
 'UsedBookStoreThesis-CreateOfferFunction-PJPH3IGOTQ9L'])
}

V

7.1.2 Java code samples

7.1.2.1 ProxyRequest mapping

Java class of the Utils project mapping a Proxy Request coming from an API Gateway metho

and passed as argument to a Lambda function. Other than mapping through the POJO part of

the class, it contains some logics that, by using JsonPath, provide data contained deep in the

request’s body or in the context of the authorizer.

package it.balsick.cloud.aws.thesis.data;

import com.amazonaws.services.lambda.runtime.Context;
import com.fasterxml.jackson.annotation.JsonIgnore;
import com.jayway.jsonpath.JsonPath;
import com.jayway.jsonpath.ReadContext;

import java.util.Map;

public abstract class ProxyRequest<T extends Bean> implements Request<T> {

 private String resource;
 private String path;
 private String httpMethod;
 private Map<String, String> headers;
 private Map<String, String> queryStringParameters;
 private Map<String, String> pathParameters;
 private Map<String, Object> stageVariables;
 private Map<String, Object> requestContext;
 private Context context;
 private String body;
 private boolean isBase64Encoded;

 @JsonIgnore
 private transient ReadContext ctx;

 public ProxyRequest() {
 }

 public final String getResource() {
 return resource;
 }

 public final void setResource(String resource) {
 this.resource = resource;
 }

 public final String getPath() {
 return path;
 }

 public final void setPath(String path) {
 this.path = path;

VI

 }

 public final String getHttpMethod() {
 return httpMethod;
 }

 public final void setHttpMethod(String httpMethod) {
 this.httpMethod = httpMethod;
 }

 public final Map<String, String> getHeaders() {
 return headers;
 }

 public final void setHeaders(Map<String, String> headers) {
 this.headers = headers;
 }

 public final Map<String, String> getQueryStringParameters() {
 return queryStringParameters;
 }

 public final void setQueryStringParameters(Map<String, String> queryStringParameters) {
 this.queryStringParameters = queryStringParameters;
 }

 public final Map<String, String> getPathParameters() {
 return pathParameters;
 }

 public final void setPathParameters(Map<String, String> pathParameters) {
 this.pathParameters = pathParameters;
 }

 public final Map<String, Object> getStageVariables() {
 return stageVariables;
 }

 public final void setStageVariables(Map<String, Object> stageVariables) {
 this.stageVariables = stageVariables;
 }

 public final Map<String, Object> getRequestContext() {
 return requestContext;
 }

 public final void setRequestContext(Map<String, Object> requestContext) {
 this.requestContext = requestContext;
 }

 public final String getBody() {
 return body;
 }

 public final void setBody(String body) {
 this.body = body;
 }

 public final boolean isBase64Encoded() {

VII

 return isBase64Encoded;
 }

 public final void setBase64Encoded(boolean isBase64Encoded) {
 this.isBase64Encoded = isBase64Encoded;
 }

 public Context getContext() {
 return context;
 }

 public void setContext(Context context) {
 this.context = context;
 }

 /**
 * Get from the body or from the query string parameters the object having
 * the passed string as key in the body or in the query string parameters.
 *
 * @param key
 * @return
 */
 public Object standardGet(String key) {
 try {
 if (ctx == null)
 ctx = JsonPath.parse(getBody());
 return ctx.read("$." + key);
 } catch (Exception ignored) {
 }
 try {
 return getQueryStringParameters().get(key);
 } catch (Exception ex) {
 return null;
 }
 }

 public Object getFromAuthorizerContext(String key) {
 return standardGet("context.authorizer."+key);
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof ProxyRequest)) return false;

 ProxyRequest<?> that = (ProxyRequest<?>) o;

 if (isBase64Encoded != that.isBase64Encoded) return false;
 if (resource != null ? !resource.equals(that.resource) : that.resource != null)
 return false;
 if (path != null ? !path.equals(that.path) : that.path != null) return false;
 if (httpMethod != null ? !httpMethod.equals(that.httpMethod) : that.httpMethod != null)
 return false;
 if (headers != null ? !headers.equals(that.headers) : that.headers != null) return false;
 if (queryStringParameters != null ?
 !queryStringParameters.equals(that.queryStringParameters) :
 that.queryStringParameters != null)
 return false;
 if (pathParameters != null ?

VIII

 !pathParameters.equals(that.pathParameters) :
 that.pathParameters != null)
 return false;
 if (stageVariables != null ?
 !stageVariables.equals(that.stageVariables) :
 that.stageVariables != null)
 return false;
 if (context != null ? !context.equals(that.context) : that.context != null)
 return false;
 return body != null ? body.equals(that.body) : that.body == null;

 }

 @Override
 public int hashCode() {
 int result = resource != null ? resource.hashCode() : 0;
 result = 31 * result + (path != null ? path.hashCode() : 0);
 result = 31 * result + (httpMethod != null ? httpMethod.hashCode() : 0);
 result = 31 * result + (headers != null ? headers.hashCode() : 0);
 result =
 31 * result + (queryStringParameters != null ?
 queryStringParameters.hashCode() :
 0);
 result = 31 * result + (pathParameters != null ? pathParameters.hashCode() : 0);
 result = 31 * result + (stageVariables != null ? stageVariables.hashCode() : 0);
 result = 31 * result + (context != null ? context.hashCode() : 0);
 result = 31 * result + (body != null ? body.hashCode() : 0);
 result = 31 * result + (isBase64Encoded ? 1 : 0);
 return result;
 }
}

IX

7.1.2.2 Interface with DynamoDB: DDBInterface

Java class containing convenience methods to access, both in reading and in writing, more

easily to the DynamoDB database corresponding to the Java Bean mapping it.

These methods heavily use Java Reflection and so they might be suboptimal for AWS Lambda

Function usage, though allowing easiest access to the developer.

package it.balsick.cloud.aws.thesis.data;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBIndexHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBIndexRangeKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBQueryExpression;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBRangeKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.TableWriteItems;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;

import java.lang.annotation.Annotation;
import java.lang.reflect.Field;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.function.Function;
import java.util.function.Predicate;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

import it.balsick.cloud.aws.thesis.data.exception.ItemNotFoundException;
import it.balsick.cloud.aws.thesis.data.exception.TooManyResultsException;

public class DDBInterface {

 private DDBInterface() {
 }

 public static <T extends Bean> T getItem(Class<T> tClass, String hashKey)
 throws TooManyResultsException, ItemNotFoundException {
 return getItem(tClass, hashKey, null, null);

X

 }

 public static <T extends Bean> T getItem(Class<T> tClass, String hashKey, String rangeKey, String
index)
 throws TooManyResultsException, ItemNotFoundException {
 System.out.println("GetItem\t-\tclass:[" + (tClass == null ?
 "null" :
 tClass.getName()) + "] keys:[" + hashKey
 + ", " + rangeKey + "] index:[" + index + "]");
 List<T> items = getItems(tClass, hashKey, rangeKey, index);
 if (items != null && items.size() > 1)
 throw new TooManyResultsException();
 if (items == null || items.isEmpty())
 throw new ItemNotFoundException();
 return items.get(0);
 }

 private static boolean isAnnotationOnIndex(Annotation a, String index) {
 if (a == null)
 return false;
 String[] gsis = (String[]) getAnnotationValue(a, "globalSecondaryIndexNames");
 if (gsis == null || gsis.length == 0)
 gsis = new String[]{(String) getAnnotationValue(a, "globalSecondaryIndexName")};
 return Arrays.stream(gsis).anyMatch(s -> s.equals(index));
 }

 private static <T extends Bean> T buildBean(Class<T> tClass, String hashKey, String rangeKey, String
index)
 throws Exception {
 if (hashKey == null)
 throw new IllegalArgumentException();
 if (index == null)
 return (T) tClass.newInstance().with(new String[]{hashKey, rangeKey});
 T bean = tClass.newInstance();
 for (Method method : tClass.getDeclaredMethods()) {
 DynamoDBIndexHashKey a = method.getAnnotation(DynamoDBIndexHashKey.class);
 DynamoDBIndexRangeKey b = method.getAnnotation(DynamoDBIndexRangeKey.class);
 if (a == null && (b == null || rangeKey == null))
 continue;
 String value;
 if (!isAnnotationOnIndex(Utils.nvl(a, b), index))
 continue;
 value = hashKey;
 String fieldName = method.getName();
 if (fieldName.startsWith("get")) {
 fieldName = fieldName.replaceFirst("get", "");
 fieldName = (fieldName.charAt(0) + "").toLowerCase() + fieldName.substring(1);
 }
 Field field = tClass.getDeclaredField(fieldName);
 field.setAccessible(true);
 field.set(bean, value);
 }
 return bean;
 }

 private static Object getAnnotationValue(Annotation annotation, String methodName) {
 try {
 return annotation.getClass().getMethod(methodName).invoke(annotation);
 } catch (IllegalAccessException | IllegalArgumentException | InvocationTargetException |

XI

NoSuchMethodException
 | SecurityException e) {
 e.printStackTrace();
 return null;
 }
 }

 public static <T extends Bean> List<T> getItems(Class<T> tClass, String hashKey, String rangeKey,
String index) {
 System.out.println("GetItems\t-\tclass:[" + (tClass == null ?
 "null" :
 tClass.getName()) + "] keys:[" + hashKey
 + ", " + rangeKey + "] index:[" + index + "]");

 T shape;
 try {
 shape = buildBean(tClass, hashKey, rangeKey, index);
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 KeyCondition kc = getKeyCondition(shape, index);
 System.out.println("KeyCondition: " + kc.keyConditionExpression);

 DynamoDBQueryExpression<T> queryExpression = new DynamoDBQueryExpression<T>()
 .withKeyConditionExpression(kc.keyConditionExpression)
 .withExpressionAttributeValues(kc.values);
 if (!kc.expressionAttributeNames.isEmpty())
 queryExpression =
 queryExpression.withExpressionAttributeNames(kc.expressionAttributeNames);
 if (index != null)
 queryExpression = queryExpression.withIndexName(index).withConsistentRead(false);
 System.out.println("QueryExpression created");

 DynamoDBMapper
 mapper =
 new DynamoDBMapper(
 AmazonDynamoDBClientBuilder.standard().withRegion(Regions.EU_WEST_1)
 .build());
 System.out.println("mapper created");
 return mapper.query(tClass, queryExpression);
 }

 public static <T extends Bean> List<T> getItems(Class<T> class1, List<String> hashKeys, String index)
{
 return hashKeys.parallelStream()
 .map(key -> getItems(class1, key, null, index))
 .flatMap(Collection::stream)
 .distinct()
 .collect(Collectors.toList());
 }

 public static <T extends Bean> List<T> getItems(Class<T> class1, List<String> hashKeys, List<String>
rangeKeys, String index) {
 if (hashKeys == null)
 throw new IllegalArgumentException("Hash keys null");
 if (rangeKeys == null)
 throw new IllegalArgumentException("Range keys null");

XII

 if (hashKeys.size() != rangeKeys.size())
 throw new IllegalArgumentException("Hash keys and range keys of different size");
 return IntStream.range(0, hashKeys.size())
 .mapToObj(i -> getItems(class1, hashKeys.get(i), rangeKeys.get(i), index))
 .flatMap(Collection::stream)
 .distinct()
 .collect(Collectors.toList());
 }

 private static <T extends Bean, A extends Annotation> KeyMethod
getBeanKeyAttributeName(Class<T> tClass,
 Class<A> annClass) {
 return getBeanKeyAttributeName(tClass, annClass, null);
 }

 private static <T extends Bean, A extends Annotation> KeyMethod
getBeanKeyAttributeName(Class<T> tClass,
 Class<A> annClass, Predicate<A> predicate) {
 Field
 field =
 Arrays.stream(tClass.getDeclaredFields())
 .filter(f -> f.isAnnotationPresent(annClass))
 .findAny()
 .orElse(null);
 if (field != null) {
 String s = getAttributeName(field.getAnnotation(annClass));
 if (s != null)
 return new KeyMethod(s, null);
 return new KeyMethod(field.getName(), null);
 }
 Method
 method =
 Arrays.stream(tClass.getDeclaredMethods())
 .filter(f -> f.isAnnotationPresent(annClass))
 .filter(m -> predicate == null || predicate.test(m.getAnnotation(annClass)))
 .findAny()
 .orElse(null);
 if (method == null)
 throw new IllegalArgumentException();
 String key = method.getName();
 if (key.startsWith("get")) {
 key = key.replaceFirst("get", "");
 key = (key.charAt(0) + "").toLowerCase() + key.substring(1);
 }
 String s = getAttributeName(annClass, method);
 return new KeyMethod(s != null ? s : key, method);
 }

 private static <A extends Annotation> String getAttributeName(Class<A> annClass, Method method) {
 return getAttributeName(method.getAnnotation(annClass));
 }

 private static <A extends Annotation> String getAttributeName(A annotation) {
 try {
 String s = (String) getAnnotationValue(annotation, "attributeName");
 if (!(s != null && s.isEmpty()))
 return s;
 } catch (SecurityException | IllegalArgumentException | NullPointerException ignored) {
 }

XIII

 return null;
 }

 private static <T extends Bean> KeyCondition getKeyCondition(T shape, String secondaryIndexName)
{
 return Arrays.stream(shape.getClass().getMethods()).peek(f -> f.setAccessible(true))
 .filter(method -> secondaryIndexName != null
 && (isAnnotationOnIndex(method.getAnnotation(DynamoDBIndexHashKey.class),
 secondaryIndexName)
 || isAnnotationOnIndex(method.getAnnotation(DynamoDBIndexRangeKey.class),
 secondaryIndexName))
 || secondaryIndexName == null && (method.isAnnotationPresent(
 DynamoDBHashKey.class)
 || method.isAnnotationPresent(DynamoDBRangeKey.class)))
 .map(method -> {
 String key = method.getName();
 if (key.startsWith("get")) {
 key = key.replaceFirst("get", "");
 key = (key.charAt(0) + "").toLowerCase() + key.substring(1);
 }
 String s = Utils.nvl(() -> getAttributeName(DynamoDBIndexHashKey.class, method),
 () -> getAttributeName(DynamoDBIndexRangeKey.class, method),
 () -> getAttributeName(DynamoDBHashKey.class, method),
 () -> getAttributeName(DynamoDBRangeKey.class, method),
 () -> getAttributeName(DynamoDBAttribute.class, method));
 return new KeyMethod(Utils.nvl(s, key), method);
 }).map(current -> {
 Map<String, String> expressionAttributeNames = new HashMap<>();
 if (DynamoDBReservedWords.isReservedWord(current.key)) {
 String k = String.format("#%s%d", current.key.substring(0, 3),
 System.currentTimeMillis() % 1000);
 expressionAttributeNames.put(k, current.key);
 current.key = k;
 }
 String
 k =
 String.format("%s = :%s", current.key,
 Utils.nvl(expressionAttributeNames.get(current.key),
 current.key));
 AttributeValue av = new AttributeValue();
 Object value;
 try {
 value = current.field.invoke(shape);
 } catch (IllegalArgumentException | IllegalAccessException | InvocationTargetException e) {
 e.printStackTrace();
 return null;
 }
 if (value == null)
 return null;
 if (current.field.getReturnType().isAssignableFrom(Boolean.class))
 av.withBOOL((Boolean) value);
 else if (current.field.getReturnType().isAssignableFrom(Number.class))
 av.withN(((Number) value).toString());
 else if (current.field.getReturnType().isInstance(""))
 av.withS(value.toString());
 Map<String, AttributeValue> map = new HashMap<>();
 map.put(String.format(":%s",
 Utils.nvl(expressionAttributeNames.get(current.key), current.key)), av);
 return new KeyCondition(k, map, expressionAttributeNames);

XIV

 }).filter(Objects::nonNull).reduce((total, current) -> {
 Map<String, AttributeValue> map = new HashMap<>();
 map.putAll(total.values);
 map.putAll(current.values);
 Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.putAll(total.expressionAttributeNames);
 expressionAttributeNames.putAll(current.expressionAttributeNames);
 return new KeyCondition(
 total.keyConditionExpression + " and " + current.keyConditionExpression,
 map, expressionAttributeNames);
 }).orElse(null);
 }

 public static <T extends Bean, Y extends Request<T>> T updateItem(T src, Y request) {
 T dst = null;
 try {
 dst = (T) src.getClass().newInstance();
 dst = (T) dst.with(src.getKeys());
 } catch (NullPointerException | IllegalArgumentException ignored) {
 } catch (InstantiationException | IllegalAccessException e) {
 e.printStackTrace();
 return null;
 }
 Map<String, Field> requestMap = mapFields(request);

 Map<String, Field> sourceMap = mapFields(src);
 T dest = dst;
 requestMap.forEach((key, value) -> {
 try {
 value.setAccessible(true);
 sourceMap.get(key).setAccessible(true);
 sourceMap.get(key).set(dest, Utils.nvl(requestMap.get(key).get(request),
 sourceMap.get(key).get(src)));
 } catch (IllegalArgumentException | IllegalAccessException e) {
 e.printStackTrace();
 } catch (NullPointerException ignored) {
 }
 });

 return updateItem(dst);
 }

 public static <T extends Bean> T updateItem(T src) {
 new DynamoDBMapper(
 AmazonDynamoDBClientBuilder.standard().withRegion("eu-west-1").build()).save(src);
 return src;
 }

 private static <T extends Bean> Class<T> getTClass(Request<T> request) {
 Type[] genericTypes;
 if (request.getClass().getGenericSuperclass() instanceof ParameterizedType)
 genericTypes =
 ((ParameterizedType) request.getClass()
 .getGenericSuperclass()).getActualTypeArguments();
 else {
 genericTypes =
 ((ParameterizedType) request.getClass()
 .getGenericInterfaces()[0]).getActualTypeArguments();
 }

XV

 return (Class<T>) genericTypes[0];
 }

 public static <T extends Bean> T postItem(Request<T> request) {
 try {
 return updateItem(getTClass(request).newInstance(), request);
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 private static Map<String, Field> mapFields(Object object) {
 return Arrays.stream(object.getClass().getDeclaredFields())
 .filter(field -> !field.isAnnotationPresent(BeanCopyIgnore.class))
 .collect(Collectors.toMap(Field::getName, Function.identity()));
 }

 private static <T extends Bean> String getBeanKeyAttributeName(Class<T> t) {
 return getBeanKeyMethodAttribute(t).key;
 }

 private static <T extends Bean> KeyMethod getBeanKeyMethodAttribute(Class<T> t) {
 return getBeanKeyAttributeName(t, DynamoDBHashKey.class);
 }

 public static <T extends Bean> void delete(Class<? extends T> clazz, List<T> items) {
 List<TableWriteItems> itemsToWrite = new ArrayList<>();
 List<Object> hashAndRangeKeys = items.stream()
 .filter(c -> c.getKeys().length == 2 && c.getKeys()[0] != null && c.getKeys()[1] != null)
 .map(T::getKeys)
 .flatMap(Arrays::stream)
 .filter(Objects::nonNull)
 .collect(Collectors.toList());
 List<Object> hashOnlyKeys = items.stream()
 .filter(c -> c.getKeys().length == 1 || c.getKeys().length == 2 && Utils.isEmpty(
 c.getKeys()[1]))
 .map(T::getKeys)
 .flatMap(Arrays::stream)
 .filter(Objects::nonNull)
 .distinct()
 .collect(Collectors.toList());
 if (!hashAndRangeKeys.isEmpty())
 itemsToWrite.add(
 new TableWriteItems(clazz.getAnnotation(DynamoDBTable.class).tableName())
 .withHashAndRangeKeysToDelete(getBeanKeyAttributeName(clazz),
 getBeanKeyAttributeName(clazz, DynamoDBRangeKey.class).key,
 hashAndRangeKeys.toArray()));
 if (!hashOnlyKeys.isEmpty())
 itemsToWrite.add(
 new TableWriteItems(clazz.getAnnotation(DynamoDBTable.class).tableName())
 .withHashOnlyKeysToDelete(getBeanKeyAttributeName(clazz),
 hashOnlyKeys.toArray()));
 System.out.println("Trying to delete "+clazz.getName()+"\nHashOnlyKeys:");
 hashOnlyKeys.forEach(System.out::println);
 System.out.println("HashAndRangeKeys:");
 hashAndRangeKeys.forEach(System.out::println);
 AmazonDynamoDB
 client =

XVI

 AmazonDynamoDBClientBuilder.standard().withRegion("eu-west-1").build();
 DynamoDB dynamoDB = new DynamoDB(client);
 dynamoDB.batchWriteItem(itemsToWrite.toArray(new TableWriteItems[itemsToWrite.size()]));
 }

 public static <T extends Bean> void delete(Class<T> tClass, String hashKey, String rangeKey, String
index)
 throws ItemNotFoundException {
 List<T> items = getItems(tClass, hashKey, rangeKey, index);
 if (items == null || items.isEmpty())
 throw new ItemNotFoundException();
 Utils.splitIntoChunks(items, 25).forEach(list -> delete(tClass, list));
 }

 public static <T extends Bean> void delete(T item) {
 delete(item.getClass(), Collections.singletonList(item));
 }

 public static <T extends Bean> List<T> getItems(Class<T> cls) {
 return getItems(cls, (String) null, (String) null, (String) null);
 }

 private static class KeyMethod {
 String key;
 Method field;

 KeyMethod(String key, Method field) {
 this.key = key;
 this.field = field;
 }

 }

 private static final class KeyCondition {
 final String keyConditionExpression;
 final Map<String, AttributeValue> values;
 final Map<String, String> expressionAttributeNames;

 private KeyCondition(String kce, Map<String, AttributeValue> v, Map<String, String>
expressionAttributeNames) {
 this.keyConditionExpression = kce;
 this.values = v;
 this.expressionAttributeNames = expressionAttributeNames;
 }
 }

}

XVII

7.1.2.3 Result

Abstract class representing a lambda function result.

package it.balsick.cloud.aws.thesis.data;

public abstract class Result {

 final int statusCode;

 protected Result(int result) {
 this.statusCode = result;
 }

 public int getStatusCode() {
 return statusCode;
 }

}

7.1.2.4 SuccessResult

Abstract parametric class representing a successful lambda function result.

package it.balsick.cloud.aws.thesis.data;

import com.fasterxml.jackson.annotation.JsonIgnore;
import com.google.gson.Gson;

import java.util.Collections;
import java.util.Map;

public abstract class SuccessResult<T> extends Result {

 @JsonIgnore
 public transient final T data;

 public SuccessResult(T data) {
 super(200);
 this.data = data;
 }

 public String getBody() {
 return new Gson().toJson(data);
 }

 public final static class EmptySuccessResult extends SuccessResult<Map<Void, Void>> {
 public EmptySuccessResult() {
 super(Collections.emptyMap());
 }
 }

}

XVIII

7.1.2.5 CreateBook

Example of a Lambda Function handler in Java. The handler method is the entrypoint of the

lambda function. It receives as input an object that maps the function’s input, a Context object

containing general information on the running lambda function, and it provides a result that

needs to be compliant to the Proxy result (cfr. 7.1.2.3) for Proxy API Gateway method calls, or

it is free otherwise.

package it.balsick.cloud.aws.thesis.book;

import com.amazonaws.services.lambda.runtime.Context;
import com.google.gson.Gson;
import com.google.gson.reflect.TypeToken;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.List;
import java.util.Map;

import javax.net.ssl.HttpsURLConnection;

import it.balsick.cloud.aws.thesis.book.request.BookRequest;
import it.balsick.cloud.aws.thesis.data.DDBInterface;
import it.balsick.cloud.aws.thesis.data.ErrorResult;
import it.balsick.cloud.aws.thesis.data.ErrorType;
import it.balsick.cloud.aws.thesis.data.Result;

public class CreateBook {

 private final static String
 GOOGLE_API_BASE =
 "https://www.googleapis.com/books/v1/volumes?q=isbn:";

 public Result handler(BookRequest request, Context context) {
 System.out.println(
 "Received it.balsick.cloud.aws.thesis.book request\t-\tisbn:[" + request.getIsbn() + "]
author:[" + request
 .getAuthor() + "]");
 String _url = GOOGLE_API_BASE + request.getIsbn()
 + "&fields=items(volumeInfo(title,authors,publishedDate,pageCount,language))";
 try {
 URL url = new URL(_url);
 HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
 conn.setRequestMethod("GET");

 if (conn.getResponseCode() != 200)
 return new ErrorResult(ErrorType.NOT_FOUND);
 BufferedReader
 reader =
 new BufferedReader(new InputStreamReader(conn.getInputStream()));
 String line;
 String result = "";

XIX

 while ((line = reader.readLine()) != null)
 result += line + "\n";
 reader.close();
 Gson gson = new Gson();
 Map<String, Object> map = gson.fromJson(result, new TypeToken<Map<String, Object>>() {
 }.getType());
 List<Object> items = (List<Object>) map.get("items");
 if (items == null || items.isEmpty())
 return new ErrorResult(ErrorType.NOT_FOUND);
 Map<String, Object> item = (Map<String, Object>) items.get(0);
 Map<String, Object> itemInfo = (Map<String, Object>) item.get("volumeInfo");
 Book book = new Book();
 book.setIsbn(request.getIsbn());
 book.setAuthor(((List<String>) itemInfo.get("authors")).get(0));
 book.setTitle((String) itemInfo.get("title"));
 Number pageCount = (Number) itemInfo.get("pageCount");
 if (pageCount != null)
 book.setPageCount(pageCount.intValue());
 String publishedDate = (String) itemInfo.get("publishedDate");
 if (publishedDate != null)
 book.setPublishedDate(new Integer(publishedDate));
 book.setLanguage((String) itemInfo.get("language"));
 DDBInterface.updateItem(book);
 } catch (Exception ex) {
 System.err.println("Error querying: "+_url);
 ex.printStackTrace();
 return new ErrorResult(ErrorType.BAD_REQUEST);
 }
 return new GetBook().handler(request, context);
 }

}

XX

7.1.3 Node.js code samples

7.1.3.1 Courier Sign Up

Example of a Lambda function handler in Node.js. The handler method is the entrypoint of the

lambda function. It receives an event object as input mapping the lambda function’s input and

returns an object that, if the lambda function is called by a Proxy API Gateway method, needs

to be compliant to the proxy response.

const utils = require('../utils');

const crypto = require('crypto');

exports.handler = async event => {
 let alreadyExists = false;
 try {
 let res = await utils.dynamodb.getItem({
 Key: utils.valueToItem({
 courier: event.courier
 }),
 TableName: "CourierRegistrations"
 }).promise();
 if (res.Item)
 alreadyExists = true;
 } catch (e) {
 }
 if (alreadyExists) {
 console.log("Item already exists with courier = " + event.courier);
 return {statusCode: 403};
 }
 const salt = utils.randomString(8, 16);
 const hmac = crypto.createHmac('sha256', salt);
 hmac.update(event.password);
 const hashedPassword = hmac.digest('hex');
 await utils.dynamodb.putItem({
 Item: utils.valueToItem({
 courier: event.courier,
 salt: salt,
 hashedPassword: hashedPassword
 }),
 TableName: "CourierRegistrations"
 }).promise();
 let message = {
 courier: event.courier
 };
 let snsMessageParams = {
 TopicArn: "arn:aws:sns:eu-west-1:468165443921:UsedBookStoreThesis-
NewCourierRegistered",
 Message: JSON.stringify(message)
 };
 await utils.sns.publish(snsMessageParams).promise();
 return {statusCode: 200};
};

XXI

7.1.3.2 Notify all couriers for assignment

const utils = require('../utils');

const sendEmailParamsTemplate = {
 Destination: {
 BccAddresses: [
 'aws-thesis-assignments@balsick.it'
],
 },
 Message: {
 Body: {
 Html: {
 Charset: "UTF-8",
 },
 Text: {
 Charset: "UTF-8",
 }
 },
 Subject: {
 Charset: 'UTF-8',
 }
 },
 Source: 'aws-thesis-assignments@balsick.it'
};

const htmlData = (dims, parcelInfo) => `<html>There is a parcel yet to been assigned!

 If you are interested in delivering it, assign it to yourself.

 Here are some infos:

 weight: ${parcelInfo.size.weight}

 dimensions: ${dims[0]}x${dims[1]}x${dims[2]}</html>`;

const textData = (dims, parcelInfo) => `There is a parcel yet to been assigned, identified as
${parcelInfo.parcel}!\n
 If you are interested in delivering it, assign it to yourself.\n
 Here are some infos:\n\t
 weight:${parcelInfo.size.weight}\n\t
 dimensions:${dims[0]}x${dims[1]}x${dims[2]}`;

const subjectData = parcelInfo => `New assignment on parcel [${parcelInfo.parcel}]`;

module.exports.handler = async event => {

 let parcelInfoResult = await utils.dynamodb.getItem({
 TableName: "ParcelInfo",
 Key: {
 parcel: {
 S: event.parcel
 }
 }
 }).promise();
 let parcelInfo = utils.ItemToValue(parcelInfoResult.Item);

 let dims = parcelInfo.size.dimensions;
 dims = dims.sort((d1, d2) => d2 - d1);

 const getCouriersParams = {
 TableName: "Couriers",

XXII

 ExpressionAttributeNames: {EM: "email", VN: "visualName"},
 ProjectionExpression: "#EM, #VN",
 Limit: 50,
 };

 const sendResults = [];
 let courierResult;
 do {
 courierResult = await utils.dynamodb.scan(getCouriersParams).promise();
 let sendEmailParams = Object.assign({}, sendEmailParamsTemplate);
 sendEmailParams.Destination.ToAddresses = courierResult.Items
 .map(utils.ItemToValue)
 .map(courier => courier.email || courier.EM);
 sendEmailParams.Message.Body.Html.Data = htmlData(dims, parcelInfo);
 sendEmailParams.Message.Body.Text.Data = textData(dims, parcelInfo);
 sendEmailParams.Message.Subject.Data = subjectData(parcelInfo);
 let sendResult = await utils.ses.sendEmail(sendEmailParams).promise();
 sendResults.push(sendResult.MessageId);
 }
 while (courierResult.LastEvaluatedKey /*&& courierResult.Count != 50 */);

 return sendResults;
};

XXIII

7.1.4 Cart API CloudFormation
{
 "AWSTemplateFormatVersion": "2010-09-09", "Parameters": {
 "DomainNameParameter": {
 "Type": "String", "Description": "The unique name of the domain"
 }
}, "Resources": {
 "Api": {
 "Type": "AWS::ApiGateway::RestApi", "Properties": {
 "Name": {
 "Fn::Join": [
 "-", [
 "CartApi", {
 "Ref": "DomainNameParameter"
 }
]
]
 }
 }
 }, "ApiGatewayCloudWatchLogsRole": {
 "Type": "AWS::IAM::Role", "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17", "Statement": [
 {
 "Effect": "Allow", "Principal": {
 "Service": [
 "apigateway.amazonaws.com"
]
 }, "Action": [
 "sts:AssumeRole"
]
 }
]
 }, "Policies": [
 {
 "PolicyName": "ApiGatewayLogsPolicy", "PolicyDocument": {
 "Version": "2012-10-17", "Statement": [
 {
 "Effect": "Allow", "Action": [
 "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogGroups",
"logs:DescribeLogStreams",
 "logs:PutLogEvents", "logs:GetLogEvents", "logs:FilterLogEvents"
], "Resource": "*"
 }
]
 }
 }
]
 }
 }, "CartLambdaFunctionsRole": {
 "Type": "AWS::IAM::Role", "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17", "Statement": [
 {
 "Effect": "Allow", "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]

XXIV

 }, "Action": [
 "sts:AssumeRole"
]
 }
]
 }, "Path": "/", "Policies": [
 {
 "PolicyName": "root", "PolicyDocument": {
 "Version": "2012-10-17", "Statement": [
 {
 "Effect": "Allow", "Action": [
 "logs:*"
], "Resource": "arn:aws:logs:*:*:*"
 }, {
 "Effect": "Allow", "Action": [
 "dynamodb:GetItem", "dynamodb:GetRecords", "dynamodb:PutItem", "dynamodb:Query",
"dynamodb:UpdateItem"
], "Resource": [
 {
 "Ref": "Carts"
 }, {
 "Fn::Join": [
 "", [
 {
 "Ref": "Carts"
 }, "/*"
]
]
 }
]
 }, {
 "Effect": "Allow", "Action": [
 "dynamodb:GetItem", "dynamodb:GetRecords", "dynamodb:Query"
], "Resource": [
 {
 "Ref": "DomainSettings"
 }, {
 "Fn::Join": [
 "", [
 {
 "Ref": "DomainSettings"
 }, "/*"
]
]
 }, {
 "Ref": "ProductDomainSettings"
 }, {
 "Fn::Join": [
 "", [
 {
 "Ref": "ProductDomainSettings"
 }, "/*"
]
]
 }
]
 }
]
 }

XXV

 }
]
 }
 }, "PrivateCartLambdaFunctionRole": {
 "Type": "AWS::IAM::Role", "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17", "Statement": [
 {
 "Effect": "Allow", "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 }, "Action": [
 "sts:AssumeRole"
]
 }
]
 }, "Path": "/", "Policies": [
 {
 "PolicyName": "root", "PolicyDocument": {
 "Version": "2012-10-17", "Statement": [
 {
 "Effect": "Allow", "Action": [
 "logs:*"
], "Resource": "arn:aws:logs:*:*:*"
 }, {
 "Effect": "Allow", "Action": [
 "dynamodb:GetItem", "dynamodb:GetRecords", "dynamodb:PutItem", "dynamodb:Query",
"dynamodb:UpdateItem"
], "Resource": [
 {
 "Ref": "DomainSettings"
 }, {
 "Fn::Join": [
 "", [
 {
 "Ref": "DomainSettings"
 }, "/*"
]
]
 }, {
 "Ref": "ProductDomainSettings"
 }, {
 "Fn::Join": [
 "", [
 {
 "Ref": "ProductDomainSettings"
 }, "/*"
]
]
 }
]
 }
]
 }
 }
]
 }
 }, "AuthorizerLambdaFunctionRole": {

XXVI

 "Type": "AWS::IAM::Role", "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17", "Statement": [
 {
 "Effect": "Allow", "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 }, "Action": [
 "sts:AssumeRole"
]
 }
]
 }, "Path": "/", "Policies": [
 {
 "PolicyName": "root", "PolicyDocument": {
 "Version": "2012-10-17", "Statement": [
 {
 "Effect": "Allow", "Action": [
 "logs:*"
], "Resource": "arn:aws:logs:*:*:*"
 }, {
 "Effect": "Allow", "Action": [
 "dynamodb:GetItem", "dynamodb:GetRecords", "dynamodb:PutItem", "dynamodb:Query",
"dynamodb:UpdateItem"
], "Resource": "arn:aws:dynamodb:*:*:table/Registrations"
 }
]
 }
 }
]
 }
 }, "ApiStage": {
 "DependsOn": [
 "ApiGatewayAccount"
], "Type": "AWS::ApiGateway::Stage", "Properties": {
 "DeploymentId": {
 "Ref": "ApiDeployment"
 }, "MethodSettings": [
 {
 "DataTraceEnabled": true, "HttpMethod": "*", "LoggingLevel": "INFO", "ResourcePath": "/*"
 }
], "RestApiId": {
 "Ref": "Api"
 }, "StageName": "LATEST"
 }
 }, "ApiGatewayAccount": {
 "Type": "AWS::ApiGateway::Account", "Properties": {
 "CloudWatchRoleArn": {
 "Fn::GetAtt": [
 "ApiGatewayCloudWatchLogsRole", "Arn"
]
 }
 }
 }, "ApiDeployment": {
 "Type": "AWS::ApiGateway::Deployment", "Properties": {
 "RestApiId": {
 "Ref": "Api"
 }, "StageName": "DummyStage"

XXVII

 }
 }, "CartsResource": {
 "Type": "AWS::ApiGateway::Resource", "Properties": {
 "RestApiId": {
 "Ref": "Api"
 }, "ParentId": {
 "Fn::GetAtt": [
 "Api", "RootResourceId"
]
 }, "PathPart": "carts"
 }
 }, "DomainSettingsResource": {
 "Type": "AWS::ApiGateway::Resource", "Properties": {
 "RestApiId": {
 "Ref": "Api"
 }, "ParentId": {
 "Fn::GetAtt": [
 "Api", "RootResourceId"
]
 }, "PathPart": "domain-settings"
 }
 }, "RegistrationsResource": {
 "Type": "AWS::ApiGateway::Resource", "Properties": {
 "RestApiId": {
 "Ref": "Api"
 }, "ParentId": {
 "Fn::GetAtt": [
 "Api", "RootResourceId"
]
 }, "PathPart": "registration"
 }
 }, "GetCartPermission": {
 "Type": "AWS::Lambda::Permission", "Properties": {
 "Action": "lambda:invokeFunction", "FunctionName": {
 "Ref": "GetCartFunction"
 }, "Principal": "apigateway.amazonaws.com", "SourceArn": {
 "Fn::Join": [
 "", [
 "arn:aws:execute-api:", {
 "Ref": "AWS::Region"
 }, ":", {
 "Ref": "AWS::AccountId"
 }, ":", {
 "Ref": "Api"
 }, "/LATEST/GET/carts"
]
]
 }
 }
 }, "AddToCartPermission": {
 "Type": "AWS::Lambda::Permission", "Properties": {
 "Action": "lambda:invokeFunction", "FunctionName": {
 "Ref": "AddToCartFunction"
 }, "Principal": "apigateway.amazonaws.com", "SourceArn": {
 "Fn::Join": [
 "", [
 "arn:aws:execute-api:", {
 "Ref": "AWS::Region"
 }, ":", {

XXVIII

 "Ref": "AWS::AccountId"
 }, ":", {
 "Ref": "Api"
 }, "/LATEST/PUT/carts"
]
]
 }
 }
 }, "ConfirmCartPermission": {
 "Type": "AWS::Lambda::Permission", "Properties": {
 "Action": "lambda:invokeFunction", "FunctionName": {
 "Ref": "ConfirmCartFunction"
 }, "Principal": "apigateway.amazonaws.com", "SourceArn": {
 "Fn::Join": [
 "", [
 "arn:aws:execute-api:", {
 "Ref": "AWS::Region"
 }, ":", {
 "Ref": "AWS::AccountId"
 }, ":", {
 "Ref": "Api"
 }, "/LATEST/POST/carts"
]
]
 }
 }
 }, "RemoveFromCartPermission": {
 "Type": "AWS::Lambda::Permission", "Properties": {
 "Action": "lambda:invokeFunction", "FunctionName": {
 "Ref": "RemoveFromCartFunction"
 }, "Principal": "apigateway.amazonaws.com", "SourceArn": {
 "Fn::Join": [
 "", [
 "arn:aws:execute-api:", {
 "Ref": "AWS::Region"
 }, ":", {
 "Ref": "AWS::AccountId"
 }, ":", {
 "Ref": "Api"
 }, "/LATEST/DELETE/carts"
]
]
 }
 }
 }, "LogInPermission": {
 "Type": "AWS::Lambda::Permission", "Properties": {
 "Action": "lambda:invokeFunction", "FunctionName": {
 "Ref": "LogInFunction"
 }, "Principal": "apigateway.amazonaws.com"
 }
 }, "SignUpPermission": {
 "Type": "AWS::Lambda::Permission", "Properties": {
 "Action": "lambda:invokeFunction", "FunctionName": {
 "Ref": "SignUpFunction"
 }, "Principal": "apigateway.amazonaws.com"
 }
 }, "UpdateCartDomainPermission": {
 "Type": "AWS::Lambda::Permission", "Properties": {
 "Action": "lambda:invokeFunction", "FunctionName": {

XXIX

 "Ref": "UpdateCartDomainSettingsFunction"
 }, "Principal": "apigateway.amazonaws.com"
 }
 }, "UpdateCartDomainProductSettingsPermission": {
 "Type": "AWS::Lambda::Permission", "Properties": {
 "Action": "lambda:invokeFunction", "FunctionName": {
 "Ref": "UpdateCartDomainProductSettingsFunction"
 }, "Principal": "apigateway.amazonaws.com"
 }
 }, "GetCartRequest": {
 "DependsOn": "GetCartPermission", "Type": "AWS::ApiGateway::Method", "Properties": {
 "AuthorizationType": "CUSTOM", "AuthorizerId": {
 "Ref": "Authorizer"
 }, "HttpMethod": "GET", "Integration": {
 "Type": "AWS", "IntegrationHttpMethod": "POST", "Uri": {
 "Fn::Join": [
 "", [
 "arn:aws:apigateway:", {
 "Ref": "AWS::Region"
 }, ":lambda:path/2015-03-31/functions/", {
 "Fn::GetAtt": [
 "GetCartFunction", "Arn"
]
 }, "/invocations"
]
]
 }, "IntegrationResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }, "ResourceId": {
 "Ref": "CartsResource"
 }, "RestApiId": {
 "Ref": "Api"
 }, "MethodResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }
 }, "AddToCartRequest": {
 "DependsOn": "AddToCartPermission", "Type": "AWS::ApiGateway::Method", "Properties": {
 "AuthorizationType": "CUSTOM", "AuthorizerId": {
 "Ref": "Authorizer"
 }, "HttpMethod": "PUT", "Integration": {
 "Type": "AWS", "IntegrationHttpMethod": "POST", "Uri": {
 "Fn::Join": [
 "", [
 "arn:aws:apigateway:", {
 "Ref": "AWS::Region"
 }, ":lambda:path/2015-03-31/functions/", {
 "Fn::GetAtt": [
 "AddToCartFunction", "Arn"
]

XXX

 }, "/invocations"
]
]
 }, "IntegrationResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
], "RequestTemplates": {
 "application/json": {
 "Fn::Join": [
 "", [
 "{", "\"product\": \"$input.params('product')\"", "}"
]
]
 }
 }
 }, "RequestParameters": {
 "method.request.querystring.product": true
 }, "ResourceId": {
 "Ref": "CartsResource"
 }, "RestApiId": {
 "Ref": "Api"
 }, "MethodResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }
 }, "ConfirmCartRequest": {
 "DependsOn": "ConfirmCartPermission", "Type": "AWS::ApiGateway::Method", "Properties": {
 "AuthorizationType": "CUSTOM", "AuthorizerId": {
 "Ref": "Authorizer"
 }, "HttpMethod": "POST", "Integration": {
 "Type": "AWS", "IntegrationHttpMethod": "POST", "Uri": {
 "Fn::Join": [
 "", [
 "arn:aws:apigateway:", {
 "Ref": "AWS::Region"
 }, ":lambda:path/2015-03-31/functions/", {
 "Fn::GetAtt": [
 "ConfirmCartFunction", "Arn"
]
 }, "/invocations"
]
]
 }, "IntegrationResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }, "ResourceId": {
 "Ref": "CartsResource"
 }, "RestApiId": {

XXXI

 "Ref": "Api"
 }, "MethodResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }
 }, "RemoveFromCartRequest": {
 "DependsOn": "RemoveFromCartPermission", "Type": "AWS::ApiGateway::Method", "Properties":
{
 "AuthorizationType": "CUSTOM", "AuthorizerId": {
 "Ref": "Authorizer"
 }, "HttpMethod": "POST", "Integration": {
 "Type": "AWS", "IntegrationHttpMethod": "POST", "Uri": {
 "Fn::Join": [
 "", [
 "arn:aws:apigateway:", {
 "Ref": "AWS::Region"
 }, ":lambda:path/2015-03-31/functions/", {
 "Fn::GetAtt": [
 "RemoveFromCartFunction", "Arn"
]
 }, "/invocations"
]
]
 }, "IntegrationResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }, "ResourceId": {
 "Ref": "CartsResource"
 }, "RestApiId": {
 "Ref": "Api"
 }, "MethodResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }
 }, "Authorizer": {
 "Type": "AWS::ApiGateway::Authorizer", "Properties": {
 "AuthorizerCredentials": {
 "Fn::GetAtt": [
 "AuthorizerLambdaFunctionRole", "Arn"
]
 }, "AuthorizerResultTtlInSeconds": "300", "AuthorizerUri": {
 "Fn::Join": [
 "", [
 "arn:aws:apigateway:", {
 "Ref": "AWS::Region"
 }, ":lambda:path/2015-03-31/functions/", {
 "Fn::GetAtt": [

XXXII

 "CheckTokenFunction", "Arn"
]
 }, "/invocations"
]
]
 }, "Type": "TOKEN", "IdentitySource": "method.request.header.CartAuthToken", "Name":
"DefaultAuthorizer",
 "RestApiId": {
 "Ref": "Api"
 }
 }
 }, "SignUpRequest": {
 "DependsOn": "SignUpPermission", "Type": "AWS::ApiGateway::Method", "Properties": {
 "HttpMethod": "POST", "Integration": {
 "Type": "AWS", "IntegrationHttpMethod": "POST", "Uri": {
 "Fn::Join": [
 "", [
 "arn:aws:apigateway:", {
 "Ref": "AWS::Region"
 }, ":lambda:path/2015-03-31/functions/", {
 "Fn::GetAtt": [
 "SignUpFunction", "Arn"
]
 }, "/invocations"
]
]
 }, "IntegrationResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
], "RequestTemplates": {
 "application/json": {
 "Fn::Join": [
 "", [
 "{", "\"username\": \"$input.params('username')\",", "\"password\":
\"$input.params('password')\"", "}"
]
]
 }
 }
 }, "RequestParameters": {
 "method.request.querystring.username": true, "method.request.querystring.password": true
 }, "ResourceId": {
 "Ref": "RegistrationsResource"
 }, "RestApiId": {
 "Ref": "Api"
 }, "MethodResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }
 }, "LogInRequest": {
 "DependsOn": "LogInPermission", "Type": "AWS::ApiGateway::Method", "Properties": {
 "HttpMethod": "POST", "Integration": {

XXXIII

 "Type": "AWS", "IntegrationHttpMethod": "POST", "Uri": {
 "Fn::Join": [
 "", [
 "arn:aws:apigateway:", {
 "Ref": "AWS::Region"
 }, ":lambda:path/2015-03-31/functions/", {
 "Fn::GetAtt": [
 "LogInFunction", "Arn"
]
 }, "/invocations"
]
]
 }, "IntegrationResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
], "RequestTemplates": {
 "application/json": {
 "Fn::Join": [
 "", [
 "{", "\"username\": \"$input.params('username')\",", "\"password\":
\"$input.params('password')\"", "}"
]
]
 }
 }
 }, "RequestParameters": {
 "method.request.querystring.username": true, "method.request.querystring.password": true
 }, "ResourceId": {
 "Ref": "RegistrationsResource"
 }, "RestApiId": {
 "Ref": "Api"
 }, "MethodResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }
 }, "UpdateCartDomainProductSettingsRequest": {
 "DependsOn": [
 "UpdateCartDomainProductSettingsPermission"
], "Type": "AWS::ApiGateway::Method", "Properties": {
 "HttpMethod": "PUT", "Integration": {
 "Type": "AWS_PROXY", "IntegrationHttpMethod": "POST", "Uri": {
 "Fn::Join": [
 "", [
 "arn:aws:apigateway:", {
 "Ref": "AWS::Region"
 }, ":lambda:path/2015-03-31/functions/", {
 "Fn::GetAtt": [
 "UpdateCartDomainProductSettingsFunction", "Arn"
]
 }, "/invocations"
]
]

XXXIV

 }, "IntegrationResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }, "ResourceId": {
 "Ref": "DomainSettingsResource"
 }, "RestApiId": {
 "Ref": "Api"
 }, "MethodResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }
 }, "UpdateCartDomainSettingsRequest": {
 "DependsOn": [
 "UpdateCartDomainPermission"
], "Type": "AWS::ApiGateway::Method", "Properties": {
 "HttpMethod": "PATCH", "Integration": {
 "Type": "AWS_PROXY", "IntegrationHttpMethod": "POST", "Uri": {
 "Fn::Join": [
 "", [
 "arn:aws:apigateway:", {
 "Ref": "AWS::Region"
 }, ":lambda:path/2015-03-31/functions/", {
 "Fn::GetAtt": [
 "UpdateCartDomainSettingsFunction", "Arn"
]
 }, "/invocations"
]
]
 }, "IntegrationResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }, "ResourceId": {
 "Ref": "DomainSettingsResource"
 }, "RestApiId": {
 "Ref": "Api"
 }, "MethodResponses": [
 {
 "StatusCode": 200
 }, {
 "StatusCode": 401
 }
]
 }
 }, "GetCartFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.cart.GetCart::handler", "Code": {
 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"

XXXV

 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "CartLambdaFunctionsRole", "Arn"
]
 }
 }, "DependsOn": [
 "Carts"
]
 }, "AddToCartFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.cart.AddToCart::handler", "Code": {
 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"
 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "CartLambdaFunctionsRole", "Arn"
]
 }
 }, "DependsOn": [
 "Carts"
]
 }, "ConfirmCartFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.cart.ConfirmCart::handler", "Code": {
 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"
 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "CartLambdaFunctionsRole", "Arn"
]
 }
 }, "DependsOn": [
 "Carts"
]
 }, "RemoveOfferFromCartsFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.offer.RemoveOfferFromCarts::handler", "Code": {
 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"
 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "CartLambdaFunctionsRole", "Arn"
]
 }
 }, "DependsOn": [
 "Carts"
]
 }, "RemoveFromCartFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.cart.RemoveFromCart::handler", "Code": {
 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"
 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "CartLambdaFunctionsRole", "Arn"
]
 }
 }, "DependsOn": [
 "Carts"
]
 }, "CheckTokenFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.user.registration.CheckToken::handler", "Code": {

XXXVI

 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"
 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "AuthorizerLambdaFunctionRole", "Arn"
]
 }
 }, "DependsOn": [
 "Registrations"
]
 }, "LogInFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.user.registration.LogIn::handler", "Code": {
 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"
 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "AuthorizerLambdaFunctionRole", "Arn"
]
 }
 }, "DependsOn": [
 "Registrations"
]
 }, "SignUpFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.user.registration.SignUp::handler", "Code": {
 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"
 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "AuthorizerLambdaFunctionRole", "Arn"
]
 }
 }, "DependsOn": [
 "Registrations"
]
 }, "UpdateCartDomainSettingsFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.cart.UpdateCartDomainSettings::handler", "Code": {
 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"
 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "PrivateCartLambdaFunctionRole", "Arn"
]
 }
 }, "DependsOn": [
 "DomainSettings"
]
 }, "UpdateCartDomainProductSettingsFunction": {
 "Type": "AWS::Lambda::Function", "Properties": {
 "Handler": "it.balsick.cloud.aws.thesis.cart.UpdateCartDomainProductSettings::handler",
"Code": {
 "S3Bucket": "lambdafunctions", "S3Key": "javafunctions.zip"
 }, "Runtime": "java8", "Role": {
 "Fn::GetAtt": [
 "PrivateCartLambdaFunctionRole", "Arn"
]
 }
 }, "DependsOn": [
 "ProductDomainSettings"
]
 }, "Carts": {

XXXVII

 "Type": "AWS::DynamoDB::Table", "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "user", "AttributeType": "S"
 }, {
 "AttributeName": "item", "AttributeType": "S"
 }
], "KeySchema": [
 {
 "AttributeName": "user", "KeyType": "HASH"
 }, {
 "AttributeName": "item", "KeyType": "RANGE"
 }
], "ProvisionedThroughput": {
 "ReadCapacityUnits": 1, "WriteCapacityUnits": 1
 }, "TableName": "Carts"
 }
 }, "DomainSettings": {
 "Type": "AWS::DynamoDB::Table", "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "settingKey", "AttributeType": "S"
 }
], "KeySchema": [
 {
 "AttributeName": "settingKey", "KeyType": "HASH"
 }
], "ProvisionedThroughput": {
 "ReadCapacityUnits": 1, "WriteCapacityUnits": 1
 }, "TableName": "DomainSettings"
 }
 }, "ProductDomainSettings": {
 "Type": "AWS::DynamoDB::Table", "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "product", "AttributeType": "S"
 }, {
 "AttributeName": "settingKey", "AttributeType": "S"
 }
], "KeySchema": [
 {
 "AttributeName": "product", "KeyType": "HASH"
 }, {
 "AttributeName": "settingKey", "KeyType": "RANGE"
 }
], "ProvisionedThroughput": {
 "ReadCapacityUnits": 1, "WriteCapacityUnits": 1
 }, "TableName": "ProductDomainSettings"
 }
 }, "Registrations": {
 "Type": "AWS::DynamoDB::Table", "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "username", "AttributeType": "S"
 }
], "KeySchema": [
 {
 "AttributeName": "username", "KeyType": "HASH"
 }

XXXVIII

], "ProvisionedThroughput": {
 "ReadCapacityUnits": 1, "WriteCapacityUnits": 1
 }, "TableName": "Registrations"
 }
 }
}
}

XXXIX

7.1.5 AppSync Courier Authentication check-token

7.1.5.1 authenticate.js

const SECRET_JWT_KEY = "YwuF0wvvYwKJG4j3";
const jwt = require('jsonwebtoken');

const validate = token => {
 try {
 const decoded = jwt.verify(token, SECRET_JWT_KEY);
 console.log(decoded);
 return decoded.sub;
 } catch (e) {
 console.log(e);
 return null;
 }
};

module.exports = {validate: validate};

7.1.5.2 graphql-authenticate.js

'use strict'

const validate = require('./authenticate').validate;

exports.handler = async event => {
 console.log(event);
 const principal = validate(event.token);
 if (!principal)
 return {
 errorType: "AUTHORIZATION_ERROR",
 errorMessage: "Error with authorization token"
 };
 switch (event.field) {
 case "createBookReview":
 case "updateBookReview":
 case "deleteBookReview":
 let result = event.arguments;
 result.user = principal;
 return result;
 default:
 return "unable to resolve "+event.field;
 }
};

XL

7.1.6 Java vs Node.js
Here they are presented the Java and the Node.js code used to test the cold start and the test,

written in Java, that invokes the functions.

7.1.6.1 Java Lambda function

public class LogIn {

 public Result handler(LogInRequest request, Context context) {

 Registration registration;
 try {
 registration = DDBInterface.getItem(Registration.class, request.getUser());
 } catch (TooManyResultsException | ItemNotFoundException e1) {
 e1.printStackTrace();
 return new ErrorResult(ErrorType.BAD_REQUEST);
 }
 String salt = registration.getSalt();
 MessageDigest digest;
 try {
 digest = MessageDigest.getInstance(MessageDigestAlgorithms.SHA_256);
 digest.reset();
 digest.update(salt.getBytes());
 byte[] hashedBytes = digest.digest(Utils.stringToByte(request.getPassword()));
 String hashedPassword = new String(hashedBytes);
 if (!hashedPassword.equals(registration.getHashedPassword()))
 return new ErrorResult(ErrorType.UNAUTHORIZED);
 } catch (Exception ex) {
 return new ErrorResult(ErrorType.BAD_REQUEST);
 }

 Algorithm algorithmHS;
 try {
 algorithmHS = Algorithm.HMAC256(UserUtils.SECRET_JWT_KEY);
 } catch (IllegalArgumentException | UnsupportedEncodingException e) {
 e.printStackTrace();
 return new ErrorResult(ErrorType.UNSPECIFIED);
 }
 String token = JWT.create()
 .withIssuer("auth0")
 .withSubject(request.getUser())
 .sign(algorithmHS);
 return new GetTokenResult(token);
 }
}

XLI

7.1.6.2 Node.js function

const shipping_utils = require('../shipping-utils');
const utils = require('../utils');
const crypto = require('crypto');

exports.handler = async (event, context) => {
 let data = await utils.dynamodb.getItem({
 Key: {
 "courier": {
 S: event.courier
 }
 },
 TableName: "CourierRegistrations"
 }).promise();
 if (!data.Item)
 return {resultCode: 401};
 const courier = utils.ItemToValue(data.Item);
 const hmac = crypto.createHmac('sha256', courier.salt);
 hmac.update(event.password);
 if (hmac.digest('hex') !== courier.hashedPassword)
 return {resultCode: 401};
 const jwt = require('jsonwebtoken');
 const token = jwt.sign({ iss: 'auth0', courier: event.courier}, shipping_utils.SECRET_JWT_KEY);
 return {
 resultCode: 200,
 body: JSON.stringify(token)
 };
};

XLII

7.1.6.3 Java vs Node.js Test
import static java.util.concurrent.CompletableFuture.allOf;
import static java.util.concurrent.CompletableFuture.runAsync;

class LogInTests {

 private static String
 logInFunction =
 "aws lambda invoke --function-name UsedBookStoreThesis-LogInFunction --payload " +
 "\"{\\\"user\\\":\\\"girolamo\\\",\\\"password\\\":\\\"password\\\"}\" LogInFunction.txt";
 private static String
 courierLogInFunction =
 "aws lambda invoke --function-name UsedBookStoreThesis-CourierLogIn --payload " +
 "\"{\\\"courier\\\":\\\"ermenegildo\\\",\\\"password\\\":\\\"password\\\"}\" CourierLo-
gIn.txt";
 private static IntConsumer lifRunnable = (ignored) -> execute(logInFunction);
 private static IntConsumer clifRunnable = (ignored) -> execute(courierLogInFunction);

 public static void main(String[] args) throws ExecutionException, InterruptedException {
 for (int i = 0; i < 2; i++)
 sleepAndInvokeFunctions(15 * 60 * 1000, 300);
 for (int i = 0; i < 6; i++)
 sleepAndInvokeFunctions(2 * (6 - i) * 60 * 1000, 60);
 }

 private static void sleepAndInvokeFunctions(long millis, int totQty)
 throws ExecutionException, InterruptedException {
 for (int qty : new Integer[]{1, 5, 10, 15, 20}) {
 sleep(millis);
 allOf(getCompletableFutures(qty, totQty)).get();
 }
 }

 private static void sleep(long millis) {
 System.out.println("[" + new SimpleDateFormat("MM-dd HH:mm:ss").format(
 Calendar.getInstance().getTime()) + "] Started waiting for " + millis + "ms");
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 private static CompletableFuture[] getCompletableFutures(int parallelInstances, int totCount) {
 return IntStream.range(0, parallelInstances)
 .mapToObj(ignored -> new CompletableFuture[]{
 runAsync(() -> IntStream.range(0, totCount / parallelInstances)
 .forEach(lifRunnable)),
 runAsync(() -> IntStream.range(0, totCount / parallelInstances)
 .forEach(clifRunnable))})
 .flatMap(Arrays::stream)
 .toArray(CompletableFuture[]::new);
 }
 //[...]
}

	1 Microservices
	1.1 Definition
	1.2 Microservices vs Monolith
	1.2.1 Advantages
	1.2.2 Disadvantages

	1.3 Scalability
	1.3.1 X-Axis scaling
	1.3.2 Y-Axis scaling
	1.3.3 Z-Axis scaling
	1.3.4 From Conway’s Law to Bounded Context

	1.4 Persistency in microservices
	1.4.1 Saga

	1.5 Microservices Patterns
	1.5.1 Database triggers
	1.5.2 Event sourcing
	1.5.3 Command Query Responsibility Segregation
	1.5.4 Transaction log tailing
	1.5.5 Communication among services
	1.5.6 Service Registry
	1.5.7 Service discovery
	1.5.8 API Gateway

	1.6 Deployment of Microservice
	1.6.1 Multiple service instance per host
	1.6.2 Service instance per host
	1.6.3 Serverless Deployment

	2 Serverless
	2.1 Serverless computing
	2.2 Function as a Service
	2.2.1 Components of a serverless architecture
	2.2.2 Ports and Adapters
	2.2.3 API Gateway
	2.2.4 Pub/Sub messaging
	2.2.5 Message Queue

	2.3 FaaS Architecture
	2.3.1 Bounded Context in FaaS
	2.3.2 Communication within the system

	2.4 Commercial solutions
	2.4.1 OpenWhisk
	2.4.2 Amazon Web Services
	2.4.3 Google Cloud Platform
	2.4.3.1 Firebase

	2.4.4 Microsoft Azure
	2.4.5 Considerations
	2.4.6 Serverless framework

	3 AWS Serverless
	3.1 Services
	3.1.1 Identity and Access Management (IAM)
	3.1.2 API Gateway
	3.1.3 Cognito
	3.1.4 DynamoDB
	3.1.5 Kinesis
	3.1.6 Simple Cloud Storage Service (S3)
	3.1.7 CloudFormation
	3.1.8 Simple Notification Service (SNS)
	3.1.9 Step Functions
	3.1.10 AppSync
	3.1.10.1 GraphQL

	3.1.11 AWS Lambda Function invocation types

	3.2 Saga
	3.3 Authentication
	3.3.1 jwt

	4 Prototype
	4.1 Used Book Store: the prototype
	4.2 Bounded Contexts
	4.2.1 Book
	4.2.1.1 Book-Review

	4.2.2 User
	4.2.3 Offer
	4.2.4 Cart
	4.2.5 Order
	4.2.6 Shipment

	4.3 Distributed transactions and saga
	4.3.1 The product availability problem
	4.3.2 Shipment transactions

	4.4 Considerations on API
	4.4.1 AWS AppSync: the anti-REST
	4.4.2 AWS API Gateway: the classic choice
	4.4.3 The AppSync auth problem
	4.4.4 Public Cart API – Part 1

	4.5 Considerations on CloudFormation
	4.5.1 Public Cart API – Part 2

	4.6 UBS API
	4.6.1 RESTful APIs
	4.6.1.1 Book
	4.6.1.2 Cart
	4.6.1.3 Offer
	4.6.1.4 Order
	4.6.1.5 Shipment
	4.6.1.6 User

	4.7 The projects’ structures
	4.8 Java vs Node.js: Log In functions comparison
	4.8.1 Considerations

	5 Conclusions
	6 References
	7 Appendix
	7.1 Code
	7.1.1 Java projects gradle
	7.1.1.1 Root project build.gradle
	7.1.1.2 Utils build.gradle
	7.1.1.3 Context’s build.gradle example: Offer

	7.1.2 Java code samples
	7.1.2.1 ProxyRequest mapping
	7.1.2.2 Interface with DynamoDB: DDBInterface
	7.1.2.3 Result
	7.1.2.4 SuccessResult
	7.1.2.5 CreateBook

	7.1.3 Node.js code samples
	7.1.3.1 Courier Sign Up
	7.1.3.2 Notify all couriers for assignment

	7.1.4 Cart API CloudFormation
	7.1.5 AppSync Courier Authentication check-token
	7.1.5.1 authenticate.js
	7.1.5.2 graphql-authenticate.js

	7.1.6 Java vs Node.js
	7.1.6.1 Java Lambda function
	7.1.6.2 Node.js function
	7.1.6.3 Java vs Node.js Test

		Politecnico di Torino
	2018-07-16T07:42:12+0000
	Politecnico di Torino
	Giorgio Bruno
	S

