
POLITECNICO DI TORINO

Department of Control and Computer Engineering
Master Degree Course in Computer Engineering

Master Degree Thesis

Predicting Bicycle Availablility By
Means Of Data Mining Algorithms

Supervisors:
Prof. Paolo Garza
Prof. Luca Cagliero
Prof. Silvia Chiusano

Sorath Asnani

Academic Year 2017-2018





This work is dedicated to my beloved Parents
for their unconditional love and support

throughout my graduate studies





Summary

The concerns about global warming, air and noise pollutions, unstable fuel prices
and road safety have caused policy makers to examine the need for sustainable
means of transport. In the context of better urban mobility systems, the public
Bicycle Sharing Systems (BSSs) have seen a great development in recent years.
Community shared bicycle programs are being promoted all over the world as a
“green” transportation system.

A Bike Sharing System (BSS) is an innovative transportation service available
to the public, usually aimed for short-distance trips. The core idea of a BSS is
that a user takes a bicycle from station A, uses that bike to travel to another
location and returns the bicycle at station B. Community shared bicycling programs
offer an environmentally friendly and inexpensive means of inner-city transportation.

The bike sharing systems have some problems related to limited number of
bicycles and limited number of free slots in stations. In some occasions, it is not
possible to pick-up bicycle at a certain station because the station might be empty
or it might contain broken bikes. It may also happen that the user do not find a
free parking slot to drop the bicycle at a certain station close to the destination.

Although in some bike sharing systems, there are trucks which are used to
balance the bicycles by taking them from stations which are full or have more
bicycles and leaving those bicycles in stations which are empty or have lesser
bicycles, but a user who has already arrived at a station to pick a bike cannot wait
for the trucks to get a bike. Similarly when a user arrives at a station which is
completely full of bikes, he cannot wait for trucks to take some bikes so that he can
park the bike. These situations are the causes of problems for the customers.

One possible solution to these problems is to enable the users to know about
the availability of bicycles before the departure or arrival time so that they can go
directly to those stations where bikes/parking slots are available. This can be done
by predicting the number of bikes at each station at some future point of time. The
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future prediction of the bicycle availability will greatly enhance the performance
and reliability of the Bike Sharing Systems.

The major research goal of the thesis is to study and compare some automatic
models to predict the availability of bikes some minutes ahead. The study has been
performed on the data set of Bicing, a Bike Sharing System of Barcelona.

Data pre-processing is the critical part of this research. Extensive efforts
have been put in identifying the dirty data in the available data set and to perform
data cleaning in order to ensure the correctness of the data to be trained and tested.

After reviewing the literature, we decided to use three models for predicting
the number of bikes, the ARMA, the Decision Tree and the Random Forest models.
After the implementation of these models, a Baseline model based on the Historic
Mean was considered to measure the performance of the three models.

After data cleaning, the total number of stations used in this study is 268.
The training data set comprises of 800 continuous hours (from 2008-05-16 05:00 to
2008-06-27 06:58) with the timestamps separated by 2 minutes. The testing data
set is composed of non-overlapping data of 30 hours (from 2008-06-28 05:00 to
2008-06-29 15:58). The timestamps between 24:00 and 05:00 are not considered in
this study. All the models were trained using the same data sets. The predictions
are made for 10 minutes ahead to 60 minutes ahead, separated by 10-minute
intervals.

The performance of these models is calculated in terms of the absolute errors. The
minimum, the maximum and the mean absolute errors have been computed for all
the models, including the Historic Mean Baseline model. Six prediction models
are generated from each of the four algorithms, one prediction model for each
prediction time. In total 24 prediction models are generated.

The mean absolute errors are calculated for all the prediction models in order to
compare and to rank the performance of the models. The Random Forest algorithm
showed the highest mean absolute errors for all the prediction time periods, hence
its performance to predict the number of bikes is worst in our case.

The performance of Decision Tree model remained in between the ARMA
and the Random Forest, both in terms of training time and also in the mean
absolute errors. But its performance was less than the Historic Mean Baseline model.

On the other hand, an interesting fact was identified between the ARMA
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and the Historic Mean Baseline model. For the predictions of 10, 20 and 30
minutes ahead, the Baseline model showed the least mean absolute errors, while
for higher time instances, such as 40, 50 and 60 minutes ahead, the performance
of ARMA model was the best among all. Such results can lead us to the
conclusions that the ARMA Model can be the best choice for predictions beyond
30 minutes, while for shorter terms, the Historic Mean can be considered as the best.

Behind the success of ARMA model is its long computational time. Prediction
models with ARMA were trained in about 42 hours which is about 7 times greater
than the Random Forest models.

The results in this study have shown that the exact number of bikes are
quite predictable for near future. The predictions can be useful for both the system
administration and the users. From the point of view of the system administration,
the predictions can help in re-balancing operation of the bicycles. The truck
operators can exploit the information about the availability of bicycles in future at
each station and can schedule the re-balancing operations beforehand. From the
users’ perspectives, the predictions can enhance user satisfaction and reliability and
eventually will result in enhancing overall system performance.

Hence the research was concluded by considering the ARMA model to be
the best among other three models i.e. the Decision Tree, the Random Forest and
the Historic Mean Baseline model for predictions from 40 to 60 minutes ahead.
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Chapter 1

Introduction

1.1 Background

Growing concerns about global warming, air and noise pollutions, unstable fuel
prices and road safety have caused policy makers to examine the need for sustainable
means of transport. In the context of better urban mobility systems, the public
Bicycle Sharing Systems (BSSs) have seen a great development in recent years.
The idea of shared use of bicycles was initiated by Europe and then was expanded
throughout the world [1]. Community shared bicycle programs are being promoted
all over the world as a “green” transportation system.

A BSS comprises of many self-service stations located throughout cities which gives
flexibility to users to pick-up bikes from one station, use that bike to travel to their
destinations, and finally drop-off the bike at another station. Community shared
bicycle sharing programs are targeted to daily mobility in urban areas. They are
typically used by commuters as a preferred means of transport to travel to and
from home and work-place and vise versa, provided that the distance between
home and work place is not too long. Furthermore, such public bicycle sharing
programs are inexpensive and convenient transport modes for students to travel to
their universities on regular basis.

Users are required to subscribe to a bicycle sharing program in order to access
bicycles. The subscription cost typically covers bicycle purchase and maintenance
costs along with storage and parking responsibilities. In this way, users do not need
to worry about the maintenance as they would do in case of private vehicles.

Public bicycle sharing programs provide a number of environmental, social
and transportation related benefits. A BSS is the most feasible solution for the
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1 – Introduction

“last mile” and “first mile” problems. The last mile refers to the distance between
existing public transport stop and the final destination that might be one’s home
or workplace. Similarly, the first mile is the distance from a place to the public
transport point. That distance might be too far to cover on foot. In such cases
the presence of bicycles seems to be the most convenient option for the users.
Hence, a BSS bridges the gap created by the existing public transport systems.
Furthermore, the availability of BSS gives a variety of mobility options. It has lower
implementation and operational costs as compared to the tram and bus networks
within a city. A BSS is an environmentally-friendly transport mode in a sense
that it offers reduced traffic congestion and reduced fuel usage which eventually
decreases air pollution and there-by increasing health benefits.

1.2 Problem Statement
Besides the above mentioned advantages, bike sharing systems also have some
problems related to limited number of bicycles and limited number of free slots in
stations. In some occasions, it is not possible to pick-up bicycle at a certain station
because the station might be empty or it might contain broken bikes. It may also
happen that the user do not find a free parking slot to drop the bicycle at a certain
station close to the destination.

Problem of not finding a bike can be solved by taking another public transport
such as a tram, a bus or a train. However, if a person is currently holding a bike,
and cannot leave it at the destination station, it may create an inconvenience and
a reason for avoiding the use of the system in future.

Under such conditions, a prediction about the number of bikes a user will
find in the next hour or so at a certain station may improve the system reliability
and increase its usage. For example, if a person knows that he need to pick-up
a bicycle in next 30 minutes from a station, and the prediction shows the
unavailability of bike at that station, he may change either the departure time or
go to another station. Similarly, if a person knows in advance that in next hour
there would not be any free parking slot at a certain station, he might plan his
journey according to the arrival time or may goes to another station.

Bicycle availability prediction is useful to both the system administrators
and the users. From the perspective of service operators, the prediction of bikes will
enable them to build a schedule for their workers to redistribute the bikes across
several stations in order to re-balance the stations. Typically they use trucks to
collect bikes from stations which contain many bikes or are full and leave them to
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the stations which are empty or have less number of bikes at a certain time.

This work particularly focuses on predicting the number of bikes in stations
in some future point of time by using different prediction models.

1.3 Motivation
This study is based on the bike sharing system of Barcelona, known as Bicing.
Figure 1.1 taken from the Bicing website [2], shows the number of available bikes
and the parking spaces at the station number 458. It does not tells the availability
of bikes in future time. This is the major motivation for this research i.e. to predict
the availability of the bikes.

Figure 1.1: Availability of Bikes at a Bicing Station

1.4 Research Goals
Following are the major research goals:

• To predict the number of bikes in Bicing stations from 10 minutes ahead to
60 minutes ahead.

• To implement the Auto-Regressive Moving Average (ARMA) Model for the
prediction of Bikes.

• To train the predictive models using also the Decision Tree and the Random
Forest Algorithms.
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• To create the Historic Mean Baseline Model to compare the performance of
the above 3 models.

• To analyze the time taken by each of these models to generate the trained
models.

• To identify the best and the worst model to be used for bicycle predictions
based on the mean absolute error.

1.5 Document Organization
The complete thesis document is organized into five chapters.

• Chapter 1 provided the introduction to the research and its background study.
It also described the problem statement and the motivation for the research.
Further, the research goals were also discussed.

• Chapter 2 presents the literature review of the research. All the experimental
study conducted, related to the research is briefly described. The weaknesses
of the previous methods are also summarized.

• Chapter 3 discusses all the methodologies, the data set, experimental setup,
and the experiments carried out in this study.

• Chapter 4 presents and discusses all the results of the experiments presented
in the previous chapter. The training time duration of the models is presented
and compared. The performance is calculated in terms of the absolute errors.
Finally, the performance of the predictors is compared on the basis of the
experimental results.

• Chapter 5 discusses the outcomes and results of the study. It presents the
concluding statements on the basis of the experimental results. It describes
the limitations of the study and future recommendations to the researchers
and finally concludes the whole study.
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Chapter 2

Literature Review

2.1 Introduction

A Bike Sharing System (BSS) is an innovative transportation service available
to the public, usually aimed for short-distance trips. The core idea of a BSS is
that a user takes a bicycle from station A, uses that bike to travel to another
location and returns the bicycle at station B. Community shared bicycling programs
offer an environmentally friendly and inexpensive means of inner-city transportation.

Shaheen et al. [1] provides the evolution and generations of community shared
bicycle programs all over the world, including Europe, North and South America,
Asia and Australia. According to the study, Europe has achieved much higher
success in planning and implementing BSSs as compared to other continents of the
world. Among other bicycle sharing programs, “Velo’v” in Lyon, France, “Velib” in
Paris, France and “Bicing” in Barcelona, Spain have been studied widely.

In this thesis, the research has been carried out on the dataset of Barcelona’s
shared bicycle program, Bicing. Bicing was launched in March 2007. Currently, the
network consists of over 420 stations with 6000 bicycles and over 106,635 yearly
subscribers [2]. Stations are situated throughout the city with a distance of around
300 to 400 meters between each one. Many stations are situated next to public
transport stops, which makes the BSS suitable for one-way travel [3]. Each station
has between 15 and 39 parking slots [4].

To rent a bicycle, one swipes the contactless RFID card at a service station
in order to be individually recognized by the system. The bike is then unlocked
from its slot. Bicycles can be used for the first 30 minutes free of charge, every 30
minutes beyond that costs 0.70e for 2 hours. The use of bicycles for more than
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2 hours is discouraged with a penalty rate of 4.20e per hour. When a certain
number of warnings are exceeded, the membership might be cancelled. Bicycle can
be returned by simply placing it in a spare slot at a Bicing station. The bike is
recognized automatically and is then locked into place [3].

Besides the widespread use of community shared bicycles, the unavailability
of bikes or free parking slots in the stations is still the major problem faced by the
customers. There are 2 possible cases of the problem. The first is, when a user
arrive at his nearest station to rent a bicycle, the station is either empty i.e. it does
not contain any bike or it contains broken bikes which cannot be used. In that
case, the user will have to look for other nearby stations for the bike availability. In
the other case, when a user arrive at his destination station, that station might not
have empty slots to leave the bicycle. In that case, the user will have to look for
other nearby stations to return the bicycle. Both of these problems may contribute
greatly to user frustration and dissatisfaction and eventually in decreasing the use
and performance of the BSS.

One possible way to prevent the above mentioned problems is to provide the
predictions for the number of available bikes and/or free slots to the customers.
This will enable the users to know whether there would be any bikes or free slots in
the desired station before actually going to that station. It can greatly contribute in
enhancing customer satisfaction. The goal of this thesis is to implement prediction
algorithms to forecast the number of available bikes upto 60 minutes ahead of time.

2.2 Background and Related Work
This section gives an overview of the prediction algorithms and the related work in
literature in order to familiarize the readers with the core concepts of the algorithms.
With the emergence of more and more BSSs all over the world, the research-areas
are also extending in different dimensions related to the bike sharing systems. The
first subsection gives a broad overview of BSS in general, the second subsection
focuses on bike usage predictions for BSSs and the third subsection presents the
major application areas of the prediction algorithms used in this study.

2.2.1 Bike Sharing Systems
The main goal of extensive research on BSSs is to enhance customer satisfaction by
improving the performance of community shared bicycle services.

A number of studies have focused on finding the optimal locations for Bike Stations.

6



2.2 – Background and Related Work

Chen et al. [5] proposed a system to find optimal locations for bike stations by
predicting the user trip demands as opposed to the traditional urban planners.
They devised a semi-supervised feature selection method to extract customized
features from heterogeneous urban open data to predict bike trip demand and
hence inferring optimal placement of stations. Their method outperformed the
state-of-the-art approaches on recommending locations for optimal bike station
placement and achieved particularly good results in feature selection based on city
specific characteristics. Jimenez et al. [6] proposed a new characteristic known as a
“Turnover Station Ratio” in order to measure the effectiveness degree of each station.
This ratio indicates the number of times a station’s capacity is used in a complete
day. This new ratio together with other ratios such as “Number of Available Bikes”
and “Cumulative Trips”, allow to identify balanced, attractive and effective stations.

Another characteristics which has a great impact on customer satisfaction is
the presence of faulty bikes in stations as investigated by Kaspi et al. [7]. They
found out that faulty and unusable bikes seem to have significant impact on user
satisfaction, even if the number of such bikes is relatively smaller. They concluded
that operators should invest more resources in order to detect and recollect such
damaged bikes. Vassimon [8] studied different factors impacting BSSs in more than
50 cities. He performed an evaluation of the performance and service quality of
BSSs through a benchmarking analysis that relied on Key Performance Indicators
(KPIs) and customer satisfaction. His study provides an interesting statistical
analysis of BSS data and some insights on the related business models.

Optimal bike route planning has also been investigated by various researchers.
Wakamiya et al. [9] proposed a system to enhance GPS-based navigation for bikes.
In order to measure pedestrian congestion, they utilized location based social
network services where they analyzed geo-tagged microblogs to provide the optimal
route planning. Wu and Frias-Martinez [10] investigated the precision of biking
times predicted by Google compared to real biking data from BSS. They concluded
that Google’s biking directions are generally good but longer trips and steep slopes
pose a problem for Google’s formulae and heuristic rules. Therefore they propsed
a new predictive model for computing biking times that improved the accuracy of
Google’s biking time computations by 5%.

New possible improvements for BSSs using Internet of Things (IoT) were
proposed by Razzaque and Clarke [11]. They proposed a potential communication
infrastructure for next-generation BSSs that would offer new services by collecting,
processing and using real-time and non-real-time data about the customers, the
environments and the bikes.
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2.2.2 Forecasting
Real-time monitoring of BSSs is not enough to ensure quality of service. In order to
prevent problems and to improve effectiveness and customer satisfaction, forecasting
of bikes usage is crucial. Various prediction models have been studied by researchers
as discussed in the following paragraphs.

2.2.2.1 Univariate Methods

Prediction methods that use data which contains only one variable, which is to be
predicted, are known as univariate methods. Time is used to index the observation in
such methods. In other words, the univariate methods do not provide other variables
as input for doing predictions. Time series forecasting comes in the category of
univariate methods.

Time Series Forecasting

A time series is a sequence of observations taken sequentially in time [12]. Time
Series Forecasting is the prediction of future values in a time series by taking into
consideration the past and current values of that time series.

Many methods have been developed for the prediction of future values from
sampled data. Naive prediction methods are based on statistical aggregate
functions such as the average, the maximum, the minimum and the median
values of the sampled data. Although they are the simplest methods with low
computational costs, their results are quite constrained.

Time series methods are more powerful as compared to the Naive methods.
They take into account the evolution of system based on historical values
indexed by time. Time series methods vary from the simplest methods such as
Auto-Regressive (AR) and Moving Average (MA) to the most complex variations
of ARMA (VARMA, ARMAX, GARCH, etc) [12]. Such methods are usually
applied in industry and economics to predict stock prices, but the applications
can be extended to almost any area. Time series methods are widely used for
one-dimensional data.

There are several approaches in the literature to predict the availability of
bikes in bike sharing stations. Kaltenbrunner et al. [4] showed an Auto-Regressive
Moving Average (ARMA) Model and Naive approach to forecast the available
number of bikes and Froehlich et al. [13] showed a simple Bayesian Network based
prediction algorithm. In [4], the authors have concluded that predicting the number
of bikes in the next hour using the ARMA Model was more accurate than the
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Naive results. Although the Naive Bayesian prediction based on Bayesian network
in [13] seems to be very simple but useful in bike prediction, the authors used small
number of classes according to percentages (for example, 5 classes: 0% to 20%, ...,
80% to 100%), rather than predicting the actual available number of bikes, which
would be useful for accurate journey planning if a group of people is planning for a
trip. The Bicing system is analyzed in both studies [4], [13].

Yoon et al. [14] devised a personal journey advisor for navigating in Dublin
using BSS. They predicted the availability of bikes in a station in near future
(5 and 60 minutes ahead) with a spatio-temporal prediction system based on
Auto-Regressive Integrated Moving Average (ARIMA), which also takes into
account seasonal trends and spatial correlations. Given the origin and destination,
their application suggests the best pair of stations to take and return a bicycle.

Giot and Cherrier [15] predicted the number of bikes up to 24 hours ahead
at a frequency of one hour using several different regression algorithms. It is
interesting to note that their dataset comprised of 2 years as opposed to other
studies which used several weeks’ data, however, their dataset contained only
network level data rather than station level data.

2.2.2.2 Multivariate Methods

A multivariate system has multiple variables, known as predictors, contributing in
making predictions. Multivariate data will contain environmental characteristics
along with the time value. Some recent studies have shown that considering the
multivariate data is more efficient in terms of predictions as compared to the
univariate data. In case of bike sharing systems, the data can be either univariate
or multivariate. The multivariate methods also consider external factors such
as weather conditions, holidays, festivals and events because these characteristics
influence the bike usage. For such systems, Random Forest learning approach has
been used in the literature.

Decision Tree

Decision Tree [16] is a popular algorithm applied to machine learning problems to
make predictions. A decision tree is an n-ary tree. Its height is equal to one more
than the number of predictors, where the last level contains the leaves and represents
the output values. If the output value is a label instead of a number, the decision
tree may be called as Classification tree.
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Random Forest

Random Forest [17] is an algorithm that uses decision trees to create classification
trees. In order to create classification trees, the procedure randomly selects a
subset of predictors from the original data and build a classification tree based on
it. After creating several trees, a final decision tree is built based on the average
relevance of the predictors, and can be used to make predictions over other sets
of observations. Besides building the decision tree, the Random Forest algorithm
calculates the relevance of each predictor in the real environment.

Dias et al. [18] compared the results of Random Forest algorithm with ARIMA
Model. They investigated the importance of various features and showed that the
most important feature is "minute of the day", followed by weather parameters,
specifically "average humidity". They demonstrated that the Random Forest
algorithm greatly outperformed ARIMA and that predicting the status of stations
two days ahead was feasible almost half of the time. They predicted upto 2 days
ahead if the stations would either be completely full or empty. Although they
have considered the external factors, but like [13], they also did not predicted
the actual number of available bikes, instead they classified the status of stations
in 5 classes such as, full, almost full, slots and bikes available, almost empty or empty.

Several studies focused on demand predictions and availability of bikes to
improve customer experience. Chen at el. [19] proposed a dynamic cluster based
framework for over-demand predictions in BSSs. Based on the contextual factors
such as, time, weather, social and traffic events, they constructed a weighted
correlation network to group stations into similar usage patterns into clusters. They
proposed a Monte Carlo simulation in order to predict the over-demand probability
of each cluster. They applied the proposed model to the real world data of New
York City and Washington D.C. and demonstrated that their framework could
accurately predict over-demand clusters.

Borgnat et al. [20] build a model of the cyclic temporal patterns with a
linear regression and used that for forecasting. They utilized variables such as,
weather, number of users and holiday markers. Their study reveals the spatial and
temporal patterns of activity in the city along with the predictions of available
bikes on hourly or daily basis. They have analyzed the data of Velo’v, the shared
bicycle program of Lyon, France.

Gast el al. [21] focused on Velib, a BSS of Paris. They illustrated the probability
distributions of bike availability. They ranked the stations according to expected
number of available bikes. Their scoring rule lies on two criteria, "no bikes" and
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"one or more bikes", because a customer is mostly interested if there is atleast one
bike available. However, the prediction of the actual number of bikes would likely
to benefit to the system providers.

2.3 Conclusion
This study considers the idea of using neighboring stations as described in [4] and
using the ARMA Model for predicting the number of bikes in near future (10 to 60
minutes ahead). To the best of our knowledge, Decision Trees and Random Forest
have not been used on such data which contains time information and neighbor
stations, without considering the external environmental factors. This is the first
study which will compare the performance of ARMA Model, Decision Tree and
Random Forest with the Baseline Model.
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Chapter 3

Methodology

3.1 Introduction
This chapter provides the detailed study of the Bicing data set and the methodology
for experimental setup. The chapter first introduces the data set and explains the
pre-processing steps to clean the data. It then explains the ARMA, the Decision
Tree, the Random Forest and the Historic Mean Baseline models in detail and
describes the preparation of the data for the experiments.

3.2 Bicing
Bicing is an urban community bike sharing program, managed and maintained by
the city council of Barcelona and the Clear Channel Communications Corporation
[4]. Bicing service is mainly used by the people to commute within the city of
Barcelona.

The Bicing website [2] shows that there are currently more than 420 stations. Each
station has fixed number of slots. Each slot can be in one of the three conditions
at a time as shown in Table 3.1.

Table 3.1: Status of bicycle slots in Bicing stations

Slot Status Meaning
empty without a bicycle
occupied holding a bicycle
out of service either the slot itself or the bicycle it contained is marked as damaged

Users first need to register to the system by paying a fixed amount for yearly
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subscription, after that they receive an RFID card which grants them the access
to use the bicycles. The user swipes the RFID card at a service station to rent
a bicycle. The system recognizes the user and stores information about the bike,
which is then unlocked from its slot. The first 30 minutes of bicycle usage are free
of charge and the subsequent 30 minute intervals cost 0.70e for a maximum of 2
hours. The use of bicycles beyond that time limit is discouraged with a penalty
rate of 4.20e per hour. The continuous use of bicycle for more than 2 hours might
result in the cancellation of membership. Bicycle can be returned by simply placing
it in an empty slot at any Bicing station. The bike is recognized automatically and
is then locked into place.

According to the Bicing website [2], bicycles can be rented all day long except
between 02:00 and 05:00 from Monday to Thursday, while on Friday, the bicycles
can not be withdrawn between 03:00 AM and 05:00 AM. During these hours, the
bicycles can be returned but not withdrawn. The service is open for 24 hours on
Saturdays, Sundays and holidays. However, the service timings were different in
past years. As mentioned in [4], bicycles could be withdrawn from stations between
05:00 and 24:00 from Monday to Friday and on Saturdays and Sundays, the service
remained open for 24 hours.

3.3 Data Set
The dataset used in this study comprises of 284 stations in total. For each station,
the following information is given:

1. Station Id

2. Timestamp

3. Number of bikes available

4. Number of free slots

5. Longitude

6. Latitude

The data is available every 2 minutes from 05:00 to 24:00 for each day. Due to
the unavailability of bike rental service from 24:00 to 05:00, our study is restricted
to the time frame between 005:00 and 24:00. We have used approximately 6 weeks’
data i.e. from May 16, 2008 to June 29, 2008.
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3.4 Architecture of the Prediction Framework
The steps involved in the architecture are shown in figure 3.1. The following sections
describe the overall architecture of the prediction framework.

Figure 3.1: Architecture of the Prediction Framework

3.5 Data Analysis
In the first phase, the provided data set is analyzed and is divided in the training and
the test set. The training data set consists of 800 hours, from 2008-05-16 05:00 to
2008-06-27 06:58. The testing data set comprises of 30 hours, from 2008-06-28 05:00
to 2008-06-29 15:58. As mentioned previously, the time series is in the increments
of 2 minutes, so the training data should have 24,000 rows in total. Similarly, the
testing data should have 900 rows. But the actual number of rows are less than the
required rows because of the presence of some dirty data as described below.

3.5.1 Dirty Data
Time series data are often found with dirty or imprecise values. The Bicing data,
which we have, is noisy due to temporary station closures, technical issues caused
by the maintenance work, Internet connectivity failures, and broken bicycles and
parking slots. Training algorithms can not be applied to the given data set because
it contains dirty time series. In particular, the characteristics due to which we
consider it as dirty data are discussed in the following subsections.

3.5.1.1 Incomplete Data

After analyzing the training and testing data sets, it was found that majority of
the stations contain less than 24,000 and 900 rows for training and testing data sets
respectively. It was due to the fact that there were some missing timestamps in the
data set. No information about the number of bikes and slots was available in those
missing timestamps. A sample of data set is shown in Figure 3.2 which exemplifies
the missing data.

15



3 – Methodology

Figure 3.2: Example of Missing Values in Time Series

3.5.1.2 Incorrect Data

In some stations, incorrect values have been observed. For example, for some
timestamps, the number of used slots (available bikes) and the number of free slots
are both shown as 0, which is not correct. At any time, both of these values cannot
be 0. An example of such data is shown in Figure 3.3.

Figure 3.3: Example of Incorrect Data

3.5.1.3 Inaccurate Data

Inaccuracy in time series data has been also observed in most of the stations.
Sometimes, the number of used and free slots drop significantly, usually near to
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0 as shown in Figure 3.4a. On the other hand, when the time series is quite smooth,
there is sudden deviation of values in just 2 minutes, and after that values become
smooth again, as shown in Figure 3.4b. Such values seem to be practically impossible
and hence are considered as inaccurate.

(a) Sudden drop of values

(b) Sudden deviation in values

Figure 3.4: Examples of Inaccurate Data

3.6 Data Cleaning

Data cleaning is critical to ensure that the data used to train our prediction models
is valid. Due to the presence of dirty data, a 3-step procedure, shown in Figure 3.5,
has been performed to clean the data as described in the following subsections.
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Figure 3.5: Data Cleaning Steps

3.6.1 Observation Removal
The observation removal phase is shown in Figure 3.6. As mentioned previously,
the total number of slots in stations lies between 15 and 39, we considered this
criteria while filtering the data. At first, the sum of used and free slots is computed.
A threshold of value 10 is considered to compare the sum. A threshold value 10 is
considered instead of 15 in order to provide flexibility because in some stations, some
slots might be broken and should not be counted. If the sum of current observation
of used and free slots is less than the threshold, that observation is discarded. This
step also removes the incorrect data where both the used and the free slots are 0.
If the sum is greater than 10, another criteria is established. In that case, the sum
of current observations is compared with the sum of last observation and the next
observation. If the current sum is neither equals to the sum of the last observation
nor it is equal to the sum of next observation, that observation is also removed. This
step gets rid of the inaccuracy which is shown in Figure 3.4b.

3.6.2 Station Removal
After removing the inconsistent observations, the number of rows are counted for
each station. The number of rows in training data set should be 24,000 and that
for testing data set should be 900, as mentioned previously. We discarded all those
stations where the number of rows were less than 80% of the total data set in both
the training and the test sets. After this step, 16 stations were discarded due to
large number of missing values. The training models were created on the remaining
268 stations. This phase is shown in Figure 3.7.

3.6.3 Fill Missing Values
After observation and station removal phases, the next step is to fill the missing
values in the training data set. To maintain the real-world conditions, this step is
not performed on test data set. Before training the models, it is necessary to ensure
that the training data should not contain any gaps. In order to do that, new rows
are inserted in the time series data with the time field increment of 2 minutes. The
values for the number of bikes and free slots were considered to be equal to the
nearest available values in the data set.
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Figure 3.6: Observation Removal Steps

3.6.4 Outcome of Data Cleaning
The result of this 3-step procedure is that the training and testing data sets are free
of the dirty values and are ready for further processing. Each station now contains
24,000 rows in the training data set, where as some rows are missing in the testing
data set but they are free of inaccurate and incorrect values.

3.7 Data Transformation
After data cleaning, both the training and the testing data sets are transformed so
that these datasets can be provided as inputs to the training models. The steps
for transforming the training and the testing data are shown in Figure 3.8 and are
discussed in the following subsections.
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Figure 3.7: Station Removal Phase

Figure 3.8: Data Transformation Steps

3.7.1 Finding Lagging Attributes
The first step to transform the data is to find the lagging attributes. The number of
bikes at time “t” are given, the lagged time values are computed for each timestamp,
such as the number of bikes at time “t-1”, “t-2”,...,“t-10”. For all the experiments
we are considering the history of 20 minutes, that is why we need to compute 10
lagged values, i.e. from “t-1” to “t-10”, for the number of bikes for each station.

3.7.2 Finding Label Attribute
For training the models, it is necessary that the training and test set must contain
an attribute known as “label attribute”. The label attribute represents the target
attribute for prediction. It specifies the number of bikes that will be available say
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10 minutes ahead. The label attribute is different for each prediction time as shown
in Table 3.2.

Table 3.2: Computation of Label Attribute for each Prediction Time

Prediction Time Label Attribute
10 minutes ahead t + 4
20 minutes ahead t + 9
30 minutes ahead t + 14
40 minutes ahead t + 19
50 minutes ahead t + 24
60 minutes ahead t + 29

3.7.3 Finding Nearest Neighbor Stations
The models will be trained by exploiting the information of the current station
as well as its 5 surrounding stations. In order to compute the nearest neighbors,
information about the longitude and latitude, which is present in the Bicing dataset,
has been used. The distance between 2 stations is computed by using the Haversine
Formula described in [22]. As a result of this step, we now have 5 nearest neighbour
stations for each station.

3.7.4 Merging Neighbor Stations’ Data
In order to prepare the training and test sets, we now need to combine the
information about the 5 nearest stations for each station. For example, 5 neighbor
stations of Station # 1 are: Station # 26, 122, 3, 32 and 4. The training and testing
files of Station # 1 contain attributes as shown in Table 3.3

Table 3.3: Attributes Involved in Transformed Training and Test Sets of Station#1

Attribute 1 Time
Attribute 2 to 11 s1 (t-1, ..., t-10)
Attribute 12 to 21 s26 (t-1, ..., t-10)
Attribute 22 to 31 s122 (t-1, ..., t-10)
Attribute 32 to 41 s3 (t-1, ..., t-10)
Attribute 42 to 51 s32 (t-1, ..., t-10)
Attribute 52 to 61 s4 (t-1, ..., t-10)
Attribute 62 s1(Lable Attribute)
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At the end of this step, the training and testing files are ready to be served as
input to the training models.

3.8 Training Model
As discussed in Chapter 1, three machine learning models have been used in this
research work, namely, the ARMA model, the Decision Tree and the Random Forest
Model. Along with them, the Historic Mean Baseline Model is also used. Each of
these models are described as follows.

3.8.1 The Auto-Regressive Moving Average (ARMA)
Model

An ARMA, also written as ARMA(p, q) model is a combination of AR(p) and
MA(q) models. The ARMA model is suitable for univariate time series modeling.
This model gives the feasibility to use the recent history of both, the current
station and its surrounding stations, to predict the availability of bicycles. The AR
component deals with the autocorrelated nature of current station’s time series,
while the MA component provide the information about other stations’ time series
generally known as denominated "inputs".

A general form of ARMA model, as given in [4], can be written as:

Xt =
pØ

i=1
aiXt−i +

mØ
j=1

qØ
i=1

b(i,j)Ij(t−1)

The meaning of each of these symbols is described in Table 3.4.

Table 3.4: Description of variables used in ARMA Model

X Number of Bikes to be predicted
p order of AR model
q order of MA model
Ij input time series
m total number of "input" time series
t time index for each time series
ai and b(i,j) model coefficient to be computed during training phase

22



3.8 – Training Model

3.8.1.1 Parameter Values

In all the experiments presented in this thesis, a history of 20 minutes (10 samples)
has been used for the station for which the experiment is carried out (AR component)
and also for its neighbor stations (MA component). So p = q = 10 for the
experiments. The number of neighbor stations considered in these experiments is 5
i.e. m = 5.

3.8.1.2 AR Component

The AR part is related to the data of current station the prediction is done for.
Since the order of AR is p = 10, the history of 10 samples (20 minutes) is considered
and the lagging values such as t− 1, t− 2,..., t− 10 are computed. For each station,
the label attribute is also required. Predictions are done from 10 minutes ahead up
to 60 minutes ahead and the label attribute is computed as shown in Table 3.2.

3.8.1.3 MA Component

After the AR component, we now need to prepare the MA component of the ARMA
model. The MA component is related to the neighbor stations and the order of MA
is considered to be q = 10 fo all the experiments, as mentioned previously. The
number of neighbor stations used for experiments is m = 5. The lagging values such
as t− 1, t− 2,..., t− 10 are computed for 5 nearest stations of the current station.

3.8.1.4 Merging AR and MA Components

For the ARMA model we need to combine both the AR and MA parts, so the data
computed above are merged in single file for each station. Each file contains the
timestamp, lagging values of the current station, lagging values of 5 nearest stations
and the label attribute of the current station as shown in Table 3.3. Implementation
details are provided later in this chapter.

3.8.2 The Decision Tree Model
Decision tree is one of the most popular machine learning algorithms. The general
motive of using a Decision Tree is to create a training model which can be used
to predict a value of target variable, the number of bikes in our case, by learning
decision rules inferred from training data. As the name implies, the decision tree
algorithm solves a machine learning problem by using tree representation. Each
internal node of the tree corresponds to an attribute and each leaf node corresponds
to a label attribute.
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3.8.2.1 Decision Tree Algorithm Pseudocode

1. The best attribute of the dataset is placed at the root of the tree.

2. The training set is splitted into subsets. Subsets are made in such a way that
each subset contains data with the same value for an attribute.

3. Steps 1 and 2 are repeated on each subset until the leaf nodes are found on
all branches.

The implementation details are provided later in this chapter.

3.8.3 The Random Forest Model
Random Forest is an algorithm that uses decision trees to create classification trees.
In order to create classification trees, the procedure randomly selects a subset of
predictors from the original data and build a classification tree based on it. After
creating several trees, a final decision tree is built based on the average relevance of
the predictors, and can be used to make predictions over other sets of observations.
Besides building the decision tree, the Random Forest algorithm calculates the
relevance of each predictor in the real environment. The implementation details
are provided later in this chapter.

3.9 Implementation
This section discusses the implementation of the algorithms discussed in this thesis
work. All the experiments are done in RapidMiner Studio.

The general block diagram of the implementation is shown in Figure 3.9.
The training data is provided as input to the training model. The training model
can be either Linear Regression for ARMA Model, Decision Tree or Random
Forest. The training model is then applied on testing data. Then the performance
is evaluated and is stored in a file for each station. The performance is measured
in terms of absolute error. The experiments are executed separately for each
prediction time from 10 minutes ahead to 60 minutes ahead.

3.9.1 Algorithm 1: The ARMA Model
The ARMA Model is trained by means of Linear Regression process of RapidMiner
as shown in Figure 3.10. The entire process is repeated for each station. The
operators used in the model are described below:
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Figure 3.9: Block Diagram of Experimental Setup

Figure 3.10: The ARMA Model

Read CSV: Reads the training data of a station.

Nominal to Date: The data type of all attributes is Nominal by default.
This operator changes the data type of the timestamp attribute from Nominal to
Date.

Set Role: Sets ’label’ as target role of the last label attribute of the training data.

Linear Regression: Generates a trained model by using Linear Regression
Algorithm.

Read CSV (2): Reads the testing data of a station.

Nominal to Date (2): This operator changes the data type of the timestamp
attribute from Nominal to Date in test data.

Set Role (2): Sets ’label’ as target role of the last label attribute of the
testing data.
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Apply Model: The trained model and the testing data is provided as input to
this operator. It applies the generated model on the test data and outputs the
labeled data by adding another column "Prdeiction(Label)" in the test data.

Performance: This operator is used for statistical performance evaluation.
The performance for all the experiments is measured in terms of absolute error.

Write as Text: Stores the computed performance (absolute error) for each
station in a file.

Format Numbers: It reformats the numeric attributes to integer type.

Write CSV: Stores the resulting test file with predictions in a file.

Subprocess: The subprocess includes some other operators as shown in Figure
3.11. When the model is applied to the test data, some of the predicted values for
the number of bikes are negative, which needs to be processed further, because it is
not possible for the predicted number of bikes to be negative. The purpose of the
subprocess is to replace the negative values with ’0’. The output of Apply Model
is given as the input to the Subprocess and its output serves as the input to the
Performance operator. The operators inside the subprocess are described below.

Figure 3.11: Subprocess

Rename: Renames the name of prediction attribute from prediction(label_attr)
to prediction_label_attr.

Format Numbers (2): Reformats the label and prediction attributes to
’Number’ type.

Generate Attributes: Generates a new attribute which is same as the
predicted attribute but replacing negative values by ’0’.
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Parse Numbers: Changes the type of Nominal attributes to Numeric type.

Set Role (3): Sets the role to the label and predicted attributes to be used
by the Performance operators.

3.9.2 Algorithm 2: The Decision Tree Model

Input to the Decision Tree Model is same as that of ARMA Model. The process is
essentially the same as described above except the learning operator. Decision Tree
operator is used instead of Linear Regression as shown in Figure 3.12.

Figure 3.12: The Decision Tree Model

3.9.3 Algorithm 3: Random Forest Model

The third experiment is carried out by using Random Forest operator as shown in
Figure 3.13.

Figure 3.13: The Random Forest Model
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3.9.4 Performance Evaluation
The performance of these machine learning algorithm is computed in terms of
absolute errors. The average absolute errors are then compared with the Historic
Mean Baseline Model as described below.

3.10 The Historic Mean Baseline Model
In order to compare the performance of the above three machine learning algorithms,
the Historic Mean Baseline model is generated. Since in all the above experiments
the history of 20 minutes (10 samples) is considered, the Historic Mean also considers
the time window comprising of 10 samples. The steps for the computations of the
baseline model are listed below.

3.10.1 Computations for 10-minute ahead prediction
1. The mean is computed from “t-5” to “t-15” for the number of bikes.

2. This mean is the predicted number of bikes at time instance “t”.

3. Absolute difference of the actual number of bikes and the predicted number
of bikes is computed for each timestamp.

4. The average of all the absolute difference is computed.

3.10.2 Computations for 20-minute ahead prediction
1. The mean is computed from “t-10” to “t-20” for the number of bikes.

2. This mean is the predicted number of bikes at time instance “t”.

3. Absolute difference of the actual number of bikes and the predicted number
of bikes is computed for each timestamp.

4. The average of all the absolute difference is computed.

3.10.3 Computations for 30-minute ahead prediction
1. The mean is computed from “t-15” to “t-25” for the number of bikes.

2. This mean is the predicted number of bikes at time instance “t”.

3. Absolute difference of the actual number of bikes and the predicted number
of bikes is computed for each timestamp.
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4. The average of all the absolute difference is computed.

3.10.4 Computations for 40-minute ahead prediction
1. The mean is computed from “t-20” to “t-30” for the number of bikes.

2. This mean is the predicted number of bikes at time instance “t”.

3. Absolute difference of the actual number of bikes and the predicted number
of bikes is computed for each timestamp.

4. The average of all the absolute difference is computed.

3.10.5 Computations for 50-minute ahead prediction
1. The mean is computed from “t-25” to “t-35” for the number of bikes.

2. This mean is the predicted number of bikes at time instance “t”.

3. Absolute difference of the actual number of bikes and the predicted number
of bikes is computed for each timestamp.

4. The average of all the absolute difference is computed.

3.10.6 Computations for 60-minute ahead prediction
1. The mean is computed from “t-30” to “t-40” for the number of bikes.

2. This mean is the predicted number of bikes at time instance “t”.

3. Absolute difference of the actual number of bikes and the predicted number
of bikes is computed for each timestamp.

4. The average of all the absolute difference is computed.

3.11 Conclusion
In this chapter details about the pre-processing of training and testing data sets are
provided. Along with that, the architecture of the prediction framework is discussed
in detail and finally the implementation details are also presented.
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Chapter 4

Experimental Results

4.1 Introduction
This chapter illustrates the experimental results of the models trained using the
ARMA, Decision Tree and Random Forest algorithms. In the end it provides the
comparisons among all these results and also compares the results with the Historic
Mean Baseline Model.

4.2 Results
The major goal of the thesis is the implementation of ARMA Model to predict the
number of available bikes in Bicing stations from 10 minutes ahead to 60 minutes
ahead. Apart from that, the performance of Decision Tree and Random Forest
algorithms is also measured and compared with that of the ARMA Model. All
the three models are then compared with the Baseline Model which is actually the
Historic Mean for the prediction of the bicycle availability. The results are compared
in terms of the training time duration and the prediction error as discussed below.

4.2.1 Training Time Duration
Training time duration is the time taken by an algorithm to generate trained model
from the training data which can be applied to testing data.

4.2.2 Prediction Error
The prediction error is computed in terms of “Mean Absolute Error (MAE)”. It is
defined as:
“The Mean Absolute Error (MAE) measures the average magnitude of the errors
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in a set of predictions, without considering their direction. It is the average over
the test sample of the absolute differences between prediction and actual observation
where all individual differences have equal weight” [23].

MAE = 1
n

nØ
j=1
|yj − ŷj|

where:

• n = number of test samples

• yj = actual number of bikes in time series

• ŷj = predicted number of bikes in time series

4.3 Auto-Regressive Moving Average (ARMA)
This section discusses the results obtained by using the ARMA Model. First, the
training time duration is shown followed by the prediction error.

4.3.1 Training Time Duration
The training time duration of ARMA model is shown in Table 4.1. It took
approximately 7 hours to generate a model which could predict the number of
bicycles up to 10 minutes ahead. In our case, we need to generate 6 models to
predict from 10 minutes to 60 minutes ahead, hence the total training time was
about 42 hours for generating all the required models.

Table 4.1: Training Time for ARMA Model

ARMA Model
10 minutes ahead prediction 7 hours

10, 20, ..., 60 minutes ahead prediction 42 hours

4.3.2 Prediction Error
The trained model is tested on a test data set which comprises of 30 hours of
data. The performance is calculated in terms of absolute errors. The minimum, the
maximum and the mean absolute errors are computed for all the stations over all
the prediction time frames i.e. from 10 to 60 minutes ahead as shown in Table 4.2.
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Table 4.2: Prediction Errors by ARMA Model

Prediction Time Maximum Error Mean Error Minimum Error
10 minutes ahead 3.13 1.296 0.1
20 minutes ahead 3.783 1.622 0.156
30 minutes ahead 4.364 1.892 0.211
40 minutes ahead 4.886 2.121 0.269
50 minutes ahead 5.372 2.320 0.328
60 minutes ahead 5.76 2.498 0.349

The graphical representation of the results in Figure 4.1 shows that the minimum,
the maximum and the mean prediction errors increase as the prediction time
increases. In other words, if we predict the number of bicycles 10 minutes ahead, the
average error is relatively low as compared to the predictions made for 60 minutes
ahead.

Figure 4.1: Average prediction error according to prediction interval, with minimum
and maximum errors for ARMA Model
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4.4 Decision Tree
This section discusses the results obtained by using the Decision Tree. First, the
training time duration is shown followed by the prediction error.

4.4.1 Training Time Duration
The training time duration of Decision Tree model is shown in Table 4.3. It took
approximately 1 hour and 30 minutes (1.5 hours) to generate a model which would
be used to predict the number of bicycles up to 10 minutes ahead. In our case, we
need to generate 6 models to predict from 10 minutes to 60 minutes ahead, hence
the total training time was about 9 hours for generating all the required models.

Table 4.3: Training Time for Decision Tree

Decision Tree
10 minutes ahead prediction 1.5 hours

10, 20, ..., 60 minutes ahead prediction 9 hours

4.4.2 Prediction Error
The trained model is tested on the same test data set which was used for ARMA
Model. The performance is calculated in terms of absolute errors. The minimum,
the maximum and the mean absolute errors are computed for all the stations over
all the prediction time frames i.e. from 10 to 60 minutes ahead as shown in Table
4.4.

Table 4.4: Prediction Errors by Decision Tree Model

Prediction Time Maximum Error Mean Error Minimum Error
10 minutes ahead 8.653 1.228 0.139
20 minutes ahead 8.669 1.741 0.26
30 minutes ahead 14.247 2.125 0.629
40 minutes ahead 11.227 2.419 0.64
50 minutes ahead 15.189 2.716 0.649
60 minutes ahead 11.218 2.873 0.512

The graphical representation of the results in Figure 4.2 shows that the minimum
and the mean prediction errors increase as the prediction time increases, where as
the maximum prediction error is approximately same for 10 and 20 minutes ahead
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prediction. It then increases for 30 minutes ahead and again declines for 40 minutes
ahead, and repeats the similar pattern for 50 and 60 minutes ahead prediction time.

Figure 4.2: Average prediction error according to prediction interval, with minimum
and maximum errors for Decision Tree

4.5 Random Forest
This section discusses the results obtained by using the Random Forest. First, the
training time duration is shown followed by the experimental results.

4.5.1 Training Time Duration
The training time duration of Random Forest model is shown in Table 4.5. It
took approximately 1 hour to generate a model which would be used to predict the
number of bicycles up to 10 minutes ahead. In our case, we need to generate 6
models to predict from 10 minutes to 60 minutes ahead, hence the total training
time was about 6 hours for generating all the required models.

4.5.2 Prediction Error
The trained model is tested on the same test data set which was used for ARMA
Model. The performance is calculated in terms of absolute errors. The minimum,
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Table 4.5: Training Time for Random Forest

Random Forest
10 minutes ahead prediction 1 hour

10, 20, ..., 60 minutes ahead prediction 6 hours

the maximum and the mean absolute errors are computed for all the stations over
all the prediction time frames i.e. from 10 to 60 minutes ahead as shown in Table
4.6.

Table 4.6: Prediction Errors by Random Forest Model

Prediction Time Maximum Error Mean Error Minimum Error
10 minutes ahead 8.402 1.901 0.555
20 minutes ahead 8.381 2.229 0.691
30 minutes ahead 9.07 2.511 0.64
40 minutes ahead 9.996 2.757 0.533
50 minutes ahead 11.075 2.954 0.576
60 minutes ahead 9.389 3.133 0.543

The graphical representation of the results in Figure 4.3 shows that the mean
prediction errors increase as the prediction time increases, where as the maximum
prediction error is approximately same for 10 and 20 minutes ahead prediction. It
then rises from 30 to 50 minutes ahead and finally falls for 60 minutes ahead. The
minimum error is almost similar for all prediction times, with a little rise on 20 and
30 minutes ahead.

4.6 Historic Mean Baseline Model
In order to evaluate the performance of the above three models, a fourth model is
generated which serves as the Baseline and is calculated in terms of the Historic
Mean of the values. It is not a trained model, so its training time is not computed.
However, the prediction error is discussed in the following subsection.

4.6.1 Prediction Error
The Historic Mean is computed over the same test data set which was used for
above three model. The minimum, the maximum and the mean absolute errors are
computed for all the stations over all the prediction time frames i.e. from 10 to 60
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Figure 4.3: Average prediction error according to prediction interval, with minimum
and maximum errors for Random Forest

minutes ahead as shown in Table 4.7.

Table 4.7: Prediction Errors by Historic Mean Baseline Model

Prediction Time Maximum Error Mean Error Minimum Error
10 minutes ahead 3.305 1.186 0.046
20 minutes ahead 4.279 1.551 0.069
30 minutes ahead 4.896 1.857 0.092
40 minutes ahead 5.341 2.125 0.116
50 minutes ahead 5.721 2.367 0.14
60 minutes ahead 6.144 2.590 0.164

The graphical representation of the results in Figure 4.4 shows that the minimum,
the maximum and the mean prediction errors increase as the prediction time
increases.
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Figure 4.4: Average prediction error according to prediction interval, with minimum
and maximum error for Historic Mean Baseline Model

4.7 Comparison of ARMA, Decision Tree and
Random Forest

This section presents the comparative approach in order to identify the model which
gives the best results. At first, the comparisons are made in terms of training time
and which is then followed by the prediction error comparison.

4.7.1 Comparison in terms of Training Time

Figure 4.5 compares the time taken by the ARMA, the Decision Tree and the
Random Forest models to generate the trained model from the training data set. It
can be seen clearly that the training time duration for the ARMA model is 7 times
that of the Random Forest Model and almost 5 times of the Decision Tree model.
The least training time was consumed by the Random Forest Model (6 hours for
generating 6 prediction models), while the ARMA model consumed the most (42
hours for generating 6 prediction models).
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Figure 4.5: Comparison of ARMA, Decision Tree and Random Forest Models in
terms of Training Time

4.7.2 Comparison in terms of Prediction Errors

The performance of all the models is compared in terms of the mean absolute error.
Table 4.8 shows the mean absolute error of all the models for all the prediction
times. The Random Forest algorithm showed the highest mean absolute errors for
all the prediction time periods, hence its performance to predict the number of
bikes is worst in our case.

On the other hand, an interesting fact was identified between the ARMA
and the Historic Mean Baseline model. For the predictions of 10, 20 and 30
minutes ahead, the Baseline model showed the least mean absolute errors, while
for higher time instances, such as 40, 50 and 60 minutes ahead, the performance
of ARMA model was the best among all. Such results can lead us to the
conclusions that the ARMA Model can be the best choice for predictions beyond
30 minutes, while for shorter terms, the Historic Mean can be considered as the best.

Figure 4.6 illustrates the graphical representation of the results. Random
Forest Model shows the highest error for all the prediction time intervals. The
second highest error is shown by the Decision Tree Model.
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Table 4.8: Mean Absolute Errors of all the models

Prediction Time ARMA Decision Tree Random Forest Historic Mean
10 minutes ahead 1.296 1.228 1.901 1.186
20 minutes ahead 1.622 1.741 2.229 1.551
30 minutes ahead 1.892 2.125 2.511 1.857
40 minutes ahead 2.121 2.419 2.757 2.125
50 minutes ahead 2.320 2.716 2.954 2.367
60 minutes ahead 2.498 2.873 3.133 2.590

Figure 4.6: Average prediction error according to prediction interval, with minimum
and maximum error

4.8 Discussion

It is clear from the results of all the models that both the Random Forest and the
Decision Tree showed the highest errors in terms of the predictions. It is because of
the fact that they are not suitable for such types of predictions or probably because
the provided input was not enough for these models to generate the trained models.
In [18] it is shown that Random Forest works better than ARMA Model but in
that paper they also considered other inputs such as the information about weather
and holidays. From such results it can be concluded that the Random Forest might
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work better when more diverse sets of inputs are provided. In our case we had the
data about the status of the stations only, and using that data for predicting the
bicycle availability using Random Forest proved to be inaccurate.

The mean absolute errors of all the prediction models generated by the four
algorithms were compared with each other to rank the performance of the models.
The Random Forest algorithm showed the highest mean absolute errors for all the
prediction time periods, hence its performance to predict the number of bikes is
worst in our case.

On the other hand, an interesting fact was identified between the ARMA
and the Historic Mean Baseline model. For the predictions of 10, 20 and 30
minutes ahead, the Baseline model showed the least mean absolute errors, while
for higher time instances, such as 40, 50 and 60 minutes ahead, the performance
of ARMA model was the best among all. Such results can lead us to the
conclusions that the ARMA Model can be the best choice for predictions beyond
30 minutes, while for shorter terms, the Historic Mean can be considered as the best.

Behind the success of ARMA model is its long computational time. Prediction
models with ARMA were trained in about 42 hours which is about 7 times greater
than the Random Forest models.

The performance of Decision Tree model remained in between the ARMA
and the Random Forest, both in terms of training time and also in the mean
absolute errors. But its performance was less than the Historic Mean Baseline model.

From the results of ARMA and Historic Mean Baseline models, it can be
concluded that ARMA works better for long time predictions (more than 40
minutes ahead). For short time predictions, the baseline line seems to be the best
approach.

Although, ARMA model is expensive in terms of the computational time,
but its results outperform the results achieved by the Decision Tree and the
Random Forest.
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Chapter 5

Conclusion and Future Work

5.1 Introduction
This chapter provides a brief overview of the study carried out in this thesis,
including the problem statement and the major experiments carried out in this
research. It then discusses the obtained results and the limitations of the study.
Finally the future work is provided.

5.2 Problem Statement
With the increasing populations in cities, the need for better urban mobility
systems is rapidly increasing. Bike sharing systems have been established all over
the world as a means of environmentally-friendly transport [1].

Two problems have been widely discussed in the literature about bike sharing
systems which are annoying from customer point of view.

1. Unavailability of bikes at stations when a user wants to rent a bike.

2. Impossibility to return the bike at a station due to unavailability of free parking
slots.

The impossibility to rent a bike can be caused when the station is either
completely empty, i.e. it does not contain any bikes, or some broken bikes are
present which can not be used. Moreover, it could be impossible to return bikes
when there are no free parking slots or when some slots are unusable due to any
maintenance work.

Although in some bike sharing systems, there are trucks which balance the

43



5 – Conclusion and Future Work

bicycles by taking them from stations which are full or have more bicycles and
leaving those bicycles in stations which are empty or have lesser bicycles, but a user
who has already arrived at a station to pick a bike cannot wait for the trucks to get
a bike. Similarly when a user arrives at a station which is completely full of bikes,
he cannot wait for trucks to take some bikes so that he can park the bike. These
situations are the causes of problems for the customers.

One possible solution to these problems is to enable the users to know beforehand
about the availability of bicycles so that they can go directly to those stations
where bikes/parking slots are available. This can be done by predicting the number
of bikes at each station at some future point of time. For example, if a user needs
to go to a station in 30 minutes, he should be able to know will there be any
bikes/parking slots available at that time. The future prediction of the bicycle
availability will greatly enhance the performance and reliability of the Bike Sharing
Systems.

5.3 Discussion
The major research goal of the thesis is to study and compare some models to
predict the availability of bikes in Bicing bicycle sharing stations some minutes
ahead.

In this research, three learning models were considered, the ARMA, the Decision
Tree and the Random Forest, based on their wide usage in the literature. The
models are trained to predict the number of bikes in near future i.e. from 10
minutes ahead to 60 minutes ahead. Therefore, 6 prediction models were created
for each of the three learning algorithms. The performance of these models was
compared with the Historic Mean Baseline model. The models were compared with
each other in terms of training time duration and in terms of performance which
was measured by the mean absolute prediction error.

Chapter 4 showed the time consumed by these operators to train the models
and the experimental results of all the trained models. The ARMA model
took about 42 hours to generate the trained models for all the prediction time
instance, i.e. from 10 minutes ahead to 60 minutes ahead, where as the total time
consumption was 9 and 6 hours for the Decision Tree and the Random Forest
Models respectively. It is clear that the time taken by the ARMA model is relatively
much higher than the other two models.

Lets now discuss the experimental results by these models. According to

44



5.4 – Limitations

table 4.8, the mean prediction error of Random Forest was the worst among all
models for all the prediction time periods. The results of Historic Mean Baseline
showed the best performance for predictions from 10 to 30 minutes ahead, where
as the ARMA Model exhibited the best performance from 40 to 60 minutes ahead
predictions. The worst performance of the Random Forest can probably be due to
two reasons:

1. Information of other parameters such as weather and holidays is not included
in the data set.

2. The number of attributes used to train the models might not be enough for
the Random Forest model. It may require more number of neighbor stations.

ARMA Model and the Historic Mean Baseline models showed interesting results.
It can be concluded that for near future predictions (just few minutes ahead, 30
minutes in our case), the simple Historic Mean Model is the best choice, while for
long term predictions, it is best to consider the ARMA Model.

5.4 Limitations
Few limitations exists in the current study:

• The current number of Bicing stations is over 420 but our study is based on
268 stations. We believe that by including more number of stations, better
predictions can be made.

• The provided data set contained lots of erroneous data as discussed in Chapter
03. We believe that the provision of near-accurate and clean data can further
improve the prediction accuracy.

• This study has shown predictions in near future only, i.e. from 10 minutes
ahead to 60 minutes ahead. Long term predictions can contribute in enhancing
the performance of Bicing.

5.5 Future Work
In future, the current study can be extended in the following possible ways:

• Chapter 1 described that there are Bicing trucks whose purpose is to take
bicycles from stations which are full or have many bicycles and to leave those
bicycles in stations which are empty or have small number of bikes. The
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incorporation of knowledge about the interventions of Bicing trucks, their
schedules and timings, and the number of bikes carried by these trucks can be
included to improvise predictions.

• Information about other events that result in the deviation from normal
Bicycle usage, can be considered to improve the prediction results such as,
weather conditions, national holidays and festivals have great impact on the
usage of bicycles, so information about all these aspects can be considered for
future work.

• Additional features can be analyzed to further improve the accuracy of our
predictions. In particular, long term predictions such as up to few days can
be considered for future work.

5.6 Conclusion
In this work, we presented an analysis of the data of a public bicycle system in
Barcelona, known as Bicing. In particular, the number of bicycles were predicted
up to 60 minutes ahead of time.

Data pre-processing was the critical part of this research. Extensive efforts
have been put in identifying the dirty data in the available data set and to perform
data cleaning in order to ensure the correctness of the data to be trained and tested.

After reviewing the literature, we decided to use three automatic prediction
algorithms for predicting the number of bikes: the ARMA, the Decision Tree and
the Random Forest models. After the implementation of these models, a Baseline
model based on the Historic Mean was considered to measure the performance of
the three models.

After data cleaning, the total number of stations used in this study was 268.
The training data set comprises of 800 continuous hours (from 2008-05-16 05:00
to 2008-06-27 06:58) with the timestamps separated by 2 minutes. The testing
data set composed of non-overlapping data of 30 hours (from 2008-06-28 05:00 to
2008-06-29 15:58). The timestamps between 24:00 and 05:00 are not considered in
this study. All the models were trained using the same data sets.

The performance of these models was calculated in terms of the absolute
errors. The minimum, the maximum and the mean absolute errors were computed
for all the models, including the Historic Mean Baseline model. Six prediction
models were generated from each each of the four algorithms, one prediction model
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for each prediction time. In total 24 prediction models were generated.

The mean absolute errors of all the prediction models generated by the four
algorithms were compared with each other to rank the performance of the models.
The Random Forest algorithm showed the highest mean absolute errors for all the
prediction time periods, hence its performance to predict the number of bikes is
worst in our case.

On the other hand, an interesting fact was identified between the ARMA
and the Historic Mean Baseline model. For the predictions of 10, 20 and 30
minutes ahead, the Baseline model showed the least mean absolute errors, while
for higher time instances, such as 40, 50 and 60 minutes ahead, the performance
of ARMA model was the best among all. Such results can lead us to the
conclusions that the ARMA Model can be the best choice for predictions beyond
30 minutes, while for shorter terms, the Historic Mean can be considered as the best.

Behind the success of ARMA model is its long computational time. Prediction
models with ARMA were trained in about 42 hours which is about 7 times greater
than the Random Forest models.

The performance of Decision Tree model remained in between the ARMA
and the Random Forest, both in terms of training time and also in the mean
absolute errors. But its performance was less than the Historic Mean Baseline model.

The results in this study have shown that the exact number of bikes are
quite predictable for near future. The predictions can be useful for both the system
administration and the users. From the point of view of the system administration,
the predictions can help in re-balancing operation of the bicycles. The truck
operators can exploit the information about the availability of bicycles in future at
each station and can schedule the re-balancing operations beforehand. From the
users’ perspectives, the predictions can enhance user satisfaction and reliability and
eventually will result in enhancing overall system performance.

Hence the research was concluded by considering the ARMA model to be
the best among other three models i.e. the Decision Tree, the Random Forest and
the Historic Mean Baseline models for predictions from 40 to 60 minutes ahead.
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