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Chapter 1

Introduction

Over the last decades, the Internet has seen an extensive and rapid growth,

starting from serving hundreds of hosts, to interconnecting billions of com-

puters and mobile devices. The next step of this evolution is the Internet

of Things (IoT) vision, a radical extension from the current Internet, to a

future of interconnected physical things, allowing their transition from tradi-

tional to smart, revolutionizing their utility and application. This revolution

is already happening around us: smart cities, smart homes and smart cars

are just few of the possible applications of the IoT technology.

The increasing trend of IoT implementation is also happening in the in-

dustrial environment, driven by the countless number of potential benefits

offered, ranging from the creation of novel business models, to the reduction

of costs thanks to predictive maintenance. The adoption of IoT technologies

into the industry is often referred to as Industrial Internet of Things (IIoT)

or Industry 4.0, a concept introduced in 2011 by the German government in

the strategic planning for their manufacturing industries [1], reflecting the

idea that a new industrial revolution is happening right now. Despite the

good potential, several issues are holding back the progress of the Industrial

IoT.

It is envisioned that more than 20 billions of devices will be connected

by the end of 2020 [2], thanks to the steady advances in electronic witnessed

7



CHAPTER 1. INTRODUCTION 8

in the last decades, which helped to reduce costs. This unprecedented num-

ber of devices resulted in a substantial fragmentation on many levels, with

the current IoT scenario that consists in a plethora of different vendors and

standards. Moreover, most large corporations have developed their own pro-

prietary solutions in an independent way, often resulting in systems which

are incompatible with each other.

According to a survey conducted in 2015 [3], the lack of interoperability

standards is one of the greatest barriers inhibiting business from adopting the

Industrial Internet, and many experts agree that solving the interoperability

problem is the only way to achieve a true Internet of Things [4].

As an attempt to solve this interoperability issue, many standardization

entities have proposed their solutions. Most notable ones are OPC Uni-

fied Architecture (OPC UA), oneM2M and LightWeight M2M (LWM2M) by

Open Mobile Alliance (OMA). The last one represents our choice for this

work and it will be described thoroughly in Chapter 2.

With the ever increasing number of devices and the enormous amount of

data generated by those, concerns regarding scalability are arising. While

the processing power offered by the Cloud Computing paradigm could po-

tentially solve this issue, sending all the data to a remote endpoint may not

always be the best solution. In fact, many IoT applications, especially in

industrial automation, are often latency critical. A new paradigm, called

Edge or Fog Computing is emerging, in which data is initially processed and

filtered in gateways, which are located closer to the devices, and only eventu-

ally sent to the Cloud for further storage/analysis, thus improving real-time

responsiveness and system scalability. The proposed solution is meant to be

deployed in such a scenario, addressing these issues regarding scalability and

latency.

Security is also a major concern to be considered in an Industrial IoT

solution, given the fact that an intrusion in a factory monitoring system

could lead to life threatening situations or severe system shutdowns.
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1.1 Thesis Objectives

Based on the above mentioned challenges, we aim to design a scalable Indus-

trial IoT solution using the most suitable interoperability standard available

as today. To this end, a systematic literature review has been conducted,

following the principle in [5]. The purpose of this literature study is to gain

a better and complete understanding of the current IoT protocols, standards

and to clarify the requirements of an Industrial IoT solution, in order to

make an informed decision on the technologies used in our architecture.

The major objectives of this thesis work can be summarized as follows:

• Establish the “state of the art” for IoT protocol stack and application

layer standardization activities.

• Design a scalable Industrial IoT architecture making use of the most

suitable identified standard and open-source technologies.

• Implement a prototype of the proposed solution and build a testbed

for its evaluation.

• Evaluate the performance of the prototype with a scalability analysis

on a typical industrial use case.

1.2 Thesis Structure

The work of this Thesis is divided into five main chapters. Chapter 1 intro-

duced the background and the motivation behind this thesis, and presented

its main goals. Chapter 2 provides the state of the art regarding the IoT pro-

tocols and standards, as well as an introduction to other important topics

related to this work, such as virtualization and cloud computing. Chapter

3 presents a general overview of the proposed solution and provides specific

details about the prototype implementation. Chapter 4 describes the set-up

for the experimental tests that have been conducted on the prototype and
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presents the obtained results. Finally, Chapter 5 concludes this work, sum-

marizing the main findings, and giving directions for future works on this

topic.



Chapter 2

Background

This chapter will firstly introduce the concept of Industrial IoT, outlining

its benefits and the main open issues. Then, an overview of the current

protocol stack for the IoT is provided, followed by a description of the most

notable standardization initiatives for the interoperability. Subsequently, I

will describe the concepts of cloud computing and container virtualization,

which are relevant to the understanding of the proposed solution. Lastly,

several related research works are presented and discussed.

2.1 Internet of Things and Industrial Inter-

net

2.1.1 Introduction

The Internet of Things has rapidly evolved in the last years as an umbrella

term broadly used to refer to both the global network interconnecting a vari-

ety of things or objects around us by means of extended Internet technologies

and the set of supporting technologies necessary to realize such a vision (in-

cluding, e.g., RFIDs, sensor/actuators, physical and network layer protocols,

etc.) [6].

The main goal of IoT is a radical evolution from the current Internet,

11



CHAPTER 2. BACKGROUND 12

to a future of interconnected physical things, allowing their transition from

traditional to smart, revolutionizing their utility and application. Those

“things” could be any object around us, as long as they are augmented by

network capabilities. They could be in the form of small gadgets like key

chain, watches, eyeglasses and in the form of big items like cars, industrial

robots and buildings. Smart objects are able not only to harvest information

from the environment through the means of sensors, but also to interact with

the physical world (actuators).

From Human-to-Machine to Machine-to-Machine interaction

However, one of the most interesting feature, is that the electronic intercon-

nection between all the smart objects will enable them to interact with each

other, paving the way to a new class of applications. In the IoT vision, the

conventional concept of the Internet as an infrastructure network reaching

out to end-users’ terminals will fade, switching from an Human-to-Machine

(H2M) communication, to a Machine-to-Machine (M2M) interaction.

As an example, this complex inter-networking and consequent exchange

of data could be used to sense or control object remotely. Home automation

has been proven as one successful application, improving the level of ease

and convenience for residents to access and control their home appliances.

In [7], Zaslavsky et al. depict a potential application in a smart home sce-

nario, in which data coming from domestic sensors are shared with interested

companies, in order to save on food expenses, producing a benefit for both

parties.

Future Trends

In the near future, it is expected that IoT technologies will have a significant

impact on home and business applications, contributing to the quality of

life and to the growth of the world’s economy [8]. Examples of some of

the main domain areas in which IoT technologies are finding a significant

adoption are: connected wearable devices, connected cars, connected homes,
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connected cities, and, last but not least, the Industrial Internet, which is the

major focus of this thesis.

The steady advances in electronics, in terms of size, energy-consumption

and price reduction witnessed in the recent years, has led to the increasing

integration of processors, communications modules and other electronic com-

ponents into everyday objects, and this process can be expected to continue

and accelerate. Devices are maintaining their physical size, while continuing

to gain more and more capabilities [9].

In 2011, the number of interconnected devices on the planet overtook

the actual number of people [2]. Many marketing consulting and technology

companies have made forecast on the adoption of IoT. In 2016, IHS made

a forecast that the installed base of IoT devices will grow from 15.4 billion

devices in 2015 to 30.7 billion devices in 2020 and 75.4 billion in 2025. Cisco

in 2011 IBSG predicted there will be 25 billion devices connected to the

Internet by 2015 and 50 billion by 2020.

Retrospectively, we can state that IoT adoption is definitely growing, but

its progress is slower than expected and the current numbers are not meeting

the predictions made some years ago [10]. The reasons for that are different,

among the others: high operational costs, technology immaturity, lack of

interoperability and security and privacy concerns [3]. These issues will be

analysed more in detail later. Such an unprecedented number of networked

devices leads to new challenges and problems that need to be handled in

order to facilitate and speed-up the adoption of IoT solutions in the near

future [11].

2.1.2 Industrial Internet of Things

Unquestionably, the main strength of the IoT idea is the large set of opportu-

nities that it will provide to users, manufacturers and companies. From the

perspective of a private user, a countless number of novel services are made

possible by the means of IoT technology, which are able to support the users

in their everyday activities and answer to their needs. Some examples of
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possible application scenarios are e-health, smart homes, enhanced learning

and assisted living.

Similarly, from a business users point of view, Industrial IoT, focuses

on how smart machines, data analytics and networked sensors can improve

services in business-to-business domain.

Industrial Internet is often referred to as Industry 4.0, a concept intro-

duced in 2011 by the German government in the strategic planning for their

manufacturing industries [1]. The term reflects the idea that a new indus-

trial revolution is happening right now. The first three industrial revolutions

have seen the introduction respectively of steam engines, electricity and dig-

italization into the industrial production processes. The fourth industrial

revolution is now possible thanks to the exponential growth that information

and communication technologies have undergone from the end of the 20th

century to the beginning of the 21st century, resulting in a spectrum of new

technologies, namely Radio Frequency Identification (RFID) (1940s), Artifi-

cial Intelligence (AI) (1950s), Sensor Networks (1970s), 3D Printing (1980s),

IoT (1990s), Cyber-Physical Systems (2005), Cloud Computing (2006), Big

Data (2008) [12].

2.1.3 Benefits and Potential

The IIoT has the potential to improve connectivity, increase efficiency and

push further scalability for various industrial organizations. Companies are

already benefiting from the IIoT through time, resources and costs savings

due to predictive maintenance, improved safety, and other operational effi-

ciencies [13].

[14] and [15] provide a general introduction to IoT applications in various

industry domains, such as automation and industrial manufacturing, logis-

tics, business/process management, intelligent transportation of people and

goods, as well as healthcare, security and surveillance.

As an example, thanks to IoT’s ubiquitous identification, sensing and

communication capabilities, it would be possible to track, collect and share all
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healthcare-related information. For instance, it would possible to periodically

collect a patient’s heart rate and send it to the doctor’s office.

Food supply chain would greatly benefit from IoT ubiquitous connectivity,

addressing some challenges related to traceability, visibility, and controllabil-

ity for its extremely distributed and complex operation processes. Collected

data could then be analyzed in order to support and improve business deci-

sions.

Pereira et al. [16], developed an efficient IoT Framework to prevent and

reduce accidents in the mining industry. They make use of the latest avail-

able IoT technology in order to establish an effective communication channel

between the surface and the underground. In this way, it is possible to

dramatically improve the safety of the working environment, thank to the

constant monitoring of the mining activities.

However, according to Accenture [17], operational efficiency is one of the

main benefits that has attracted the first IIoT adopters.

A German study [18] states that productivity could be boosted by 30%

by introducing automation and more flexible production techniques in the

manufacturing industry.

Predictive maintenance

In this regard, predictive maintenance plays a key role and it certainly is one

of the major area of focus. The aim of predictive maintenance is to recognize

the upcoming equipment failure so that the maintenance can be scheduled

only when it is needed, unlike in traditional planned maintenance, where it

is done based on predefined scheduled intervals, leading to potentially unnec-

essary costs. Even worse is the case when maintenance is done only after the

component failure, forcing to inconvenient plant and facilities shut-downs,

with subsequent reduced throughput and decreased revenues. According to

recent estimates [17], predictive maintenance can produce savings up to 12

percent over scheduled repairs, reduce overall maintenance costs up to 30

percent and eliminate breakdowns up to 70 percent.
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Today, IIoT technology provides a more versatile way to conduct pre-

dictive maintenance: wireless connectivity, big data processing tools and

lower cost sensors make it easier and cheaper to collect performance data

and monitor the equipment health. For example, Thames Water, the largest

provider of water services in the UK, and Apache Corporation, an oil and gas

exploration and production company, are using this approach to anticipate

equipment failures and respond more quickly to critical situations, such as

leaks or adverse weather events.

Novel business models

According to a survey in [3], early adopters identify IIoT as a potential op-

portunity to create new revenue streams through innovative products and

services. Accenture has reported several cases of business, which has been

implementing a novel business model based on IIoT technology [17]. Miche-

lin has developed a service to reduce fuel costs in truck fleets. Sensors inside

vehicles collect data on fuel consumption, tire pressure, temperature, speed

and location, which is then analyzed, with the purpose of making recommen-

dations saving up to 2 liters of fuel for every 100 kilometers driven. CLAAS,

a company developing equipment for the agriculture industry, create a new

business model by allowing farmers to operate their machines on autopilot,

giving also advice on how to improve their crop productivity.

2.1.4 Challenges and open issues

When comparing IIoT to more consumer-based application scenarios such as

home automation, security and sports monitoring, there are many require-

ments that exist in the industrial domain that is non-existent or at least

not a primary concern in the consumer world. Generally, IIoT has stricter

requirements regarding delay, security and general robustness compared to

consumer IoT. In Industrial IoT applications, flawless operation is expected

due to the huge capital of investment and because failures in these devices

can have consequences on safety of people and environment.
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In the consumer market, devices tend to be replaced after a few years,

especially if the price of new devices is low. On the contrary, in industrial

applications, there is a clear need of long system lifetimes due to high in-

stallation costs. Therefore, it is important that the devices, systems and

technologies that are installed will be able to operate for many years.

According to a survey conducted in [3], 65% of the respondents agree on

the fact that the lack of interoperability standards and security concerns are

the greatest barriers inhibiting business from adopting the industrial Internet.

In the following sections, I will describe more in details some of the chal-

lenges that IIoT solutions need to address.

Interoperability

The increased diversity and large numbers of devices from different vendors

and providers in industrial systems requires standards and documented best

practices in order to express the potential of IIoT, otherwise resulting in a

massive set of protocols, different formats and interpretations of data, large

numbers of APIs.

These issues are holding back the progress of IIoT, forcing companies to

create their own proprietary systems to fit their needs, resulting in a large

number of systems designed for similar purposes, but incompatible with each

other. The rapid growth of IoT makes standardization difficult. However,

standardization plays an important role for the further development and

spread of IoT. Standardization in IoT aims to lower the entry barriers for the

new service providers and users, to improve the interoperability of different

applications/systems and to allow products or services to better perform at

a higher level [15].

The use of standardized protocols always come with a higher overhead

than using customized and fine-tuned proprietary protocols. However, by

basing the architecture exclusively on open standards and protocols a high

level of interoperability is made possible. An interesting standardization

effort has been done by several standardization organizations, among which:
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ETSI (the European Telecommunications Standards Institute) and OMA

(Open Mobile Alliance). Those solutions will be described more in details

later.

Security and Privacy

One of the most critical challenges is security. Having more and more de-

vices networked opens up to more vulnerabilites and more decentralized entry

points for remote based attacks. If an intrusion in a home automatic scenario

can be annoying for the owner, in the industrial context, an intrusion in a

factory monitoring system could potentially lead to life-threatening situa-

tions, physical damage, or service unavailability with severe consequences in

terms of economical loss.

Privacy represents a serious concern in Industrial IoT. It is necessary to

protect user resources and data from unauthorized access that may com-

promise their integrity along the whole chain from devices, the edge of the

network, and to the cloud.

Due to the fact that IoT devices generate, process and exchange vast

amounts of safety-critical and often privacy-sensitive information, they have

been an appealing target for several attacks [19]. The recent Mirai botnet

DDos (Denial of Service) [20] and its numerous variants should represent a

wake-up call for industries to better secure IoT devices.

In their study, Sadeghi et al. [19] conclude that existing security solutions

are inappropriate since they do not scale to large networks of heterogeneous

devices, thus protecting IoT requires a holistic cybersecurity framework cov-

ering all abstraction layers.

Device Management

As industrial installations will be of considerable size, with several thousands

of sensors and actuators, concerns regarding scalability are arising. In indus-

trial applications, deployment and configuration costs are even higher than

the cost of device itself [16]. It is clear that there is a need for methods and
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tools for large scale maintenance and configuration in order to minimize the

human interaction during their life cycle.

Managing such a number of devices is not an easy task especially in

the presence of diverse hardware platforms and communications protocols.

Scalable, interoperable and lightweight solutions are needed for the growth

of IoT deployment and in order to avoid the management nightmare that

will potentially stem in the coming years.

Latency

Industrial automation systems have often stringent requirements regarding

to latency and determinism in terms of temporal behaviour. Variations of

time an operation takes to perform is critical in control loops for industrial

robots, where the signals from the sensors need to be processed quickly to

in order to be able to send commands to actuators in time. A potential

solution is the deployment of data and service intelligence at different levels

in the systems, from the network edge to the cloud. Several paradigms such

as Fog and Edge Computing are arising, that are potentially able address

those issues. They will be analyzed in more detail later.

2.2 IoT Protocols Landscape

This section will provide an introduction to the currently leading application

layer protocols, since they serve as the basis on which the interoperability

solutions are laid on. An overview of the current IoT connectivity technolo-

gies, as they play an important role in the current and future Industrial IoT

development and adoption.
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2.2.1 Application Layer

2.2.1.1 CoAP

CoAP is an application layer protocol designed by IETF Constrained REST-

ful Environment (CoRE) working group, specifically designed for constrained

network and devices. The main design objectives were to keep a small over-

head, limited fragmentation, multicast support and to create a simplistic

protocol for M2M communication [21].

It provides a RESTful API with similar methods as the HTTP protocol,

like GET, POST, PUT, DELETE, but offering a significantly smaller message

overhead, and extending it with support for specific M2M problems such

as resource discovery of the nodes and providing an asynchronous transfer

model.

In order to avoid the overhead created by TCP and its connection-oriented

mechanism, UDP (User Datagram Protocol) or SMS (Short Message Service)

are used by CoAP as its underlying transport protocol. Reliability becomes

optional and it is offered at the application level, by providing different CoAP

message types: confirmable (CON), non-confirmable (NON), acknowledge-

ment (ACK) and reset (RST).

Built-in resource discovery is supported using the CoRE Link Format

standard. CoAP messages are encoded in a simple binary format, allowing

this functionality starting with just a 4-byte overhead.

CoAP introduces an asynchronous publish/subscribe mechanism to en-

able server-initiated communication, which is called Observe/Notify. This is

due to avoid the polling mechanism of standard HTTP, which require clients

to repeatedly perform the same request to know if a server resource has

changed, an approach which is absolutely not efficient for power-constrained

devices.

To start the observer/notify mechanism, the client indicates in a CoAP

request its interest to observe the changes in the CoAP server by specifying

the “Observe” option in the message options. This way, the client starts
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observing the resource on the server and if the resource is updated, the server

notifies the client with the new information.

2.2.1.2 MQTT

Message Queuing Transport Protocol (MQTT) is a standard developed by

Organization for the Advancement of Structured Information Standards (OA-

SIS) [22], designed for low power and constrained devices. Unlike CoAP,

MQTT is based on the publish/subscribe paradigm, making use of a bro-

ker between the publisher and the subscriber. A publisher can simply send

new updated data to the broker, which in turn relays the message to the

clients who subscribed to that resource. The broker enables flexibility and

decoupling between the entities: the subscriber does not need to know who

the publisher is, and the message exchange is asynchronous. Since MQTT

is based on TCP, all the messages are acknowledged on the transport layer.

This causes and increased load on the network compared to CoAP. MQTT

provides three levels of QoS (Quality of Service): The first one is best ef-

fort and it provides the same guarantees the same as the underlying TCP

protocol. The second is called “At least once” and it guarantees that the

message will be delivered at least once to the receiver. But the message can

be delivered more than once. The third level guarantees that every message is

received, and it is provided by two flows between the sender and the receiver,

greatly impacting on the load and the latency of the communication.

2.2.2 Connectivity Layer

Traditionally, industrial systems have been using classic wired networking so-

lutions, such as Fieldbus, CAN, PROFIBUS, HART, which have been proven

to be reliable and capable to satisfy industrial connectivity requirements [23].

However, wireless communications is quickly making its way into the

Industrial Internet of Things. Without the restrictions of cables, developers

of industrial systems have the potential to cut costs and make deployment

and maintenance easier, improving efficiency and productivity.
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A plethora of IoT communication technologies has emerged recently, most

notable ones are Bluetooth Low Energy (BLE) and ZigBee that are prevalent

in specific scenarios, and Low Power Wide Area Network (LPWA), as well as

cellular technologies, i.e., 4G machine-type-communication (MTC), Narrow-

Band IoT (NB-IoT), that are meant for a much broader scope [24].

None of the aforementioned technologies has prevailed as a market leader,

mainly because of technology shortcomings and business model uncertainties

[25]. We can state that we are in a turning point, with many promising radio

technologies and the improvement of cellular M2M communication, which is

one of the major focus area into the ongoing 5G standardization.

In the following section, I will give a brief review of some of the most

popular connectivity standards for IoT, focusing on whether they are suitable

or not for industrial applications.

Bluetooth Low Energy. Bluetooth was originally designed by the Blue-

tooth Special Interest Group (SIG) for short range applications with data

rates in the low Mbps. In 2010, Bluetooth Low Energy (BLE) was intro-

duced as a part of the Bluetooth 4.0 specification, nowadays updated to 4.1,

in order to provide lower costs, lower power consumption and less complex

radio standard. One of the main drawbacks is the restriction to a single-hop

topology, with one master device communicating with several slave nodes.

In 2015, the Bluetooth SIG proposed the formation of the Bluetooth Smart

Mesh working group [26], to develop and standardize an architecture for mesh

networking, which will play an important role in the deployment of BLE for

IoT solutions.

Given its features, BLE is believed to become the main standard for con-

sumer applications such as smart living, health care and so forth. However, it

may not be suitable for Industrial applications, since it lacks delay guarantees

and due to the assumptions of a quasi-static star topology [23].

ZigBee. ZigBee is a low power and low cost standard which has found a

wide application in Wireless Sensor Networks, which are generally considered
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as the pioneering Industrial IoT applications [27]. It is based on the IEEE

802.15.4 Physical and Link standard specifications. The main drawback, es-

pecially from an Industrial perspective, is that it uses a single static channel

for the communication, using Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA) for channel access. This is clearly not ideal in an

industrial context, where a massive number of connected devices might at-

tempt to communicate concurrently [26].

In 2008, the IEEE 802.15 Task Group 4e was created, in order to overcome

this limitations and develop an new multi hop Medium Access Control better

suitable for emerging Industrial Applications.

LPWA. Low Power Wide Area is a recently emerged class of M2M com-

munication technology, operating in the unlicensed spectrum. It focuses on

resource and energy constrained devices, which require low power transmis-

sion on small amount of data exchanged, an area for which traditional cellular

networks have not historically been optimized. It is currently implemented

in many different proprietary solutions (LoRa, Sigfox, Coronis, NWave, Am-

ber Wireless, etc.) [27]. The main goals of LPWA are to enable extended

coverage (up to some tenths of kms), low device complexity, and long battery

lifetimes (up to 10 years with AA batteries).

Despite its appealing and promising features, the use of the unlicensed

spectrum for long-range communication represents a major drawback. Sev-

eral restrictions are imposed on radio transmitters, which can cause asym-

metric link budgets between the uplink and downlink directions [26]. More-

over, Palattella et al. [27] state that spectrum congestion could represent

a problem to meet the scalability requirements of large scale Indutrial IoT

deployments. It is important to say that LPWA is not seen as a replacement

for cellular connection, however, it could play an important role to support

the IoT market until the standardized cellular solutions will be ready for the

adoption.
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2.2.2.1 M2M cellular technologies

As I have pointed out in the previous section, the presented technologies

can be viable for consumer use cases, but may not be able to meet the

robustness and security requirements for civic, industrial and other related

IoT applications. I.e., neither ZigBee nor Bluetooth provides a guaranteed

wireless communication delay, they are susceptible to interference, and often

produce lengthy system outages [12].

According to Andreev et al. [25], one of the biggest early mistakes was

to think that low power technologies were the best solution, while high-

transmission-power low-energy could be what we actually need. ZigBee only

offer low power, which leads to short transmission range and multihop, that

in turns yields to poor reliability as described above.

As long as the transmission is done in a very short time, high power

cellular technologies can be energy efficient, having also the advantage of a

higher communication range.

Moreover, due to the offered benefits in terms of wide coverage, high

data rate, low latency, relatively low deployment costs and high spectrum

efficiency, long-range cellular networks, are becoming increasingly attractive

for many applications such as connected cars, smart cities, industrial internet

[28].

4G technologies, i.e., LTE and LTE-A [29], are interesting again since

their radio interface, OFDM, allows the scaling of the bandwidth according

to needs, although the modem cost is quite high in early releases [27].

3GPP (3rd Generation Partnership Project) have started several initia-

tives aiming at enhancing LTE to become more suitable for M2M appli-

cations. The first proposed solution is called eMTC (enhanced Machine-

Type-Communication), also referred to as LTE Cat-M1, an LTE evolution

standardized to ensure Massive IoT deployment and coverage [25], that led

to the introduction of a further evolution featuring Narrowband operations,

that is NB-IoT.
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Narrowband IoT (NB-IoT)

NB-IoT was proposed in 2016 by 3GPP in their Release-13 specification as

an evolution to LTE Cat-M1, in order to provide a technology better suited

for MTC applications needing low data rate, low module cost and and long

battery lifetime.

NB-IoT is designed for optimal co-existence with existing legacy GSM

and LTE technologies. Due its bandwidth of 180 kHz, it is possible for

a GSM operator to deploy NB-IoT application in refarmed GSM carriers.

Alternatively, LTE network operators can as well deploy NB-IoT in the guard

bands of the LTE spectrum allocations.

Thanks to its 180 Khz bandwidth, NB-IoT can be deployed in re-farmed

GSM carrier offering an alternative use of GSM spectrum. Alternatively it

can be deployed in the guard bands of LTE spectrum allocations or using

part of an operators LTE spectrum [27].

The performance is similar to the previous LTE MTC solution, with the

benefit of having greater flexibility in the deployment, only requiring a base-

band card update at the base station, enabling the reuse of all existing cell

site equipment. NB-IoT is foreseen as a pioneer technology will continue to

evolve towards 5G future requirements [28].

Towards 5G standardization

The fifth generation mobile network (5G) has been introduced in 2012 by

ITU (Intenational Telecommunication Union), when they decided to develop

a new International Mobile Telecommunication (IMT) system for 2020 and

beyond. One of the main goals is to include from the beginning support for

massive machine-type communications, high reliability and ultra low latency,

in order to fulfil industrial IoT requirements.

It aims to achieve hundreds of billions connection, 1 ms end-to-end latency

and real, not theoretical peak rates, of 1 to 10 Gbit/s, all features that will

significantly benefit the development of industrial IoT applications. The

networks should have a perceived availability of 99.999%, and a perceived
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coverage of 100%, trading off data rate for range, which will also help with

different M2M applications.

Several new technologies are needed to enable 5G communications. Mas-

sive MIMO and millimeter wave is required to increase bandwidth and spec-

tral efficiency, supporting more data per each node and making a better use

of the 5Ghz unlicensed spectrum. Offloading and extreme densification can

improve the area spectral efficiency, enabling more active nodes per unit area

and frequency [23].

2.3 Interoperability standards

The rapid growth of IoT makes the standardization difficult. However, as

pointed out in the previous sections, standardization plays an important role

for the further development and spread of IoT. This section will provide an

introduction to the most prominent IoT standards and initiatives, focusing

on LwM2M which is the choice of this thesis work, and comparing it with

OPC-UA, the successor of the classic OPC standard, which has strong ties

with the industrial market.

2.3.1 SmartM2M and oneM2M

An interesting standardization effort has been done by ETSI (the European

Telecommunications Standards Institute), which resulted in smartM2M. It

is based upon an adaption layer called Service Capability Layer (SCL) that

can run on top of constrained devices, IoT gateway and network instances. It

exposes a RESTful API enabling generic resource access, addressing, device

management, data storage, transaction management and so on [27] .

The standard also defines an M2M security framework, encompassing au-

thentication, key agreement and establishment, service bootstrap, and con-

nection procedures. The most critical downside of this framework is that

each transaction is mediated by the M2M network, which can easily become

a single point of failure, leading to scalability issues, which makes it a non
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ideal solution for future IIoT.

Figure 2.1: SmartM2M high level architecture.

With similar objectives, the oneM2M initiative started as an international

project between different standardization entities around the world [30]. Its

goal is to define an horizontal service layer interconnecting M2M components

on a global scale. oneM2M also tackles the scalability problem by represent-

ing its resources in a hierarchical organization called resource tree.

oneM2M also targets the definition a horizontal service layer that inter-

connects heterogeneous M2M hardware and software components on a global

scale. Figure ?? illustrates its architecture, which consist of at least one

Common Service Entity (CSE), one Application Entity (AE) and a Network

Service Entity (NSE). A CSE node is a logical instance taht can provide a

set of services called Common Service Functions (CSFs), that can be used

by the AE nodes to provide application logic, such as remote monitoring

functionalities, for end-to-end M2M solutions.

Being a relatively new standard, oneM2M has still not many mature

implementations as of today.
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Figure 2.2: oneM2M architecture.

2.3.2 LWM2M

LWM2M is the interoperability solution developed by OMA, on the most

prominent standardization bodies in mobile communication. Its main feature

is to provide several interface for the purpose of monitoring, provisioning

and managing connections of networked devices, enabling remote service and

application management for the emerging Internet of Things [31].

It features a modern architectural design based on REST, defines an ex-

tensible resource and data model and builds on an efficient secure data trans-

fer standard called the Constrained Application Protocol (CoAP). LWM2M

is targeted in particular at constrained devices, such as low-power microcon-

trollers with small amounts of memory, but it can also find applications with

more powerful embedded devices that benefit from efficient communication.

While LWM2M is used for device management operations, its Object

Model is being used to provide a resource model for applications. IPSO

Alliance is defining IPSO Objects built on the LWM2M Object Model, pro-

viding a reusable Object Model so that any party can define their own objects

and either suggest them for standardization to OMA, or just use them on

their applications without standardisation [32].

OMA has approved first version (V1.0) of LWM2M in February 2017, so
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it is a fairly recent standard. Despite that, several implementations already

exist, both in C and Java, provided by the Eclipse Foundation [33].

2.3.2.1 Architecture

As depicted in Figure 2.3, LWM2M consists in a client-server architecture.

LWM2M architecture defines three logical components:

LWM2M Client: It contains several LWM2M objects with several re-

sources. LWM2M Server can execute commands on these resources to

manage the client, commands such as to read, to delete or to update the

resources. LWM2M Clients are generally the constrained devices (sensors,

actuators, etc.).

LWM2M Server: It manages LWM2M Clients by sending management

commands to them. The LWM2M Bootstrap Server configures the access

control for a specific LWM2M Server on the constrained device.

LWM2M Bootstrap Server: It is used to manage the initial configu-

ration parameters of LWM2M Clients during the bootstrapping process.

It is only entitled to configure the device to give access to specific LWM2M

Servers, hence, management of the device does not involve the bootstrap

server after the bootstrap process.

2.3.2.2 Interfaces

The standard defined four logical interfaces between the components de-

scribed above, which are the following:

Bootstrap: LWM2M Bootstrap Server sets the initial configuration on

LWM2M Client when the client device bootstraps. For this interface, the

client sends a “Request Bootstrap” message to the bootstrap server and

the server performs “Write” and “Delete” on the client’s access control

objects to register one or more LWM2M Servers.
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Figure 2.3: LWM2M architecture and protocol stack [31]

Client Registration: LWM2M Client registers to one or more LWM2M

Servers when the bootstrapping is completed.

Device Management and Service Enablement: LWM2M Server can

send management commands to LWM2M Clients to perform several man-

agement actions on LWM2M resources of the client. Access control object

of the client specifies the set of actions the server can perform, that can

be configured during the bootstrap phase.

Information Reporting: Exploiting the Observe/Notify feature of the

underlying CoAP protocol, an LWM2M client is able to directly send a

resource update to the LWM2M server in form of notifications, without

explicitly waiting for a request.
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2.3.2.3 Resource Model

The LWM2M standard defines a simple data model in which each LWM2M

Client exposes its accessible information throught the means of Resources.

Multiple resources are then aggregated together forming an Object. The

LWM2M Figure 2.4 depicts the relationship between Resources, Objects,

and the LWM2M Client.

Figure 2.4: LWM2M object and resource model [31]

The LWM2M data model and the open OMA naming authority registry

for Objects provide easily accessible and reusable semantics for both device

management and application data for the whole Internet of Things industry

[34]. OMA is also developing a LwM2M editor tool [35] to safely construct

these objects/resources models.

2.3.2.4 Security

In order to ensure a secure communication channel between the LWM2M

clients and the LWM2M servers, the standard specifies the use of Datagram
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Transport Layer Security (DTLS) protocol [36]. There are several available

security modes: pre-shared key for very limited devices and public and pri-

vate key technology for more capable ones. LWM2M Bootstrap server is used

to manage the keying, access control and configuration of a device to authen-

ticate with a LWM2M Server. The endpoint identifiers, security identifiers

and keys are used systematically in the LWM2M environment to provide a

complete security life-cycle.

2.3.3 OPC-UA

OPC-UA (Unified Architecture) is the standard for industrial automation

developed by the Open Process Controlled Foundation. It is an evolution

of the classic OPC standard, which dates back in the 90s and it was tightly

coupled with Microsoft Windows and its COM/DCOM interface.

The objectives of this new standard are: to be platform independent,

dropping the dependency from Microsoft COM, to improve security and im-

prove modeling.

OPC-UA provides a client-server architecture, in which clients and servers

are entities interacting that can be combined to create applications. The

OPC-UA specification defines abstract services following services oriented

architecture (SOA). The Service Mapping part of the specification defines

several protocol bindings to map these services to network transport. Cur-

rently, there are four bindings: a binary mode through TCP or HTTPS, or

an XML encoding which is accessible through SOAP webservices.

The data model is no longer based on folders, items and properties, but it

is a Full Mesh Network based on Nodes, that can be compared to a modern

object oriented programming language.

OPC-UA security is based on a Public Key Infrastructure (PKI) using

industry standard X.509 digital certificates and addresses authentication,

authorization, encryption and data integrity.
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Figure 2.5: OPC-UA protocol bindings [37]

2.3.4 Summary and Comparison

oneM2M and LWM2M are two complementary technologies that are not

meant to be competitors. While LWM2M is originally a Device Management

technology extended to support generic data exchange, oneM2M tries to pro-

vide a full, but complex service layer technology that supports devices as well

as cloud servers. Several works already exist that try to combine LWM2M

and oneM2M [38] [39]. My work focuses on extending the capabilites of

LWM2M adding support for scalability, without the added complexity of

oneM2M.

On the other hand, OPC-UA is a widely accepted standard in Industrial

Automation. However industrial communication protocols such as OPC-UA

sometimes seem a bit expensive for small embedded devices, while LWM2M

standardisation is designed to provide efficient communication and device

management protocols for resource constrained embedded devices.

Table 2.1 gives a comparison of the most important properties between

the two standards.

2.4 Cloud Computing

As pointed out before, IoT usually consists of devices with limited memory

and processing power, and the number of these connected things is predicted
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Table 2.1: Comparison Between OPC-UA and LWM2M

OPC-UA LwM2M

Protocol State Stateful Stateless

Transport Protocol TCP UDP and SMS

API SOAP or Binary REST

Communication Style
Client-Server,

Publish-Subscribe (draft)
Client-Server

Application Protocol TCP Binary or HTTP CoAP

to grow at an unprecedented rate in the next few years. However, IoT ap-

plications require huge computing power and massive storage, in order to

analyse, collect and manage such a large and heterogeneous volume of data.

Cloud Computing has emerged as one of the most promising solution to meet

these requirements.

Cloud Computing can be defined as a model for on-demand and ubiqui-

tous access to a shared set of configurable computing resources (e.g., servers,

storage, networks, applications, services), which can be dynamically provi-

sioned and released with minimum management effort or interaction with the

service provider, thanks to next generation data centers in which computer

nodes are virtualized through the means of Virtual Machines (VMs) [40].

Thanks to its features of virtually infinite scalability, fault tolerance, high

availability and affordable price due to the economy of scale, Cloud Comput-

ing has attracted attention of both academia and industry, leading to the

development of several IoT solution based on this technology [11].

2.4.1 Edge and Fog Computing

Despite Cloud Computing can help to overcome most of the IoT limitations,

there are various situations in which it could be not the best option. As the

number of connected things is expected to grow to more than billions in a few
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(a) Cloud computing (b) Edge computing

Figure 2.6: Illustration of the two computing paradigms [41]

years, the enormous data that will be produced at the edge of the network

could lead to huge unnecessary bandwidth and computing resource usage.

Certain IoT applications may have very strict response time requirements or

privacy constraints for which Cloud Computing could represent an unviable

option. For instance, an autonomous car will generate around 1 gigabyte of

data every second [41], thus sending all the data to the cloud may result in

a response time that would be too long to make correct decisions. Moreover,

considering that IoT wireless communication module is usually very energy

hungry, offloading some computing tasks to the edge could be more energy

efficient. Cisco predicted that, by 2019, 45% of IoT-created data will be

stored, processed, analyzed, and acted upon close to, or at the edge of, the

network [42].

This model where data is analyzed and processed by applications running

in devices within the network rather than in a centralized Cloud is referred

to as Edge or Fog Computing, a term introduced by Cisco engineers in [43].

Figure ?? show the difference between Edge Computing and the traditional

cloud architecture.

It is worth noting that Edge Computing is not intended as a replacement

for the cloud. As Bonomi states in [43], Fog computing provide localization,
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therefore enabling low latency and context awareness, the Cloud provides

global centralization. Fog Computing cannot provide functionalities such as

complex analysis, data access to large numbers of users and storing historical

data, which is complemented with Cloud Computing. In many application

both models will be combined, forming a 3-tier architecture, as shown in Fig-

ure 2.6(b). While the first Edge layer is designed for M2M interaction, data

processing and filtering, the cloud tier deal with visualization and reporting

(human-to-machine [HMI] interactions), as well as historical data storing and

analytics. Table 2.2 shows a general overview of what could be the possible

roles of the Edge and Cloud layers in different IoT applications.
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Table 2.2: Potential roles of edge and cloud layers. Adapted from [44]
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2.5 Virtualization

Due to the difficulty of setting up an environment with a great number

real devices for the evaluation of our architecture, a testbed consisting of

simulated virtual devices has been implemented. Virtualization provides

the flexibility to be deployed in different physical machines in a completely

transparent way. For this reason it has also become the standard model used

by service providers to enable Cloud Computing.

The classic virtualization technology is called Hypervisor based Virtual-

ization. The Hypervisor, also called Virtual Machine Monitor (VMM), is a

software that run in the host Operating System, and it is used to create and

manage virtual machines (VM) called guests, each one running in an isolated

manner and with its own allocation of resources (CPU, memory, etc.) [45].

The main drawbacks of this approach is the unnecessary resource utilization

that causes, since the operating system has to be replicated multiple times

on the host machine, and the runtime overhead caused by the hypervisor

managing all the privileged instructions executed inside the guest VMs.

For this reason, a new virtualization paradigm has emerged recently,

called Container based virtualization. Container based virtualization is a

lightweight alternative, that achieves virtualization at the level of the host

operating system without the need of an hypervisor [46]. It is based on virtual

environment called containers, which all share the same operating system of

the host, dramatically reducing the occupied storage space. Even though

different containers are executed side-by-side on the host operating system,

they can still remain isolated thanks to particular features of the operating

system kernel, which is able to provide a virtualized view of the resources:

network interfaces, process IDs, interprocess communication, and directory

tree. Although they could be theoretically implemented on any operating

system, most popular solution are based on the Linux Kernel.

Figure 2.7 illustrates the difference between virtual machine and container

based virtualization architectures.
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Figure 2.7: Difference between virtual machines and containers

2.5.1 Docker

Docker is arguably the most popular container-based virtualization solution,

built on top of Linux kernel feature called cgroups and namespaces [47]. It

provides all the necessary tools to package applications with all the necessary

runtime dependencies into so called images, enabling it to run the same way

regardless of the environment. Docker images are composed by several read-

only layers, each one corresponding to an instruction, such as running some

specific command, adding a file into a directory, setting the environment

variable, and exposing a port for communication. The idea is that in case

multiple images have common base layers, it is possible to keep only a single

copy of the common layer and share it among all the images, allowing to

substantially save the storage space required.

A Docker container can then be created from an image with minimal effort

using the Docker client interface. When a container is created, a writeable

layer is created on top of the image. Any change that happens during the

execution of the container is written on this layer, while the underlying image

remains immutable. This allows for multiple containers to share the same

image, confirming the lightweight nature of Docker. Figure 2.8 illustrates the

structure of a Docker image and container.
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Figure 2.8: Docker images and containers structure

Docker Engine provides an API and command-line tools for starting, stop-

ping, resuming and removing containers. When a container is started, it is

possible to specify additional configuration that determine how the container

interacts with the host system. For instance, ports can be published by pro-

viding a port mapping between an external and an internal port number.

Other hosts on the same physical network are able to communicate with the

container through the external port, and the connection is mapped to the

internal port inside the container. Volumes can also be mounted, which allow

the container to read and write directories of the host filesystem. Changes

to these files are persistent, even in the event that the container is stopped.

2.6 Related Works

There are several research works in the literature that analyse problems sim-

ilar to the one considered in this work.

Tanganelli et al. [48], propose an Edge-centric distributed architecture

to provide IoT applications with a common service for global discovery and
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access of resources. This service is realized by deploying IoT gateways in the

Fog layer, collaborating together by the means of a P2P overlay implemented

by means of a DHT (Distributed Hash Table). They provide a scalability

analysis similar to ours, confirming the benefits of a distributed and feder-

ated architecture. However, their implementation makes use of plain CoAP,

without any additional data model. Moreover, it does not consider any se-

curity mechanism, making it unsuitable for Industrial IoT, as it lacks two

major requirements (Interoperability, Scalability).

Robles et al. [49] provided a group management extension for the LwM2M

standard. This is achieved by introducing a new device in the architecture,

the LwM2M Proxy, which can minimize the messaging to the LwM2M Server

by forwarding a request to all the devices belonging to a certain group. The

proxy is implemented by behaving both as a LwM2M client for the server

and as a LwM2M for the devices. A server then can simply issue an exec

command to address a certain group. The authors provide an evaluation

of the solution, demonstrating that the load on the network is substantially

reduced when using the group feature, thus potentially representing an useful

device to improve the scalability of an LwM2M solution.

Makinen et al. [50] presented the design of an IoT emulation platform

(ELIoT). The proposed solution makes use of Docker containers running

LwM2M client instances, in order to provide a flexible and portable environ-

ment to test and study interactions between IoT devices. Inspired by this

work, we used a similar approach to evaluate our architecture, enabling us

to flexibly deploy a variable number of devices for our test cases.
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Design and Implementation

In this chapter, I will present the general design choices adopted to develop

our scalable architecture. First of all, I will introduce Eclipse Leshan, an

LWM2M library around which the implementation is based. Next, a general

overview of the proposed architecture is provided, followed by a detailed

description of its components and their implementation.

3.1 Eclipse Leshan

Eclipse Leshan is an implementation of the LWM2M standard written in

the Java programming language. The development was originally started by

Sierra Wireless1 in 2014 with the early versions of the standard, then becom-

ing in 2015 an open-source project mantained by the Eclipse Foundation.

Leshan does not provide a full LWM2M solution. It is instead a set of li-

braries, which a developer can use to write its own LWM2M Client and/or

Server implementations.

The main reasons for choosing it for this work is that Leshan is considered

to be a reference and mature implementation by many researchers [51] and

it has a very active development community. Moreover, it has an almost

complete coverage of the LWM2M specifications.

1https://www.sierrawireless.com

42
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Leshan is based on the Eclipse Californium2 project, a CoAP frame-

work which has been designed for cloud services, therefore having a focus on

scalability and usability instead of resource efficiency for embedded devices.

The Scandium3 sub-project is used as the DTLS implementation, providing

LWM2M security with three authentication options: Pre Shared Keys, Raw

Public Keys and X.509 certificates. All of these reasons make Leshan an ideal

choice for the LWM2M server cluster implementation that will be describer

later.

The project also includes a client and server demo to be used as a reference

for one’s own implementation. The server demo also contains a simple web

UI, which manages user commands, visualizes the communication between

the client and server and shows CoAP messages, useful for familiarizing with

the protocol and debugging clients.

A demo bootstrap server implementation is also provided, which however

was not used in this work, in order to reduce complexity during the test

phase.

3.2 Architecture Overview

The idea behind the proposed solution is to combine LWM2M together with

the Fog Computing paradigm, which has already been introduced in Section

2.4.1, combining both the advantages of using a widely adopted and secure

standard with the benefits of Fog Computing. Having multiple Fog nodes

can help in many situation, especially in an industrial environment. For

example, in a factory floor where there could be thousands of sensors and

actuators, it would be inconceivable to handle them with a single IoT gate-

way. Recurring to Cloud Computing is also not always feasible, due to the

added latency. Moreover, in future large scale Industrial IoT systems, it is

expected to have several different IoT domains deployed in the same factory,

2http://www.eclipse.org/californium
3https://github.com/eclipse/californium.scandium



CHAPTER 3. DESIGN AND IMPLEMENTATION 44

collaborating with each other in order to reach a common main goal. In order

to integrate different IoT infrastructure and enable seamless discovery and

resource access across multiple domains, it is necessary to achieve collabora-

tion and cooperation between the IoT gateways, in this case represented by

the LWM2M servers. Figure 3.1 depicts a general overview of the proposed

architecture, illustrating its main components.

LwM2M Client LwM2M Client LwM2M Client

Load Balancer

LwM2M Server LwM2M Server LwM2M Server Shared
state

Backend

Pub/Sub Broker

Backend Backend

Fog Layer

Figure 3.1: Overview of the proposed architecture

3.2.1 Requirements

The main issue is that the LWM2M specification per se does not provide

any clustering support or any sort of federation between servers. There

are many things to consider in order to implement clustering for LWM2M

servers. Several states need to be shared across the instances, as shown in

the figure. CoAP uses Message IDs and Tokens for duplicates and reliability.
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A DTLS connection needs to maintain several information like handshakes,

keys, epochs, fragments. Then, at LWM2M level it is necessary to share data

about the registered clients, the ongoing observations and the security keys,

in order to achieve a global resource access directory.

Using a Load Balancer that operates at Level 4 of the TCP/IP stack

(i.e. forwarding based on the IP/port combination), it is possible to avoid

saving CoAP and DTLS states, which would otherwise dramatically impact

performance. The Load Balancer, in fact, would forward all the packets

coming from one LWM2M client to the same LWM2M server instance.

Regarding the LWM2M registrations and security info, Leshan already

provides an implementation of a “Registration Store” and “Security Store”,

which can easily be adapted for my architecture.

While the Leshan demonstration server integrates a Web server, which

exposes a RESTful API to interact with it and access client objects and re-

sources, a specific backend interface needs to be implemented in the cluster

case. In order to interact with the cluster and access a specific resource on

a device, it necessary to determine, which server instance is responsible for

that device. The use of a Publish/Suscribe broker represent a convenient and

reliable way to handle requests and responses. The use of a Backend inter-

face could even enable more freedom and flexibility, allowing the decoupling

between LWM2M resource management and IoT applications.

Lastly, a frontend in order to interact with the end user need to be imple-

mented. Due the use of a Publish/Subscribe broker, Websockets represent a

convenient way for the development of Web based user interface.

All the components presented above will be described in more detail in

the following sections.

3.3 LWM2M Server Cluster

This section provides a detailed description of the various components that

are necessary to enable collaboration and clustering support for LWM2M
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Servers. After this, an illustration of the sequence of interactions when regis-

tering a new client will be depicted, followed by a description of the backend

interface enabling the end-user to make requests and receive responses.

3.3.1 Load Balancer

In order to enable a seamless clustering support and a global resource access,

every LWM2M instance has to know the same amount of information as the

others. Sharing all the DTLS and CoAP states would be too expensive,

negatively impacting the overall performance. The use of a Layer 4 Load

Balancer represents a potential solution to this problem. Packets coming

from the same pair of source ip address and port will be forwarded to the

same server, thus when a LWM2M client performs a registration, all the

subsequent communications will be handled by the same LWM2M server

instance, keeping the same DTLS session. In this way, the complexity of the

implementation is greatly reduced, at the cost of having a slight reduction in

flexibility and parallelism.

3.3.1.1 Linux Virtual Server

One issue is that not so many Level 4 Load Balancers that support UDP pro-

tocol exist, as they are often only based on TCP. One of the most prominent

UDP Load Balancers is Linux Virtual Server4 (LVS).

LVS is a free and open-source load balancing solution with “the mission

to build a high-performance and highly available server for Linux using clus-

tering technology, which provides good scalability, reliability and serviceabil-

ity” [52]. The software is built on top of Netfilter, a Linux Kernel module

present since version 2.3.x. This permits to achieve incredibly fast speeds,

often within 5 percent of direct connection [53].

The userland utility program used to configure LVS is called ipvsadm,

which requires superuser privileges to run. In LVS terminology, the Load

4http://www.linuxvirtualserver.org
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Balancer is also referred to as director or virtual server, as it appears as a

single server to the clients. The real servers are the machines holding the

actual services and the ones who serve the request.

The director is basically a router, with routing tables set-up specially for

LVS operation. These tables allow requests from clients to services provided

by LVS to be redirected to the real servers.

The code snippet illustrated in Listing 3.1 shows an example of LVS

configuration for a cluster of LWM2M servers. The first two commands

assigns a virtual server service on UDP port 5683 and 5684, which is the IP

address LWM2M clients will use for the registration. The chosen scheduling

algorithm for load balancing is round-robin (-s rr). The commands in

the loop assign real servers to the previous chosen virtual service. The - m

option specifies that masquerading, better known as NAT (Network Address

Translation), will be used as the packet forwarding method.

Listing 3.1: LVS configuration for Leshan server cluster.

1 # $VIP: virtual server address

2

3 sudo ipvsadm -A -u $VIP :5683 -s rr #CoAP

4 sudo ipvsadm -A -u $VIP :5684 -s rr #CoAP w/ DTLS

5

6 # R_IPS: array containing real server addresses

7

8 for RIP in "${R_IPS[@]}"

9 do

10 sudo ipvsadm -a -u $VIP :5683 -r $RIP :5683 -m

11 sudo ipvsadm -a -u $VIP :5684 -r $RIP :5684 -m

12 done

Using the command ipvsadm -L -n, it is possible to query the status

of the current LVS set-up, as well as some statistics regarding the incoming
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connections and assignments. An example of output can be seen in Listing

3.2.

Listing 3.2: LVS set-up summary

IP Virtual Server version 1.2.1 (size =4096)

Prot LocalAddress:Port Scheduler Flags

-> RemoteAddress:Port Forward Weight ActConn InActConn

UDP 130.233.96.206:5683 rr

-> 172.18.0.2:5683 Masq 1 0 0

-> 172.18.0.3:5683 Masq 1 0 0

-> 172.18.0.4:5683 Masq 1 0 0

UDP 130.233.96.206:5684 rr

-> 172.18.0.2:5684 Masq 1 0 0

-> 172.18.0.3:5684 Masq 1 0 0

-> 172.18.0.4:5684 Masq 1 0 0

3.3.2 Shared Store

Once having solved the issue regarding CoAP and DTLS states, we need to

manage the states related to the LWM2M standard: Registrations, Obser-

vations and Security information. It necessary to implement a shared store

of these states so end-users can have access to all the registered clients and

their resources and LWM2M servers are able to identify, which instance is

responsible for a particular device.

Leshan already provides two implementations for the Registration Store:

a simple one residing in the Java VM memory, and another one using an

external data store called Redis5.

3.3.2.1 Redis

Redis is an open-source NoSQL in-memory key-value database, which can

store data in various useful data structures such as strings, hashes, lists, sets

and others. Redis supports many powerful features like built-in persistency,

5https://redis.io
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pub/sub, limited transaction support with optimistic locking and Lua Script-

ing. It is ranked as the most popular key-value database as per DB-Engines

Ranking [54].

Redis is written in ANSI C and is heavily optimized for performance,

working as an in-memory dataset. Persistence can be achieved either by

dumping the dataset to disk every once in a while, or by appending each

command to a log.

An interesting feature that can be useful for the proposed architecture

is its native support for clustering. Redis Cluster provide the ability to

automatically split the dataset among multiple nodes. Moreover, thanks to

the support for master/slave replication, it is able to continue operations

even when a subset of the nodes are experiencing failures.

In my solution, each LWM2M server node has its own Redis instance.

Configuring clustering support for Redis requires only modification to the

redis.conf file, and the use of Ruby utility called redis-trib.

Many popular Redis client API provide native support for Redis Cluster,

such as Jedis6, the Java Redis API that is used in my implementation.

3.3.2.2 Registration Store

As pointed out before, Leshan already provides an external RegistrationStore

using Redis. This implementation has been extended for the use with the

Redis Cluster, by simply changing some Jedis function calls.

The Leshan implementation also stores information about observations.

Whenever a client performs or update a registration, the information are

serialized as JSON bytes and stored under a key prefixed REG:EP: plus the

endpoint name. A secondary key with the registration Id and the correspond-

ing endpoint is also kept under the prefix EP:REGID. Listing 3.3 provides an

example of a registration record.

An end-user interested in discovering the registered client resources, or

an intermediary backend wanting to provide such a service, simply has to

6https://github.com/xetorthio/jedis
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query the Redis database directly. In this way, it is possible to obtain all the

clients’ registration information, including their connected objects. Then,

in order to know the available resources for each object, it is necessary to

download the objects specifications from the IPSO Object Registry. This

procedure will be detailed later in the frontend implementation.

Listing 3.3: Client Registration entry

{

"regDate": 1529700131323 ,

"identity": {

"address": "172.17.0.2",

"port": 38055

},

"regAddr": "0.0.0.0",

"regPort": 5683,

"lt": 30,

"ver": "1.0",

"bnd": "U",

"ep": "test1",

"regId": "dA3f5jm7at",

"objLink": [{

"url": "/", "at": { "rt": "oma.lwm2m"}

}, {

"url": "/1/0", "at": {}

}, {

"url": "/3/0", "at": {}

}, {

"url": "/6/0", "at": {}

}, {

"url": "/3303/0", "at": {}

}],

"addAttr": {},

"root": "/",

"lastUp": 1529700185460

}

For observations, only a token is stored under the key prefixed OBS:TKN: for

managing its existence; data for values in the observations notifications is not
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kept in the registration store. This token is managed by the underlying Cal-

ifornium layer, in order to correlate the notification with the corresponding

observation. A list that associates an endpoint with its current observations

is also kept. Listing 3.4 illustrates an example of observation record, which

shows all the necessary fields to re-correlate a received notification.

Listing 3.4: Observation entry

{

"request": "4801 ffffd7ca10784d92d74b605433333033

01300435373030622 d17",

"peer": {

"address": "172.17.0.8",

"port": 35691

},

"context": {

"leshan -endpoint": "test7",

"leshan -path": "/3303/0/5700",

"leshan -regId": "oxytptIZV7"

}

}

3.3.2.3 Security Store

The security store is used to hold security information for clients in order to

authenticate with LWM2M servers, like identity and password for the pre-

shared secret method, as well as raw public keys or X.509 certificates. With

X.509 common name of the certificate presented by the client is used as the

endpoint name. However, despite the Security Store is fully implemented,

it lacks an interface in order to add/or remove information on it. This has

been done as part of the Backend Interface as it will be described later.
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3.3.3 Pub/Sub Broker

Due to the introduced architectural constraints, whenever an end user wants

to perform a request, this must be handled by the LWM2M server instance

in charge of the target device. A Publish/Subscribe broker comes handy for

this purpose and can serve as an interface with an IoT backend.

Redis has already an integrated Pub/Sub module providing this feature.

Thanks to this, it not necessary to install any additional piece of software

and it is possible to use the same Redis Cluster instance used for the Shared

Store.

With the Publish/Subscribe paradigm, senders (publishers) do not send

their messages directly to receivers (subscribers). Rather, messages are sent

onto channels, without knowing who are the receivers, if there are any. An

entity can express interest in one or more channels by subscribing to them,

receiving then only messages of interest. This decoupling of publishers and

subscribers can allow for greater scalability and a more dynamic network

topology [55].

There are many client libraries supporting Redis Pub/Sub, like the Jedis

Java library used in this implementation. A revised infrastructure of the

architecture including the more specific components introduced so far is de-

picted in Figure 3.2.

3.3.4 Clients Registration

This section will describe the series of actions and interactions that happen

when an LWM2M client wants to register with the system. Each server in

the cluster is given an instance Id during its initialization. This Id will be

used later to identify the responsible instance for a specific client.

Figure 3.3 provides an illustration of the steps. First of all, the client

issues a Registration Request to the Load Balancer IP address. LVS will

then choose a real server instance based on the scheduling policy and create

a mapping. All the subsequent communications will happen through the
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Figure 3.2: Final architecture with components

same instance, unless no message exchange happens over the duration of

a configurable timeout. The default setting of 300 seconds was considered

reasonable for the purposes of this work.

On the the LWM2M server, a RegistrationListener will intercept the

request and save the client/server mapping on Redis, under EP#UID.

When the registration is ultimated, a registration JSON record, similar to

the one shown in Listing 3.3, will be sent over the channel LESHAN_REG_NEW

on the Redis Pub/Sub broker. In the same way, a registration update or

de-registration event will be notified by sending a message on the channels

LESHAN_REG_UPD and LESHAN_REG_DEL respectively. In this way, it is possi-

ble to easily create a real-time responsive frontend, using, e.g., WebSocket

technologies or similars.
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Figure 3.3: Overview of the registration process

3.3.5 Backend Interface

As explained before, an end-user does not send a request directly to a specific

LWM2M server, instead the request will be directed to the Pub/Sub broker,

which will then forward the request to all the instances. Two Pub/Sub chan-

nels are used for this purpose: LWM2M_REQ and LWM2M_RESP. Basic support

for LWM2M read requests was already provided as a proof of concept API

by Leshan. This API was extended in order to provide support for LWM2M

Observations and Notification forwarding, as well as to enable storing and

retrieval of the Security information for DTLS authentication.

3.3.5.1 Requests API

Figure 3.4 illustrates the complete flow of a request and the following result-

ing response.
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Initially, a request in JSON format is sent over the LWM2M_REQ. A snippet

of a Python script used for testing purposes is shown in Listing 3.5, illus-

trating its format. A token is attached by the entity making the request,

that can be used to recorrelate the response once it will be sent back over

the response channel. This is necessary due to the asynchronous and loosely

coupled nature of the Pub/Sub paradigm. I decided to use an universally

unique identifier (UUID) library to generate the code, in order to guarantee

uniqueness (at least locally to the test environment).

Listing 3.5: Example of Observation Request

TEST_PATH = "/3303/0/5700"

r = redis.Redis(host=REDIS_URL)

p = r.pubsub ()

for endpoint in endpoints:

uid = uuid.uuid4()

req = json.dumps({

"ep": endpoint ,

"ticket": str(uid),

"req":{

"kind": "observe",

"path": TEST_PATH ,

"contentFormat": "JSON",

}

})

r.publish(REQ_CHANNEL , req)

Once the request reach the servers, they will do a look-up on Redis to

identify if they are responsible for the targeted client or not. If the answer is

yes, an acknowledgment message is sent over the Response channel and the

request is processed, otherwise the request is simply ignored.

Then, the Registration Store is queried to access the endpoint address and

information. The request is then forwarded to the client using the CoAP

protocol as required by the standard. Once a response or notification is

received by the server, it is sent back on the Response channel along with
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the corresponding ticket, using a JSON encoding similar to the one used for

the request. In case of an unexpected response, e.g. a resource not existing

on the client, a detailed error message is returned instead.

Backend Pub/Sub Broker

1. Send Request 
(with token) 

2. Publish Request 

LwM2M Client

4. Resp. instance
send request

to client

5. Client send  
response back  

to server
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Redis Leshan  
Server
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Cluster

Redis Leshan  
Server
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Redis Leshan  
Server

LWM2M instance

Figure 3.4: Overview of the request/response flow

3.3.5.2 Security Info API

As pointed out before, Leshan provides an implementation for a Security

Store, but no end-user interface to manage it. To achieve this, a new kind

of request, apart from the ones envisaged by the LWM2M standard, called

sec_info. Only Pre-Shared-Key type of security has been implemented, as

it was sufficient for the evaluation purposes of this work.
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3.4 Backend Implementation

In order to test and evaluate the Cluster architecture, a demonstration back-

end was implemented. Since the LWM2M server cluster exposes its capa-

bilities through a Publish/Subscribe broker, the WebSocket protocol [56]

represent a natural and convenient way for the implementation of a Web ap-

plication backend. Unlike regular HTTP, where a new connection has to be

made for every new request, WebSocket provides full-duplex communications

channel over a single TCP connection.

It is designed to be used in a regular Web environment and can be used

through the JavaScript WebSocket API [57], standardized by the World Wide

Web Consortium (W3C), that is nowadays implemented on all the major

browsers. To maintain compatibility with HTTP, it is designed to work on

the same ports (80 and 443), and the handshake uses a request with a special

HTTP Upgrade header in order to switch protocol.

Once the connection is established, there is a permanent two-way com-

munication channel throughout the session, allowing the server to push data

to the client when necessary. This comes handy in this case if we want to

receive data and refresh the UI in real-time each time a new registration

happens or an observation is sent to the server. Figure 3.5 illustrates the

differences between WebSocket and the standard HTTP polling.

A plethora of different framework to implement WebSocket servers exist,

for example based on NodeJS (Socket.IO), Ruby (FireHose.IO), Perl (Mojo-

licio.us, Web::Hippie), and so on.

For my implementation, I decided to use the Java based Spring Frame-

work7. This choice was due to several reasons. First of all, the thesis author

already had some familiarity with the framework. Plus, the fact that Java

is also used in the rest of the platform allows us to reuse some of the code

already written to manage the Redis datastore and Pub/Sub module using

the Jedis library.

7http://spring.io
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Figure 3.5: Comparison of Websocket vs HTTP polling

But most importantly, Spring already provides an integrated STOMP

broker, which comes handy in managing multiple WebSocket connections

in an efficient way. Before going into the implementation details, a brief

introduction to the Spring Framework is provided.

3.4.1 Spring Framework

Spring is an open source framework designed to reduce the complexity of

J2EE development and to promote good programming practices [58]. It

can be used to develop any Java application, but it is mostly for building

web applications on top of the Java EE (Enterprise Edition) platform. It

includes several modules that provide a wide range of features. One of the

most distinctive one is the Dependency Injection.

The concept of Dependency Injection is also referred to as Inversion of

Control. In traditional architectures, every objects that needs some external

service to achieve its goal is responsible for obtaining its own dependencies.

This strong coupling leads to code that is difficult to test, reuse and maintain.
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With dependency injection, this work is delegated to Spring container, a

core component that manages the life cycle of objects. Dependencies can

be configured explicitly using XML files or implicitly using the @Autowired

Java Annotation, in which case dependencies are searched using the object

type.

The Spring Framework provides a module with special support for web

applications, called Spring MVC (Model-View-Controller). It is designed

around a Dispatcher Servlet, that is responsible to route the requests to

specific handlers. These handlers are classes declared using the @Controller

annotations and their methods are annotated with @Request mapping, in

order to serve specific URIs. They can either return a JSP/HTML view, or

they can be used to create RESTful web services.

From version 4, Spring includes a spring-websocket module with com-

prehensive WebSocket support. It is compatible with the Java WebSocket

API standard and also provides additional features such as a fallback op-

tion for non-compatible browsers, a messaging architecture and sub-protocol

support [59].

3.4.2 STOMP Broker

The main issue with WebSocket is that it only offers a very thin layer over

TCP, without offering any information about how to route or process a mes-

sage. This is different from the standard REST architecture, that relies on

having many URLs and several HTTP methods for the routing.

For this reason, a higher application layer protocol is generally used on top

of WebSocket. The standard also defines the use of a Sec-WebSocket-Protocol

in order to agree on a sub-protocol.

The Spring Framework WebSocket module already provides an integrated

STOMP broker (Simple Text Oriented Messaging Protocol). STOMP pro-

vides “an interoperable wire format so that STOMP clients can communicate

with any STOMP message broker to provide easy and widespread messaging

interoperability” [60].
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It is a frame based protocol, each frame consisting of a command, a set

of optional headers and an optional body. A STOMP server is basically a

message broker with a series of destinations to which messages can be sent.

A STOMP client can act both as a producer, sending messages to a server

destination via a SEND frame, or as a consumer, sending a SUBSCRIBE frame

for a given destination and receiving message from the server.

In this way, its nature similar to the Redis Pub/Sub protocol, thus rep-

resenting a convenient way to implement a Web server backend and tunnel

message to the LWM2M cluster backend interface described in the previous

section.

Using Spring, setting up a STOMP server and its destination requires

few lines of code. Listing 3.6 provides an extract from the configuration class

used in this work.

The URL /ws is the endpoint to which the browser will send the HTTP

Upgrade request for the protocol switch. The option withSockJS() is used

to enable the fallback option for browsers without WebSocket support. The

/queue destination is used for one-to-one communication, messages sent to

this channel are sent at most to one single client that subscribed to it. Mes-

sages sent to the /topic destination are instead forwarded to all subscribed

clients. The /app endpoint is used to send requests that are processed by

specific mapped controllers like in Spring MVC.

For the purposes of this implementation, a RequestController was cre-

ated, handling LWM2M requests sent by the end-user in the same JSON

format specified in Listing 3.5. The RequestService is then in charge of

actually processing the request. First of all, the WebSocket session ID is

saved together with the request token into a HashMap object. This will be

used later to send the response back to the correct client. The request is

then serialized and published on the Redis request channel, where it will be

then processed by the cluster and sent to the target client.

An end-user has to subscribe to the /queue/responses destination in

order to receive responses coming back from the client. For this purpose, a
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Listing 3.6: STOMP broker configuration in Spring

@Configuration

@EnableWebSocketMessageBroker

public class WebSocketConfig implements

WebSocketMessageBrokerConfigurer {

@Override

public void registerStompEndpoints(

StompEndpointRegistry registry) {

registry.addEndpoint("/ws"). withSockJS ();

}

@Override

public void configureMessageBroker(

MessageBrokerRegistry r) {

r.enableSimpleBroker("/topic", "/queue");

r.setApplicationDestinationPrefixes("/app");

}

}

ResponseService has been implemented. This is launched at the start of the

program and it listens to messages over the Redis response channel. Once a

message is received, the corresponding LWM2M request is de-serialized and

the HashMap is looked up to identify the session ID of the user who made

the request. The response is then sent back to the corresponding user by

publishing a message to the respective queue. Figure 3.6 shows a sequence

diagram outlining the flow of a request and the different protocols used for

the transmission to the LWM2M and backwards.

In the same way, a RegistrationService has been implemented to send

real-time messages about new registrations, updates or de-registrations. This

time the /topic/registration destination was used, in order to send the

messages to all the connected WebSocket sessions.
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Figure 3.6: Sequence diagram showing the involved protocols

3.4.3 REST API

A REST API was also part of this implementation. Its main function is to

provide end-users with the set of registered clients and their details about

connected objects and resources. A RestController was created using the

standard Spring MVC module, that is responsible of retrieving the data

from the Redis datastore and sending them to the user in the required JSON

format.

An endpoint to serve the set of IPSO standard objects specification has

been also implemented. This will be used by the UI to obtain readable

information about the resources.
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3.5 Frontend Implementation

The implementation of a web based frontend was not strictly required, since,

for the performance and scalability evaluation, a specific application was

created in order to systematically send request to the backend.

Nevertheless, a simple web user interface has been created as a proof-of-

concept and convenient testing purposes. The web interface allows an user

to visualize the list of clients registered to the cluster, to obtain detailed

information about the contained objects and resource and to make every

kind of LWM2M request to them. The implementation is heavily based on

the Leshan Demonstration server Web UI and it has been adapted in order

to use WebSocket and the STOMP protocol.

The frontend logic is written using AngularJS [61], a model-view-viewmodel

(MVVM) JavaScript framework for implementing Single-page applications.

The main idea behind the framework is to add custom tag attributes to the

HTML page, that are then interpreted as directives to bind input or output

parts of the page to a model, also referred to as scope. Then special func-

tions called controllers are responsible for defining methods and properties

that the view can bind to and interact with. Data is usually retrieved from

RESTful web services using singleton “service” objects that are called by the

controllers. This helps to decouple user interaction from data management.

For the integration with the WebSocket, the SockJS [62] library was used.

It provides a WebSocket abstraction object in order to be used with all web

browser and also in environments without WebSocket support, in which case

technologies like long polling are used.

A new angular service object was implemented to interact with the STOMP

broker, using the stomp-websocket library [63].

The ClientList controller at first subscribes to the registration desti-

nations of the STOMP broker for real-time updates of the interface, then

gets the list of the currently connected clients from the REST API. The

list saved into the scope and automatically bound to the view by Angular.

When an user clicks on the name of a client endpoint, the view is changed
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and a new controller, ClientDetail, is instantiated. A resource tree of the

client is built at first, by retrieving the IPSO object specifications from the

REST API. This is saved into the model and bound to the view as well. It

is then possible to issue LWM2M requests by pressing the respective buttons

on the user interface which are mapped to functions sending messages to the

STOMP destinations described in the previous section.

Figure 3.7 shows a screen-shot of the client details page.

Figure 3.7: Client Details user interface



Chapter 4

Testbed and Evaluation

In this Chapter, I will present the testbed setup and environment, as well

as the test application which has been used to evaluate the proposed ar-

chitecture. In addition, the results gained from the tests are presented and

discussed.

4.1 Testbed Implementation

In order to evaluate the performance of the proposed architecture and prop-

erly stress the cluster, a great number of devices needs to be deployed. How-

ever, carrying out such an analysis using real devices is highly non practical,

other than expensive. Managing such a large amount of devices, as well

as testing the different IoT scenarios, may be cumbersome with physical

testbeds, requiring extensive and time-consuming configurations. Following

the work done in [50], I decided to use virtualized Docker containers for the

testbed implementation. This allows to have much greater flexibility and

better control over the environment. Deploying different test configurations

can be done by using few lines of code, leading to considerable savings in

time.

The test environment consist of two separate machines, one for the clients

emulation and one for the server cluster. The two machines are connected
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through a Gigabit Ethernet switch, in order to keep delays due to the network

as low as possible and thus obtaining consistent results even with different

test configurations. The resulting setup can be observed in Figure 4.1.

LWM2M
Server 

Container #N

LWM2M
Server 

Container #1

...

Docker Bridge 
172.18.0.0/16 

LVS Load
Balancer

172.18.0.1

eth0 : 192.168.0.1

Server Cluster Machine

172.18.0.2 172.18.0.3

eth0 : 192.168.0.2

docker0 Bridge 
172.17.0.0/16 

LWM2M
Client

Container #1

...

Clients Machine

LWM2M
Client 

Container #N

Figure 4.1: Overview of the testbed network infrastructure

4.1.1 Clients Emulation

The machine used for the LWM2M clients emulation is a workstation with

64-bit Ubuntu 16.04 LTS operating system, Intel R© Xeon E3-1230 (3.40 GHz

x 8) processor and 15.6 GiB of memory. In order to optimize memory con-

sumption for the containers, alpine-java was used as a base image in the

Dockerfile, which is a configuration file containing a set of instructions for

building a docker image. This image is based on the lightweight Alpine Linux

distribution, with the added minimal requirements to run Java based appli-

cations. In this way the result image size was only 103 MB, compared to the

501 MB needed using Ubuntu as the base image.

The LWM2M client implementation follows the guidelines provided by
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the Eclipse Leshan demonstration client. The emulated device is a 3-axis

accelerometer, with data generated randomly every 50 ms. The device is

compliant to the IPSO 3313 Accelerometer1 model, which is the standard

LWM2M object, designed by IPSO Alliance, used to represent an accelerom-

eter sensor and its accessible resources.

With this setup I was able to flawlessly run up to 250 containers, before

hitting the memory limit of the machine with the system becoming slow and

unstable.

4.1.2 Cluster Setup

The LWM2M server cluster was deployed on a Dell laptop machine, running

64-bit Ubuntu 16.04 LTS, with an Intel R© CoreTMi7-7700HQ CPU (2.80 GHz

x8) and 15.5 GiB of RAM. Two different Docker images were created, one

for the LVS Load Balancer, and one for the LWM2M servers. In both cases,

Alpine Linux was again used as the base image. LVS configuration was

already shown in section 3.3.1.1. Since, for LVS to work properly, virtual

and real servers have to be on different networks, an user-defined Docker

bridge network was created, named cluster. Containers can be attached to

the network by using the --network flag of the docker run command. The

load balancer belongs both to the default docker0 bridge and to the cluster

network, while the servers are isolated. Ports 5683 and 5684, which are used

by CoAP and DTLS respectively, are opened to the external network by

using the EXPOSE command in the Dockerfile.

In order to better represent the behaviour of a Fog node, which is usually

a constrained device, I decided to limit containers’ resources. This is done

thanks to cgroups and Linux Completely Fair Scheduler (CFS) Bandwidth

Control features. The bandwidth allowed for a group is specified using a

quota and period. Within each given “period” (microseconds), a group is

allowed to consume only up to “quota” microseconds of CPU time. When the

CPU bandwidth consumption of a group exceeds this limit (for that period),

1www.openmobilealliance.org/tech/profiles/lwm2m/3313.xml
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the tasks belonging to its hierarchy will be throttled and are not allowed

to run again until the next period. The docker run command allows to set

two flags for this purpose: --cpu-period and --cpu-quota. In this case, the

quota was set to 25ms over a period of 100ms, that means a single container

will access 25% of the CPU, practically limiting the frequency at 700 MHz.

Memory was limited to 512 Mb for each container using cgroups’ memory

controller capability.

4.2 Test Application

The test application consist of two parts, a Python application and a Bash

shell script. The Python application is responsible for formatting and send-

ing the request to the backend, as specified in Section 3.4. websockets and

stompy Python libraries were used for this purpose. Requests are LWM2M

read type sent to randomly chosen connected devices and their resources.

It is possible to specify the number of requests which are sent per second.

During my tests, the application was able to consistently forward up to 500

requests per second (RPS), as confirmed by using Wireshark 2 network packet

analyzer. However, I decided to limit the maximum number of RPS to 300,

since it was already possible to show the desired behaviour. Latency mea-

surements were done saving the timestamp before sending the request in a

hashmap, with the relative request token as the key. Once the response is re-

ceived back, the hashmap is looked-up for the starting time and the difference

with the current timestamp is saved onto a file.

The Bash script is used to automatically setup the test environment with

different configurations. The number of clients is set to vary from 25 to 225,

with a step of 25. The number of server instances in the cluster ranges from 1

to 5, while the RPS sent by the application go from 25 to 300, totaling a num-

ber of 540 different combinations. Firstly, the server containers are deployed,

and the LVS Load Balancer is setup. Next, the client containers are launched

2https://www.wireshark.org/
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on the other machine, using ssh connections. In order to simulate an heavier

load on the cluster, an observation request is sent to every registered client.

The test application is then started with a specific RPS parameter and runs

for 60 seconds. Once the measurements are done and the results are saved,

all the containers are destroyed and a new configuration is established. The

same configurations are re-run again with DTLS enabled, in order to evaluate

the impact of the security protocol on the cluster performance.

4.2.1 Metrics Collection

Latency

Collection of latency measurements was already described above. In order

to improve consistency of the results and reduce fluctuations due to the

network jitter and other phenomena, tests are run for 60 seconds and only

values below the 95th percentile are kept.

CPU Usage

Since cgroups are used to limit containers’ resources, collecting CPU usage

metrics is not as straightforward as, for instance, simply using the Linux

top utility. Cgroups statistics are usually exposed by the Linux kernel by

the means of pseudo-files, which are usually located under the directory

/sys/fs/cgroup. In order to identify the cgroup of a specific container,

its long ID is used, which can be found using the docker ps utility. The

pseudo-file exposing CPU metrics is the following:

/sys/fs/cgroup/cpu/docker/$CONTAINER_ID/cpu.stat.

cpu.stat contains 3 fields: nr_periods, which is the number of period in-

tervals (as specified in --cpu-period) that have elapsed, nr_throttled,

counting the number of times tasks in a cgroup have been throttled (that is,

not allowed to run because they have exhausted all of the available time as



CHAPTER 4. TESTBED AND EVALUATION 70

specified by their quota), and throttled_time, showing the total time dura-

tion (in nanoseconds) for which tasks in a cgroup have been throttled. The

ratio between nr_throttled and nr_periods during the test execution is

collected, which is arguably a close representation of traditional CPU usage.

Memory Consumption

In a way similar to CPU statistics, control groups memory metrics are ex-

posed in the /sys/fs/cgroup/memory/docker/$CONTAINER_ID/ directory.

The memory.stat pseudo-file contains a great amount of information. In our

case, we will simply collect information contained in the memory.usage_in_-

bytes file, which contains the total amount of memory used by the specified

container.

Network Throughput

Unfortunately, network metrics are not exposed directly by control groups.

However, since network interfaces exist within the context of network names-

paces, metrics can be retrieved from within the containers. To accomplish

this, it is possible to run an executable from the host environment within the

network namespace of a container using the ip-netns utility.

For our evaluation purposes, it was sufficient to run the ip netns exec

$CONTAINER_ID netstat -i command, collecting the amount of traffic trans-

mitted and received by the virtual container interface, at the beginning and

at the end of the test. By doing the difference, we obtain the amount of

traffic exchanged during the test execution for each server instance, which

can then be stored for further analysis.
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Figure 4.2: Average Response time against Requests per second for 50, 100,

150 and 200 clients configurations

4.3 Results

4.3.1 Latency

The results of the latency evaluation for 4 significant client configurations

are depicted in Figure 4.2. They clearly show the scalability of the proposed

solution. With a single instance and 50 clients, the response time starts to

increase after 175 requests per second, while there are no problems with 2

instances, with an average latency that stands at around 3 ms. Increasing

the number of clients, the limit is reached at lower rates, starting to become

practically unusable with 200 clients even at 50 RPS. This is due to the fact

that the single server is already overloaded with all the automatically sent

notifications, from the observation subscription made before the test.
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The configuration with 2 server instances, starts to have some latency

increase with 150 clients and 300 RPS, reaching a maximum of 34 ms with 200

clients / 300 RPS. With 5 server instances, I was able to conduct all the tests

flawlessly, with a stable average latency of 3.5 ms with every configuration.

The use of DTLS had a significant impact over the cluster performance.

The limit is reached much earlier with the single instance configuration, gen-

erally with 50 RPS less than the plain CoAP counterpart. The same be-

haviour is observed with 2 servers. It is interesting to notice how the average

latency is about 2 ms higher with every configuration, that is a sign of the

of the overhead due to the DTLS encryption.

4.3.2 CPU usage

Figure 4.3: Average CPU usage per instance against requests per second for

50, 100, 150 and 200 clients configurations
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Figure 4.3 illustrates the obtained results concerning the average CPU usage

per each container, as the percentage of throttled periods, like described

above. The CPU usage basically reflects the trend observed in the latency

evaluation, indicating that the increased response time is due to a lack of

processing power. An increase in the number of throttled periods corresponds

to higher latency times. Whenever the CPU usage starts to get higher than

80%, requests start to get queued and the response time can become as

high as 1500 ms. The results show how the cluster architecture manage to

distribute the load between the instances, with the 5 servers configuration

keeping very low value even with the heaviest settings.

4.3.3 Memory and Network

Figure 4.4: Memory usage per container against number of clients (left) and

Average network throughput per container (right) with 100 clients

Figure 4.4 illustrates the collected values regarding memory consumption

and network traffic. It was observed that memory usage was not affected

by the number of requests per second, therefore the plot reports an average

between the different rate settings per container. It can be seen that the

amount of allocated memory grows quite linearly as the number of clients
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increases. Adding more server instances helps in distributing the memory

consumption, however, doubling the number of servers does not lead to a

reduction in half of the used memory space. That may be due to the Java

Virtual machine, that is notably memory hungry and it could be possibly

mitigated with a more careful software implementation. It can be noticed

that with a single server instance, after 175 clients the memory limit of 512

MB is hit. That may explain the abnormally high latency values obtained in

these cases, as the garbage collector could kick in, further slowing down the

entire processing.

Regarding the network traffic, it can be seen that we have an almost

linear increase as the number of requests per second grows. A very similar

behaviour was observed when changing the number of clients, for this reason

the figure depicts only the configuration with 100 clients. It is interesting

to observe that DTLS had almost no impact on network throughput. An

hypothesis could be that DTLS network overhead is outweighed by the upper

layer protocol such as LWM2M and WebSockets.

4.3.4 Summary

The obtained results clearly confirm that the proposed architecture is indeed

scalable. Despite the solution can be certainly improved, the results are

quite promising. Adding more server containers helps to distribute CPU load,

memory consumption and network traffic between all the instances. However,

it has be noted that the tests were conducted in a controlled environment,

where the only additional load was represented by the notifications regularly

sent by the devices. In a real-world environment, an edge/fog device could

have supplementary duties like filtering and light processing, thus scalability

of such a platform will be even more relevant.
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Conclusions

The main goal of this work was to develop an architecture that would be

able to solve two main Industrial IoT issues, scalability and interoperability,

in order to handle the ever growing number of heterogeneous IoT devices.

As a first step, in order to gain a better understanding of the topic, an

extensive literature research about the current state of the art of IoT tech-

nologies and standardization activities has been conducted. As a result, the

LWM2M interoperability standard was identified as the most suitable for its

simplicity and maturity, to be used in conjunction with the Edge/Fog Com-

puting paradigm, which aim to solve scalability and latency requirements of

industrial applications.

Next, the proposed architecture is presented, describing the idea of com-

bining multiple LWM2M servers forming a cluster, with the aim to be de-

ployed in a Fog scenario. Details about the prototype implementation are

then presented. The software applications for LWM2M clients and servers

were implemented using the Java based Eclipse Leshan library. One issue

was the sharing of information between the instances, to allow global re-

source discovery and access. This was achieved using Redis, an efficient

in-memory NoSQL datastore. An appropriate backend interface had to be

implemented as well, in order to correctly manage the requests/responses

flow. A Publish/Subscribe broker was implemented for this purpose.

As an interface for end-users, a Web based backend and frontend were

implemented, using cutting-edge technologies such as Spring Framework and
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AngularJS. WebSocket and STOMP protocols were used for full-duplex com-

munication and for tunnelling requests and responses towards the cluster’s

backend interface.

As an important part of this work’s contributions, a virtualized testbed

platform was implemented, in order to evaluate the scalability of the pro-

totype. A large-scale deployment scenario was emulated using Docker con-

tainerization and networking capabilities. Several scenarios and configura-

tions were tested, collecting metrics about latency, CPU usage, memory con-

sumption and network throughput. Security was also taken into considera-

tion and the impact of using the DTLS security protocol has been evaluated.

The obtained results confirm the scalability of the proposed solution, which

is able to efficiently distribute the load among the instances in the cluster.

Overall, it is possible to state that the objectives set at the beginning

are met, providing a working prototype of the proposed architecture, which

could be revised and extended, in order to be possibly deployed in a real-

world environment.

5.1 Future Work

Despite the promising results, this work still has some limitations and there

are several possibilities to make improvements. One limitation is that the

number of server instances in the cluster is fixed and can be only manually

changed. In order to realize a true Fog Computing paradigm, it would be

more meaningful to have an architecture that is able to dynamically scale

serving instances based on the cluster load. One possible approach, as pro-

posed in [64], could be to implement an additional node, namely, a Fog

Manager, that would be able to carry out the scaling process.

Another possible enhancement could be the implementation of the LWM2M

Proxy devices proposed in [49]. The proxy enables device group management,

which can help in reducing messaging to the LWM2M servers and it could

further improve the overall scalability of the solution.
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