
Master Degree Thesis

Optimization of a
high-performance tracking

algorithm on GPUs for the Inner
Tracking System of the ALICE

experiment

Candidate Supervisor

Franco Dessena Prof. Stefania Bufalino

Co-supervisor

Prof. Massimo Masera

Dipartimento di Automatica e Informatica

Politecnico di Torino

Luglio 2018

Abstract
The subject of this thesis is the design and the optimization of a fast tracking

algorithm that will be used for the innermost detector of the ALICE (A Large
Ion Collider Experiment) experiment installed at the CERN Large Hadron Collider
(LHC) in Geneva. In 2019, during the Long Shutdown 2 (LS2), the present Inner
Tracking System (ITS) of ALICE will be replaced by a completely new detector,
based on thin monolithic silicon pixel chips. This new detector has been designed
to fulfill the Run 3 physics requirements, which consist first of all in an incremented
collision rate that can reach 50 kHz of frequency for collisions between lead ions.
Along with a hardware upgrade, also the software must be upgraded in order to
match the new required performance.

The 7 layers, which compose the new detector, will be hit by the particles gener-
ated from the collision between proton-proton (p-p), proton-lead (p-Pb) or lead-lead
(Pb-Pb). The points where the particles hit the pixel of each detector are called
clusters. The tracking algorithm uses the clusters to reconstruct the trajectory of
a particle and find the point where the collision happened. This point is called
interaction vertex.

Currently, two different versions of the tracking algorithm have been developed:
a first version is a serial implementation that can run on CPUs only and a second
one based on the CUDA framework that can be executed only on NVIDIA GPUs.

The purpose of my thesis work is to develop a third version of the tracking
algorithm, based on the OpenCL framework. OpenCL allows the program to run on
different kind of devices such as CPUs, GPUs, FPGAs and others. To this purpose
I designed and implemented three different versions of OpenCL porting, the first
one based on the schema developed for the CUDA version, the others two based
on different schema in order to better fit the algorithm to the features offered by
OpenCL and to improve the overall performance.

The thesis is organized as follows: the first chapter is dedicated to the descrip-
tion of the features of both the present ITS and the upgraded detector. The second
chapter is devoted to the description of the current tracking algorithm and of the
performances achieved for the serial (on CPU) and parallel versions (on NVIDIA
GPU). The third chapter describes the main features of the OpenCL framework
and Intel Interception Layer, a tool adopted for the analysis of the execution flow of
OpenCL program. The fourth chapter is focused on the OpenCL porting with the
descriptions of three different versions I developed highlighting advantages, disad-
vantages and describing in detail the achieved performances to make a comparison
between them, the serial and the CUDA parallel versions of the algorithm.

ii

Contents

1 ALICE experiment 1
1.1 Introduction . 1
1.2 ALICE design and layout . 2
1.3 The ALICE Inner Tracking System 4

1.3.1 Layout of the present ITS . 4
1.3.2 Upgraded ITS . 5

1.4 Event reconstruction . 7
1.5 AliROOT framework . 10
1.6 O2 project . 10

2 The Tracking Algorithm 13
2.1 Algorithm flow . 13

2.1.1 Indexing phase . 13
2.1.2 Tracklet computing phase . 14
2.1.3 Cells computing phase . 16
2.1.4 Cell neighbourhood finding phase 18
2.1.5 Track reconstruction phase . 18
2.1.6 Fitting phase . 18

2.2 CUDA implementation . 18
2.2.1 Software architecture . 20
2.2.2 Initialization phase . 21
2.2.3 Tracklet finding phase . 22
2.2.4 Cell finding phase . 23

2.3 Performance analysis . 23

3 OpenCL 27
3.1 Overview . 27
3.2 History . 27

3.2.1 OpenCL 1.x . 28
3.2.2 OpenCL 2.x . 28
3.2.3 Future . 28

iii

Contents

3.3 The OpenCL Architecture . 28
3.3.1 Platform model . 29
3.3.2 Execution model . 29
3.3.3 Memory model . 30
3.3.4 Programming model . 31

3.4 Memory objects . 32
3.4.1 Buffers and sub-Buffers . 32
3.4.2 Buffer operations . 33

3.5 Example of program flow . 34
3.6 Performance analysis tool . 37
3.7 OpenCL vs CUDA . 40

4 OpenCL implementation 43
4.1 General implementation choices . 44

4.1.1 Boost Compute library . 47
4.1.2 Compilation . 47

4.2 Sort Version . 48
4.2.1 Implementation details . 48

4.3 Native Version . 52
4.3.1 Implementation details . 53

4.4 Boost Version . 57
4.4.1 Implementation details . 57

4.5 Performance comparison . 58
4.5.1 CPU performance . 61

Conclusion 66

Acronyms 71

iv

List of Figures

1.1 The main accelerators complex used to speed-up particles and to in-
ject them into the LHC. [1] . 2

1.2 ALICE coordinate system: some labels (Bellagarde, Gex and Jura)
are added to make the reading more clear. [3] 3

1.3 Layout of the present ALICE Inner Tracking System. [2] 5
1.4 Schematic layout of the upgraded ITS thet will be installed in 2019

to be operation during the Run 3. The red cylinder represents the
beam pipe were the collisions happen. 7

1.5 Tracking efficiency of charged pions for the current (black line) and
upgraded ITS (red and green lines) in the ITS stand-alone tracking
modes. The efficiency is defined as the number of correct refitted
tracks over the number of total possible tracks. A possible track is a
particle which is formed by, at least, one cluster on each layer of the
ITS. [4] . 8

1.6 Flow of operations performed by the reconstruction algorithm used
in the ALICE experiment. 9

1.7 Flow of AliROOT operations over simulated events. Green blocks
correspond to simulation phase, blue blocks correspond to reconstruc-
tion algorithm phase; the last pink block represent the comparison
between simulated and reconstructed tracks. [9] 10

1.8 Functional flow of the O2 computing system. [11] 11

2.1 Example of calculation of the region of interest for a given cluster: the
use of index table speed-up this operation thanks to sorting criterion
(φ and z) used to arrange cluster. Red and blue squares represent a
portion of index table of the first two layers. 14

2.2 Example of the tracklet reconstruction phase: in this example three
tracklets are considered as valid and the other three, shown with
dotted lines, are discarded. 16

2.3 Example of cell reconstruction phase: two tracklets, represented in
green, are combined to create a cell. 17

v

List of Figures

2.4 Three steps of the tracking algorithm: the red cross represents the
interaction point, the red dots represent the clusters, the red line is
a track candidate, the green line is a track candidate that passed the
fitting phase. 19

2.5 Time occupancy distribution for serial implementation. 20

2.6 Host-device paradigm: host execution, red filled, and device execu-
tion, blue filled, must be properly synchronized. 21

2.7 Exclusive sum: each i-th element of the output vector is filled sum-
ming from the first element up to the (i-1)-th element of the input
vector . 22

2.8 Efficiency evaluation of CPU algorithm as a function of the transverse
momentum for a sample of 100 central Pb–Pb events without pile-up
obtained dividing the number of reconstructed roads over the total
number of generated roads. 24

2.9 Time occupancy distribution for CUDA parallel implementation. . . . 25

3.1 OpenCL Platform model: one host and four devices, each one split
in compute units and their corresponding processing elements[24] . . 29

3.2 Example of NDRange partition with N=3, work groups of same size
and offset equal to 0[24]. 30

3.3 Representation of memory model[24]. 31

3.4 Example of how an OpenCL kernel access data using its global index.
Yellow blocks indicate the input value read by the kernel from input
data and correspond to the position indicates by global index. The
result, the blue block, is stored in the output vector at the same index
position. 37

3.5 OpenCL flow diagram from kernel creation to kernel execution 38

3.6 Execution flow of program sum2vector generated using Intercept Layer
for OpenCL Applications. 39

3.7 Without finish() after sum2vector kernel launch, the reading oper-
ation starts before the end of kernel execution so the final result is
not correct. 39

3.8 Example of multiple command queue running in parallel 39

3.9 Execution of 2 kernels on an out-of-order command queue: the green
rows correspond to the same command queue: they are executed in
parallel and without respecting any particular order. 40

3.10 List of the features of CUDA and OpenCL API[26]. 41

4.1 Computational time increment using a global size not multiple of 32.
The system configuration used is the one reported in section 4.5.1. . . 46

vi

List of Figures

4.2 Inclusive sum: each output element yi is filled summing the input
element xi plus the previous output element yi-1. 47

4.3 Time distribution over 100 Pb-Pb events using the sort version OpenCL
porting. Others indicates all the other phases that follow the step in
which the cells are computed. 48

4.4 Initialization time analyzing 100 Pb-Pb events by using the sort ver-
sion of the OpenCL porting. 49

4.5 Distribution of tracklet and cell finding phases over different com-
mand queues using sort version of the OpenCL porting. The image
has been obtained using Intel Intercept Layer application. 50

4.6 Distribution over different command queues of tracklet finding phase
of a single event executed using sort version. 51

4.7 Distribution over different command queues of the cell finding phase
for a single event executed using the sort version. 51

4.8 Complete execution flow distributed over the command queues using
the native version of OpenCL porting. 53

4.9 Initialization time for 100 Pb-Pb events using native version. 53

4.10 Time execution distribution of different phases using native version. . 55

4.11 Distribution over different command queues of the tracklet finding
phase for a single event executed using the native version. 55

4.12 Distribution over different command queues of the cell finding phase
for a single event executed using the native version. 56

4.13 Time execution distribution of different phases using boost version. . 58

4.14 Time execution distribution of different phases using boost version. . 58

4.15 Initialization time using boost version over 100 Pb-Pb events. 59

4.16 Distribution over command queues of compute tracklet phase of a
single Pb-Pb event using boost version. 59

4.17 Distribution over command queues of compute cell phase of a single
Pb-Pb event using boost version. 60

4.18 Execution time of vex::inclusive_scan() compute::inclusive_scan()
over variable size vectors of integer. The execution time is calculated
over a second iteration of the scan in order to better simulate the
tracking algorithm case. The system configuration used is reported
in 4.5.1 . 60

4.19 Initialization time of the three different version of OpenCL porting.
Dashed line represents the mean value. 61

4.20 Tracklet finding phase execution time time of the three different ver-
sion of OpenCL porting. Dashed line represents the mean value. . . . 61

4.21 Cell finding phase execution time time of the three different version
of OpenCL porting. Dashed line represents the mean value. 62

vii

List of Figures

4.22 Total execution time time of the three different version of OpenCL
porting. Dashed line represents the mean value. 63

4.23 Initialization time of 100 Pb-Pb event with different OpenCL porting
versions. Dashed line represents the mean value, dotted line repre-
sents the mean value of the relative GPU version. 64

4.24 Total execution time of 100 Pb-Pb event with different OpenCL port-
ing versions. Dashed line represents the mean value, dotted line rep-
resents the mean value of the relative GPU version. 64

4.25 Distribution of execution time over the main phases of the boost
version of OpenCL porting. 68

4.26 Efficiency evaluation of boost version of OpenCL porting over trans-
verse momentum for a sample of 100 central Pb–Pb events without
pile-up obtained dividing the number of reconstructed roads over the
total number of generated roads. 69

viii

List of Tables

1.1 Dimensions of the six layers that compose the ITS. [2] 5
1.2 Dimensions of the seven layers after ITS upgrade. [2] 7

2.1 Threshold values used inside tracklet finding phase to consider a cou-
ple of clusters as a valid tracklet. 15

2.2 Threshold values used inside cell finding phase to consider a couple
of tracklets as a valid cells. 17

2.3 Serial implementation: min, mean and max time (in ms) for execution
of 100 Pb-Pb events with different amount of pile-up. 25

2.4 CUDA implementation: min, mean and max time (in ms) for execu-
tion of 100 Pb-Pb events with different amount of pile-up. 26

3.1 Terminology adopted by using CUDA and OpenCL [12][14]. 42

4.1 OpenCL implementation executed on NVIDIA TITAN Xp: min,
mean and max time (in ms) for execution of 100 Pb-Pb events. 63

4.2 OpenCL implementation executed on CPU device: min, mean and
max time (in ms) for execution of 100 Pb-Pb events. 65

4.3 Execution time for all the main phases of the three versions of OpenCL
porting. The serial and CUDA porting execution times are reported
in the last column. The times obtained using CPU device are reported
between brackets. 67

ix

Chapter 1

ALICE experiment

A Large Ion Collider Experiment (ALICE) is a general-purpose detector installed at
the CERN (Conseil Européen pour la Recherche Nucléaire) Large Hadron Collider
(LHC) and built to study the strongly interacting matter produced at high en-
ergy densities and temperature, the so called QuarkGluon Plasm (QGP), by using
the Pb-Pb collisions delivered by the LHC. Along with A Toroidal LHC Appara-
tus (ATLAS), Compact Muon Solenoid (CMS) and Large Hadron Collider beauty
(LHCb), ALICE is one of the biggest experiment conducted at the CERN labo-
ratory. Currently, more than 1500 physicists, engineers and technicians from 154
physics institutes from 37 countries work in the ALICE experiment.

1.1 Introduction

LHC is the world’s largest and most powerful particle accelerator and it consists
of a 27 km underground ring composed of superconducting magnets (kept at a
temperature of -271.3 ◦C, using liquid helium, in order to reduce electric resistance
or energy losses) capable to accelerate particles up to 99,9999991% of light speed
with an energy of 13 TeV. The four experiments mentioned before are installed in
four different interaction points along LHC, as shown in figure 1.1. The beams
of proton (p) and lead ions (Pb) follow two different roads to reach LHC. Using
an electric field, hydrogen particles loose their electrons, the derived protons reach
LHC going through the Linear Accelerator (LINAC) 2, the Proton Synchrotron
Booster (PSB), the Proton Synchrotron (PS) and finally through the Super Proton
Synchrotron (SPS); at each step, the energy of the proton beam is increased up
to 450 GeV when it reaches the LHC ring. The beam of lead ions starts from a
container with vaporized lead inside and, through LINAC 3, Low Energy Ion Ring
(LEIR), PS and SPS, it reaches the LHC. Inside the LHC, two beams run in opposite
ways with a maximum energy of 6.5 TeV and then they are forced to collide where

1

1. ALICE experiment

the detectors of the experiments are located.

Figure 1.1: The main accelerators complex used to speed-up particles and to inject
them into the LHC. [1]

1.2 ALICE design and layout

According to [2], the ALICE design was driven by the physics requirements, in
particular by the extremely high particle multiplicity (dN/dη) expected in the heavy-
ion collisions: the detector is optimized for a value of dN/dη=4000 but it is tested
with Monte Carlo simulation up to twice this amount of particles; inside the LHC
the beam interaction rate is quite low (about 10 kHz with Pb-Pb) and the radiation
doses are moderate (< 3000 Gy) and this allows using slow detectors with high-
granularity, like the Time Projection Chamber (TPC) and the Silicon Strip Detector
(SSD).

The coordinate systems of the ALICE detector are defined according to the
LHC rules adopted by all the LHC experiments[3]. It is a right-handed orthogonal
Cartesian system with point of origin {x,y,z} = 0 at the beams Interaction Point
(IP) and the coordinates are defined as follow (according to figure 1.2):

• x axis: perpendicular to the beam direction and aligned with the local hori-
zontal; positive x is from coordinates origin to the accelerator centre;

2

1. ALICE experiment

• y axis: perpendicular to the x axis; positive y is from the point of origin
upward;

• z axis: parallel to the beam direction, points to the ATLAS experiment;

• azimuthal angle φ: observing from a positive z position, increases counter-
clockwise from x (φ=0) to y (φ=π/2);

• polar angle θ: increases from positive z (θ=0) to the (x,y) plane (θ=π/2) to
negative z (θ=φ).

The conversion between Cartesian and spherical coordinates is done as follow:

x = sin θ cosφ

y = sin θ sinφ

x = r cos θ

(1.1)

ρ =
√
x2 + y2 + z2

θ = arccos z/ρ

φ = arctan y/x

(1.2)

Figure 1.2: ALICE coordinate system: some labels (Bellagarde, Gex and Jura) are
added to make the reading more clear. [3]

3

1. ALICE experiment

The overall ALICE dimensions are 16×16×26 m3 with a total weight of approx-
imately 10000 t and it consists of a central barrel part (which measures hadrons,
electrons, and photons) and a forward muon spectrometer; the central part is in-
stalled inside a large solenoid magnet and it covers polar angles from 45 ◦ to 135 ◦.
Starting from the innermost detector the barrel contains[2]:

• ITS: an Inner Tracking System, composed by six layers of high-resolution
silicon pixel (SPD), drift (SDD), and strip (SSD) detectors;

• TPC: a cylindrical Time-Projection Chamber;

• three particle identification arrays of Time of Flight (TOF);

• High Momentum Particle Identification (HMPID) and Transition Radiation
Detector (TRD) detectors;

• two electromagnetic calorimeters (PHOS and EMCa);

In the following I will describe only the ITS detector because it is pivotal to better
understand the different steps followed during my thesis work for the design and the
optimization of the algorithm that will be used to reconstruct the trajectories of the
particles traversing this detector and produced in the Pb-Pb collisions delivered by
the LHC.

1.3 The ALICE Inner Tracking System

1.3.1 Layout of the present ITS

To better understand the reasons behind the upgrade of the ALICE ITS, a brief
description of the ITS operating at present in the experiment will be given in the
following. The present ITS is the innermost detector of ALICE and it is designed
and built to determine the position of the primary vertex with a resolution better
than 100 µm, reconstruct the secondary vertex of heavy flavour and strange particle
decays, identify and track low-momentum particles (<200 MeV/c), improve momen-
tum and angle resolution for particles reconstructed by the TPC and to reconstruct
particles traversing dead regions of the TPC. The ITS surrounds, and supports, the
beam pipe which is a 800 µm-thick beryllium cylinder of 6 cm diameter. As shown
in figure 1.3 and in table 1.1, the detector is composed by six cylindrical layers,
coaxial with beam pipe, with radius going from 3.9 cm (the innermost) to 43.0 cm
(the outermost). Due to the high particle density (about 50 particles per cm2 for
the inner layer), the first two layers consist of Silicon Pixel Detector (SPD) and the
following two of Silicon Drift Detector (SDD); the last two layers are equipped with

4

1. ALICE experiment

double-sided Silicon Strip Detector (SSD) because the expected particle density is
reduced to less than 1 particle per cm2. A specific cooling system for the outermost
layer has been designed to match the requirements imposed by the TPC in terms
of temperature stability and uniformity. In order to limit the noise over the signal
ration, the silicon detectors used to measure ionisation density must have a thick-
ness grater than 300µm. The ITS is able to detect simultaneously more than 15000
tracks, managing several millions of cells in each layer [2].

Figure 1.3: Layout of the present ALICE Inner Tracking System. [2]

Table 1.1: Dimensions of the six layers that compose the ITS. [2]

Layer Type r(mm) ±z(mm) Area (m2)
1 pixel 39 141 0.07
2 pixel 76 141 0.14
3 drift 150 222 0.42
4 drift 239 297 0.89
5 strip 380 431 2.20
6 strip 430 489 2.80

total 6.28

1.3.2 Upgraded ITS

After more than ten years of operation, the LHC is concluding a collisions campaign
called Run 2 and at the beginning of 2019 a long pause named as Long Shutdown 2
(LS2) is scheduled and the accelerator complex will be stopped for 18 months; during
this period the following changes/upgrades are planned for the ALICE apparatus
[4]:

5

1. ALICE experiment

• a new beam pipe with smaller diameter (20 mm);

• a new high-resolution, low material ITS;

• a new TPC;

• upgrade of read-out electronics of the Transition Radiation Detector (TRD),
the Time Of Flight (TOF) detector and the muon spectrometer;

• upgrade for the forward trigger detector;

• upgrade on the online systems and offline reconstruction and analysis frame-
work;

Once the aforementioned upgrades will be completed, according to [5] the upgraded
ITS should be able to achieve the following goals:

• improve spacial resolution by a factor of 3 on the plane r -φ at pT ≈ 500 MeV/c
thanks to:

– first layer closer to beam: from 39 mm to 22 mm

– reduction of material budget for inner layers: X/X0 /layer from ≈1.14%
to ≈0.3%

– reduction of pixel dimension from 50µm x 425µm to 25µm x 25µm

• high tracking efficiency and resolution on transverse momentum pT = p sin θ
in stand-alone mode by :

– increasing the granularity: 7 layers instead of 6 layers (with dimensions
specified in 1.2)

– increasing the radial extension, from 39-430 mm to 22-430 mm

• speed up of the reading of the interaction rate (currently limited to 1 kHz):

– for Pb-Pb interaction: >50 kHz

– for p-p interaction: >400 kHz

• quick access to ITS systems for maintenance: should be possible replace dam-
aged parts during annual shutdown. For the present ITS this is not feasible.

Figure 1.4 shows the layout of ITS after the upgrade operations.
The result of Monte Carlo simulations, shown in figure 1.5, highlights how the

efficiency in tracking the particles traversing the detector will be improved after the
upgrade when the ITS is used in standalone mode for Pb-Pb collisions.

6

1. ALICE experiment

Figure 1.4: Schematic layout of the upgraded ITS thet will be installed in 2019 to
be operation during the Run 3. The red cylinder represents the beam pipe were the
collisions happen.

Table 1.2: Dimensions of the seven layers after ITS upgrade. [2]

Layer r(mm) ±z(mm)
1 22 112
2 28 121
3 36 134
4 200 390
5 220 418
6 410 712
7 430 743

1.4 Event reconstruction

According to [6], the tracking procedures are performed in the central barrel of AL-
ICE, in particular in the ITS, TPC and TRD detectors. The figure 1.6 shows the
order followed to complete all the steps executed during the tracking phase. Starting
form raw data collected via Monte Carlo (MC), the first step, called clusterization,
reconstructs all the information about particles that have crossed subdetectors; in
particular the space-time coordinates regarding the point where particles hit the
active surface of subdetectors, which is called cluster; in addition information about
the time of flight, the momentum and energy loss are collected in order to allow the
identification of each particle emitted in the collision.
The second step is the first estimation of the primary vertex position using only
the first two layers of the ITS (an accurate estimation can be obtained only using

7

1. ALICE experiment

Figure 1.5: Tracking efficiency of charged pions for the current (black line) and
upgraded ITS (red and green lines) in the ITS stand-alone tracking modes. The
efficiency is defined as the number of correct refitted tracks over the number of total
possible tracks. A possible track is a particle which is formed by, at least, one cluster
on each layer of the ITS. [4]

full tracks, but this first estimation is necessary to speedup the following phases);
the algorithm finds all the possible tracklets, pair of clusters (from two consecutive
layers) which respect geometrical constraints in terms of azimuthal angle and maxi-
mum distance on z direction; the primary vertex is then localized where the largest
number of tracklets converge (to estimate the position, at least two tracklets are
needed); if more than one primary vertex are reconstructed it means that we are in
the case of pile-up.

At this point, the actual reconstruction phase can start; at first the track seeds
are build in the outer part of the TPC. A track seed is composed by two clusters
and the primary vertex (then this operation will be done using three cluster only);
each seed is propagated inward and, using a Kalman Filter[7], a compatible cluster
is found and the track information are updated; all the tracks with more than 20
clusters (and a maximum of 159) and that miss no more than half of the expected
clusters are accepted and propagated to the inner layers of the TPC.

The preliminary information, about momentum and energy loss of the clusters,
attached to each track, can be used for a first hypothesis about the specie of the
particle being tracked: this first hypothesis is especially useful when the track is
propagated inward from the TPC to the ITS. Starting from the outermost layer of
ITS an algorithm similar to the one used for the TPC and based on a Kalman Filter
is implemented; at each step to go to the inner layers, a compatible cluster is added to
each track, the track parameters are updated and it is used as seed for the successive
layer; if no cluster can be added to the track, a penalty factor to the χ2 is added; at
the end of this phase, a tree of hypothetical ITS tracks is built for each TPC track:

8

1. ALICE experiment

only the high quality track (the one with the minimum χ2) of each tree is added
to the reconstructed event, forming an ITS+TPC track. A further ITS standalone
algorithm is necessary to reconstruct tracks using the clusters that do not form
ITS+TPC tracks, for instance low momentum particles that do not reach TPC; the
two innermost ITS layers and primary vertex are used to reconstruct helicoidal seeds.
Later, seeds are propagated towards outer layers and clusters satisfying geometrical
selections are added to them. This procedure is repeated few times with more
relaxed constraints in order to improve the efficiency at low pT. In parallel by using
the ITS standalone tracking algorithm, the backward refit of the ITS+TPC track
can be done adopting the Kalman Filter. During this phase the integrated track
length and the expected time for different particle species are computed in order to
execute a particle identification via time of flight measurement. When the refit is
completed, a successive extrapolation step is necessary to compare each track with
TRD tracks and TOF tracks; a similar procedure is adopted to match the track with
signals on the ElectroMagnetic CALorimeter (EMCAL), the PHOton Spectrometer
(PHOS) and the High Momentum Particle IDentification (HMPID) detector.
The final reconstructed tracks are used to find the primary vertex with a precision
higher than the first estimation; at the end, vertices related to photon conversions
and particle decays are used to locate the secondary vertices.

Figure 1.6: Flow of operations performed by the reconstruction algorithm used in
the ALICE experiment.

9

1. ALICE experiment

1.5 AliROOT framework

The software framework used to reconstruct and analyze the real data collected
by the ALICE experiment and to simulate and reconstruct Monte Carlo events is
AliROOT and it is based on ROOT [8] .

ROOT is a scientific software framework which provide a set of ObjectOriented
C++ frameworks with many advanced methods needed to handle and analyse large
amounts of data in a very efficient way. The user can exploit the functionality of
ROOT through a Graphic User Interface (GUI), command line or MACROs (C++
script).

AliROOT must be able to process both data collected in real experiments and
simulations of heavy-ion collision events at the LHC energy, executed using external
Monte Carlo tools like Heavy-Ion Jet Interaction Generator (HIJING) and String
Fusion Mode (SFM). The last step is the reconstruction of tracks using the track
reconstruction algorithm described at 1.4 and compare them with the simulated
ones. In this way it is possible to analyze the correctness and performance of tracking
algorithm used.

Figure 1.7: Flow of AliROOT operations over simulated events. Green blocks cor-
respond to simulation phase, blue blocks correspond to reconstruction algorithm
phase; the last pink block represent the comparison between simulated and recon-
structed tracks. [9]

1.6 O2 project

At the end of the LS2 a new campaign of data takings will start and this phase
is called LHC Run 3. During the Run 3 the interaction rate for Pb-Pb events
will reach up to 50 kHz[4] generating a data throughput from the detector greater
than 1TB/s[10]. The online-offline (O2) facility will be dedicated to the handling

10

1. ALICE experiment

of this amount of data generated by the ALICE detectors. O2[11] is designed to be
a high-throughput system which will include heterogeneous computing platforms.
To ensure fast processing, some O2 nodes will be equipped with specific hardware
accelerators such as Graphic Processing Unit (GPU) and Field Programmable Gate
Array (FPGA) and specific software will be developed taking into account the hard-
ware used for each specific computing need. In this section I will summarize the
main phase of the O2 flow.
Data produced by the detectors are transferred to the facility through optical links

Figure 1.8: Functional flow of the O2 computing system. [11]

in the form of data streams. Each First Layer Processor (FLP) collects data at 3.2
GB/s from up to 48 read-out links for a total of 1.1 TB/s over approximately 8300
read-out links. Data streams are aggregate and split in chunks of 20 ms called Time
Frame (TF) with a compression factor of 2.5 [10]; TFs can be of two different kind:
Sub-Time Frame (STF) that contains RAW data from a single First Level Processor
(FLP) or Compressed Time Frame (CTF) which contains processed RAW data of
all active detectors (after the creation, CTF chunks are read only). A time size of
20 ms means a frequency of 50 Hz and a size of 10 GB before compression for each

11

1. ALICE experiment

frame with a 0.5% of data loss at boundaries.
At this point, the STFs are dispatched to the Event Processing Nodes (EPN) for

aggregation: the STFs related to the same time period are managed by the same
EPN. The load over each EPN is balanced at run time using information provided by
the same EPNs (as similar mechanism is performed during the previous step using
information provided by FLP, in order to minimise data transport and to make
results available as early as possible). Each EPN reconstructs data for each detector
and reduces the data by an average factor of 8. The compressed TFs are stored
in the O2 using permanent archive as storage. Each EPN produces approximately
60MB/s of data for a total throughput of 90 GB/s directed to storage.

At least, an asynchronous data processing step will be done using resources
from the Worldwide LHC Computing Grid (WLCG) before permanently store re-
constructed events. In order to meet the ALICE Run 3 and O2 constraints, a new
Cellular Automata (CA) algorithm for tracking reconstruction has been proposed
by [6] and it will be described in chapter 2.

12

Chapter 2

The Tracking Algorithm

In this chapter I will illustrate the tracking algorithm described in [6] and from
which I started to carry out my thesis project to perform the optimization of the
code on a parallel architecture. The goal of that tracking algorithm is to reconstruct
all possible tracks generated in the LHC heavy-ion collisions using the data coming
from the previous clusterization step. The algorithm can be split into the following
phases:

• Indexing

• Tracklet computing

• Cell computing

• Finding of neighbourhood cells

• Track reconstruction

• Fitting phase

2.1 Algorithm flow

2.1.1 Indexing phase

This step is useful to speed-up the following phases and especially the step in which
the algorithm needs to compute the tracklets; each clusterized input c is organised
in an index matrix nz x nφ using a bin index calculated with zc coordinate and
azimuth angle φc

indexc =

{⌊zc − zmini

zbini

⌋
,
⌊ φc

φbin

⌋}
(2.1)

13

2. The Tracking Algorithm

The quantity zbini reported in 2.1 represents the ratio between the extension along the
z coordinate of the i-layer and the size of index table (2.3), while φbin is determined
as shown in 2.2.

φbin =
2π

nφ
(2.2)

zbin =
zmaxi − zmini

nz

(2.3)

At this point of the execution flow, the input data are already sorted in base of φbin

and zbin, so the computational complexity of indexing cluster is linear to number of
input clusters N:

T (N) = O(N) (2.4)

2.1.2 Tracklet computing phase

The goal of this phase is to find all possible tracklets; a tracklet is a connection
between 2 clusters of adjacent layers. Therefore this computational step is executed
on pairs of subsequent layers. As shown in fig. 2.1, for each cluster of the first layer
is possible to find its region of interest, which is defined as a 2 dimensional window
that contains all possible compatible clusters. Using the index table described above
this operation can be speeded-up. At this point we obtain a set of pairs of clusters

Figure 2.1: Example of calculation of the region of interest for a given cluster: the
use of index table speed-up this operation thanks to sorting criterion (φ and z) used
to arrange cluster. Red and blue squares represent a portion of index table of the
first two layers.

(ci,ci+1) but not all of them can be considered correct tracklet (fig.2.2): a filtering
operation is needed to select only useful ones in order to limit workload of following
phases as explained later. In particular the possible tracklets are filtered using ∆φ

14

2. The Tracking Algorithm

and ∆z calculated as indicated in 2.5 and 2.6 considering a cluster of i-layer defined
as ci = (zi,ri,φi)

∆φ = |φi − φi+1| (2.5)

∆z = | tanλi · (ri+1 − ri)− (zi − zi+1)| (2.6)

The quantity λi in 2.6 can be calculated with respect to the z coordinate of the
interaction vertex zV as shown in 2.7

λi =
zi − zv
ri

(2.7)

In order to consider a pair of clusters as valid tracklet the following two criteria
must be verified:

• the difference between azimuthal angle of the two clusters (∆φ) must be less
than a threshold equal for all layers.

∆φ < ∆φMAX (2.8)

• ∆z, the difference between the propagation of interaction vertex passing for
first cluster on z axis and the second cluster must be less than a threshold
dependent on the layer

∆z < ∆zi
MAX (2.9)

The values of the threshold can be found in 2.1.

Table 2.1: Threshold values used inside tracklet finding phase to consider a couple
of clusters as a valid tracklet.

Layer 1 2 3 4 5 6
∆zMAX 0.1 0.1 0.3 0.3 0.3 0.3
∆φMAX 0.3

The first part of this phase, the selection of bin for each cluster is, at worst, a
simple iteration over all the bins of the index table, so the computational complexity
depends only on the index table dimension (which can be considered constant):

T (N) =
6∑
i=0

nx · nφ = O(1) (2.10)

15

2. The Tracking Algorithm

The filtering part depends on the number of cluster on each layers; we must consider
all the possible pairs and assuming a filtering factor Ki less than 1 and Ni as the
number of clusters on the layer i, we obtain:

T (N) =
5∑
i=0

N i ·K i ·N i+1 =
5∑
i=0

K i ·N2 = O(N2) (2.11)

Figure 2.2: Example of the tracklet reconstruction phase: in this example three
tracklets are considered as valid and the other three, shown with dotted lines, are
discarded.

2.1.3 Cells computing phase

In this phase two consecutive tracklets are combined to form a cell if they fulfill
some geometrical criteria; hence we must consider three consecutive layers.
The presence of a magnetic field inside ALICE, causes the clusters of a cell to lay
on a circle; to improve the computational performance, clusters are mapped on a
paraboloid with the minimum point positioned on the interaction vertex.
With this mapping, a cell can be identified by its center {xc, yc} and its trajectory
radius ρ. Each cell, defined in terms of the free clusters {ci,ci+1,ci+2} or in terms of
the tracklets which formed it {ti,ti+1}, needs to satisfy the following constraints to
be considered valid:

• ∆φ and ∆tanλ of the two tracklets have to be lower than their respective
threshold values.

• The DCAz, distance of closest approach along z axis, defined in 2.12, must be
smaller than DCAz

MAX

DCAz =

∣∣∣∣tanλT1 + tanλT1

2
· rci + (zv − zci)

∣∣∣∣ (2.12)

16

2. The Tracking Algorithm

• The DCAx,y, the projection of the distance of closest approach to the interac-
tion vertex V on the xy plane, defined in 2.13, must not exceed DCAxy

MAX

threshold value.

DCAxy =
∣∣∣ρ−√xc2 + yc2

∣∣∣ (2.13)

The values of threshold mentioned before can be found in 2.2.

Table 2.2: Threshold values used inside cell finding phase to consider a couple of
tracklets as a valid cells.

Layer 1 2 3 4 5
∆φMAX 0.14
∆ tanλMAX 0.025
DCAz

MAX 0.2 0.4 0.5 0.6 3.0
DCAxy

MAX 0.05 0.04 0.05 0.2 0.4

As shown in fig. 2.3, cell finding phase tries to combine the cluster of three layers
and in particular try to combine tracklets of successive layers which share a cluster,
the middle one of the cell generated, with a computation complexity of:

T (N) = O(N3) (2.14)

Figure 2.3: Example of cell reconstruction phase: two tracklets, represented in green,
are combined to create a cell.

17

2. The Tracking Algorithm

2.1.4 Cell neighbourhood finding phase

Each cell is ranked using a neighbourhood index: two contiguous cells are considered
neighbourhood and receive a rank if they share a tracklet and satisfy some criteria
based on the difference of the curvature of cells and their coordinates. A cell receives
a rank equal to the maximum rank of its neighbourhood plus one; the cells without
any neighbourhood receive a rank equal to one. This phase has a computational
complexity that only depends on cells number N:

T (N) = O(N4) (2.15)

2.1.5 Track reconstruction phase

All neighbourhood cells are combined each other in order to reconstruct complete
roads. A road is the union of, at least, 5 clusters, and represents a track candidate.
Starting from the most external cells the algorithm recursively analyses each cell
until the interaction vertex and chooses the appropriate road. The complexity of
this phase is

T (N) = O(N7) (2.16)

2.1.6 Fitting phase

The output of the previous phase is a set of all the tracks candidate. A Kalman
Filter is applied to the roads which share one or more clusters: only the road with the
minimum value of χ2 is kept. Figure 2.4 shows three steps of the tracking algorithm,
in particular the figure 2.4c represents schematically the fitting phase applied to two
track candidates which share the outermost cluster.

2.2 CUDA implementation

As already anticipated the goal of the present thesis project is the OpenCL parallel
implementation of the upgraded ITS tracking algorithm. The achieved results will
be also compared with those available and obtained using Compute Unified Device
Architecture (CUDA)[12]. To this purpose in this section I will briefly describe the
main achievements reached with a parallel version of the algorithm using the CUDA
framework [10]. The CUDA version has been designed as a standalone package
starting from the algorithm presented in [6] which is integrated in the AliROOT
framework. In order to guarantee the maximum compatibility the whole code is
based on C++14 Standard Template Library (STL) and the external libraries needed
by AliROOT are removed. The last phase of the algorithm, consisting in the Kalman
Filter fitting, is not implemented in the CUDA version because it does not represent

18

2. The Tracking Algorithm

Figure 2.4: Three steps of the tracking algorithm: the red cross represents the
interaction point, the red dots represent the clusters, the red line is a track candidate,
the green line is a track candidate that passed the fitting phase.

a performance limitation if executed on CPU. One of the main results of the CUDA
version of the algorithm is that, contrary to the AliROOT version, it can manage
events with multiple interaction vertices for a single event (pile-up).

The Amdahl’s law gives the maximum theoretical speedup S that can be reached
parallelising a portion of a serial program and is reported in the following:

S =
1

(1− P) + P
N

(2.17)

where P is the portion of serial program that should be made parallel, N is the
number of compute units where the parallel code can run. For a GPU hardware,
the number of compute units is very high, so the Amdahal’s law can be rewritten
considering N as infinite:

S = lim
N→∞

1

1− P
(2.18)

According to figure 2.5, about 90% of total execution time is spent for tracklet and
cell finding phase, so parallelising these two the theoretical maximum speedup is
equal to

S = lim
N→∞

1

1− 0.9
= 10 (2.19)

Nevertheless, the overheads introduced by running a program on physical hardware
(e.g. the copy of memory objects between host end device memory) make this limit
impossible to achieve. Figure 2.6 summarizes the main step of CUDA implementa-
tion in particular splitting the operations in function of device where they will be
executed.

19

2. The Tracking Algorithm

6.2 %56.1 %

34.6 %

3.1 %

Context init
Tracklet finding
Cell finding
Other

Time occupancy distribution - serial implementation

Figure 2.5: Time occupancy distribution for serial implementation.

2.2.1 Software architecture

The structure of classes of the CUDA version follows the AliROOT implementation
structure and the O2 coding guidelines[13] for a future integration on ALICE O2

framework.
The event are read from a text input file and stored in CAEvent objects. The

complete algorithm flow is implemented by using a CATracker object which, using
the clusterToTracks method, is able to find a list of roads (CARoad) starting from
the list of CAEvent.

So, the real core of the application is the clusterToTracks method: it calls a
sequence of methods that implement the steps of tracking algorithm; all the in-
termediate results are stored in CAPrimaryVertexContext that is a data member of
CATracker class. The information related to CUDA devices, memory objects and
kernels are stored inside a PrimaryVertexContext object that is a data member of
CATracker.

The final output of the program consists of three different list of tracks classified
in function of their cluster’s label assigned using Monte Carlo simulation and it can
be:

• correct: all clusters share the same Monte Carlo label;

• duplicated: a correct track but its label has yet been associated to an other
track (each input label corresponds to only one track);

• fake: at least one cluster has different label;

20

2. The Tracking Algorithm

Figure 2.6: Host-device paradigm: host execution, red filled, and device execution,
blue filled, must be properly synchronized.

The aforementioned classification is produced using an additional textual input file
that stored all the tracks generated using a Monte Carlo simulation.

2.2.2 Initialization phase

After reading the input data from a textual file, all the structures used during the
algorithm are created, indicating with N the number of ITS layers, as follows :

• N clusters vectors;

• N-1 (empty) tracklets vector;

• N-2 (empty) lookup tables for tracklets;

• N-2 (empty) cells vector;

• N-3 (empty) lookup tables for cells;

• the index table, properly filled with cluster index;

• other structure not used during tracklets/cells computation phase;

All this structures are necessary for any implementation version.
The initialization phase has a very high impact on the algorithm computing

performance and in particular the creation or the reallocation of memory is very
expensive in terms of execution time.
For this reason the CAPrimaryVertexContext object, which contains all the allocated

21

2. The Tracking Algorithm

structures, can be used for all the events simply resetting the internal structures
with the new data, and resizing these structures only if necessary (the new size is
greater than the previous one).

2.2.3 Tracklet finding phase

As seen in the section 2.1.2, the goal of this phase is to find all possible valid tracklets
between two consecutive layers; the input data consist of vectors of clusters and the
index table. The algorithm can be split in three consecutive phases that must be
executed in series and a synchronization mechanism is needed to guarantee that:

• all the tracklets are found and stored in the respective vector: each cluster
is managed in parallel so the vector obtained is unsorted; in order to put
each tracklet in the correct position of the vector the use of atomic variables
is necessary to avoid any overlapping between different tracklets; during this
phase the tracklet lookup table is filled with the number of tracklets found of
each cluster, for example, if 13 tracklets with the 42nd cluster as first cluster
(index of index table = 41) are found, the 42nd element of tracklet lookup table
(relative to the layer where the cluster is found) is filled with number 13;

• after the end of the previous phase the second step can start: an exclusive sum,
also known as prefix scan, is performed over all the tracklets lookup tables;
this operation is necessary for the cell computing phase; fig. 2.7 shows how
the scan works.

Figure 2.7: Exclusive sum: each i-th element of the output vector is filled summing
from the first element up to the (i-1)-th element of the input vector

• the last step of this phase consists in the sorting of the tracklet vectors as
function of the cluster index.

22

2. The Tracking Algorithm

2.2.4 Cell finding phase

The cell finding phase implementation is very similar to the previous one: using the
tracklets vector as the cluster vectors we can find all the possible valid cells. Also
in this case the algorithm can be split in three consecutive phases:

• all the valid cells are calculated and stored in the relative cell vector; the cell
lookup table are filled with proper values.

• Exclusive sum is applied to the cell lookup tables.

• Cells are sorted on the basis of the tracklet index.

2.3 Performance analysis

In this chapter I will show the results of the performance analysis of both the serial
and the CUDA implementation of the tracking algorithm. All benchmarks reported
below have been obtained by using the following configuration:

• CPU: Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz

• GPU: NVIDIA TITAN Xp 12 GB GDDRX5 1405 MHz

• RAM: 16 GB (2x8GB) 2666 MHz DDR4 ECC RDIMM

• OS: Ubuntu 18.04 LTS

• C++ Compiler (serial): gcc version 7.3.0, with -O3

• C++ Compiler (CUDA): NVCC 9.2

• CUDA Version 9.2.88

To better compare the OpenCL implementation with the current implementa-
tions, also the performance of serial program is analyzed. The serial version follows
the same guidelines reported in 2.2.1. The input file used to evaluate the perfor-
mances contains 100 Pb-Pb events, because the central events are those with the
highest numbers of particle emitted per collision. The first analysis concerns the
efficiency over transverse momentum pT. As shown in 2.8, the efficiency saturates
around a pT=4 GeV/c and quickly decrease for pT≤0.5 GeV/c. From the point of
view of the time occupancy, figs. 2.5 and 2.9 show how the total execution time
is divided among the different phases: it is evident that for serial implementation,
tracklets and cell finding occupy more than half of total time; on the other hand,
successive phases, cells neighbours finding and track reconstruction, take a very

23

2. The Tracking Algorithm

Mean 2.763
Std Dev 2.587

2−10 1−10 1 10

 [Gev/c]
T
ρTransverse momentum

0

0.2

0.4

0.6

0.8

1

Ef
fic

ie
nc

y

Mean 2.763
Std Dev 2.587

Correct Roads Histogram

(a)

Mean 2.401
Std Dev 1.913

2−10 1−10 1 10

 [Gev/c]
T
ρTransverse momentum

0

0.05

0.1

0.15

0.2

0.25

D
up

lic
at

ed
 to

 g
en

er
at

ed
 ra

tio

Mean 2.401
Std Dev 1.913

Duplicated Roads Histogram

(b)

Mean 4.39
Std Dev 3.521

2−10 1−10 1 10

 [Gev/c]
T
ρTransverse momentum

0

1

2

3

4

5

6

Fa
ke

 to
 g

en
er

at
ed

 ra
tio

Mean 4.39
Std Dev 3.521

Fake Roads Histogram

(c)

Mean 1.846
Std Dev 1.846

2−10 1−10 1 10

 [Gev/c]
T
ρTransverse momentum

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

D
up

lic
at

ed
 to

 n
ot

 fa
ke

 ra
tio

Mean 1.846
Std Dev 1.846

Duplicated To Not Fake Roads Histogram

(d)

Figure 2.8: Efficiency evaluation of CPU algorithm as a function of the transverse
momentum for a sample of 100 central Pb–Pb events without pile-up obtained di-
viding the number of reconstructed roads over the total number of generated roads.

small portion of the time; this means that the parallelization of these phases would
not infer an important improvement on the algorithm performance; on the CUDA
version, the initialization phase has the higher impact because of the parallel im-
plementation of the successive phases, so the operations of tracklet and cell finding
take only 36.7% of total execution time.

Table 2.3 and 2.4 summarize the execution time of the most important phases
for the serial and the CUDA implementation and it also shows that the pile-up has
an important impact on the performance.

24

2. The Tracking Algorithm

44.3 %

14.1 %
22.6 %

18.9 %

Context init
Tracklet finding
Cell finding
Other

Time occupancy distribution - cuda implementation

Figure 2.9: Time occupancy distribution for CUDA parallel implementation.

Table 2.3: Serial implementation: min, mean and max time (in ms) for execution of
100 Pb-Pb events with different amount of pile-up.

#Vertices 1 2 4 5

Context init
min 4.5 7.6 17.9 24.3
mean 5.7 10.1 22.5 29.4
max 7.6 14.3 35.5 45.9

Tracklet finding
min 23.6 102.8 435.3 693.6
mean 51.6 180.2 677.3 1027.6
max 74.1 227.2 831.1 1259.6

Cell finding
min 11.5 58.1 399.6 745.1
mean 31.8 151.3 943.7 1698.1
max 49.5 211.0 1297.7 2324.1

Total
min 40.0 169.8 855.4 1466.6
mean 92.0 346.2 1652.9 2768.0
max 134.7 455.4 2149.3 3602.3

25

2. The Tracking Algorithm

Table 2.4: CUDA implementation: min, mean and max time (in ms) for execution
of 100 Pb-Pb events with different amount of pile-up.

#Vertices 1 2 4 5

Context init
min 5.7 9.3 22.2 28.5
mean 7.2 13.2 28.8 38.2
max 10.4 19.4 49.8 66.7

Tracklet finding
min 1.7 4.2 20.0 32.3
mean 2.3 5.2 23.9 36.9
max 3.1 7.7 29.6 44.2

Cell finding
min 1.4 4.9 31.7 50.1
mean 3.7 13.3 62.4 102.9
max 5.8 18.1 84.0 139.8

Total
min 9.3 19.5 78.3 117.8
mean 16.2 37.0 124.7 191.1
max 23.9 48.1 173.1 259.1

26

Chapter 3

OpenCL

3.1 Overview

OpenCL[14] is an open source framework for parallel programming based on ANSI
C/C++ and a host-device architecture paradigm. The program generated using
OpenCL can be executed on heterogeneous platforms including CPU, GPU, FPGA,
DSPs and other hardware accelerators. The operations are performed thorough
kernels that are programs executed by devices and written with OpenCL C/C++
programming language which is based on C99.

The OpenCL framework allows writing parallel code that scales over the number
of compute unit available in a transparent way from the programmer point of view.

The ability to execute programs over so many different type of devices is the real
strength of this framework, indeed it is possible to run programs on very different
devices which span from smartphones to notebooks to supercomputers. This is
also the main important advantage with respect to its main competitor, namely
NVIDIA CUDA, which specifically targets NVIDIA GPU hardware; on the other
hand, CUDA performances are generally better than OpenCL ones[15].

3.2 History

The first proposal of OpenCL was stipulated by Apple in 2008, and after a re-
definition in collaboration with AMD[16], NVDIA[17], Qualcoom[18], IBM[19] and
INTEL[20], the proposal was submitted to Khronos Group [21] which approved the
first public version on December 8, 2008. Khronos Group is a non-profit american
consortium founded in 2000 with the goal to provide a cooperation platform for
industry players to develop open standards for cross-platform technology.

27

3. OpenCL

3.2.1 OpenCL 1.x

The first version of OpenCL was released by Apple in August 2009 along with
Mac OSX Snow Leopard. In the following months other companies (like AMD,
NVDIA and IBM) announced the intention to support OpenCL standard for their
future devices. The successive versions, 1.1 and 1.2, were released in June 2010
and November 2011 respectively, and they were characterized by many important
features to increase control of parallelism and performance (i.e. more OpenCL built-
in C function, new data types, operations on buffer regions, capacity to force IEEE
754 for single precision math operations, the possibility to include OpenCL program
inside external library).

3.2.2 OpenCL 2.x

The 2.0 version was released by Khronos Group in November 2013 and it included
new features like generic address space, nested parallelism, atomic functions and
shared virtual memory. With the 2.1 version, released in November 2015, along
with new features and performance improvements, it was added the ability to use
C++14 to write OpenCL kernel. The 2.2 version is the last OpenCL version released
(on May 16th 2017) and it includes features aimed to optimize the generated code,
the ability to use C++ inside OpenCL library functions in order to increase safety
and to improve performances; at present the kernel language is a subset of C++14
language, including classes, lambda, template and others functionality.

3.2.3 Future

After the release of the version 2.2 , Khronos Group announced that OpenCL pro-
gram will be merged into the Vulkan project[22] which is also managed by the
Khronos Group.

3.3 The OpenCL Architecture

To properly describe the OpenCL architecture it is convenient to split it in different
models that are strictly linked together[23]:

• Platform model

• Execution model

• Memory model

• Programming model

28

3. OpenCL

3.3.1 Platform model

The platform model describes how the OpenCL framework sees the hardware con-
figuration of the system where the OpenCL programs will be run. It is always
composed by a single host and one or many OpenCL devices. The host is the part
of the system where the OpenCL execution starts and it is in charge of the manage-
ment and the interaction with OpenCL context (which includes devices, command
queues, memory and all the operations that involve them) through OpenCL API;
each device is composed by more compute units and each compute unit can be split
in Processing Elements (PEs) which are the real calculation units. Figure 3.1 shows
a possible subdivision of the hardware system from the platform model point of
view.

Figure 3.1: OpenCL Platform model: one host and four devices, each one split in
compute units and their corresponding processing elements[24]

3.3.2 Execution model

The normal execution of an OpenCL program can be split into two parts: the host
program executed on the host and the kernel executed by one or more devices.
After the creation of context, the host can create one or more command queues
associated to a particular device in order to launch a kernel; through the command
queue the host can manage kernel execution commands, memory commands and
synchronization commands. Based on a specific command queue configuration, each
command can be executed following the order of submission (In-order Execution)
or in any order (Out-order Execution) constrained only by the used synchronization
mechanism. When the kernel is submitted, an index space, associated to it, is
defined; the index space, called NDRange, is divided into work-groups and each
work-group is composed by many work-items: each work-item represents a single

29

3. OpenCL

point of index space and it executes an instance of kernel. It is possible to identify a
work-item globally (based on its global ID) or with respect to its work-group (based
on group ID and local ID). Figure 3.2 summarizes how a single work-item can be
identified. NDRange kernel is defined by an integer array of length N (with N from 1
to 3) that indicates the global size for each dimension (total number of work-items).

Figure 3.2: Example of NDRange partition with N=3, work groups of same size and
offset equal to 0[24].

3.3.3 Memory model

The OpenCL device memory can be divided in the following types:

• Host Memory: only the host can access (read/write) this part of the mem-
ory;

• Global Memory: each work-item can read/write this memory;

• Constant Memory: this region remains constant for all the executions and
the work-item can only read it;

• Local Memory: memory shared within a work-group; it can be used to
allocate objects shared among all the work-items inside the same work-group;

30

3. OpenCL

• Private Memory: this region is private for each work-item and no other
work-item can read/write this region;

A schematic representation of memory model is shown in fig.3.3.

Figure 3.3: Representation of memory model[24].

3.3.4 Programming model

OpenCL supports task parallelism, data parallelism and a hybrid version combining
both. The choice of the model to follow depends on the algorithm and on the used
data structure.
In particular, the data parallelism model is strictly linked to the data employed:
there is a mapping between a work-item and the element in a memory object over
which a kernel can be executed in parallel. The key of this model is the NDRange
definition where the programmer can define the total number of work-items and
how they are divided in work-groups (or leave OpenCL implementation free to find
the better work-group size). If different work-items of the same work-group should
access the same memory a synchronisation mechanism is needed to prevent a wrong
memory access. It is important to notice that there is no synchronisation mechanism
between work-items from different work-groups. OpenCL defines a task as a kernel
executed by a single work-item: this operation is equivalent to launch a work-group
with a single work-item inside. For the implementation of the task parallelism,
the host has to deal with the synchronisation among many kernels and each of them
executes a different operations on the data.

31

3. OpenCL

3.4 Memory objects

One of the main expensive phase of any OpenCL program is the transmission of data
to and from the device: to speed up the execution of the program it is very important
to set a limit to the number of read/write operations. OpenCL provides different
types of memory objects that can remain on the device reducing data exchanges
between host and device. An OpenCL memory object can be one of the following
types:

• buffer: one dimensional array of data;

• sub-buffer: one dimensional section of buffer;

• image: a specialized type of memory object that is used for accessing 2D and
3D image data;

Buffer and sub-buffer are strictly linked together and share the large part of proper-
ties and methods applicable over them, but all three categories of object listed before
have some common properties. Memory objects are allocated over an OpenCL con-
text and all the devices associated to that context can access the memory object;
host can perform read/write operations submitting command to a specific queue
(created using the same context used for memory object) and these operations can
be blocking or not. In the case of not blocking operation, host must provide a syn-
chronization method (clFinish() or event handler) to avoid the use of buffer before
the end of the read/write operation.

Image objects are objects to store images and to exploit the high performance
texturing hardware of a GPU. An image object includes some information about the
image, such as dimensions and format, and easily allows performing some operations
like clamping and filtering.
Buffers and sub-buffers are the most used objects and they are described in detail
in the next section.

3.4.1 Buffers and sub-Buffers

OpenCL buffers are the common memory object used to store scalar, vector or
custom data types. All the considerations about buffer are also valid for sub-buffers.
The C++ API functions used to create buffer and sub-buffer are the following:

cl::Buffer::Buffer(

const Context& context,

cl_mem_flags flags,

::size_t size,

void * host_ptr,

32

3. OpenCL

cl_int * err);

cl::Buffer cl::Buffer::createSubBuffer(

cl_mem_flags flags,

cl_buffer_create_type buffer_create_type,

const void * buffer_create_info,

cl_int * err = NULL);

The context is an OpenCL context over which the memory will be allocated; the
size specifies the number of bytes to allocate; if err is not NULL, the returned error
code will be stored on it; host ptr is a pointer to allocated data, in particular the
use of this parameter depends on the flags specified and if it is different from NULL,
the allocation size of host ptr has to be greater or equal to size.
The most important parameter to be specified is flags that indicates the type of
operations doable over a memory object and the allocation method used to create
it:

• CL MEM READ WRITE: kernel can read and write buffer memory; if flags
is not specified, this is the default option;

• CL MEM WRITE ONLY: only write operation can be performed by the ker-
nel; reading operation may lead to undefined results;

• CL MEM READ ONLY: only read operation can be performed by the kernel;
writing operation may lead to undefined results;

• CL MEM USE HOST PTR: memory referenced by host ptr (that cannot be
NULL) is used to store data;

• CL MEM ALLOC HOST PTR: memory is allocated in host-memory;

• CL MEM COPY HOST PTR: the OpenCL implementation allocates memory
for memory object and copy data by host ptr ;

These parameters can be OR combined but CL MEM READ WRITE,
CL MEM WRITE ONLY and CL MEM READ ONLY are mutually exclusive, and
the same is valid for CL MEM USE HOST PTR and CL MEM ALLOC HOST PTR.

3.4.2 Buffer operations

The memory of buffer objects can be read or written by the host submitting the
relative command to a command queue. In particular, instead of coping data at
buffer creation moment, the buffer can be filled with the clEnqueueWriteBuffer()

33

3. OpenCL

function specifying the data to be written, the size of the data and if the operation
is blocking or not. With clEnqueueReadBuffer() a read operation is performed and
also in this case one has to specify the size of the data to read and the pointer to
the memory where those data will be stored.
OpenCL also provides two additional functions to access memory objects.
The clEnqueueMapBuffer() function maps a buffer region into the host address space
and it returns a pointer to this region; the host can access and modify this region
and after that operation, by using clEnqueueUnmapMemObject(), all the modifications
are removed from the device memory.

3.5 Example of program flow

In most of the applications, an OpenCL program starts asking for the OpenCL
supported platforms present in the system and selects a device on which to launch
kernels; in particular one can ask for CPU, GPU, accelerator or any of these kind
of device.

/* Simple program for sum two integer arrays */

/* get list of all platforms */

cl::Platform::get(&platformList);

/* select the first platform */

cl::Platform platform=platformList[0];

/* get list of all GPU devices associated to the selected platform */

platform.getDevices(CL_DEVICE_TYPE_GPU, &deviceList);

/* select the first device found */

cl::Device device=deviceList[0];

/* create the context for selected device */

cl::Context context({device});

After obtaining context and device, the next step is to create a command queue
used to submit operations on the selected device; as seen before, the creation options
of command queue determines if operations will be executed following the submission
order or not.

/* Create a in-order execution command queue; specifying

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE we obtain an out-of-order

command queue */

cl::CommandQueue queue(context,device);

34

3. OpenCL

The next phase is the creation of buffers to hold all the data used by the ker-
nel; after this phase one can decide if the buffer memory can be read, written or
both and the size of the memory to allocate; in order to read/write to/from this
memory the host must use OpenCL API functions like clEnqueueReadBuffer() or
clEnqueueWriteBuffer(). These functions submit the relative operation (read or
write) to the command queue. It is also possible to specify the input data that fill
the buffer at the creation moment.

/* Create 3 buffer for host input and output array: in this case the

buffer memory is read/write because no specific option is specified */

int v1[]={0, 1, 2, 3, 4};

int v2[]={5, 6, 7, 8, 9};

int v3[N]; /* N = 5 */

cl::Buffer bInputV1(context,CL_MEM_USE_HOST_PTR,N*sizeof(int), v1, NULL);

cl::Buffer bInputV2(context,CL_MEM_USE_HOST_PTR,N*sizeof(int), v2, NULL);

cl::Buffer bOutput(context,CL_MEM_USE_HOST_PTR,N*sizeof(int), v3, NULL);

The following step is to create the program one wants to execute on device; the
source code can be read from an external file or from a local string variable; after this
step, the program must be build and compiled: this operation can be done at run-
time (not device dependent but more latency is added for loading the source code)
or off-line (pre-compiled, no latency is added but the code can be device dependent).
Specific OpenCL compile options can be specified during build operation.

/* kernel source code */

std::string source_code=

"kernel void sum2Vector("

" global const int* v1, "

" global const int* v2, "

" global int* output){ "

" int index=get_global_id(0); "

" output[index]=v1[index]+v2[index]; "

" } ";

cl::Program::Sources sources;

sources.push_back({source_code.c_str(),source_code.length()});

cl::Program program(context,sources);

program.build({device});

cl::Kernel kernel=cl::Kernel(program,"sum2Vector");

The program flow foresees at this point the submission and execution of kernel:
one adds the argument to the kernel (in this case input and output buffers) and then
submits the kernel to the command queue. In this phase it is possible to specify

35

3. OpenCL

the dimensions of NDRange that depend on the selected device and on the program
granularity:

• work dim: the number of dimensions N of NDRange with N greater than 0
and less than or equal to CL DEVICE MAX WORK ITEM DIMENSIONS;
if not specified the default value is 1.

• global work offset: it specifies the offset used to calculate work-item global
ID.

• global work size: it is strictly linked to the program granularity, for example,
in the case of the present thesis work, the number of work-item should be equal
to the array size.

• local work size: if this value is NULL OpenCL implementation will deter-
mine an appropriate work group size; it must be less than or equal to
CL DEVICE MAX WORK GROUP SIZE.

kernel.setArg(0,bInputV1);

kernel.setArg(1,bInputV2);

kernel.setArg(2,bOutput);

queue.enqueueNDRangeKernel(

kernel, /* kernel to execute */

cl::NullRange, /* global work offset */

N, /* global work size */

cl::NullRange); /* local work size */

The last phase is to read back the result of the kernel execution; it is important to
notice that the function enqueueNDRangeKernel() submits the command to execute
the kernel but it is not a blocking function so it does not give any information
about the start and the end of the execution; it is necessary, therefore, to use some
synchronization mechanism to ensure that the execution is ended before reading
back output: OpenCL finish() is a blocking function that returns only when all
operation on the command queue is completed. After that operation it is possible to
read the result from the buffer. Figure 3.4 represents how each kernel instance uses
its global index to access the correct element of input vector and store the result in
the correct position of the output vector. Figure 3.5 describes the complete flow of
a common OpenCL program.

queue.finish();

queue.enqueueReadBuffer(bOutput,CL_TRUE,0,sizeof(int)*N,v3);

/* v3 = { 5, 7, 9, 11, 13 } */

36

3. OpenCL

Figure 3.4: Example of how an OpenCL kernel access data using its global index.
Yellow blocks indicate the input value read by the kernel from input data and
correspond to the position indicates by global index. The result, the blue block, is
stored in the output vector at the same index position.

3.6 Performance analysis tool

Using the Intel software Intercept Layer for OpenCL Applications[25] it is possible to
analyse the performance without changing the program code. The software generates
a log file, where all the OpenCL calls are reported, and a JSON file that can be
opened by using the Google Chrome browser. For example, opening the JSON file
generated from the program reported before, it is possible to identify each phase of
execution. The device selected is a CPU and the command queue is configured for
in-order execution.

As shown in figure 3.6 the programs takes 92.6 ms to finish but most of this
time is used to get the platform, create the context and build the kernel (about 83
ms); the real programs core is executed in 88 µs and include buffer creation, kernel’s
argument setting, launch of kernel, waiting time before the end of the kernel and
the copy of the result back to the host vector. About 10 ms are used to release all
OpenCL objects (command queue, context and device(s)). It is important to notice
how finish() function is necessary to prevent the reading of the output buffer (made
by API function enqueueNDRangeKernel() called inside enqueueReadBuffer()) before
the end of the kernel execution (details can be seen in figure 3.7).

Intercept Layer for OpenCL Applications is particularly useful when the program
uses more than one command queue; small changes to the previous program is
necessary to show this kind of application:

• creation of 2 command queues and 2 output buffers. To obtain a better visu-
alization of the input/output, the vector size is increased to N = 500000 and
the work-group size is set to 1).

37

3. OpenCL

Figure 3.5: OpenCL flow diagram from kernel creation to kernel execution

cl::CommandQueue queue1(context,device);

cl::CommandQueue queue2(context,device);

cl::Buffer bOutput1(context,CL_MEM_USE_HOST_PTR,N*sizeof(int), v3,

NULL); /* output buffer for first kernel */

cl::Buffer bOutput2(context,CL_MEM_USE_HOST_PTR,N*sizeof(int), v4,

NULL); /* output buffer for second kernel */

• the launch of 2 parallel kernels and the use of finish() only after putting a
second kernel in the queue.

kernel.setArg(0,bInputV1);

kernel.setArg(1,bInputV2);

kernel.setArg(2,bOutput1);

queue1.enqueueNDRangeKernel(kernel,

cl::NullRange,

cl::NDRange(N),

cl::NDRange(1));

kernel.setArg(0,bInputV1);

38

3. OpenCL

Figure 3.6: Execution flow of program sum2vector generated using Intercept Layer
for OpenCL Applications.

Figure 3.7: Without finish() after sum2vector kernel launch, the reading operation
starts before the end of kernel execution so the final result is not correct.

kernel.setArg(1,bInputV2);

kernel.setArg(2,bOutput2);

queue2.enqueueNDRangeKernel(kernel,

cl::NullRange,

cl::NDRange(N),

cl::NDRange(1));

queue1.finish();

queue2.finish();

Figure 3.8: Example of multiple command queue running in parallel

The first 2 rows (in green) of figure 3.8 show the command queues execution, the
last (the red one) show the functions called by the host; it is easy to recognize that
using multiple queues we can improve the performance with an additional level of
parallelism. A similar behaviour can be achieved by using a single command queue
but with out-of-order mode (figure 3.9).

39

3. OpenCL

cl::CommandQueue

queue(context,device,CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE);

kernel.setArg(0,bInputV1);

kernel.setArg(1,bInputV2);

kernel.setArg(2,bOutput1);

queue.enqueueNDRangeKernel(kernel, /* kernel to execute */

cl::NullRange, /* global work offset */

cl::NDRange(N), /* global work size */

cl::NDRange(1)); /* local work size */

kernel.setArg(0,bInputV1);

kernel.setArg(1,bInputV2);

kernel.setArg(2,bOutput2);

queue.enqueueNDRangeKernel(kernel, /* kernel to execute */

cl::NullRange, /* global work offset */

cl::NDRange(N), /* global work size */

cl::NDRange(1)); /* local work size */

queue.finish();

queue.enqueueReadBuffer(bOutput1,CL_TRUE,0,sizeof(int)*N,v3);

queue.enqueueReadBuffer(bOutput2,CL_TRUE,0,sizeof(int)*N,v4);

Figure 3.9: Execution of 2 kernels on an out-of-order command queue: the green
rows correspond to the same command queue: they are executed in parallel and
without respecting any particular order.

3.7 OpenCL vs CUDA

The main alternative to OpenCL is NVIDIA CUDA. CUDA identifies a set of hard-
ware architecture and, as OpenCL, it is a general purpose platform for parallel com-
puting over supported General-Purpose computing on Graphics Processing Units
(GPGPU).

Contrary to OpenCL, CUDA is a proprietary technology and it works only on
NVIDIA’s GPUs; since CUDA is developed by the same company (NVIDIA) that

40

3. OpenCL

produces the hardware where the program will be executed, it offers more access to
features and better performance [15]. In addition, CUDA offers a debugger and a
profiler, OpenCL does not.

As OpenCL, CUDA is based on a host-device architecture paradigm and the
execution starts from host which can execute computation kernels over device. Ker-
nels are written in CUDA C (which widely supports C++) or PTX (an intermediate
code that is compiled and translated by device driver to the actual device machine
code) and they are compiled with nvcc compiler. The CUDA functionality can
also be used with OpenCL interface provided by NVIDIA. As shown in fig.3.10 the
flow execution of OpenCL and CUDA programs are very similar and often only the
syntax or the name are different.

Device, execution and memory models of the two frameworks are very similar
but the OpenCL models are more generic and abstract because it does not address
a specific architecture as CUDA does (i.e. OpenCL substitutes processor with pro-
cessing element). Table 3.1 shows a comparison between CUDA and OpenCL most
important terms and keyword.

Figure 3.10: List of the features of CUDA and OpenCL API[26].

41

3. OpenCL

Table 3.1: Terminology adopted by using CUDA and OpenCL [12][14].

TERM CUDA OpenCL
Device int deviceId cl device
Queue cudaEvent t cl command queue

Memory void * cl mem
Grid of threads grid NDRange

Subgroup of
threads

block work-group

Thread thread work-item
Thread-index threadIdx.x get local id(0)
Block-index blockIdx.x get group id(0)
Block-dim blockDim.x get local size(0)
Grid-dim gridDim.x get global size(0)

Device Kernel global kernel
Kernel Launch <<<>>> clEnqueueNDRangeKernel
Global Memory global global
Group Memory shared local
Private Memory (default) private

Constant constant constant

42

Chapter 4

OpenCL implementation

The necessity to run a tracking algorithm on many types of hardware, different from
CPU or NVIDIA GPU, has been the key factor to write an OpenCL porting version.
In the following I will present three different versions of the OpenCL porting I have
developed describing the analysis of their performance, advantages and disadvan-
tages, differences with respect to the serial/CUDA version. In the next chapters the
following implementation schema will be discussed:

• sort version: based on CUDA implementation schema;

• native OpenCL version (from now on indicated as native version): by using
OpenCL 1.2 API and Boost Compute library for scan phase only;

• boost version: entirely developed with Boost Compute and VexCL libraries;

At first, I will present some characteristics that all the versions have in common. To
compare the results with those obtained with serial/CUDA implementation (pre-
sented in section 2.3), I run the program with the same input file containing a col-
lection of 100 Pb-Pb events with different level of pile-up. The system configuration
used has the following features:

• CPU: Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz

• GPU: NVIDIA TITAN Xp 12 GB GDDRX5 1405 MHz

• RAM: RAM: 16 GB (2x8GB) 2666 MHz DDR4 ECC RDIMM

• OS: Linux Ubuntu 18.04 LTS

• C++ Compiler: gcc version 7.3.0, with -O3 optimization flag

• OpenCL 1.2

43

4. OpenCL implementation

Due to the high number of supported devices it was decided to choose the version
1.2 of OpenCL, even if some useful functions (e.g. built in scan) are not available
by adopting this version.

4.1 General implementation choices

All the results presented in this section have been obtained using the boost version
on GPU device. In order to preserve the compatibility with CUDA and the serial
version of the algorithm, the interfaces of the used C++ classes are kept the same
except for minor modification managed by using preprocessor directives. Adopting
this approach, the version that one wants to execute can be selected at compile time
with a compiler flag.

The general schema of the program follows the same guidelines of the other
versions. A CATracker object contains all the methods needed to execute the steps
of the algorithm, in particular through clustersToTracks method. The events read
from the input file are stored into CAEvent objects and are passed as argument of
clustersToTracks method. Each call of this method processes a single event.

During the first iteration over the first CAEvent, before the initialization of data
structures, all the global OpenCL objects are created. In particular, starting from
the available cl::Platform and a specific cl::Device it is possible to obtain a
cl::Context. The cl::Context can be used to create all the cl::CommandQueue

(as many as the number of the upgraded ITS layers) necessary during the whole
program execution, and also to create and compile the cl::kernels. Especially the
pre-creation of kernels allows increasing the global performance of the algorithm
avoiding to recompile the kernels whenever they should be invoked. All of the
OpenCL objects are stored in a global Context object, that is declared with the
keyword final so during the next iterations the OpenCL objects are not recreated
with an important boost in terms of algorithm’s performance.

The next step is the initialization of all the data structures used during the
execution; those structures are stored in a PrimaryVertexContext object that is a
member of CATracker. In order to create vector of appropriate size, in particular
for host tracklets and cells, I use the same size used by CUDA version as explained
in [10]. Depending on the program version, this phase is done in different modes,
especially for the features derived from the use of Boost Compute library. The
details of this phase are explained in the specific section of each version.

At this point the tracking algorithm steps can start by using the CATracker’s
methods listed in the following:

• computeTracklets()

• computeCells()

44

4. OpenCL implementation

• findCellsNeighbours()

• findTracks()

• computeMontecarloLabels()

The OpenCL porting concerns the first two methods, computeTracklets() and
computeCells(), while the others are kept equal to the CUDA/serial version and
executed in a serial way.

In order to perform all the steps of the tracking algorithm, it is necessary to set
threshold values as explained in Cap.2. These values are kept the same calculated
for the CUDA version described in [10]. The thresholds and the other constants
used during the program execution (e.g. ITS’s features as the number of layers) can
be found in the Constants.h file. This file must be available not only for the host
program, but also for the kernels. In any case, an adjustment of the file by adopting
preprocessor directives, is necessary to allow the kernel to correctly include this file.

As explained in Cap.3, when a kernel is launched by the host, it is mandatory
to specify NDRange for setting the number of dimensions (at most three), the total
number of work items and the work group size (number of work items executed
in parallel). The number of dimensions and the number of work items is strictly
linked to the used data structure, the work group size is, instead, related to the
features of the hardware: in this case, the parallelism depends only on the number
of clusters (for the tracklet finding phase) or on the number of tracklets (for the
cell finding phase), which are unidimensional variables: this means that the choice
is to set an NDRange of dimension 1. The total number of work items deployed
in each kernel execution is the smallest number greater than the size of processed
buffers (containing clusters or tracklets) and as multiple of 32 or 64 (depending on
the device hardware). For instance one would try to set the number of work items
equal to the size of processed buffers. This is lesser performing than the previous
setup. In figure 4.1 it is depicted the percentage difference between elapsed times in
these two choices.

Using the smallest multiple of 32 or 64 as global size, a mechanism to prevent
a wrong memory access must by implemented. For example one can operate as
follows: during tracklet finding phases the parallelism depends on the number of
clusters for each level. In particular, each kernel, using its global ID, accesses to
the element of the clusters vector in order to read all the information about the
cluster. Assuming a cluster vector of size N and to launch N+k work-items (N+k
is the smallest multiple of 32, or 64, and higher than N), the N+1-th work-item
will access an out of bound element (neither allocated nor correctly initialized). To
avoid this behavior, the work-item must know the exact size of the clusters vector.

Regarding the work group dimension, two choices are possible: specify the work
group size or let OpenCL implementation to decide a suitable dimension; in any

45

4. OpenCL implementation

0 20 40 60 80 100
Events

0

20

40

60

80

100tim
e

[%
]

∆

Percentage difference using global size not multiple of 32

Figure 4.1: Computational time increment using a global size not multiple of 32.
The system configuration used is the one reported in section 4.5.1.

case the size must be a sub–multiple of global work size and less than
CL DEVICE MAX WORK GROUP SIZE (maximum number of work-items inside
a work-group and it depends on the device hardware); as seen before, the size is
strictly linked to the features of the hardware device, so it could be difficult to find
the better value for each device. For this reason I decided to follow the second
approach and to let OpenCL free to choose the work group size.
Before the submission of kernel to a command queue, it is necessary to set the
proper arguments through clSetKernelArg() function. The argument setting by
using CUDA is done by means of a single struct which contains all the data structures
necessary for the kernel execution. Differently from CUDA, OpenCL does not allow
specifying variable length arrays and structures with flexible (or unsized) arrays as
kernel arguments[24]. For each kernel the arguments object specified are as many
as the vectors/arrays necessary for the execution.
Differently from CUDA version, all the versions developed with OpenCL use an
inclusive sum instead of exclusive sum. As shown in 4.2, inclusive sum includes the
input xi to compute the output yi.

The output of the program is composed by three text file reporting the list
of correct roads, fake roads and duplicate roads. To produce these report files is
necessary an additional input file containing the data of the Monte Carlo simulation.

46

4. OpenCL implementation

Figure 4.2: Inclusive sum: each output element yi is filled summing the input element
xi plus the previous output element yi-1.

4.1.1 Boost Compute library

All the code versions presented in this thesis are implemented using Boost Compute
library.[27]
Boost Compute is a GPU parallel-computing library for C++ based on OpenCL
which allows accessing to all the OpenCL features with a more user friendly C++
interface compared to OpenCL API, and provides some additional functions and
parallel-computing algorithms, such as exclusive/inclusive scan, sort, accumulate
and many others.
One of the main advantage derived from the use of this library is its C++ vector
compliant API that simplifies and speeds up the copy operations of the std::vector

used to store all the main structures used by the program (i.e. clusters, tracklets,
cells) through the function compute::copy().
Boost Compute is a header only library (no linking is required) and it is sufficient
to include its header file during the compilation phase. This step is performed with
CMake tool.

4.1.2 Compilation

The compilation phase is managed with CMake tool [28], an open source tool useful
to automatize the compilation and to check if all requirements are met (i.e. compiler
version, OpenCL version, Boost library presence). In addition, CMake is in charge
of preparing the link to the OpenCL library, including header only libraries (i.e.
Boost Compute) and the source files of the program. All the compilation flags can
be specified using this tool; for this program -std=c++14 and -O3 are used.

47

4. OpenCL implementation

4.2 Sort Version

The Sort version is very similar to the CUDA implementation and it is based on the
same three steps performed by using the CUDA algorithm:

• compute tracklets/cells

• scan tracklet/cell lookup table

• sort tracklets/cells

Figure 4.3 shows the distribution of time execution using this version. The tracklet
and cell finding phases take most of the time while only about 28.2% of total time
is spent during the others phases .

20.3 %38.2 %

33.7 %

7.9 %

Context init
Tracklet finding
Cell finding
Other

Time occupancy distribution - sort version

Figure 4.3: Time distribution over 100 Pb-Pb events using the sort version OpenCL
porting. Others indicates all the other phases that follow the step in which the cells
are computed.

4.2.1 Implementation details

During the initialization phase, all data structures are allocated and initialized (as
seen in section 2.2). Boost Compute is helpful to simplify and speed up this phase.
Indeed it allows creating compute::vector, that can be used inside compute::kernel,
using directly std::vector (this is not possible with native OpenCL 1.2). In addi-
tion, Boost Compute allows the resize of previous allocated C++ compute::vector

48

4. OpenCL implementation

transparently. The relative lookup tables are reallocated only if the required size is
larger than their current one. The operation of creation and resize performed by
Boost Compute uses a grow factor of 1.5 and this translates in the fact that the
real allocated size is larger than expected. This is crucial to limit the number of
reallocation but can create problem if the system has low memory. Figure 4.4 shows
the initialization time of 100 Pb-Pb events.

During the execution of the program, some auxiliary buffers are necessary: one
can be used to store the index of layer, one for the storage of the number of track-
lets or cells found for each layer All these objects are created during the first ex-
ecution and then, if necessary it is possible to perform a reset to zero for each
event with the compute::fill() function. The only data available at this mo-
ment is the vector of clusters so the relative compute::vector can be filled with
the compute::copy_async() function which is a non-blocking function that allows
speeding-up the process; after the initialization phase and before the usage of ini-
tialized data, a compute::finish() must be executed on each command queue.

0 20 40 60 80 100
Event

2

4

6

8

10

12

14

C
om

pu
tin

g
tim

e
[m

s]

Initialization time (sort - gpu)

Figure 4.4: Initialization time analyzing 100 Pb-Pb events by using the sort version
of the OpenCL porting.

As seen for sort version, three operations are performed during the tracklet find-
ing phase. The first one, which corresponds to the computation of all the tracklets,
can start only after the end of all the operations started during the initialization
phase. For each layer, a kernel (4.1) is launched over the command queue relative
to the layer: any instance of kernel tries to find all the tracklets that have the first
cluster index equal to the global ID. All the valid tracklets are stored in an unsorted
way. Each work-item is executed independently from the other ones: this means

49

4. OpenCL implementation

Figure 4.5: Distribution of tracklet and cell finding phases over different command
queues using sort version of the OpenCL porting. The image has been obtained
using Intel Intercept Layer application.

there is no guarantee that each instance of the kernel saves the tracklets found in
an empty slot of the vector; to avoid tracklets overlap, an atomic function is neces-
sary, in particular atom_inc(var) increments a variable var (shared among all the
work-items of same layer) and it returns the vector index where the tracklet must
be saved. During the kernel execution, the lookup table for tracklets is filled with
the number of the tracklets found for each cluster.

The second step is the inclusive scan of the tracklet lookup tables: when the
compute tracklet step of i-layer is finished, the compute::inclusive_scan() function
performs the scan of tracklet lookup table (that is necessary for cell compute phase).

Listing 4.1: Pseudocode of kernel used in the sort version for the computation of
the tracklets

void computeTrackletKernel(int sharedIndex){

int clusterIndex = get_global_id(0);

Cluster c1 = clusterVector(clusterIndex);

Vector<Cluster> compatibleClusters = getCompatibleClusters(c1);

for(Cluster c2 : compatibleClusters){

if(validTracklet(c1,c2)==true){

int validIndex = atomic_increment(sharedIndex);

trackletVector[validIndex]= newTracklet(c1,c2);

}

}

}

At the end, compute::stable_sort() function perform a sorting algorithm over
the vectors of clusters filled during the first step of this phase. By using the Intel
Intercept Layer (fig.4.6) it is easy to notice how the sort function provided by the
Boost Compute library is a blocking function and that no parallelism is possible at
this point with a sizeable decrease of performance.

50

4. OpenCL implementation

Figure 4.6: Distribution over different command queues of tracklet finding phase of
a single event executed using sort version.

The compute cell phase is very similar to the previous one. A layer by layer
execution is performed to guarantee a high level of parallelism. So, when the sorting
algorithm has finished, the three steps (compute, inclusive scan and sorting) for cell
finding can start. After the end of the sorting phase, a copy from compute::vector

(which host sorted cells) to std::vector is necessary in order to make available
the result for the following phases (in particular for the cell neighbourhood finding)
that are executed without OpenCL. Figure 4.7 shows the distribution of the cell
finding phase over the command queues; also in this case the serialization of the
sort step, derived from the Boost Compute implementation, causes a degradation of
the performance.

Figure 4.7: Distribution over different command queues of the cell finding phase for
a single event executed using the sort version.

The main difference with respect to the CUDA implementation is the type of
scan used: in particular, for CUDA implementation, an exclusive sum has been
chosen, instead I decided to use an inclusive sum.
The performance of compute::inclusive_scan() and compute::exclusive_scan()

are very similar but the inclusive scan stores the total number of tracklets/cells
found on the last element of the vector and this number is useful in the next step
of the algorithm.

Differently from native version and boost version, the sort version of the OpenCL
porting implementation, processes the data only once and this is the real advantage

51

4. OpenCL implementation

with respect to the other versions. In order to allow this single iteration, an atomic
variable (inside the compute tracklets/cells kernel) and a sort step are necessary.
Those steps represent a sort of bottleneck for the algorithm. This has a large impact
on performance: the atomic variable forces the kernel to a serial-like execution; the
compute::stable_sort() is slower than a second data processing (as in native and
boost versions).

Listing 4.2: Pseudocode of kernel used by sort version for the compute of cells

void computeCellKernel(int sharedIndex){

int trackletIndex = get_global_id(0);

Tracklet t1 = trackletVector[clusterIndex];

Vector<Tracklet> compatibleTracklets = getCompatibleTracklets(t1);

for(Tracklet t2 : compatibleTracklets){

if(validCell(t1,t2)==true){

int validIndex = atomic_increment(sharedIndex);

cellVector[validIndex]= newCell(c1,c2);

}

}

}

4.3 Native Version

The native version of the OpenCL porting tries to bypass the limits of the sort
version with a different resolution schema. Also in this case three steps are executed
over the events used as input:

• counting of the tracklets/cells

• scan of tracklet/cell lookup table

• computation of the tracklets/cells

The main difference with respect to the sort version is the second iteration over the
same data in order to avoid the use of atomic operation during the first step and to
avoid the use of the sort step.

Figure 4.8 shows the whole execution flow distributed over the command queues.

52

4. OpenCL implementation

Figure 4.8: Complete execution flow distributed over the command queues using
the native version of OpenCL porting.

4.3.1 Implementation details

The initialization phase, differently from what is done in the sort version, is imple-
mented using only OpenCL API and all the compute::objects are replaced with
cl::objects. The use of native OpenCL object has an important impact on the ini-
tialization phase performance. Similarly to the sort version, all the auxiliary buffers
are created at this moment. Figure 4.9 shows the initialization time for 100 Pb-Pb
events using this version.

0 20 40 60 80 100
Event

2

4

6

8

10

12

14

C
om

pu
tin

g
tim

e
[m

s]

Initialization time (native - gpu)

Figure 4.9: Initialization time for 100 Pb-Pb events using native version.

The first step for booth phases is radically different with respect to the sort
version. Instead of calculating and storing the tracklets/cells on the wrong position
of the relative vector, and then apply a sort operation, in this phase only the filling of
the lookup table is performed. In this way no atomic operations are needed because
i-element of the lookup table is filled with the number of tracklets/cell found for
i-cluster/tracklet. The kernel pseudocode of the counting step is reported in 4.3

53

4. OpenCL implementation

and 4.5 and the result show that, differently form what happen on sort version, no
elements are calculated and stored.

After the end of the counting step, an inclusive scan operation is performed for
each lookup table and the last element of the table corresponds to the effective total
number of tracklets/cells found for the corresponding layer.

The last step (pseudo code of kernels can be found in 4.4 and 4.6), computes
tracklets/cells and then it uses the lookup table calculated in the previous step to
store the computed elements in the correct vectors position. The i-element of the
lookup table specifies the starting offset inside the vector of tracklets/cells where to
put the calculated element, so, also in this case, no atomic variable or particular
synchronization mechanism are necessary. The process to calculate tracklets/cells
is very similar to the first step (elements counting) but, at the end of the kernel
execution, the new object is calculated and stored.

Listing 4.3: Pseudocode of kernel used by boost version and native version for the
count of tracklets

void countTrackletKernel(){

int clusterIndex = get_global_id(0);

int trackletsFound = 0;

Cluster c1 = clusterVector[clusterIndex];

Vector<Cluster> compatibleClusters = getCompatibleClusters(c1);

for(Cluster c2 : compatibleClusters){

if(validTracklet(c1,c2)==true)

trackletsFound++;

}

trackletLookupTable[clusterIndex]=trackletsFound;

}

Listing 4.4: Pseudocode of kernel used by boost version and native version for the
compute of tracklets

void computeTrackletKernel(){

int clusterIndex = get_global_id(0);

int firstIndex =trackletLookupTable[currentClusterIndex-1];

Cluster c1 = clusterVector(clusterIndex);

Vector<Cluster> compatibleClusters = getCompatibleClusters(c1);

for(Cluster c2 : compatibleClusters){

54

4. OpenCL implementation

if(validTracklet(c1,c2)==true){

trackletVector[firstIndex++]= newTracklet(c1,c2);

}

}

}

39.4 %
15.8 %

32.8 % 12.0 %

Context init
Tracklet finding
Cell finding
Other

Time occupancy distribution - native version

Figure 4.10: Time execution distribution of different phases using native version.

Figure 4.11: Distribution over different command queues of the tracklet finding
phase for a single event executed using the native version.

At the end of the cell finding phase a final copy from device memory to host
memory (in particular to a C++ std::vector<Cell>) is necessary to make available
the computed cells for the following phases of the algorithm.

The algorithm used is radically different from the CUDA implementation: two
iterations are performed on the data in order to increase the performance avoiding
the use of atomic operations and sorting processes.

Figure 4.10 shows how total execution time is distributed among the implemented
phases. The main limit of this implementation is the slow initialization phase derived

55

4. OpenCL implementation

Figure 4.12: Distribution over different command queues of the cell finding phase
for a single event executed using the native version.

from the use of native OpenCL API instead of Boost Compute: as seen before, Boost
Compute is especially useful to handle vectors with variable size, and this is the case.
Figs. 4.11 and 4.12 show the distribution of the tracklet finding phase and the cell
finding phase over the command queues.

Listing 4.5: Pseudocode of kernel used by boost version and native version for the
count of cells

void countCellKernel(){

int trackletIndex = get_global_id(0);

int cellsFound = 0;

Tracklet t1 = trackletVector[clusterIndex];

Vector<Tracklet> compatibleTracklets = getCompatibleTracklets(t1);

for(Tracklet t2 : compatibleTracklets){

if(validCell(t1,t2)==true)

cellsFound++;

}

cellLookupTable[trackletIndex]=cellsFound;

}

Listing 4.6: Pseudocode of kernel used by boost version and native version for the
compute of cells

void computeCellKernel(){

int trackletIndex = get_global_id(0);

int cellsFound = 0;

Tracklet t1 = trackletVector[clusterIndex];

Vector<Tracklet> compatibleTracklets = getCompatibleTracklets(t1);

for(Tracklet t2 : compatibleTracklets){

if(validCell(t1,t2)==true){

cellVector[firstIndex++]= newCell(t1,t2);

}

56

4. OpenCL implementation

}

}

4.4 Boost Version

The Boost version of the porting tries to combine the advantages of the sort and
the native versions. The limit of the native version are bypassed with an extensive
use of Boost Compute library (in particular for the implementation phase) which
makes more clear all the operations of copy between the host memory and the device
memory. The bottleneck of the sort version are removed using two iterations over
the same event instead of the sort step.

The general schema is the same of native version and it is composed by:

• counting of tracklets/cells

• scan of tracklet/cell lookup Table

• computing of tracklets/cells

The time distribution of each phase is shown in fig. 4.13. It is clear from the results
that the initialization is the more expensive step (51.1% of the total time). This
result has been achieved thanks to the improvement of the tracklet and the cell
finding phases which take only about 30% of the total execution time.

Looking at fig. 4.14 it is easy to identify each phase and the distribution of the
execution over the different command queues used for this version. In particular it
is clear how the scan phase is the real limit of this version.

4.4.1 Implementation details

The inizialization phase is substantially the same of the one used in the sort version
except for small differences needed for the implementation change of the following
phases. Thanks to Boost Compute library all the variable size vectors are created
only once and than resized when necessary. To speedup and obtain the highest level
of parallelism all the operations are executed on the command queue relative to
the proper layer. Figure 4.15 represents the initialization time for all the processed
events: the peaks correspond to a resize operation.

The count (4.3) and the compute (4.4) of tracklets are identical to native version
except for the use of compute::objects instead of cl::object.

The scan phase is slightly different. As shown in figs. 4.16 and 4.17 the scan
phase has a very important impact on the performance also if the real execution time
necessary for scan operation is very limited, so it is important to speedup this step.

57

4. OpenCL implementation

51.1 %

10.8 %

19.0 %

19.1 %

Context init
Tracklet finding
Cell finding
Other

Time occupancy distribution - boost version

Figure 4.13: Time execution distribution of different phases using boost version.

Figure 4.14: Time execution distribution of different phases using boost version.

Boost Compute implementation of this function is not the best choice: every time
a compute::inclusive_scan is called the relative kernels are created and compiled.
A better alternative is the use of a different library, VexCL[29].

VexCL is a C++ vector expression template library for OpenCL and CUDA;
it provides some built in function for parallel operation over vectors, in particular,
the vex::inclusive_scan() is helpful in our case. VexCL is compatible with native
OpenCL API and with Boost Compute library and small adjustments must be
applied to use VexCL scan with boost::vector. The figure 4.18 shows the difference
of performance between vex::inclusive_scan() and compute::inclusive_scan().

4.5 Performance comparison

In this chapter I try to summarize the main differences between the three OpenCL
porting versions I have developed and the final performances obtained with each one
are presented.

58

4. OpenCL implementation

0 20 40 60 80 100
Event

2

4

6

8

10

12

14

C
om

pu
tin

g
tim

e
[m

s]

Initialization time (boost - gpu)

Figure 4.15: Initialization time using boost version over 100 Pb-Pb events.

6

Figure 4.16: Distribution over command queues of compute tracklet phase of a single
Pb-Pb event using boost version.

From the data initialization point of view, the main difference is due to the
usage of the Boost Compute library. Figure 4.19 shows the important impact that
the usage of the boost library has on the algorithm performance; the native version,
which does not use boost, has a higher initialization time with respect to other
versions. In the analysis of 100 Pb-Pb events, the boost and the sort versions have
comparable initialization time (mean value of 6.6 ms and 6.4 ms, respectively) which
are about 30% faster than the native one (mean time of 9.26 ms)

As shown in figure 4.20 the results in terms of performance are different for the
tracklet finding phase. The use of atomic variable and especially the sort operations
made the sort version the slowest among the three with a mean time of 12.13 ms.
The native version, with 3.70 ms of mean time is about ∼70% faster than the sort
version. The quickest solution is the boost version with a mean time of 1.38 ms
(∼88% faster than the sort version and ∼62% faster than the native one).

The cell finding phase (fig.4.21) has a similar behavior, but with reduced dif-
ferences between the three versions: native version, with mean time of 7.69 ms, is

59

4. OpenCL implementation

Figure 4.17: Distribution over command queues of compute cell phase of a single
Pb-Pb event using boost version.

Figure 4.18: Execution time of vex::inclusive_scan() compute::inclusive_scan()

over variable size vectors of integer. The execution time is calculated over a second
iteration of the scan in order to better simulate the tracking algorithm case. The
system configuration used is reported in 4.5.1

∼28% faster than the sort version (mean time of 10.70 ms); boost version, with
2.49 ms, is ∼76% faster than the sort version and ∼67% than the native one. The
difference of performance of the sort version is strictly linked to the Boost Compute
implementation of the sort operation which represents the main limit of all the ver-
sions. The difference between native and boost versions depends on the usage of the
boost library for memory management and copy operations and especially on the
usage of vex::inclusive_scan() instead of {compute::inclusive_scan().

Finally, figure 4.22 shows the total execution time of the three versions over 100
Pb-Pb events. The results show that the better solution is the boost version with a
mean time of 12.88 ms (∼69% faster than the sort version and ∼60% faster than the
native one) while the native version has a mean time of 23.46 ms and the sort version
has a mean time of 31.78 ms. Summing up all the results about the execution time

60

4. OpenCL implementation

of initilization, tracklet finding and cell finding, it is clear that the next step of the
algorithm takes a very small time to be executed, generally ∼1.1 ms.

0 20 40 60 80 100
Event

0

2

4

6

8

10

12

14
Ti

m
e

[m
s]

Native (9.26 ms)
Sort (6.44 ms)
Boost (6.60 ms)

OpenCL porting initialization time (CPU device)

Figure 4.19: Initialization time of the three different version of OpenCL porting.
Dashed line represents the mean value.

0 20 40 60 80 100
Event

0

5

10

15

20

25

Ti
m

e
[m

s]

Native (3.70 ms)

Sort (12.13 ms)

Boost (1.39 ms)

OpenCL porting tracklet finding time

Figure 4.20: Tracklet finding phase execution time time of the three different version
of OpenCL porting. Dashed line represents the mean value.

4.5.1 CPU performance

As explained in Cap.3, one of the main advantage derived by the usage of OpenCL
is the ability to run the program not only on GPUs but also on CPUs. In order to
evaluate the performance on CPU device I use the same hardware used for the tests
performed on GPU:

61

4. OpenCL implementation

0 20 40 60 80 100
Event

0

2

4

6

8

10

12

14

16

Ti
m

e
[m

s] Native (7.69 ms)
Sort (10.70 ms)
Boost (2.45 ms)

OpenCL porting cell finding time

Figure 4.21: Cell finding phase execution time time of the three different version of
OpenCL porting. Dashed line represents the mean value.

• CPU: i7-8700 CPU @ 3.20GHz

• RAM: Corsair DDR4 16GB (2x8) 3000MHz

• OS: Linux Ubuntu 16.04 LTS

• C++ Compiler: gcc version 6.4.0, with -O3 optimization flag

• OpenCL 1.2

Figure 4.23 shows how the native version initialization time is significantly longer
(slower step) on CPU with respect to the execution on GPU. Instead, native and
boost versions have comparable values when they are executed on CPU and GPU.

The total execution time (fig.4.24), describes how the performance on CPU are
worse than those achieved on GPU for all the developed versions. The overall per-
formance decrease depends mainly on the algorithm schema (designed to be specific
for GPU) which does not perfectly fit with CPU devices. Also the implementation of
boost/vexcl functions (scan and sort, in this case) slow down the execution; indeed
booth libraries adapt the implementation of functions to the device where it will
be executed. In particular, the boost version is 125% slower on CPU with respect
to the execution on GPU and the native and the sort version are 38% and 35%,
respectively, slower on CPU.

62

4. OpenCL implementation

0 20 40 60 80 100
Event

0

5

10

15

20

25

30

35

40

45

50
Ti

m
e

[m
s] Native (23.46 ms)

Sort (31.78 ms)
Boost (12.91 ms)

OpenCL porting execution time

Figure 4.22: Total execution time time of the three different version of OpenCL
porting. Dashed line represents the mean value.

Table 4.1: OpenCL implementation executed on NVIDIA TITAN Xp: min, mean
and max time (in ms) for execution of 100 Pb-Pb events.

Version Native Sort Boost

Context init
min 7.1 4.9 5.0
mean 9.3 6.4 6.6
max 12.6 9.5 9.4

Tracklet finding
min 3.1 9.9 1.0
mean 3.7 12.1 1.4
max 4.8 21.8 2.0

Cell finding
min 3.6 8.5 1.0
mean 7.7 10.7 2.5
max 10.8 13.6 3.8

Total
min 15.5 23.9 7.9
mean 23.5 31.8 12.9
max 31.5 41.6 17.9

63

4. OpenCL implementation

0 20 40 60 80 100
Event

0

2

4

6

8

10

12
Ti

m
e

[m
s]

Native (7.62 ms)

Sort (5.75 ms)

Boost (5.64 ms)

OpenCL porting initialization time (CPU device)

Figure 4.23: Initialization time of 100 Pb-Pb event with different OpenCL porting
versions. Dashed line represents the mean value, dotted line represents the mean
value of the relative GPU version.

0 20 40 60 80 100
Event

0

10

20

30

40

50

60

70

Ti
m

e
[m

s]

Native (31.51 ms)

Sort (50.57 ms)

Boost (28.96 ms)

OpenCL porting execution time

Figure 4.24: Total execution time of 100 Pb-Pb event with different OpenCL porting
versions. Dashed line represents the mean value, dotted line represents the mean
value of the relative GPU version.

64

4. OpenCL implementation

Table 4.2: OpenCL implementation executed on CPU device: min, mean and max
time (in ms) for execution of 100 Pb-Pb events.

Version Native Sort Boost

Context init
min 5.4 4.5 4.5
mean 7.6 5.7 5.6
max 10.2 7.7 7.5

Tracklet finding
min 2.5 20.4 2.0
mean 4.2 27.3 3.7
max 5.5 36.6 8.9

Cell finding
min 7.0 10.9 8.2
mean 17.9 15.8 17.8
max 26.7 19.4 28.8

Total
min 15.4 36.3 15.1
mean 31.5 50.7 29.0
max 43.0 61.8 40.2

65

Conclusion

From January 2019, ALICE, one of the four experiments installed at the Large
Hadron Collider (LHC) of the CERN laboratories, will be upgraded. The currently
installed Inner Tracking System detector, dedicated to the tracking of the particles
emitted in the collisions of protons and lead ions provided by the LHC, will be
replaced with a new detector. The upgraded ITS will be composed by 7 layers of
silicon pixels detectors, closer to the point where the particles circulating in the
LHC collide. This upgrade allows the detector to operate with a read out rate of 50
kHz for Pb-Pb collisions and 2 MHz for p-p collisions, which are the collision rates
expected during the Run 3 that will start in 2021. This increase of frequency causes
an increment of data that must be managed up to 1 TB/s for Pb-Pb collisions.
In this experimental conditions it is mandatory to minimize the execution time
of all the algorithms involved in the data processing. In particular this thesis is
dedicated to the optimization of the algorithm used to reconstruct the trajectory of
the particles emitted in the LHC collisions and traversing the ITS (tracking code),
using a parallel computing approach. The main goal of the present work was to
obtain the best performance in terms of execution time using as starting point a
tracking algorithm developed in [6].

From this algorithm, a CUDA parallel implementation has been also developed
in [10]. This last version is characterized by an important boost of performance but
also by a limited portability derived by CUDA constraints: only NVIDIA GPUs
support the CUDA framework.

In my project, starting from the algorithm versions mentioned before, a third
version of the code, based on OpenCL framework, has been developed. The usage of
OpenCL allows writing a parallel program that can be executed on a large number
of devices including CPUs, GPUs, FPGAs and others, without any constraint based
on device’s vendor.

In order to guarantee the compatibility with existing implementations, all the
class interfaces are kept almost unchanged, managing the small necessary changes
with a preprocessor directive schema. In this way, at compile time, it is possible to
choose the desired version (serial, CUDA or OpenCL). Also the compatibility with
the specific framework (the online-offiline O2 of the ALICE experiment) where the

66

4. Conclusion

application will be executed has been maintained.
To this goal I have developed three different versions of OpenCL porting, all

based on OpenCL 1.2 (because this version guarantees the maximum number of
supported devices) and with Boost Compute library which brings advantages re-
garding performance and easiness of usage. The three versions are the following
ones:

• sort: based on CUDA porting schema;

• native: based on two successive iterations over the same data, in order to avoid
the use of atomic operations and sorting operations;

• boost: based on the native version schema but with a more extensive use of
boost library and using VexCL library for scan operations.

One of the main limitation of heterogeneous programs is the loading of memory
objects from and to device memory. In order to limit the impact of data creation
and successive loading on device memory, a system of preallocation has been adopted
using the size calculated for CUDA version[10]. As shown in Table 4.3, the boost

Table 4.3: Execution time for all the main phases of the three versions of OpenCL
porting. The serial and CUDA porting execution times are reported in the last
column. The times obtained using CPU device are reported between brackets.

Version Native Sort Boost Serial CUDA

Context init
min 7.1 (5.4) 4.9 (4.9) 5.0 (4.5) 4.5 5.7
mean 9.3 (7.6) 6.4 (5.7) 6.6 (5.6) 5.7 7.2
max 12.6 (10.2) 9.4 (7.7) 9.4 (7.5) 7.6 10.4

Tracklet find.
min 3.1 (2.5) 9.9 (20.4) 1.0 (2.0) 23.5 1.7
mean 3.7 (4.2) 12.13 (27.3) 1.4 (3.7) 51.6 2.3
max 4.8 (5.5) 21.8 (36.6) 1.7 (8.9) 74.1 3.1

Cell find.
min 3.6 (7.0) 8.5 (10.9) 1.0 (8.3) 11.5 2.3
mean 7.7 (17.9) 10.7 (15.8) 2.5 (17.8) 31.8 3.7
max 10.8 (26.7) 13.6 (19.3) 3.3 (28.9) 49.5 5.8

Total
min 15.5 (15.4) 23.9 (36.3) 7.9 (15.1) 40.0 9.3
mean 23.5 (31.5) 31.8 (50.6) 12.9 (29.0) 92.0 16.2
max 31.5 (43.1) 41.6 (61.8) 17.9 (40.9) 134.7 23.9

version guarantees the best performance. In particular, using a GPU device, the
boost version is 1.25 times faster than the CUDA porting, and 7.13 times faster
than the serial version. The same version, using a CPU device is 2.3 times slower
than using GPU device, and 3.1 times faster than the serial version. From this

67

4. Conclusion

results one can conclude that the algorithm used fits better on GPU device. Figure
4.25 shows that the most expensive phase is the initialization step where the data
are loaded into the device memory; this phase occupies more than half of total
execution time, instead the other two parallelized phases occupy 30% of total time.
Figure 4.26 shows that the OpenCL porting (the boost version in particular) has an
efficiency very similar to serial implementation.

51.1 %

10.8 %

19.0 %

19.1 %

Context init
Tracklet finding
Cell finding
Other

Time occupancy distribution - boost version

Figure 4.25: Distribution of execution time over the main phases of the boost version
of OpenCL porting.

In the future, some improvement can be achieved with additional work. In
particular, the code fits well with a multithreading implementation of the tracker:
each of the seven ITS layers can be handled by a single thread independently from the
other threads for both tracklet and cell finding phases. Further improvements can
be reached using a more recent version of OpenCL. In particular, version 2.0 and 2.1
implement a built-in inclusive scan function that can lead to a better performance
with respect to the Boost/VexCL implementation. Finally, analyzing the results
obtained with different version of the OpenCL porting, a CUDA porting based on
the schema used for the OpenCL boost version (sop without atomic operation and
sorting phase), may give the opportunity to improve the general performance.

68

4. Conclusion

Mean 2.763
Std Dev 2.587

2−10 1−10 1 10

 [Gev/c]
T
ρTransverse momentum

0

0.2

0.4

0.6

0.8

1

Ef
fic

ie
nc

y

Mean 2.763
Std Dev 2.587

Correct Roads Histogram

(a)

Mean 2.401
Std Dev 1.914

2−10 1−10 1 10

 [Gev/c]
T
ρTransverse momentum

0

0.05

0.1

0.15

0.2

0.25

D
up

lic
at

ed
 to

 g
en

er
at

ed
 ra

tio

Mean 2.401
Std Dev 1.914

Duplicated Roads Histogram

(b)

Mean 4.39
Std Dev 3.521

2−10 1−10 1 10

 [Gev/c]
T
ρTransverse momentum

0

1

2

3

4

5

6

Fa
ke

 to
 g

en
er

at
ed

 ra
tio

Mean 4.39
Std Dev 3.521

Fake Roads Histogram

(c)

Mean 1.846
Std Dev 1.847

2−10 1−10 1 10

 [Gev/c]
T
ρTransverse momentum

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

D
up

lic
at

ed
 to

 n
ot

 fa
ke

 ra
tio

Mean 1.846
Std Dev 1.847

Duplicated To Not Fake Roads Histogram

(d)

Figure 4.26: Efficiency evaluation of boost version of OpenCL porting over trans-
verse momentum for a sample of 100 central Pb–Pb events without pile-up obtained
dividing the number of reconstructed roads over the total number of generated roads.

69

4. Conclusion

70

Acronyms

ALICE A Large Ion Collider Experiment. 1

API Application Programming Interface. 32

ATLAS A Toroidal LHC Apparatus. 1

CA Cellular Automata. 12

CERN Conseil Européen pour la Recherche Nucléaire. 1

CMS Compact Muon Solenoid. 1

CPU Central Processing Unit. 27

CTF Compressed Time Frame. 11

CUDA Compute Unified Device Architecture. 18

DCA Distance of Closest Approach. 16

DSP digital signal processor. 27

EMCa Electromagnetic Calorimeter. 4

EPN Event Processing Nodes. 12

FLP First Level Processor. 11

FPGA Field Programmable Gate Array. 11, 27

GPGPU General-Purpose computing on Graphics Processing Units. 40

GPU Graphic Processing Unit. 11, 27

GUI Graphic User Interface. 10

71

Acronyms

HIJING Heavy-Ion Jet Interaction Generator. 10

HMPID High Momentum Particle Identification. 4

IEEE Institute of Electrical and Electronic Engineers. 28

IP Interaction Point. 2

JSON JavaScript Object Notation. 37

LEIR Low Energy Ion Ring. 1

LHC Large Hadron Collider. 1

LHCb Large Hadron Collider beauty. 1

LINAC Linear Accelerator. 1

LS2 Long Shutdown 2. 5

MC Monte Carlo. 7

OpenCL Open Computing Language. 27

PEs Processing Elements. 29

PHOS Photon Spectrometer. 4

PS Proton Synchrotron. 1

PSB Proton Synchrotron Booster. 1

QGP QuarkGluon Plasm. 1

SDD Silicon Drift Detector. 4

SFM String Fusion Mode. 10

SPD Silicon Pixel Detector. 4

SPS Super Proton Synchrotron. 1

SSD Silicon Strip Detector. 4, 5

STF Sub-Time Frame. 11

72

Acronyms

TF Time Frame. 11

TOF Time of Flight. 4

TPC Time Projection Chamber. 4

TRD Transition Radiation Detector. 4

WLCG Worldwide LHC Computing Grid. 12

73

Bibliography

[1] Esma Mobs. “The CERN accelerator complex. Complexe des accélérateurs
du CERN”. In: (July 2016). General Photo. url: https://cds.cern.ch/
record/2197559.

[2] K. Aamodt et al. “The ALICE experiment at the CERN LHC”. In: JINST 3
(2008), S08002. doi: 10.1088/1748-0221/3/08/S08002.

[3] L. Betev and P. Chochula. Definition of the ALICE Coordinate System and
Basic Rules for Sub-detector Components Numbering. [accessed 2018-05-24].
url: https://edms.cern.ch/document/406391.

[4] B Abelev et al. “Technical Design Report for the Upgrade of the ALICE Inner
Tracking System”. In: J. Phys. G41 (2014), p. 087002. doi: 10.1088/0954-
3899/41/8/087002.

[5] Giuseppe E Bruno. Prospettive di fisica con l’upgrade dell’apparato ALICE
ad LHC. Accessed: 2018-05-30. url: https://www.sif.it/static/SIF/
resources/public/files/congr14/ip/Bruno.pdf.

[6] Maximiliano Puccio. “Study of the production of nuclei and anti-nuclei at the
LHC with the ALICE experiment”. PhD thesis. Turin U., 2017. url: http:
//www.infn.it/thesis/thesis_dettaglio.php?tid=11773.

[7] Y. Belikov et al. “TPC tracking and particle identification in high density en-
vironment”. In: eConf C0303241 (2003), TULT011. arXiv: physics/0306108
[physics].

[8] https://root.cern.ch/. Accessed: 2018-05-30.

[9] http://alice-offline.web.cern.ch/AliRoot/Manual.html. Accessed:
2018-05-30.

[10] Iacopo Colonnelli. “Design of an high-performance tracking algorithm opti-
mised for the Inner Tracking System of the ALICE experiment”. PhD thesis.
Politecnico di Torino, 2017. url: http://www.infn.it/thesis/thesis_
dettaglio.php?tid=12030.

74

https://cds.cern.ch/record/2197559
https://cds.cern.ch/record/2197559
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
https://edms.cern.ch/document/406391
http://dx.doi.org/10.1088/0954-3899/41/8/087002
http://dx.doi.org/10.1088/0954-3899/41/8/087002
https://www.sif.it/static/SIF/resources/public/files/congr14/ip/Bruno.pdf
https://www.sif.it/static/SIF/resources/public/files/congr14/ip/Bruno.pdf
http://www.infn.it/thesis/thesis_dettaglio.php?tid=11773
http://www.infn.it/thesis/thesis_dettaglio.php?tid=11773
http://arxiv.org/abs/physics/0306108
http://arxiv.org/abs/physics/0306108
https://root.cern.ch/
http://alice-offline.web.cern.ch/AliRoot/Manual.html
http://www.infn.it/thesis/thesis_dettaglio.php?tid=12030
http://www.infn.it/thesis/thesis_dettaglio.php?tid=12030

Bibliography

[11] P. Buncic, M. Krzewicki, and P. Vande Vyvre. “Technical Design Report for
the Upgrade of the Online-Offline Computing System”. In: (2015).

[12] NVIDIA Corporation. NVIDIA CUDA C Programming Guide. Version 3.2.
2010.

[13] https://github.com/AliceO2Group/CodingGuidelines. Accessed: 2018-
05-30.

[14] https://www.khronos.org/opencl/. Accessed: 2018-05-30.

[15] Kamran Karimi, Neil G. Dickson, and Firas Hamze. “A Performance Com-
parison of CUDA and OpenCL”. In: arXiv:1005.2581 (May 2010).

[16] https://www.amd.com. Accessed: 2018-05-30.

[17] http://www.nvidia.it/page/home.html. Accessed: 2018-05-30.

[18] https://www.qualcomm.com/. Accessed: 2018-05-30.

[19] https://www.ibm.com. Accessed: 2018-05-30.

[20] https://www.intel.it/content/www/it/it/homepage.html. Accessed:
2018-05-30.

[21] https://www.khronos.org/. Accessed: 2018-05-30.

[22] https://www.khronos.org/news/press/khronos-releases-opencl-2.2-

with-spir-v-1.2. Accessed: 2018-05-30.

[23] Aaftab Munshi et al. OpenCL Programming Guide. 1st. Addison-Wesley Pro-
fessional, 2011. isbn: 0321749642.

[24] https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf.
Accessed: 2018-05-30.

[25] https://github.com/intel/opencl-intercept-layer. Accessed: 2018-05-
30.

[26] https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+

OpenCL+API+comparison_presented.pdf. Accessed: 2018-05-30.

[27] https://github.com/boostorg/compute. Accessed: 2018-05-30.

[28] https://cmake.org. Accessed: 2018-05-30.

[29] https://github.com/ddemidov/vexcl. Accessed: 2018-05-30.

75

https://github.com/AliceO2Group/CodingGuidelines
https://www.khronos.org/opencl/
https://www.amd.com
http://www.nvidia.it/page/home.html
https://www.qualcomm.com/
https://www.ibm.com
https://www.intel.it/content/www/it/it/homepage.html
https://www.khronos.org/
https://www.khronos.org/news/press/khronos-releases-opencl-2.2-with-spir-v-1.2
https://www.khronos.org/news/press/khronos-releases-opencl-2.2-with-spir-v-1.2
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://github.com/intel/opencl-intercept-layer
https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf
https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf
https://github.com/boostorg/compute
https://cmake.org
https://github.com/ddemidov/vexcl

	ALICE experiment
	Introduction
	ALICE design and layout
	The ALICE Inner Tracking System
	Layout of the present ITS
	Upgraded ITS

	Event reconstruction
	AliROOT framework
	OLg project

	The Tracking Algorithm
	Algorithm flow
	Indexing phase
	 Tracklet computing phase
	Cells computing phase
	 Cell neighbourhood finding phase
	Track reconstruction phase
	Fitting phase

	CUDA implementation
	Software architecture
	Initialization phase
	Tracklet finding phase
	Cell finding phase

	Performance analysis

	OpenCL
	Overview
	History
	OpenCL 1.x
	OpenCL 2.x
	Future

	The OpenCL Architecture
	Platform model
	Execution model
	Memory model
	Programming model

	Memory objects
	Buffers and sub-Buffers
	Buffer operations

	Example of program flow
	Performance analysis tool
	OpenCL vs CUDA

	OpenCL implementation
	General implementation choices
	Boost Compute library
	Compilation

	Sort Version
	Implementation details

	Native Version
	Implementation details

	Boost Version
	Implementation details

	Performance comparison
	CPU performance

	Conclusion
	Acronyms

		Politecnico di Torino
	2018-07-17T07:07:23+0000
	Politecnico di Torino
	Stefania Bufalino
	S

