
Master Degree Thesis

Design and development of the
real-time tournament feature in

the MAK07 game platform

Francesco Pipitò

Supervised by
Prof. Giovanni Malnati

Master Degree course in Computer Engineering

Department of Control and Computer Engineering

Turin Polytechnic

Italy, Turin

July 2018

Design and development of the real-time

tournament feature in the MAK07 game

platform

Francesco Pipitò

Supervised by:

Prof. Giovanni Malnati

Department of Control and Computer Engineering

Abstract
The Mobile Gaming is a new interesting phenomenon, capable of provid-

ing different entertainment possibilities for a wide range of people. The rea-
sons of its success seem to be the free and easy accessibility from whoever
and wherever, thanks to a technology that radically changed several aspects
of everyday life, the smartphone. Mobile gaming has allowed the growth of
videogames world, increasing its audience and global turnover.
In this context, the Mak07 game was developed. This is a puzzle game, based
on the simple idea of combining together seven numbers, exploiting the arith-
metic operations, sum, subtraction, multiplication and division, in order to
obtain zero as final result. The group of seven numbers is called schema, and
each time a schema is solved, a new one appears on the screen. A player has
two minutes to solve the highest number of schemata. At the end of the game,
a final score is evaluated summing up all the partial scores obtained in each
solved schema. A smarter solution and a lower execution time generate an
higher partial score. The game underwent several development phases, each
of them has introduced new features that improved the game experience. Ini-
tially, the game offered, only, the possibility to solve schemata, one after the
other within two minutes. Then, in order to introduce player-to-player interac-
tions, the functionality of having challenges among players and the possibility
of creating a network of friends were added. These features introduced a new
social and multi-player experience that made Mak07 a complete game, that
can be, however, improved. That’s why it was thought to develop a new fea-
ture that improves the competitiveness and increases the game experience:
the tournament functionality.

This final elaborate has the purpose of designing and implementing both the
client and server of the tournament feature for the Mak07 game. Until now,
the game experience is suited for short but intense interactions, thanks to
challenge and training mode. The tournament game modality instead is suited
for longer interactions, in which players can improve their skills and acquire

III

IV

more experience. A tournament has the aim of gathering and managing a
limited amount of players that want to compete against each other until only
one winner remains. A tournament is based on time intervals, in fact it is
composed of several phases of different duration time. After a tournament is
created, the registration phase starts, in which the system users are able to
sign up to the tournament or delete their registration. This phase lasts 20
minutes, after which the tournament begins. So, a sequence of round phases,
each of which lasts 10 minutes, is performed. The number of rounds is related
to the maximum number of tournament participants, and each round has a
number of challenges according to the players taking part to the round. At
the end, the tournament winner is proclaimed. Due to this structure, a tour-
nament has an execution time longer than a single challenge. Since that, the
tournament feature is designed to allow the users to have longer and satisfy-
ing game sessions, unlike those, short and intense, offered by the challenges.
During the algorithm development, several situations are tackled in order to
guarantee the correctness of information. Suited synchronization mechanisms
are developed to guarantee consistency and integrity during the registration
and round phases, and a big effort is spent to create a working fusion among
the mechanism of challenges and the tournament one. A challenge is based on
a state transition mechanism, it has to cross several intermediate states be-
fore reaching a final situation. So, its execution time is not fixed, due to, also
the fact that the transition from a state to another depends on asynchronous
user actions. As a consequence, the challenge mechanism is not suited for
the tournament modality, in which a challenge must be played within the 10
minutes scheduled for each round. Efforts have been made to write as much
as possible modular and independent code and to not modify the challenge
algorithm, that is, instead, exploited. In conclusion, the developed algorithm
makes the tournament experience rewarding as much as possible, but, at the
same time, it is capable of managing all the synchronization problems that
could arise in a multi-user environment.

The technologies used to develop the Mak07 back end software ensure an
easy and continuous evolution of the system. The Spring framework, thanks
to the dependency injection and the aspect-oriented programming features,
makes it easier and more satisfying developing Java code, ensuring a lighter
and linear programming model, prone to future improvements. Spring offers
low code coupling, which is, also, supported by the REST principles, that are
essential in a web based system. Finally, the storing solution adopted for the
Mak07 system is MongoDB. It is a non-relational database, offering an high
scalability quality, ensured by the replication and sharding techniques, and a
schema less storing model, based on documents and collections. This NoSQL
solution is suited for a dynamic environment as that of Mak07.

The backbone architecture that supports the Mak07 system is a client-
server model, in which the clients are the mobile devices, and the server is
the machine hosting the back end software. The server exploits the Docker
tool to create, on top of the operating system, a virtualized architecture com-

V

Figure 1: Mak07 architecture.

posed by four main components, called containers. Each container hosts a
service of the Mak07 system, like the business logic or the database.

In conclusion, all the starting objectives, that led to the tournaments feature
development, have been reached, and, after a final phase of testing, the tour-
nament functionality was released as update of the Mak07 mobile application.

Acknowledgements

I would like to thank all the people who supported me not only in this last
months, but also during all the university years.

I would first thank my thesis advisor Prof. Giovanni Malnati, that gave me
the possibility of making a professional experience, working on an interesting
project. He mentored me with his helpful comments and advices, pushing me
to do my best. I would like also to express my thanks to all the staff of Tonic-
Minds that supported me during my final work.

I thank all my friends, and my flatmates, Andrea and Salvo, with which I have
shared a lot of beautiful moments.

Finally, I must express my very profound gratitude to all my family, in par-
ticular to my parents and to my girlfriend, Valeria, for providing me with un-
failing support and continuous encouragement throughout my years of study
and through the process of developing and writing this thesis. This accom-
plishment would not have been possible without them. Thank you.

VI

Contents

1 Introduction, Motivations and Goals 1

2 Used Technologies 5
2.1 The Spring framework . 5

2.1.1 Dependency injection . 5
2.1.2 Aspect-oriented programming 7
2.1.3 Spring IoC Container . 8
2.1.4 Beans life cycle . 9
2.1.5 Spring Modules . 10
2.1.6 Spring Portfolio . 12

2.2 MongoDB . 14
2.2.1 Relational Databases . 15
2.2.2 Non-Relational Databases 17
2.2.3 Types of NoSQL Database 19
2.2.4 MongoDB key features . 19
2.2.5 MongoDB Data Modeling . 20
2.2.6 MongoDB Scaling feature 21

2.3 REST Architecture . 23
2.4 Conclusion . 24

3 Requirements and Design 26
3.1 The Game . 26
3.2 Requirements . 27

3.2.1 Requirements analysis . 27
3.2.2 Use cases . 28

3.3 Design . 30
3.3.1 Tournament model . 30
3.3.2 Functionalities . 31
3.3.3 Special cases . 33

3.4 Architecture . 34
3.4.1 Server architecture . 35

4 Development of the Work 38
4.1 Models . 39

4.1.1 Tournament model . 39
4.1.2 ActiveTournament model . 42
4.1.3 TournamentPhases model . 43

VII

VIII CONTENTS

4.1.4 Challenge model . 44
4.1.5 Conclusion . 47

4.2 Tournament management . 47
4.2.1 Tournament API . 47
4.2.2 Play challenge API . 49
4.2.3 Registration phase and synchronization 49
4.2.4 Start Tournament Scheduled Task 51
4.2.5 Tournament Phase Scheduled Task 53
4.2.6 Notification management . 58

5 Conclusion 61
5.1 Feature Development . 61

List of Figures

1 Mak07 architecture. V

2.1 Spring container. 8
2.2 Beans life cycle. 9
2.3 The Spring modules. 11
2.4 The Spring Model-View-Controller. 13
2.5 MongoDB replication mechanism. 21
2.6 MongoDB sharding mechanism. 22

3.1 Mak07 game screenshots . 27
3.2 Use case - Tournament creation. 29
3.3 Use case - Delete Tournament registration. 30
3.4 Tournament schema. 32
3.5 General architecture. 35

4.1 Architecture used to send push notification from Spring exploiting
Firebase. 58

X

Listings

3.1 Tournamnet object . 31
4.1 Tournamnet document . 40
4.2 ActiveTournamnet document . 43
4.3 TournamnetPhases document . 43
4.4 Challenge document . 44
4.5 Schema document . 46
4.6 Update tournament participants function, due to user registration 50
4.7 StartTournament scheduled task 51
4.8 Tournament Phase task . 53
4.9 Firebase notification method . 58

XII

Chapter 1

Introduction, Motivations and
Goals

Since the birth of the first videogame, in the January of 1947, the videogames
world has had a constant evolution. The first videogames were developed by
big companies, only for research purposes. Soon, however, they have become
a phenomenon that would have involved a growing number of curious people.
Originally, the videogames were developed by university students, during their
free time, and were run on the first personal computers. With the increase of
personal computer sales, also the number of people interested in deepening
the videogames world is grown. An important invention that has increased the
videogames popularity was the console. A console is a custom computer cre-
ated to execute only videogames. Over the years, the videogames and console
market is grown so much that companies, with the only purpose of develop-
ing videogames and dedicated hardware, are born. The advent of internet
has signed, another, deep change in the videogames world. Internet has not
only minimized the distance among people spread all over the world, but also,
between gamers playing the same videogames.

Today, videogames have a strong impact on people of all ages. It is a so
widespread phenomenon that competition events are born, in which players,
coming from all over the world, compete against each other. Videogames
offer new entertainment possibilities, thanks to their variety. Like movies, also
videogames can be categorized into several genres, according to the covered
topics and the games modality. Some of the main categories are: adventure,
action, role playing game, first person shooter, etc.

In the last years, the videogames world gets closed to a technology used
in the everyday life, the smartphone. So, the phenomenon of Mobile gaming
is born and it spread in a little time, actively contributing to increase the
videogames global income. A mobile game is a videogame developed to be
played on mobile devices, like smartphones and tablets. The mobile gaming
has evolved together with the technology at the base of this phenomenon.
In fact, the smartphones evolution has generated more powerful and high-
performing devices, able to run fancier and more satisfying mobile games.
The success of this phenomenon is due to several reasons. A mobile game

1

2 CHAPTER 1. INTRODUCTION, MOTIVATIONS AND GOALS

can be played from every one and in every moment, due to the fact that every
person has a smartphone.

In a context in which the mobile game is sharply increasing, the Mak07
project is born. Mak07 is a mobile game available for smartphone and tablets,
addressed to players of all ages that want to have fun but, also, to stimulate
their brain. It is based on the simple idea of combining together seven num-
bers exploiting the four arithmetic operation: sum, subtraction, multiplication
and division. A group of seven numbers is called schema, and the purpose of
combining them together is to obtain zero as final result. In order to not make
the game too difficult or too easy, the game engine presents some constraints,
like the impossibility of exploiting negative numbers or using zero in multipli-
cation. Each Mak07 game lasts two minutes, in which each player has to solve
one schema after the other. In conclusion, the final score obtained depends
on the number of schemata solved, the time spent on each schema, and how
smart is the solution proposed for each schema. As mentioned, Mak07 has the
purpose of entertaining and amusing the players, indeed, the game crossed
several development phases in which new features have been included in or-
der to improve the game experience. In a first time there was only the pos-
sibility to play one game after the other, but, soon, was introduced the first
important feature of the game, the challenges. This functionality has opened
the doors to competitive gaming. A challenge couples together two players
that want to compete against each other. It is composed by a starting phase
in which a challenge invitation is exchanged among the two players, and by a
game phase in which two game sessions are played by both players. So each
player obtains a score that is compared with the one achieved by the other
player in order to proclaim the winner. A challenge ends when both players
have played their game. In fact an user can play its game whenever he wants,
supporting the concept of "play whenever you want" of mobile gaming. Each
player can challenge not only a random player, but also a friend. In fact the
Mak07 game has, also, a social aspect, ensured by a player profile page, in
which there are collected some statistics about challenge played, maximum
score obtained, etc., and a list of friends that can be directly challenged or
chatted. In conclusion the challenges feature, supported by the social as-
pect, has introduced an important improvement to the game, which can be
exploited for creating a new game experience. That’s why it was thought to
develop a new interesting game possibility, the Tournament feature. The tour-
nament functionality is introduced in order to not, only, increase the game
experience, but also to extend the time spent on game by players. In fact,
the challenge mode, as well as the training mode, offers a game experience
short but intense, suited to fill the little free times of everyday life. Instead,
the tournament one offers longer game sessions, that make Mak07 appealing,
also, for who has more time to be spent on the game. The tournaments have
the purpose of increasing the competitiveness, initially offered only by the
challenges. In fact each tournament manages a restricted number of players
that want to compete against each other until only one player remains. A tour-
nament is organized in rounds, composed by several challenges, according to

CHAPTER 1. INTRODUCTION, MOTIVATIONS AND GOALS 3

the number of participants to the round. A player has to win each challenge
to which has been associated during the several tournament rounds, in order
to get the win. In conclusion, the tournaments feature is introduced to not
only improve the game experience, but to make also the game satisfying for
the players that want to gather some friends in order to have fun in a longer
session game.

This thesis is structured as follow. This chapter is a little introduction to
the motivations that led to Mak07 development, describing, also, the starting
point of this final project, motivating the development of tournament feature.
The following chapter, instead, has the purpose of describing the main tech-
nologies used to develop the back end software that supports the Mak07 tour-
nament feature, analysing their weaknesses and strengths and the reasons
due to their usage. Then, the chapter 3, is in charge of defining the require-
ments for the tournament feature, and describing the difficulties encountered
during the design phase, in which a big effort was spent to merge, in the best
way, the tournament feature with the existing ones. Finally, the architecture
that supports the entire Mak07 system is analysed. In conclusion, the chapter
4 contains a deeper explanation about the algorithm developed for the tour-
nament feature, and the synchronization mechanism needed in a multi-player
environment. The last chapter analyses some possible future development.

Chapter 2

Used Technologies

This chapter has the purpose of describing the main technologies used to de-
velop this final project. It analyses the Spring framework, pointing the depen-
dency injection and aspect-oriented programming features, and the main com-
ponents living in the Spring environment. Then, the main relational database
limits are analysed in order to explain the reasons why it was decided to use
a non-relational database, like MongoDB, to store persistence data. The final
section, instead, describes the REST pattern, an which are its benefits.

2.1 The Spring framework

Being a Java developer could be hard and frustrating in several situations, but
in the last years, a lot of technologies try to make easier the developer’s job.
Among the different technologies created to support the development in Java
environment, Spring has been very approved from the community. Spring
is the most popular, and widespread, open source framework for enterprise
Java. The first version was written and released by Rod Johnson in the Octo-
ber of 2002. This framework was born as alternative to some enterprise Java
technologies, in particular the Enterprise JavaBeans (EJB). It has become an
innovative framework because it has introduced two primary features: the de-
pendency injection (DI) and the aspect-oriented programming (AOP). These
features have been very appreciated by the Java community. In fact, they are
used also in the development of any Java application. In conclusion, Spring of-
fers a lighter and linear programming model, and it is in continuous evolution,
particularly in mobile development, social API, cloud computing and big data
areas.

2.1.1 Dependency injection

The technology that identifies Spring more than all is the dependency injec-
tion one. It is a particular case of a more general concept, the Inversion of
Control (IoC). These two patterns represent two different things, but strictly
connected so much that they are used as synonym.

5

6 CHAPTER 2. USED TECHNOLOGIES

Inversion of control

The Inversion of Control principle is an architectural pattern, it was born at
the end of the 80’s, and it is based on the concept of inverting the system
Control Flow of the traditional programming paradigm. This is a widespread
concept in the framework environment.

In order to go deeper inside this analysis, should be clarified what depen-
dency means. Whenever a class A uses another class or interface B, then A
depends on B. A cannot carry out its work without B, and A cannot be reused
without also reusing B. In such a situation the class A is called the "depen-
dant" and the class or interface B is called the "dependency". Two classes,
defined as A and B, are said coupled, if they are dependent on each other. So
much higher the dependency level of the code is, so much less the reuse, the
readability and the flexibility of the code is. The purpose of the Inversion of
Control is to minimize code coupling.

The traditional programming model teaches that the developer, explicitly,
defines the control flow. IoC inverts the traditional control flow. The developer
doesn’t have to worry about the dependency management any more, because
the framework is in charge of making this, as a consequence of actions.

How does it work

As described, the responsibility of objects initialization is demanded to an ex-
ternal component, that is in charge of creating the objects and filling their
dependencies through the injection mechanism. The traditional control flow
is distorted, in fact, with DI, the objects dependencies are given at creation
time. Dependency Injection in Spring can be done through constructors, set-
ters or fields.

• Construct-based injection: the dependencies are injected through the
object constructor. The dependencies are represented by the constructor
parameters.

• Setter-based injection: in this case the dependencies are injected through
the setter methods.

• Field-based injection: finally, the dependencies are directly injected to
the object fields, that are annotated in a proper way.

The last approach might look simpler and cleaner than the previous ones,
because it allows to minimize the injection if there is a big number of fields, but
it has few drawbacks, such us the use of reflection to inject the dependencies,
which has an high cost. The use of a construct-based approach makes easy to
understand the several fields an object is composed, instead the setter-based
approach could be so much fragmented if the object has a lot of fields. In
Spring, the act of creating associations between objects is commonly referred
to as wiring. The application context loads objects definition and wires them
together. There are three main ways of doing wiring:

CHAPTER 2. USED TECHNOLOGIES 7

• exploiting an XML file in which are reported all the object associations
needed.

• the same configuration expressed inside an XML file could be defined by
code in Java, exploiting suited code annotation provided by Spring.

• finally, a last way lets Spring automatically discover dependencies and
create the required relationships.

All these approaches are interchangeable and can live together.

2.1.2 Aspect-oriented programming

Until this moment, the software development process was strongly influenced
by the Object-Oriented Programming (OOP) paradigm. The key units of mod-
ularity in OOP are the classes, and the DI helps the developer to write classes
decoupled from each other. This model doesn’t solve all the problems that a
system could rise, so, Spring, in order to improve the code modularity, intro-
duces a new important paradigm, suddenly accepted by the Java community,
called AOP. The Aspect-Oriented Programming paradigm has, as key units of
modularity, the aspects. In order to better understand this concept, we have
to think to a software as composed of several components, and each of them
is in charge of managing a specific functionality. Often, these components
carry, additional responsibilities beyond their core functionality. An example
of this could be the logging component, or the security one, that implement
functionalities used a lot in components whose core responsibilities are some-
thing else. These kind of system services that span multiple components are
called cross-cutting concerns. AOP allows to decouple code that implements
functionality that should be separated, exploiting a new external entity, the
aspect. An aspect is a system component which has a set of API providing
cross-cutting functionalities, that are invoked when core components execute
their code. This is a powerful concept, because it keeps the cross-cutting con-
cerns separated from the core business logic. Each aspect could implement
several advices. An advice is a piece of code that is invoked during the busi-
ness logic execution. Spring, at configuration time, allows to define when each
advice should be executed. Inside the configuration file, the time instant at
which an advice is executed is, also, specified. Spring supports five kinds of
time instant:

• before: the advice is run before a method execution.

• after: the advice is run after a method execution.

• after-returning: the advice is run after a method execution, only if the
method completes successfully.

• after-throwing: the advice is run after a method throws an exception.

• around: the advice is run before and after a method execution.

8 CHAPTER 2. USED TECHNOLOGIES

2.1.3 Spring IoC Container

The Spring containers are a core aspect of the Spring framework. A container
is in charge of creating objects, wiring them together, configuring them and
managing their complete life cycle, from creation till destruction. In Spring
the objects are called beans, they will be analysed in the detail in the following
section. The Spring containers exploit DI to manage the beans that compose
the application. Each container needs some meta-data in order to instantiate,

Figure 2.1: Spring container.

configure and associate the objects. These configuration information are pro-
vided through XML file, Java annotation or Java code. Starting from classes
implementation and meta-data, the Spring IoC container generates a "ready
to use" application as final result. Spring supports several container imple-
mentations that can be categorized into two distinct types.

• Spring BeanFactory Container: this is the simplest one. It provides
the basic support functionalities of DI and it is defined by the org.spring-
framework.beans.factory.BeanFactory interface.

• Spring ApplicationContext Container: this one, instead, is an exten-
sion of the above factory. It extends the functionalities provided by the
BeanFactory container, adding more enterprise specific functions. It
is defined by the org.springframework.context.ApplicationContext inter-
face.

It is possible to use either BeanFactory container or ApplicationContext con-
tainer in the same Spring application, but, the first one is, often, too low level
for most application. Therefore the ApplicationContext is preferred, and it
offers different types of application context, among which the most used are:
the ClassPathXmlApplicationContext, that loads a context definition from one
or more XML files located in the classpath, the FileSystemXmlApplication-
Context, that, instead, stores the XML files in the filesystem, and, finally, the
XmlWebApplicationContext, that collects the XML files in a web application.

CHAPTER 2. USED TECHNOLOGIES 9

2.1.4 Beans life cycle

Figure 2.2: Beans life cycle.

In a Spring application, the beans compose the backbone of the entire
system. They are managed by the Spring IoC container, that is in charge
of creating them, according to the configuration parameter supplied with the
container itself. The bean life cycle, in Spring, is more elaborate than the one
of a traditional Java application. The Figure 2.2 illustrates the several steps
that a bean should follow in its life. A complete knowledge about the bean
life cycle, allows the developer to customize some steps in order to improve
efficiency inside his system. Each bean crosses the following steps:

1. when a bean is requested, the Spring IoC container creates the bean
using the class constructor.

2. Now the dependencies are injected using the setter method. Both values
and other beans are injected inside the fields.

3. After the dependency injection, if the bean implements the BeanName-
Aware interface, Spring invokes the method setBeanName(), passing the
bean’s ID as parameter. This method sets the name of the bean in the
factory that created the bean.

4. Then, if the bean implements the BeanFactoryAware interface, Spring in-
vokes the method setBeanFactory(), that provides the information about
the factory to a bean instance.

5. Following, if the bean implements the ApplicationContextAware inter-
face, Spring invokes the method setApplicationContext(), in order to in-
form the bean about the application context.

6. At this point, The IoC container invokes the method ProcessBeforeInitial-
ization(), if the bean implements the BeanPostProcessor interface. Using
this method, a wrapper can be applied on the original bean.

10 CHAPTER 2. USED TECHNOLOGIES

7. If the bean implements the InitializingBean interface, Spring invokes the
method afterPropertiesSet().

8. Finally, the bean instance is ready to be used by the application, and
remains in the application context until this is destroyed.

9. In conclusion, if the bean implements the DisposableBean interface, Spring
invokes the method destroy().

Beans scope

Each time a bean is defined, the developer can control not only the various
dependencies and configuration values that are injected into an object created
from a particular bean, but also can define the scope for that bean. This
possibility is very powerful, because it makes the code more flexible and prone
to several scenarios. The Spring framework supports five possible scopes,
three of which are available only in a web-aware application context.

• singleton: setting the scope of a bean as singleton means that the con-
tainer, managing that bean, creates only one instance of it, and all the
bean requests are going to receive always the same object. Also, any
modification performed on the specific bean is reflected in all the refer-
ences of that bean. This scope is the default one if no other scopes are
specified.

• prototype: Opposing to the first one, the container returns a different
instance of the bean, each time a bean request arrives.

• request: a bean, defined with the request scope, is strictly related to an
HTTP request. In fact, for each HTTP request, the container generates a
bean. This scope is available only in a web application.

• session: similar to the previous case, the session scope ties a bean to an
HTTP session. The container creates a new bean each time a new HTTP
session is generated. This scope is available only in a web application.

• global-session: as for the session scope, also the global-session scope
ties the scope of a bean to a global HTTP session. This scope is available
only in a web application.

2.1.5 Spring Modules

Spring is a very powerful framework, it can be used for several applications,
and to manage different situations. The Spring versatility is due to its modular
architecture. Springs is composed of twenty different modules, which can be
arranged in six categories of functionality. The figure 2.3 shows the Spring
modules organization, and, according to the application you are developing,
only some of them can be considered, without worrying about the others. Let’s
analyse the six categories in which the Spring modules are grouped:

CHAPTER 2. USED TECHNOLOGIES 11

Figure 2.3: The Spring modules.

• Core Spring container: It is composed of the Core, Beans, Context and
Expression Language modules. These modules represent the core of
the entire Spring framework. The Core and Beans modules provide the
IoC and Dependency Injection features. they are in charge of creating,
configuring and managing the beans. The ApplicationContext interface
is the focal point of the Context module. It provides an access point for
any beans created and configured by the Core and Beans modules, it is
built on top of them. In conclusion, the Expression module is in charge of
providing a powerful expression language for querying and manipulating
the beans. It supports the setter and getter methods, and many others,
always used to manage the beans.

• Spring AOP’s module: the aspect-oriented programming is a key func-
tionality of Spring framework, in fact, it is supported by the AOP mod-
ules. These modules provides several methods to develop your own as-
pects for your Spring enabled application.

• Data access and integration: this layer is composed by the JDBC,ORM,
OXM and JMS modules. It provides an easier integration of your applica-
tion with the most used database. The JDBC module, with the DAO one,
simplify the need of getting a connection, creating a statement, process-
ing a result set, and then closing the connection to a database. For those

12 CHAPTER 2. USED TECHNOLOGIES

who prefer using an object-relational mapping, Spring provides, also, the
ORM module. Instead the JMS and OXM modules provide, respectively,
support for the Java Messaging Service and for the Object/XML mapping
implementations. In conclusion, this layer should simplify the integration
and access to several common databases.

• Web and remoting: like many other frameworks, used to develop web-
based applications, also Spring offers a strong support to the Model-
View-Controller paradigm. This layer collects all the modules that allow
the implementation of the MVC, with some additional features, in partic-
ular it provides remoting options for building applications that interact
with other applications, including the capability of remote method invo-
cation.

• Instrumentation: this category collects all the modules that provide
support for adding agents to the Java Virtual Machines.

• Testing: developing applications means, also, following several good
practices, and one of them is to provide some developer-written test used
to test the application. Spring supports this good practice. The Test :
module provides all the feature needed to develop tests for your Spring
application.

2.1.6 Spring Portfolio

As mentioned many time during this description, Spring is an extremely flexi-
ble framework. The functionalities, just described, represent only the core of
a greater and wide project. Spring offers a portfolio that allows the Spring
programming model to cover several facets of Java development. The whole
Spring portfolio includes several frameworks and libraries, built on top of the
Spring core, and that live intertwined the ones with the others. In the follow-
ing, an overview of the main ones is presented:

Spring Boot

Spring was born with the purpose of making simpler and more flexible the
developing of Java application, minimizing the developer’s jobs and eliminat-
ing some boilerplate code, needed in some situation. On top of this idea, the
Spring Boot tool was developed. Its aim is to simplify even more the creation
of Spring application, automatizing as much as possible this process. Spring
Boot can eliminate most, and in many case all, Spring configuration, providing
a ready application, with all dependencies already set.

Spring Data

The Spring Data framework makes easier the integration of a Spring appli-
cation with any kind of database. Until a few years ago, the use of rela-
tional database was an anchor of any Java application that needs to integrate

CHAPTER 2. USED TECHNOLOGIES 13

data persistence. But, in the last years, it become clear that storing infor-
mations as rows and columns is not always the best way, so that the use of
non-relational database, that offers a new way of storing data, has become a
practice spread in the Java community. Spring offers full support to relational
and non-relational database, like MongoDB or Neo4J. Spring Data makes easy,
also, the use of data access technologies, of map-reduce framework and of
cloud-based data services.

Spring Social

Social networking is a reality that is born some years ago, and now widespread
in the daily life of every person. Nowadays, every available application inte-
grates several social networking sites, such as Facebook, Twitter or Google.
So that, Spring releases a new project with the purpose of making easier the
social networking integration: Spring Social. It helps the developer to make a
Java application more "social" and "connected", exploiting REST APIs.

Spring Web-MVC

Figure 2.4: The Spring Model-View-Controller.

The Spring Web MVC framework was released to support all web appli-
cations that want to exploit the power of Spring and to implement the MVC
paradigm. According to the Spring principles, the MVC pattern improves the
flexibility and the loosely coupled features, separating the different aspects
of an application. In order to better understand how the Spring Web MVC
framework works, lets analyse the MVC paradigm. MVC stands for Model-
View-Controller, these are the three base components of a web application,
each of them has specific tasks.

14 CHAPTER 2. USED TECHNOLOGIES

• Model: it is in charge of accessing and maintaining the data needed to
the business logic.

• View: it creates the user interface that shows the data to the final users
(i.e HTML pages, mobile interfaces, etc.).

• Controller: it implements and executes the application business logic,
connecting together the above components. it receives the input from
the users, takes the data from the models, executes its logic and, finally,
gives the modified data to the View in order to show the result to the
user.

Spring Web MVC integrate the approach just described, and the figure 2.4
shows how the framework works. The DispatcherServlet is in charge of han-
dling all the incoming HTTP requests and responses, it is the front controller
of the whole application. Each time a request arrives, it is forwarded to a spe-
cific controller. A web application can implement more than one controller, so
that, the DispatcherServlet brings into play the Handler Mapping in order to
dispatch the request to the correct component. The Controller processes the
request invoking a service method. Each controller disposes of several ser-
vice methods, any one of which implements a specific aspect of the business
logic. The Controller generates a ModelAndView object that contains the data
to be shown to the user and the name of the view that should be used to show
these data. This object is sent to the DispatcherServlet that contacts the View
Resolver in order to receive the view of interest. Finally The View component
receives the model from the DispatcherServlet and merges the data with the
view in a proper format. In conclusion the front controller can respond to the
request sending back the requested data organized in a proper way.

Spring Security

Security is a critical aspect of many applications. Spring security is the Spring
solution to authentication and access-control issues. It is powerful and highly
customizable, in order to meet all the developers customization requirements.
Spring security is suited for Spring-based application, and it provides authen-
tication and authorization mechanisms at both the web request level and at
the method invocation level, exploiting dependency injection (DI) and aspect-
oriented techniques. To make secure requests and to restrict access at the
URL level, Spring Security uses servlet filters, instead, to secure method in-
vocations, it uses Spring AOP.

2.2 MongoDB

Gathering information is one of the most important task in a web based appli-
cation. Nowadays there are so many types of data and as many possibilities
of storing them. Collecting and storing data is not, always, an easy task, and,
also, making the correct choice could be cumbersome. Choosing a suited

CHAPTER 2. USED TECHNOLOGIES 15

database, according to the application needs, ensures correct data collection
and easy information retrieving. So that, in this section, the relational and
non-relational databases model are analysed, describing their main features,
and why it is better to use one solution in contrast to another, focusing on pros
and cons of both possibilities. In conclusion, MongoDB is analysed, pointing
out the main functionalities and explaining why it was chosen as backing stor-
age for Mak07.

2.2.1 Relational Databases

In order to better understand the terminology related to the database world,
should be clarified that a database is a collection of related data, organized
in a certain way, instead, a DBMS, that means Database Management Sys-
tem, is the interface that makes possible the dialogue among database and
application. So, a DBMS is a software component, the core of a database
infrastructure, that manages three important things: the data, that is a col-
lection of facts and figures that can be processed to produce information; the
database engine, that allows data to be accessed, locked and modified; the
database schema, that defines how the data are stored. The main purpose of
a DBMS is to store data in order to make easier retrieving, manipulating and
producing information.

The top most used databases technology is the Relational database. It
exploits a RDBMS, that stands for Relational Database Management System.
It is a particular type of DBMS, because it uses a Relational data model to
store and process data. In a relational database, the table is the most com-
mon and simplest form of data storage. It is organized in rows and columns.
Each row contains the information of an entity, that is a real world object that
can be easily identified through attributes, which describe the properties of
an entity, and that are represented by columns. Furthermore, tables model
the important concept of relationship. It is a logical connection among enti-
ties belonging to different tables, represented by external references inside
attributes entities.

A database should be, also, equipped with a query language that can be
used to manage the database instances. SQL, Structured Query Language,
is the programming language for relational databases. It is based on the re-
lational algebra and relational calculus principles, and it is composed by two
main components: the data definition language and the data manipulation
language. The DDL collects the set of functions used to define and to manage
database tables and schemas, instead the DML defines all the CRUD com-
mands used to modify the database instances.

In conclusion, the SQL language allows to execute single logical operation
on database instances. A group of operations is defined as transaction. It is a
sequence of tasks representing a unit of work in a DBMS, that must maintain
the ACID properties.

• Atomicity: this ensure that a transaction must be treated as an atomic
unit, so, all its operations are executed as they were one.

16 CHAPTER 2. USED TECHNOLOGIES

• Consistency: if a database was in a consistent state before the execution
of a transaction, must be in a consistent state after the execution of a
transaction as well.

• Durability: the database must hold all the latest information even if the
system crashes. If a transaction updates a chunk of data and finishes
with a commit, the updates should not be lost even if they are not per-
sistently stored in the database and the system terminates abnormally.
So, the data are going to be updated when the system springs back into
action.

• Isolation: it ensures that a transaction, that is executed simultaneously
and in parallel with other transactions, is performed as if it is the only
transaction in the system. So, the execution of a transaction doesn’t
affect the execution of the others.

These group of properties should be respected by transactions in order to
ensure accuracy, completeness and data integrity.

Relational databases limits

Technology is, always, in evolution, and new solutions, producing lots of het-
erogeneous data, are born. The relational databases have been a standard in
these last years, but, today, the continuous changes have revealed the limits
of this "old" solution.

• Relational databases are not designed to handle changes. They are born
in a context in which only little and simple data should be stored per-
sistently, and, even if several improvements are developed, they are not
suited, any more, in a context in which changes occur frequently and
faster. In a relational database, even a simple change, like adding or
replacing a column in a table could be a long and expensive task. This
is due to the architecture of the relational databases. Storing a particu-
lar data means designing a suited data model, or schema, that involves
many resources. It is a long, complex and expensive process, that is
not suited in an environment where new heterogeneous data should be
stored persistently as soon as possible. An hasty solution could generate
waste of resources and querying data could become difficult.

• Relational databases are not designed for heterogeneous data. They re-
quire pre-defined schemas before loading data, they are suited to store
structured data. But, the growing amount of data variety becomes a
problem for relational databases, because any change in a database schema,
in order to handle a new data type, could be cumbersome. As described
above, it is complex and expensive adding columns, or modifying schemas,
in order to store new information, so, this is a limit of relational databases.

• Relational databases are not designed for scale. In the last years, the
amount of desktop, tablet and mobile devices is increased, and this has

CHAPTER 2. USED TECHNOLOGIES 17

generated a growth in the amount of heterogeneous data to be stored.
Handling this reality, means improving database scalability and elasticity,
in order to add the capacity of storing more data. Achieving these two
qualities is a huge challenge for a relational database. They are designed
to live on a single server in order to maintain the table integrity and
avoiding the problem of distributed computing. So that, an horizontal
scalability can’t be applied, but the vertical scalability solution should
be adopted, buying new powerful and performable hardware into which
migrate the system.

• Relational databases are a mismatch for modern App development. Mod-
ern applications are built using object-oriented programming languages
such as Java, JavaScript, and C#, so that, data structures are treated as
objects, containing data and code, and this way of handling data is differ-
ent from how the RDBMS handles data. The object-relational mapping,
also known as ORM, that is in charge of creating a mapping between
objects and RDBMS data, could be a solution to the problem, but exploit-
ing the ORM means loosing performance and acquiring opportunities for
buggy code.

All theses limits describe how the relational databases are not suited any more
for the actual environment, so that, new solutions should be considered in
order to overcome the difficulties.

2.2.2 Non-Relational Databases

“This notion of thinking about data in a structured, relational database
is dead.”

— Vivek Kundra, Former CIO of the U.S. Federal Government

This statement, according to the description done in the previous section, well
describes the current situation of relational databases, and how they are not
suited any more to tackle the new challenges due to technology evolution.
So that, new possibilities should be considered in order to overcome the re-
lational model limits. In the last decade, the non-relational databases rep-
resented a solution to data variety and growth, especially due to the rise of
Big Data applications. This category of database is, also, known as NoSQL
databases, because they are disjointed from SQL language, and they were
designed to overcome the relational model limits. In fact a non-relational
database is more flexible and scalable than its counterpart. A relational data-
base requires a predefined schema, instead, a NoSQL database offers a more
flexible schema, designed in such a way that changes or updates could be han-
dled easily, so it is prone to work in progress changes. But the simplicity of
this solution generates the loss of data integrity quality, which is supported
by RDBMS, and that, now, must be handled by the application exploiting the
non-relational solution. Furthermore, these database are designed to man-
age unstructured data, i.e. data that are not suited to be stored in rows

18 CHAPTER 2. USED TECHNOLOGIES

and columns. The horizontal scaling, that was not possible with relational
databases, is, instead, applicable for the NoSQL one, indeed they take advan-
tages from horizontal scaling. Finally, as mentioned at the beginning, the SQL
language can not be used to manage a NoSQL database. It is complex and
not suited for a non-relational environment, that, instead, allows the possi-
bility to develop custom APIs to read and write data. In conclusion, NoSQL
database represents a important novelty in data storing, widely accepted from
the developers community. Today, several options exist, each of them has its
main features and weaknesses, that make each different solution suited to sat-
isfy the different developers needs. MongoDB is a non-relational DBMS that
gathers most of NoSQL database features, and that has a strong community
that, every day, uses and supports it. Since that, MongoDB is the backing
store solution adopted to support the Mak07 system, but before deepening its
description, an important theorem should be treated.

CAP theorem

The non-relational databases take advantage from the horizontal scaling, due
to the fact that they live in a distributed environment. The CAP theorem,
formulated by the professor Brewer from the California University, tries to
make aware the developers about the fact that in a network shared data sys-
tem, there is a fundamental trade-off between Consistency, Availability and
Partition Tolerance. The theorem states that it is not possible to provide si-
multaneously these three qualities.

• Consistency: this quality guarantees that every node in a distributed
cluster returns the same, most recent, successful write, so, each client
has the same view of data.

• Availability: every read and write request has to be performed in a
reasonable amount of time by each non-failing node.

• Partition Tolerance: the system continues to operate despite an arbi-
trary number of messages being dropped by the network.

At the same time, only two of the above qualities can be ensured in a dis-
tributed data system. As a consequence of this statement, the systems can
be categorized into three categories: CP, CA and AP, according on two of the
three qualities. Furthermore, relational databases are designed on top of a
transactional model, ensuring the four principles of the ACID model. These
principles are not suited for a non relational environment, so, new principles
were formulated as alternative for the NoSQL databases. The BASE model, in
opposition to the ACID one, sets out three new principles:

• Basic Availability: NoSQL databases spread data across many storage
systems with an high degree of replication. If a failure destroys the ac-
cess to a segment of data, the availability is always guaranteed, accord-
ing to the CAP theorem.

CHAPTER 2. USED TECHNOLOGIES 19

• Soft State: The state of the system could change over time, even during
times without input. The data consistency is a developer problem, and
should not be handled by database.

• Eventual consistency: The system will become consistent once it does
not receive input any more, and the data modifications are going to be
propagated to every node of the distributed data system. The consistency
is going to be reached at some point in the future, but no guarantees are
made about when this will occur.

2.2.3 Types of NoSQL Database

The NoSQL databases provide all the quality required by the modern appli-
cation: high performance, good horizontal scale and flexibility. Another im-
portant things that they have in common is that they do not follow the re-
lational model, in fact non-relational databases are, typically, divided in four
categories, according to the way of storing information:

• Key-Value stores: this category is the simplest one. Every item in the
database is stored as a key-value pair, in which the key is the name, and
the value collects the item information.

• Wide-column stores: the data are stored together as columns, instead
of rows. This storing method is optimized for queries over large datasets.

• Document database: it is similar to a key-value database, but the key
stores an unique identifier, and the value stores a document. A document
is a complex data structure that contains, any different key-value pairs
or nested documents. MongoDB is the most popular of these database.

• Graph database: these databases are used to store information about
networks. The final representation of the data relationships is similar to
a graph.

2.2.4 MongoDB key features

MongoDB is the most popular of all NoSQL databases, because it preserves
the best features of relational databases while incorporating the advantages of
NoSQL. MongoDB is a database management system designed to rapidly de-
velop web applications and internet infrastructures. The data model and the
persistence strategies are built in order to guarantee high read-write through-
put. MongoDB has a schema less storing model, in fact it stores information
in documents rather than rows. This is, perhaps, the biggest reason why de-
velopers use MongoDB.

A database is defined in large part by its own main features. MongoDB has
five main functionalities that make it able to tackle the major today application
needs:

20 CHAPTER 2. USED TECHNOLOGIES

• MongoDB provides high performance data persistence. In fact, it sup-
ports embedded data models, in order to reduce the Input/Output oper-
ations that are less than the relational ones, as well as indexes, in order
to speed up queries.

• MongoDB has a rich query language, in fact it supports all the ma-
jor CRUD operations, as well as the data aggregation, text search and
geospatial queries.

• the auto replication feature of MongoDB ensures high availability. In
fact, it provides automatic failover mechanism, and data restoring mech-
anism, due to server fails.

• MongoDB provides, also, automatic scaling functionality. this is ensured
by the horizontal scalability quality, that is part of its core functionalities.
The technique of automatic sharding, instead, distributes data across a
cluster of machines, while replica set provides eventually-consistency for
low latency deployment reads.

• finally, MongoDB supports multiple Storage Engine. These are in charge
of storing data in form of document, and how the data are saved on the
disks.

2.2.5 MongoDB Data Modeling

The data modeling is one important aspect that has to satisfy the needs of the
application, the performance of the database engine and the retrieval pattern.
Designing a data model means considering the application usage of the data,
i.e. how the data are queried, updated, processed. As mentioned above, Mon-
goDB has a document oriented data model. A document is the smaller mem-
orization unit in MongoDB. Documents representing similar data are grouped
together in collections, that are stored, persistently, in the database instance
of MongoDB. A document is a data structure composed of field-value pairs.
MongoDB stores document as BSON, Binary JSON, objects, which are binary
encoded JSON like objects.

Another important quality is how the relationships among documents are
represented. MongoDB supports two ways of representing data relationships:

• Embedded Data model. It represents the relationships among data by
storing data in a single document structure, called embedded document.
In MongoDB, It is possible to embed documents inside the fields of an-
other document. This model allow application to retrieve and manipulate
data in a single database operation. It is, also, used to represent a one-
to-many relationship in which the outer document is the "one", instead
the inner documents are the "many"

• References model. It stores the relationships among data exploiting
links or references from one document to another. Due to the fact that

CHAPTER 2. USED TECHNOLOGIES 21

each document has a unique identifier, this is used to create the connec-
tions among documents. This approach is similar to the foreign key of
the relational database.

The Embedded data structure of MongoDB documents introduces a denormal-
ized data model. Exploiting this model, MongoDB is able to perform write
operation in an atomic way, according to a single document. In fact, even if
the document is composed of several embedded data, all the information are
combined together in order to make atomic the operation performed on the
document itself.

2.2.6 MongoDB Scaling feature

High performance and good scaling quality are two of the key features of-
fered by MongoDB. These are ensured through the Replication and Sharding
functionalities. These, also, guarantee the availability of data.

Replication

Figure 2.5: MongoDB replication mechanism.

Replication is the practice of keeping identical copies of data on multiple
servers in order to maintain the application always on and the data safe. This
solution provides redundancy and high availability, ensuring, also, fault toler-
ance against loss of data. In MongoDB, this is done by the replica set. A replica
set is a group of processes, named mongod (i.e. an instance of MongoDB), in
charge of maintaining the same data set. A replica set is composed by data
bearing nodes and, optionally, by one arbiter node. About the data bearing
nodes, we can distinguish the primary node and the secondary nodes. There
is only one primary node, that is in charge of receiving the read and write op-
erations from clients. It applies the received operation on the its set, and then,
propagate the changes to the secondary nodes. The secondary nodes are not
visible by the clients, that, always, contact the primary node, as the figure 2.5

22 CHAPTER 2. USED TECHNOLOGIES

shows. The primary node is in charge, also, to maintain a Log, named "oplog",
in which it saves all the performed operations, that are going to be replicated
on the secondary nodes, in order to have all the same updates on all the nodes
of the replica set. However, could happen that the primary node is unavail-
able, so, a secondary node can be elected as new primary node. Optionally, the
replica set can contain one or more arbiter node. It is a instance of mongod,
as the other nodes, but it doesn’t maintain any data. If it exists, it is in charge
of managing the election of the new primary node, exploiting the mechanism
of heartbeat. It is a message exchanged among replica set nodes in order to
make aware each node of the existence of the others.

Each secondary node reflects the operation executed by the primary one
in as asynchronous way. It applys the updates only after the primary one,
however it is possible to force the system to execute suddenly the synchro-
nization, but, obviously, this decreases the performance of the operation. By
default, clients read from primary node, but they can specify that want to
read from a secondary node. This means that clients can read non up to date
data, due to the fact that the updates performed on the primary are reflected
asynchronously on the secondary.

Sharding

Figure 2.6: MongoDB sharding mechanism.

The Sharding is a mechanism used in a distributed environment to dis-
tribute data across multiple machines. This is an example of how MongoDB
allows the horizontal scaling. MongoDB uses this mechanism, also, to support
the deployments with very large data sets and high throughput operations. In
fact, some database systems, with a large data sets, need machines with high
CPU capacity in order to ensure powerful data process. The Sharding mech-
anism is based on the sharded cluster architecture, shown in the figure 2.6,
that is composed by:

• shard: each shard is, essentially, a replica set that holds a portion of data
of the entire database. In this sense, a MongoDB collection could divide

CHAPTER 2. USED TECHNOLOGIES 23

in several multiple part, each of them stored on a different shards. To
access the full collection must be retrieved all the part from the shards.

• mongos: more than one mongos process can exist. Each mongos pro-
cess is identified as a router, and it provides an interface between client
applications and the sharded cluster, in order to make able the clients to
query the cluster.

• config servers: It stores meta-data and configuration settings for the
sharded cluster. It knows the data stored by each shard.

In order to distribute the data of a single collection among the shards, Mon-
goDB uses the shard keys. A shard key consists of an immutable field or fields
that exist in every document of the collection. Making the correct choice about
the shard key is very important because it affects the performance, efficiency
and scalability of a sharded cluster.

2.3 REST Architecture

The term REST was coined by Roy Fielding in his Ph.D. dissertation. It stands
for REpresentational State Transfer, and it is an architectural style for design-
ing loosely coupled applications over a HTTP connection, that is often used
in the development of web services. The REST architecture does not define
any rule that should be followed in order to make an application compliant
with this style, but it wants only give an high level guidelines on how a well-
designed web application should behave. So, the REST style principles have
only the purpose of creating a design pattern for web based application. The
REST architecture is based on the communication among clients and servers.
The clients send requests that are received and processed by servers, that
produce responses that are sent back to clients. Requests and responses are
built on top of the concept of transfer and represent resources. A resource is
an object with a type, a status and associated data, and it has relationships
with other resources. Each resource is identified by an URL, and has some
methods that can modify its status. Finally, each request points a resource
and a specific method of it.

REST defines six architectural constraints which make any web based ap-
plication really compliant with this pattern.

• Uniform interface: This constraint states that should be defined an in-
terface among server and clients in order to decouple the architecture of
these two actors. So, clients and server can both evolve separately. The
interface is composed by APIs. They are endpoints (URL), that identify
the system resources and the operation that can be performed on them.

• Client-server: As mentioned, client and server evolve separately. A
client should know only the APIs through which can contact the server.
The flow information starts from the client that sends a request to the
server, that processes it and sends back a response.

24 CHAPTER 2. USED TECHNOLOGIES

• Stateless: This is a very important constraint. It means that each client
request should carry with it the state information necessary to be pro-
cessed correctly by the server. In fact, the server does not maintain any
state information about the clients that make requests.

• Cacheable: Caching brings performance improvement for client side.
So REST resources should be declared, when possible, cacheable, in or-
der to make the clients aware on the fact that some resources can be
requested only one-time.

• Layered system: REST allows you to use layered system architecture.
So, at any time, a client can’t tell if it is connected directly to the end
server or to an intermediate one. This approach optimizes performance
of communication and makes load balancing possible.

• Code on demand: This means that the server might deliver executable
code to the client, such as JavaScript code that is going to be interpreted
by the client itself.

2.4 Conclusion

Mak07 is a project that is evolved along several implementation phases. It
started with, only, a mobile application, and now has a strong back end struc-
ture. It will continue to evolve, so, according to this prerequisite, the cho-
sen technologies represent the correct way of supporting it. The framework
Spring, that follows the REST pattern, guarantees loosely coupled and easily
testable code, Instead, MongoDB increase, not only the scalability quality, but
also the possibility to store new unstructured data. All these qualities ensure
a strong environment that allow an easy growth for Mak07.

Chapter 3

Requirements and Design

The chapter starts with an overview of the game, with a short description of
the main feature. Then, the attention is focused on the requirements of the
Tournament feature. Therefore the design is analysed, focusing on the server
side business logic, that is the objective of this elaborate, looking, always, to
the client side, in order to make the communication easy and consistent. Some
special cases are also analysed, in order to understand which are the possible
real situations the system should deal with in a real environment. Finally, the
support architecture is described, with a particular attention to the server
structure and used tool.

3.1 The Game

The starting point of this master degree project is the game called Mak07, it
is a mobile game, and it is already available on Google Play Store and App
Store. The game is based on a simple idea, combining together 7 numbers,
called "schema" (Figure 3.1a), exploiting the arithmetic operations, sum, sub-
traction, multiplication and division, in order to obtain a final result equal to
zero. Some constraints are inserted in order to do not make harder the man-
agement of the game, like the impossibility to exploit negative numbers, or
make multiplication by 0. Each time a schema is solved, a new one appears in
the screen. The user has two minutes to resolve the highest number of schema
in order to increase his partial score. Each schema has several solutions, and
according to which operations are used to obtain 0, the partial score could
be different. At the end of the two minutes, all the partial scores obtained
following the resolution of a schema are summed together, considering also
bonus points, to get the game final score. As mentioned, The game is based
on a simple idea, but at the same time makes you wonder on which is the best
move to do in order to make the highest score, in the shorter possible time.

The game offers a complete multi-player experience, based, essentially, on
the challenge modality (Figure 3.1b), in which two users challenge each other
to make the highest score. The game requires an initial registration phase,
that may take place through Facebook, Google, or the classic username and
password, in order to make possible the distinction of the users connected.

26

CHAPTER 3. REQUIREMENTS AND DESIGN 27

(a) Mak07 schema. (b) Challenges page. (c) User profile page.

Figure 3.1: Mak07 game screenshots

Each user has its own profile page (Figure 3.1c), in which are shown some
user statistics, like the experience collected and the number of challenges
won. Also, to support the multi-player structure, a ranking mechanism is im-
plemented in order to gratify the best players and to encourage to climb the
classification.

In conclusion, the game experience tries to involve the player attention
and concentration in order to resolve the game schemata as quick as possible,
obtaining the requested result, and to encourage the competitiveness among
players thanks to the ranking mechanism.

3.2 Requirements

As described, the game structure is suited to short, few minutes, but in-
tense interaction, due to the challenge modality (multi-player) and the training
modality (single-player). At the same time, the game, thanks to the multi-
player challenges and the ranking mechanism, is suited also to longer interac-
tion, in which the user tries to acquire more experiences, improve his skills to
climb the classification.

In order to support longer interaction and to attract users to play more the
game, it was thought to introduce a new important feature that extends what
the game offers, the Tournament feature.

3.2.1 Requirements analysis

The tournament feature should support the social and multi-player experience
of the game. The main aim of the feature is to gather a group of players
that want to challenge each other until one winner remains. A tournament is
composed of several phases, the creation phase, the registration phase, and
the round phases. For each phase, each user can perform a limited number of

28 CHAPTER 3. REQUIREMENTS AND DESIGN

actions, and, in particular, during the round phases, challenges among tourna-
ment participants are performed. the last challenge of the last round proclaim
the winner.

According to this general description, the tournament feature has to offer
some main functionalities in order to allow the possibility to create and play
tournaments. Each player must be able to create a new tournament, defin-
ing some tournament attributes, like the name or the number of participants.
Then, each user should be able to check if there are available tournaments, to
sign up to one of them, in order to take part and compete for the victory. Ac-
cording to Mak07 functionalities, that allow each user to have a list of friends
that can be challenged or chatted, the possibility of inviting friends to a tourna-
ment has been introduced, at creation time and during the registration phase.

The system must also be able to maintain information about tournaments,
like played tournaments, participants list, tournament challenges, round win-
ners, in order to have an internal history. The system must guarantee the
correctness of the operation performed, and considering the fact that the tour-
nament is a feature of a bigger software, each operation must be consistent
not only in the tournament environment, but inside the environment of the
entire game. In conclusion, an interesting functionality that improve the user
experience is the notification mechanism. The game was thought to live in
a mobile environment, and the notification has been introduced to support
the challenge feature, so, in order to make the user aware about the starting
and end of each tournament phase, notification should be scheduled for the
tournament feature too.

3.2.2 Use cases

In the following some main use cases, that describe two main functionalities
offered by Tournament feature, are analysed.

Create a Tournament

• Description: The player selects the tournament section of the Mak07
application and creates a new tournament (Figure 3.2);

• Actors: Player, Database;

• Preconditions: The player must be logged into system;

• Postconditions: The player creates a new tournament;

• Path:

1. the player select the tournament section;

2. the player pushes the button to create a new tournament;

3. the player sets the tournament name and the maximum number of
participants;

CHAPTER 3. REQUIREMENTS AND DESIGN 29

Figure 3.2: Use case - Tournament creation.

4. the player can invite some friends to take part to the tournament;

5. the player submits the request;

6. the system receives the request and save the tournament informa-
tion into the db;

7. the system notify the invited players;

8. the tournament just created is available for players to sign up.

• Frequency of use: around once every 30 minutes.

Delete a registration to a Tournament

• Description: A player, after the registration to a tournament, can decide
to delete his registration, before the tournament starts (Figure 3.3);

• Actors: Player, Database;

• Preconditions: The player is logged into the system and he is registered
to a tournament;

• Postconditions: The player is no more registered to the tournament;

• Path:

1. the player selects the tournament section;

2. the system shows the information about the tournament to which
the player is registered;

30 CHAPTER 3. REQUIREMENTS AND DESIGN

Figure 3.3: Use case - Delete Tournament registration.

3. the player pushes the button to abandon the tournament;

4. the system receives the request and update the tournament infor-
mation in the Database;

5. the system shows the available tournament to the player;

6. the player can sign uo to a new tournament.

• Frequency of use: many times every quarter.

3.3 Design

Mak07 is a mobile game designed to entertain and to have fun an heteroge-
neous community, for this reason a client-server architecture was designed as
main support architecture. The tournament feature should be design to leave
in this environment. the purpose of this elaborate is analyzing and focusing
the attention on the server side software, and due to this reason the follow-
ing description is focused on the business logic implemented in the back end
software to support the tournament functionalities.

During the design phase it was thought, as a correct programming style
teach, to do not modify the functionalities already present in the back end
software, but to integrate new functionalities that, at most, exploit the existing
one.

3.3.1 Tournament model

According to the requirements, defined in the previous section, in order to
maintain information about tournaments, an object of type tournament has
been modelled, that, following, is going to be implemented. The tournament

CHAPTER 3. REQUIREMENTS AND DESIGN 31

Listing 3.1: Tournamnet object

1 {
2 "id" :String,
3 "creator" :String,
4 "name" :String,
5 "max participants" :Integer,
6 "type" :enum,
7 "invited friends" :[],
8 "participants" :[],
9 "participants number" :Integer,

10 "challenges" :[],
11 "state" :enum
12 }

object (Listing 3.1) has to collect the main information of a single tournament
and it is composed by the following fields:

• id: Tournament unique id;

• creator: the user who creates the tournament;

• name: Tournament name, set by user creator;

• max participants: maximum number of participants to the tournament,
set by the user creator;

• type: it defines the tournament type;

• invited friends: list of friends invited by tournament participants;

• participants: list of actual participants to the tournament;

• participants number: number of actual participants to the tournament;

• challenges: list of challenges belonging to the different rounds;

• state: it describes the actual tournament situation.

The main Tournament information are the participants list, that establishes
which user takes part to the tournament, the challenges list, that collects
information about each challenge played during the tournament rounds, and
the state that represents the actual tournament phase.

3.3.2 Functionalities

As mentioned, the Tournament feature should fit the already available fea-
tures, especially the challenge feature, because each tournament has several
related challenges. The challenge phases are managed by the transition from

32 CHAPTER 3. REQUIREMENTS AND DESIGN

a state to another. This transition is handled by asynchronous updates per-
formed on the challenge, due to participants actions. In a first time, it was
thought to exploit the same mechanism to regulate the tournament phases,
but, after, a new solution was found. Considering the challenge as single
game, only two users have to be synchronized. After the creation of a chal-
lenge, the two participants can play the game when they want. This solution
is not suited for a Tournament, where a bigger number of players have to
be synchronized, furthermore a challenge belonging to a certain round must
be played in a limited amount of time, otherwise, due to the fact that play-
ers could play their challenge in different instants of time, the round lifetime
could be stretched till the slowest challenge finishes. For these reasons, it was
thought to manage the tournament phases through time intervals. As well as
for the challenges, a state field is used, in order to maintain the information
about the actual tournament phase.

Figure 3.4: Tournament schema.

A tournament is composed by several phases, regulated by time intervals
(Figure 3.4). The first phase is the registration one, in which the user can
sign up to or invite friends to the tournament. The duration of the registra-
tion phase is 20 minutes, that is a reasonable time to collect the maximum

CHAPTER 3. REQUIREMENTS AND DESIGN 33

number of participants, considering, also, that a participant could delete his
registration and other players can subscribe. After this phase, the tournament
round starts. Each round lasts 10 minutes, so, each player, has 10 minutes
available for playing his challenge, including also the two minutes needed to
play the game, and if he doesn’t play the game, the challenge is considered
as abandon. Every time a round ends, it is very important that all the round
challenges must be in a final state, they must not be upgradable any more,
because, the winners of the challenges have to be considered in order to or-
ganize the challenges for the following round. The number of rounds depends
on the maximum number of participants to the tournament. It was thought
to limit the maximum number of participants up to 16 players. as a conse-
quence, the maximum number of round can be 4. At the end of the last phase
the tournament is put in a final state in order to be no more upgradable.

To support the tournament feature, several functions are designed:

• Create a tournament: each user logged into Mak07 should be able to
create a new tournament, settings some tournament parameters, like the
tournament name, the number of participants and the tournament type.
The tournament creator has, also, the possibility to invite some friends;

• Sign up to a tournament: each user should be able to check if there
are available tournaments and sign up to the preferred one;

• Cancel a registration to a tournament: a registered user to a tourna-
ment should be able to cancel his registration, only if the tournament is
not already begun;

• Invite friends to a Tournament: a registered user should be able to
invite his friends to the tournament to which is participating;

• Tournament history: each user should be able to analyse his tourna-
ment history;

In conclusion, the choice of exploiting time intervals to regulate the tour-
nament state evolution is correct, because a tournament final state must be
reached in a limited amount of time in contrast to the final state of a challenge
that could be reached after a long time. Since there are these differences,
during the development, it was necessary to adapt the challenges mechanism
to the tournament one.

3.3.3 Special cases

During the design and the development phases, that is going to be analysed in
more detail later on, relevant real situations are considered, that could happen
in the several tournament phases:

• At the end of the 20 minutes allocated for the registration phase, the
number of players could not have reached the maximum number of par-
ticipants. So a suited number of players must be added to the tourna-

34 CHAPTER 3. REQUIREMENTS AND DESIGN

ment in order to allow the beginning, otherwise the tournament can’t
start;

• An attempt to sign up to a tournament after the end of the registration
phase, must be rejected, and, at the same time, an attempt to delete a
registration after the end of registration phase must be discarded too;

• An user can not have more than one active tournament at the same time;

• A challenge, at the end of a certain round, can be in a non final state. A
challenge could be played by player 1 or player 2 or can not be played by
any of them. These situation must be managed, bringing the challenge
to a final state;

• As a result of the previous situation, a tournament phase can have a
number of winners less than expected. Therefore, a tournament branch
could die before the tournament end, and also a tournament can finish
before all the expected phases have been played;

• If a player has to compete with the winner of a not played challenge, he
directly passes to the next phase;

• A tournament could last a less number of rounds with respect to the
normal behaviour, if there is one winner at the end of a certain round;

• If the last round or an intermediate one finishes with no winner, it means
that nobody has won the tournament.

As mentioned, all these cases have been taken into account during the devel-
opment phase, and a suited business logic has been inserted in the code to
tackle these special situations.

3.4 Architecture

As described in the previous sections, the game Mak07 has been developed to
fit a mobile environment, in particular on Android and iOS operating systems.
Nowadays, the majority of applications, that are out there, need to connect to
the internet in order to operate properly [4], and Mak07 is not an exception.
Due to these considerations, it was thought to use a client server architecture
(Figure 3.5). The server back end software exploits the REST architectural
style to organize the functionalities, that are exposed to the outside through
suited API, contacted by the clients with HTTP methods. The API invocation
is the main method exploited for the client server communications, but, also
the Websocket mechanism is used to keep track of the users connected to
the system, the players who have the game application in execution on theirs
mobile devices, but they are not playing any challenge. In conclusion, to man-
age the notifications it was thought to exploit the Google Firebase notification
mechanism.

CHAPTER 3. REQUIREMENTS AND DESIGN 35

Figure 3.5: General architecture.

3.4.1 Server architecture

The server is accessible through the registered domain game.mak07.com. The
operating system installed on the machine is Ubuntu 14.04, on which sev-
eral components are virtualized by using a technology, born in 2013 but now
widespread, called container. The Docker tool is exploited to manage and de-
ploy containers. Thanks to containers and Docker, it was possible to build the
server architecture needed to support Mak07. It was thought to create four
main containers, in order to virtualize the four main components used by the
system:

• One container manages the back end software, containing the logic of
the entire system. The web logic runs on a Tomcat web container. To
make everything lightweight, The Spring Boot application is exploited.
Thanks to Spring Boot, we are able to generate a single file jar contain-
ing all the services of the server logic, that are in charge of handling
all Mak07 features, and the Tomcat web server, that makes executable
the developed software. This container also exposes to the outside the
API and the Websocket endpoint that the clients can contact. Docker is
responsible to forward the incoming requests on the real machine to the
correct container, which contains the endpoint of interest.

• Another container includes the administrator panel web application. As
the previous container, also this one exploits the Spring Boot application
to have in a single jar the web application and the Tomcat web server.
this container hasn’t endpoints directly exposed to the outside, but it is
accessible from the main container, that includes the game logic. The
administration panel is in charge of making statistics about Mak07 play-
ers and usage (i.e. number of users, number of challenges, etc.), reading
the information from the game databases. This panel is accessible only
by the game administrators.

36 CHAPTER 3. REQUIREMENTS AND DESIGN

• A further container manages the database instance. It was chosen to ex-
ploit a non relational database to support the game features, so, a suited
choice is MongoDB. All the game information (i.e. the users information,
the challenges information, etc.) are stored persistently in the database.
A suited image of MongoDB, that has to be run in containers, is down-
loaded from Docker Hub, that is the official Docker repository.

• A last container handles the RabbitMQ tool. RabbitMQ is a message bro-
ker, in charge of sending the output messages to the correct messages
queue, and forwarding the input messages to the correct endpoint. As
well as the database image, also the RabbiMQ image is downloaded from
Docker Hub.

In conclusion, it has to be specified that all these containers should communi-
cate with each other, and the Docker tool makes it possible. The server logic
should communicate with: the database, in order to read and write persistent
information, the message broker, in order to manage the messages queues,
and also the control panel, in order to forward the administrator requests. In-
stead, the container deployed for the control panel should be in contact not
just with the main container, but also with the database, in order to get infor-
mation that should be shown to the administrator.

Chapter 4

Development of the Work

Inside this chapter, I’m going to analyse, in more detail, the implementation
of the back end business logic. As first step, the main models, used inside the
tournament feature, are analysed, focusing on the main data collected. Then,
the two most important scheduled tasks, implementing part of the tournament
logic, are described. Finally, particular attention is given to the analysis of the
synchronization mechanisms adopted.

During the development, good programming practices have always been
kept in mind, in order to write as much as possible the best code.

• To enhance the readability quality, it was used code indentation, short
but descriptive variable, and function names. It was taken into account
to limit the maximum line length and to organize the source code in
blocks. Also, a right number of spaces and comments were inserted in
order to make the code easy to understand.

• The maintainability quality was considered in order to make easy as
much as possible future code changes, that could be done due to defect
and fault corrections, or efficiency improvements.

• Developing a back end software means giving particular attention on the
reliability quality. The code execution should never stop in order to offer
a continuous service, and should never generate errors or inconsisten-
cies. Even if they are generated, suited actions should be performed to
limit system crashes.

• Efficiency is another important quality to take care when web applica-
tions are under development. The code should be as much as possible
responsive to do not waste user time. Efficiency means, also, not wast-
ing system resources, avoiding memory leaks and removing unused data
from database.

• The Security quality should be, also, considered because the system
deals with sensible information, and a lack of security could cause catas-
trophic consequences on the users.

38

CHAPTER 4. DEVELOPMENT OF THE WORK 39

• Finally, a flexibility feature should be ensured, in order to make the sys-
tem able to grow with feature improvements, adding new functionalities,
and modifying the existing ones, to fit the users demands.

4.1 Models

This section is in charge of describing the main models related to the tourna-
ment feature. Special attention is given to the Tournament model and to the
entities strictly connected with it. The information that each entity holds are
going to be described. Furthermore, the relationships among the new entities
with the existing ones are taken into account. Each model becomes a Json
document, that is stored in the system database.

4.1.1 Tournament model

This model is the main one of the entire Tournament feature. It collects and
preserves all the tournament information, both the participants data and the
data related to the tournament rounds. The Listing 4.1 shows a completed
Tournament document, stored in MongoDB. Each document has an unique
String identifier, assigned by MongoDB, in order to distinguish the different
tournaments. The document fields, according to the model defined in the
design phase, are:

• creator: it stores the unique identifier of the user that is logged into
Mak07 system, who creates the tournament.

• name: this is a tournament name, given by the creator. it could be not
unique in the system, in fact the tournaments are distinguished by the
identifier assigned by MongoDB.

• maxParticipants: it is an integer number storing the maximum number
of participants which can take part to the tournament. It is set by the
creator at creation time.

• type: it is an enum Java type, and it can have only two values, PRIVATE
and PUBLIC. A tournament is created as PRIVATE if the creator wants
to play only with its friends, other system players can’t see and take part
to private tournament. A PUBLIC tournament, instead, can be played by
all Mak07 players. It was thought to limit, in a first time, the value of
type field only to PUBLIC, and to allow the PRIVATE value, in a second
time. The type field is, also, prone to future development, introducing
new possible values.

• invitedFriends: this is the list of users identifiers, invited to the tour-
nament. Users can be invited at creation time, by the creator, or during
the registration phase, by other participants. An user can refuse an in-
vitation, so his identifier is deleted from the list. The invitedFriends list
can be empty.

40 CHAPTER 4. DEVELOPMENT OF THE WORK

Listing 4.1: Tournamnet document

1 {
2 "_id" :ObjectId("5b10f99a36ee652d048a9f60"),
3 "_class" :"backend.mak07.model.Tournament",
4 "creator" :"5ae3063c36ee651f54741839",
5 "name" :"Gold Tournament",
6 "maxParticipants" :NumberInt(8),
7 "type" :"PUBLIC",
8 "invitedFriends" :[
9 "5b0bbc7f850940351439df1a",

10 ...
11],
12 "participants" :[
13 "5ae3063c36ee651f54741839",
14 "5b0bbc7f850940351439df1a",
15 "5a0eb55e273167a41d1a2bd5",
16 "5a0eb568273167a41d1a2bd8",
17 ...
18],
19 "participantsNumber" :NumberInt(8),
20 "challenges" :[
21 {
22 "challengeNumber" :NumberInt(1),
23 "challengeId" :"5b10f9f436ee652d048a9f65",
24 "winner" :"5a0eb55e273167a41d1a2bd5"
25 },
26 {
27 "challengeNumber" :NumberInt(2),
28 "challengeId" :"5b10f9f436ee652d048a9f67",
29 "winner" :"5ae3063c36ee651f54741839"
30 },
31 ...
32],
33 "state" :"COMPLETED",
34 "created_at" :NumberLong(1527839130329),
35 "modified_at" :NumberLong(1527839130329)
36 }

CHAPTER 4. DEVELOPMENT OF THE WORK 41

• participants: this is another list that collects the participants identi-
fiers. This list will never be empty, because it has, always, a participant,
that is the tournament creator. An user can sign up to a tournament or
delete his registration, causing the addition or deletion of his identifier
from the list. It can be modified only during the registration phase, but
when the tournament starts, it is no more modifiable, and it collects per-
sistently the participants information. Its maximum size is established
by the MaxParticipants field, and it can’t grow over this value.

• participantsNumber: it is the number of enrolled user to the tourna-
ment. Its value changes according to the size of the participants list. It
was thought to insert this field in order to make the business logic easier,
and in particular to make some restrictive queries.

• challenges: this is a list of TournamentChallenge objects. This field
defines a new document that is injected in the main one, the tournament
document. The TournamentChallenge object is going to be described in
details in the following paragraph.

• state: the state field describes the actual situation of the tournament.
It is an enum Java type and it can assume the values CREATED, IN
PROGRESS 1, IN PROGRESS 2, IN PROGRESS 3, IN PROGRESS 4,
COMPLETED and CANCELED. At creation time, the state field is set
to CREATED, and it maintains this state until the end of the registra-
tion phase. When the tournament starts, it is put in the IN PROGRESS
1 state, that is associated to the round one. The following rounds have
their corresponding IN PROGRESS X state. After the end of the last
round, the Tournament state is set to COMPLETED, in order to bring
the tournament in a final state. The CANCELED state is created to
tackle particular situations that bring the tournament to finish before
than expected. For instance, if a tournament, after the registration
phase, doesn’t reach the minimum number of participants to begin, it
is put in the CANCELED state. This extra state is a final state. As men-
tioned during the design section, in the previous chapter, the tourna-
ments are managed by time intervals. A time interval expiration causes
an update of the tournament state. This mechanism are going to be
deepened during the business logic explanation.

• created_at: it represents the timestamp, expressed in milliseconds, of
the tournament creation time. This value ss set by MongoDB when the
document is inserted in the database.

• modified_at: it describes the last modification time of the document. As
well as the created_at field, it is set by MongoDB and it is expressed in
milliseconds.

The list of participants keeps the information about the players. Starting from
the user identifier, it is possible to retrieve the tournaments that the user has

42 CHAPTER 4. DEVELOPMENT OF THE WORK

taken part or he is participating. In conclusion, it has to be emphasised that
inside the tournament model are used external references. In particular, the
user identifier, that could appear in several tournament fields, is an external
identifier of the UserPlayer model, that collects user information, like creden-
tial data and player statistics.

TournamentChallenge model

As mentioned above, the challenge field inside the tournament object is com-
posed by a list of documents. The document injection mechanism is exploited.
An object of type TournamentChallenge is directly stored inside the tourna-
ment document itself. This kind of object simplifies the business logic mech-
anism of tournament rounds transition. As we can see inside the challenge
field of the listing 4.1, the TournamentChallenge document is composed by 3
fields:

• challengeNumber: this integer represents the challenge number. Each
tournament has numbered challenges. In fact, according to the number
of participants, it is possible to know which challenge belongs to which
tournament round, i.e. if I want to read the information of the challenges
of the second round of a tournament that has 8 participants, I need to
read the information of the challenges number 5 and number 6.

• challengeId: it is an external reference to the challenge of interest. It
is the unique identifier of the challenge document that collects all the
relevant information of the challenge itself, like the identifiers of the two
players, the schemata solved by player one and player two, the state, etc.

• winner: it represents the identifier of the challenge winner, among the
two players. The winner identifier is updated by the system when the
round, the challenge belongs to, finishes.

4.1.2 ActiveTournament model

This entity is designed to ensure the situation in which each player can have
only one active tournament at a time. To enforce this, MongoDB functional-
ities are exploited. As shown by the listing 4.2, the main fields of the Active
tournament object are: the playerId field that stores the player identifier,
and the tournamentId field, that, instead, stores the tournament identifier
to which the player is registered. Other minor information are stored inside
the created_at and modified_at fields, that collect, respectively, the creation
timestamp and the last modification timestamp. An important clarification has
to be done about the definition of the playerId field. This field is defined as
unique, in order to make sure that for each player, only one document can
be created. This means that each time a player creates or signs up to a tour-
nament, a document in the ActiveTournament collection is inserted, and an
attempt to insert a new document with the same playerId generates an excep-
tion. This functionality of MongoDB is used to guarantee that each player has

CHAPTER 4. DEVELOPMENT OF THE WORK 43

Listing 4.2: ActiveTournamnet document

1 {
2 "_id" :ObjectId("5b179c0a36ee6528901c4704"),
3 "_class" :"backend.mak07.model.ActiveTournament",
4 "playerId" :"5aab9b9736ee65072c327006",
5 "tournamentId" :"5b179bf936ee6528901c4702",
6 "created_at" :NumberLong(1528273930235),
7 "modified_at" :NumberLong(1528273930235)
8 }

only one active tournament at a time. Finally, in order to speed up the search
of a document of a specific player, an index is created on the playerId field.

4.1.3 TournamentPhases model

Listing 4.3: TournamnetPhases document

1 {
2 "_id" :ObjectId("5b179c5336ee6528901c4706"),
3 "_class" :"backend.mak07.model.TournamentPhases",
4 "tournamentId" :"5b179bf936ee6528901c4702",
5 "state" :"IN_PROGRESS_1",
6 "endedChallenges" :NumberInt(2)
7 }

As the ActiveTournament model, also the TournamentPhases model is cre-
ated to support the server application algorithm. The listing 4.3 shows a
valid document. As it is possible to notice, few information are collected.
The tournamentId stores the unique identifier of the tournament of interest,
furthermore the uniqueness of this field is specified at definition time, to en-
sure that only one document can be inserted for each tournament. A state
field collects the tournament state information, and the endedChallenges
field counts the number of completed tournament challenges. This object is
exploited to know at each time the number of completed challenges. The
TournamentPhases model was designed to reduce the waiting time between
two tournament rounds. As explained during the design section in the previ-
ous chapter, each tournament round lasts 10 minutes, but it was thought to
reduce this time if all the challenges, belonging to a specific round, ends up
before time expiring. How the TournamentPhases document is exploited in-
side the server business logic is going to be explained later in this elaborate.

44 CHAPTER 4. DEVELOPMENT OF THE WORK

Listing 4.4: Challenge document

1 {
2 "_id" :ObjectId("5b11097136ee652d048aa0c7"),
3 "_class" :"backend.mak07.model.Challenge",
4 "player1" :"5a0dd4f427316794f22d52fd",
5 "player2" :"5a0dd4f427316794f22d5300",
6 "type" :"RANDOM_BOT",
7 "seed" :NumberInt(928299316),
8 "created_at" :NumberLong(1527843185763),
9 "modified_at" :NumberLong(1527843209149),

10 "expireAt" :NumberLong(0),
11 "state" :NumberInt(4),
12 "tournamentId" :"5b11091736ee652d048aa0bc",
13 "lastModifiedBy" :"5a0dd4f427316794f22d5300",
14 "firebaseIdPlayer1" :"...",
15 "firebaseIdPlayer1_timestamp" :NumberLong(1527841567593),
16 "schemesP1" :[...],
17 "firebaseIdPlayer2" :"...",
18 "firebaseIdPlayer2_timestamp" :NumberLong(1527841567593),
19 "schemesP2" :[...]
20 }

4.1.4 Challenge model

In order to better understand the tournament feature, and how its implemen-
tation is perfectly merged with the available system, it is necessary to describe
and analyse one important model, already existing, but strongly used inside
the tournament algorithm, the Challenge model. The listing 4.4 represents a
valid and complete challenge model. Each challenge has an unique identifier
inside the Mak07 system, stored inside the _id field, and the information about
the two players of the challenge, registered inside the player1 and player2
fields. A challenge is related to two players, but each player can have sev-
eral challenges. A type field, instead, is exploited to describe which kind of
challenge i’m dealing with. It can take 3 different values:

• NORMAL : the challenge is played by two players in which one invites
the other, that has accepted the game.

• RANDOM : the challenge is created among two random players connected
to the system.

• RANDOM_BOT : if a player wants to play a challenge, but no players are
connected to the system, a bot player is selected to play the game, so a
challenge of this type is created.

According to the tournament feature, all the challenges created for a tour-
nament are of type RANDOM and RANDOM_BOT, because the players and

CHAPTER 4. DEVELOPMENT OF THE WORK 45

the bots, that took part to a tournament, are coupled in a random way in
order to generate the games. The RANDOM type challenges couple, only, hu-
man player, instead RANDOM_BOT type challenges can couple human player
with bot player, or bot with bot player, if no human players are available.
Other relevant information are stored inside the fields created_at and tour-
namentId, that collect respectively the creation timestamp and the unique
tournament identifier, if and only if the challenge belongs to a tournament.
In particular this last field was introduced due to the implementation of the
tournament feature, in order to keep track also on the challenge side the tour-
nament information. As in the previous descriptions, the player1, player2 and
tournamentId contain an external identifier of the documents of interest. Fur-
thermore, the fields firebaseIdPlayer1, firebaseIdPlayer1_timestamp, fireba-
seIdPlayer2 and firebaseIdPlayer2_timestamp collect the information about
the device on which the players have decided to play the challenge, in or-
der to prevent any attempt to play the same game on two different devices
from the same player and generate inconsistency inside the system. Instead,
the schemesP1 and schemesP2 contain the solved schemata by player 1 and
player 2. The schemata are saved inside two lists, as injected documents,
more about schemata are going to be described inside the following section.
Finally, particular attention should be paid in order to analyse the state field,
that describes the actual situation of a challenge. It can assume the following
values:

• 0 (PENDING) : player 1 creates the challenge, but player 2 isn’t accepted
yet.

• 1 (CREATED) : player 2 accept the challenge, so both players can start
playing the game.

• 2 (SCORE_1) : player 1 has played the challenge, solving some schemata
that are stored inside the schemesP1 list.

• 3 (SCORE_2) : player 2 has played the challenge, solving some schemata
that are stored inside the schemesP2 list.

• 4 (COMPLETED) : both player have played the challenge, that is now in
a final state and can’t be modifiable any more.

• -1 (ABANDONED_1) : player 1 leaves the challenge, that isn’t modifiable
any more.

• -2 (ABANDONED_2) : player 2 leaves the challenge, that isn’t modifiable
any more.

• -3 (DENIED) : player 2 denies the invitation to the challenge, that isn’t
modifiable any more.

• -4 (CANCELED) : player 1 has deleted the invitation to the challenge, that
isn’t modifiable any more.

46 CHAPTER 4. DEVELOPMENT OF THE WORK

• -5 (TIMEOUT) : if a challenge isn’t accepted or refused by no one of the
two players, it is put in a time out state, in order to be not modifiable any
more, and, also, it is going to be deleted from the database.

The transition from one state to another is regulated by a state machine that
describes the allowed transitions from a specific state to another. The de-
scription of this mechanism is not a purpose of this elaborate, but, however,
should be clarified that each transition is a consequence of players actions,
as it is self explained by the state description. In order to make atomic each
challenge update, the FindAndModify() method of MongoDB is exploited, that
guarantees atomicity in document access and updates, and ensures consis-
tency and correctness of information. According to the tournament feature,
a challenge created in this context is set to the CREATED state, because the
invitation mechanism is not needed, due to the fact that a challenge created
from two tournament participants is accepted by default. A tournament chal-
lenge can reach only the following final state: COMPLETED, ABANDONED_1,
ABANDONED_2 and TIMEOUT.

Schema model

Inside the schemesP1 and schemesP2 fields of the challenge document are
listed the schemata information solved by player 1 and player 2 during the
two minutes available to play a challenge. The listing 4.5 shows the main

Listing 4.5: Schema document

1 {
2 "_id" :ObjectId("5b11039a36ee652d048aa06f"),
3 "code" :NumberInt(5013),
4 "playerId" :"5b0bbc7f850940351439df1a",
5 "challengeId" :"5b1102e536ee652d048aa036",
6 "maxPoints" :NumberInt(648),
7 "score" :NumberInt(45),
8 "bonus" :NumberInt(98),
9 "xp" :NumberInt(6),

10 "time" :NumberInt(22),
11 "created_at" :NumberLong(1527841690414)
12 }

information collected inside a schema document. Several external references
are saved inside each schema, in particular the player identifier that solved the
schema, the challenge identifier to which the schema belongs to, and other in-
formation used to evaluate the points assigned to the player for each schema.
Particular attention should be paid on the score, bonus and xp fields, that
store, respectively, the points obtained from the schema resolution, the bonus
points assigned due to the time used, and the experience points earned by the

CHAPTER 4. DEVELOPMENT OF THE WORK 47

player. finally, the code field, stores the information about the seven number
combination composing the schema.

4.1.5 Conclusion

As described during this section, the documents are saved in MongoDB to
guarantee the persistence of information. Also, in some situations, support
documents are created, in order not to, only, save transient data, but also to
exploit the MongoDB features in order to guarantee some functionalities that
would be difficult to implement using Java. In conclusion MongoDB isn’t only
a database where to store data, but also an important component with some
characteristics useful to enforce the algorithm developed inside the business
logic.

4.2 Tournament management

This section describes and analyses, in the details, the tournament APIs, used
by clients to communicate with the server, and the two main tasks that support
the tournament business logic. Special attention will be given to the algorithm
implemented and to the synchronization mechanism designed to ensure con-
sistency when multiple concurrent requests should be managed by the server.

4.2.1 Tournament API

First of all, should be specified that each client, that makes a request to the
server, must be authenticated in order to authorize the request. The autho-
rization mechanism exploited by Mak07 system is the OAuth 2.0 protocol. It
works by delegating the user authentication to a service that hosts the user
account (i.e. Facebook, Google), and authorizing third-party applications (i.e.
Mak07) to access the user account. It is, also, fully supported by Spring and in
particular by the Spring Security framework, that was used during the imple-
mentation of Mak07 authentication. Furthermore, a session mechanism was
implemented. It is based on the use of two cookies inside the HTTP header.
The JSESSIONID cookie is used by the server to identify a session, and the
Remember-Me-Token is used to make persistent and to update the session if
the JSESSIONID is expired. These two cookies are used to avoid the user au-
thentication each time he makes a request to the server. The description of
the OAuth 2.0 protocol, the session mechanism and how they are implemented
in Spring are not a purpose of this elaborate.

In the following, the API endpoints, developed to support the tournament
feature, are described and analysed. It should be underlined that all the REST-
ful principles are applied as much as possible during the development, in or-
der to make the API consistent and idempotent. The designed endpoints are:

1. GET /api/tournaments: it returns a list of tournaments, that are in the
CREATED state, so that the user is able to sign up to one of them. An

48 CHAPTER 4. DEVELOPMENT OF THE WORK

empty list is returned if there are no available tournaments.

2. GET /api/me/tournaments: it returns a list of tournaments, to which
an user has participated, that are in the COMPLETED state, and the one
to which is participating, if any, that is in a non final state. The last seven
days are considered, in order to get only the most recent tournaments.

3. GET /api/me/activeTournament: it is pointed by a player that wants to
know the identifier of the tournament he is participating. If there are no
active tournament, the 404 error is returned.

4. POST /api/tournaments: this resource is exploited to create a new
tournament. The user sends to the server the tournament settings and a
list of friends he wants to invite. The tournament just created has only
one participant that is the creator itself. Therefore, the invited user are
notified by the server and the tournament information are persistently
saved in the database. Finally, a task is scheduled after 20 minutes, that
is going to manage the tournament beginning.

5. GET /api/tournaments/{id}: a tournament object, with the correspond-
ing identifier specified in the path endpoint, is returned to the user that
makes the request. Otherwise a 404 error, not found, is generated.

6. PUT /api/tournaments/{id}/signup: After checking if there are avail-
able tournaments, an user can sign up to one of them contacting this
endpoint. It returns the tournament object to which the player signed
up, otherwise different errors can be generated. If the registration phase
for that specific tournament is expired, a 404 error is returned, instead,
if the player has an active tournament yet, or the tournament is full and
can’t accept new participants, a 405 error is generated.

7. PUT /api/tournaments/{id}/unsubscribe: a player can delete his reg-
istration to a tournament if and only if the tournament isn’t started. Oth-
erwise an error 400 is returned.

8. GET /api/tournaments/{id}/challenges: it returns the list of all the
challenges information of the tournament identified by the unique id in-
side the endpoint path. If the tournament challenges are not been cre-
ated yet, the list is empty, or it could contain a number of challenges not
equal to the maximum number expected, if the tournament isn’t finished.

9. POST /api/tournaments/{id}/invite: it is used if a player wants to in-
vite some friends to a tournament he is participating. The client sends
to the server a list of unique identifier of Mak07 users he wants to in-
vite. The server updates the list of invited friends of the tournament, and
sends a notification to the interested users. This endpoint works only
during the registration phase.

CHAPTER 4. DEVELOPMENT OF THE WORK 49

10. PUT /api/tournaments/{id}/refuse: it is contacted by a player when it
is invited to take part to a tournament, but he doesn’t want to participate.
If a refuse request is performed, the server updates the list of invited
friends, eliminating the user that have made the request. This endpoint
works only during the registration phase.

11. GET /api/me/invitedTournaments: it returns all the tournaments to
which an user is invited, but he is not a participant. This API is designed
to allow an user to accept only the invitation of interest.

All the information, exchanged among client and server through these APIs,
are compacted in json documents. If a non authenticated user tries to make
a request, the server responses with a 403 error, "player not authenticated",
refusing the request.

4.2.2 Play challenge API

As mentioned in the sections above and during the Design chapter, each tour-
nament has several rounds, up to 4, according to the maximum number of
participants, and each round has several challenges, the number of which de-
pends on the the round number. It was thought to exploit as much as possible
the code already developed for the challenge feature. In the following, the
main endpoints, already available in the server and used by clients to play
challenges, are listed:

• PUT /api/challenges/{id}/play: in order to play a challenge, each user
must inform the server that he is going to start a specific challenge. The
server receives the firebase id of the device on which the user wants to
play the challenge, in order to lock any attempt to play the same chal-
lenge from several devices.

• PUT /api/challenges/{id}: this endpoint allows each user to update the
state of a specific challenge. The challenge identifier is specified inside
a path parameter. Also, the client should send to the server the new
state to be assigned to the challenge, and the schemata solved during
the game, if the user has just played the challenge. The update request
is always executed after the play request. If the update is not allowed,
or the user makes a wrong update, a corresponding error message is
generated.

During the tournament algorithm implementation, little code modifications
are inserted inside the logic of the play request, that are going to be explained
in the following, instead no modification or insertion are done for the update
request, that is used as it is.

4.2.3 Registration phase and synchronization

After the execution of the request to create a tournament, a document that
maintains all the tournament information is inserted inside the database. At

50 CHAPTER 4. DEVELOPMENT OF THE WORK

Listing 4.6: Update tournament participants function, due to user registration

1 @Override
2 public Tournament updateTournamentParticipants(String tournamentId,

String playerId, int maxParticipantsNumber, boolean signup) {
3 Query query = new Query();
4 Criteria criteria = new Criteria().andOperator(
5 new Criteria().where("_id").is(tournamentId),
6 new Criteria().where("participantsNumber")
7 .lt(maxParticipantsNumber),
8 new Criteria().where("state")
9 .is(Tournament.TournamentState.CREATED),

10 new Criteria().where("participants").nin(playerId)
11);
12 if (signup) {
13 criteria.and("created_at").gt(System.currentTimeMillis() -

TimeUnit.MINUTES.toMillis(20));
14 }
15 query.addCriteria(criteria);
16 Update update = new Update();
17 update.inc("participantsNumber", 1);
18 update.addToSet("participants", playerId);
19 Tournament updatedTournament = template.findAndModify(query,
20 update,
21 FindAndModifyOptions.options().returnNew(true),
22 Tournament.class);
23 return updatedTournament;
24 }

this point, the registration phase begins, during which several concurrent re-
quests, that want to modify the tournament document, can be received by the
server. The main APIs that modify relevant information are: the request to
sign up to a tournament and the request to delete a registration. They both
update the list and the number of participants inside the tournament docu-
ment. In order to prevent inconsistent updates, the findAndModify() function
is exploited, that guarantees the atomicity of access and update on MongoDB
documents. As designed, each user can have only one active tournament at a
time. Any attempt of an user, already participating to a tournament, to create
a new one or to sign up to an existent one, must be prevented. In order to do
this, the collection of ActiveTournament document is exploited. When the user
performs one of these two requests, the server logic tries to insert a document
inside the underlined collection. If a document, related to the user, is already
inside the collection, the action is aborted, and an error message is sent to the
client. Furthermore, the requests to invite friends and to refuse an invitation
modify the invited friends list inside the tournament document, so, the Find-
AndModify function is exploited in these situations too. In conclusion, If one

CHAPTER 4. DEVELOPMENT OF THE WORK 51

of the mentioned requests is executed after the registration phase, i.e. when
the 20 minutes expires, an error 400 - "time expired" is sent to the client.
This kind of check is made exploiting the MongoDB query parameters. As de-
scribed inside the section 4.1.1, each tournament document has a state and a
created_at fields. When an update is performed on a tournament document,
these fields must be checked, verifying that the state field has the value CRE-
ATED, and the created_at field has a value less than 20 minutes (As showed in
the listing 4.6). If one of these checks fails, it means that the tournament has
exceeded the registration phase any update must be discarded.

4.2.4 Start Tournament Scheduled Task

Listing 4.7: StartTournament scheduled task

1 @Override
2 public void run() {
3 Tournament t = tournamentManagement
4 .getTournamentRepository().findById(tournamentId);
5 try {
6 if (t.getParticipantsNumber() >= 2) {
7 Collection<String> bots = null;
8 List<String> users = t.getParticipants();
9 if (t.getParticipantsNumber() != t.getMaxParticipants()) {

10 bots = tournamentManagement.getWebSocketGeneralService()
11 .getRandomNBot(t.getMaxParticipants() -

t.getParticipantsNumber());
12 for (String bot : bots) {
13 tournamentManagement.getTournamentRepository()
14 .updateTournamentParticipants(t.getId(), bot,
15 t.getMaxParticipants(), false);
16 }
17 }
18 tournamentManagement
19 .getTournamentPhasesRepository()
20 .save(new TournamentPhases(tournamentId,

Tournament.TournamentState.IN_PROGRESS_1, 0));
21 Collections.shuffle(users);
22 tournamentManagement.CreateTournamentChallenges(users, bots,

t.getId());
23 tournamentManagement
24 .getTournamentRepository()
25 .updateTournamentState(t.getId(),

Tournament.TournamentState.IN_PROGRESS_1);
26 //notify users
27 ...
28 //schedule new task after 10 minutes and 30 second
29 tournamentManagement.getTaskScheduler()

52 CHAPTER 4. DEVELOPMENT OF THE WORK

30 .schedule(new TournamentPhase(tournamentId, 1,
tournamentManagement), new Date(System.currentTimeMillis()
+ tournamentManagement.getPHASE() + 30000));

31 } else {
32 tournamentManagement
33 .getTournamentRepository()
34 .updateTournamentState(t.getId(),

Tournament.TournamentState.CANCELED);
35 tournamentManagement
36 .getActiveTournamentRepository()
37 .deleteActiveTournamentByPlayerId(t.getCreator());
38 tournamentManagement.sendFirebaseNotification(t.getName(),

t.getId(), t.getCreator(), "UPDATE_TOURNAMENT",
"UPDATE_TOURNAMENT_CANCELED");

39 }
40

41 } catch (UserPlayerNotFoundException e) {
42 ...
43 }
44 }

The beginning and the rounds of a tournament are managed by two im-
portant tasks. The first of them is the StartTournament task that is in charge
of managing the transition from the CREATED state to the IN PROGRESS 1
state for a tournament. This transition happens at the end of the registration
phase. In fact, the execution of this task is scheduled after 20 minutes the cre-
ation of a tournament. A StartTournament task is performed for each created
tournament. In order to develop this task, it was thought to create a class that
implements the Runnable interface, so, inside the run method is contained
the task logic.

In the listing 4.7 is listed the task code, that is going to be analysed. After
getting the tournament information, the first action to be performed is check-
ing the number of participants. It was thought to limit the number of human
participants to at least 2. If the tournament creator is the only participant,
the tournament state is set to CANCELED and the creator is notified that the
tournament hasn’t reached the minimum number of human players. On the
contrary, if there is at least two participants the tournament can start. Once
again, the participants number is checked in order to understand if the maxi-
mum number of participants is reached. If it is reached, the following step is
executed, otherwise a suited number of players must be added in order to ob-
tain this value. To overcome this problem, an already available game feature
is exploited, the Bot player. Mak07 system makes available a pool of 44 bot
players, that can be incremented with a specific server request. A suited num-
ber of random bots is selected to be added to the tournament as participants,
in order to fill the gaps left by the missing players. Now everything is ready to
the next step, creating the challenges for the round one. So, the tournament
state is set to IN PROGRESS 1, the list of users is shuffled in order to create

CHAPTER 4. DEVELOPMENT OF THE WORK 53

as much as possible random challenges. The method CreateTournamentChal-
lenges receives the list of human and bot participants and the tournament
identifier, and it is in charge of creating the challenges among players. It
couples a player from the the human list and one from the bots list, up to
one of the two lists becomes empty, and the players in the remaining one are
coupled together. For each couple, a challenge is generated, and a document
of type TournamentChallenge is created and inserted inside the list of tour-
nament challenges. The created challenge is in the state CREATED and the
RANDOM type is associated to it, if both players are humans, otherwise the
RANDOM_BOT type is assigned. Finally, a document inside the support col-
lection TournamentPhases is inserted for the actual tournament, storing the
tournament id, the state, and the number of ended challenges, that, at cre-
ation time, is equal to 0. This support collection is going to be used in order
to speed up the end of a round. The last step is to notify the players that the
tournament is begun, and that the challenges of the first round are available
to be played. Finally, a new task is scheduled that is in charge of terminating
a round and starting the following one. In conclusion, as pointed out during
the above sections, the tournament document can be updated by the user only
during the registration phase, further updates are going to be executed only
by the two scheduled tasks.

4.2.5 Tournament Phase Scheduled Task

Listing 4.8: Tournament Phase task

1 @Override
2 public void run() {
3 try {
4 ...
5 if (!tournamentManagement.getTournamentPhasesRepository()
6 .updateState(tournamentId, oldState, newState)) {
7 return;
8 }
9 ...

10 int numberOfWinners =
putChallengesInAFinalState(t.getChallenges(), fromIndex);

11 ...
12 if (numberOfWinners > 1) {
13 for (...) {
14 String player1 =

challengesMap.get(challengeNumber).getWinner();
15 String player2 = challengesMap.get(challengeNumber +

1).getWinner();
16 if (player1 == null) {
17 if (player2 == null) {
18 tournamentManagement.getTournamentRepository()

54 CHAPTER 4. DEVELOPMENT OF THE WORK

19 .updateTournamentChallenges(tournamentId,
newChallengeNumber++, null, null);

20 ...
21 } else {
22 tournamentManagement.getTournamentRepository()
23 .updateTournamentChallenges(tournamentId,

newChallengeNumber++, player2, null);
24 ...
25 }
26 } else {
27 if (player2 == null) {
28 tournamentManagement.getTournamentRepository()
29 .updateTournamentChallenges(tournamentId,

newChallengeNumber++, player1, null);
30 ...
31 } else {
32 Challenge c = tournamentManagement.getChallengeService()
33 .createTournamentChallenge(player1, player2,

tournamentId);
34 tournamentManagement.getTournamentRepository()
35 .updateTournamentChallenges(tournamentId,

newChallengeNumber++, c.getId());
36 }
37 }
38 }
39

40 tournamentManagement.getTournamentRepository()
41 .updateTournamentState(t.getId(),
42 Tournament.getTournamentStateFromInt(tournamentPhase+1));
43 //notify users of the new available phase
44 tournamentManagement.getTaskScheduler()
45 .schedule(new TournamentPhase(tournamentId,

tournamentPhase+1, tournamentManagement),
46 new Date(System.currentTimeMillis() +

tournamentManagement.getPHASE() + 30000));
47 } else {
48 ...
49 tournamentManagement.getTournamentRepository()
50 .updateTournamentState(t.getId(),

Tournament.TournamentState.COMPLETED);
51 ...
52 for (String player : t.getParticipants()) {
53 tournamentManagement.sendFirebaseNotification(t.getName(),

t.getId(),
54 player, "UPDATE_TOURNAMENT", "UPDATE_TOURNAMENT_COMPLETED");
55 }
56 }
57 } catch (UserPlayerNotFoundException e) {
58 ...

CHAPTER 4. DEVELOPMENT OF THE WORK 55

59 }
60 }

The other important task, in charge of managing the end of a tournament
round and the beginning of the following one, is the TournamentPhase task.
An abstract is reported in the listing 4.8. It is scheduled for the first time
by the StartTournament task. Each TournamentPhase task has to receive the
information about the tournament it should manage and the round on which
the task should focus on.

The task, after retrieving the data related to the tournament from the
database, must update the information about the tournament state inside the
TournamentPhases collection. Since more than one task can be scheduled
to manage the same tournament phase, before performing the mentioned up-
date, a query is executed in order to understand if it has already been done
by another task. The FindAndModify() method of MongoDB is exploited, that,
atomically, is able to query and update a document inside a collection. If the
query fails, another task has already managed the end of the round of interest,
so the current task must die without performing other actions. Otherwise the
update can be performed by the current task, and other possible tasks that
want to manage the same tournament round are blocked.

At the end of a tournament phase, it is very important that all the chal-
lenges, belonging to that round, are in a finale state. If they don’t, they must
be put in a final condition, in order to not be modifiable any more, and to
maintain the system database in a consistent state. The putChallengeInAFi-
nalState() method is in charge of doing this, but also performing other actions.
It receives, as parameters, the list of tournament challenges, and the starting
index from which the challenges must be considered (i.e. let’s suppose that the
number of tournament participants is 8, and the task should manage the end
of the round 2, so it should consider only the challenges that has a challenge
number greater or equal to 5). This method scans the input list of challenges,
selects the ones of interest, and for each of them it checks the state. According
to the challenge states analysed in the 4.1.4 section, some situations should
be managed:

• the challenge is in the CREATED state. This means that both players
have abandoned the game, so there is no winner, and the challenge is
put in the final state TIMEOUT.

• the challenge is in the SCORE_1 or SCORE_2 state. It means that it is
played only by one of the two players, that is the winner, because the
other has abandoned the game. So, the challenge is put in the final
state ABANDON_1 or ABANDON_2 according to which player has left
the match.

• the last case, instead, describes the situation in which the challenge
is already in a final state, represented by the conditions ABANDON_1,
ABANDON_2 and COMPLETED. The only performed action is declaring
the winner.

56 CHAPTER 4. DEVELOPMENT OF THE WORK

The method putChallengeInAFinalState(), is in charge, also, to update, the
information about the winner inside the tournament challenges list, and to
return, to the calling function, the number of total winners. Since that a chal-
lenge could have no winner, the winner field, inside the tournament challenges
list, could contain the value null. Finally, each time a player has been defeated
in a challenge, he is eliminated from the tournament, so that he can sign up to
a new one. This is done, deleting the related document inside the ActiveTour-
nament collection.

Knowing the number of winners at the end of each phase, it is possible to
understand if a new round should be scheduled or not. If there are one or
zero winners, it means that the tournament is finished, so it is put in a final
state, and all the participants are notified of the end of the tournament. This
situation can happen, not only in a final round, but also during intermediate
ones. For this reason a tournament can finish before than expected. Instead,
if the number of winners is greater than 1, a new round phase must be sched-
uled. In order to do this, new challenges must be created. So, the winners of
the preceding round, are coupled with respect to the tournament schema 3.4.
This step could manage particular situations:

• both the winners of the challenges of the previous round exist, so they
are coupled to create a new match for the next round. A new Tour-
namentChallenge document (Section 4.1.1) is inserted inside the chal-
lenges list of the tournament document, it collects the number and the
identifier of the challenge, instead the winner will be registered in a sec-
ond time.

• if one of the two winners doesn’t exist, the new challenge is not cre-
ated, because it is not needed, due to the fact that the possible winner
is already available. This information is stored inside a TournamentChal-
lenge document, that is inserted in the tournament challenges list. the
document collects, also, the data about the challenge number, instead
no information about the challenge identifier are available, for obvious
reasons.

• a situation similar to the previous one, could happen if both winners don’t
exist. In this case, the TournamentChallenge document contains only the
information about the challenge number, the other fields are left empty.

Finally, the following round can start. The Tournament document is updated
to the incoming phase, and all the participants to the new round are notified.
As final step, the TournamentPhase task schedules another task of the same
type, passing, as parameter, the information about the new incoming phase.
In conclusion, a clarification should be done, about the possibility of having
more than one task, managing the end of the same round. As explained, a
round lasts ten minutes by default, so a TournamentPhase task is scheduled
at the end of this time, in order to handle the end of the round itself. But,
conceptually, a round can finish before the ten minutes expiration, if and only
if all the challenges belonging to that round are in a final state, i.e. all the

CHAPTER 4. DEVELOPMENT OF THE WORK 57

players have played the games. In order to guarantee this functionality, a new
task of type TournamentPhase is released after the end of the last challenge.
Finally, according to the synchronization mechanism explained at the top of
this section, only this last released task is going to execute its job, instead the
one scheduled at the ten minutes expiration is going to die.

Round synchronization

As mentioned several times inside this elaborate, a great effort has been spent
in order to integrate the challenge mechanism inside the tournament one. A
challenge is composed by two games, one for each player, that can be played
in different instants of time. So a challenge can last long time if one of the two
player doesn’t play his game. On the contrary, each tournament round has a
fixed execution time, that must last up to 10 minutes. So the challenges inside
each round must finish in a limited amount of time. In order to guarantee
this constraint, it was developed a simple but efficient mechanism to limit the
updates that an user can make on a challenge outside the 10 minutes available
for the round.

The starting point, as explained in the section 4.2.2, is the following: when
a player wants to play a challenge, the device, running the mobile application,
sends a play request to the server, in order to say that the user wants to start
playing the game, and an update request in order to register the obtained re-
sult. In a first time, it was thought to discard an update request that arrives
in a wrong instant of time, reporting an error to the user. This solution could
be not satisfying for the user experience, because, at the end of a challenge,
the user expects to see its final result and not an error message. After this
approach a new one was developed. Rather than stopping an update request,
it was decided to block a play request, but this solution introduces new prob-
lems that should be managed. According to the fact that each challenge lasts
two minutes, between the play request and the update one there is a gap of at
least two minutes, because the play is executed before playing the game, in-
stead the update, later. This means that if the round duration is of 10 minutes,
a player must start playing a challenge within eight minutes from the begin-
ning of the round. Any attempt to start a challenge in the last two minutes
must be discarded. In this last period, only update requests are accepted by
the server. Due to this consideration, the update request algorithm, developed
during past implementations, is not modified, instead, a check is introduced
inside the play request algorithm, in order to limit the requests, related to
tournament challenges, within eight minutes from the beginning of the round.
Furthermore, the fact that, the two minutes of time between the play and the
update requests could be enlarged due to network delays, should be consid-
ered. To tackle this uncertainty, a suited delay of 30 seconds is introduced in
the schedule time of each TournamentPhase task. So each task that manage
the transition from a phase to another is scheduled, from the previous one,
after ten minutes and 30 seconds. Update requests, related to play requests
executed in time, that accumulate a big number of delay are, however, man-

58 CHAPTER 4. DEVELOPMENT OF THE WORK

aged by the TournamentPhase task. All these expedients guarantee a correct
and consistent execution of the code.

Figure 4.1: Architecture used to send push notification from Spring exploiting
Firebase.

4.2.6 Notification management

Listing 4.9: Firebase notification method

1 public void sendFirebaseNotification (String tournamentName, String
tournamentId, String userId, String title, String body) {

2

3 List<RememberMeToken> result = mongoPersistentTokenRepository
4 .findTokenByUsername(userId);
5 List<String> registration_ids = new ArrayList<>();
6 for (RememberMeToken r : result) {
7 registration_ids.add(r.getFirebaseId());
8 }
9

10 ...
11

12 firebaseManagementService
13 .sendMessageTournament(firebaseMessageTournament);
14 }

As described during the previous chapter, Mak07 is a mobile game, and, in
order to improve the user experience, a suited notification mechanism should
be implemented. Push notifications are used to enforce all the features of
Mak07. Specific notifications were scheduled during the development of the
challenge algorithm, not only to inform the final user about specific events,
but also to update the user interface if something changes on the server side.
Therefore, suited notifications are scheduled in the tournament algorithm too,
in order to inform the participants about the tournament main events, like the

CHAPTER 4. DEVELOPMENT OF THE WORK 59

beginning of a round and the end of a tournament, or to inform the user that
is invited to take part to a specific tournament.

The figure 4.1 shows the architecture exploited to implement the notifi-
cations based on the Firebase Cloud Messaging service, provided by Google.
The method reported in the listing 4.9 is the one implemented to send notifica-
tions due to tournament changes. Each time an information should be notified
to the user, this method is invoked. It receives as parameter the tournament
identifier, the tournament name, the title and the body of the notification, that
are going to be shown on the screen of the device. The method, thanks to the
userId parameter, retrieves, from the database, the firebase id of the devices
related to the user that should receive the notification. Then, the object, that
contains the information to be sent to Firebase and the body of the notification,
is built, and passed as parameter to the sendMessageTournament() method.
This method, belonging to the FirebaseManagementService interface, is in
charge of sending an HTTP request to the Firebase service endpoint, that is
going to forward the message to the user devices.

Chapter 5

Conclusion

The starting point of this elaborate is the design and development of a new
feature for the Mak07 mobile game: the possibility of having tournament
among players. The development of this feature starts from the analysis of
the requirements and of the most frequent use cases, focusing, also, on some
particular cases that should be tackled during the algorithm definition. After
this first study phase, the design phase begins, in which all the data struc-
tures needed by the code are designed, and the algorithm that has to man-
age the tournament feature, along with the synchronization mechanism, is
defined. Therefore, during the implementation phase, the defined algorithm
is implemented, spending a big effort on making the code as much modular as
possible, and merging perfectly the new functionality with the existing ones.
In conclusion, a final phase of testing was executed in a developing environ-
ment, in order to test the correctness of the application. Now the tournament
feature is available as update of Mak07 mobile application.

5.1 Feature Development

Mak07 is born with modularity quality and prone to feature development.
Therefore, during the development of this final project, possible future de-
velopments are always kept in mind. In fact, as explained at design time,
each tournament is identified by a type, that could be PUBLIC or PRIVATE,
but only the first of these two possibilities has an implementation inside this
final project, instead the other one could be deepened in a future develop-
ment. Furthermore, another improvement could be the possibility of having
achievements inside the game, in order to improve the game experience and
to reward the better players. Finally, due to the fact that the game is prone
to growth, in the future, could be necessary improving the backbone architec-
ture supporting the Mak07 system. This can easily be done thanks to the used
technologies, as MongoDB and Docker, that are suited for horizontal scaling.

61

Bibliography

[1] "REST principles explained". 2013. URL: https://www.servage.net/
blog/2013/04/08/rest-principles-explained/.

[2] "WHAT IS MONGODB?" URL: https : / / www . 3pillarglobal . com /
insights/what-is-mongodb.

[3] Matt Allen. "RDBMS are not designe to handle data". URL: https :
/ / www . marklogic . com / blog / relational - databases - are - not -
designed-for-mixed-workloads/.

[4] Ian Blair. "How to Create a RESTful API For Your Mobile App". 2017.
URL: https://buildfire.com/create-restful-api-mobile-app/.

[5] Mike Chapple. "Abandoning ACID in Favor of BASE in Database Engi-
neering". 2017. URL: https://www.lifewire.com/abandoning-acid-
in-favor-of-base-1019674.

[6] Loredana Crusoveanu. "Intro to Inversion of Control and Dependency
Injection with Spring". 2018. URL: http://www.baeldung.com/inversion-
control-and-dependency-injection-in-spring.

[7] Firebase. "Firebase Cloud Messaging HTTP Protocol". 2018. URL: https:
//firebase.google.com/docs/cloud-messaging/http-server-ref.

[8] Akhil Mehra. "Understanding the CAP Theorem". 2017. URL: https:
//dzone.com/articles/understanding-the-cap-theorem.

[9] MongoDB. "Introduction to MongoDB". URL: https://docs.mongodb.
com/manual/introduction/.

[10] MongoDB. "Types of NoSQL Databases". URL: https://www.mongodb.
com/scale/types-of-nosql-databases.

[11] MongoDB. "What Is A Non Relational Database". URL: https://www.
mongodb.com/scale/what-is-a-non-relational-database.

[12] Martin O’Shea. "How does a spring boot work?" 2017. URL: https:
//www.quora.com/How-does-a-spring-boot-work.

[13] Pivotal. "Bean scopes". URL: https : / / docs . spring . io / spring -
framework/docs/3.0.0.M3/reference/html/ch04s04.html.

[14] Margaret Rouse. "RDBMS (relational database management system)".
URL: https://searchdatamanagement.techtarget.com/definition/
RDBMS-relational-database-management-system.

63

[15] Michael Shrivathsan. "Use Case Template and an Example". 2009. URL:
http://pmblog.accompa.com/2009/10/08/use- case- template-
example-requirements-management-basics/.

[16] Spring. "Understanding AMQP, the protocol used by RabbitMQ". 2010.
URL: https://spring.io/blog/2010/06/14/understanding-amqp-
the-protocol-used-by-rabbitmq/.

[17] Tutorialspoint. "DBMS - Overview". URL: https://www.tutorialspoint.
com/dbms/dbms_overview.htm.

[18] Tutorialspoint. "Spring Framework - Overview". URL: https://www.
tutorialspoint.com/spring/spring_overview.htm.

[19] Tutorialspoint. "SQL - Overview". URL: https://www.tutorialspoint.
com/sql/sql-overview.htm.

[20] Craig Walls. "Spring in action, fourth edition". Manning.

		Politecnico di Torino
	2018-07-17T07:27:56+0000
	Politecnico di Torino
	Giovanni Malnati
	S

