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Abstract

In lower limb rehabilitation, the role of the phisiotherapist is fundamental, but a lot of

studies demonstrate that robotic interventions in rehabilitation and patient’s involvement

in voluntary movement improve recovery at a faster rate. In this respect, the use of

exoskeletons controlled by residual muscle activity can help the patient to reach better

results. Many works exist in literature about the myoelectric control of external devices

such as prostheses, orthoses and exoskeletons. Myoelectric control is usually performed

using standard bipolar EMG. In recent years, it has been demonstrated that sEMG recorded

with bipolar EMG is affected by many factors depending on central and peripheral factors;

among them the geometrical changes of the muscle during dynamic tasks. In order to

collect a more robust signal, representative of the muscle activity, high density sEMG

has been proposed. This technique, by detecting EMG from the whole muscle surface, is

more robust than bipolar technique. The main aim of this work was to identify the best

feature extracted from HD-sEMG signals recorded from lower limb muscles that allows

the recognition of daily activities. Nine healthy and voluntary subjects were involved in

the experiments. The movements considered in the experimental protocol were: Stand to

sit, sit to stand, stair ascending, stair descending, a gait cycle, rest in upright position

and rest in a sitting position. Monopolar signals were recorded from 7 muscles using four

matrices of 32 electrodes placed on Rectus Femoris, Vastus Medialis, Vastus Lateralis and

Tibialis Anterior and two matrices of 64 electrodes placed on Gastrocnemius Medialis

and Semitendinosus & Biceps Femoris. Single differential EMG signals were calculated

from monopolar signals and used in the analysis. Fourteen features were extracted from

epochs 300ms long with overlap 50%, allowing also its calculation for possible real time

applications. For the selection of the best feature subset both the computational time and

the filter approach, based on information about class separability (J index), were used.

The wrapper approach based on Linear Discriminant Analysis (LDA) was then applied in

order to compare and to validate the results of the J index with the performance of the

LDA classifier. Results show that the two methods are correlated (Spearman’s rho=0.984

and p-value<0.01 ). Features calculated in frequency domain, Mean Frequency (MNF) and

Median Frequency (MDF), were excluded on the basis of the computational time criterion.

Among the other features, Waveform Length(WL) has the best overall performance with

the highest J value (0.061), the highest accuracy (98%) and a low computational time

(9.4ms). Furthermore, the Integrated EMG (J=0.0583), the Mean of Absolute Value

(J=0.0583) and the Difference Absolute Standard Deviation (J=0.0582) are only 5% less

performing and can be taken into account for a feature vector creation. In conclusion,

the best HD-sEMG feature identified on the basis of a class separability analysis showed

also the best performances in the discrimination between daily live tasks. Three other
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features performed in a similar way. These four features used separately allow to obtain a

classification accuracy greater than 96%.
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1 Introduction

1 Introduction

Nowadays Stroke is one of the main causes of serious long-term disability as well as

morbidity and mortality [20]. Unfortunately, only in Europe, people affected by Stroke are

about one million [21] and in U.S.A. alone, approximately 800.000 people have a Stroke

episode every year. The majority of victims suffers from neurological and sensory-motor

deficits, so they need a period of rehabilitation in order to achieve functional independence.

Gait recovery, with the final aim of walking to perform daily activities, is the major objective

in the rehabilitation program for stroke patients. In this respect, hemiparesis is one of the

most common manifestation of Stroke. In order to cope with that problem task-oriented

repetitive movements can improve movement coordination and muscular strength in patients.

Manual assistance of therapists during the daily life activities plays a very important role in

this rehabilitation field. Many reviews in the last years considered traditional gait training,

in combination with high-technology rehabilitation approaches [22], evalueting in this way

the benefits of this. Infact, the clinician can obtain highly controlled repetitive and intensive

training by means of robotic rehabilitation overcoming the burden of clinical staff. The

usage of robotic interventions in training tasks is expected to improve the recovery at a

faster rate, and to resume daily activities sooner; this is the reason why different kind of

technologies have been designed. Body weight support with treadmill training machines,

such as Lokomat [23], LOPES [24] and ALEX [25] have been used during gait training but

it is known that patient’s involvement in voluntary movement is important to get better

results in rehabilitation [26]. Furthermore, under physiological conditions, such as overground

walking, congnitive engagement can be increased as well as sensory inputs and central neuronal

circuits become to be activated reaching a massive neural regeneration effects. For this reason,

ambulatory exoskeletons with control strategies based on Emg signals such as H2 [27] can

be more effective to reinstate neuroplasticity and improve motor functions. In this project,

in order to recognize which daily living movement (among 7) the patient wanted to do, HD-

EMG (High-Density-Electromyography) is used in combination with an evaluation of feature

extraction and selection to find the best feature subset. It is more robust than the bipolar

technique usually used in myoelectric control applications, and it allows to take into account

the whole muscle surface. In general feature selection can be performed following two different

ways: filter approach based on a statistical criterion and the wrapper approach based on the

classification accuracy. The former, compared to the latter has a simplier implementation and
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1 Introduction

the computational cost is neatly lower. In this study it is demostrated, using the Spearman’s

rank correlation coefficient, that both methods are equivalent because they get the same

feature ranking, which means that when the J index (for the filter approach) increases, also

the LDA (for the wrapper approach) classification accuracy increases. For this reason, in this

work, Fisher linear discriminant index (J index) is used to find the best subset of features

among the fourteen ones studied, even if two of them are immediatly eliminated because of the

high computational time that doesn’t allow eventual real time applications. All the features

evaluated were found in literature among different papers and they are in both frequency and

time domain. The relevance of this work is that the majority knowledge of feature selection is

about upper limbs and few works are referred to lower limbs. Furthermore, the most relevant

is the fact that there is no evident researches that applies these tecniques on High-Density EMG.

Background knowledge about muscle physiology, lower limb muscles used in this project

and EMG fundamentals and artifacts are condensed in the next subchapters.
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1 Introduction

1.1 Muscle physiology

In the human body there are three different muscle types which differ in their forms and

functions: skeletal, cardiac and smooth. Cardiac muscle fibers, placed in the heart and the

bottom of large veins, as well as smooth muscle cells are managed through the autonomic

(sympathetic and parasympathetic) nervous system. In contrast, skeletal muscle fibers are

controlled by the somatic nervous system.

1.1.1 Skeletal Muscle Structure

Skeletal muscle forms the vast majority of our muscle tissue. It constitutes the 40% of

the body weight and contains 50% – 75% of the body proteins. Skeletal muscle has multiple

functions.

It is a key component of the locomotor system. It has the ability to convert the chemical

energy into mechanical energy therefore generating movement. In this way, a subject can

be independent and able to carry out daily activities. Skeletal muscle is also a reserve of

carbohydrates and amino acids for different tissues such as skin, heart and brain.

Skeletal muscle contributes to the maintenance of blood glucose levels during periods of

starvation. The secondary disability to impaired skeletal muscle is particularly debilitating.

The good maintenance of skeletal muscle health is crucial for the prevention of various diseases

and the psychological stress due to the disability.The skeletal muscles’ architecture could be

described as a bundle of muscle fibers held all together through associated connective tissue

called fascia (collagen fibers).

Muscle fibers are multinucleated, post-mitotic cylinders which means that they consist of

many myofibrils composed by ’Actin’ and ’Myosin’ proteins and can’t change in number,

but just in size, and are fully developed by birth, as Frontera’s and Ochala’s skeletal muscle

review [2] explains (Figure 1):

Figure 1: Skeletal Muscle Structure Taken from [1]
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1 Introduction

Myofibrils consist of very fine contractile fibres, which extend in group in parallel columns

along the length of striated muscle fibres. In each muscle fibre there are hundreds of myofib-

rils . Myofibrils consist of sectional sarcomeres ordered in series and separated each other by Z

lines. The myofibrils are made up of two types of protein filaments which give the muscle its

striped appearance. The thick filaments are composed by myosin, and the thin filaments are

composted by actin, along with two other muscle proteins, tropomyosin and troponin. Every

sarcomere is characterized by different bands and zones as showed in (Figure 2);

Figure 2: Detailed Structure of one Sacromere. Taken from [2]

The ’I Band’ indicates the region where ’Thin Filaments’ are not superimposed by ’Thick

Filaments’. The ’A Band’ indicates the interacting region between ’Actin’and ’Myosin’, the

’M Line’ indicates the centre of this region. The ’H Zone’ only contains thick filaments which

are not covered by thin filaments. ’Cross Bridges’ indicate zones of attachments of myosin

with actin. The inner structure of myosin, with its ’Myosin Head’ and ’Myosin Tail’ as well

as actin with its two component proteins ’Troponin’ and ’Tropomysin’ are shown. Muscular

contraction is caused by the interaction between actin and myosin as they temporarily bind

to each other and are released.

1.1.2 The Sliding Filament Theory

The sliding filament theory explains contraction and relaxation behaviour of muscles by

means of pulling and relaxation of actin and myosin filaments. Before muscle contaction

happens, the Sarcoplasmic Reticulum (SR) has to release calcium ions into the cytosol, the
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calcium ions will bind to troponin which causes the troponin-tropomyosin complexes to move

away from the myosin binding sites on actin. Once this happens contraction can begin. The

process is similar to rowing, each myosin head rows forward using the actin as a base to pull

from. (Figure 3);

• Myosin heads contain a site for ATP binding and ATPase enzymes. ATP is hydrolyzed

into ADP freeing up a Phosphate molecule, this energizes the myosin head.

• Myosin attaches to the myosin binding site on actin and releases the free phosphate

group. This forms the cross-bridge between the actin and myosin threads.

• Phosphate release by myosin triggers the actual power contraction stroke. ADP pocket

opens up on the myosin head. Myosin head rotates and releases the ADP. As the head

rotates it moves in a ratchet like motion and pulls the thin filaments closer to the center

of the M line of the sarcomere.

• When the ratchet motion is over the myosin awaits another ATP so it can be released

from the actin binding site. If an ATP is available the myosin detaches and begins

another stroke of the cycle. If not the Myosin remains locked in place and the muscle

remains locked up as well this is called “rigor-mortis” .

Figure 3: The Sliding Filament theory cycle. Taken from [3]

1.1.3 Nerve structure

Each neuron is made by a cell body and by an axon. The former contains a nucleus

which is the centre of operation for the neuron and dendrites. The latter carries the electrical

impulses away from the cell body and towards the muscle. The final part of an axon is known
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as axon terminals and end at synaptic knobs which have contact with the muscle. The axon is

surrounded by a Myelin sheath which acts to insulate the nerve. That sheath is not continue

but has breaks called nodes of Ranvier. The impulse jumps from one node to another, allowing

a faster conduction speed. (Figure 4)

Figure 4: Neuron anatomy.Taken from [4]

1.1.4 Motor control mechanisms

Motor programming takes place in the premotor cortex, the supplementary motor area,

and other associated areas of the cortex. Primary motor cortex is organized as a controlateral

motor map: this means that the right side of the body is mapped on left hemisphere, while the

left one is mapped on the right hemisphere. Inside motor cortex, the pyramidal tract spreads

impulses (in the form of nerve impulses) that control the execution of determined voluntary

movements. These impulses move from motor cortex to the lower motorneurons, located into

the ventral horn of the spinal cord (which is the lower part of the central nervous system).

Spinal cord gives rise to the peripheral nerves that reach out into all areas of our bodies,also

muscles, where a Neuromuscular Junction is formed (Figure 5). Inputs from these areas, from

the cerebellum and, to some extent, from the basal ganglia converge to the primary motor

cortex and excite or inhibit the various neurons of the primary motor cortex. The outputs

from the primary motor cortex have a powerful influence on interneurons and motoneurons of

the brain stem and of the spinal cord. There exists a link between the corticospinal tract and

alpha (a)-motoneurons, providing direct cortical control of muscle activity
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Figure 5: (A) Focus on the neuromuscular junction; (B) Motor control mechanism scheme. Taken
from [5]

1.1.5 Motor unit (MU)

A motor unit (MU) is composed by a single motoneuron ( alfa motoneuron in the spinal

cord) and all of the muscle fibres it innervates. A motor unit can contain from tens to

thousands of muscle fibres. When muscles produce large powerful movements,they contain

motor units with a large numbers of fibres, and for small intricate movements they contain

only a few fibres per motor unit. The synaptic knobs of the neuron meet the muscle fibres in

correspondence of the neuromuscular junction. When an impulse reaches the neuromuscular

junction, the Acetylcholine neurotransmitter is released and it filters across the synaptic

cleft(Figure 5A). After that the muscular contraction happens by mens of the sliding filament

theory(Figure 6).

A single muscle stimuli which comes from the brain to the skeletal muscles is called ’twitch’.

It consists of three different phases: ’Latent Period’, ’Contraction Phase’ and ’Relaxation

Phase’. The Latent Period is the shortest time interval between an Action Potential and the

muscle exitatition due to impulse travel time through nerves or chemical events in muscle fibers.

In the Contraction Phase the muscle shortens and produces tension.During the Relaxation

Phase the muscle goes back to its original length.

The mechanical response to repeated stimulation depends on the rate of the stimulation. A

muscle, like other excitable tissues, has a period following its action potential during which
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Figure 6: (MU) Motor unit organization.Taken from [6]

the membrane will not respond to stimulation regardless of the strength. This period is called

refractory period.Therefore, a second pulse within that interval will not cause any response.

Each stimulus causes a twitch. If stimuli are delivered slowly enough, the tension in the

muscle will relax between successive twitches. If stimuli are delivered at high frequency, the

twitches will overlap, resulting in tetanic contraction.(Figure 7)

Figure 7: Muscle activity when action potential comes and the differnt phases of the muscle activity.
Taken from [7] and modified.

1.2 Lower limb muscles

The muscles of lower limb include those of the thigh, leg and foot; in this work we

take into account seven different muscles: five of them from the thigh and two from the

leg. Respectively Vastus Medialis, Vastus Lateralis, Rectus Femoris, Biceps Femoris,

Semitendinosus, Gastrocnemius medialis and Tibialis Anterior.
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1.2.1 Vastus Medialis

Vastus medialis is part of Quadriceps positioned on the medial side of the anterior

thigh.This muscle originates from the intertrochanteric line and medial lip of linea aspera. It

is involved in knee extention and patella stabilization. (Figure 8)

1.2.2 Vastus Lateralis

Vastus lateralis is an anterior muscle of the thigh and also the largest of quadriceps femoris

group. It is on the side of the thigh and originates from different parts of the femur as the

upper intertrochanteric line, lower border greater trochanter, lateral side gluteal tuberosity,

upper half lateral lip of linea aspera and lateral intermuscular septum. The main functionality

of thi muscle is the knee extention and the patella stabilization. (Figure 8)

1.2.3 Rectus Femoris

Rectus Femoris is an anterior muscle of the thigh and also part of quadriceps femoris

group. It originates from the ilium superiorly to the acetabulum and it flexes the thigh at the

hip point and extends at the knee joint. (Figure 8)
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Figure 8: Muscle of anterior thigh: Vastus medialis, Vastus Lateralis, Rectus Femoris.Taken from [8]

1.2.4 Biceps Femoris and Semitendinosus

Biceps Femoris is a muscle located in the the posterior side of the thigh. As its name says,

it has two heads of origin: the long heads originates from the inner and lower impression on

the back part of the tuberosity of the ischium, and the short head arises from the lateral lip

of the linea aspera.Both heads of the biceps femoris are involved in knee flexion. (Figure 9)

Also Semitendinosus is a muscle located in the the posterior side of the thigh between

Semimembranosus and biceps Femoris. It is involved in extension of the thigh at the hip,

flexion of the leg at the knee and internal rotation of the knee when it is flexed. (Figure 9)

Figure 9: Posterior muscles of thigh included Biceps Femoris and Semitendinosus.Taken from [9]
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1.2.5 Gastrocnemius

Gastrocnemius is the most superficial muscle of all the muscles in the back portion of the

leg.It is made of two muscular regions, the medial head and lateral head, which attach to the

medial and lateral sides of the femur. Both the heads plantarflex the foot at the ankle and

flex the leg at the knee. (Figure 10)

Figure 10: Gastrocnemius muscle.Taken from [10]

1.2.6 Tibialis Anterior

The tibialis anterior muscle is a long, narrow muscle in the anterior compartment of the

lower leg. It originates from the lateral condyle and proximal body of the tibia and runs down

the shin laterally to the tibia. It performs dorsiflexion and inversion of the ankle. (Figure 11)

Figure 11: Muscles of the anterior leg included Tibialis Anterior.Taken from [11]
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1.3 EMG signal

EMG signal is a signal contains information of the collective electric signal from muscles,

which is controlled by the nervous system and produced during muscle contraction. The signal

represents the anatomical and physiological properties of muscles.

1.3.1 Motor Unit Action Potential (MUAP)

An action potential propagating down a motoneuron activates all the branches of the

motoneuron; these in turn activate all the muscle fibers of a motor unit. When the postsynaptic

membrane of a muscle fiber is depolarized, the depolarization propagates in both directions

(Figure 12) along the fiber. The membrane depolarization, by means of a movement of ions,

generates an electromagnetic field around the muscle fibers. The potential or voltage can be

detect using an electrode located around that field, whose time excursion is known as Muscle

Fiber Action Potential (MFAP).

A schematic representation of this situation is shown in (Figure 13). In that represenation

the n represents the total number of muscle fibers of one motor unit whose action potential

is detected by the electrode. For simplicity, only the muscle fibers from one motor unit are

depicted. On the right side of (Figure 13). there are the action potentials of the respective

muscle fibers. The individual muscle fiber action potentials represent the contribution that

each active muscle fiber makes to the signal detected at the electrode site.

The depolarizations of the muscle fibers of one motor unit overlap in time and the resultant

signal present at the detection site will constitute a spatial-temporal superposition of the

contributions of the individual action potentials. The resultant signal is known as Motor Unit

Action Potential (MUAP) and will be designated as h(t) in (Figure 13) and descrived by

Equation 1.

In normal muscle, the peak-to-peak amplitude of a MUAP detected with indwelling

electrodes (needle or wire) may range from a few microvolts to 5 mV, with a typical value of

500 µV and the time duration of MUAPs may also vary greatly, ranging from less than 1 to

13 ms [13]. In addiction, to sustain a muscle contraction, the motor units must be repeatedly

activated. The resulting sequence of MUAPs is called Motor Unit Action Potential Train

(MUAPT) and it is explained by Equation 2. [13].

EMG signal (3) is simply the algebric summation of the generated MUAPTs and background

interference.
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Figure 12: Representation of a motor unit (MU) and of a motor unit action potential (MUAP). Zoomed
view of the source. Taken from [12]

Figure 13: Schematic representation of the generation of the motor unit action potential. Taken
from [13]
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1.3.2 Mathematical model of EMG signal

To demonstrate in a mathematical way what expleined in the previous section, it is possible

to start from the definition of a Muscle Fiber Action Potential (MFAP), going through the

definitions of a Motor Unit Action Potential (MUAP) and Motor Unit Action Potential Train

(MUAPT) to arrive at the final mathematical formulation of the (EMG) signal.

In particular way :

MUAPj(t) =
nØ

i=1
MFAPi(t− τi)si (1)

where n is the number of muscle fibers in the jth MU of a contracting muscle, τi is the

temporal delay of MFPi(t) and si is a binary variable which is "1" if fiber i fires and is "0" if

it does not fire.

MUAPTj(t) =
MØ

i=1
MUAPji(t− δji) (2)

where M is the number of times that the jth MU fires, δji is the ith firing time of MUj and

MUAPji(t) is the ith MUAP generated by MUj during its ith firing.

EMG(t) =
NØ

J=1
MUAPTj(t) + n(t) (3)

where N is the number of active MUs, MUAPTj(t) is the MUAP generated by the jth MU,

and n(t)is background noise.

1.4 Noise sourses in EMG signal

EMG signal recorded from every muscle is mixed of various noise signals or artifacts.

The attributes of the EMG signal depend on the internal structure of the subject, including

the individual skin formation, blood flow velocity, measured skin temperatures, the tissue

structure (muscle, fat, etc.), the measuring site, and more. Beacuse of those, different types

of noise signals can be found within the EMG signals. This couls has a bad effect on the

results of feature extraction and on the diagnosis of the EMG signals. For this reason various

denoisins methods have been developed [28].
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1.4.1 Inherent Noise in the Electrode

Inherent Noise is a kind of noise common to all the electronic equipments that generate

electrical noise. The frequency range in which this noise is, goes from 0 Hz to several

thousand Hz. This noise can be eliminated by using intelligent circuit design and high quality

instruments.

1.4.2 Inherent Instability of the Signal

The frequency components between 0 and 20 Hz are very unstable because they are affected

by the firing rate of the motor units. The firing rate of the motor units is quasi-random so

that these components of the signal create a noise considered as unwanted. The numbers of

active motor units, motor firing rate and mechanical interaction between muscle fibers can

change the behavior of the information in the EMG signal [29].

1.4.3 Movement Artifact

Movement artifact is a noise that appears every time the cables move during the connection

to the ampifier. Another cause that creates movement artifacts is the interface between the

surface of the electrode and the skin. Muscle fibers generate electric activity whenever muscles

are active [30]. When the muscle is activated, the length of the muscle decreases and the

muscle, skin and electrodes move with respect to one another. So, the electrodes that record

the signal close to the muscle groups will show movement artifacts. The frequency range of

the motion noise is usually 1–10 Hz with a voltage amplitute comparable to that of the EMG.

The movement artifact can be removed efficently by means of recessed electrodes, in which

a conductive gel layer is interposed between the skin surface and the electrode-electrolyte

interface. Another kind of of movement artifact is due to the potential difference between

skin layers. In this specific case recessed electrodes can not remove this artifact. However,

this type of artifact is attenuated reducing the skin impedance [31]. Tam and Webster [32]

found that a good traitment of the skin before recording, reduces these artifacts. The virtual

movement between skin surface electrodes and the innervations zones of the underlying motor

units can cause another type of motion artifact. Mesin et al. [33] explain the effect of the

innervation zone on amplitude, frequency and conduction velocity estimates from the signal

and the effect of electrodes placed close to IZ so that is better avoiding to record near that

zone(s).
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1.4.4 Electromagnetic Noise

The human body behaves like an antenna—the surface of the body is continuously in

contact with electric and magnetic radiation, which is the source of electromagnetic noise [28].

Electromagnetic sources from the environment superimpose the unwanted signal, or cancel

the signal recorded from a muscle. The amplitude of the electromagnetic noise is often one

to three times greater than the EMG signal. he human body’s surface continuously emits

electromagnetic radiation. The dominant ambient noise has a frequency of 50 Hz in Europe

(60 Hz in USA) and comes from power sources and it is also called Power-Line Interference

(PLI).

1.4.5 Cross Talk

Cross talk signal is a type of signal recorded from gruops of muscle that are not directly

observed, but placed near the muscle the user is insterested in. In this way Cross talk contami-

nates the EMG signal desiderated and induces the user to the error and to a bad interpretation

of the EMG information. Crosstalk depends on the many physiological parameters [34], and

can be minimized by choosing electrode size and inter-electrode distances carefully. Crosstalk

increases with increasing subcutaneous fat thickness and has a different shape with respect to

the signals detected directly over an active muscle and has a broader bandwidth than these

signals. Neither the cross-correlation coefficient analysis nor a high pass filtering method have

effect on reducing crosstalk. In addiction Electrocardiogram (ECG) spikes can also interfere

measurements that involve small muscle groups which are close to the heart even if in this

case the study insterests involve the lower limbs muscles. Anyway ECG spikes are at the

frequency of about 1 Hz, so they can be attenuated by means of a band-pass filter.

1.4.6 Internal Noise

Internal Noise is a type of noise that affect the quality of the EMG due to different

factors, such as biochemical and physiological that take place because of the number of muscle

fibers per unit, the anatomy and in addiction the depth and location of active fibers, as

well as amount of tissue between contracting muscles and electrodes. Hemingway et al. [35]

showed that the electromyographic activity is inversely proportional to the thickness of the

subcutaneous tissue between the surface electrode and active muscles. When the former

increases the latter decreases and viceversa.
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1.5 Emg recording tecniques

EMG signal is the electrical activity of a muscle’s motor units, and can be recorded in

different ways such as surface EMG (sEMG) and intramuscular EMG,

Specifically:

• Intramuscular EMG: Invasive technique for measuring muscle electrical activity

resulting from the muscle activity. In this case needles are used to detect the EMG

signal.

• Surface EMG: Non-invasive technique for recording muscle electrical activity resulting

from the muscle activity and by means of different number and kind of electrodes.

In this specific case the main interest is on the surfase EMG (sEMG) and for this reason

it is going to be studied deeply.

1.6 Surface EMG (sEMG)

Here is some characteristics about surface EMG.

1.6.1 Electrodes

The most common electrode derivations used in sEMG include bipolar, monopolar, and

Laplacian configuration. When bipolar derivation is applied, sEMG signal is the voltage

difference between a pair of recording surface electrodes aligned along the length of the skin

surface of the muscle [14]. Monopolar electrode configuration measures a difference between

the electrode on active site (the muscle) and a common reference electrode on non-active site

that typically is on bony area [36].

Laplacian configuration uses typically one central surface electrode and number of surrounding

electrodes.Research interest is going now towards high-density sEMG (HD-sEMG) which use

electrodes matrices to record the muscle activity and this tecnique is used in this project.

1.6.2 Electrode types

A surface electrode is characterized by factors may strongly influence the recorded sEMG

signal such as physical dimension, shape, technology, and constituent materials.

Surface EMG electrodes can be classified considering the materials and the technologies

adopted for their manufacturing [14]. We can distinguish between dry and non-dry or wet
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electrodes.

Wet electrodes require conductive gel, hydrogel or sponge saturated with an electrolyte between

the electrode and the skin, but can provide high quality sEMG signals as well as they require

skin preparation (e.g. shaving and skin abrasion), in order to reduce skin–electrode impedance

and motion artifacts [37]. In addition, the wet electrodes are not good for long-term use

due to the drying of the conductive gel. It could cause irritation, discomfort, skin allergy

and inflammation. These electrodes are often self-adhesive, so they can be easily applied

for a dinamic use.Instead nowdays dry electrodes do not require conductive gel and skin

preparation, and they can get signal quality comparable to wet electrodes [38]. For this reason,

the dry electrodes are the most used today.

The material of the electrode affects its electrochemical behavior. It is possible to distinguish

between polarizable and non polarizable electrode. On the one hand the Polarizable ones (e.g.

gold, platinum and iridium electrodes) are characterized by capacitive behavior because only

displacement current passes between the skin and electrode. On the other hand non-poralizable

electrodes (e.g. galvanized and sinteredAg/AgCl electrodes) behave like resistors since they

allow a free flow of charge across the electrode–skin interface.It is important to specify that it

is difficoult to have a perfectly non-polarizable or polarizable electrode. Anyway polarizable

electrodes are not recommended for sEMG measurements because of their high sensitivity

to motion artifacts [14]. Commonly used non-polarizable silver–silverchloride (Ag/AgCl)

electrodes, made of a silver metal surface plated with a thin layer of silver chloride, are highly

stabile.

1.6.3 Electrode shape

There are no information in literature about the racommendations for the sEMG-electrode

shape and in a lot of studies the shape of electodes is not indicated. By the way also SENIAM

does not define a clear recommendation or creteria to choose a specific shape instead of another

in order to obtain a better signal recorded. In general circular, rectangular or bar electrodes

are the most diffused. Electrodes matrices (rectangular shap) are used in HD-sEMG. The

sEMG signal is always dominated by superficial sources closest to typically within 10–20

mm. IED is also critical to HD-sEMG systems. The sampling rate in space is related to IED,

and too long IED may result the sampling of surface potentials at the rate below Nyqvist

frequency, and thus generating spatial aliasing. A recent study [66] demonstrated that in

order to avoid spatial aliasing maximum IED of 10 mm should beused, and recommended the
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IED has to be below 10 mm for HD-sEMG systems

1.6.4 Inter-Electrode Distance (IED)

The Inter-Electrode Distance (IED) is very important to considerate for evaluating the

recorded EMG signal, in fact the muscle volume considerated by the recording sistem is a

sphere with radius equal to the IED. For this reason Bipolar EMG channels are preferred in

sEMG interfaces because they are more tolerant to noise than the monopolar ones.

Bipolar EMG channels are preferred in sEMG interfaces as they are more tolerant to

noise than for example monopolar ones [39] even if Merletti et al. say that it contains the

entire information which can be recorded from the detection volume [14]. The larger the

inter-electrode distance (IED) is, the wider the pick-up volume sampled is. It implies higher

amplitude of the signal but less spatial specificity.

1.6.5 Electrodes Placement

The placement of electrodes is important to improve the signal-to-noise ratio of sEMG

signals placing the electrodes close to the EMG signal source. The electrodes are separated

from the muscle of interest by a layered volume conductor composed by subcutaneous tissue

(adiposetissue and other soft tissues), and the skin (Figure 14), acting as a spatial lowpass

filter smoothing the detected MUAPs and thus decreasing their amplitude and frequency

content [14]. The impedence quantification is an issue without a unique solution because its

value depends on time and on many parameters such as the materials of the electrode, the

gel chemical composition, the electrode size,the surface structure, and the skin treatment.

Furthermore during long term recordings, the gel dryies changing skin properties.
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Figure 14: Models of the electrode–skin impedance: (a) simplified electrical model of the electrode–gel
interface: Ehc is the half-cell potential at the metal–electrolyte junction, the parallel
RpCp takes into account the polarizability and the capacitive behavior of the junction,
Rs describes the resistive behavior of the electrolyte gel, Vnoise is the associated noise
component; (b) generalized model of the electrode–skin interface. The electrode–electrolyte
junction described in (a) is expanded in order to take into account the effect of the conductive
gel (Rp, Cp, and Rs) and the electrolyte-skin interface. Eepi is the half-cell potential due
to differences in the ionic concentrations between the gel and the superficial layer of the
skin, the parallel RepiCepi characterizes the skin impedance, and Rsub is the resistive
component associated to the subcutaneous tissue layer. Equivalent noise generators are not
indicated for simplicity but are present at all interfaces.Taken from [14]
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2 Materials and Methods

In this section the main steps useful to find the best feature subset are presented. In

particular way there are information about the experimental setup, the muscles and subjects

involved in the experiments, and the movements performed. Furthermore, is explained the

definition of the fourteen features, in time and frequency domain, taken into account in this

study and the approach (filter approach - J index) used to evaluate their quality in terms of

class separability, choosing then the best feature subset. To validate the choosen approach,

it was compared to another approach (wrapper approach) from the literature, based on a

LDA classifier. The former, compared to the latter is simpler in terms of implementation

and computation. The correlation between both approaches is obtained by means of the

Spearman’s rank correlation coefficient. Before the application of the J index, a previus

discrimination in terms of calculation time is performed, in order to exclude from the study

those features that need too much time to be calculated.

2.1 High Density sEMG choice

Many works exist in literature about the myoelectric control of external devices such as

prostheses, orthoses and exoskeletons. Myoelectric control is usually performed using standard

bipolar EMG. In recent years, it has been demonstrated that sEMG recorded with bipolar

EMG is affected by many factors depending on central and peripheral factors; among them

the geometrical changes of the muscle during dynamic tasks. In order to collect a more robust

signal, representative of the muscle activity, high density sEMG has been proposed. This

technique, by detecting EMG from the whole muscle surface, is more robust than bipolar

technique. In section 3.1 it is demostrated that the muscle activations are not spatially equal

on the muscle surface, in fact during a specific task there is a different activity in amplitude

and shape from one zone to another. Furthermore the most muscle area activated during

different tasks is not always the same. For this reason we can’t take into account only a

specific area from every muscle.
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2.2 Experimental Set Up

In the following the experimental setup is described. It has been identified after some

pilot experiments focused to identify the best electrode positioning using the SENIAM

recommendations and taking into account the technological limits. Six flexible electrode

matrices of different number of channels, produced by OT-Bioelettronica, were used to record

the EMG signals from seven lower limb muscles. In particular were used four matrices of

32 electrodes and two of 64 electrodes and all of them were connected to OT Quattrocento

using all of the eight input of 16 channels (from IN1 to IN8) and two MULTIPLE IN of 64

channels (Figure 15). The electrodes placement has to be on the belly of the muscles and not

in correspondence of the tendons. Before electrodes placement, skin preparation is mandatory

in order to avoid the presence of body oil, body salt, hair and dead cells. The skin has to be

shaved and then cleaned using an abrasive gel applied on the entire electrodes site and rubbing

with a gauze pad. In this way a reduction of skin impedance would enhance performance of

the monitoring electrodes.

Figure 15: Quattrocento amplifier for the acquisition of surface/intramuscular monopolar or bipolar
EMG signals and technical specifications. Taken from [15]

2.2.1 Muscle Identification following SENIAM recommandations

Before electrodes placement, the muscle identification is very important to record the

sEMG from the right area of interest. In order to find muscles, the SENIAM recommandations

are followed with the help of the user manual palpation asking to the subject the execution of

specific movements.
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Here are the SENIAM recommandations muscle per each muscle studied:

• Vastus Medialis: Respect to the distal portion of the line between the medial side of

the patella and the anterior superior iliac spine, the right landmark is on a line oriented

50° (Figure 16). During the identification of Vastus Medialis, the subject had to be at

the adge of a table. He had to perform an isometric contraction during a knee extention.

The shank had to be at 45° [16].

Figure 16: Vatus Medialis muscle identification. Taken from [16]

• Vastus Lateralis: Respect to the distal portion of the line between the lateral side

of the patella and the anterior superior iliac spine, the right landmark is on a line 20°

oriented. During the identification of Vastus Lateralis, the subject had to be at the adge

of a table. He had to perform an isometric contraction during a knee extention. The

shank had to be at 80° [16].

Figure 17: Vastus Lateralis muscle identification. Taken from [16]
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• Tibialis Anterior: The right landmark was chosen at around the 19 % of the line

between the tibial tuberosity and the intermalleolar line. During the identification of

Tibialis Anterior the subject,seated on a chair, had to perform an isometric contraction

during an ankle dorsal extension [16].

Figure 18: Tibialis Anterior muscle identification. Taken from [16]

• Rectus Femoris: The right landmark is between 0% and 50% of the line between the

superior side of the patella and the anterior superior iliac spine. During the identification

of Rectus Femoris the subject,seated at the edge of the table had to perform an isometric

contraction during an 80° extension of the knee [16].

Figure 19: Rectus Femoris muscle identification. Taken from [16]
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• Gastrocnemius Medialis: The right landmark is between the 87% and 100% of the

line between the medial side of the Achilles tendon insertion and the medial side of the

popliteal cavity. The subject had to be in upright position [16].

Figure 20: Gastrocnemius medialis muscle identification. Taken from [16]

• Semitendinosus and Biceps femoris: In this case the matrix was fixed midway

between the landmarks of both muscles. The landmark for the Semitendinosus is

between 0% and 26% of the line between the ischial tuberosity and the medial side of

the popliteal cavity. The landmark for the Biceps Femoris is between 0% and 22% of the

line between the ischial tuberosity and the lateral side of the popliteal cavity.The subject

had to be prone with the knee flexed at 45° performing an isometric contraction during

flexion of the knee placed in internal rotation for the Semitendinosus and external for

the Biceps Femoris [16].

Figure 21: a)Semitendinosus and b)Biceps Femiris muscle identification. Taken from [16]
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2.2.2 Muscles and Matrix correspondence

In Figure 22 you can see a picture about the matrices fixed on the subject’s muscles before

movement executions. In the table there is the correspondance between muscle and matrix

used on the surface of that muscle and in Figure 23 we can see the detection side of matrices.

Figure 22: a) Matrices of 32 electrodes positioned on Vastus Medialis, Vastus Lateralis, Tibialis
Anterior, Rectus Femoris; b)Matrices of 64 electrodes positioned on Gastrocnemius Medialis
and Biceps Femoris&Semitendinosus

Muscle Matrix

Vastus Medialis 32 electrodes

Vastus Lateralis 32 electrodes

Tibialis Anterior 32 electrodes

Rectus Femoris 32 electrodes

Gastrocnemius medialis 64 electrodes

Semitendinosus and Biceps Femoris 64 electrodes
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Figure 23: a) Matrix of 64 electrodes. b) Matrix of 32 electrodes

2.3 Experimental Protocol

The experimental protocol consists of 7 different tasks and all of these, except for both rest

tasks, were repeated 15 times in oder to record more repetitions for the same task. All the

tasks are movements that every person usually does during a daily life routine. In particular:

• Sitting: At the beginning, the subject is in upright position with an ankle angle of 180°

and then he sit down on a chair thus obtaining an ankle angle of 90°. Feet must not

move.

• Standing: At the beginning the subject is seat on a chair with an ankle angle of 90°

and then he starts to stand up until reaching upright position with an ankle angle of

180°. Feet must not move.

• Stair ascending: At the beginning, the subject is in upright position. When the

movement starts, the subject climbs a step 18 cm high. This task ends when both feet

are on the step and the person is in upright position again. The first limb to move is

the right one that is the sensorized one as well.

• Stair descending: At the beginning, the subject is in upright position with both feet

on the step. When the movement begins, the subject goes down from the step until

reaching the floor with both feet. The first limb to go down has to be the right one that

is the sensorized one as well.

• Gait cycle: This task consists of a single gait cycle going from one heel off of the

sensorized leg to the next one.

• Rest sitting: The subject is reasting, seat on a chair.
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• Rest in upright position: The subject stands in an upright position.

2.4 Subject reclutation

Nine healthy subjects participated to the study (age between 24 and 27 years). All the

subjects were right-handed and the sensorized lower limb was the dominant one.

2.5 Data acquisition

In order to record the EMG signals an interactive GUI (Figure 24) was realized in MATLAB.

The only software realized by OT-Bioettronica, called OT-Biolab, is just to record and to

visualize signals.

Figure 24: GUI realized in MATLAB for visualization and EMG recording

In particular, five push buttons are available on the GUI and they are activated in

different conditions. First of all, the SET UP. botton is clickable in order to choose the right

configuration that the user is gonna use during his experiment. Once SET UP is selected, a

window will open as shown in (Figure 25):
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Figure 25: GUI realized in MATLAB for visualization and EMG recording

In the upper part, there is a checkbox panel, where it is possible to select which single and

multiple adaptors are physiccally connected to the Quattrocento. In the lower part instead,

configuration parameters such as bandwidth of the filter, buffersize and acquisition mode are

selecteble by means of three popup menu. About the filter, the user can choose between two

bandpass filters 10-500 and 20-400. The possible buffer sizes are 256, 512, 1024 and 2048

and the acquisition mode monopolar or single differential. During the experiments, in this

project, all the single inputs and two of the multiple ones have been selected as well as 10-500

as bandwidth, 256 for the buffersize and the acquisition mode is monopolar. Once finished

the setup, you can go ahead using the Setup Complete button. After that, the Start button

becomes active so that you can start the acqusition. During the acquisition only 16 channels

are plotted (IN1 by default) because of computational limits, and for this reason you can move

from the channels of one matrix to the channels of another one or within the same muscle

using the From...To... text boxes and pushing Apply. At this moment, in case of the user

want to start recording, you can push on REC which becomes STOP to block the recording

and to save that acquisition in a .mat file. Next to that a stopwatch shows the recording

duration. Every recorded task is triggered by the subject who uses a mechanic botton pushed

at the beginning and at the end of each repetition.
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2.6 Data Processing

This section is focused on data processing which is divided in filtering, to know what filters

were used before visualization and algorithm execution, and in channel remapping and single

differential calculation in order to see the right spatial information during visualization and

to compute the right single differential calculation which is the kind of signal used in whole

the algorithm

2.6.1 Filtering Step

Once recorded all the 15 repetitions of the 7 tasks, the data processing is gonna start.

First of all an additional filtering step is added (in addition to the harware filter 10-500 Hz)

in this part of algorithm. In particular, a band pass filter with bandwidth [20-500], and a

recursive band-reject (notch) filter for removing 50 Hz are used. More specifically:

• Band-Pass filter: This filter of order 4 and bandwidth [20 500] was realized using the

matlab function Butter in order to find the transfer function coefficients(a,b). In this

case the transfer function is expressed in terms of b and a as:

H(z) = B(z)
A(z)

b(1) + b(2)z−1 + ...+ b(n+ 1)z−n
a(1) + a(2)z−1 + ...+ a(n+ 1)z−n (4)

The filtering is exectuted using the MATLAB funcion filtfilt to avoid phase distorsion

and the conseguent filter delay. The choice of this bandwidth is in according with the

literature. In particular Carlo J. De Luca et al. [40] explain that spectral analysis revels

that the movement artifact component continues to influence the EMG shape until

approximately 20Hz. At the same time 10Hz filter does not totally remove the artifact

component as well as 30Hz filter attenuates the artifacts but also remove the lower

frequency component of sEMG signal. About the upper band limit it is known that [39]

the dominant energy (about 95%) of an sEMG signal is limited to harmonics up to

400–500 Hz, so components higher than 500 are considered as noise.
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Figure 26: Mask of band-pass filter

• Band-reject filter: This filter of order 2 and rejected band centred in 50Hz, which is

the frequency corresponding to the power-line interference in UK and in Italy where the

algorithm was tested. The MATLAB function used was Butter with Stop instruction.

The transfer function formula (4) used in this case is the same to that used for the band

pass filter. The filtering is exectuted using the MATLAB funcion filtfilt to avoid phase

distorsion.

Figure 27: Mask of band-stop filter

2.6.2 Channels remapping and Single differential calculation

After filtering, since the EMG signals are saved as monopolar and we need to calculate

the single differential (Figure 12) among those channels, a channel remapping is necessary in

order to obtain differential signals along each column of the matrices following the direction of

the muscle fibers. It happens because each electrode has a number that indicates the number
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of the input pin to which it belongs, and a different orientation of the matrix on the muscle

requires a rimapping, since the columns, on which the single differential has to be calculated,

change in base on the diffferent matrix orientation.

Figure 28: a) channels sequence during acquisition. b) directions of single differential calculation on
tibialis anterior. c) directions of single differential calculation on vastus lateralis,vastus
medialis and rectus femoris.

Figure 29: a) channels sequence during acquisition using matrices of 64 electrodes. b) directions of single
differential calculation on Gastrocnemius medialis and Biceps Femoris&Semitendinosus

2.7 Bad channels selection

After single differential signals calculation, an interactive GUI was designed in MATLAB

(Figure 30) in order to look at the signals divided in matrices in order to see the contribution

of each muscle in separate way.

This GUI allows the user to move from one repetition to another, using Next Rep, and

within a repetition from one muscle to another using Next Matrix and Prev.Matrix. It often

happens that there are bad channels, mainly because of a low quality electrode-skin contact.

In these cases it is mandatory to delete the bad channels and, to do that the user can write
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Figure 30: Bad channel selection GUI

the number of the channel to delete in the text box, pushing then the button Delete Ch. So,

the bad channel will become red. If the user deletes the wrong channels he can come back

pusching on the arrow "<–". Obviously if the first matrix is selected, you can’t go to the

previous matrix as well as if you select the last one matrix you can’t go to the next muscle.

Another check was added when you write the channel number to delete, infact if you digit a

number that is out of range for the total channels of that matrix, nothing is gonna happens.

When the last repetition of the last task is analized, the Save button is anabled, and pushing

on that one all the bad channels will be saved in a vector, usefull when the user selects Go to

Processing to proceed to the processing, letting the main algorithm start.

When a channel of a matrix is deleted for one repetition of a task, that channel will be

deleted for all the tasks so that the same subset of elecrodes is used for all tasks for Within

class scatter matrix (SW ) and Between class scatter matrix (SW ) calculation in the following

sections.

2.8 Pattern Recognition

The recognition of limb motions from the electromyogram (EMG) plays an important

role in rehabilitation engineering. For instance, it is pretty evident that different technologies

have beneficial effect on the rehabilitation progress of stroke patients, and such kind of
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therapies require detection of the movement the patient would like doing. Furthermore, by

extracting the intention, the patient can control a big amount of devices. In fact EMG pattern

recognition systems have been widely used in many human-machine interface applications.

Pattern recognition-based approach is based on the assumption that the classifier is able to

recognize the input values and to assign each input value to one of a given set of classes.

It is possible thanks to a training session that allows the classifier to identify the class of

belonging during the test session. Input values are the values of features extracted from the

sEMG signal, and classes correspond to different tasks the patient is doing. After feature

extraction, feature selection is very important in order to select those features more significant

than others.

2.8.1 Feature Extraction

Fourteen features in time and in frequency domain were computed on epochs of 300ms with

50% overlap (Figure 31). All the recordings have different duration among them (1.8 seconds

give or take) but, since it is necessary to have signals of the same length, resample MATLAB

function was used in order to obtain the same number of windows among all the repetitions.

In this way all the repetitions of all the tasks were resampled to 1.8s. The choise of epoch

300ms long with 150ms of overlap was driven by the fact that overlapped window approach is

more appropriate in sEMG control systems because it produces better classification accuracy

and it avoids long latency in real time application in which 300ms are the maximum time

allowed between the movement intention and the movement executed by the device. Actually,

the minimum length for a segment to individuate a movement is 200ms which is the minimum

interval between two different contractions [41]. In particular, looking at (Figure 31) we can

see that the effective time (Incr.) to wait before getting the next segment ready is 150ms.
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Figure 31: Segmentation with 50% overlap. The difference between segment and increment correspondes
to overlap. Increment is the time to wait going from one segment to the next one.

Here are the fourteen features taken into account in this study and both their definition

and mathematical formulations:

• Variance of EMG (VAR)

Variance of EMG (VAR) is another power index. Generally, variance is defined as an

average of square values of the deviation of that variable; since the mean value of EMG

signal is close to zero [42], variance of the EMG signal can also be defined as

V AR = 1
N − 1

NØ
i=1

x2
i (5)

• Integrated EMG (IEMG)

Integrated EMG is commonly used in EMG non-pattern recognition and clinical appli-

cation as onset detection index [43]. It is defined as the summation of absolute values of

the EMG signal amplitude:

IEMG =
NØ

i=1
|xi| (6)

• Mean Absolute Value (MAV)

Mean of Absolute value is one of the most used feature in EMG analysis and in literature
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it can be found under different names such as ARV, IAV or AAV. [44] It is defined as

the average of EMG signal in a segment:

MAV = 1
N

NØ
i=1
|xi| (7)

• Modified Mean Absolute Value 1(MAV1)

Modified Mean Absolute Value 1 is an extension of MAV using weighting window

function [45] . It is shown as

MAV 1 = 1
N

NØ
i=1

wi|xi| (8)

w(n) =


1, if 0.25N ≤ i ≤ 0.75N

0.5, otherwise

• Modified Mean Absolute Value 2(MAV2)

Modified Mean Absolute Value 2 is a variation of MAV1 and the smooth window is

improved in this method using continuous weighting window function [45]. In particuar

MAV 2 = 1
N

NØ
i=1

wi|xi| (9)

w(n) =


1, if 0.25N ≤ i ≤ 0.75N

4i
N , if 0.25N > i

4i−N
N if 0.75N < i

• Mean Frequency(MNF)

This feature estimates the mean frequency of the signal in a time segment [46] and [47]:

MNF =

MØ
j=1

fjPj

MØ
i=1

Pi

(10)
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fi is the frequency of the spectrum at frequency bin j and fi is the intensity of frequency

spectrum. Pj is the EMG power spectrum at frequency bin j, and M is length of the

frequency bin.

• Median Frequency(MDF)

MDF is a frequency at which the EMG power spectrum is divided into two regions with

equal amplitude [47] or it can also defined as a half of the total power:

MDF =
MDFØ
j=1

Pj = 1
2

MØ
j=1

Pj (11)

hi is the frequency and fi is the intensity of frequency spectrum.

• Root Mean Square(RMS)

Root Mean Square (RMS) is modeled as amplitude modulated Gaussian random process

whose RMS is related to the constant force and non-fatiguing contraction. It relates to

standard deviation, which can be expressed as

RMS =

öõõô 1
N

NØ
i=1

x2
i (12)

• Waweform Length(WL)

Waveform length (WL) is the cumulative length of the waveform over the time segment.

WL is related to the waveform amplitude, frequency and time.

WL =
N−1Ø
i=1
|xi+1 − xi| (13)

• Absolute value of the 3rd, 4th, and 5th temporal moment (TM3,TM4,TM5)

Absolute value of the 3rd, 4th, and 5th temporal moment Temporal moment is a statistical

analysis that was proposed in study of Saridis and Gootee [48] to be used in control

of a prosthetic arm. Normally, the absolute value was taken to greatly reduce the

within class separation for the odd moment case. Since the first moment and the second

moment are similar to the MAV and VAR features, respectively, the third, fourth, and

fifth moments (TM3, TM4, and TM5) were used and evaluated as well. They can be

respectively expressed as:
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TM3 = | 1
N

N−1Ø
i=1

x3
i | (14)

TM4 = 1
N

N−1Ø
i=1

x4
i (15)

TM5 = | 1
N

N−1Ø
i=1

x5
i | (16)

• Log detector (LOG)

This feature also provides an estimate of the muscle contraction force [49]. However,

definition of the non-linear detector, which implicitly estimates muscle forse, is changed

to be based on logarithm and log detector (LOG) feature. It is defined as:

LOG = e

1
N

N−1Ø
i=1

log(|xi|)
(17)

• Difference absolute standard deviation value (DASDV)

This feature looks like RMS feature, in other words, it is a standard deviation value of

the wavelength (Kim et al., 2011), as can be defined by

DASDV =

öõõô 1
N − 1

N−1Ø
i=1

(xi+1 − xi)2 (18)

2.8.2 Computational Time

Since in many applications the computational time is cruciual, also the time that the

algorithm needs to obtain the value of each feature about one class was calculated in this

study. In our case in fact, after recording singnals from a movement, we would like to calculate

a feature, to classify that movement and to send a control signal within 300ms which is the

maximum time to considerate an application as real time. In addiction, we want to make a

decision as soon as possible in order to avoid significant delay from the subject intention and

the movement of the end effector. Even though the time is important we can’t evaluate the

feature quality only in base on the computational time but it is essential to exclude from the

study those features that need too much time to be calculated. In the current study, it was

calculated on a MacBook Pro (2.3 GHz Intel Core i5), using MATLAB R2017b.
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Since both MNF and MDF features, calculated in the frequency domain, as it can be seen

in the next sections, need a lot of time to be extracted, from now on olnly the other twelve

features will be taken into account.

2.8.3 Feature Evaluation

In literature there are two possible ways to evaluate feature quality for the final aim of

selecting an optimal feature subsect: the wrapper and the filter approach. On the one hand

the wrapper approach uses the classification rate of a classifier and on the other hand the filter

approach evaluates feature quality in class separability using statistical criterion methods [50].

In this project, for the reason why the filter approach need a lower computational cost and a

simple implementation, it was used in order to find the best features that allow to recognize

different movements. In particular J index (based on LDA theory), known also as Fisher

Linear Discriminant Index (FLDI) [51] is used for this approach. Furthermore, the obtained

results were compared to the classification accuracy of an LDA (Linear Discriminant Analysis)

classifier demostrating the validity of this method by means of Spearman’s correlation. In

general a good quality in class separation from the filter approach means that the classification

rate should be as high as possible [52].

2.9 Linear Discriminant Analysis (LDA) Notions

This section provides the basic knowledge useful to understand the next sections about

class separability index (J index) and classification.

Linear Discriminant Analysis also known as Fisher’s linear discriminant analysis is widely

used as dimensionality reduction technique during pre-processing in pattern recognition and

machine learning applications to find a linear combination of features to separate two or

more classes reducing in addiction computational costs. To achieve that, Fisher’s propose

was essentially the maximization of the distance among the means of all classes and the

minimization of the spreading within each class. To obtain this goal three steps are necessary:

1) the calculation of the separability among different classes(between-class scatter matrix), 2)

the calculation of the distance between the mean and the samples of each class (within-class

scatter matrix) and, 3) the projection onto a the lower dimensional space which maximizes

the between-class variance and minimizes the within class variance. Figure 32 and Figure 33

explain in a schematic way LDA steps going from feature data matrix to data after projection
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in case of 3 classes.

Figure 32: Schematic steps to calculate a lower dimensional subspace in LDA technique. Teken
from [17]
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Figure 33: Projection of the original samples on the lower dimensional space of LDA. Teken from [17]

Generalizing what Figure 32 and Figure 33 show, let’s assume to have a Data Matrix X

(NxM) made by the samples of c classes (Figure 32.A);

Within-Class scatter matrix (MxM ) (Figure 32.F) is calculated as:

SW = SW 1 + SW 2 + ...+ SW c =
cØ

j=1

njØ
i=1

(xij − µj)(xij − µj)T (19)

where

- c represents the total number of classes.

- n represents the total number of observations for each class.

- µj (1xM ) (Figure 32.B) is the mean vector of j-th class:

µj = 1
nj

njØ
i=1

xij (20)

- xij represents the i-th sample in the j-th class.

Between-Class scatter matrix (MxM ) (Figure 32.D) is calculated as:

SB = SB1 + SB2 + ...+ SBc =
cØ

j=1
nj(µj − µ)(µj − µ)T (21)

where
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- µ (1xM ) is the mean vector of class mean vectors (Figure 32.C):

µ = 1
C

cØ
j=1

µj (22)

After the calculation of Within-Class scatter matrix and Between class scatter matrix, it is

essential to use them in the Fisher’s criterion (23) in order to find the trasformation matrix

W (Figure 32.G) that allow the projection of original data on the lower dimensional space.

argmaxW
W TSBW

W TSWW
(23)

The transformation matrix W can be obtained by solving the generalized eigenvalue

problem:

SWW = λSBW (24)

Where λ are the eigenvalues of W. The solution to this problem can be reached calculating

eigenvalues (λ=(λ1 ,λ2 ,...,λM )) and eigenvectors (V =(v1, v2,...vM )) of W have to be found.

If SW is not singular W cab be calculated as:

W = S−1
W SB (25)

In particular an eigenvector is a non zero vector that represents one axis of the LDA

space,and provides the direction of new space. Each eigenvector has his own eigenvalue which

is a scalar quantity about the magnitude of the corresponding eigenvalue telling us how much

it is robust. Thus if the dimensionality of our observations is M like in (Figure 32.A), we will

have M eigenvalues and M eigenvectors, but we have to take into account the eigenvectors

with the k highest eigenvalues because it means they are better to differentiate different classes

increasing between class distance and decreasing within class variance of each class (Figure

32.G). After chosing the best k eigenvectors the projecition follows the formula:

Y = XVk (26)

Thus the initial M dimensionality is reduced to K, going though a lower dimensional space.
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2.10 Filter approach - Class separability J Index for feature evaluation

Filter approach is the main criterion followed in this study. Once twelve features are

extracted from EMG signals, it is essential to find which feature is better than others to

separate the 7 tasks executed by the subject, in terms of between classes distantance and

within class spread. To do that, Fisher’s discriminant is used for the calculation of the Between

class scatter matrix (SB) and the Within class scatter matrix (SW ). Using these two matrices

a specific index (J index), that gives us information about the quality of that feature, can

be calculated [54]. Thus, in this way, every feature will have its correspondent J value. In

particular, the starting point is a feature matrix X (described in Figure 32), one per feature,

(Nwindows x Nchannels) where:

-Nwindows are the observations for the 7 classes (tasks) and it is calculated using the number

of windows of 300ms with 50% of overlap contained in a repetition. Each class has got 15 repe-

titions. In one repetition 1.8s long there are 11 windows. Every repetition of each class has 11

windows each, because each one of them (reps.) was resempled in time domain to 1.8s. Every

J value is calculated taking into account one repetition for all the classes and it is repeated as

many times as the total number of repetitions (i.e. The first J value is calculated on the first

repetitions of all the classes, the second J value on the second repetitions of all the classes, ecc).

In this way Nwindows is the number of windows (11) per repetition multiply the number of

classes (7),thus the rows of X are 77 and they represent the observations referred to one repeti-

tion of seven classes. In total there are 15 combinations which means 15 value of J per features.

-Nchannels is the total number of the recorded channels, excluded bad channels found

as indicated in Section 2.7. This number is the same for all repetitions of all the classes.

Each element of Matrix X is the values of the feature during the n-th observation in the n-th

channel.

In the following the steps for the calculation of J index for each feature are reported..

1. Within-class scatter matrix SW (Nchannels x Nchannels)

SW = SW 1 + SW 2 + SW 3 + SW 4 + SW 5 + SW 6 + SW 7 =
7Ø

j=1

11Ø
i=1

(xij − µj)(xij − µj)T (27)

where
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- µj (1xM ) is the mean vector of j-th class:

µj = 1
11

11Ø
i=1

xij (28)

- xij represents the i-th observation in the j-th class. In our case the number of classes is 7

2. Between-class scatter matrix SB (Nchannels x Nchannels)

SB = SB1 + SB2 + SB3 + SB4 + SB5 + SB6 + SB7 =
7Ø

j=1
11(µj − µ)(µj − µ)T (29)

where

- µ (1xM ) is the mean vector of class mean vectors:

µ = 1
7

7Ø
j=1

µj (30)

Once that SW and SB are calculated for each feature, we obtain the twelve (one per

feature) values of the J index for each combination of the leave one out. It is expressed as the

ratio between the trace of SB and the trace of SW:

J = Trace(SB)
Trace(SW ) (31)

This J index is an unbounded index, thus the best situation is to have a smaller scatter of

information within one class, and a larger scatter of information among the classes, the best

feature is that one with the highest J value. The most important thing is that doesn’t need a

high computational cost and it has a simple implementation.

2.11 Wrapper approach - Classification using LDA Classifier

Wrapper approach is used in this study to compare the results of J index and to validate

its results demostrating that the proposed method (J Index) is in accord with the classification

accuracy for each feature. Classification of movements was performed using a multi-class
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Linear Discriminant Analysis (LDA).

2.11.1 Training set and Test set separation

To classify the 7 different tasks, all the data from 15 repetitions for each class were divided

in 14 repetitions per class as training set and 1 repetition per class as test set, using in this

way a leave one out method. In particular, the training set matrix is the matrix X (Nwindows

x Nchannels) described in Figure 32 . The number of rows of X Matrix is 11 windows per

repetition, multiply 14 repetitions (in each class) taken in to accont by the leave one out,

multiply 7 classes. The total is 1078 observations. The number of columns corresponds to the

number of channels minus the number of bad channels. The same reasoning is applied to the

test set, but taking into account only one repetition. Each element of Matrix X is the values

of the feature during the n-th observation in the n-th channel. The classification of all the

twelve features is repeated for the 15 combinations of the leave one out. In this way we get 15

classification rates for each feature; one per each combination of the leave one out.

2.11.2 Linear Classificarion rule

The method used to classify is general, but for a better explanation let’s consider two

classes only. We call as ȳ1 the projection of group 1 average on a and ȳ2 the projection of

group 2 average on a which is the discriminant direction. Let’s also assume that ȳ1 > ȳ2.

Being x0 the observation we want to classify and y0 his projection on a, x0 will be assigned to

the class whose average it is closest to along a. For example, if |y0 − ȳ1| < |y0 − ȳ2| x0 will be

assigned to the 1st class and to class 2 if the opposite inequality hold. It is known as linear

classification rule [53].

2.12 Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient, indicated with the Greek letter ρ (rho) is a

nonparametric measure of rank correlation. In statistics it is widly used to assess how well

the relationship between two variables is described as a monotonic function. It can be defined

as 32:

ρ =
6 q

d2
j

n(n2 − 1) (32)

Spearman’s correlation can assume different values from -1 to 1, in particular:
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• 0-0.19 the correlation is very weak

• 0.20-0.39 the correlation is weak

• 0.40-0.59 the correlation is moderate

• 0.60-0.79 the correlation is strong

• 0.80-1.00 the correlation is very strong

If the value is positive (+1) it means that there is a perfect positive correlation , if the value

is negative (-1) it means that there is a perfect negative correlation and the 0 value means no

correlation between the two variables (Figure 34). This coefficient was calculated in matlab by

means of the MATLAB function "corr" which gives a further information about the p-value

between the two variables with the null hipotesis that there is no correlation between them.

Figure 34: On the left positive correlation, in the middle negative correlation, on the right no significa-
tive correlation
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In this section, the signals recorded are showed as well as all the results about the methodes

explained before are presented

3.1 Single Differential EMG Signals

Signals recorded from muscles during different tasks are showed here. In particular

way we can appreciate how the muscle activations are not spatially equal on the muscle

surface. Furthermore, the muscles activations within the same muscle are different not just

in amplitude but also the shape of the action potentials changes spatially in the majority of

cases. Signals are plotted for all channels of the matrices so that it can be easier to see and

to understand these differences. Since the information recorded spatially is not always the

same, it demostratrates that using High Density-EMG the redundancy can be considered to

be minimal and by means of a big number of electrodes we can get the entire information.

In Figure 35 we can see the single differential EMG signals recorded by each channel of a matrix

of 64 electrodes from Semitendinosus and Biceps Femoris muscles during a gait cycle 1.8s

long (Figure 35 A). In the expanded view (Figure 35 A.1) it is evident the different behaviour

of the two muscles. Infact the signal shape on the left side of the matrix is different from

that one in the right side. The four matrix columns on the left are fixed on semitendinosus

muscles, instead the other four on the Biceps Femoris muscle.

Let’s see now how within a muscle during the same task the muscle activaction is different

among the channels. In Figure 36 we have the single differntial EMG signals recorded by a

matrix of 64 electrodes during a gait cycle 1.8s long from the medial portion of Gastrocnemius

muscle (Figure 36 A). We can see (Figure 36 A.1) how columns 1,2,3,4,5 have a bigger

amplitude than columns 6, 7, and 8, which means that the area taken in to account on the left

side of the muscle portion (red) is more activated during the time interval that we expanded.

As well as the amplitude also the shape of the signals seems to be different between the two

zones.

Something simular can be observed also in Figure 37 which shows the single differential

EMG signals recorded by a matrix of 32 electrodes from Rectus Femoris muscle during a sit to

stand task 1.8s long (Figure 37 A). For example, in the expanded view of the signal portions

selected (Figure 37 A.1) we can observe that the central area of the matrix corresponds to

the most activated muscle zone. As well as the amplitude also the shape of the signals seems
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Figure 35: A) SD HD-EMG signals recorded from Semitendinosus and Biceps Femoris muscles. A
matrix of 64 elecrodes was used. A.1) expanded view of 200ms of signal in which the
different muscle activities between the two muscles are evident. The tasks duration is 1.8s.

Figure 36: A) SD HD-EMG signals recorded from Gastrocnemius medialis muscle. A matrix of 64
elecrodes was used. A.1) expanded view of 150ms of signal in which the different activation
areas can be observed. In red the most activated one. The tasks duration is 1.8s.
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to be different comparing for instance column 3 with column 4.

Figure 37: A) SD HD-EMG signals recorded from Vastus medialis muscle. A matrix of 32 elecrodes
was used. A.1) expanded view of 180ms of signal in which the different activation areas can
be observed. In red the most activated one. The tasks duration is 1.8s

Analyzing the activity of a muscle by comparing the signals recorded during two different

taks, we can observe that, as we expected, the muscle has a different activation periods among

tasks. Very important is that there is not only difference of amplitude and shape among

channels within a muscle during the same task. Infact the same muscle has a different spatial

behaviour from one task to another so that the most activated area is not always the same.

In Figure 38 the single differential EMG signals recorded from Vastus Lateralis muscle during

stair descending and stand to sit task 1.8s long, are showed. A matrix of 32 electrodes was

used. We can see that the activation periods depend on the task that the subject does (Figure

38 A, B). In the stair descending task (Figure 38 A), within the portion time selected to

be expanded (Figure 38 A.1), the most activated area is the one on the left side (red) of

the matrix, but also the shape of the action potentials are different going from the first two

columns to the 3rd and 4th columns. Instead, during the stand to sit task (Figure 38 B), in

the expanded view (Figure 38 B.1) we can observe that the most activeted area (red) is in

correspondence of the first column, the inferior half of the second one and almost the entire

fourth column. A big difference in shape can be seen going from one column to another.
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Figure 38: SD HD-EMG signals recorded from Gastrocnemius medialis muscle during two tasks: A)
stair descending and B) stand to sit. A matrix of 32 elecrodes was used. A.1) expanded
view of 400ms of signal during the stair descending task. B.1) expanded view of 200ms of
signal during the stand to sit task. In A.1) and B.1) the different activation areas can be
observed. In red the most activated ones. The tasks duration is 1.8s.

Analyzing Figure 39, the single differential EMG signals recorded from Rectus Femoris

during both gait cycle and stand to sit tasks 1.8s long are plotted. A matrix of 32 electrodes

was used. We can see, how right it is, that the activation bursts are different between both

tasks (Figure 39 A, B) but analyzing carefully the portion time expanded we can see that with

the same muscle but during different tasks the most activated area (red) is not always the same.

In fact during the gait cycle the most activated zone is the lower half of the matrix. There is

no evident differnce in shape among the columns but it is not completely true if you compare

the superior part with the inferior part of the matrix. Talking about the stand to sit expanded

view, we can see how the signal with the higher amplitude (red) is in the left half of the matrix.
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Figure 39: SD HD-EMG signals recorded from Rectus Femoris muscle during two tasks: A) gait cycle
and B) stand to sit. A matrix of 32 elecrodes was used. A.1) expanded view of 200ms of
signal during the gait cycle task. B.1) expanded view of 200ms of signal during the stand
to sit task. In A.1) and B.1) the different activation areas can be observed. In red the most
activated ones. The tasks duration is 1.8s.

Let’s see now how the muscles have a different activation instants in base on the task. In

figure 40 we can see the single differential signals recorded from the Rectus Femoris muscle

during 6 different task. The matrix used here is made by 32 electrodes. During the experiment

7 tasks were performed, but it was decided to show only one between the two rest periods; in

particular, the rest period in upright position is not plotted. The tasks that we can find in

this figure are: stand to sit (Figure 40A), stair ascending Figure (40B), a gait cycle (Figure

40C), star descending (Figure 40D), sit to stand (Figure 40E) and rest sitting (Figure 40F).
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Figure 40: SD HD-EMG signals recorded from Tibialis Anterior muscle during six tasks: A) stand to
sit, B) stair ascending, C) gait cycle, D) star descending, E) sit to stand, F) rest sitting. A
matrix of 32 electrodes is used. The tasks duration is 1.8s
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3.2 Computational Time

First of all, all the features were evaluated in terms of computational time in order

to exclude from the study those features that doesn’t allow to detect a movement in real

time, which means 300ms maximum from the movement intention to the device motion.

In Table 1 the average (among all windows of all repetitions of all classes) computational

time to calculate each feature on a signal 300ms long for all channels, is indicated. In

Figure 41 and Figure 42 the bar graph about the computational time with and without

features in frequency doimain are plottet for a better visualization. Furthermore, computa-

tional time was calculated on a MacBook Pro (2.3 GHz Intel Core i5), using MATLAB R2017b.

Table 1: Computational time

Feature Computational Time (s)
VAR 8.2
IEMG 8.0
WL 9.4
MNF 1614
RMS 14
MAV 12.7
MDF 1593
MAV1 16.1
MAV2 16.9
TM3 69.9
TM4 70
TM5 69.9
LogDetect 24
DASDV 33.8
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Figure 41: Bar plot about the computational time of all 14 features. In green both features in frequency
domain with an high computational cost.

Figure 42: Bar plot about the computational time of all features exept those in frequency domain.

It is easy to see how both MNF and MDF features need too much time, about 1.61s and

1.59s respectively, to be calculated for all channels on a windows 300ms long. So much time

doesn’t allow the use of those festure in real time applications as well as it would be dangerous

to wait for all that time before helping the subject in movements.
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3.3 J index performance

Here are the Boxplot about the twelve features taken into account in this work after a

previous selection about computational time. The boxplot of each feature includes information

about the J values considering together one repetition per class at a time (for example the

first J value is about all the first repetitions of all the classes, the second J value is about all

the second repetitions of all the classes, ecc. ). It is repeated for the fifteen repetitions. In

particular, since the features evaluation using the J index is pretty similar among subject, only

the most significative ones are reported in Figure 43 and Figure 45. In each boxplot the central

red line indicates the median, the bottom and top edges indicate the 25th and 75th percentiles,

respectively. The whiskers are extended to the most extreme data points not considered out-

liers. The outliers are indicated by means of a red cross. In Figure 44 and Figure 46 you can see

the respective average J value calculated on the J values of 15 repetitions. An additional plot

in Figure 47 shows the behavior of the averege J value about the 15 features for all the subjects.

Figure 43: Boxplot about J index of 12 features from one subject.
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Figure 44: Average value of J index of 12 features from one subject (Error bar: standard deviation on
fifteen repetitions).

Figure 45: Boxplot about J index of 12 features from one subject.
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Figure 46: Average value of J index of 12 features from one subject (Error bar: standard deviation on
fifteen repetitions).

Figure 47: Average J index behavior about 12 features in 9 subjects
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As we can see in Figure 43, Figure 45, Figure 44 and Figure 46 in both subjects, it is

immediate to appreciate that the feature with the highest value of J is Waveform Length

(WL) and the lowest J index belongs to Variance (VAR), Absolute value of 3rd (TM3), 4th

(TM4) and 5th (TM5) temporal moment. Instead, in Figure 47 you can observe the behaviour

of J index in each of 9 subjects. What it very clear is that the behaviour is pretty similar

among subjects which means that there is a repeatibility of the results as well as the best

feature is aways WL and the worst VAR, TM3, TM4, TM5.

3.4 LDA Classification performance

Here are the Boxplot about the 15 features taken into account in this work. The boxplot

of each feature is built using the 15 Classification rates found from the 15 combinations of the

leave one out applied to the 15 repetitions of each task. In particular, for each combination,

14 repetitions per class were used as training set and one repetition per task as test set. Since

the features evaluation using LDA classifier is pretty similar among subject, only the most

representative ones (2 subjects) are reported in Figure 48 and Figure 50. In each boxplot

the central red line indicates the median, the bottom and top edges indicate the 25th and

75th percentiles, respectively. The whiskers are extended to the most extreme data points not

considered outliers. The outliers are indicated by means of a red cross. In Figure 49 and 51

there is the average accuracy value for each feature calculated on the fifteen repetitions tested

and an error bar about the respective standard deviations. An additional plot in Figure 52

shows the behavior of the averege accuracy about the 15 features for all the nine subjects.

In Table 2 there are the average accuracy values of each feature on all the subjects; also the

standard deviation is indicated.
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Figure 48: Boxplot about classification of 12 features from one subject.

As we can see in Figure 48, Figure 49, Figure 50 and Figure 51, in both subjects, it is

immediate to appreciate that the feature with the highest value of classification accuracy is

Waveform Length (WL) and the lowest one belongs to Variance (VAR), Absolute value of 3rd

(TM3), 4th (TM4) and 5th (TM5) temporal moment. Instead, in Figure 52 you can observe

the behaviour of classification acuracy of all the nine subjects. What it very clear is that the

behaviour is pretty similar among subjects which means that there is a repeatibility of the

results as well as the best feature is aways WL and the worst VAR, TM3, TM4, TM5.

Table 2: Average Accuracy on fifteen repetitions.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9

VAR± STD 79,82±7,0 93,76±3,7 94,89±3,8 77,22±5,8 87,96±8,5 96,19±3,6 77,74±3,7 76,27±3,6 79,82±7,5
IEMG±STD 94,02±4,0 99,13±1,0 98,87±1,2 94,54±3,3 98,44±4,0 99,48±1,3 96,62±1,9 94,63±2,2 94,97±3,9
WL±STD 96,45±2,5 99,22±1,2 99,91±0,3 96,53±2,9 98,70±4,3 99,82±0,6 97,14±2,1 96,19±2,2 98,09±1,8
RMS±STD 92,29±3,4 99,22±1,1 98,44±1,1 93,24±2,2 98,78±3,3 99,56±0,9 95,84±1,7 92,12±2,7 94,19±3,9
MA±STD 94,02±4,1 99,13±1,0 98,87±1,2 94,54±3,3 98,44±4,0 99,48±1,3 96,62±1,9 94,63±2,2 94,97±3,9
MAV1±STD 94,02±3,3 99,04±1,2 98,78±1,3 93,85±3,4 98,70±2,9 99,30±1,7 96,53±1,6 93,16±2,5 95,06±3,6
MAV2±STD 93,77±3,4 99,22±1,18 98,78±1,25 93,59±2,88 98,18±3,73 99,30±1,7 95,67±2,9 92,90±2,3 95,63±3,5
TM3±STD 58,26±8,1 73,85±3,9 72,55±4,0 49,78±7,3 56,45±7,7 62,42±6,7 57,31±5,3 53,67±5,8 45,62±6,2
TM4±STD 62,07±9,0 76,62±6,9 83,29±2,3 52,98±4,7 64,15±7,4 73,93±8,1 59,30±6,8 50,12±5,7 46,06±6,7
TM5±STD 45,28±7,2 64,24±6,7 57,14±6,1 36,70±7,7 42,33±5,7 51,08±6,2 38,00±6,1 40,77±3,8 37,74±5,8
LogDet±STD 92,20±4,9 97,74±2,0 98,87±1,4 90,56±4,4 98,18±4,5 99,13±1,8 93,41±3,4 91,42±3,0 92,81±4,8
DASDV±STD 94,02±2,8 99,04±1,7 99,65±0,6 96,01±3,6 98,96±3,6 99,74±1,0 95,58±2,0 94,63±2,4 95,15±2,7
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Figure 49: Average accuracy about the 12 features from one subject (Error bar: Standard deviation
on fifteen repetitions tested.

Figure 50: Boxplot about classification of 12 features from one subject.
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Figure 51: Average accuracy about the 12 features from one subject (Error bar: Standard deviation
on fifteen repetitions tested

Figure 52: Average Accuracy behavior about 12 features in 9 subjects
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3.5 Comparisons: Classification - J index

In this section we compare the results obtained from the J index with the results of

classification accuracy. To quantify the correlation between both models, Spearman’s rho was

used and in Table 3 we can see the value of rho coefficient and the p-value for each subject

calculated between the average J values and the average LDA accuracy, among the fifteen

repetitions, for all the features .

Table 3: Spearman’s rank correlation coefficient and p-value between average J index and average
accuracy per each subject. Null Hypotesis of no correlation.

.

Spearman’s rho p-value
Subject 1 0.933 <0.01
Subject 2 0.773 <0.01
Subject 3 0.926 <0.01
Subject 4 0.844 <0.01
Subject 5 0.714 <0.01
Subject 6 0.963 <0.01
Subject 7 0.879 <0.01
Subject 8 0.986 <0.01
Subject 9 0.879 <0.01

In particulare you can see that for seven subects, (Subject1, Subject3, Subject4, Subject6,

Subject7, Subject8, Subject9), the rho’coefficient is higher than 0.8 which means that the

correlation between both methods is "very strong" and for two subjects (Subject2, Subject5)

the correlation is considered as "strong" because the rho value is between 0.6 and 0.79. For

every subject we find a p-value<0.01 rejecting the null hypotesis that both approaches are

scorrelated. Hence there is a very strong correlation between the use of the Jindex and the LDA

classifier. In Figure 53 (rho=0.773 ) and Figure 54 (rho=0.986) there are the classification

accuracy-J Index trend for all the features about two subjects: The best one and the second

last in terms of rho value . In both subjects you can see that when the classification accuracy

of one feature increases, also the J value of that feature increases. The relation between both

approaches is not complitely linear but it is strongly monotonicallly increasing.
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Figure 53: Trend between average classification accuracy (X axis) and average J index(Y axis) among
repetitions of Subject 2 in Table 3

Figure 54: Trend between average classification accuracy (X axis) and average J index(Y axis) among
repetitions of Subject 8 in Table 3
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In Figure 55 there is the average behaviour among subject of all the features about the

J index values and the LDA accuracy. You can see how the trend of the average J index is

pretty similar to the trand of the average accuracy. In fact in both approaches Waveform

Length (WL) is the most performing feature in terms of J value and accuracy. At the same

time the features less performing are the Variance (VAR), the Absolute value of 3st (TM3),

4th(TM4) and 5th(TM5) order.

Figure 55: On the left there is the average J index and on the right the average classification accuracy
among subjects. (Error bar: standard deviation)

In Figure 56 the average J index and the average classification accuracy among subject

(Figure 55) are used to plot their trend. The rho coefficient between them is 0.984 which

means the trend is strongly monotonically increasing and the null hypotesis that says that

both approaches are uncorrelated is rejected (p-value<0.01 ). In particular, in Figure 57 and

Figure 58 there is the feature ranking about J index and LDA classifier. As we can see the two

rankings are pretty similar, in fact TM5, TM4 and TM3 are the last performing features and

WL (Jindex=0.0611) is the best one. IEMG (Jindex=0.0583), MAV ((Jindex=0.0583) and

DASDV (Jindex=0.0582) are 5% less performing than WL. Beeing both of them equivalent

approaches, the results of the proposed methods are validated and for this reason we can

choose that best subset of features relying on J index ranking.
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Figure 56: Trend between average classification accuracy (X axis) among subjects and average J
index(Y axis) among subject.

Figure 57: Feature average J index ranking among subjects
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Figure 58: Feature average accuracy ranking among subjects
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4 Conclusions

Currently, Stroke is one of main causes of serius long term disability, morbility and mortality.

All around the world 2 million people are affected by this patology and they mainly need

rehabilitation in order to achieve functional independence. Respect to technologies with body

weight support and treadmill that are widely used, the use of a system with the direct patient

involvement allows a faster and better results. For this reason an exoskeleton with a control

strategy based on the patient intention is the ideal solution. One of the firt step to realize that

is the recognition of the pazient intentions. To do that a pattern recognition is essential and

with this study we try to find the best feature subset that allows the movements recognition.

In this project High-Density sEMG, which is more robust than the bipolar technique usually

used in myoelectric control applications, is used in order to take into account the whole muscle

surface. It recorded as monopolar signal from seven muscles by means of four matrices of 32

channels fixed on Rectus Femoris, Vastus Lateralis, Vastus Medialis Tibialis Anterior, and

two matrices of 64 electrodes fixed on Gastrocnemius Medialis and Semitendinosus&Biceps

Femoris. After that a remapping algorithm was necessary within each matrix, in base on its

orientation on the muscle belly, in order to calculate the single differential signal for each

electrode pair. Before processing all the data, a bad channels selection was mandatory so

that all the channels without information, because of a low quality electrode-skin contact,

could be eliminated. The number of bad channels found in every subject is not significant

respect to the total number available. So many channels are used because we want to get

all the spatial information from the muscle surface since the muscle has a different spatially

behaviour during each single task, as well as a specific area is activated in different ways from

one task to another (Section 3.1). Nine healthy and voluntary subjects partecipated to the

study and they performed fifteen repetitions for seven different tasks: sit to stand, stand to

sit, stair ascending, stair descending, a gait cycle, rest in upright position and rest in sitting

position. In particular fourteen features were studied and calculated on epochs 300ms long

with overlap 50%. First of all, computational time was calculated per each feature and both

features in frequency domain Mean Frequency (MNF) and Median Frequency (MDF) were

excluded from the study because they needed around 1.5s for one windows on all channels.

Computational time is very important to take a decision in real time: if it is longer than 300ms

it is impossible to actuate that. After that, to evaluate feature quality, the filter approach

based on J index which gives information about class separability in terms of distance between
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classes and spread within each class, was used. This method was compared and validated with

the wrapper approach which use the classification accuracy of an LDA classifier. In fact, by

means of Spearman’s rho coefficient was evaluated a strong collelation between both approches

for two subjects (0.6<rho<0.79 ) and a very strong correlation in seven subjects (rho>0.8 )

as you can see in Table 3. Looking at the average trend among all the subjects for the J

index and for the classification accuracy, the correlation between the filter and the wrapper

approach is very strong with a rho=0.984 and a p-value<0.01 rejecting the null hypotesis of

no correlation. In Figure 56 you can see that the relation is monotonically increasing, which

means that when the classification accuracy of one feature increases also the J value increases.

Looking at the feature ranking obtained from both approaches considering the average J

index (Figure 57) and the average classification accuracy (Figure 58) among all the subjects

you can see that they are pretty equal and it is demostrated that the proposed method is

a good method of feature selection and its strength is the simplicity of implementation and

computation. To conclude, the best feature subset is found by means of J index and as we

can see in Figure 57 and in particular TM5 (Jindex=0.0202 ), TM4 (Jindex=0.0230 ) and

TM3 (Jindex=0.0236 ) are the worst performing features and WL (Jindex=0.0611 ) is the best

one. Moreover, IEMG (Jindex=0.0583 ), MAV(Jindex=0.0583 ) and DASDV(Jindex=0.0582 ),

that are only 5% less performing than WL, can be considered for the creation of a feature

vector in combination with WL.

4.1 Future work

In future studies it is interesting to explore a bigger set of features or new features made by

the combination of those just studied, for example combining IEMG, MAV and DASDV with

WL, in order to be able to see if new features could have better performance. It is interesting

also to see how the Jindex works compared to other classifiers and not just with the Linear

Discriminant Analysis (LDA) like in this work even if it depends on which classifier will be

used to classify movements during real-time applications. A big challenge would be to apply

this work on after stroke patients in order to see if the correlation between J index and LDA

classifier continues to be true and if the best feature is still Waveform Lenght (WL) like in the

healthy subjects studied here. A further work to investigate is to check if WL continues to be

the best feature also combining this project to a previus channel selection algorithm, in order

to take into account only the most relevant channels among those recorded with the matrices.
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