
POLITECNICO DI TORINO
Corso di Laurea in Ingegneria Informatica

Tesi di Laurea Magistrale

Development and Evaluation of
Cryptocurrency and PSD2

Payment-Methods in an Ethereum-Based
Loyalty Point System

Relatore
prof. Antonio Lioy

Riccardo Persiani

Academic year 2017-2018

To my beloved Clara

To Mum and Dad

Summary

Currently, the blockchain technology aim to bring a pragmatic change in the actual model of
electronic transactions. The blockchain technologic assets can potentially revolutionise the fintech
and non-fintech world in term of operations speed, cost reduction, fee avoidance, transparency,
immutability, intermediaries remotion and security. Nowadays, hundreds of different blockchains
are on the market; however, the most relevant one is by far Ethereum. In the last few years,
Ethereum has evolved under many aspects: becoming increasingly efficient, scalable and sustain-
able. Ethereum was the first network to introduce smart contracts, programs where currencies and
assets can be transferred into and which use their code for automatically validating conditions,
determining if an asset should go to one person or get back to the sender. Despite the destructive
aspect of the current economical architecture, the world juridical framework has been in favour of
new payment methods and financial entities. Laws and directives on digital payments has been
adopted during these years, and, as a matter of facts, PSD2 is the most groundbreaking for Eu-
rope. With its compliance, banks have the obligation to introduce API for new actors, basically,
third party providers of financial services; with the purpose of guaranteeing them a full access to
customer’s bank accounts for performing operations. Both opportunities arising from PSD2 and
Ethereum state-of-the-art technologies can be combined to develop distributed blockchain-based
application, finalised to transact electronically in a fast risk-less way. The distributed application
implemented in the thesis work is an example of decentralized application built on top of Ethereum
for performing transactions and transfer currency and assets. This project contains three differ-
ent modern payment methods: an Ethereum payment, in Ether, the native cryptocurrency of the
blockchain; a PSD2 payment, a pan-european instant payment in euro; and a tokens transfer, in
points, programmed in a smart contract, following the ERC20-token Ethereum standard. The
three kind of payments introduced are perfectly complementary with each other in the system,
proving both intra and extra blockchain payments, crypto and non-crypto currency, and using
money and tokens. The solution developed involves multiple transactions with different payment
methods; furthermore, it is possible to interact with through a user-friendly front end. This thesis
work concerns about understanding deeply the blockchain, specifically Ethereum; if this could be a
next breakthrough technology and if non-strictly-financial applications can be built on its top. The
present thesis work goals are to evaluate the development potential of smart contracts, analysing
the system risk and vulnerabilities; to test the advantages on developing distributed applications
and to compare costs, fees and speed of these modern methods with the current ones.

iv

Acknowledgements

I would fist like to express my sincere gratitude to my thesis advisor, prof. Antonio Lioy of the
Technical University of Turin, for the very accurate and rigorous comments, without whom the
thesis would not have been at the same technical and scientific quality.

I would like to give a special thanks to the eng. Luca Tomassini, chairman and CEO of Vetrya
S.p.A., and his wife, dott. Katia Sagrafena, co-founder and general manager, for offering me the op-
portunity to research and develop with state-of-the-art technologies, and furthermore, for bringing
me an improvement in my professional skills inside an highly innovative company environment.

Moreover, I would like to properly thanks dott. Mauro Patrignani, CTO, and eng. Valentino
Stopponi for providing precise and detailed directives in the development of the thesis project, and
for giving me important implementative guidelines concerning the architecture of the loyalty point
system.

v

Contents

Summary iv

List of Figures x

1 Introduction 1

1.1 Thesis objectives . 2

1.2 Thesis in a company . 2

1.2.1 Vetrya S.p.A . 2

1.3 Thesis structure . 3

2 Technical analysis of the blockchain technology 4

2.1 The general concepts of the blockchain . 4

2.1.1 Background History . 4

2.1.2 Definition . 6

2.1.3 Environment: a distributed peer-to-peer network 6

2.1.4 Analysis of blockchain features . 6

2.1.5 Property Management . 7

2.1.6 Validation Process . 8

2.1.7 Data hashing . 8

2.1.8 Block . 9

2.1.9 Chain conflicts . 11

2.1.10 Hash puzzle . 12

2.1.11 Mining . 12

2.2 Types of blockchain . 13

2.2.1 Market overview . 14

2.2.2 Public, consortium and private blockchains 16

2.2.3 Advantages of public and private blockchains 16

2.2.4 Permissionless and permissioned blockchains 17

2.2.5 Advantages of permissionless and permissioned blockchains 18

vi

3 Regulatory framework for E-payments in Europe and Italy 20

3.1 Abbreviations . 20

3.2 Directive 2015/2366/EU of the European Parliament 21

3.2.1 Market Context . 22

3.2.2 Technologies involved by the directive . 22

3.2.3 PSD2 Key points . 22

3.2.4 New third party institutions . 23

3.2.5 Security for e-payments . 25

3.2.6 API for the Open Banking . 26

3.2.7 Blockchain possible involvement . 27

3.2.8 Complementary regulation . 28

4 Ethereum: a next-generation smart contract and DApp platform 29

4.1 Definitions . 29

4.2 Objectives . 29

4.3 Main features of the Ethereum protocol . 30

4.4 Clients applications on Ethereum . 31

4.4.1 Wallet . 31

4.4.2 Full nodes . 31

4.5 Accounts . 31

4.6 Transactions . 32

4.7 Gas . 33

4.7.1 Estimated gas unit for operations . 33

4.8 Currency . 34

4.8.1 Gas price in GWei . 35

4.9 EVM: Ethereum Virtual Machine . 35

4.9.1 Implementations . 36

4.9.2 Programming languages . 36

4.9.3 Debuggers . 37

4.10 Smart contracts . 37

4.10.1 Why the need of introducing smart contracts 37

4.10.2 Solidity: a smart contracts language . 37

4.11 DApps: Distributed applications . 37

4.11.1 DAOs . 38

5 Open Bank Project API 39

5.1 APIs Objectives . 39

5.2 Architecture . 39

5.3 Banks . 41

5.4 Developers . 41

5.4.1 OAuth . 41

5.5 Sandbox PSD2 . 42

5.5.1 API Explorer . 43

vii

6 Project: solution of an Ethereum-based loyalty point system 44

6.1 Premise . 44

6.1.1 What are loyalty programs . 44

6.1.2 Disadvantages of traditional loyalty schemes 45

6.1.3 Advantages of blockchain-based loyalty schemes 45

6.2 Entities . 46

6.3 Architecture overview . 47

6.4 Components outside the blockchain . 48

6.4.1 Next.js server . 48

6.4.2 Front-end . 49

6.4.3 Express.js server . 49

6.4.4 Firebase . 50

6.4.5 OBP PSD2 Payment . 50

6.4.6 Application . 51

6.5 Components used for smart contracts interaction 52

6.5.1 Rinkeby and testnets . 52

6.5.2 Metamask . 52

6.5.3 Etherscan . 53

6.5.4 Remix IDE . 54

6.6 Points . 54

6.6.1 Tokens . 55

6.6.2 ERC-20 standard . 56

6.7 Transaction Types . 56

6.7.1 Point Transfer . 56

6.7.2 Ethereum Payment . 57

6.7.3 PSD2 payment . 59

7 Process and experimental results 61

7.1 Traditional e-payment methods . 61

7.2 Point transfer results . 62

7.3 Ethereum payment results . 62

7.4 PSD2 payment results . 63

8 Final considerations and conclusions 64

Appendix A Developer’s guide 65

A.1 Loyalty point smart contract . 65

A.1.1 SafeMath . 65

A.1.2 IERC20 . 66

A.1.3 Owner restrictor . 67

A.1.4 FidelityPoints contract . 67

A.2 Web3 . 70

A.3 Express.js . 71

viii

Appendix B User manual 74

B.1 Installation . 74

B.1.1 Download . 74

B.1.2 Build . 76

B.1.3 Start . 76

B.2 Graphical Interface . 77

B.2.1 Without login . 77

B.2.2 User . 77

B.2.3 Shop . 80

B.2.4 Admin . 81

B.3 Data . 81

B.3.1 Firebase . 81

Bibliography 84

ix

List of Figures

2.1 The information in a block header. 9

2.2 Chain structure with block pointers to the previous block hash. 10

2.3 A block body: a merkle tree structure. 10

2.4 Result on a block merkle tree of a transaction attack. 11

2.5 Conflict between two chains. 11

3.1 Transition from a current banking to an open banking model (source: Deloitte p.9). 21

3.2 Chronological estimation of bank profits (source: Deloitte p.4). 22

3.3 Technologies involved in respect to a fintech field (source: World Economic Forum
p.12). 23

3.4 Current banking architecture (source: Deloitte p.4). 23

3.5 Open banking architecture with PISP (source: Deloitte p.5). 24

3.6 Open banking architecture with AISP (source: Deloitte p.5). 24

3.7 Open banking architecture with CISP (source: PWC p.6). 25

3.8 API in the open banking model (source: PWC p.4). 27

5.1 Open Bank Project architecture (source: OBP Architecture). 40

6.1 Request status page of a shop. 47

6.2 Architecture overview. 48

6.3 Authentication in Firebase. 50

6.4 Create new bank account in the OBP PSD2 sandbox. 51

6.5 Metamask interface. 53

6.6 Loyalty point smart contract. 54

6.7 Point transfer transaction. 55

6.8 Point transfer form. 57

6.9 Metamask pre-calculus. 57

6.10 Admin page for the payment approbation. 58

6.11 Ethereum transfer transaction. 58

6.12 Psd2 pending payment database structure. 59

6.13 OBP Authentication. 59

6.14 Psd2 payment form. 60

6.15 OBP PSD2 sandox dashboard. 60

6.16 Transaction inspection from the PSD2 Sandbox web application. 60

x

https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/financial-services/deloitte-uk-open-banking-how-to-flourish-in-an-uncertain-future.pdf
https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/financial-services/cz-open-banking-and-psd2.pdf
http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/Banking/lu-psd2-new-market-entrants-03032016.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/Banking/lu-psd2-new-market-entrants-03032016.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/Banking/lu-psd2-new-market-entrants-03032016.pd
https://www.pwc.com/it/en/industries/banking/assets/docs/psd2-nutshell-n03.pdf
https://www.pwc.com/cz/en/bankovnictvi/assets/psd2-nutshell-n02-en.pdf
https://github.com/OpenBankProject/OBP-API/wiki/Open-Bank-Project-Architecture

A.1 SafeMath library. 66

A.2 ERC20 token interface. 66

A.3 Owner restrictor code. 67

A.4 The transfer(address to, uint256 value) function code. 69

A.5 The EthereumPaymentRequest struct. 69

A.6 The BuyingRequest struct. 70

A.7 web3.js configuration. 71

A.8 express.js configuration. 72

A.9 Performance of a PSD2 payment calling OBP API. 73

B.1 Cloning the project from the GitHub repository. 74

B.2 Project folders and files. 75

B.3 Firebase configuration. 75

B.4 Metamask account creation. 76

B.5 Home page. 77

B.6 Stats page. 78

B.7 User SignUp page. 78

B.8 Shop SignUp page. 79

B.9 User buy page. 79

B.10 User check order status page. 80

B.11 Shop ask payment page. 80

B.12 Admin token generation page. 81

B.13 Users registered table structure . 82

B.14 Shops registered table structure. 82

B.15 Pending PSD2 payments table structure. 83

xi

Chapter 1

Introduction

To determine the best course of action for finding out modern electronic-payment systems, eng. Luca
Tomassini, Vetrya S.p.A CEO and Chairman, asked me to study the blockchain technology, deter-
mine the blockchain real applications, examine the software development process of a cryptocur-
rency, and analyse the implications for the Payment Service Directive 2.

Currently, the most common e-payment methods in Europe are PayPal, Visa/MasterCard and
the bank transfer. However, these methods have well-known drawbacks: amount restrictions, risks
of being hacked, fees, lacks of anonymity, and the presence of multiple intermediaries. Because of
these significant disadvantages, the traditional financial system must be overcome for a more secure
and trustless decentralised model. Nowadays, blockchain is the only technology for answering to
all of these needs. It is a very secure technology for exchanging currency without a trusted central
counterparty; it is a stand-alone economic environment, separate form the current bank system;
it guaranties transaction transparency with high performance speed at low costs. In addition,
blockchain allows developers to build financial and non-financial applications on top of it.

Therefore, with both the corporate supervisors, dr. Mauro Patrignani, C.T.O, and eng. Valentino
Stopponi, we study to determine the best way to realize innovative payment solutions on the
blockchain. As a result, we decided to experiment crypto and PSD2 payments, inside a real im-
plementation of a fidelity points system, built on the Ethereum blockchain. Specifically, the thesis
project required me to perform seven progressive tasks:

1. determine the math and cryptographic background of the blockchain technology;

2. determine the legal framework for e-payments;

3. determine the architecture for the loyalty point system;

4. develop the loyalty point system as an Ethereum application;

5. establish criteria to evaluate system risks and vulnerabilities;

6. develop Ethereum and PSD2 payment solutions integrated in the loyalty point system;

7. analyse payment and infrastructure costs and performance, compared to traditional payment
systems.

I found that the blockchain technology is increasing quickly thanks to its properties; moreover,
professionals from different background are finding many ways to realise blockchain solutions to
improve security and save time and money. Among the Ethereum developers, a great portion is
going towards the implementation of non-financial solutions for reducing service costs, improving
operations speed, and making data immutable and transparent. My research on the Ethereum-
based loyalty point system also found these advantages; furthermore, follows the trend of searching
the perfectly suitable application for the blockchain. The thesis work found also the advantage of
having a distributed application with reduction of maintenance and launch cost.

1

1 – Introduction

My principal findings are, on one hand, regarding Ethereum payments in term of security,
transaction immediacy, near zero fees, transparency, immutability and avoidance of intermediaries.
On the other hand, regarding PSD2 payments in term of using euro, contained fees, transaction
speed, and limited intermediaries. These two methods are used both to give two different and
complementary payment options to the client of the loyalty point system.

In the following sections, additional details are provided about the thesis objectives, the com-
pany where the thesis project is realised, and the thesis document organisation.

1.1 Thesis objectives

The present thesis work is motivated by the will to clarify the power of the blockchain technology,
which is has not been tested in every facet. It is motivated by the idea of experimenting the
effects of this technology in a different financial environment, which lives parallel to the convention
financial environment. It is motivated by the purpose of using a state-of-the-art technology to
improve to the traditional system, which lacks of risk management, immutability, transparency,
and privacy. It is motivated by the desire to discover why companies and businesses are investing
in blockchain to answer the ever greater demand of performance and security.

The development of the thesis project has been done in a company in order to better understand
the dynamics of a prototype development in a corporate environment.

1.2 Thesis in a company

The thesis has been developed at Vetrya S.p.A. The main reason who drove me to ask for a
collaboration with Vetrya was the symbol that this company represent as concerns innovation, and
the expert knowledge of the development team.

A description of the company is provided in the following section.

1.2.1 Vetrya S.p.A

Vetrya [VTY.MI] is an Italian group recognised leader in the ICT market with about one hundred
of employee and the total annual turnover of EUR 59 billion. The Group is listed on the Alternative
Capital Market AIM Italy organised and managed by the Italian Stock Exchange.

Vetrya is present throughout the world: headquarters are in Orvieto, where is the corporate
campus; furthermore, through Vetrya Inc., a company based in Palo Alto (CA), is in the U.S.A;
through the company Asia Pacific Sdn. Bhd., based in Kuala Lumpur, Malaysia, Vetrya is in
the Southeast Asian market; through Vetrya do Brasil is in Rio de Janeiro; and Vetrya Iberia in
Madrid, for the Iberian peninsula.

Moreover, the company has won multiple prestigious awards, in particular: the prize as “best
workplaces 2017” from Great Place to Work 2017, third classified in the medium companies cat-
egory (with employee number between 50 and 500); the national prize for innovation; the prize
“company for innovation 2017”.

The group promotes the success of its customers by introducing innovation across the value
chain, with a wide range of cloud multi screen platforms for broadband telecommunications net-
works, media asset management, mobile entertainment, mobile commerce, value-added services,
Internet TV, broadcasting, digital advertising and content production[1].

Precisely, Vetrya projects focus on five principal thematic areas:

2

1 – Introduction

Broadband services

Technological innovation is at the basis of Vetrya Group development and the Group has always
been pursuing the aim of promoting market innovative solutions, so as to ensure its customers the
needed tools to boost flexibility and efficiency. Multimedia broadband innovation centre (BIC) is
the centre of excellence dedicated to the expansion of services, solutions, applications and cloud
platforms, and is able to support the growing broadband services market. BIC assists its clients
to fully exploit the broadband networks potential and develop services, end-to-end solutions, and
innovative applications relevant to all Vetrya expertise.

Content delivery

Vetrya have the ability to plan, develop, and manage increasingly integrated innovative services,
at high interactivity and with a high customisation level. Through its IP broadband distribution
platforms, the company covers all of our customers needs, for any network and on any device. The
cloud platforms as a service Eclexia, Visidea, Xivin and Wonda mobile hub manage the end-to-
end over IP distribution and allow to convey the any type contents and on any device modalities
(smartphone, tablet, connect TV, web, game console, smart watch, and set top box) together with
CDN services in partnership with the major market player.

Mobile payment

Mobile devices are more and more important in the consumers’ daily lives. The diffusion of
alternative payment methods different from cash, is one of the main market segments that will
grow significantly in the coming years. Vetrya has platforms able to provide multi-channel payment
solutions (credit cards, phone credits, PtoP transfer, dedicated payment circuits) for the delivery
of mobile payment services applied to goods and services (m-commerce, m-ticketing). A part from
the platform dedicated to phone credit (digital pay), Vetrya provides Gateway Provider services,
Payment Gateway and Service Provider.

E-Commerce

The significant development of e-commerce services has radically transformed the relationship
between businesses and consumers. Companies, distributors and commercial businesses extend
their sales model through the use of multi-channel strategies that give the Customers several
points of contact for their product purchases. For this significant market, Vetrya has developed
solutions for both B2B and B2C companies. Platforms that provide end-to-end management of the
sales cycle of products and services: from repository management products, to promotions, pricing
and promotional campaigns, storehouse inventory management and logistics, customer engagement
in both physical store and in digital channels .

Mobile applications

Thanks to the relevant and consolidated expertise on telecommunications and mobile devices world,
Vetrya ensures the development of services, applications, user experience and platforms that flank
both customers Telco/Media and the OTT market. It offers proved ability of solutions development
and end-to-end services, mobile application development, user experience, testing, internet of things
and related products, as well as related devices and embedded softwares.

1.3 Thesis structure

The thesis is organised in the following chapters: to be provided at the end of the thesis

3

Chapter 2

Technical analysis of the
blockchain technology

Blockchain is a technology that wants to radically change the world of financial transactions in
terms of security, efficiency, costs, intermediation, privacy, transparency, and immutability. Thanks
to its features, this technology create a new financial model compared to the traditional one; as a
result, several professional sectors are going to be transformed about security, payment methods,
performance, and costs.

One of the most important feature introduced concerns the relationship between blockchain
users and traditional intermediaries, like notaries, banks, and copyrights managers; hence so, in a
potential scenario where blockchain is adopted worldwide, intermediaries role should be completely
redefined or even destroyed. Because of that power of avoidance of intermediaries, blockchain is
sometimes associated to the concept of destructive technology.

Another important feature is about the financial world; in fact, money, stocks, bonds and
derivates can be managed and exchanged through the blockchain technology. Consequently, more
than the already cited advantages, also dematerialisation will be present, with a definitive over-
coming of the printed paper in favour of completely digital ecosystem. As a result, the cost saving
will be relevant both for the provider and the user of a blockchain-based service.

The goal of this

In the following sections are outlined the general concepts of the blockchain to illustrate the
historical background, the definitions concerning the blockchain, and the technical reasons because
the advantages discussed are possible. Also, a section on the current blockchain market and the
different types of blockchain technologies is presented.

2.1 The general concepts of the blockchain

It is important to define the background history of the blockchain in order to understand which
improvements have been done during years.

2.1.1 Background History

Blockchain referred to the technology that runs Bitcoin; in other words, it is impossible to discuss
the history of blockchain technology without first starting with a discussion about Bitcoin.

Bitcoin beginnings

Blockchain technology make his public debut in 2008, when an unknown, with the pseudonym
of Satoshi Nakamoto, released the whitepaper Bitcoin: A Peer to Peer Electronic Cash System.

4

https://bitcoin.org/bitcoin.pdf

2 – Technical analysis of the blockchain technology

Shortly after Nakamoto’s whitepaper was released, Bitcoin was offered up to the open source
community in 2009.

Blockchain separates from Bitcoin

Even today, there are many who believe Bitcoin and blockchain are one and the same, even though
they are not. In contrast, those who started to realise, around 2014, that blockchain could be
used for more than cryptocurrency, started to invest in it. As a result, several new blockchains
started to appear on the market with the purpose of revolutionising supply chains, healthcare,
insurance, transportation, voting, contract management and more. In addition, also the financial
world started investment plans; currently, nearly 15% of financial institutions are using blockchain
technology.

Ethereum rises: smart contracts

Vitalik Buterin, co-founder of Ethereum and Bitcoin magazine, was also an initial contributor to
the Bitcoin codebase, but became frustrated around 2013 with its programming limitations and
pushed for a malleable blockchain. Met with resistance from the Bitcoin community, Buterin set
out to build the second public blockchain called Ethereum, launched in 2015.

The largest difference between the two is that Ethereum can record other assets such as loans
or contracts, not just currency. Ethereum can be used to build “smart contracts”, that can
automatically process based on a set of criteria established in the Ethereum blockchain. This
technology has attracted the attention of main corporations who are intrigued by the potential of
the smart contract functionality to save time and money.

Transition from proof-of-work to proof-of-stake

Today, blockchain generally operates on the proof of work concept, where an expensive computer
calculation or ”mining” is done in order to create a block (or a new set of trustless transactions).
Currently, when the sender initiate a transaction, it is bundled into a block. Then, miners which
verify the transactions are legitimate within that block by solving a proof-of-work problem, a very
difficult mathematical problem that takes an extraordinary amount of computing power to solve.
The first miner that solves the problem gets a reward, and then the verified transaction is stored on
the blockchain. Consequently, Ethereum developers are interested in changing to a new consensus
system called proof of stake.

Proof of stake has the same goal as proof of work, to validate transactions and achieve consensus
in the chain; but it uses an algorithm with a different process. With proof of stake, the creator of
a new block “is chosen in a deterministic way, depending on its wealth, also defined as a stake.”
Since in a proof of stake system, there is no block reward; but, the miners, known as forgers, get
the transaction fees. Proponents of this shift, including Ethereum co-founder Buterin, like proof
of stake for the energy and cost savings realised to get to a distributed form of consensus.

Blockchain scaling

Since nowadays, every computer in a blockchain network processes every transaction, it can be
very slow. A blockchain scaling solution would determine how many computers are necessary to
validate every transaction in a way that does not compromise security.

Today, Bitcoin is just one of the several hundred applications that use blockchain technology. It
has been an impressive decade of transformation for blockchain technology and it will be intriguing
to see where the next decade takes us.

5

2 – Technical analysis of the blockchain technology

2.1.2 Definition

The great quantity of documentation about the blockchain technology has led to confusion regard-
ing the definitions of blockchain; however, the major competitors of this technology agrees on the
following one:

Blockchain shared distributed ledger, cryptographically immutable where transactions are per-
manently recorded by appending blocks.

Moreover, it is important to focus on a point that leads to several mistakes: a blockchain is
not a database. It is not a database in the sense that everything cannot be stored on it; storing
images or PDF files is not admitted. The ledger is distributed and everyone on the blockchain
network has a copy of the ledger; so, the blockchain must have a relatively contained dimension to
be scalable.

In conclusion, the thesis document will refer to the definition provided; if the term will be used
with different sense, it will be expressly declared.

2.1.3 Environment: a distributed peer-to-peer network

The blockchain lives in an particular distributed environment, a peer-to-peer network. Deepen-
ing, this network is composed by individual machines, called nodes, which provide computational
resources directly for all the other members of the network, without the presence of a central au-
thority. Figuratively, it is similar to a fully democratic ecosystem, where every node is equal to
every other for rights and roles; as a result, potentially, every node can choose to be a consumer
and a producer of resources, without any limit.

Peer-to-peer systems must satisfy some requirements in order to work properly:

• the coordination between and among members;

• the use of a communication protocol fro sending, receiving and processing messages;

• the existence of a network; hence so, of a communication protocol;

• the proper computational capacity of the members to solve a computing problem;

• the guarantee to answer adequately to several security problems.

The advantages of using a peer-to-peer network are:

• the interaction with contractual partners uses less time and less money;

• the removal of a central governative authority, which is a single-point-of-failure.

2.1.4 Analysis of blockchain features

Blockchain is a ledger where transaction are saved inside blocks that, once validated by network
nodes, are attached in temporal order to the main chain. All of the advantages that this technology
aim to bring are possible because the blockchain is a ledger, is distributed and shared, and is
cryptographically immutable.

Ledger

Blockchain is a digital ledger, which is analog to a physical ledger, where all the transactions are
written. To summarise, the blockchain serves as a historical record of all transactions that ever
occurred, from the genesis block to the latest block, hence the name blockchain. Ledger means
that data are stored like a list in temporal order, like in a written register or like an Excel sheet
chronologically ordered.

6

2 – Technical analysis of the blockchain technology

Distributed and shared

Distributed and shared are two properties used to describe the ledger, on one hand, as distributed
in every single node. On the other hand, to describe the ledger as shared between every node;
which means that, theoretically, in any time instant, the register is equal for every node of the
network.

Cryptographically immutable

Cryptographically immutable property refers to the fact that every time a new block of transac-
tions is added to the chain, the block, thanks to a cryptographic algorithm, is made immutable,
guaranteeing data integrity e making the data in the ledger completely reliable.

Integrity and reliability are two sides of the same coin. On one side, integrity of the system
means assuming that the system perform its functions without being compromised, free from not
authorised manipulations. On the other side, the reliability of a system is gave in advance and
it change depending on the outcome of the interactions with it. In conclusion, in peer-to-peer
networks the user trust cannot exist without preserving the global integrity of the system.

Acquire and maintain data integrity depends from the following factors:

• the knowledge of the node numbers;

• the knowledge of the reliability of the nodes;

• the number of technical failures, components that fails or product wrong results;

• dishonest peers, which intentionally attack the system, lowering the grade of reliability.

The core problem to be solved in the blockchain is acquire and maintain data integrity in a
peer-to-peer system composed by an unknown number of peer with unknown reliability. This class
of problems is widely discussed in the Internet technology community; it is known with the name
of Byzantine General problem.

2.1.5 Property Management

Before adding a block of transactions to the chain, the property of good or a service must be
proved. The property proof involves three parameters:

• the owner identification;

• the object owned identification;

• the mapping the owner with the owned object.

The mapping is obtained by the utilisation of a ledger, which is inherent in a blockchain
technology. The blockchain itself link the owner to the object owned and guarantees the data
integrity.

Firstly, this implies the implementation of the following two properties:

• authentication;

• authorization.

7

2 – Technical analysis of the blockchain technology

Authentication

In the context of computer systems, authentication is a process that ensures and confirms a user’s
identity. Authentication is a warranty that the user is who it tells to be, confirming an attribute.

Authentication begins when a user tries to access information. First, the user must prove his
access rights and identity. When logging into a computer, users commonly enter usernames and
passwords for authentication purposes. This login combination, which must be assigned to each
user, authenticates access. However, this type of authentication can be circumvented by hackers.

Lose a password in the blockchain Ethereum means losing everything the digital wallet; it is
not possible to recover it.

Authorization

Authorization is a security mechanism used to determine user/client privileges or access levels
related to system resources, including computer programs, files, services, data and application fea-
tures. Authorization is normally preceded by authentication for user identity verification. During
authorization, a system verifies an authenticated user’s access rules and either grants or refuses
resource access.

Completing a financial transaction is an operation that requires an high level of security; because
of that an access policy must be defined. Authorization in blockchain systems is acquired through
the use of a digital signature.

2.1.6 Validation Process

Nodes are the entities in the blockchain representing users. Nodes act likes witnesses, declaring
if a transaction has been performed truly by the x sender to the y receiver with the z amount.
The witness behaviour guarantees that no fraud happens in the blockchain network. As a result,
greater is the number of nodes and more the anti-fraud procedure is proper and reliable.

The validation process of the transaction, which involves all the node-witnesses , is possible
thanks to the blockchain algorithm/protocol. The blockchain protocol is responsible for involving
all the nodes in a decision, for example declaring if a transaction is right or not. The protocol
coordinates every node in the blockchain network in checking their own ledger; hence so, if the
majority of the node agrees on the state of a transaction, the successful transaction is stored
permanently in the blockchain. The state of a transaction can be success or rejected. The ledger
that every node is checking for the transaction validation is perhaps the blockchain itself, where is
the mapping between objects and owners.

For example, in a financial transaction, node must verifies that who is sending moneys, after
the authentication and authorization process, owns an amount of money greater than amount
that he/she is sending. Every node can check if what the sender declare is right or not, issuing
a decision/verdict on the sender data. If the decision is positive, the transaction status is set to
success and the transaction will be added in a block and stored in the blockchain. If the decision
is negative, the transaction status is set to rejected and the transaction will not be added in a
block and will not be stored in the blockchain. This example is a “use case” where the blockchain
perform a function of reliability, integrity, and property management of a specific good.

2.1.7 Data hashing

A blockchain based system depends heavily on the cryptographic hash functions. These functions,
if properly chosen, are:

• applicable to every kind of data;

• deterministic;

8

2 – Technical analysis of the blockchain technology

• fast;

• pseudo-random;

• one-way;

• collision resistent.

The goal of these function is identify transaction, comparing the result of the hash function,
without comparing data directly. In fact, comparing data directly is a more long and computa-
tionally heavy process. The process of verifying the trust of data is a core element; if data are
100% trusted, user are protected from every kind of frauds or attacks.

2.1.8 Block

A block is a group of transactions in chronological order, or the best chronological order that the
miner nodes can agree and organise the transactions in. Every block has, as its data, the hash of
the previous block. Each block is made of a “block header” and a “block body”. Every blockchain
has its own block structure, but the main features of all of them are the same.

Regarding the blocks topic, the block header and body structure must be discussed and, further-
more, there is an important difference between the process of block creation and block protection.

Block header structure

Block fields are illustrated in the figure 2.1:

index

timestamp

merkle root

difficulty

hash

previousHash

Figure 2.1: The information in a block header.

• index: the number of a block in the chain, index=0 value is reserved for the root of the
blockchain;

• timestamp: the time instant when the block has been added to the blockchain;

• merkle root: the hash of the root of the merkle tree of all the block’s transactions;

• difficulty: the difficulty level for miner of the block;

• previousHash: the pointer to the previous block, which is the hash function result of the
previous block; this is illustrated in the figure 2.2;

• hash: the result of cryptographic hash function on all the previous described informations.

Block body structure

The body of the block are transactions data, saved inside a block with a merkle tree structure. A
merkle tree is a tree constructed by hashing paired data (the leaves), then pairing and hashing the
results until a single hash remains, the merkle root. The merkle root hash value is saved in the
block header. In Bitcoin, the leaves are almost always transactions from a single block.

The merkle tree verifies a group of transactions, as is possible to see in the figure 2.3.

9

2 – Technical analysis of the blockchain technology

H2 H1 H0 RT

Figure 2.2: Chain structure with block pointers to the previous block hash.

Merkle Root

H12345678

H1234

H12

H1

Tx1

H2

Tx2

H34

H3

Tx3

H4

Tx4

H5678

H56

H5

Tx5

H6

Tx6

H78

H7

Tx7

H8

Tx8

Figure 2.3: A block body: a merkle tree structure.

Block addition process

The process of adding a block to the blockchain is the following [2]:

1. new transaction and/or new blocks are forwarded to the nodes of the blockchain network in
“gossip-fashion”;

2. every node saves transaction and blocks received in inbox;

3. every node process blocks following grade of priority;

4. every node process new transactions, declaring them valid or invalid for authorization, and
formal and semantic reliability;

5. every node collects only valid transactions in a merkle tree and start finding a new block
resolving the hash puzzle;

6. when a node solves an hash puzzle, it sends the new block to the other nodes;

7. every node process new blocks verifying the hash puzzle solution and verifying the transaction
contained in the block;

8. every node takes the valid blocks and add them to the local blockchain;

9. if a new block is invalid, the block is deleted and nodes would continue to process transaction
or finishing hash puzzle of a new block;

10. if a new block is valid, the node removes transactions contained in the new block from the
inbox and starts processing transactions and creating a new block;

11. if the block added to the local blockchain is declared invalid or useless later, that block is
going to be removed from the blockchain and the transactions would be moved again to the
inbox and processed again later;

12. the node that emits an accepted block will receive as reward the fee for all the transactions
contained in the block;

13. if a block, previously added to the blockchain, is removed, the reward given in the past is
retreat from the node.

10

2 – Technical analysis of the blockchain technology

Block protection

After a block is added to the blockchain, it cannot be changed. For example, an attacker can change
data of the transaction Tx’3 and declaring a different amount of money sent in his/her wallet
regarding a true transaction Tx3. Anyway this behaviour implies the generation of a different
hash, as is possible to see in the figure 2.4. As a result, every superior hash back to the root should
be modified in order to create a valid block. This require too much work to be performed by a
single attacker.

Merkle Root

H0
12345678

H0
1234

H12

H1

Tx1

H2

Tx2

H0
34

H0
3

Tx03

H4

Tx4

H5678

H56

H5

Tx5

H6

Tx6

H78

H7

Tx7

H8

Tx8

Figure 2.4: Result on a block merkle tree of a transaction attack.

To validate the block the attacker must modify not just the hash of the new transaction but
also every other upper hash; so that other nodes, checking in parallel the validity of a block,
did not notice the transaction modification. The computational power requirement for a node to
perform such an operation is unreasonable, compared with the power of all the other members in
the network, that work in parallel.

2.1.9 Chain conflicts

In addition to the block protection mechanism, is important to take into account the problem of
chain conflicts. When different chains are in conflict, the main rules is that the longest chain is
always accepted has the correct one, see the figure 2.5.

H4 H3

H3

H2

H2 H1 H0 RT

Figure 2.5: Conflict between two chains.

If an attacker success in the validation of a block after a long amount of time, the presence
of a longest blockchain would make the attacker work completely useless. Hence so, the attacker
not only would not succeed in the attack but it also would lost a significant amount of time and
energy, which means losing money.

11

2 – Technical analysis of the blockchain technology

2.1.10 Hash puzzle

Other than data comparing, data pointing and secure data saving, cryptographic hash functions
are used to create “puzzles”. These puzzle must be resolved by some special nodes in order to
avoid frauds.

Hash puzzles has the following characteristics:

• need time to be resolved;

• have a difficulty level that can be set;

• check their solutions is simple.

Specifically, an hash puzzle is a challenge with a certain grade of difficulty. The grade of
difficulty is expressed as an integer, which represents the number of zero that must be present in
the hash generated. As is said before, an hash is a one-way function, so the same data in input are
going to generate the same output hash value; as a result; however, in order to obtain as output
of an hash function, a string with x number of 0, the hash function have to be applied not only
on the given data, but also on a nonce. The nonce is an integer which is changed until the hash
puzzle solution is founded. Find a solution uses a lot of computational resources, electricity and
time.

This process of solving the hash puzzle is called “mining” and will be explained in the following
section.

2.1.11 Mining

Because of the great amount of compute power, energy and time to involve in “mining”, not every
node of the network tries to solve the hash puzzle. Nodes who try to solve the hash puzzle are
called “miners”. A miner of the blockchain network try to find a solution for the hash puzzle before
other miners. The first miner which can solve the puzzle is the winner; hence so, it is rewarded
with gas, a synonym of moneys for its work.

Currently, the mining process is used in pretty much every blockchain network; however, just
the main principle of mining have been explained and every blockchain has its own mining im-
plementation. For example, the Bitcoin blockchain gives an elegant mining implementation; in
fact, miners uses on average one-hundred-billion-billion attempts. This huge amount of attempts
is justified by the fact that miners can work in parallel in order to solve the hash puzzle.

Rewards are an instrument used for accelerating and improving the transaction validation
process and the block creation process. However, the blockchain need also an instrument to punish
bad peer behaviour and to punish who attack the system security. Rewards could be retread if a
block accepted in the past is declared invalid or useless; or the absence of a reward can be used if
a node is mining a block already added.

Going deeper in mining the concept of proof-of-work and proof-of-stake appears.

Proof of work

Proof of work is basically the mining process described before. Proof of work is a protocol that
has the main goal of deterring cyber-attacks such as a distributed denial-of-service attack (DDoS)
which has the purpose of exhausting the resources of a computer system by sending multiple fake
requests.

Going deeper, proof of work is a requirement to define an expensive computer calculation, also
called mining, that needs to be performed in order to create a new group of trustless transactions
(the so-called block) on a distributed ledger called blockchain.

Mining serves as two purposes:

12

2 – Technical analysis of the blockchain technology

• to verify the legitimacy of a transaction, or avoiding the so-called double-spending;

• to create new digital currencies by rewarding miners for performing the previous task.

All the network miners compete to be the first to find a solution for the mathematical problem
that concerns the candidate block; a problem that cannot be solved in other ways than through
brute force, so that essentially requires a huge number of attempts. When a miner finally finds the
right solution, he/she announces it to the whole network at the same time, receiving a cryptocur-
rency prize (the reward) provided by the protocol.

From a technical point of view, mining process is an operation of inverse hashing: it determines
a number (nonce), so the cryptographic hash algorithm of block data results in less than a given
threshold.

This threshold, called difficulty, is what determines the competitive nature of mining: more
computing power is added to the network, the higher this parameter increases, increasing also the
average number of calculations needed to create a new block. This method also increases the cost
of the block creation, pushing miners to improve the efficiency of their mining systems to maintain
a positive economic balance. This parameter update should occur approximately every 14 days,
and a new block is generated every 10 minutes.

Proof of work is not only used by the bitcoin blockchain but also by ethereum and many other
blockchains. Some functions of the proof of work system are different because created specifically
for each blockchain. The important thing you need to understand is that now Ethereum developers
want to turn the tables, using a new consensus system called proof of stake.

Proof of stake

Proof of stake is a different way to validate transactions based and achieve the distributed consen-
sus. It is still an algorithm, and the purpose is the same of the proof of work, but the process to
reach the goal is quite different. Proof of stake first idea was suggested on the bitcointalk forum
back in 2011, but the first digital currency to use this method was Peercoin in 2012, together with
ShadowCash, Nxt, BlackCoin, NuShares/NuBits, Qora and Nav Coin.

Unlike the proof-of-Work, where the algorithm rewards miners who solve mathematical prob-
lems with the goal of validating transactions and creating new blocks, with the proof of stake, the
creator of a new block is chosen in a deterministic way, depending on its wealth, also defined as
stake.

There are no block rewards. Also, all the digital currencies are previously created in the
beginning, and their number never changes. This means that in the PoS system there is no block
reward, so, the miners take the transaction fees. This is why, in fact, in this PoS system miners
are called forgers, instead.

2.2 Types of blockchain

Currently, on the market there are multiple blockchains and each of these have its particular
characteristics. Blockchain technologies can be categorised following several criteria, the main
are: [3]:

• network type: public, private, and consortium or permissionless and permissioned;

• community size;

• price: open source o payable;

• programming language supported.

Before discussing the criteria presented, it is important to present which blockchains are actually
used nowadays.

13

2 – Technical analysis of the blockchain technology

2.2.1 Market overview

In the following sections are discussed the main blockchain technologies on the market.

In the table 2.1 are listed the main technologies that will be discussed later:

name network type community pricing language
Bitcoin public, permissionless highly active Bitocoin core open C++
Ethereum public or private highly active open source Solidity
Fabric private, permissioned highly active open source Phyton
Corda private, permissioned highly active open source Kotlin, Java
IOTA public, permissioned medium active open source C, Phyton, JS
MultiChain private, permissioned medium active open source C#, JS, Ruby
HydraChain private, permissioned low active open source Solidity, Phyton
Chain public medium active enterprise licensing Java, Ruby, Node JS

Table 2.1: More used blockchain on the market.

Bitcoin

The Bitcoin blockchain appeared on the market in 2008, created by the unknown Satoshi Nakamoto.
This blockchain is the first public permissionless blockchain ever created. The Bitcoin blockchain
is open source, the design is completely public; in addition, the infrastructure and nodes are not
controlled by a centralised authority [4]. Fast peer-to-peer financial transaction, global payments,
low fees are the main feature offered. Bitcoin core is released under the term of MIT license [5].

Ethereum

Ethereum was born in the august 2015 when the three founders, Vitalik Buterin, Gavin Wood
and Jeffrey Wilcke, decided to create an updated blockchain model introducing smart contracts.
Ethereum is a blockchain platform smart-contract-based open, decentralised, with no central au-
thority [6]. Ethereum is used for the development of distributed application through the Solidity
programming language. Ethereum is refereed as a blockchain 2.0 technology in comparison with
Bitcoin which is the blockchain 1.0. The main blockchain is open but is also possible to create
private blockchains.

Hyperledger Fabric

IBM’s Fabric is a blockchain open-source utilised for the transversal development of the blockchain
in the corporate environment. This blockchain was born in collaboration with the leader business
in financial, IoT, manufacturing, technology field; moreover, the project is coordinated by the
Linux Foundation. The goal of the linux foundation is to create a standardised, enterprise-based,
open-distributed-ledger framework [7].

Corda

Corda is a distributed ledger platform developed by R3 in order to register and process financial
transactions. Corda. is heavily inspired to blockchain systems without the design qualities that
make traditional blockchain inappropriate for several financial scenarios [8]. Corda is a decen-
tralised database with minimal trust between nodes would allow for the creation of a global ledger.
Such a ledger would have many useful applications in finance, trade, supply chain tracking and
more.

14

2 – Technical analysis of the blockchain technology

IOTA

IOTA is a revolutionary new, next generation public distributed ledger that utilises a novel in-
vention, called a Tangle, at its core. The Tangle is a new data structure based on a Directed
Acyclic Graph. As such it has no Blocks, no Chain and also no Miners. Because of this radi-
cal new architecture, things in IOTA work quite differently compared to other Blockchains. The
major difference that is worth mentioning (apart from the DAG vs. Blockchain) is how IOTA
achieves consensus and how transactions are made []. IOTA is also a cryptocurrency which focuses
on furnishing communication and a secure payment way for machines in IoT; in these field, it is
uses for the execution of micro-transactions without fees and the creation of secure communication
channels between devices [9]. It should be noted that IOTA is currently still in a beta version.

MultiChain

MultiChain is an open platform for the development of blockchain application private/permissioned
in-corporate or intra-corporate. It is presented as a upgraded version of the Bitcoin blockchain; in
addition, it gives privacy and control on the peer-to-peer network. MultiChain offers to its users a
fast and simple mechanism of creating a new blockchain or connecting to an existing blockchain,
controlling every aspect of the blockchain, and supporting some features to improve the whole
security, like external private key, multi-signature, cold node and “admin by consensus” [10].

OpenChain Project

OpenChain is an open source distributed ledger technology manage digital assets of the companies
in a secure, reliable, and scalable way. However, OpenChain is not a real blockchain in the
sense that it does not uses blocks to save operations; actually, transactions are directly stored
and concatenated one with the other, without using blocks of transactions. As a result, this
mechanism allows to reduce the delay for collecting transaction in a block increasing performance
of the blockchain technology. Transaction are added to the main chain when they are completed,
and as a result it offers transaction verification in real time. OpenChain defines itself a “transaction
chain” rather than a blockchain [11].

Chain

Chain is a blockchain platform finalised to industrial and financial application. Chain is based on
“Chain Core”, an enterprise software designed for operate and participate in blockchain permis-
sioned network. Every network has its own shared ledger, secured by cryptographic algorithms; as
a matter of fact, users of this product can transfer digital goods without using intermediaries [12].
Chain main features are: the “1-second consensus algorithm”, which allows third party to read
encrypted information on their needs; and smart contracts, saved in readable form. The “Chain
Core developer edition” has a license under the terms of GNU Affero General Public License Ver-
sion 3 (AGPL). The Chain Java Software development kit SDK has a license under Apache License
versione 2.0 citehandblock.

HydraChain

HydraChain is permissioned distributed ledger based on the extension of Ethereum, its main appli-
cations are setups for private and consortium chains. The HydraChain whitepaper says that this
blockchain is perfectly suitable with the Ethereum API, allowing the development and the deploy
of smart contracts and distributed application.However, the main difference is in the consensus
protocol which does not depend on the proof of work but uses a restricted group of validators for
the transaction validation process. The core software is an open source and available under the
MIT license [13].

15

2 – Technical analysis of the blockchain technology

2.2.2 Public, consortium and private blockchains

Blockchain can be categorised regarding the access rights to the network, the level of decentraliza-
tion, the censorship resistance; these parameters divides the blockchain in:

• public;

• consortium;

• private (or totally private).

Public blockchain

Blockchain with open access, where every entity can perform a transaction and participate in the
consensus process, in a network where there is no central authority and every type of censorship is
rejected. Public blockchain are considered “fully decentralized” [14] and their efficiency relies on the
combination of resources used and on the cryptographic verification mechanisms, like proof-of-work
or proof-of-stack. The most diffused example of public blockchain is the Bitcoin blockchain, an open
source, decentralized platform where network nodes are build to be free and censor resistant; this
blockchain is used as a register for every transaction; these transaction once stored are immutable
in time and data.

Consortium blockchain

Consortium blockchain indicated a blockchain where the consensus process do not involve all the
nodes of the network but only specific nodes elected by a consortium of companies. The right
to read is given to the not elected nodes of the network by a central authority or by a group of
particular authorities. Consortium blockchains are similar to the private blockchain but they work
under the control of a group of several entities rather than a single entity. These blockchains are
a sort of hybrid between the public and the provate, sometimes documentation refers to them
as “partially centralised”. Vitalik Buterin, founder and father of Ethereum, clarifies the concept
of consortium blockchain with the following declaration: “So far there has been little emphasis
on the distinction between consortium blockchains and fully private blockchains, although it is
important: the former provides a hybrid between the “low-trust” provided by public blockchains
and the “single highly-trusted entity” model of private blockchains, whereas the latter can be more
accurately described as a traditional centralized system with a degree of cryptographic auditability
attached”.

Private blockchain

Private blockchain are fully centralized blockchains where a single entity have the right of writing
and work as orchestrator for the rights of read; as a result, this blockchain fits only with a more
traditional model of business and governance. Only the company who owns the blockchain can
verify the correctness of every operations; so, this technology is very efficient and transactions
are fast respect to the other blockchain types. In addition, the adoption of a private blockchain
guarantees a better privacy than a public blockchain because the transaction history can be made
not accessible to every node of the network

2.2.3 Advantages of public and private blockchains

In the following sections the advantages of public and private blockchains are discussed. Consor-
tium blockchain are incorporated in the private blockchain section.

16

2 – Technical analysis of the blockchain technology

Public blockchain advantages

In primis, the disruption of a central authority gives to the nodes of a public blockchain network
a state-of-the-art level of trustness. On a market side, this feature of avoiding central authority
is what is bringing users and investors in the blockchain world. On one hand for the cost and fee
reduction; on the other hand, even more important, for the search for high security measures and
“censorship resistance”. In addition, public blockchains are fully open to every user, so can be are
used freely by everyone in the world; in fact, is possible to have on these kind of blockchains users
or companies that are using different services, but still on top of the same blockchain. A similar
situation is impossible to realise, in the same way, in other blockchain types.

Private blockchain advantages

Private blockchain have several advantages respect to the public blockchains, because transaction
are no more immutable in this kind of network; as a consequence, the entity or the consortium
who owns the blockchain can easily perform restore operations or error resolution. Otherwise,
sometimes, restore can also be performed on a public blockchain, giving a sort of backdoor key
in a smart contract; but this will be a nonsense because in this case is better to use a private
blockchain.

Another possible advantage is in having only some nodes validating transactions; perhaps, these
nodes are known and controlled, avoiding some particular attacks (like the 51% attack). Malicious
entities, if controlling the majority of miners, could stop transaction or invert them; because of
that, this attack is considered one of the most dangerous in a public network. It is still true, that
if the company controlling the private blockchain has a malicious behaviour it would be impossible
to notice for the common user of a service on top of this blockchain.

An additional advantage is that transaction cost less and energy waste is reduced significantly;
indeed, just few are the ”trusted” nodes for validating a transaction and thousand of miners are
no more needed. It is known that mining a big problem of the public blockchain in term of energy
waste. Energy waste of the most famous public blockchains is considered unsustainable from an
environmental point of view; int fact, the energy consumption is about ** for Bitcoin and ** for
Ethereum.

Moreover, transaction are faster respect to a public network; as a matter of fact, despite
improvements in the public blockchain are leading to more performant operations, obtaining the
same parameters of a private blockchain is impossible right now.

At last, permission of read are limited to just the nodes elected by the central authority; so, a
node cannot read transactions performed by another node.

2.2.4 Permissionless and permissioned blockchains

About the design part, R. Sams declared that is important to consider 3 negative behaviours which
compromise a blockchain effectiveness

• “Sins of commission”, the forgery of a transaction;

• “Sins of omission”, the censorship a transaction, which refers to the possibility to make a
double spend attack, not registering one or more transaction in the blockchain;

• “Sins of deletion”, the reversal of transactions, after adding it to the ledger [15].

Furthermore, Sams claims that is not possible to avoid simultaneously all these three be-
haviours, but, like a CAP theorem, only the couple forgery-censorship or forgery-reversal can
be avoided. The “sins of commission”, that refers to forgery, cannot be avoided and it simple
implementation is easy using some crypto algorithms.

17

2 – Technical analysis of the blockchain technology

On one side, permissionless blockchain like Bitcoin optimise the elimination of censorship rather
than reversal; on the other side, permissioned blockchain can perform actions towards an attacker
who is committing an omission or commission sin.

So, the blockchain types can also be divided in permissionless blockchains and permissioned
blockchains; it must be noticed that there is a strong analogy between permissionless-public and
permissioned-private.

In order to introduce these categories is important in this context to define a permit:

Permit refers to the authorization for the transactions verification and for subscribing to the
network.

Permissionless blockchain

Permissionless are blockchains that do not need to authorise nodes for the network subscription or
for allowing them in network validation.

Every node can perform a verification process, so each single node con participate in the
main mechanism of the blockchain; besides, in this kind of network the peer participation in
the verification in encouraged. The main rules of these network is, bigger is the number of nodes
and less is the probability to receive a 51% attack.

In permissionless ecosystem the consensus is reached with the proof-of.work, with the resolution
of puzzle, towards a display of usage of computational resources for the total system.

Bitcoin was defined before as a public blockchain in the section 2.2.2, but is also permissionless.
The same applies for Ethereum which gives the access to smart contracts to a big community was
designed as public and permissionless [6].

Permissioned blockchain

Permissioned blockchains are composed by a group of trusted nodes used for the verification process;
these nodes can be authorised to perform some specific tasks exclusively by a single or multiple
central authority. This central authority hash the right to distribute permits to the nodes.

Permissioned blockchains are different from the permissionless one for their dimension and for
the number of total operations perform in the network. These restricted blockchains are purpose
build for a business service and they are created to main a certain grade of compatibility with
traditional applications [16].

2.2.5 Advantages of permissionless and permissioned blockchains

In the following section the man advantages of permissionless and permissioned blockchain are
discussed.

Permissionless blockchain advantages

Advantages of permissionless blockchains can be associated with ones of the public blockchains.
For instance the proof-of-work mechanism permits to the network to be secured from malicious
attacks to the system reputation, like the Sybil attack. This kind of attack is caused from what
is knows as “cheap pseudonym problem”, a threat to one of the core element of the blockchain:
reliability.

Another advantage is related to the open access system of encouraging the peer participation
in validating transaction removing every type of constraint.

18

2 – Technical analysis of the blockchain technology

Permissioned blockchain advantages

Firstly, the main advantage of the permissioned blockchain is in scaling capacity; currently, scal-
ability is one of the searched feature in the blockchain world and it must be considered in every
blockchain-based service, especially when there are thousands of nodes and users. In a permis-
sionless blockchain, data are saved in every computer of the network and nodes can very every
transaction. So, it is obvious that every time the number of transactions grows up, users who can
mine became less, bringing centralization in favour of the remained pools of miners. This situation
appears in the Bitcoin network where actually there is a sort of chinese monopoly regarding mining.

Moreover, the advantage of the permissioned blockchain is that if a small amount of nodes
can validate they could scale easily with the increment of transactions. However, because of the
expected small number of this kind of network, it is easy for group of nodes to collaborate and
alterate rules or invert transactions. Anyway, in general, is easy in permissionless blockchain
to reject a transaction in the sense that these blockchains are not censorship resistance like the
permissionless one.

Respect to the permissionless, furthermore, permissioned blockchains do not need a mechanism
for surviving to the Sybil attacks, because the governance process who selects validator makes the
validation process restricted just to trusted selected nodes and that cannot be used by pseudonyms.

An example of blockchain permissioned is Fabric.

19

Chapter 3

Regulatory framework for
E-payments in Europe and Italy

The description of the current legislative framework for e-payments follows in this chapter. Con-
cerning the thesis project, an analysis of the European and Italian digital payments regulation was
needed, in order to understand normative strengths and weakness of the current payment methods,
open banking and blockchain.

3.1 Abbreviations

The following table supply a list of the legislative and computer science abbreviations used in this
chapter e in the text in general:

abbreviation description
EU European Union
EC European Council

PSD2 Payments Systems Directive 2
TPP Third Party Provider
PISP Payment Initiation Service Provider
AISP Account Information Service Provider
CISP Card Issuer Service Provider
CBPII Card Based Payment Instrument Issuers
PSP Payment Service Provider

ASPSP Account Servicing Payment Service Providers
BS Bank Service

EBA European Banking Authority
RTS Regulatory Technical Standards
OBP Open Bank Project
CA Certification Authority

SCA Strong Customer Authentication
PKI Public Key Infrastructure
OTP One-Time Password
CA Certification Authority

Table 3.1: Legal abbreviations.

20

3 – Regulatory framework for E-payments in Europe and Italy

3.2 Directive 2015/2366/EU of the European Parliament

The Directive 2015/2366/EU of the European Parliament and of the Council of 25 November
2015 on payment services in the internal market, amending Directive 2002/65/EC, Directive
2009/110/EC, and Directive 2013/36/EU and Regulation (EU) No 1093/2010, and repealing
Directive 2007/64/EC is known in the open banking community as PSD2.

The directive seeks to improve the existing EU rules for electronic payments, taking into ac-
count emerging, innovative and complex payment services, such as internet, mobile payments and
blockchain. Indeed, recital 10 says [17]:

This Directive introduces a neutral definition of acquiring of payment transactions
in order to capture not only the traditional acquiring models structured around the
use of payment cards, but also different business models, including those where more
than one acquirer is involved. This should ensure that merchants receive the same
protection, regardless of the payment instrument used, where the activity is the same
as the acquiring of card transactions.

PSD2 also aims to pay attention to the future development of new e-payment methods, setting
up the conditions for an open banking environment.

Open banking is a financial ecosystem, technologically neutral, that allows the development of
new types of payment services, with equal operating conditions, for both existing and new
payment service providers, as shown in figure 3.1.

Figure 3.1: Transition from a current banking to an open banking model (source: Deloitte p.9).

As a consequence, the safety is fundamental, and the directive concentrate on several cyberse-
curity aspects. The recital 7 says [17]:

In recent years, the security risks relating to electronic payments have increased.
This is due to the growing technical complexity of electronic payments, the continuously
growing volumes of electronic payments worldwide and emerging types of payment ser-
vices. Safe and secure payment services constitute a vital condition for a well function-
ing payment services market. Users of payment services should therefore be adequately
protected against such risks. Payment services are essential for the functioning of vital
economic and social activities.

Objectives which PSD2 wants to achieve are clear: the release of the legal framework for the
further development of a better integrated internal market for e-payments within the EU; the
increase of consumers choice and costs reduction through the use of different payment services
provided by different operators; the lowering of the bank monopoly, with by the introduction of
third parties. The directive puts in place comprehensive rules for payment services, with the goal

21

https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/financial-services/deloitte-uk-open-banking-how-to-flourish-in-an-uncertain-future.pdf

3 – Regulatory framework for E-payments in Europe and Italy

of making international payments (within the EU) as easy, efficient and secure as payments within
a single country [18].

In the following sections is going to be discussed the market context, technologies involved by
PSD2, and the key points which the directive introduces.

3.2.1 Market Context

PSD2 arrives in a period of time where the banking system is at a radical change. Currently,
banks are stressed from the market and their emerging operators who have introduced several
state-of-the-art products; in this environment, banks have to decide whether to compete in order
to maintain a direct relationship with their customers or to limit their role to that of just a provider
of banking services.

Actually, the core problem for banks is generating revenue, not only because of low margins
in a “lower-for-longer” interest rate environment [19], but also for the outcome on the market of
technologies like blockchain. Analysts estimate that bank profits will continue to lag behind cost
of equity until 2019:

Figure 3.2: Chronological estimation of bank profits (source: Deloitte p.4).

3.2.2 Technologies involved by the directive

An incredible number of technologies is going to be involved by the directive. On one hand,
e-payments represent obviously the main component of the PSD2; but, one the other hand, is
opportune to notice that fields such as insurance, deposits, capital raising, investments, and market
provisioning are part of the destructive revolution of the traditional system. The figure 3.3 shows
the technologies for every sector of involvement.

3.2.3 PSD2 Key points

PSD2 seeks to focus on:

• the introduction of new institutions, which contribute to a more integrated and efficient
European payments market;

• strict security requirements for electronic payments and the protection of consumers’ financial
data, guaranteeing safe authentication and reducing the risk of fraud;

• the release of an API layer from banks, which de facto starts the open banking era;

• the base for the blockchain involvement.

22

https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/financial-services/cz-open-banking-and-psd2.pdf

3 – Regulatory framework for E-payments in Europe and Italy

Figure 3.3: Technologies involved in respect to a fintech field (source: World Economic Forum
p.12).

3.2.4 New third party institutions

One of the main feature of the directive is the recognition of new institutions. The introduction
of new operators and providers gives customer the possibility to choice a better service with less
cost; in relationship with the current situation where banks are central authorities.

Current situation

Nowadays, the only way for customers to access their bank accounts to make payment is through
products and channels provided by their bank, as shown in the figure 3.4.

Figure 3.4: Current banking architecture (source: Deloitte p.4).

The majority of these new institutions relies to the category of TPPs which are divided in:
PISP and AISP [20]. Moreover, also CISP and ASPSP represent institutions, even if they are not
in the TPPs category.

23

http://www3.weforum.org/docs/WEF_The_future__of_financial_services.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/Banking/lu-psd2-new-market-entrants-03032016.pdf

3 – Regulatory framework for E-payments in Europe and Italy

PISP

Payment Initiation Service Providers are third parties provider that can start a payment operation
online (payment initiation) from a user bank [21], with the right authorization; furthermore, PISP
have the faculty to offer new payment methods, as alternative to traditional ones. PISP applications
can initiate payments directly from customer payment accounts, so long as they have the customer’s
consent, as is possible to see in the figure 3.5.

Figure 3.5: Open banking architecture with PISP (source: Deloitte p.5).

AISP

Account Information Service Providers are third party providers that can access informations of the
users bank account informations [21]. Regulated third-party AISPs can access customer data (with
the customer’s consent) to provide an overview of a customer’s payment accounts with different
banks in one place (e.g. a mobile app). The functions that AISP can perform shows how the
directive is not going to discriminate TPP respect to banks. In the figure 3.6 is outlined an AISP
model.

Figure 3.6: Open banking architecture with AISP (source: Deloitte p.5).

CISP

PSD2 refers to PSPs issuing card-based payment instruments but does not separately define these
Card-Based Payment Instrument Issuers (CISPs). Recital 67 provides some context [17]:

The issuing of a card-based payment instrument by a payment service provider
whether a credit institution or a payment institution, other that the servicing the
account of the customer, would provide increased competition in the market and thus
more choice and a better offer for consumers.

24

https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/Banking/lu-psd2-new-market-entrants-03032016.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/Banking/lu-psd2-new-market-entrants-03032016.pd

3 – Regulatory framework for E-payments in Europe and Italy

Consequently, referring also to the annex I, the term Card Based Payment Instrument Issuer
therefore means PSPs licensed either as credit institutions or as payment institutions offering
services for the execution of payment transactions, including transfers of funds on a payment
account with the user’s PSP or with another PSP, the execution of payment transactions where
the funds are covered by a credit line [...], or the issuing of payment instruments and/or acquiring
of payment transactions [22].

There should be a clear distinction between the provisions related to PISPs and AISPs and
CBPII as there are different communication and process requirements. CISP are going, for instance,
to allow funds checking and other business functions for commercial operators which wants to
became payment institutions [23]. An example of check funding performed by a CISP is shown in
the figure 3.7.

Figure 3.7: Open banking architecture with CISP (source: PWC p.6).

ASPSP

Account Servicing Payment Service Providers are banks and financial institutions; are the provider
of user accounts which have to release API to the PISP and AISP, in order to interact with user
data [21]. ASPSP can introduce fee for the PISP transactions, but these fees have not to be higher
than the fees of the ASPSP products.

3.2.5 Security for e-payments

The growing complexity in payments methods and the need to ensure greater security to payers
are so fundamentals that PSD2 requires secure standards for dialogue between TPP and BS, and
strengthening of the authentication processes.

Secure standards for dialogue between TPP and BS

Standards for the secure dialogue between TPP and BS payment providers, authorised by final
customers, must enable access to online accounts through interfaces that are easy to integrate. The
principle of the new regulatory framework represents both a market opportunity and a matter of
great concern for more traditional banks, which risk disintermediation from their customers.

The most significant impact on a technical level is the request by the Directive to facilitate
operations that access accounts from external providers, in order to collect information or process
a payment. Contrasts among the potentials arising from the development of a common language
between banks and third parties involved in payment operations are evident, and there is risk of
defining overly rigid standards that create barriers for future innovation. EBA was assigned the
task of creating standard communication that allows innovation which will be published in (RTS).
This will allow for dialog between parties with the uniform and certified criteria.

25

https://www.pwc.com/it/en/industries/banking/assets/docs/psd2-nutshell-n03.pdf

3 – Regulatory framework for E-payments in Europe and Italy

In this regard, the final version of RTS in the field of “Strong Customer Authentication and
Secure Communication” was released by 13 January 2017, while a consultation paper was published
in August 2016 [24]. Whatever technology is adopted to define the standard conversation between
the parties, the choice that every bank will take is about the project approach. It will be necessary
to decide whether to wait for the regulatory and market changes (reactive approach) or anticipate
them, interpreting the directive as an opportunity to develop the business (proactive approach) [25].

Strengthening of the authentication processes

The other main innovation of PSD2 is the introduction of a needed implementation of a strong
customer authentication in all banks. As a matter of fact, strengthening of the authentication pro-
cesses, the use of strict safety standards, in compliance with the ECB provisions, becomes manda-
tory and it requires identity verification through two or more authentication tools, strengthened
by the use of dynamic links which certify the uniqueness of the transaction.

Deepening, the user identity must be verified by two or more authentication tools classified as:

• knowledge, something that only the user knows (such as a PIN);

• possession, something that only the user has (such as Token);

• inherence, something that only the user is (such as a digital fingerprint).

EBA, in order to limit the risk of compromising the authentication requirements, is focusing
on the issue of the interdependence of the individual elements to ensure that the violation of
one authentication does not affect the others. The directive also anticipates that the payment
operations with increased security thanks to “dynamic linking” mechanisms will contain at least
an amount and a specific beneficiary. In fact, the goal is to ensure that authentication for a remote
transaction is not used for any other purpose than the one originally foreseen by the payer.

3.2.6 API for the Open Banking

The legislation does not show the technology that the Banks must adopt to dialogue with third
parties, delegating the task to EBA. On one side, the latter intends to orientate their indications
in order to preserve innovation and cooperation, avoiding the introduction of unnecessary rigidity.
On the other side, the definition of a standard, addressed either by the regulator or the market, will
have to be introduced in order to not disperse unnecessary energy of the industry that attempts
to reconcile the different interfaces implemented autonomously by the different Institutes. Even in
the presence of these areas of uncertainty it is the common view, among financial institutions and
fintechs active in the sector, that the API may be a desirable technology to adopt [25].

APIs represent a specific architectural approach that ensures: scalability, security and code
reusability. This solution would allow Banks to reduce integration costs, increasing speed and
making an innovation platform also available to developers and fintechs. In the figure 3.8 is clearer
where is the position of the API in an open banking environment.

Multiple projects on the fintech world are technologically based on APIs, used to open systems
to parties included in the ecosystem by increasing the value of the service for the final customer.
In the blockchain worlds a lots of project expose APIs to deliver their services. For example,
the main players active in the field of oracles have adopted APIs for delivering to distributed
blockchain-based application values which are outside the block, such as the price of gold.

With the introduction of APIs, a PISP perform payments, while an AISP provides access to
bank account information. As a result, both are competitors to banks, acting as the interface
for the customer to access all banks and accounts. Notably, one of the declared targets of PSD2
is fostering competition and innovation, so this change in the competitive landscape is not by
accident, but by design.

26

3 – Regulatory framework for E-payments in Europe and Italy

Figure 3.8: API in the open banking model (source: PWC p.4).

On the traditional bank side, this change has two consequences: one is that banks must provide
interfaces, such as application program interfaces to the TPPs; notably, PSD2 explicitly prohibits
the use of screen scraping.

However, due to the change in the competitive landscape with TPPs becoming the potential
interface to the customers, banks are also urged to rethink their business models. Do they want
to lose customers and business to others? Or do they want to stay in control of the value chain,
acting as both a bank and a TPP? Given that APIs must be provided, one request to the finance
industry is to show significant progress in standardising APIs. There are initiatives underway both
in the finance industry and the open source community, notably the Open Bank Project [26]. OBP
is the sandbox used for performing a PSD2 payment in the loyalty point system developed in the
thesis project.

In conclusion, banks themselves must enable such APIs, requiring the management and security
for APIs, but also creating an architecture which ensures the interfaces between external TPPs, the
APIs, new types of own applications, and the stable core banking systems are well defined, secure
and scalable. Having a “bimodal” or “multi-speed” IT now becomes mandatory. From a security
perspective, a thought out, multi-layered security approach, including API security management,
is inevitable.

3.2.7 Blockchain possible involvement

In the following sections some possible applications of combining the blockchain technology with
the opportunity offered by the reception of the PSD2 directive.

Strong Customer Authentication

Many blockchain technologies manage the authorisation of transactions through an infrastructure
based on the asymmetric cryptography. In the blockchain network every public key is associated

27

https://www.pwc.com/cz/en/bankovnictvi/assets/psd2-nutshell-n02-en.pdf

3 – Regulatory framework for E-payments in Europe and Italy

to a device and the related private key allows members to validate the transaction. The process is
very similar to that of the digital signature, without the obligation to use an accredited CA and
allows the use of a self-generated key pair, solely stored on a mobile device.

In this way, it offers the possibility of considering the device to be an ownership element to
which only the user has access, just like the OTP devices currently in use. It is possible to
implement the possession factor of SCA, using the blockchain technology to bind a particular user
to a specific mobile device. StrongAuth is an implementation of user-friendly SCA solution that
exploits blockchain technology; in fact, StrongAuth is a mobile authorisation system that connects
a traditional application of PKI with immutability and security of the blockchain.

Timestamping

Currently, timestamping (with gambling) is actually considered the best example of blockchain
application. The timestamp value given by a blockchain is guaranteed and validated by nodes of
the network and indeed is secure and reliable.

StrongAuth also exploits from a blockchain is the timestamping: every signature from users is
timestamped on the immutable ledger, thus providing what we use to call eAES1 that adds the
trustless time evidence to the well known and defined AES used also for the electronic eIDAS2

framework.

Timestamping is performed by StrongAuth using the public Open timestamp protocol: the
Timestamp server aggregates all the responses created during the interval of time and it assembles
them into a single hash that will be stored into the blockchain. This information is needed to
prove that provided response signed by particular user existed at the specific time it was performed.
With this mechanism StrongAuth notarises efficiently and immutably great amount of data using a
single transaction and allow external actors to verify responses in a SelfService mode, thus reducing
auditing effort and costs [27].

3.2.8 Complementary regulation

The PSD2 directive is contextual to Regulation (EU) 2015/751 which puts a cap on interchange
fees charged between banks for card-based transactions. This is expected to drive down the costs
for merchants in accepting consumer debit and credit cards. As written in the XXX [17]:

The revised union legal framework on payment services is complemented by Regu-
lation (EU) 2015/751 of the European Parliament and of the Council. That Regulation
introduces, in particular, rules on the charging of interchange fees for card-based trans-
actions and aims to further accelerate the achievement of an effective integrated market
for card-based payments.

1enhanced Advance Electronic Signature.

2Identification Authentication and Signature.

28

Chapter 4

Ethereum: a next-generation
smart contract and DApp platform

The goal of this chapter is to provide an analysis of the Ethereum blockchain technology, which
is the platform used for the development of thesis project. In the following section, the chapter
starts analyzing several definitions; these are given to the reader in order to clarify the reading of
the present document.

4.1 Definitions

In the official documentation, the name “Ethereum platform” and ”Ethereum protocol” refers to
the “Ethereum” blockchain technology itself, follows its definition:

Ethereum is a public, open source, blockchain-based platform that allows to build and run smart
contract and DApps1 without any downtime, fraud, control or interference from a third party.

The Ethereum project code is entirely available on https://github.com/ethereum divided
in several repositories; the researches on which the Ethereum foundation is currently working on
are at https://ethresear.ch/. Anyway, is opportune to specify that the name “ether” has a
different meaning:

ether (ETH) is a cryptocurrency generated by the Ethereum platform; it is the main internal
crypto-fuel; indeed, it can be transferred between accounts, it is used to pay transaction fees
and to compensate participant mining nodes for computations performed;

cryptocurrency is a digital currency that secures transactions with cryptographic code, which is
solved through hardware computational power, known as mining or proof-of-work, or other
less energy-intensive ways such as proof-of-stake [28].

4.2 Objectives

The Ethereum founder, Vitalik Buterin, clarify the objectives of its blockchain in the Ethereum
whitepaper [29]:

1Distributed Applications.

29

https://github.com/ethereum
https://ethresear.ch/

4 – Ethereum: a next-generation smart contract and DApp platform

What Ethereum intends to provide is a blockchain with a built-in fully fledged
Turing-complete programming language that can be used to create ”contracts” that
can be used to encode arbitrary state transition functions, allowing users to create any
of the systems described above, as well as many others that we have not yet imagined,
simply by writing up the logic in a few lines of code.

4.3 Main features of the Ethereum protocol

The Ethereum protocol is focused, by design, on building decentralized applications with smart
contracts. Vitalik Buterin outline five important principles on whom the Ethereum protocol is
based [29]:

Simplicity

Keep the technology as simple as possible means helping new developers to create distributed
applications, without knowing the entire specifications. Simplicity in Ethereum is core, the founders
said that was even necessary to sacrifice costs and time to obtain it. The white paper confirm that
simplicity is a key concept asserting that any optimization which adds complexity should not be
included, unless that optimization provides very substantial benefit:

The Ethereum protocol should be as simple as practical, but it may be necessary
to have quite a high level of complexity, for instance to scale, to internalize costs of
storage, bandwidth and I/O, for security, privacy, transparency, etc. Where complexity
is necessary, documentation should be as clear, concise and up-to-date as possible, so
that someone completely unschooled in Ethereum can learn it and become an expert.

Abstraction

The concept of abstraction in Ethereum refers to the multitude of possibilities of development in
such a platform. It is a universal platform completely open source, where developers can develop
any kind of program without any type of limitations. Developers are allowed to create any kind of
smart contract, transactions, financial assets, cryptocurrency and tokens as well:

A fundamental part of Ethereum’s design philosophy is that Ethereum does not
have “features”. Instead, Ethereum provides an internal Turing-complete scripting
language, which a programmer can use to construct any smart contract or transaction
type that can be mathematically defined.

Modularity

Ethereum has been designed as modular, this means the protocol itself it is divided in separate
parts which allows the platform to continue working if some updates have to added. It would have
been pretty inefficient to shut down the entire system even for a small protocol modification. The
white paper reports a clear example:

Over the course of development, our goal is to create a program where if one was to
make a small protocol modification in one place, the application stack would continue
to function without any further modification. Innovations [...] should be, and are,
implemented as separate, feature-complete libraries. This is so that even though they
are used in Ethereum, even if Ethereum does not require certain features, such features
are still usable in other protocols as well. Ethereum development should be maximally
done so as to benefit the entire cryptocurrency ecosystem, not just itself.

30

4 – Ethereum: a next-generation smart contract and DApp platform

Agility

Details of the Ethereum protocol are settled. The founders have not designed Ethereum as a
permanent structure but as an agile platform, even if they make clear that:

Although we will be extremely judicious about making modifications to high-level con-
structs [...].

Non-discrimination & non-censorship

As every public blockchain well-designed, censorship resistance is one of the key concepts. Every
kind of usage of the platform is allowed and there are no restrictions to any specific category:

All regulatory mechanisms in the protocol should be designed to directly regulate
the harm and not attempt to oppose specific undesirable applications. A programmer
can even run an infinite loop script on top of Ethereum for as long as they are willing
to keep paying the per-computational-step transaction fee.

4.4 Clients applications on Ethereum

Currently in Ethereum there are two essential types of applications: wallets and full nodes:

• wallets are just lightweight nodes that use the Ethereum platform just for sending and re-
ceiving cryptocurrencies, mainly ETH;

• full nodes are CLI that can perform the full set of operations available on the network.

4.4.1 Wallet

For sending and receiving crytopcurrencies on Ethereum all needed is just a wallet application. A
wallet is simply an hardware or a software application that holds keys to the EVM. These keys
corresponds to an account, which is referred to by an address.

The most powerful and used on Ethereum is the official wallet: Mist browser; its code is
available in the GitHub repository of the Ethereum organization. It is a user-friendly wallet that
can also execute smart contracts and even access web-app-like programs, that is why is called
browser [30].

4.4.2 Full nodes

Operating a full node on Ethereum means having the possibility to create and deploy smart con-
tracts on the network.

To clarify the functions of wallet and full nodes it must be done an introduction to Ethereum
address and accounts, and transactions.

4.5 Accounts

An account is a data object: an entry in the blockchain ledger, indexed by its address, containing
data about the state of the account, such as its balance. This concept is linked to an address is
a public key belonging to a particular user; it’s how users access their accounts. The address is
technically the hash of a public key, not the public key itself [31].

31

https://github.com/ethereum/mist

4 – Ethereum: a next-generation smart contract and DApp platform

In Ethereum, accounts do not store personal information such name, surname, and so on; nut
are just pseudonym. Anyone can generate as many address as he/she likes. Wallet application
often ask a password to protect the keys with encryption, the private key must be kept absolutely
secret. Ethereum accounts are so represented by long hexadecimal addresses, such as the following
one:

E82d7CD3186212819D152b6d27ac88762B147F55

The address is derived as the last 20 B of the public key controlling the account. The address
is often indicated explicitly by prepending 0x to the address. Since each byte of the address is
represented by 2 hex char, a prefixed address is 42 characters long.

It is important to clarify that ETH in Ethereum are not contained in a particular machine
or application. The ether balance of every node can be queried, and ether sent and received by
any computer running an Ethereum full node or a wallet. That is because Ethereum is a public
blockchain, hence so, it is fully transparent. Every transactions ever made on the Ethereum main
network can be consulted on the ethereum explorer website [32]: Etherscan. Even if the computer
where a wallet is gets destroyed all is needed is just the private key and ether can be accessed in
any node.

On the other side if someone lose the key, his/her ether are lost forever. Furthermore, if someone
hand over another’s private key, that person can access the EVM and pull the money out without
knowing who he/she is.

Two measure need so to be taken:

• backup the private key;

• do not give the private key to anyone.

4.6 Transactions

A transaction T is a single cryptographically-signed instruction constructed by an actor externally
and recorded in an Ethereum block. A human is assumed as the very external actor; otherwise,
software tools will be used in its construction and dissemination.

There are two types of transactions: those which result in message calls, and those which result
in the creation of new accounts with associated code, known informally as “contract creation”.
Both types specify a number of common fields, widely discussed in the Ethereum yellow paper,
the most reliable document regarding transactions in this network [33]. Follows a list of the most
important ones:

• nonce: a scalar value equal to the number of transactions sent by the sender, formally Tn;

• gasPrice: a scalar value equal to the number of wei to be paid per unit of gas for all
computation costs incurred as a result of the execution of this transaction; formally Tp;

• gasLimit: a scalar value equal to the maximum amount of gas that should be used in
executing this transaction; gasLimit is paid up-front, before any computation is done and
may not be increased later, formally Tg;

• to: the 20 B address of the message call’s recipient, or ∅, for a contract creation transaction,
used here to denote the only member of B0; formally Tt;

• value: a scalar value equal to the number of wei to be transferred to the message call’s
recipient or, in the case of contract creation, as an endowment to the newly created account;
formally Tv;

• v, r, s: values corresponding to the signature of the transaction and used to determine the
sender of the transaction; formally Tw, Tr and Ts.

32

4 – Ethereum: a next-generation smart contract and DApp platform

Additionally, a contract creation transaction contains: init, an unlimited size byte array
specifying the EVM code for the account initialisation procedure, formally Ti. init is an EVM
code fragment; it returns the body, a second fragment of code that executes each time the account
receives a message call (either through a transaction or due to the internal execution of code).
init is executed only once at account creation and gets discarded immediately thereafter.

In contrast, a message call transaction contains: data: an unlimited size byte array specifying
the input data of the message call, formally Td.

For sure, one of the most singular aspect of an ethereum transactions is the gas.

4.7 Gas

Gas is the fundamental network cost unit [33]. Basically in Ethereum ETH can be converted freely
in and from gas as required. Gas does not exist outside of the internal Ethereum computation
engine; its price is set in gwei2 by the sender of the transaction and miners are free to ignore
transactions with low gas prices to mine. Indeed gas price higher means an higher revenue for the
miner of the transaction.

The Ethereum network needed gas in order to avoid issues of network abuse; hence so, every
operation is subject to fees in this environment. The fee schedule is specified in units of gas; thus,
any given fragment of programmable computation has a universally agreed cost in terms of gas,
which includes creating contracts, making message calls, utilising and accessing account storage
and executing operations on the virtual machine.

It is important to take into account that gas does not exist outside of the execution of a transac-
tion. Every transaction has a field, which is a specific amount of gas associated with it: gasLimit.
This is the amount of gas which is implicitly purchased from the sender’s account balance. The
purchase happens at the gasPrice specified in the transaction by the sender; obviously, the trans-
action is considered invalid if the account balance cannot support such a purchase. It is named
gasLimit since any unused gas at the end of the transaction is refunded, at the same rate of
purchase, to the sender’s account. Thus for accounts with trusted code associated, a relatively
high gas limit may be set and left alone.

In general, ether used to purchase gas that is not refunded is delivered to the beneficiary address,
the address of an account typically under the control of the miner. Transactors are free to specify
any gasPrice that they wish; however, miners are free to ignore transactions as they choose. A
higher gas price on a transaction will therefore cost the sender more in terms of ether and deliver
a greater value to the miner, and thus will more likely be selected for inclusion by more miners.

Miners, in general, will choose to advertise the minimum gas price for which they will execute
transactions, and transactors will be free to canvas these prices in determining what gas price to
offer. Since there will be a weighted distribution of minimum acceptable gas prices, transactors
will necessarily have a trade-off to make between lowering the gas price and maximising the chance
that their transaction will be mined in a timely manner.

4.7.1 Estimated gas unit for operations

In order to clarify, EVM code and EVM assembly have to be defined:

EVM code is the bytecode that the EVM can natively execute and it is used to formally specify
the meaning and ramifications of a message to an account; its the EVM own language, to
which your smart contracts compile.

EVM assembly is the human-readable form of EVM code.

2GigaWei, a subdenomination of ether.

33

4 – Ethereum: a next-generation smart contract and DApp platform

Transactions need to provide enough initial gas to pay for all computation and storage. For
instance, every time a transaction is performed, the sum of its operations costs for everyone in the
network the price of 21000 unit of gas, according to the costs of the EVM assembly operations [34]:

value name gas used description
0x00 STOP 0 halt the execution
0x01 ADD 3 addition operation
0x02 MUL 5 multiplication operation
0x06 MOD 5 modulo remainer operation
0x08 ADDMOD 8 modulo addition operation
0x16 AND 3 bitwise AND operation
0x20 SHA3 30+6*word Keccak-256 hash
0x31 BALANCE 400 get the balance of the given account
0x56 JUMP 8 after the program counter
0x54 SLOAD 200 Paid for a SLOAD operation
0x55 SSTORE 20000 to non-zero from zero
0x55 SSTORE 5000 remains unchanged or set to zero
0xF0 CREATE 32000 create new account with associated code

Table 4.1: EVM assembly most significant operations.

4.8 Currency

As said, the Ethereum network includes its own built-in currency, ether, which serves the dual
purpose of providing a primary liquidity layer for efficient exchange between different types of
digital assets and, more importantly, for paying transaction fees. The smallest sub-denomination
of ether is the wei, and thus, the one in which all integer values of the currency are counted.
Specifically, 1 ether is defined as being 1018 wei. Compared also with EUR and USD, the following
are all the ether subdenominations:

multiplier name
1018 Wei
1015 Kwei
1012 Mwei
109 Gwei
106 Szabo
103 Finney
1 Ether

10−3 Kether
10−6 Mether
10−9 Gether
10−12 Tether

455.399 USD
388.741 EUR

Table 4.2: ether sub-denominations with prices 26-06-2018 (source Ethereum Converter).

Sub-denominations are similar to the concept of “dollars” and “cents” or “BTC” and “satoshi”.
In the near future, we expect ether to be used for ordinary transactions, finney for micro-transactions
and szabo” and wei just for technical discussions around fees and protocol implementation. Gwei
is currently used as unit for gas price. Nowadays, the remaining denominations should not be
included in clients.

34

https://etherconverter.online/

4 – Ethereum: a next-generation smart contract and DApp platform

4.8.1 Gas price in GWei

As said, gas price is measured in Gwei. The gas price can be set with no limitations by the sender
of a transaction; higher is the gas price setup from the sender and faster will be the transaction to
be processed by the miner. Usually, three prices are defined to be useful for senders [35]:

name price (gwei) execution time cost in dollars
safe low 1 <30min $ 0.009
standard 2 <5min $ 0.018

fast 18 <2min $ 0.162

Table 4.3: Prices taken 18:24 2018-06-27 (source Ethereum Gas Station).

4.9 EVM: Ethereum Virtual Machine

The EVM can be seen as a worldwide computer that anyone can use, for a small fee, payable in
ether. The EVM is a single, global 256-bit “computer” in which all transactions are local on each
node of the network, and executed in relative synchrony. It’s globally accessible virtual machine,
composed of lots of smaller computers [31].

This big computer, which anyone who has a node or wallet application can access, makes it
simple to move arbitrarily large amounts of value nearly instantly. Although anyone can use this
global virtual machine, none can forge fake money inside it, or move funds without permission. If
it seems wasteful to have the entire EVM, all those nodes, replicating the same transactions and
slavishly maintaining the same state among thousands of individual computers, it’s important to
have proper basis for comparison for how financial services IT works today.

The EVM is a paragon of simplicity and efficiency by comparison. More importantly, all that
work isn’t for naught; In fact, it’s the evidence of this work that actually secures the network
(proof-of work, see section 2.1.1). By now, the EVM is a generalized, secure, ownerless virtual
machine that offers cheap Fedwire-like functionality with other functions on top.

The EMV is a transaction singleton machine with shared state. In computing, this means
it behaves like one giant data object, rather than what it is: a network of discrete machines,
themselves singletons, in constant communication. For the perspective of a software developer,
the EVM is also a runtime environment for small programs that can be executed by the network
(smart contracts, see section 4.10). The EVM can run arbitrary these computer programs, today
mostly written in Solidity language. These programs, given a particular input, produce always the
same output in the same way, with the same underlying state changes. Because of that, Solidity
programs are fully deterministic; moreover, it is guaranteed to execute them provided the user
have paid enough for transactions.

Solidity programs are capable of expressing all tasks accomplishable by computers, making them
theoretically Turin complete. That means that the entire distributed network, every node, performs
every program executed on the platform. When one user uploads a smart contract through their
ethereum node, it is saved in the latest block and propagated around the network, where is sorted
on every other node in the EVM to run the same code, as part of the block processing protocol.
The nodes go through the block thy are process and run any code enclosed within the transactions,
each node does this independently; it is not highly parallelized, but highly redundant.

The EVM is so a state machine. State machines are machines with memory that can be thought
of as beings who never sleep. As a state machine the EVM has a constant history of all transactions
within their memory banks, leading back to the very first transaction. A computer’s state is the
specific outcome of every single state-change that has taken place inside the machine, since it was
first switched on. The latest version of the machines’s state is the machine’s canonical “truth”
about reality as it stands right now. In Ethereum this truth deals with account balances and the
series of transactions performed. Transactions, therefore, represent a kind of machine narrative,

35

https://ethgasstation.info/

4 – Ethereum: a next-generation smart contract and DApp platform

a computationally valid arc between one state and another. As Gavin Wood’s Ethereum yellow
paper says [33]:

Ethereum, taken as a whole, can be viewed as a transaction-based state machine: we
begin with a genesis state and incrementally execute transactions to morph it into some
final state. It is this final state which we accept as the canonical “version” of the world
of Ethereum. The state can include such information as account balances, reputations,
trust arrangements, data pertaining to information of the physical world; in short, any-
thing that can currently be represented by a computer is admissible. Transactions thus
represent a valid arc between two states; the “valid” part is important, there exist far
more invalid state changes than valid state changes. Invalid state changes might, e.g.,
be things such as reducing an account balance without an equal and opposite increase
elsewhere. A valid state transition is one which comes about through a transaction.

EVM is the most trustful and reliable machine that any global network has today. For every
instruction the EVM executes, there must be a cost associated, to discourage useless contracts
deployment (for that testnets exist). Every time an instruction executes an internal counter keeps
track of the fees incurred, which are charged to who is performing them. Each time a sender initiates
a transaction that’s user wallet reserves always a small portion to pay fees. After a transaction has
been broadcast to the network from a give node, the network propagates the transaction around
so that all the nodes can include it in the latest block.

4.9.1 Implementations

The following list describe the nowadays implementations of the EVM live on the main network [36]:

• go-ethereum, a popular Ethereum client with its own EVM implementation (core/vm direc-
tory);

• Parity in Rust, another popular Ethereum client with its own EVM implementation (ethcore
directory);

• cpp-ethereum, an Ethereum client that generates the consensus test suite (libevm/VM.cpp);

• Pyethereum in Python, a mostly deprecated client (ethereum/vm.py);

• Py-EVM, a Python implementation designed to be highly configurable and modular and
compliant with the Ethereum test suite, work is in progress on it to run a full node and
develop sharding;

• EthereumJ in Java, a client with its own EVM implementation.

4.9.2 Programming languages

The following list describe the different programming languages who compile into the EVM:

• Solidity, the most popular programming language for Ethereum contracts;

• Vyper, a language strictly focused on security, with overflow-checking, numeric units but
without unlimited loops;

• Flint, a language with several security features: e.g. asset types with a restricted set of
atomic operations;

• HAseembly-evm, an EVM assembly implemented as a Haskell DSL;

• Bamboo (experimental), a language without loops but with explicit constructor invocation
at the end of every call.

36

4 – Ethereum: a next-generation smart contract and DApp platform

4.9.3 Debuggers

The following list describe the main available debuggers for Ethereum developers:

• Remix, an IDE containing an EVM code debugger;

• debug traceTransaction method, an instruction-wise trace information provided by go-
ethereum.

4.10 Smart contracts

Smart contracts has been thought by Szabo and Miller in 1997. Around the 1990s, it became clear
that algorithmic enforcement of agreements could become a significant force in human cooperation.
Though no specific system was proposed to implement such a system, it was proposed that the
future of law would be heavily affected by such systems. In this light, Ethereum may be seen as a
general implementation of such a crypto-law system.

4.10.1 Why the need of introducing smart contracts

EVM applications are referred with the name of smart contracts [31]. On one hand, in other
context, the term “contract” refers to a specific kind of contract: a financial one. Financial
contracts are agreements to buy and sell something, usually at a specifies price. In the Ethereum
context, smart contracts are agreements between accounts, to render a transfer of ether when
certain condition are met.

The reason these contracts are “smart” is they are executed by machine, and the assets (ether
and other tokens) are moved automatically. These contracts could be enforced even hundreds of
years after the’ve had written, assuming the network is still running then, and even if a lot of bad
actor try to interfere. The EVM is totally sandboxed and free from interference, and isolated from
other networks too; these conditions make impossible for a party to back out of a smart contract.
In practical terms, this is because smart contract are empowered to hold assets in escrow and
move them when the terms of the contract are met Smart contracts can be seen as cryptographic
“sboxes” that contain value and only unlock it if certain conditions are met.

4.10.2 Solidity: a smart contracts language

Solidity is an high level new programming language; it is used to write programs called smart
contracts [37]. Solidity is a statically typed language, which means that the type of each variable
(state and local) needs to be specified (or at least known) at compile-time [38].

It was influenced by C++, Python and JavaScript and is designed to target the EVM. Solidity
is statically typed, supports inheritance, libraries and complex user-defined types among other
features. This new language use basically a set of conventions coming from the world of networking,
assembly, web development and cybersecurity.

4.11 DApps: Distributed applications

DApps are applications, typically a web application, that run in a browser and interact directly
with smart contracts on the blockchain. A traditional web application would have a web client that
makes API requests to a backend server and persists. Data would only be stored on a database
fully owned by the application and all business logic would occur in the API Layer. In a DApp, the
web application mostly reads data directly from the blockchain and writes data via transactions
back to the blockchain. The most of the business logic occurs in a smart contract that is deployed
to the blockchain.

37

4 – Ethereum: a next-generation smart contract and DApp platform

4.11.1 DAOs

One particular kind of application that is particularly intriguing are DAOs3; this includes entities
as large as, or even larger than nation-states, social networks, multinational public companies,
etc... These applications are born on the idea that is not a reasonable design choice to have a
complete autonomous environment/entity. In fact, the code may not be able to handle new issues
that arise, so human intervention have to always be an option; but, preferably in the hands of a
small, non-profit entity or some decentralized solution.

However, the first DAO, known as The DAO, resulted in many funds being stolen, and Ethereum
hard forking into Ethereum and Ethereum Classic. The DAO, which launched with $150 million
in crowdfunding in June 2016, was immediately hacked and drained of US $50 million in cryp-
tocurrency. This hack was reversed in the following weeks, and the money restored [28]. This
decentralized bailout was made possible by a majority vote of the blockchain’s hash rate.

3Decentralized autonomous organizations.

38

Chapter 5

Open Bank Project API

The Open Bank Project, led by Berlin-based software company TESOBE, is an open-source REST-
ful API solution for banks and fintech industry, which empowers financial institutions and devel-
opers to securely and rapidly enhance their digital products. OBP brings developers an entire
environment for experimenting with e-payments and for deploying open banking platforms; this
is done by providing access to more than 160 standard banking APIs for transactions and for
payment initiation, used by over 8000 fintech community worldwide.

5.1 APIs Objectives

APIs comes out in several sandboxes, environments that offer a shared and controlled development.
The sandbox itself gives to financial institutions several ecosystems of third party applications and
services, and contains multiple test data which emulates real transactions and offers [39].

OBP enables developers to use a wider range of software applications and services for securely
connect to bank accounts, never calling for login credentials to users. As a result of using APIs,
OBP is an abstract layer that has the objective of facilitating and securing the developers work in
building fintech applications interacting with financial institutions. OBP aim to enable third party
apps to connect to bank accounts on desktop, mobile or any other platforms, analyse transaction
data, and promote and leverage open data.

5.2 Architecture

The Open Bank Project APIs abstract away the differences in banking systems and provides a
uniform technical interface that software developers can easily use to build secure services on
top of the bank [40]. As the figure 5.1 shows, the applications using these APIs are very secure
because customers, the account holders, always have to log into the bank; no other entities see
their username and password. Furthermore, since it is open source technology, there is no vendor
lock-in; in fact developers can “fork” the code from OBP GitHub and use commercial or open
source licenses. Moreover, teams, from OBP or partners can extend the Open Bank Project API
as required.

With the Open Bank Project is possible to: offer a wider range of web and mobile applications
to customers; reduce integration and maintenance costs for new applications; achieve better data
control and security for the end-users; leverage a growing community of developers and deploy
new apps instantly. Inside sandboxes, approved fintech solution providers can access services from
participating in building modern payment solutions and can access different kind of data and
metadata, such as customers informations, accounts, transactions, payments, but even comments,
URLs, geo tags, as is possible to see in the figure 5.1.

Here is shown an high level overview of the OBP API:

39

https://github.com/OpenBankProject

5 – Open Bank Project API

Figure 5.1: Open Bank Project architecture (source: OBP Architecture).

The OBP APIs has been implemented thinking about four classes of possibles users:

• banks, to quickly deliver a greater range of apps and services;

• developers, to build next-generation fintech apps and deploy to a wide range of banks;

• customers, to enjoy a large offer of banking applications;

40

https://github.com/OpenBankProject/OBP-API/wiki/Open-Bank-Project-Architecture

5 – Open Bank Project API

• society, to raise the bar of financial transparency and unlock an untapped innovation poten-
tial.

5.3 Banks

Like online banking today, every financial institution will offer an API tomorrow. According to
Gartner, by 2016, 75% of the top 50 global banks will have launched an API platform and 25%
will have launched a customer-facing app store. OBP aim to equip these institutions with the right
technology and expertise to embark on the open banking journey [41].

The goal of Toledo is to transform the bank following the “bank as a platform” principle; in
order to make this technically possible, the open source API were developed allowing banks to
make different kind of applications available to it’s customers at low cost. It is a technical layer
that sits on top of any bank allowing the applications to securely interact with the bank, logging
in it directly.

5.4 Developers

With the Open Bank Project, developers via RESTful API can perform transaction, integrate
bank account information, use OAuth authentication, write once and run code everywhere, and
leverage a consistent and bank-agnostic interface.

Developers can use the following environments [42]:

• the general Open Bank Project sandbox;

• the PSD2 sandbox;

• the Emirates NBD sandbox;

• the UK Open Banking Working Group OBP sandbox;

• the Ulster Bank sandbox;

• the RBS OBP sandbox;

• the BNP Paribas sandbox.

Using these API sandboxes is easier to build a company solution that offer a modern and
standards-based technology stack, tested and approved by tier 1 banks, and is simple to create
a growing ecosystem of third party developers and applications that enable customers enjoy a
true app store experience from day one, generating a product more cost effective to maintain.
Access account information and transaction history, enrich transactions with metadata like tags,
comments, pictures and geolocation, create and access different views on accounts, transfer funds
are some of the feature available for developers.

5.4.1 OAuth

As is possible to see in the figure 5.1, OBP uses OAuth to protect resources; indeed, for developing
with one of the sandboxes is required to get a consumer key and consumer secret for the calls and
then use OAuth authentication. This was a design choice made by OBP because OAuth 2 it is
considered as stable as OAuth 1, which is an RFC and used by important enterprises like Twitter
and Mastercard.

The best way to get started with OBP and OAuth is probably to fork one of the several Starter
SDKs which take care of the basic OAuth flow; so, developers can choose between the followign
ones: Node, Python, C#, Mac, Android, Scala DJango, iOs, Android, and PHP.

41

5 – Open Bank Project API

5.5 Sandbox PSD2

This Open Bank Project PSD2 sandbox demonstrates a PSD2 API solution. The API provides
a secure avenue that allows bank account holders to access their banking data and services via
approved third party applications, following the consent of both the bank and customer. This
sandbox can be used to explore the PSD2 API catalogue, test an example API powered application
and register for a developer key to start building applications.

The process to get started with the sandbox PSD2, and with every sandbox in general, is the
following [43]:

1. get the API key, the consumer registration;

2. create a free developer account, and submit basic information about the application at the
stage;

3. connect the application to the API using OBP SDKs with the developer key, which was
provided during account creation;

4. test the application, using the whole set of functions and available data.

Inside the PSD2 sandbox, applications can access the user’s list of accounts and account infor-
mation, provide fine-grained accounts, transaction access to guests (auditor, accountant or public),
explore banks, branches, ATMs, products, access open data related to banks, including geoloca-
tion and opening hours. It is possible to Initiate transaction requests and explore transactions; for
instance, access the transaction history and transaction metadata, enrich transactions and coun-
terparties with metadata including comments, pictures and tags. The following list shows the
resources and the features that the sandbox PSD2 currently support:

• banks and their branches, ATMs and products;

• accounts, including any public accounts;

• transactions, for the specified account;

• transfers, with a list transfer methods.

• create a transfer, results in transaction only on success;

• cards, held by a user;

• metadata management, including urls, tags, comments and geographical information tags;

• entitlements management, such as manage views/roles on accounts to reveal a subset of
account information and only allows certain actions;

• challenges and responses, in addition to primary authentication, the API provides a generic
challenge-response mechanism for operations that require further security checks;

• OAuth user authentication, so the bank remains the gate-keeper;

• monitoring and control, displaying functions usage metrics and revoke or accept access of
third party applications;

• starter SDK’s, with hello-world style applications on GitHub that already contain the OAuth
flow.

Developing the OBP PSD2 API encourages a community of developers to grow around the
bank and enable them to build innovative products and services for customers based on the “bank
as a platform” principle. Services may be offered via an application store and the best ideas can
be cherry picked for use in branded interfaces.

42

5 – Open Bank Project API

5.5.1 API Explorer

API Explorer for OBP API is a Scala and Liftweb application that consumes the OBP-API resource
documentation so that developers can browse and interact with the OBP REST API endpoints [44].
A list of the possible operations in the PSD2 API sandbox are shown in the table 5.1.

type function
API Get API Configuration
API Get API Info (root)
API Get Adapter Info
Doc Get API Glossary
Doc Get Message Docs
Doc Get Resource Docs
Doc Get Swagger documentation

Account Get Account by Id (Core)
Account Get Accounts Held
Account Get Accounts at Bank (IDs only)
Account Get Accounts at Bank (Minimal)
Account Get Accounts at all Banks (My)

Bank Get Transaction Types at Bank
Counterparty Get Counterparties (Explicit)
Counterparty Get Counterparty by Counterparty Id.(Explicit)
Counterparty Get Other Account by Id
Counterparty Get Other Accounts of one Account
Transaction Get Transaction by Id
Transaction Get Transactions for Account (Core)

Transaction Req Answer Transaction Request Challenge
Transaction Req Create Transaction Request (COUNTERPARTY)
Transaction Req Create Transaction Request (FREE FORM)
Transaction Req Create Transaction Request (SANDBOX TAN)
Transaction Req Create Transaction Request (SEPA)
Transaction Req Get Transaction Request Types for Account
Transaction Req Get Transaction Requests

Table 5.1: PSD2 sandbox API overview.

43

Chapter 6

Project: solution of an
Ethereum-based loyalty point
system

This chapter concerns the project work of the thesis. In the following sections, the architecture of
the developed solution and the main functions implemented are going to be discussed; furthermore,
this document includes the developer’s guide (see appendix A), where are described the core
modules, the interface, and the data structure; and the user manual (see appendix B), displaying
how to install and use the program and its tools.

6.1 Premise

In this section is explained why makes sense to build up a loyalty program application on Ethereum,
and is provided an analysis of the advantages of using a loyalty point blockchain-based system, in
comparison with the traditional loyalty schemes.

6.1.1 What are loyalty programs

Loyalty programs are structured marketing strategies designed by merchants to encourage cus-
tomers to continue to shop at, or use the services of businesses associated with each program [45].
These programs are exploited by a significant multitude of companies in several commercial fields,
each one having specific features, but always a reward-schema “points for money”.

In marketing generally, and in retailing more specifically, the most common reward schema uses
a card that could be: a loyalty card, a rewards card, a points card, an advantage card, or club
card [46]. This is a plastic or paper card, visually similar to a credit card, debit card, or digital
card that identifies the card holder as a participant in a loyalty program. Other loyalty program
can be totally digital. By presenting a card or using a digital service, purchasers typically earn the
right either to a discount on the current purchase, or to an allotment of points that they can use
for future purchases. Hence so, the card or the digital account is the visible means of implementing
a type of what economists call a two-part tariff.

Application forms for cards and services usually entail agreements by the store concerning
customer privacy, typically non-disclosure of the store of non-aggregate data about customers. The
store uses aggregate data internally, and sometimes externally, as part of its marketing research.
Over time the data can reveal, for example, a given customer’s habits, or customers’ most bought
product.

One can regard loyalty programs is so already a form of centralized virtual currency, one with
unidirectional cash flow, since reward points can be exchanged into a good or service but not into

44

6 – Project: solution of an Ethereum-based loyalty point system

cash. As a results, such a schema fits perfectly with a total conversion to a digital decentralized
service.

6.1.2 Disadvantages of traditional loyalty schemes

Currently, in the field of marketing, modernisation of traditional loyalty schemes is a crucial topic.
On one side the customer expectations are changing, but on the other they have also become
expensive to run and difficult to unwind.

Securing customers’ loyalty goes beyond having a basic loyalty program. Loyalty is the brand’s
ability to be top of mind in a customer’s head as well as to secure a sense of allegiance from
consumers [47]. Allegiance is much harder to achieve at a time when every consumer has different
expectations and responds to different triggers when it comes to engaging with a brand.

The main disadvantages of nowadays loyalty schemes are the following:

• they have become a tired concept that needs to be reinvented;

• the customer experience requires to be more personalised, relevant and exclusive;

• they cannot meet rapidly changing customer expectations;

• loyalty schemes can become a financial liability for businesses;

• loyalty solutions need to be agile to build and enhance the offering.

6.1.3 Advantages of blockchain-based loyalty schemes

Building loyalty rewards programs on top of a blockchain, for sure can bring an exiting customer
experience. The main advantages of using a blockchain-based solution for a loyalty program are
the following [48]:

Cost reduction

One of the blockchain main features is to reduce cost thanks to the fact that smart contracts
are deployed in the network and deployers does not need to buy a physical infrastructure or to
rent virtual machines. The trade-off cost savings is going to regard system development, system
management, electronic transactions, and product acquisition. In addition, the costs for fraud and
errors are significantly reduced as a result of the cryptographic properties of the blockchain.

Creation of a standard system

Supermarket points of a customer should be potentially in the same wallet from which he/she re-
deems points for communication providers. Through a trustless smart contract standard, blockchain-
based applications can centralise the multiple customer’s loyalty programs. Loyalty providers
decide how and with whom the customer uses these rewards, but from a consumer perspective,
his/her ability to access and manage them is practically frictionless.

Fast transaction speed

Transactions in blockchain are incredibly fast and accessible; hence so, providing a loyalty program
with a speeded up transactional process for transferring points will improve performance and the
overall customer experience.

45

6 – Project: solution of an Ethereum-based loyalty point system

Improved security

Blockchain creates an immutable and time-stamped distributed ledger record of every single trans-
action ever made, making transactions easily traceable, but also making them irreversible, and
preventing double spending, fraud, abuse, and any other type of manipulation.

Creation of new opportunities

Building a loyalty program on platform such as Ethereum means creating smart contracts that
provide all the main advantages of the public blockchains. Currently, the power of using efficient
and secure structures such as smart contracts has not fully discovered yet, and these could be an
added value for those businesses that will be able to find new type of applications.

6.2 Entities

The loyalty program system developed in the thesis project is an Ethereum-based web application
where different entities can interact with each other through a front-end. The fidelity points used
are Ethereum tokens, designed following the ERC-20 standard (see section 6.6). Concerning who
tries to interact with the application, the front-end shows different functions.

Once the smart contract with the business logic application has been implemented, it has
been deployed to the Ethereum testnet, Rinkeby (see section 6.5.1). The system is designed for
recognising three different kind of accounts, that represent the following entities:

• admin;

• users;

• shops.

Every entities of the system must have an Ethereum address in order to interact with the
application, because without an address is not possible to send and receive points, is not possible
to call the functions of the application, and it is not possible to be payed in ether. Ethers, as already
said, are the gas of the system, so every entity of the application need to have the right account
balance in order to pay the functions called. The effective costs are analysed in the chapter 7.
In order to collect points and ether, every entities need to have a wallet; and the application was
designed to work specifically with the wallet/extension Metamask (discussed in section 6.5.2).

Admin

The admin was designed to represent the service provider; but the service provider could also
delegate someone else to be the “manager” entity in the fidelity point application. The admin is
the entity who can generate points inside the system and distribute them both to users and shops.
Concerning the points generation, when the application is set up the admin instantly receive freely
a very big amount of points. If the will run out of points, it will have to pay the smart contract
deployed on Ethereum to generate new ones calling a specific function.

User

The user is the main receiver of the points, which are stored in his/her personal wallet, and he/she
can use them to redeem physical or digital prices from official shops of the system. The user
in order to use the system and receive points have to be logged and authenticated in the web
application. The loyalty points service provides the customer with a front-end function for signing
up, and so registering to the system. The authentication is managed off-chain with the Firebase
authenticator (see section 6.4.4).

46

6 – Project: solution of an Ethereum-based loyalty point system

Shop

Shops can be on one side external shops and on the other side also the service provider can declare
itself as an official shop, offering customers its products and services as rewards. Shops which
are external have to make a request to enter in the circuit of official “price-givers” for the users;
obviously, the official provider shop does not. Shops in order to be listed in the ”shop page” have to
perform a free blockchain request to the admin; then, the admin, examining the shop informations
(such as bank, Ethereum account, etc...), can decide to approve or reject them. Only If they
are approved, shops will have their own selling page, which will be created by the fidelity point
company, to offer goods and services for points.

Shops receive a certain amount of points from users who redeem prices, so they have to provide
the service to the user or ship the product chosen. A complete set of pages for checking and
managing the status of the expedition has been implemented in the project. Moreover, shops
after sending the product and collecting points can ask the admin to be refunded of goods sold
to the users1. In order to do that, shops which owns a consistent amount of points have to make
a payment request the admin in ether or euro. The application form for performing the payment
request in the front-end, gives to shops the possibility to be payed in ether or in euro via psd2;
the Ethereum request is stored on the blockchain, on the other hand the psd2 payment request
is stored on the Firebase realtime database as pending. Shops can see from its payment request
page, if its requests is actually: pending, in white; rejected, in red; or succeeded, in green (see
figure 6.1). The admin, analysing the request, can decide to approve or reject it.

Figure 6.1: Request status page of a shop.

6.3 Architecture overview

The figure 6.2 describe the architectural overview of the loyalty point system. The schema focus
on a set of infrastructural components, existing outside the blockchain, which interact through the
front-end with the blockchain.

1Note that the financial aspect of billing product bought with points has not been analysed

47

6 – Project: solution of an Ethereum-based loyalty point system

Firebase

bank

Shop 2

User

Admin

Shop 1

front end

front end

front end

express.jsnext.js

front end

1. company server delivers front-end to every entities

2. entity access
Ethereum

Ethereum blockchain

Smart contract
 DApp

Figure 6.2: Architecture overview.

6.4 Components outside the blockchain

Outside the blockchain there are three entities, the ones previously described: the admin, users
and shops (see section 6.2) and furthermore there is the bank, which is used just for the psd2
interaction.

First, the loyalty point system provider has the principle infrastructural components:

• next.js, the server which delivers the front-end web application to everyone, for the blockchain
interaction;

• the front-end, the react.js application which allows the entities to interact with the smart
contract;

• express.js, the server used for building up the interaction with a bank, through a psd2 trans-
action;

• Firebase, the platform used for both authenticating user e storing psd2 payments data;

• the admin entity, the physical person who interact with restricted functions of the web
application (discussed previously in section 6.2).

6.4.1 Next.js server

Next.js is a minimalistic and lightweight framework and it is used in the project for server-rendering
the react.js application. Like web applications created with php, where some .php files are just

48

6 – Project: solution of an Ethereum-based loyalty point system

written and deployed, in next.js the developer does not need to worry much about routing, and
the application rendering lays on the server by default. With next.js, the applications are written
in javascript, node.js and react.js.

6.4.2 Front-end

In order to deliver a user friendly interface and make the entities interact with the blockchain a
front-end of the application has been implemented, and this is provided to the users, shops and
even the admin, from the next.js server. Incoming and outgoing data are converted to graphical
interface for the entities to view and interact mainly with the blockchain through digital interaction
using html, css and react.js. There are several tools available that can be used to develop the
front-end for this kind of web applications, but react.js was chosen because it is a widely used
modern javascript framework, which allows developers to build client-side application really fast
and creating a responsive web design.

It must be specified that every function that allows to interact with the blockchain is client-side;
hence so, the user totally controls the operation called from the contract. The interaction with the
smart contract deployed is managed through the web3.js library, developed officially by Ethereum.

React.js

React enables developers to declaratively describe their user interfaces and model the state of those
interfaces. This means, instead of coming up with steps to describe transactions on interfaces,
developers just describe the interfaces in terms of a final state (like a function). When transactions
happen to that state, react takes care of updating the user Interfaces based on that; react is just
javascript, there is a very small API to learn, just few functions [49].

web3.js

The web3.js library is a collection of modules which contain specific functionality for the Ethereum
ecosystem. The web3-eth is for the ethereum blockchain and smart contracts. The web3-utils

contains useful helper functions for DApp developers. To help web3 integrate into all kind of
projects with different standards are provided multiple ways to act on asynchronous functions;
moreover, most web3.js objects allows a callback as the last parameter, as well as returning promises
to chain functions [50].

This is done because, Ethereum as a blockchain has different levels of finality and therefore needs
to return multiple “stages” of an action. For instance, to cope with requirement a promiEvent for
functions like web3.eth.sendTransaction or contract methods. This promiEvent is a promise
combined with an event emitter to allow acting on different stages of action on the blockchain, like
a transaction. The promiEvent work like a normal promises with added on, once and off functions.
This way developers can watch for additional events like on “receipt” or “transactionHash”.

6.4.3 Express.js server

Express is a minimal fast and flexible node.js web application framework that provides a robust
set of features for web and mobile applications [51]. With a myriad of HTTP utility methods and
middleware at your disposal, creating a robust API is quick and easy. Express provides a thin
layer of fundamental web application features, without obscuring node.js features. Many popular
frameworks are based on express.js and this service is the main choice for using the PSD2 API
Sandbox of OBP.

Through express.js, the admin from the front-end can call the OBP API and perform a trans-
action to the shop, using its own bank account bank and calling itself for the money transfer.

49

6 – Project: solution of an Ethereum-based loyalty point system

6.4.4 Firebase

Firebase is a mobile and web application development platform developed by Firebase, Inc. in
2011, then acquired by Google in 2014. The platform offers a set of several services, in these
project has been used just two of them: Firebase authentication and realtime database. To add
Firebase to an application, a Firebase project have to be created and a short snippet of initialisation
code, with few details, need to be added in the project. After creating a new application in the
Firebase console, the app can use the services that it needs; moreover, Firebase services are free in
development phase.

Authentication

Firebase Auth is a service that can authenticate users using only client-side code. It supports
social login providers Facebook, GitHub, Twitter and Google (and Google Play Games). In the
project it was included a user management system to enable the user authentication with email
and password login, stored with Firebase [52].

Concerning the loyalty point service, Firebase authentication allow users to login in the web
application using the email address and password sign-in methods, as shown in figure 6.3. To use it
is just necessary to install the Firebase SDK and paste the configuration code into your web page
as described. In addition, for signing up new customers or shops, a form that allows new users to
register has been added. When a user/shops completes the form, validate the email address and
password provided by the user; then, the authentication account is created.

Figure 6.3: Authentication in Firebase.

Realtime database

Firebase provides a realtime database and backend as a service; It provides application developers
an API that allows application data to be synchronised across clients and store on Firebase’s
cloud. The company gives client libraries to enable integration with android, ios, javascript, java,
objective-c, swift and node.js applications. The library written in node,js is the one used by the
thesis application.

The Firebase realtime database is a cloud-hosted database where data are stored as JSON and
are synchronised in realtime to every connected client. When building cross-platform application
with javascript SDK, all the clients share one realtime database instance and automatically receive
updates with the newest data [53].

The Firebase Realtime database is used in the project to store all that data that does not need
to be on the blockchain, such as shop bank details and PSD2 payment request performed by shops,
which need to be approved by the admin.

6.4.5 OBP PSD2 Payment

The PSD2 OBP API is the interface the admin use to perform a transaction through an application
built on the express.js middleware. It is assumed that both admin and shops have their own bank
account; as a matter of fact, banking data are required for shops at the moment of the subscription.

50

6 – Project: solution of an Ethereum-based loyalty point system

Basically, in the system, the admin call the create transaction request operation exposed
by the API, which initiates a payment via transaction request. This is the preferred method to
create a payment and supersedes the old method makePayment. This operation is exactly a third
party access to payments, which is on of the core tenet of PSD2; in fact, this call satisfies that
requirement from several perspectives:

• a transaction can be initiated by a third party application, the loyalty point system;

• the customer, which is the admin him/herself in the project, is informed of the charge that
will incurred;

• the call uses delegated authentication via OAuth.

Account data can be easily created on the OBP PSD2 Sandbox webpage (see figure 6.4), filling
the form with bank name, account id, desired currency, and with the initial balance of the account.
In the project, in order to be payed in euro through psd2, a shop must provide the name of its
bank and the bank account; otherwise, its registration in the system would not be allowed an it
would not ever become an official shop.

Figure 6.4: Create new bank account in the OBP PSD2 sandbox.

6.4.6 Application

The admin perform the payments for an application which is build up on express.js; so, there is a
link that redirect him/her from the next.js front-end to the middleware interacting with the bank.
This application is really “one function” and just allows the admin to perform the transfer without
changing the parameters of the form, which are pre-calculated. The template of the application is
written in pug.

Pug

Pug is the middleman and a template engine for node.js. It is a template engine that allows to
inject data and then produce html, often used for rendering when working with express.js [54]. In
short, at run time, pug (and other template engines) replace variables in files with actual values,
and then send the resulting html string to the client.

51

6 – Project: solution of an Ethereum-based loyalty point system

6.5 Components used for smart contracts interaction

This sections shows the tool which are related with the Ethereum blockchain; it must be specified
that the project is using an Ethereum testnet, Rinkeby; otherwise, every transaction would have
been payed.

6.5.1 Rinkeby and testnets

Rinkeby, with Ropsten and Kovan, is one of the official test networks of Ethereum, and is the
testnet used for the project development. Testnet stands for a network that is not a real blockchain
network, but just emulates the behaviour of a blockchain for testing purposes.

As a result, the network cannot guarantees advantages like immutability, security, and inter-
mediaries avoidance. As a matter of fact, the Rinkeby testnet is a proof-of-authority network, so
uses a different consensus mechanism than the main Ethereum, where there is no mining at all
and so it is not fraud proof. However, Solidity developers does not care about security in testing
phase in Rinkeby.

On the other side, the Ropsten testnet is a proof-of-work network, so more similar to the public
main net; but, it is a sort of weak mining and this network is often slower thank Rinkeby, because
of developers using a ridiculously high gas price to speed up their operations. In these testnets,
in fact, gas does not have to be payed, and developers can use an illimitate amount of ether. In
addition, in Ropsten, the mining is done just for helping the developer community, there is no real
financial incentive as opposed to main net. Against this background, every transaction performed
on the testnet happens with the same pattern as the Ethereum main network.

6.5.2 Metamask

Metamask is the tool used for collecting points in the project. MetaMask is a bridge that allows
to visit the distributed web through the browser; It a great tool for development because allows to
run Ethereum DApps right in the browser, without running a full Ethereum node.

The figure 6.5 shows the Metamask interface of the admin of the loyalty point system (account
1). On the left-top of the Metamask interface, the dropdown menu allows to select the network;
currently, the interface is in the Rinkeby network. The admin ethereum address is showed par-
tially under the account name; furthermore, it is displayed the balance in ether and even in the
corresponding conversion in dollars.

In the image on the left is possible to check the latest transactions; actually, there are starting
from the top to the bottom:

• a point transfer transaction, in fact the ether transferred are zero, but the transfer succeeded;

• a contract deployment transaction, when a smart contract is deployed in the blockchain
network;

• a ether transfer transaction, in fact the ether transferred are different from zero and the
transfer succeeded;

• a rejected transaction, which could both be refused by the sender through Metamask or not
mined by the network due to insufficient gas.

In the image on the right is possible the set of different tokens owned admin (they are different
even if they have the same name); furthermore, the orange button “add token” allows the Metamask
user to set new tokens, adding the contract address that creates them.

MetaMask includes a secure identity vault, providing a user interface to manage different ac-
counts on different sites and sign blockchain transactions. MetaMask add-on can be installed in

52

6 – Project: solution of an Ethereum-based loyalty point system

Figure 6.5: Metamask interface.

Chrome and other main browsers. The goal of this tool is to make Ethereum easy to use for many
people as possible [55].

The MetaMask browser extension, enables browsing Ethereum blockchain enabled websites.
The extension injects the Ethereum web3 API into every website’s javascript context, so that the
loyalty point DApp can read from smart contracts deployed in Ethereum (Rinkeby). MetaMask
also lets the user create and manage their own identities; in fact is possible to have multiple
accounts in the same instance of the extension. Indeed, in the project, was possible to test admin,
shops, and users operations from the same instance.

Moreover, when, for instance, a user wants to exchange points for a price, he/she writes into
the blockchain through a secure interface to review the transaction, before approving or rejecting
it. Metamask compute a pre-calculus of the fee costs and enables user to manage the gas price and
the gas limit. Because it adds functionality to the normal browser context, MetaMask requires the
permission to read and write to any webpage. The source of MetaMask is open on GitHub [56].

6.5.3 Etherscan

Etherscan is the web application used to inspect in depth every transaction happened in the
network [32]. Every network have its own Etherscan to inspect transactions and stats, including,
on one hand, the Ethereum main network, but on the other hand, also Rinkeby, Ropsten and
Kovan testnets. In the figure 6.6 are listed the latest transactions executed or reject with the
loyalty point smart contract.

The contract address: 0x3735543206B4bbA0fC09E2Bd2E4906D2143AeB9B is displayed on top of
the page; instead, bottom, is shown the full timeline of the operations performed with the actual
value, the fees, the block number of the blockchain, and incoming or outgoing status.

In addition, we can see that this is a “token contract”, and that the token created in is named
“Fido Coin(FID)”; moreover, also the creator address is displayed, in fact the address 0xe82d7...
match the admin address, which have also performed the last transaction (still “pending”). It is
clear that Etherscan shows exactly what it is the fully transparency of a public blockchain; even
the code and the bytecode of the contract are public.

The figure A.4, analyse the last transaction of the figure 6.6, the one which was pending.
However in the new image describe a step forward because the status is “Success”. This means

53

6 – Project: solution of an Ethereum-based loyalty point system

that it is successfully performed. Concerning the other informations, it is showed how the gas limit
was set and how many gas has been used with the respective gas price decided by the sender. The
actual cost fee must be calculated. Anyway the price shown is 0$; in fact, no expenses happens
in a test network, but if this transaction would have been performed in the main network, the fee
would have to be payed.

Furthermore, the image provides a description of how many points are transferred from the
admin to an user, 10,000 points in this use case. Every address is a link to another page where
are displayed more information; it could be a user account, a contract, a token contract, a block.
Everything is described in Etherscan.

Figure 6.6: Loyalty point smart contract.

6.5.4 Remix IDE

Remix is a powerful, open source tool that helps developers to write Solidity contracts directly from
the browser. Written in javascript, Remix supports both usage in the browser or locally [57]. The
online Remix IDE is a useful tool for testing, debugging and deploying smart contracts and much
more in browser-based ecosystem. It is stable, and is updated at almost every release. Concerning
the project, Remix was used to the test efficiently the smart contract functions, because allows to
call functions straight, without the need of a front-end application.

6.6 Points

Points in the actual loyalty points system are Ethereum tokens. An Ethereum token is a currency
used in a particular DApp; however, a point in the system has a value extremely low, respect to
an ether; as a consequence, this makes the token value not qualifiable (1 ether = 1018 points). So,
the idea is that Ethereum not only has its own currency, but also has tokens on top of it which
can act as currency themselves.

54

6 – Project: solution of an Ethereum-based loyalty point system

Figure 6.7: Point transfer transaction.

6.6.1 Tokens

Tokens in the Ethereum ecosystem can represent any fungible tradable good: coins, loyalty points,
gold certificates, IOUs, and even in-game items. Between 2.9 and 5.8 millions of private as well as
institutional users actively exchange tokens and run the various transaction networks. In May 2017,
the whole market capitalisation of active cryptocurrencies and tokens surpassed $91 billion [58].
Since all tokens implement some basic features following a standard, this also means that a token
will be instantly compatible with the Ethereum wallet and any other client or contract that uses
the same standards [59].

As a metaphor, Ethereum can be seen as the internet and all the DApps as websites that run
in it. DApps are all decentralized and not owned by an individual, they are owned by people once
the Dapp smart contract is deployed; therefore, customers have to buy certain tokens of that DApp
in exchange of your ether to use their functions. It must be specified, that a token is not needed
in every DApp, it depends if it may be useful or not. These tokens are distributed by the DApp
deployers in what is usually called “ICO”, a sort of crowd sale (see section 6.6.2).

These tokens are usually of 2 varieties:

• usage tokens, the tokens that act like native currency in their respective DApp, like points
used in the project;

• work tokens, tokens that identify the possessor as a sort of shareholder in the DApp; a perfect
example is the DAO tokens, where a DAO token holder had the right to vote on whether a
particular DApp could get funding from the DAO or not.

Regarding all the DApps which live in the Ethereum network, then why don’t users simply use
ether to pay for every transaction? Why a native currency is needed for them? The answer is that
even in real life there are tons of services where form of token are used over cash, such as tickets.

By using points to execute certain functions in the smart contract of the DApp, the process
became much simpler and seamless. Points are easy to send, and without owning them is impossible
to performe requests like asking for a payment to the admin or buy a product from a shop.

Currently, the most important and used standard for realising token in Ethereum is ERC-20.

55

6 – Project: solution of an Ethereum-based loyalty point system

6.6.2 ERC-20 standard

The ERC20 standard is basically a specific set of functions which developers must use in their
tokens to make them ERC20 compliant. While this is not an enforced rule, in fact the loyalty
system points just implements some of them, most DApp developers are encouraged to follow the
standards to ensure that their tokens can undergo interactions with various wallets, exchanges and
smart contracts without any issues. This was great news for everyone because now they at least
had an idea of how future tokens are expected to behave. ERC20 tokens have gotten widespread
approval and most of the DApp sold on ICO’s have tokens based on the ERC20 standard.

So, a token need to have to be ERC20 compliant needs essentially to declare some variables
and a set of six functions that can be recognised and identified by other smart contracts. When
executed, the following four basic activities are what all the ERC20 tokens required to do:

• get the total token supply;

• get the account balance;

• transfer the token from one party to another;

• approve the use of token as a monetary asset.

ICO

Initial coin offerings are public offers of new cryptocurrencies in exchange of existing ones, aimed to
finance projects in the blockchain development arena. In the last eight months of 2017, the total
amount gathered by ICOs exceeded 4 billion US$, and overcame the venture capital funnelled
toward high tech initiatives in the same period. A high percentage of ICOs is managed through
smart contracts running on Ethereum blockchain, and in particular to ERC-20 token standard
contract [60].

Usually, when a new and exciting DApp comes along, the tokens are sold through the ICO;
however, the application developed in the thesis does not required to sell tokens, and indeed it does
not even needed to do an ICO. The fact is that points should be just used for redeeming purpose
and not as exchange money; in addition, nowadays ICO are not good views because of many fraud
and scams happened.

6.7 Transaction Types

Three different types of transactions are possible inside the application: point transfer, ether
payment and PSD2 payment.

6.7.1 Point Transfer

The point transfer stands for the operation of transferring points from a sender to a receiver in the
loyalty point system. Basically, the possible use case are four:

• user sending tokens to a shop, to redeem a price;

• shops sending tokens to the admin, asking to be payed in recognised cryptocurrency or euro;

• admin sending tokens to a user, following a fidelity point policy (e.g using a service and
receiving point as prize for the usage);

• admin sending back token to a shop after a payment request is rejected for some reason.

56

6 – Project: solution of an Ethereum-based loyalty point system

In the first three use cases, the operation of point transfer is performed by filling the form in the
figure 6.8, inserting the value and the address of the receiver, and clicking on the button “Transfer”.
Before the mining of the transaction starts, the Metamask extension begins the pre-calculus of the
operation, looking if the gwei amount chosen by the sender are enough to pay miners, and asks for
a confirmation of the price fee calculate (see figure 6.9). Moreover, Metamask display also if the
transaction is going to fail or succeed.

Figure 6.8: Point transfer form.

Figure 6.9: Metamask pre-calculus.

After the Metamask confirmation, the transaction is sent to the blockchain and after the ap-
pliance of the proof-of-work consensus protocol, the transaction is stored on the blockchain of the
Ethereum testnet, Rinkeby. As shown in the figure A.4 no ether are moved from an account to
another during the point transfer; the only ether used are those for paying the miners, so the
Ethereum fees.

6.7.2 Ethereum Payment

The Ethereum payment is the operation which allows the shop to be payed for the prices given
to the users in ether. The Ethereum payment is done just when the admin click on the approve
button of the request. The price is pre-decided by the smart contract system. Again, the admin

57

6 – Project: solution of an Ethereum-based loyalty point system

need to confirm also on Metamask the decision of performing the transaction, specifying gas limit
and gas price, remembering that higher is the gas price is set, higher is the mining speed.

It must be clear that before performing the payment in ether (and also PSD2) the admin need
to receive a request from a shop with the corresponding point amount it wants to redeem.

Figure 6.10: Admin page for the payment approbation.

Figure 6.11: Ethereum transfer transaction.

58

6 – Project: solution of an Ethereum-based loyalty point system

6.7.3 PSD2 payment

The PSD2 payment is the operation which allows the shop to be payed by the admin in euro,
for the prices given to the users. The shop requests are stored in the Firebase realtime database,
as shown in figure 6.12. The table shows if the pending payment has been completed or reject,
showing the timestamp of when the request was made, and the token amount for which the shop
was asking for a refund.

Figure 6.12: Psd2 pending payment database structure.

From a web page of the front-end next.js application, the admin can push a button for approving
PDS2 payment request and he/she is redirected with a PID to the express.js and it is authorised
through OAuth and have to login in the OBP sandbox (see figure 6.13). After that he can transfer
the pre-calculated amount of euro to the shop through a pre-filled form, such as happen in the
figure 6.14.

Figure 6.13: OBP Authentication.

After performing the payment, both shop and admin checking their bank account can see their
changed balance. This can be done thanks to the OBP dashboard (displayed in figure 6.15) that
comes up in the API Explorer section of the PDS2 sandbox. The dashboards allows to check
balance and transactions selecting them starting from the left with the dropdown menu of banks,
then for every bank all the accounts created are showed and then other informations including
all the ids of the transactions performed by an account holder. The data are in JSON, in the
figure 6.16 are showed partial data of a transaction from the owner of the account 12456734234 of
the psd201-bank-x--uk.

59

6 – Project: solution of an Ethereum-based loyalty point system

Figure 6.14: Psd2 payment form.

Figure 6.15: OBP PSD2 sandox dashboard.

Figure 6.16: Transaction inspection from the PSD2 Sandbox web application.

60

Chapter 7

Process and experimental results

This chapter is related to the results acquired in the project. What is evaluated are the performance
and the cost of the three payment methods used in the loyalty point system: the points transfer,
the Ethereum payment, and the PDS2 euro payment. A description of how these methods works
is provided in the chapter 6 (subsection 6.7). The analysis of the result is divided in two main
parts: the first concerning an overview of the current costs of the traditional payment methods;
the second one regarding the value of the performance of the methods experimented in the project.

7.1 Traditional e-payment methods

Several years ago, with the advent of computers and electronic communications a large number
of e-payment systems have emerged. These include debit cards, credit cards, electronic funds
transfers, Paypal. Standardisation has allowed some of these systems and networks to grow to
a global scale, but there are still many country-specific and product-specific systems. The dated
meaning of the term “e-payment” referred to a payment made from one bank account to another
using electronic methods and forgoing the direct intervention of bank employees [61].

Here are described the disadvantages regarding the most important e-payment methods used
online in Italy:

Credit cards

Mainly, for a potential user a credit card payment is a secure and flexible way to purchase goods
and services, and can be a good way to spread the cost; but, if used only for minimum payments,
a credit cards can be costly. The credit card allows to charge the seller for the money of a product
sold; in fact these amount would be ducted only at the end of the month from the buyer account.

The main costs and disadvantages are the following:

• high interest payments, if user does not clear the balance at the end of each month;

• the debt spiral, if the user miss just one payment, the interest will start to add up;

• additional fees, especially penalties for exceeding credit limit;

• annual cost, specifically for the credit cards which offers additional benefits;

• fee for the seller, for the POS hire and for the commission applied.

Furthermore, another limit is the more expensive use abroad; however, this very much depends
on the card. Some are designed for travellers, others are more expensive when it comes to fees and
other charges depending upon whether you use the card for purchases or cash withdrawals.

61

7 – Process and experimental results

Prepaid Card

Prepaid cards offer the convenience of a credit and debit card without the borrowing; as they do
not require a credit check, they could be useful to those with bad credit or who have been refused
credit and want to get back into positive financial management habits.

The following are the main issues with e-payments performed with prepaid cards:

• activation and loading fees, applied every time money are transferred to the prepaid card;

• low prevalence, which makes their use very restrict; in fact, the success of a payment does
not relies on the bank circuit that is used, because prepaid card are treated differently in
several goods and service merchants.

PayPal

PayPal describe itself as a faster, safer and more user friendly e-payment method; the service lets
the user pay, send money, and accept payments without having to enter your financial details each
time. 173 million people use PayPal to shop on millions of sites worldwide, in 202 countries and
with 21 different currencies [62].

However, there are drawbacks in this service [63]:

• high fee for selling, the sender occurs up to 3,4% + 0,35e for transactions;

• high fee for sending invoices, up to 3.4% + 0,35e per invoice transaction, based on total sales
volume;

• additional fees for transaction outside the euro zone.

SEPA Transfer

The Single Euro Payments Area (SEPA) is a European Union (EU) payments integration initiative
aimed at harmonising electronic euro payments in Europe. The main disadvantage for the SEPA
transfer is just one but it is extremely relevant. The fact that it does not apply fees both to
the sender and the receiver makes the SEPA a really used e-payment but the long waiting time
for the payment finalisation really limits its usage. As a matter of fact, the time for the amount
accreditation have a median wait of two days.

7.2 Point transfer results

The results displayed refers to the figure A.4. The transaction used 39131 units of gas and the gas
price was set with an absolutely low value: 1gwei. Indeed this value coincide with the safe low gas
price; hence so the result expected was a transaction mined under 30 minutes and with the lowest
price possible. The mining cost for this transaction has been of 39131 gwei which is around 0,01
dollars cent; it must be noticed that the amount transferred does not influence the gas units used.
The time for completing it was 5 minutes. In case of the same point transfer but performed with
the fast gas price, the cost should have been of 704.376 gwei, which are 0,33 dollars cent, with a
finalisation of the operation in 30s.

7.3 Ethereum payment results

The results displayed refers to the figure 6.11. The transaction used 45159 units of gas and the gas
price was set with an absolutely low value: 1gwei. Indeed this value coincide with the safe low gas
price; hence so the result expected was a transaction mined under 30 minutes and with the lowest

62

7 – Process and experimental results

price possible. The mining cost for this transaction has been of 45159 gwei which is around 0,02
dollars cent; it must be noticed that the amount transferred does not influence the gas units used.
The time for completing it was 6 minutes. In case of the same point transfer but performed with
the fast gas price, the cost should have been of 812.862 gwei, which are 0,38 dollars cent, with a
finalisation of the operation in 35s.

7.4 PSD2 payment results

The PSD2 payment in euro happens in real time; as a result, they are instant payment in the
moment when the admin authorise the third party application (which is its own system) to complete
the operation. Regarding the fees applied, no cost appears in the sandbox provided by OBP;
however, the bank which the admin is interacting with, in order to finalise the payment can decide
to apply a fee which must not be superior of the bank fees applied on their services. For sure, the
bank will decide to apply these fees that, like other traditional payments analysed, will results in
a expected 2-3%.

63

Chapter 8

Final considerations and
conclusions

The blockchain technology, especially the public blockchains like Ethereum, are attracting a lot of
attention for not just a speculative aspect of investing in cryptocurrency; but, on the other side,
for the the massive multitude of possibilities offered by its properties, by the smart contracts, and
by the distributed applications. During the thesis work, I had the possibility to attend multiple
conference; specifically, in EDCON2018, the Ethereum developer conference happened in Toronto
(CA) showed me how much the Ethereum community is growing up.

What I noticed was that even if the target of the conference were developers, the attenders
were a blend of professionals from every background. Moreover, the speech of the founders showed
how big is the research activity on the Ethereum network. Plasma chain, proof-of-stack, sharding
are the new big features coming in the Ethereum world.

I found that the blockchain technology is growing up with applications that will improve security
and increase speed and save money. In my opinion, the real impact of the blockchain still have to
come because even if the technology is already on point, it will need several years to penetrate in
the mindset of the people, as was for the internet technology.

My research on the Ethereum-based loyalty point system founded, specifically, advantages re-
garding avoiding intermediaries, because ether payments does not involve the bank; and advantages
in term of speed and costless execution for a company and for customers. I think that also PSD2
has several limitations compared to Ethereum payments, because relies too much on the presence
of a bank, which, if it wants, can deny the access to its accounts. In addition fees are higher than
Ethereum, and relies on one currency which is just continental. Ether potentially have no limita-
tions, and even if the word legal framework will not agree on a politics of acceptance of blockchain
payments, in few years it will change radically the way of performing e-payments.

64

Appendix A

Developer’s guide

This appendix describes the most important parts of the code written in the thesis project, to
develop the latest version of the loyalty point system application. Here is provided a description
of the loyalty point smart contract, of the web3.js configuration, and of the express.js middleware
configuration and interaction.

A.1 Loyalty point smart contract

In this section is described the structure of the solidity smart contract deployed on Rinkeby.

The address of the contract is the following:

0x3735543206B4bbA0fC09E2Bd2E4906D2143AeB9B

Furthermore, the contract can be consulted on the Rinkeby Etherscan at the following link: https:
//rinkeby.etherscan.io/address/0x3735543206B4bbA0fC09E2Bd2E4906D2143AeB9B.

The file with the code is at the following path in the project:

fidelity-points-system-thesis/ethereum/contracts/FidelityPoints.sol

Inside this file there are:

• the SafeMath library;

• the IERC20 interface;

• the owner restriction;

• the main contract FidelityPoints, which manages the fidelity point system.

A.1.1 SafeMath

SafeMath is a library created by OpenZeppelin in order to give math operations safety checks,
throwing errors. Currently, this library is considered core in pretty much every contract that
uses mathematical operations. The main reason of its usage is that it provides protection against
overflow and underflows. The code related to the library is displayed in the figure A.1.

Concerning the function div(uint256 a, uint256 b), Solidity automatically throws an error
when dividing by 0, so the check is not needed.

The pure modifier, is a very restrictive attribute which indicates that the function will not alter
the storage state in any way; moreover, it won’t even read the storage state.

The internal modifier can be better compared with “protected” in object-oriented program-
ming languages. Internal functions of the contract C are visible to the code running at the current
address (i.e. the current contract instance) but also to contracts derived from C.

65

https://rinkeby.etherscan.io/address/0x3735543206B4bbA0fC09E2Bd2E4906D2143AeB9B
https://rinkeby.etherscan.io/address/0x3735543206B4bbA0fC09E2Bd2E4906D2143AeB9B

A – Developer’s guide

library SafeMath {

function mul(uint256 a, uint256 b) internal pure returns (uint256) {

if (a == 0) { return 0;}

uint256 c = a * b;

assert(c / a == b);

return c;

}

function div(uint256 a, uint256 b) internal pure returns (uint256) {

uint256 c = a / b;

return c;

}

function sub(uint256 a, uint256 b) internal pure returns (uint256) {

assert(b <= a);

return a - b;

}

function add(uint256 a, uint256 b) internal pure returns (uint256) {

uint256 c = a + b;

assert(c >= a);

return c;

}

}

Figure A.1: SafeMath library.

interface IERC20 {

function totalSupply() public constant returns (uint256 totalSupply);

function balanceOf(address _owner) public constant returns (uint256

balance);

function transfer(address _to, uint256 _value) public returns (bool

success);

event Transfer(address indexed _from, address indexed _to, uint256 _value);

}

Figure A.2: ERC20 token interface.

A.1.2 IERC20

The interface in the figure A.2 refers to some functions that must be implemented to make a token
ERC20 compliant.

The totalSupply() function must return the total amount of tokens created.

The balanceOf(address owner) function must return the token balance of an account owner.

The transfer(address to, uint256 value) function must transfer an amount value of
points to the account to.

The Transfer() event writes a log that will be readable from the etherscan page of the corre-
sponding transaction involving.a transfer(address to, uint256 value) function.

66

A – Developer’s guide

contract Owned {

address public owner;

function Owned() public {

owner = msg.sender;

}

modifier onlyOwner {

require(msg.sender == owner);

_;

}

function transferOwnership(address newOwner) public onlyOwner {

owner = newOwner;

}

}

Figure A.3: Owner restrictor code.

A.1.3 Owner restrictor

Basically, the restrictor code (shown in figure A.3) is used to: restrict the usage of some functions
to the owner of the contract, with onlyOwner; makes the deployer of the contract the current
owner, with the constructor Owned().

Furthermore, only the owner can decide to transfer his/her contract ownership to another
account newOwner invoking the function transferOwnership(address newOwner).

A.1.4 FidelityPoints contract

The contract is defined with the following code:

contract FidelityPoints is IERC20, Owned

and after the definition it calls the library SafeMath as follow:

using SafeMath for uint256

With these two lines of code the contract is declared importing also the token interface, the
owner restrictor and the library SafeMath. Moreover, in the contract are also defined other modi-
fiers to restrict the access of some functions to users and shops. Remember that the owner, which
is the admin, is also a shop because the service provided have its own page to sell products to the
users.

The contract manages several modules which can be divided in: Token operations, Ethereum
payment request, buying a product request.

Token creation

First of all, for creating an ERC20 token the following variables must be declared:

string public constant symbol = "FID";

string public constant name = "Fido Coin";

uint8 public constant decimals = 18;

67

A – Developer’s guide

uint256 public constant RATE = 1000000000000000000;

uint public constant INITIAL_SUPPLY = 1000000000000;

uint public _totalSupply = 0;

mapping (address => uint256) public balances;

Starting from the top to bottom is possible to see: the token symbol definition; the token complete
name; the number of decimals of the token; the exchange rate with one ether; the initial supply of
tokens, the variable which will contains the total amount of token generated from the the contract
creation; and for last, the mapping between the Ethereum address and its balance.

After the token parameters definition, the functions defined in the IERC20 interface have
to be implemented (see section A.1.2). The functions totalSupply() and balanceOf(address

account) just returns the value of the variables totalSupply and balances[account], like two
standard getters.

The event Transfer() implementation is easily as the declaration in the interface:

event Transfer(address indexed from, address indexed to, uint256 value)

It simply print this values in the log of the transaction.

More interesting is the transfer(address to, uint256 value) function, implemented in
the figure A.4, which works in the following way:

1. check if the sender has enough;

2. check if the amount transferred is greater than 0;

3. prevent transfer to 0x0 address;

4. check for overflows;

5. check for underflows;

6. subtract the token amount from the sender;

7. add the token amount to the recipient;

8. emit the Transfer event;

9. asserts that are used to use static analysis to find bugs in code. They should never fail.

Ethereum payment request

The figure A.5 shows the structure of a payment request done by a shop asking money from the
ISP.

The fields are the following:

• the Ethereum address of the shop, sender of the request;

• the additional notes for the admin;

• the amount of ethereum to be transferred;

• the Id of the shop who is making the request in order to get its data from the database;

• the flag regarding the admin execution of the payment;

• the flag regarding the approbation status of the request.

The Ethereum requested is created through this function:

68

A – Developer’s guide

function transfer(address _to, uint256 _value) public returns (bool success) {

_value = _value * 10 ** uint256(decimals);

require(balances[msg.sender] >= _value);

require(_value > 0);

require(_to != 0x0);

require(balances[_to] + _value > balances[_to]);

require(balances[msg.sender] - _value < balances[msg.sender]);

uint previousBalances = balances[msg.sender].add(balances[_to]);

balances[msg.sender] = balances[msg.sender].sub(_value);

balances[_to] = balances[_to].add(_value);

emit Transfer(msg.sender, _to, _value);

assert(balances[msg.sender].add(balances[_to]) == previousBalances);

return true;

}

Figure A.4: The transfer(address to, uint256 value) function code.

struct EthereumPaymentRequest {

address shop;

string note;

uint value;

string shopId;

bool completed;

bool rejected;

}

Figure A.5: The EthereumPaymentRequest struct.

function createEthereumPaymentRequest(uint value, string note, string shopId)

public onlyShop returns (bool)

This function stores the new Ethereum request in the array of the current Ethereum requests:

EthereumPaymentRequest[] public ethereumPaymentRequests

The admin can finalise or reject the request and pay the shop invoking these functions:

function finalizeRequestEthereum(uint index) public onlyOwner payable

function rejectRequestEthereum(uint index) public onlyOwner

With the function of finalisation of the payment, the ether amount is sent and the flag completed
is set to true.

Buying request

The figure A.6 shows the structure of a buy request done by a user for buying a product from a
shop.

The fields are the following:

• the Ethereum address of the user, sender of the request;

• the Ethereum address of the shop, receiver of the request;

69

A – Developer’s guide

struct BuyingRequest {

address user;

address shop;

string product;

string shopEmail;

string userId;

uint value;

bool shipped;

bool rejected;

}

Figure A.6: The BuyingRequest struct.

• the Id of the product object to be bought;

• the email of the shop, used for displaying the request to its belonging shops;

• the Id of the user, used for showing him every request he has performed;

• the tokens used for buying the product, they are sent with the request;

• the flag regarding the shipment status of the request;

• the flag regarding the approbation status of the request.

The Buying requested is created through this function:

function createBuyingRequest(string product, string shopEmail, address

receiver, uint value, string userId) public onlyUser returns (bool)

This function stores the new buying request in the array of the current buying requests:

BuyingRequest[] public buyingRequests

The shop, including the admin, can finalise or reject the request and send the product to the
user with these functions:

function finalizeUserRequestBuy(uint index) public onlyShop

function rejectUserRequestBuy(uint index) public onlyShop

After the function of finalisation the shop have to ship the product or make the service offered
available to the user.

A.2 Web3

With the code in the figure A.7, web3.js is imported and linked to the network Rinkeby. First
there is a check if Metamask is available or not; with typeof used to see if a variable is defined.
If is the variable is defined, the user is in the browser with Metamask is running; otherwise, the
user is on the browser or the user is not running Metamask. This configuration is the standard for
running web3.

After importing web3, it can be used to interact from the fronted with the Rinkeby testnet,
follows an example where the admin finalise an Ethereum payment:

70

A – Developer’s guide

import Web3 from ’web3’;

let web3;

if (typeof window !== ’undefined’ && typeof window.web3 !== ’undefined’) {

web3 = new Web3(window.web3.currentProvider);

} else {

const provider = new Web3.providers.HttpProvider(

’https://rinkeby.infura.io/bagPaFcte2OtdWeyGjdB’

);

web3 = new Web3(provider);

}

export default web3;

Figure A.7: web3.js configuration.

const accounts = await web3.eth.getAccounts();

await fidelityPoints.methods.rejectRequestEthereum(this.props.id).send({

from: accounts[0],

gas: ’4500000’

})

As it shown, thanks to web3, the address of the admin is fetched from Metamask calling accounts[0]

and it is also possible to preset a gasLimit; anyway, the user of the function can always decide to
change these parameters.

A.3 Express.js

Express.js is the middleware used for interacting with the PSD2 OBP sandbox.

The file where express.js and the calls to the OBP API are performed is at the following path
in the project:

fidelity-points-system-thesis/psd2/oauth.js

In the figure A.8 is shown the configuration of the middleware with several modules imported
like express.js itself, the session manages of express, oauth authentication, pug for the template
etc.. Moreover, the var consumer is the configuration of the oauth for the admin of the service.
The Key and the secret of the admin are saved in the config.json file.

The most relevant function in this file is the createTransactionRequest which allows to send
the form data, filled with the euro amount, to give the shop the value which asked for the redeeming
points.

The code related to this function is displayed in the figure A.9. This is a get function, this means
that data are only prepared to be sent. Here first is set the front-end template from where is possible
to perform this operation; then, from Firebase the data related to the pending psd2 payment are
fetched in order to fill the form statically.

Only after pressing the button “submit” the data will be sent to the endpoint /createTransactionRequest,
with a post request, to the bank and the transaction will be performed. The post request basically
contact the endpoint with the following code:

var postUrl = apiHost + "/obp/v2.1.0/banks/" + fromBankId + "/accounts/" +

fromAccountId + "/" + viewId + "/transaction-request-types/" +

transactionRequestType + "/transaction-requests"

71

A – Developer’s guide

var express = require(’express’, template = require(’pug’));

var session = require(’express-session’);

var util = require(’util’);

var oauth = require(’oauth’);

var firebase = require(’firebase’);

var app = express();

var pug = require(’pug’);

var config = require(’./config.json’);

var bodyParser = require(’body-parser’)

var urlencodedParser = bodyParser.urlencoded({ extended: false })

var _openbankConsumerKey = config.consumerKey;

var _openbankConsumerSecret = config.consumerSecret;

var _openbankRedirectUrl = config.redirectUrl;

var apiHost = config.apiHost;

var consumer = new oauth.OAuth(

apiHost + ’/oauth/initiate’,

apiHost + ’/oauth/token’,

_openbankConsumerKey,

_openbankConsumerSecret,

’1.0’,

_openbankRedirectUrl,

’HMAC-SHA1’

);

Figure A.8: express.js configuration.

72

A – Developer’s guide

app.get(’/createTransactionRequest’, function(req, res){

var template = "./template/createTransactionRequest.pug";

var pid = req.session.pid;

console.log("SIGNED IN pid", pid);

if (!firebase.apps.length) {

firebase.initializeApp(configFirebase);

}

var refPsd2Payment = firebase.database().ref("pending_payments_psd2/" +

req.session.pid);

refPsd2Payment.once("value").then(function(snapshot) {

var tokenAmount = snapshot.child("tokenAmount").val();

var euroAmount = tokenAmount / 1000 * 700;

var shopId = snapshot.child("shop").val();

var refShop = firebase.database().ref("shops/" + shopId);

refShop.once("value").then(function(snapshot) {

var toBankId = snapshot.child("bankId").val();

var toAccountId = snapshot.child("accountId").val();

var options = {

"title": "Create Transaction",

"pid": req.session.pid,

"shopId": shopId,

"toBankId": toBankId,

"toAccountId": toAccountId,

"tokenAmount": tokenAmount,

"euroAmount": euroAmount,

};

var html = pug.renderFile(template, options)

res.status(200).send(html)

};

});

});

Figure A.9: Performance of a PSD2 payment calling OBP API.

73

Appendix B

User manual

This appendix describes: the instructions on how to install the program (section B.1); the graphical
interfaces (section B.2); and the input and output data (section B.3) used in the loyalty point
system, developed in the thesis project.

B.1 Installation

The project is located in a public repository of my personal GitHub, at the following link: https:
//github.com/riccardopersiani/fidelity-points-system-thesis.

B.1.1 Download

The first step is to download the project. Open the terminal and through SSH, the most secure
method, use the following command in a workspace:

git clone git@github.com:riccardopersiani/fidelity-points-system-thesis.git

However, also the HTTPS method can be used, using the following command in a workspace (as
shown in figure B.1):

git clone https://github.com/riccardopersiani/fidelity-points-system-thesis.git

Using both the two commands shown, the project will comes up already in its main folder:

fidelity-point-system-thesis

Figure B.1: Cloning the project from the GitHub repository.

After downloading the project, it will be possible to read it and to work with it, through one
of the text editor such as VSCode, Atom, IntelliJ or whatever. Personally, I advice for VSCode

74

https://github.com/riccardopersiani/fidelity-points-system-thesis
https://github.com/riccardopersiani/fidelity-points-system-thesis

B – User manual

usage, which allows to install several add-ons that are really useful for managing the project and
programming in Solidity and Javascript. VSCode will be assumed as default for the following
instructions, but other editors are fine as well.

Here is the link for downloading VSCode: https://code.visualstudio.com/download.

To open the project with VSCode, start the terminal inside the main folder, which is the project
folder, such as:

/Users/"username"/Desktop/fidelity-points-system-thesis

Then, to open the entire project, type the following command :

code .

From the terminal, typing ls, will be possible to check if the folders inside are the ones showed
in the figure B.2.

Figure B.2: Project folders and files.

It must be noticed that in this project is required the installation of “npm” (node package
manager) and “node”; however, npm is distributed with Node.js, which means that when node.js
is downloaded, automatically includes npm installed. The project uses the npm version 6.1.0
and node v8.9.4, but also the latest releases should not give problems. Download node.js at:
https://nodejs.org/en/.

Furthermore, Firebase is already configured in the following main component:

fidelity-point-system-thesis\components\template\header.js

The configuration code is outlined in the figure B.3, all the parameters are provided in the
moment of the registration on the platform.

Metamask

Metamask must be installed on the browser, in the testing phase of the project the Chrome
browser was used. Metamask can be downloaded at the following link: https://metamask.io/.
After adding the extension, and configuring the initial password, the Rinkeby network must be

var config = {

apiKey: "AIzaSyB7-H-6t5kb5D8XB9jf33SVkpjgmeJqATg",

authDomain: "test-3ff4d.firebaseapp.com",

databaseURL: "https://test-3ff4d.firebaseio.com",

projectId: "test-3ff4d",

storageBucket: "test-3ff4d.appspot.com",

messagingSenderId: "1059441748413"

};

Figure B.3: Firebase configuration.

75

https://code.visualstudio.com/download
https://nodejs.org/en/
https://metamask.io/

B – User manual

Figure B.4: Metamask account creation.

selected. In addiction accounts must be created, clicking in the icon figuring a person on the right
top of the Metamask GUI (as shown in the figure B.4).

Now, the account must be filled with Ethereum, to do that the official procedure is the one
described in the link https://faucet.rinkeby.io/. To complete the procedure is needed or a
Twitter, or a Google+, or a Facebook account.

B.1.2 Build

The second step, after downloading and opening the project, is the project building. First of all,
all the node packages must be installed; as a result, the following command mast be typed in the
main folder:

npm install

Then the Ethereum contracts needs to be compiled with the following command starting from
the main folder:

cd ethereum

node compile.js

Moreover the building of the next.js server is needed; as a result need to be typed from the
main folder, the command:

node server.js

Note, that the latest command described also launch the next.js server.

B.1.3 Start

After the correct building of the project, the third and last phase is the launch of the two servers.

Start the next.js server from the main folder using the following command (do not do this, if
already done in the building phase):

node server.js

Start the express.js server from the main folder psd2 folder using:

76

https://faucet.rinkeby.io/

B – User manual

cd psd2

node oauth.js

The frontend application for the loyalty point system is reachable at http://localhost:3000/.
The frontend application for the psd2 payment is reachable at http://localhost:8085/, but this
require the authentication to the OBP PSD2 Sandbox.

B.2 Graphical Interface

This section provides an idea of the multiple interactions with the loyalty point system through its
interfaces of the three entities: users, shops, and the admin. However, before the login and even
after some pages are shared and are the same for every entities.

B.2.1 Without login

In the figure B.5 is shown the home page, which provides a description about the project.

In the figure B.6 is shown the statistic page, which provides some information and stats about
the loyalty point system, such as the owner contract and the name of the token.

In the figure B.7 is shown the user signup page.

In the figure B.8 is shown the shop signup page.

The admin comes out already registered, potentially during an eventual setup phase of the
loyalty program application.

Figure B.5: Home page.

B.2.2 User

Is possible to signin as one predefined user with:

Email: user@user.com
Password: 11111111

To be clear, the password is eight times the number 1. it is important to understand that is possible
to access to the front-end with this credentials; but, the operations performed must be done with
his/her account, which is unique and available in my own instance of metamask, with the address:

77

http://localhost:3000/
http://localhost:8085/

B – User manual

Figure B.6: Stats page.

Figure B.7: User SignUp page.

0x4D86c35fdC080Ce449E89C6BC058E6cc4a4D49A6

As a consequence, operation performed with other accounts will result useless; this is valid also for
shops and the admin. So in order to test it, a new signup is required with the personal address
generated on Metamask.

78

B – User manual

Figure B.8: Shop SignUp page.

The most important operation that the user can perform is the buy of a product with the
points collected. An example of a user buying a product from the service provider page is shown
in the figure B.9. Please, notice that Metamask is fundamental to buy the product, and the user
must use his/her Ethereum account which typed to register with.

Figure B.9: User buy page.

79

B – User manual

User in his/her front-end can check the complete, pending and rejected orders (see figure B.10)
or transfer some points to whoever he/she wants.

Figure B.10: User check order status page.

B.2.3 Shop

Is possible to signin as one predefined shop with:

Email: shop@shop.com
Password: 11111111

The most important function performable by the shop is the ask payment function, where it
have to send to the admin the amount of points it wants to redeem and choose the method thought
it want to be payed with; see the figure B.11.

Figure B.11: Shop ask payment page.

Then, there are other pages which the shop can use are the ones to complete orders asked by
the users, transfer points, and check the request status of the payment asked.

80

B – User manual

B.2.4 Admin

Is possible to signin as the admin with:

Email: r.persiani92@gmail.com
Password: 11111111

One of the most important function of the admin is the token generation where ether can be
converted to tokens. To call that function he/she has to go to the page showed in the figure B.12.

Figure B.12: Admin token generation page.

Then, the other pages which the admin can use are the ones to approve shops request, approve
payments, complete orders, and transfer points.

B.3 Data

In this section the data contained in the firebase database are displayed.

B.3.1 Firebase

The firebase database is composed by three tables:

• the registered users (which includes also the admin), see figure B.13;

• the shops registered, see figure B.14;

• the pending PSD2 payments, see figure B.15.

81

B – User manual

Figure B.13: Users registered table structure

Figure B.14: Shops registered table structure.

82

B – User manual

Figure B.15: Pending PSD2 payments table structure.

83

Bibliography

[1] Vetrya S.p.A. website, http://www.vetrya.com/
[2] D.Drescher, “Verifying and adding transactions”, Blockchain Basics: A Non-Technical In-

troduction in 25 Steps (T.Green and S.McDermott, eds.), pp. 159–162, Apress, 2017, DOI
10.1007/978-1-4842-2604-9

[3] Eight Blockchain platforms for rapid prototyping, http://radiostud.io/

eight-blockchain-platforms-comparison/

[4] The Bitcoin project, https://bitcoin.org/en/
[5] R.Lai and L.Chuen, “Blockchain – from public to private”, Handbook of Blockchain, Digital

Finance, and Inclusion, Volume 2 (L.Chuen and R.Deng, eds.), pp. 145–177, Academic Press,
2017, DOI 10.1016/B978-0-12-812282-2.00007-3

[6] The Ethereum project, https://www.ethereum.org/
[7] The Hyperledger project, https://www.ibm.com/blockchain/hyperledger.html
[8] The Corda project, https://chain.com/
[9] The IOTA project, https://iota.org/

[10] The MultiChain project, https://www.multichain.com/
[11] The OpenChain project, https://www.openchainproject.org/
[12] The Chain project, https://chain.com/
[13] The HydraChain project, https://github.com/HydraChain/hydrachain
[14] Public and private blockchains, https://blog.ethereum.org/2015/08/07/

on-public-and-private-blockchains/

[15] Blockchain Finance, https://www.slideshare.net/rmsams/blockchain-finance
[16] G.W.Peters and E.Panayi, “Understanding Modern Banking Ledgers Through Blockchain

Technologies: Future of Transaction Processing and Smart Contracts on the Internet of
Money”, November 2015, pp. 4–6, DOI http://dx.doi.org/10.2139/ssrn.2692487

[17] PSD2 Directive, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:

32015L2366&from=EN

[18] Euro Lex Europa, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=

LEGISSUM:2404020302_1&from=EN&isLegissum=true

[19] Deloitte, https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/

financial-services/cz-open-banking-and-psd2.pdf

[20] Pwc, pillola di PSD2 n.3, https://www.pwc.com/it/it/industries/banking/assets/

docs/psd2-pillola-n03.pdf

[21] A short introduction to PSD2, https://hernaes.com/2016/08/25/

a-short-introduction-to-psd-2/

[22] Guidance for implementation of the revised Payment Services Di-
rective, https://financedocbox.com/Credit_and_Debt_and_Loans/

72599769-Guidance-for-implementation-of-the-revised-payment-services-directive-psd2-guidance.

html

[23] Pillole di PSD2, https://www.pwc.com/it/it/industries/banking-capital-markets/

psd2.html

[24] Regulatory Technical Standards on strong customer authentication
and secure communication under PSD2, https://www.eba.europa.

eu/regulation-and-policy/payment-services-and-electronic-money/

regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2/

-/regulatory-activity/press-release

84

http://www.vetrya.com/
http://dx.doi.org/10.1007/978-1-4842-2604-9
http://radiostud.io/eight-blockchain-platforms-comparison/
http://radiostud.io/eight-blockchain-platforms-comparison/
https://bitcoin.org/en/
http://dx.doi.org/10.1016/B978-0-12-812282-2.00007-3
https://www.ethereum.org/
https://www.ibm.com/blockchain/hyperledger.html
https://chain.com/
https://iota.org/
https://www.multichain.com/
https://www.openchainproject.org/
https://chain.com/
https://github.com/HydraChain/hydrachain
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://www.slideshare.net/rmsams/blockchain-finance
http://dx.doi.org/http://dx.doi.org/10.2139/ssrn.2692487
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L2366&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L2366&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:2404020302_1&from=EN&isLegissum=true
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:2404020302_1&from=EN&isLegissum=true
 https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/financial-services/cz-open-banking-and-psd2.pdf
 https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/financial-services/cz-open-banking-and-psd2.pdf
 https://www.pwc.com/it/it/industries/banking/assets/docs/psd2-pillola-n03.pdf
 https://www.pwc.com/it/it/industries/banking/assets/docs/psd2-pillola-n03.pdf
https://hernaes.com/2016/08/25/a-short-introduction-to-psd-2/
https://hernaes.com/2016/08/25/a-short-introduction-to-psd-2/
https://financedocbox.com/Credit_and_Debt_and_Loans/72599769-Guidance-for-implementation-of-the-revised-payment-services-directive-psd2-guidance.html
https://financedocbox.com/Credit_and_Debt_and_Loans/72599769-Guidance-for-implementation-of-the-revised-payment-services-directive-psd2-guidance.html
https://financedocbox.com/Credit_and_Debt_and_Loans/72599769-Guidance-for-implementation-of-the-revised-payment-services-directive-psd2-guidance.html
https://www.pwc.com/it/it/industries/banking-capital-markets/psd2.html
https://www.pwc.com/it/it/industries/banking-capital-markets/psd2.html
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2/-/regulatory-activity/press-release
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2/-/regulatory-activity/press-release
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2/-/regulatory-activity/press-release
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2/-/regulatory-activity/press-release

Bibliography

[25] PSD2 in a nutshell 2, https://www.pwc.com/cz/en/bankovnictvi/assets/

psd2-nutshell-n02-en.pdf

[26] PSD2: time to open and secure APIs and rethink busi-
ness models, https://www.computerweekly.com/opinion/

PSD2-time-to-open-and-secure-APIs-and-rethink-business-models

[27] PWC Strong Auth, https://www.pwc.com/it/it/industries/

banking-capital-markets/StrongAuth.html

[28] Ethereum Wiki, https://github.com/ethereum/wiki/wiki/Ethereum-introduction
[29] Ethereum white paper, https://github.com/ethereum/wiki/wiki/White-Paper
[30] The Mist browser project, https://github.com/ethereum/mist
[31] C. Dannen, “Introducing ethereum and solidity: Foundations of cryptocurrency and

blockchain programming for beginners”, Apress, 2017, ISBN: 978-1-4842-2534-9
[32] The Etherscan project, https://etherscan.io/
[33] Ethereum yellow paper, https://ethereum.github.io/yellowpaper/paper.pdf
[34] The Ethereum gas costs, https://docs.google.com/spreadsheets/d/

1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsfO7Frgx18pNU/edit#gid=0

[35] The Ethereum Gas Station project, https://ethgasstation.info/
[36] The Ethereum EVM implementations, https://github.com/ethereum/wiki/wiki/

Ethereum-Virtual-Machine-(EVM)-Awesome-List#evm-implementations

[37] The Solidity Documentation, https://solidity.readthedocs.io/en/v0.4.24/
[38] The Solidity Documentation, https://solidity.readthedocs.io/en/v0.4.24/types.html
[39] The Open Bank Project website, https://openbankproject.com/
[40] The Open Bank Project website, https://openbankproject.com/for-customers/
[41] The Open Bank Project website, https://openbankproject.com/for-banks/
[42] The Open Bank Project website, https://openbankproject.com/for-developers/
[43] The Open Bank Project PSD2 sandbox, https://psd2-api.openbankproject.com/
[44] OBP API Explorer PSD2, https://psd2-apiexplorer.openbankproject.com/?version=

2.0.0&psd2=true?ignoredefcat=true&tags=Account

[45] B.Sharp and A.Sharp, “Loyalty Programs and Their on Repeat-Purchase Loyalty Patterns”,
International Journal of Research in Marketing, vol. 14, December 1997, pp. 436–486, DOI
10.1016/S0167-8116(97)00022-0

[46] Glossary L, Loyalty Program, https://www.elect-mer.com/glossary-l.html
[47] Deloitte UK consumer review customer loyalty, https://www2.

deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/

deloitte-uk-consumer-review-customer-loyalty.pdf

[48] Deloitte making blockchain real customer loyalty rewards programs,
https://www2.deloitte.com/us/en/pages/financial-services/articles/

making-blockchain-real-customer-loyalty-rewards-programs.html

[49] The React project, https://reactjs.org/
[50] The web3.js library documentation, https://web3js.readthedocs.io/en/1.0/

getting-started.html

[51] The express.js project, https://expressjs.com/
[52] Get Started with Firebase Authentication on Websites, https://firebase.google.com/

docs/auth/web/start

[53] Firebase Realtime Database, https://firebase.google.com/docs/database/
[54] The Pug project, https://pugjs.org/api/getting-started.html
[55] The Metamask project, https://metamask.io/
[56] Metamask GitHub repository, https://github.com/MetaMask/metamask-plugin
[57] The Remix documentation, https://remix.readthedocs.io/en/latest/
[58] A. Elbahrawy, L. Alessandretti, A. Kandler, R. Pastor-Satorras, and A. Baronchelli, “Evo-

lutionary dynamics of the cryptocurrency marke”, Royal Society Open Science, vol. 4, May
2017, DOI 10.1098/rsos.170623

[59] The Ethereum tokens, https://www.ethereum.org/token
[60] G. Fenu, L. Marchesi, M. Marchesi, and R. Tonelli, “The ico phenomenon and its relation-

ships with ethereum smart contract environment”, 2018 International Workshop on Blockchain
Oriented Software Engineering, Campobasso (Italy), March 20-22, 2018, pp. 26–32, DOI
10.1109/IWBOSE.2018.8327568

85

https://www.pwc.com/cz/en/bankovnictvi/assets/psd2-nutshell-n02-en.pdf
https://www.pwc.com/cz/en/bankovnictvi/assets/psd2-nutshell-n02-en.pdf
 https://www.computerweekly.com/opinion/PSD2-time-to-open-and-secure-APIs-and-rethink-business-models
 https://www.computerweekly.com/opinion/PSD2-time-to-open-and-secure-APIs-and-rethink-business-models
https://www.pwc.com/it/it/industries/banking-capital-markets/StrongAuth.html
https://www.pwc.com/it/it/industries/banking-capital-markets/StrongAuth.html
https://github.com/ethereum/wiki/wiki/Ethereum-introduction
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/mist
https://etherscan.io/
https://ethereum.github.io/yellowpaper/paper.pdf
https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsfO7Frgx18pNU/edit#gid=0
https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsfO7Frgx18pNU/edit#gid=0
https://ethgasstation.info/
https://github.com/ethereum/wiki/wiki/Ethereum-Virtual-Machine-(EVM)-Awesome-List#evm-implementations
https://github.com/ethereum/wiki/wiki/Ethereum-Virtual-Machine-(EVM)-Awesome-List#evm-implementations
https://solidity.readthedocs.io/en/v0.4.24/
https://solidity.readthedocs.io/en/v0.4.24/types.html
https://openbankproject.com/
https://openbankproject.com/for-customers/
https://openbankproject.com/for-banks/
https://openbankproject.com/for-developers/
https://psd2-api.openbankproject.com/
https://psd2-apiexplorer.openbankproject.com/?version=2.0.0&psd2=true?ignoredefcat=true&tags=Account
https://psd2-apiexplorer.openbankproject.com/?version=2.0.0&psd2=true?ignoredefcat=true&tags=Account
http://dx.doi.org/10.1016/S0167-8116(97)00022-0
https://www.elect-mer.com/glossary-l.html
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/deloitte-uk-consumer-review-customer-loyalty.pdf
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/deloitte-uk-consumer-review-customer-loyalty.pdf
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/deloitte-uk-consumer-review-customer-loyalty.pdf
https://www2.deloitte.com/us/en/pages/financial-services/articles/making-blockchain-real-customer-loyalty-rewards-programs.html
https://www2.deloitte.com/us/en/pages/financial-services/articles/making-blockchain-real-customer-loyalty-rewards-programs.html
 https://reactjs.org/
https://web3js.readthedocs.io/en/1.0/getting-started.html
https://web3js.readthedocs.io/en/1.0/getting-started.html
 https://expressjs.com/
https://firebase.google.com/docs/auth/web/start
https://firebase.google.com/docs/auth/web/start
https://firebase.google.com/docs/database/
https://pugjs.org/api/getting-started.html
https://metamask.io/
https://github.com/MetaMask/metamask-plugin
 https://remix.readthedocs.io/en/latest/
http://dx.doi.org/10.1098/rsos.170623
https://www.ethereum.org/token
http://dx.doi.org/10.1109/IWBOSE.2018.8327568

Bibliography

[61] P. Schueffel, “The concise fintech compendium”, School of Management Fribourg, 2017
[62] The PayPal project, https://www.paypal.com/it/webapps/mpp/home
[63] The PayPal fees, https://www.paypal.com/it/webapps/mpp/paypal-fees

86

https://www.paypal.com/it/webapps/mpp/home
https://www.paypal.com/it/webapps/mpp/paypal-fees

	Summary
	List of Figures
	Introduction
	Thesis objectives
	Thesis in a company
	Vetrya S.p.A

	Thesis structure

	Technical analysis of the blockchain technology
	The general concepts of the blockchain
	Background History
	Definition
	Environment: a distributed peer-to-peer network
	Analysis of blockchain features
	Property Management
	Validation Process
	Data hashing
	Block
	Chain conflicts
	Hash puzzle
	Mining

	Types of blockchain
	Market overview
	Public, consortium and private blockchains
	Advantages of public and private blockchains
	Permissionless and permissioned blockchains
	Advantages of permissionless and permissioned blockchains

	Regulatory framework for E-payments in Europe and Italy
	Abbreviations
	Directive 2015/2366/EU of the European Parliament
	Market Context
	Technologies involved by the directive
	PSD2 Key points
	New third party institutions
	Security for e-payments
	API for the Open Banking
	Blockchain possible involvement
	Complementary regulation

	Ethereum: a next-generation smart contract and DApp platform
	Definitions
	Objectives
	Main features of the Ethereum protocol
	Clients applications on Ethereum
	Wallet
	Full nodes

	Accounts
	Transactions
	Gas
	Estimated gas unit for operations

	Currency
	Gas price in GWei

	EVM: Ethereum Virtual Machine
	Implementations
	Programming languages
	Debuggers

	Smart contracts
	Why the need of introducing smart contracts
	Solidity: a smart contracts language

	DApps: Distributed applications
	DAOs

	Open Bank Project API
	APIs Objectives
	Architecture
	Banks
	Developers
	OAuth

	Sandbox PSD2
	API Explorer

	Project: solution of an Ethereum-based loyalty point system
	Premise
	What are loyalty programs
	Disadvantages of traditional loyalty schemes
	Advantages of blockchain-based loyalty schemes

	Entities
	Architecture overview
	Components outside the blockchain
	Next.js server
	Front-end
	Express.js server
	Firebase
	OBP PSD2 Payment
	Application

	Components used for smart contracts interaction
	Rinkeby and testnets
	Metamask
	Etherscan
	Remix IDE

	Points
	Tokens
	ERC-20 standard

	Transaction Types
	Point Transfer
	Ethereum Payment
	PSD2 payment

	Process and experimental results
	Traditional e-payment methods
	Point transfer results
	Ethereum payment results
	PSD2 payment results

	Final considerations and conclusions
	Appendix Developer's guide
	Loyalty point smart contract
	SafeMath
	IERC20
	Owner restrictor
	FidelityPoints contract

	Web3
	Express.js

	Appendix User manual
	Installation
	Download
	Build
	Start

	Graphical Interface
	Without login
	User
	Shop
	Admin

	Data
	Firebase

	Bibliography

		Politecnico di Torino
	2018-07-16T16:32:01+0000
	Politecnico di Torino
	Antonio Lioy
	S

