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Abstract

The segmentation of Region Of Interests (ROIs) in high-resolution histopathological
images is a task with high clinical relevance which requires large amounts of reading
time from pathologists and suffers from many considerable problems, such as inter
and intra-reader variability. Thus, its automation is desirable because it would hugely
reduce the workload of the clinicians, while at the same time reducing the subjec-
tivity of the diagnosis. However there are still open issues, like the amount of data
required for training and testing algorithms, the computational load when dealing
with high resolution images and, most of all, the large variability in the analyzed
data (mainly due to different cell types, cell densities, stains, magnification levels,
and so on).

The segmentation of ROIs can be expressed as a Semantic Segmentation prob-
lem for which Deep Learning models are proven to be particular suitable. However
building these models requires a huge amount of annotated training data. To over-
come this limitation, Transfer Learning and Data Augmentation have been proposed
as possible solutions.

This thesis shows how Transfer Learning and Data Augmentation can be lever-
aged for Semantic Segmentation of histopathological images.

The UNet convolutional-deconvolutional neural network is trained using the
Camelyon16 Dataset (H&E breast cancer Whole-Slide Images). Whole-Slide Images
(WSIs) are first preprocessed (tissue regions segmented from fatty and white back-
ground areas and then stain-normalized) and then fed as tiles to the CNN. The out-
puts are probability maps, whose pixel intensity values express the probability of
being part of a cancer metastasis. In a second phase, a fine-tuning of the pre-trained
UNet is performed on the GlaS (H&E glands images) and ISBI12 (Drosophila first
instar larva ventral nerve cord ssTEM) datasets in order to understand whether the
trained model can be used for segmenting other types of images for which the avail-
able datasets are not sufficient. Fine Tuning was aided by a Data Augmentation
pre-processing.

Results are very promising and, to my knowledge, such approach represents a
novelty not only in the biomedical field, but also in the computer vision one.
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Chapter 1

Introduction

1.1 Semantic Segmentation in Digital Pathology

The identification of regions of cells and masses according to some medical crite-
ria are typical segmentation tasks performed on high-resolution histopathological
images. Such a task has a seminal clinical relevance and requires large amounts of
reading time and effort from pathologists. Traditionally, the pathologist bases his
analysis only on experience and the examination is done manually with the aid of
a microscope. Therefore, this process can suffer from many considerable problems,
such as inter and intra-reader variability. Therefore, an automation of this process
would hugely reduce the workload of the pathologists while at the same time re-
ducing the subjectivity of the diagnosis. However there are still open issues like the
amount of data required for building and testing analysis algorithms, the compu-
tational load when dealing with high-resolution images and, most of all, the large
variability in the analyzed data. The latter factor mainly due to different cell types,
cell densities, stains, magnification levels, and so on.

When the segmentation attempts to partition the image into semantically mean-
ingful parts and classify each of them into one pre-determinated classed, it is usu-
ally referred as semantics segmentation. For such task, Deep Learning convolutional
models are proven to be really suitable and nowadays they represent the state-of-
the-art approach. However it is well known that their performance is proportional
to the number of the training data which are by definition labeled and for certain
applications, especially in the medical field, they are really difficult and expensive
to collect. In order to overcome the small dataset issue, techniques named Transfer
Learning and Data Augmentation have been proposed as possible solution.

1.2 Transfer Learning for Semantic Segmentation

Within this thesis I evaluated the possibility of applying Transfer Learning and Data
Augmentation in the field of Semantic Segmentation of histopathological images. In
particular I focused on the problem of Transfer Learning applied to Semantic Seg-
mentation which, to my knowledge, represents a novelty not only in the biomedical
field, but also in more broad computer vision one.

In machine learning, Transfer Learning is the problem of storing knowledge
gained while solving one task and applying it to a different but related one. For
instance, the knowledge gained for recognize cats can be used when trying to rec-
ognize a tigers. It was widely explored and studied, however these techniques are
often limited to simple classification tasks [1] (e.g. exploiting networks pre-trained
on ImageNet). According to [1] there are some works on learning visual attention,
i.e. networks that can adaptively focus on salient part of an image or video for
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performing different tasks, such as object recognition, object tracking, caption gen-
eration, image generation, and so on. In [2] a transfer learning approach for object
detection is proposed, but the transfer of knowledge is between categories. Only
[1] proposed a specific framework on transfer learning applied to semantic segmen-
tation: they tried to exploit segmentation annotations from different categories to
guide segmentations with weak annotations.

1.3 Formalization of the problem

The problem can be formalized as follow: try to build a complete transfer learning
pipeline for semantic segmentation.

First, a UNet convolutional-deconvolutional neural network is implemented in
Keras (Tensoflow/Theano backend) and trained using the Camelyon16 dataset (H&E
breast cancer Whole-Slide Images) on a segmentation task. The dataset was properly
chosen because of his size and well-labeled ground truth masks. Whole-Slide Images
(WSIs) are first preprocessed (tissue regions segmented from fatty and white back-
ground areas and then stain-normalized) and then fed as single tiles to the CNN. The
outputs are probability maps, whose pixel intensity values express the probability
of being part of a cancer metastasis.

In a second phase, the transfer learning is performed through fine-tuning: inner
and different layers of the pre-trained UNet are tuned for the GlaS (H&E glands im-
ages) and the ISBI12 (ssTEM Drosophila first instar larva ventral nerve cord images)
datasets. This is done in order to understand if the trained model can be used for
segmenting other types of images for which the available datasets are not sufficient.
Fine Tuning is aided by a Data Augmentation preprocessing.

In the third phase, the results of the fine tuning are analyzed taking into account
the number of layers which were fine-tuned, the type of data augmentation applied
to the datasets and some preprocessing parameters.

1.4 Thesis organization

The rest of the thesis is organized as follows:

• Chapter 2: Deep Learning and Semantic Segmentation. In this chapter Deep Learn-
ing and Convolutional Neural Networks are introduced as State of the Art
solution to the problem of Semantic Segmentation. Data Augmentation and
Transfer Learning are presented as enhancing techniques for improving the
performances and for reducing the required computational resources.

• Chapter 3: State of the Art. In this chapter the State of the Art of Convolutional
Neural Networks for Digital Pathology and Microscopy is presented. A par-
ticular attention is given to the two publicly available datasets used for the
experimental part of this thesis.

• Chapter 4: Methods and Experimental Set-up. In this chapter the experiment
setting is explained step by step starting from the preprocessing stage up to
the fine-tuning phase.

• Chapter 5: Results Analysis. In this chapter the results of the experiment are
analyzed and interpreted.
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• Chapter 6: Conclusions and Future Work. In this chapter, the most important
results are summarized, limits of this work are presented and some indications
are stated for future improvement.
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Chapter 2

Deep Learning and Semantic
Segmentation

2.1 Deep Learning

Over the past few years, Deep Learning has been one of the most innovative and
surprising breakthrough technologies in the science world (most of the information
of this chapter about Deep Learning has been taken from [3] where you can find a
complete review). The major fields of the application of Deep Learning are Com-
puter Vision, Image Processing, Speech Recognition, Advancement in Natural Lan-
guage Processing and, potentially, any other field.
In the academic environment there is still some resistance to this technology because
it is still not clear how it really works; however the record holders on ImageNet
and Semantic Segmentation are Convolutional Neural Networks (CNNs). More-
over, CNNs are already part of commercial products like Google’s and Microsoft’s
speech recognition systems.

FIGURE 2.1: AlphaGo paper published on Nature (nr. 16961).

Deep Learning was first conceived for image classification tasks to overcome the
limitations of the classical Neural Networks (NNs). In fact, NNs present a high train-
ing cost because each neuron can be considered as a regression algorithm. Training
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the entire NN means training all the interconnected regressions. Moreover, when
the number of hidden layers increases, the NN is more difficult to train because in
the back-propagation the gradient gets progressively more dilute which means that
the correction below the top layers is minimal. Last but not least there is the problem
of local optima due to the random initialization.

FIGURE 2.2: Traditional ML pipeline [4].

The solution to these problems is Deep Learning, i.e. learning multiple levels of
representation. A Deep Learning network presents a cascade of many hidden layers
of locally connected units, for feature extraction and transformation. The hidden
layers learn multiple levels of representations that correspond to different levels of
abstraction. We can say that the levels form a hierarchy of concepts.

But where does the idea of a deep structure come from? We can say that Deep
Learning is inspired principally by nature: the brain has a deep architecture and
cognitive processes seem to be deep as well. The mammalian visual cortex, for ex-
ample, presents a sequence of areas each of which contains a representation of the
input, and signals flow from one to the next. Moreover, it seems that representations
in the brain are both distributed and purely local, i.e. they are sparse: about 1% of
neurons are active simultaneously in the brain. Furthermore, analyzing cognitive
processes, it seems that humans organize their ideas and concepts hierarchically:
they first learn simpler concepts and then compose them to represent more abstract
ones.

FIGURE 2.3: Deep Learning pipeline [4].

In addition to the biological aspects there are also some technical considerations.
First, shallow architecture (like SVM, KNN, etc.) are not so efficient as Deep Learn-
ing when the number of parameters in the training phase is too large. Second, tra-
ditional classifiers use hand-crafted features which are usually highly dependent on
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one application and cannot be transferred easily to other applications.
The classical Machine Learning (ML) pipeline is reported in Figure 2.2.

Deep learning, instead, seeks to learn rich hierarchical representations (i.e. fea-
tures) automatically through multiple stages of feature learning processes. The re-
sult is a hierarchical representation with an increasing level of abstraction where
each stage is a kind of trainable nonlinear feature transform. For example, in the case
of image recognition, the hierarchical sequence can be: pixel-edge-texture-motif-
part-object; while in the case of text recognition can be: character-word-word group-
clause-sentence-story. The typical Deep Learning pipeline is reported in Figure 2.3.

2.1.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Network (CNN) is one of the most famous model of Deep
Learning and was inspired by the neurophysiological experiments conducted by
Hubel & Wiesel in 1962 [5].Originally built for image classification, CNNs try to
replicate the mammalian visual cortex which contains a complex arrangement of
cells, that are sensitive to small sub-regions of the visual field called receptive fields.
These cells act as local filters over the input space and are well-suited to exploit
the strong spatially local correlation present in natural images. In particular we can
distinguish two types of cells:

• simple cells which respond maximally to specific edge-like patterns within
their receptive field;

• complex cells which have larger receptive fields and are locally invariant to the
exact position of the pattern.

According to these biological observations, CNNs can be considered a special
type of NN whose hidden units are only connected to local receptive field. Thanks
to this characteristic, the number of parameters needed by CNNs is much smaller
and the input can have very high dimension.

FIGURE 2.4: VGG network [3]

Conclusively a CNNs can be viewed as a list of layers that transforms the input
data into an output class/prediction. Each layer acts as feature extractor:

• low-level layers extract local features;
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• high-level layers extract global patterns.

In particular the layers can be distinguished in four different types [3]:

• convolutional layers (CONV);

• non-linear layers (RELU);

• pooling layers (POOL);

• fully connected layers (FC).

Usually these types of layers are interchanged to build the classical CNNs archi-
tecture: first we have the input layer which is followed by multiple iterations of the
sequence CONV-RELU-POOL and at the end we can find the FC. In Figure 2.4 we
can see an example of CNN architecture.

Convolutional Layers

A convolutional layer is the most characteristic layer of a CNN. It consists of a set
of filters each of which covers a spatially small portion of the input data. Each filter
is convolved over the entire image in input in order to produce a multidimensional
feature map. Usually there are multiple feature maps, one for each convolution
operator. In this way the network will learn the parameters of the filters that activate
when they see specific type of features in a specific area of the input image.
The basis of convolutional layers is the 2D convolutional operation. This operation
in based on the convolutional kernel which is a 2D array of learnable parameters,
obviously smaller than the input image, that slides with overlapping over the entire
input image like in Figure 2.5.

FIGURE 2.5: 2D Convolution [4].

The key characteristics of this kind of layer are:

• local connectivity;

• shared weights.
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The local connectivity is a fundamental in the architecture of a CNN. In fact,
when dealing with high-dimensional inputs such as images, it is infeasible to con-
nect all the neurons to all neurons because of the computational cost [3]. Instead,
CNN connect each neuron to only a local region of the input, i.e. the receptive field
of the neuron which is equivalent to the filter size of the convolutional layer. Over-
all we can say that the connections are local in space along width and height, but
always full along the entire depth of the input volume. Thanks to this type of ar-
chitecture the learnt feature extractors produce a good response to a spatially local
input patterns.

FIGURE 2.6: Fully connected NN vs Locally Connected NN [4].

One other important concept of the convolutional layers are the shared weights
. In fact, weights are parameter that must be learned during the training phase and
can be in a very large number. Therefore, weights sharing is used in convolutional
layers to control the number of parameters and reducing computational costs. This
scheme is based on a reasonable assumption [3]: if one feature is useful in the spa-
tial position (x1, y1), then it should also be useful at the near position (x2, y2). This
means that neurons are constrained to share the same weights with the nearest neu-
rons. Replicating neurons in this way allows for spatial invariance, i.e. features can
be detected regardless of their position in the input. Gradient descent is still used to
learn such shared parameters, with only a small change to the original algorithm.
In Figure 2.7 (courtesy of 1) is shown an example of the parameter sharing scheme.

FIGURE 2.7: Three hidden neurons belonging to the same feature
map share the weights of the same color which are constrained to

be identical.

1http://deeplearning.net/tutorial/lenet.html
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Non-Linear Layers

The non-linear layers (RELU) were introduced to increase the nonlinearity of the
entire architecture without affecting the receptive fields of the convolution layers.
A non-linear layer consists in a layer of neurons that applies a chosen non-linear
function that can be:

• f (x) = max(0, x)

• f (x) = tanh(x)

• f (x) = |tanh(x)|

• f (x) = (1 + e−x)−1

FIGURE 2.8: Examples of activation function for RELU layers:
tanh(x) and max(x) [4].

Pooling Layers

Usually pooling layers (POOL) are periodically insert in-between successive convo-
lutional layers in a CNN architecture. The task of the pooling layers is to progres-
sively reduce the spatial size of the representation in order to reduce the amount of
parameters to be computed and therefore the computational cost. Moreover, they
are also useful to control overfitting. In Figure 2.9 we can see how the pooling layer
drastically reduces the number of features.

In practice, this kind of layer divides the input image into a set of non-overlapping
rectangles and, for each of the obtained sub-regions, it outputs the maximum or the
average value of the features in that region as we can see in Figure 2.10. In fact, the
user can chose between two main pooling operation:

• Max Pooling: outputs the maximum value of the feature within a rectangular
neighborhood;

• Average Pooling: outputs the average value of the feature within a rectangu-
lar neighborhood which possibly is weighted by the distance from the central
pixel;
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FIGURE 2.9: Sequence of the input, the convolutional and the pooling
layers [4].

FIGURE 2.10: POOL downsamples the volume spatially, indepen-
dently in each depth slice of the input volume so the volume depth is
preserved. In this example, the input volume is pooled with a 2 × 2

max filter, i.e. each max is taken over 4 numbers [3].
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Fully Connected Layers

The fully connected layer (FC) is the final layer of each CNN and it acts as simple
classifier: given the features extracted in the previous layers it returns the classifica-
tion output [3]. In this type of layers, neurons have full connections to all activations
in the previous layer, as in classical NN. In some CNN the fully connected layers can
be more than one.
In Figure 2.11 we can see a classical Deep Learning architecture which ends with a
FC layer as classifier.

FIGURE 2.11: Deep Learning Architecture with the final Fully Con-
nected Layer (image extracted from the Bioinformatic course slides).

FIGURE 2.12: Building-blocks for CNN (image extracted from the
Bioinformatic course slides).
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2.2 Semantic Segmentation

Semantic segmentation can be considered one of the key problems to be solved in
Computer Vision. It is an high-level task which is fundamental for a huge number
of applications which require a complete scene understanding. These applications
can be autonomous driving, human-machine interaction, biomedical images analy-
sis, augmented reality and so on and can involve 2D images, video, and even 3D or
volumetric data [6].
Such problem has been faced in the past using both traditional Image Processing
techniques but also Machine Learning ones. In the last years Machine Learning, and
in particular Deep Learning architectures like CNNs, outperformed traditional tech-
niques by a large margin in terms of accuracy and sometimes even efficiency [6]. In
particular Deep Learning overcame traditional Machine Learning methods thanks
to its ability to learn also the appropriate feature representation for a specific prob-
lem in an end-to-end fashion instead of using hand-crafted features which require
domain expertise and too much fine-tuning [6].
These new techniques are in a rapid and continuous evolution which make it diffi-
cult to find complete and updated reviews of the State of the Art. For this Section I
referred to [6], where you can find a more deep description of the analyzed problems
and methods.

FIGURE 2.13: Evolution of scene understanding from coarse-grained
to fine-grained inference: classification, detection or localization, se-

mantic segmentation and instance segmentation [6].

In order to understand how semantic segmentation works and how Deep Learn-
ing architectures try to implement it, we have to recall the evolution of scene un-
derstanding from raw to the so called fine-grained inference [6]. This evolution is
shown in Figure 2.13.
The first step can be considered classification, which consists of "making a prediction
for a whole input, i.e. predicting which is the object in an image or even providing a
ranked list if there are many of them" [6].
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The second natural step consists of adding to the classes some additional informa-
tion regarding the spatial location of those classes, e.g. centroids or bounding boxes
[6]. This step is called detection or localization.
The third step is semantic segmentation which tries to make "dense predictions in-
ferring labels for every pixel; this way, each pixel is labeled with the class of its
enclosing object or region" [6]. Semantic segmentation can already be considered
fine-grained inference but further improvements can be made. Instance segmentation,
for example, tries to separate labels for different instances of the same class and part-
based segmentation tries to perform a low-level decomposition of already segmented
classes into their components [6].

2.2.1 Problem formulation:

The problem of semantic segmentation, i.e. assigning a label to each pixel, can be
formally formulated defining the label space [6]:

L = {l1, l2, ..., lk} (2.1)

Each element of the label space represents a different class, e.g. cat, dog, car,
healthy, non-healthy, background and so on. This label space has k elements, i.e. k
possible states which are usually extended to k + 1 if l0 is treated as background or
a void class [6]. In the same way we can define a set X of random variables [6]:

X = {x1, x2, ..., xN} (2.2)

Usually, X can be a 2D image of W × H = N pixels x but this formulation allows
the extension to any dimensionality such as volumetric data or hyperspectral im-
ages [6]. Given these assumptions, the pixel labeling problem can be reduced to the
following formulation: "find a way to assign a state from the label space L to each
one of the elements of X" [6].

FIGURE 2.14: Left: Images from two lymph node biopsies. Mid-
dle: earlier results of a Deep Learning tumor detection. Right: final

heatmap of the tumor probability [7].
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2.3 CNNs for Semantic Segmentation

Nowadays, the most successful State of the Art Deep Learning techniques for seman-
tic segmentation are based on famous CNNs architectures such as AlexNet, VGG-16,
GoogLeNet and ResNet [6]. Obviously these networks are opportunely modified in
order to have a pixel classification instead of a whole-input classification.
In nutshell we can say that a general semantic segmentation architecture can be seen
as an encoder network followed by a decoder network [8]. The encoder is usually
a pre-trained classification network like VGG/ResNet or another one of those cited
before, while the decoder is mostly where these architectures differ.
In the encoder part features with an increasing level of abstraction are learnt, i.e. fea-
tures related to the context. But semantic segmentation requires a pixel-level classifi-
cation, therefore it is necessary a mechanism to project the features learnt at different
stages of the encoder onto the pixel space in order to get a dense classification and
no more a simple classification of the whole input. This need is implemented in dif-
ferent architectures using different mechanisms (skip connections, pyramid pooling
etc) as a part of the decoder network. For a more deep explanation see [6] and [8].

2.3.1 Patch Classification

Patch classification can be considered the first approach to semantic segmentation
using CNNs [9] [10]. It was most used because CNNs usually present fully con-
nected layers which make it necessary for fixed size input images. The dimensions
of the patches were simply chosen according to this size.
There are lots of different architectures (for example the famous one of Ciresan et al.
[11]) but overall we can say that each pixel is separately classified into classes using
a patch of image around it [10]. These patches can be overlapped or not and can be
obtained using sliding windows. At the end, all the information are put together in
order to get the final segmentation map.

FIGURE 2.15: Example of images segmentation using patch classifi-
cation: single patches are classified using a CNN. The results are put
together in a tumor probability heatmap and then an SVM classifier

evaluates if the tumor is actually present or not [12].

This strategy has two main drawbacks [10]. First of all there is a redundancy due
to the fact that the network must be run separately for each patch. This problem is
emphasized when the patches overlap and makes the network very slow. Second
but most important is the right tuning of the dimensions of the patches in order to
find a trade-off between localization accuracy and the use of context. Larger patches
require more max-pooling layers with a consequent reduction of the localization
accuracy, while small patches reduce the field of view, i.e. allow the network to see
only little context [10].
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2.3.2 Fully Convolutional Network

In 2015, a team of the Berkley university published a work that upset the world of
semantic segmentation [6]. Long et al. designed the Fully Convolutional Network
(FCN), a CNN architecture for dense predictions without any fully connected layers
[13]. It was the first work that showed how CNNs can be trained end-to-end for se-
mantic segmentation tasks. Currently, almost all the successful State of the Art Deep
Learning techniques for semantic segmentation stem from this model [6].
Their idea was simple: modifying existing and successful classification models such
as AlexNet, VGG16, GoogLeNet, and ResNet into fully convolutional ones by re-
placing the fully connected layers with convolutional ones [6]. The absence of fully
connected layers allows to output spatial maps instead of classification scores and
to use input images of any size.
The second advantage is the fastness of this method with respect to the patch classi-
fication approach. Moreover, it defeated traditional methods accuracies on standard
datasets, while preserving its efficiency [6].

FIGURE 2.16: Transformation of a classical CNN to FCN by replacing
fully connected layers with convolutional ones and adding deconvo-

lution layers for up-sampling [6].

FCN uses existing CNNs as encoder networks to learn a hierarchy of features
[6]. With respect to the classical AlexNet, VGG16, GoogLeNet, and ResNet, after
each convolution block, pooling layers were introduced. This operation enabled the
succeeding block to extract more abstract, class-salient features, i.e. capture the con-
text and increase the field of view [8]. But we have to remember that pooling is a
sampling operation which loses the spatial information fundamental for semantic
segmentation.
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FIGURE 2.17: The FCN-32s Architecture [8]

In any case the encoder part does not produce a dense per-pixel classification. There-
fore, those features maps are upsampled through an operation called deconvolution,
i.e. a fractionally strided convolution.
To overcome the problem of the loss of spatial information, two different classes of
architectures evolved in literature [9]:

FIGURE 2.18: Visualization of the developed methods starting from
FCN.[6].

• Encoder-decoder architectures: the encoder part gradually reduces the spatial
dimension with pooling layers while the decoder one gradually recovers the
object details and spatial dimension. There are usually shortcut connections
from encoder to decoder to help the decoder network to recover the object
details better.
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• Dilated/atrous convolutions architectures: use of particular pooling layers
which enable to recover the spatial information and object details.

2.3.3 Encoder/Decoder Architectures

In this subsectiontwo encoder/decoder architectures of particular interests are pre-
sented but in literature there are lots of implementations of such paradigm like ENet
[14], LinkNet [15], G-FRNet [16], RefineNet [17], Large Kernel Matters [18] and Fully
Convolutional DenseNet (also known as Tiramisu) [19].

FIGURE 2.19: The SegNet Architecture [8].

SegNet

SegNet is a network that belongs to the encoder/decoder architectures. While the
encoder part is a classical one, the decoder part is the novelty of this network. In
fact, it consists of a set of up-sampling and convolution layers followed by a final
softmax classifier which can predict pixel-wise labels for an output which has the
same resolution as the input image.

FIGURE 2.20: SegNet: the indices at each max-pooling layer in en-
coder are stored and later used to upsample the corresponding fea-
ture map in the decoder by unpooling it using those stored indices.
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Each up-sampling layer in the decoder part corresponds to a max-pooling one
in the encoder part. In particular, each up-sampling layer uses pooling index com-
puted in the corresponding max-pooling layer to perform non-linear up-sampling
as it shown in Figure 2.20. This eliminates the need for learning the parameters of
the up-sampling while FCN-based networks use learnable deconvolution filters to
upsample. Thanks to this trick the high-frequency information is preserved but the
neighborhood information is lost [8].
The up-sampled maps are sparse and are then convolved with trainable filters to
produce dense feature maps. After that, the upsampled feature maps are added
element-wise to the corresponding feature map generated by the convolution layer
in the encoder part. When the feature maps have been restored to the original reso-
lution, they are fed to the softmax classifier to produce the final segmentation.
All the information were taken from this review [6] and from the original paper [20].

UNet

UNet is the second encoder/decoder architecture I chose to review because it was
born for biomedical segmentation purpose. This network has many successful biomed-
ical applications like, for example, the segmentation of neuronal structures in EM
stacks (winner of ISBI 2012), where it defeated the network of Ciresan et al. [11] and
the cell segmentation in light microscopy images (winner of ISBI cell tracking chal-
lenge 2015). This network is expressly inspired from the FCN described in Section
2.3.2 and was modified in order to work with very few training images and yield
precise segmentations.

FIGURE 2.21: Example for an UNet with 32 × 32 pixels in the low-
est resolution. Each blue box corresponds to a multi-channel feature
map. The number of channels is denoted on top of the box, the x-y-
size at the lower left edge of the box. White boxes represent copied

feature maps [10].
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In the original paper [10], the authors describe the encoder part of the network as
a contracting path and the decoder part as an expansive path as it is shown in Figure
2.21. These two path are more or less symmetric and can be drown graphically using
an U-shape from which derives the name of the network.
The contracting path can be considered a classical CNNs architecture made by con-
volutional, non-linear (RELU) and max-pooling layers. In particular it consists of 5
blocks, each one containing two 3× 3 convolutions blocks (unpadded convolutions),
each followed by a rectied linear unit (RELU) and a 2× 2 max pooling operation with
stride 2 for down-sampling (each down-sampling step doubles the number of fea-
ture channels).
Each block in the expansive path is made by an up-sampling of the feature map fol-
lowed by a 2 × 2 "up-convolution" that split in half the number of feature channels,
a concatenation with the correspondingly cropped feature map from the contract-
ing path, and two 3 × 3 convolutions, each followed by a RELU. The cropping is
necessary due to the loss of border pixels in every convolution. In this way high res-
olution features from the contracting path are combined with the upsampled output
in order to sum up all the necessary information for the segmentation.
The last layer is a 1 × 1 convolution used to map each 64-component feature vector
to the desired number of classes. In total the network has 23 convolutional layers.
The important modification with respect to FCN is that in the up-sampling part there
is a large number of feature channels, which yield to the propagation of context in-
formation to the pixel-level.

FIGURE 2.22: Overlap-tile strategy for seamless segmentation of ar-
bitrary large images (here segmentation of neuronal structures in EM
stacks). Prediction of the segmentation in the yellow area, requires
image data within the blue area as input. Missing input data is ex-

trapolated by mirroring[10].

Due to the fact that U-Net has no FC layers, arbitrarily large images can be seg-
mented through an overlap-tile strategy. Moreover, U-Net classifies only pixel for
which the full context is available while for the border pixels the missing context is
recovered by a mirror strategy. Therefore, the input tile dimension dimensions must
be chosen in such a way that all the 2 × 2 max-pooling layers get an input with even
dimensions allowing a tiling without breakpoints like in Figure 2.22.
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2.4 Enhancing Techniques

The major problem when dealing with Deep Learning and, more in general, Ma-
chine Learning models, is the lack of large and really representative datasets. In fact,
the larger is the dataset the better are the results in terms of accuracy and general-
ization capabilities.
Most of the times, it is really hard to obtain enough and good data, especially due to
the economical costs, the time required for the collection and so on. These problems
are amplified in the biomedical field where the acquisition of data is really expen-
sive, time-consuming, strictly dependent on the standard of acquisition and storing.
Moreover, these data come from humans and this implies an huge number of ethics
problems like the one connected to the person privacy. In addition, one of the main
problem is the building of the ground truth for feeding supervised learning models.
For this purpose it is required the expertise of one or more specialist who are able
to classify data by hand. This is a really time-consuming and expensive operation
which suffers also of the subjectivity of the specialist.
These are the main reasons why large and representative datasets are still difficult
to find in the biomedical field. Most of them are made available for challenges or
calls in international conference like the hystopathological datasets summarized in
section 3.2.2.
Therefore, while waiting for larger and standardized biomedical datasets, we can
exploit some tricks to overcome this problem. Two of them are the so-called Transfer
Learning and Data Augmentation

FIGURE 2.23: Data augmentation example [21]
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2.4.1 Data Augmentation

Data augmentation is a really common way to increase the number of training sam-
ples in order to improve the performances of Machine Learning models. Moreover,
it seems also to benefit models in terms of time of convergence, generalization capa-
bilities, preventing overfitting, regularizing the model, balance the classes, and even
synthetically produce new samples that are more representative for the use case or
task at hand [6].
Data augmentation is obtained by applying a set of transformations in either data
or feature spaces, or even both [6]. For example, in the case of CNNs for seman-
tic segmentation the transformation are performed in the data space [10] in order
to generate new samples to feed the deep model. The transformation that can be
applied in such case can range from space transformation like translation, rotation,
warping, vertical or horizontal mirroring, scaling, color space shifts, changing the
brightness, pads, crops, etc. Obviously, these transformation must be traced also in
the segmentation masks, while in the case of classification tasks this would not be a
problem.
The Python library Keras allows to do data augmentation on the fly, i.e. during the
training without saving the new images. In this case the training phase is a longer
but it solves lots of memory problems. In the field of biomedical segmentation im-
ages, data augmentation can be useful when few training data are available. More-
over, the most common variation in real tissues can be simulated through data aug-
mentation like for example the deformation of tissues, the change in the brightness
and so on in order to led the network invariant to such deformations. For exam-
ple, the designer of UNet in [10] applied elastic deformation to their small dataset
improving relevantly their performances.

2.4.2 Transfer Learning and Fine Tuning

A second way that allows to overcome the lack of data is Transfer Learning, i.e. "ex-
tract the knowledge from one or more source tasks and apply the learned knowledge
to a novel target task" [22]. Transfer Learning was first inspired by humans who can
exploit knowledge learned during their life to solve new problems faster and better
than if they did not own this prior knowledge [22].

The main difference between the traditional machine learning process and the
transfer learning one is shown in Figure 2.24: the first one aims to learn each task
from scratch, while the second one aims to transfer the knowledge acquired in a
previous task to a novel one. The second solution is particularly useful when the
data available for the novel task are less or weakly annotated.

Moreover, when dealing with deep learning models, training a network from
scratch may be really difficult not only for the lack of enough data that leads to
bad performances but also for the required computational time and resources [6].
Reaching the convergence can take really long time and most of the time GPUs are
required. In this situation Transfer Learning can play a key role by reducing drasti-
cally the required computational time and resources.

Transfer learning is a really general denomination which can be use to identify
many types of knowledge transfer but in this work I will focus particularly on the
so-called Fine Tuning. This methods consists in literally fine-tuning the weights ob-
tained by a pretrained network by continuing the backpropagation 2.

2http://cs231n.github.io/transfer-learning/
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FIGURE 2.24: The main difference between (a) traditional machine
learning and (b) transfer learning lies in the learning processes [22].

Fine-Tuning can be applied to the entire network or only to some layers. This
means that is possible to keep some layers fixed to their previous weight while the
others can be fine-tuned. Usually the fixed layers are the earliest ones because they
extract really general features while the closer to the output the more abstract and
specific for the task are the features [23]. So we can say that higher layers are too
much chained to the original dataset and task.

It has been shown that starting from pretrained weights instead of randomly
initialized ones lead to better performances, even if the available dataset is large
enough and the required computational time and resources are feasible [6]. The
work of [23] focused on such idea: transferring features is better than a random
initialization also if the two task are really different. Obviously the more different
the two tasks, the less is the transferability [6].

However, when choosing the transfer learning strategy, some considerations taken
into account. The two most important ones are the size of the new dataset and its
similarity to the original one 3:
If the new dataset is small and similar to the original dataset the fine-tuning strategy
could lead to overfitting because higher level layers of the CNN may be relevant for
the new dataset as well. In this case is better to start only retraining the last classi-
fier. On the contrary, if the new dataset is similar to the old one but enough large,
the overfitting danger decreases and fine-tuning can be used.
If the new dataset is small and different from the original one, the fine-tuning must
be performed on more layers because the learnt features are too much specific for the
old dataset. Otherwise, if the new dataset is large and very different from the origi-
nal one the network can be retrain from scratch. However, as said before, initialize
with weights from a pretrained model would improve the performances.

3http://cs231n.github.io/transfer-learning/
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Chapter 3

State of the Art

3.1 Digital Pathology and Microscopy

Pathology is one of the major field of modern medicine and it consists in the analysis
of tissues and cells samples for diagnostic purposes [24]. Traditionally, the pathol-
ogist bases his analysis only on experience and the examination is done manually
with the aid of a microscope. These kind of processes can suffer from consider-
able inter and intra-reader variability and many others problems. The digitization of
pathology aims to solve many of these criticisms, but there are still lots of open prob-
lems related especially to the amount of data required for building new algorithms
and the computational load when dealing with high resolution images. An addi-
tional issue for the development of automated methods is the large variability in
the analyzed data which is given by factors like the cell types, the cell densities, the
stains, the magnification levels, and so on.

FIGURE 3.1: Number of patients per pathologist around the world
[25].
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3.2 CNNs Applications in Digital Pathology and Microscopy

The CNNs applications that deal with digital pathology and microscopy focus on
three main aspects [26]:

• detection, segmentation and classification of nuclei;

• segmentation of large organs;

• detection and classification of diseases and lesions;

All these works were possible thanks to the increasing availability and the high
resolution of digital pathological images. In fact, such as for general machine learn-
ing algorithms, deep learning requires very large datasets to train their models. In
fact, the larger the dataset is, the more performing is the model.

In the tables below a schematic overview of papers involving CNNs in histo-
logical applications is reported. These data have been extracted from a complete
review on deep learning in medical image analysis [26]. Moreover they have been
integrated with more specific informations such as performances and dataset de-
scriptions extracted directly from every paper.

These three tables follow the three main research branches in this field and in
each table the papers are ranked by the publication year. Each work is summarized
using the following attributes and abbreviation [26]:

• the reference to the paper in the bibliography;

• the specific research topic;

• the staining and imaging techniques (SIM):

H&E: Hematoxylin and eosin staining,

TIL: Tumor-infiltrating lymphocytes,

IHC: Immunohistochemistry,

RM: Romanowsky,

EM: Electron microscopy,

PC: Phase contrast,

FL: Fluorescent,

IFL: Immunofluorescent,

TPM: Two-photon microscopy,

CM: Confocal microscopy,

Pap: Papanicolaou.;

• the characteristics of the dataset:

GT: ground truth,

OP: open,

MS: microscope,

M: magnification;

• a brief description of the method;
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• the performances:

P: precision,

R: recall,

TNR: specificity,

ACC: accuracy,

F: F-score,

F1: F1-score,

DSC: dice similarity coefficient,

JI: Jaccard indices,

AVD: Average Hausdorff Distance.

Other abbreviations are: BCC: Basal cell carcinoma.
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3.2.1 Challenges in Digital Pathology and Microscopy

Analyzing the literature it is evident that the organization of challenges focused on
these topics has strongly improved the development of digital pathology analysis
techniques. These contests provide not only the occasion to summarize the state of
the art in some specific topics, but also provide very large and well-done datasets
that usually remain open still after the end of the competition.
Some of these challenges are [26]: EM segmentation challenge 2012 for the 2D seg-
mentation of neuronal processes, mitosis detection challenges in ICPR 2012 and
AMIDA 2013, GLAS for gland segmentation in colorectal cancer tissue samples and,
CAMELYON16 and TUPAC for the analysis of breast cancer tissue samples.
Dispite the difference in the proposed goals, in all these competitions CNNs were
observed to be part of the better algorithms. The IDSIA team, for example, won
both ICPR 2012 and the AMIDA13 challenges on mitosis detection with a CNN
based approach [26, 27], but also the EM 2012 for 2D segmentation of neuronal pro-
cesses. Also in this case they used the output of a CNN to compute pixel probabili-
ties through mild smoothing and thresholding [26, 11].
Xu et al. team won the GLAS using three CNN in waterfall [26, 64]. The first one
was used to classify pixels as gland or non-gland. Then from each feature map gen-
erated by the first CNN, a second one produces an edge map using the holistically
nested edge technique. Finally, the last CNN merges informations about gland and
edge maps to obtain the final segmentation.

CAMELYON16 was a very important event because it was the first time that a
challenge provided a very large amount of data consisting of WSIs (whole-slide im-
ages) [26]. This allowed the possibility to train very deep model such as 22-layer
GoogLeNet [75], 16-layer VGG-Net [76], and 101-layer ResNet [77]. On these models
were based all the top-five performing systems of the CAMELYON16. The best so-
lution, proposed by Wang et al. [73], achieved an AUC of 0.9935 which defeated
the AUC of 0.966 of a pathologist who independently evaluated the test set. The ar-
chitecture consists of an ensemble of two GoogLeNet, one trained with hard-negative
and one without and uses the WSI standardization algorithm by Ehteshami Bejnordi
et al. [78].

Also the team that won in all categories the last Tupac challenge [79] based his
work on CNNs [26]. Their method locates those regions where the cell density is
very high and uses CNNs to classify mitoses in the Region Of Interest (ROI). The
result of this classification is then used as a feature vector associated to each WSI to
fed a SVM that evaluate the tumor proliferation and molecular data scores.

3.2.2 Datasets in Digital Pathology and Microscopy

The most used datasets in digital pathology and microscopy are reported in the fol-
lowing paragraphs. Most of them have been developed for international challenges
like the ones reported in the previous section, other are open-source database for
research purposes.

MITOS Dataset This dataset was provided for the International Conference
on Pattern Recogniction (ICPR) in 2014 1. The images were collected in Paris by
the team of Professor Frédérique Capron, head of the Pathology Department at
Pitié-Salpêtrière Hospital. He selected a set of breast cancer biopsy slides stained

1https://mitos-atypia-14.grand-challenge.org/dataset/
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with standard hematoxylin and eosin (H&E) dyes and scanned by two slide scan-
ners: Aperio Scanscope XT and Hamamatsu Nanozoomer 2.0-HT. In each slide, the
pathologists selected several frames at X20 magnification located inside tumours
and used them for scoring nuclear atypia. This was done dividing each X20 frame
into four frames at X40 magnification which were used to annotate mitosis and to
give a score to six criteria related to nuclear atypia. The number of frames is variable
from slide to slide. In the training data set there are available 284 frames at X20 and
1136 frames at X40 magnification as RGB bitmap images in TIFF format.
Each 20X frame has a ground truth provided by two senior pathologists who worked
independently and sometimes gave different score to the nuclear atypia. Score 1 cor-
responds to a low grade atypia, score 2 to a moderate grade atypia, and score 3 to
a high grade atypia. For each 40X frame was annotated the list of mitosis (true and
probably mitosis) and in case of disagreement a third opinion was asked for majority
voting. Moreover three junior pathologists evaluated the nuclear atypia according
to six criteria.

BCC Dataset The Basal Cell Carcinoma Dataset consists in 1417 small images
of 300 × 300 pixels extracted from 308 RGB images of 1024 × 768 pixels [28]. Each
image is obtained using a 10X magnification, stained with standard hematoxylin and
eosin (H&E) and is related to an independent ROI on a slide biopsy. The ground
truth was done by one pathologist who indicated the presence (or absence) of BCC
and other architectural and morphological features (collagen, epidermis, sebaceous
glands, ecrine glands, hair follicles and inflammatory infiltration).

ICPR 2014 HEp-2 Cell Datasets The ICPR 2014 HEp-2 Cell dataset consists
in a training set composed by 13596 cell images that can be downloaded freely
[39]. The test set is reserved to the contest organization to evaluate the challeng-
ing algorithms. The cell images were extracted from 83 images obtained using a
monochrome high dynamic range cooled microscopy camera fitted on a microscope
with a plane-Apochromat X20/0.8 objective lens and a LED illumination source.
Each image is classified to one of six staining patterns: Homogeneous, Speckled,
Nucleolar, Centromere, Nuclear Membrane, and Golgi.

ICPR 2012 Hep-2 Cell Dataset The ICPR 2014 HEp-2 Cell dataset consists of
1455 cell images extracted from 28 samples, which were acquired with a fluores-
cence microscope (40X magnification) coupled with 50-W mercury vapor lamp and
a digital camera [39]. The dataset is divided into training set (721 images) and
test set (734 images). The classes are six: Homogeneous, Coarse Speckled, Nucle-
olar, Centromere, Fine Speckled, and Cytoplasmic. Notice that two subcategories
of ICPR2012 dataset (Fine Speckled and Coarse Speckled) are merged into one cat-
egory (Speckled) in ICPR2014 dataset, and two less frequent patterns appearing in
daily clinical cases, Golgi and Nuclear Membrane are introduced for developing
more realistic HEp-2 cell classification systems.

ISBI 2012 dataset The ISBI 2012 dataset was provided for a EM segmentation
challenge at ISBI 2012 and is still open for new contributions [31]. The training set
is composed by 30 images (512 × 512 pixels) extracted from serial section transmis-
sion electron microscopy of the Drosophila larva ventral nerve cord (VNC). Each
image owns a fully annotated ground truth segmentation map for cells (white) and
membranes (black). The test set is publicly available, but its segmentation maps are
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kept secret. The evaluation on the test set can be obtained by sending the predicted
membrane probability map to the organizers.

MICCAI 2015 Warwick-QU Dataset The Warwick-QU dataset was build for
the GlaS challenge (Gland Segmentation Challenge Contest) in MICCAI 2015 and
consists of 165 images derived from 16 H&E stained histological sections of stage T3
or T4 colorectal adenocarcinoma [80], [81]. Each section belongs to a different pa-
tient, and sections were processed in the laboratory on different moments. Thus, the
dataset shows an high inter-subject variability in both stain distribution and tissue
architecture. The sections were digitized into WSIs using a Zeiss MIRAX MIDI Slide
Scanner with a pixel resolution of 0.465 µm and then the WSIs were rescaled in order
to have a pixel resolution of 0.620 µm which is equivalent to a X20 objective magni-
fication. At the end, across the entire set of the WSIs, 52 visual fields were selected
in order to cover the widest variety of tissue architectures possible. As ground truth
a pathologist classified each visual field as benign or malignant, according to the
overall glandular architecture, and segmented each glandular object (N.B. different
glandular objects in a single image may be part of the same gland because a gland
is a 3D structure which can appear fragmented in a 2D tissue section). The visual
fields were further separated into smaller, non-overlapping images, whose ground
truth is the same as the larger visual field. In the challenge, the dataset was split into
training and test set an the ground truth was provided only for the training.

The Camelyon16 Dataset The Camelyon16 dataset consists of a total of 400
WSIs of sentinel lymph node from two independent datasets collected in Radboud
University Medical Center (Nijmegen, the Netherlands), and the University Medical
Center Utrecht (Utrecht, the Netherlands) [73] 2. There are two different training set:
the first one consists of 170 WSIs of lymph node (100 normal and 70 containing
metastases) and the second 100 WSIs (60 normal and 40 containing metastases). The
test set presents 130 WSIs. The ground truth consists of a pathologist’s segmentation
of metastatic lymph nodes regions and was provided only for the training set in two
formats: XML files containing vertices, of the contours of the cancer metastases and
WSI binary masks indicating the location of the cancer metastasis.

2https://camelyon16.grand-challenge.org/data/
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3.3 Camelyon 2016

As seen in the previous section, one of the most important challenge in Digital
Pathology was Camelyon 2016 which has been running for the past two years 3.
This challenge was particularly relevant because it was the first one using whole-
slide images in histopathology.
This competition was organized by the 2016 IEEE International Symposium on Biomed-
ical Imaging (ISBI-2016) and was highly successful with 32 submissions from as
many as 23 teams

3.3.1 Motivation

In this challenge the focus was on the detection of micro- and macro-metastases
in lymph node high-resolution digitized images 4. Why analyzing lymph node?
Because lymph node metastases occur in most cancer types (e.g. breast, prostate,
colon) and acts as a kind of sentinel. In particular, lymph nodes are small glands
that filter lymph, the fluid that circulates through the lymphatic system.

FIGURE 3.2: Metastatic axillary lymph node [25].

Axillary lymph nodes are the first place breast cancer is likely to spread like in
figure 3.2. The metastatic involvement of the underarm area is known to progress
regularly, from the first, via the second, to the third axillary level [82]. This process
is one of the most important prognostic indicators in breast cancer, and of particular
value in the choice of medical treatments. The more the cancer has spread to the
lymph nodes, the poorer is the prognosis as can be seen in the graphic 3.3 [82].

The prognosis is gained from histological examination of all or most axillary
nodes and the treatment of operable breast carcinoma almost always involves lymph-
node dissection [82]. However, if a non-invasive or minimally invasive diagnostic
procedure could provide accurate preoperative staging of the axilla, axillary dissec-
tion could be avoided in patients with no involved nodes [82].

3https://camelyon16.grand-challenge.org/home/
4https://camelyon16.grand-challenge.org/background/
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FIGURE 3.3: Prognostic indicators in breast cancer [25].

The diagnostic procedure for pathologists is, however, tedious and time-consuming
and prone to misinterpretation 5. An automated detection of lymph node metastasis
would help pathologists by reducing their workload while at the same time would
overcome the subjectivity and variability of diagnosis and obviously its cost.

FIGURE 3.4: Breast treatment [25].

5https://camelyon16.grand-challenge.org/background/
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3.3.2 Goal

The goal of the Camelyon Challenge was to evaluate new and existing algorithms for
automated detection of metastases in hematoxylin and eosin (H&E) stained whole-
slide images of lymph node sections of breast cancer patients 6.

FIGURE 3.5: Low, Mid and High resolution images of a metastatic
region [25].

3.3.3 Data

The Camelyon16 dataset consists of a total of 400 WSIs of sentinel lymph node
from two independent datasets collected in Radboud University Medical Center
(Nijmegen, the Netherlands), and the University Medical Center Utrecht (Utrecht,
the Netherlands) [73] 7. There are two different training set: the first one consists of
170 WSIs of lymph node (100 normal and 70 containing metastases) and the second
100 WSIs (60 normal and 40 containing metastases). The test set presents 130 WSIs
collected from both Universities.

Institution Train (Normal) Train (Tumor) Test
Radboud UMC 90 70 80
UMC Utrecht 70 40 50

Total 160 11 130

6https://camelyon16.grand-challenge.org/
7https://camelyon16.grand-challenge.org/data/
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A pathologist segmented metastatic lymph nodes regions as ground truth and
the average time for annotating each slide was 1 hour. This ground truth was pro-
vided only for the training set in two formats:

• XML files containing vertices, of the contours of the cancer metastases;

• WSI binary masks indicating the location of the cancer metastasis.

FIGURE 3.6: Multi resolution pyramid structure of the WSI format
[25].

Whole-slide images are generally stored in a multi-resolution pyramid structure
like the one in figure 3.6. Image files contain multiple downsampled versions of the
original image. Each image in the pyramid is stored as a series of tiles, to facilitate
rapid retrieval of subregions of the image.
Reading these images using standard image tools or libraries is a challenge because
these tools are typically designed for images that can comfortably be uncompressed
into RAM or a swap file. OpenSlide is a C library that provides a simple interface to
read WSIs of different formats.

Automated Slide Analysis Platform (ASAP) is an open source platform for vi-
sualizing, annotating and automatically analyzing whole-slide histopathology im-
ages. ASAP is built on top of several well-developed open source packages like
OpenSlide, Qt and OpenCV and is available on GitHub.

3.3.4 Evaluation

The two challenge datasets from Radboud UMC and UMC Utrecht were unified and
divided into training and test sets, and the latter was made available when the ISBI
2016 challenge ended 8. Evaluation of the algorithms for the manuscript submis-
sion had to be performed on the training data either through cross-validation or a

8https://camelyon16.grand-challenge.org/evaluation/
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FIGURE 3.7: Example of tool for reading WSI [25].

hold-out experiment. Submissions to the competition were then evaluated on the
following two metrics:

• Slide-based Evaluation: for this metric, teams were judged on performance
at discriminating between slides containing metastasis and normal slides [73].
Each team submitted a probability for each test slide indicating its predicted
likelihood of containing cancer. The competition organizers performed a re-
ceiver operating characteristic (ROC) analysis at the slide level and compared
the algorithms using the area under the ROC curve (AUC) score.

• Lesion-based Evaluation: for this metric, participants submitted a probability
and a corresponding (x; y) location for each predicted cancer lesion within the
WSI. The competition organizers performed a free-response receiver operating
characteristic curve (FROC) which is defined as the plot of sensitivity versus
the average number of false-positives per image. This is similar to ROC anal-
ysis, except that the false positive rate on the x-axis is replaced by the average
number of false positives per image. In this challenge, the detected region was
considered a true positive, if the location of the detected region was within
the annotated ground truth lesion. If there are multiple findings for a single
ground truth region, they were counted as a single true positive finding and
none of them was be counted as false positive. All detections that were not
within a specific distance from the ground truth annotations were counted as
false positives. The final score gained by the second metric is defined as the
average sensitivity at 6 predefined false positive rates: 1/4, 1/2, 1, 2, 4, and 8
FPs per WSI.

At the end two different final ranking were made, one based on the metastasis
detection performance and one on the metastasis localization. The evaluation codes
were provided both in Python and Matlab. The results are computed on the inde-
pendent test set.
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3.3.5 Results

The challenge was highly successful with 32 submissions from as many as 23 teams.
Most of them were based on Deep Learning systems but there were also some frame-
works based on classical image processing systems.

FIGURE 3.8: Statistic on the methods used for the Camelyon16 chal-
lenge [25].

Traditional Methods: Traditional image processing techniques used for this
competition were:

• Texture and intensity based features

• Random Forest, SVM, Adaboost, etc.

• Analysis at multiple scales

• Cascade of Models operating at different magnifications

Deep Learning methods Thanks to the very large amount of WSIs provided
for the competition [26], very deep model such as 22-layer GoogLeNet [75], 16-layer
VGG-Net [76], and 101-layer ResNet [77] were trained. On these models were based
all the top-five performing systems of the CAMELYON16.
Anyhow, it is important to notice that Deep Learning outperformed classical ML
techniques. In fact, the first algorithm based on such methods is the one of the
BioMediTech, University of Tampere in Finland which ranked on the 20th place
(AUC=0.7612 for the first task and score = 0.2570 for the second task). The Deep
Learning models proposed for this challenge are listed below:

• GoogLeNet (3)

• VGG Net (3)

• ResNet (1)

• AlexNet (1)

• U-Net (1)
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• Multi-scale ConvNets (3)

• Fully Convolutional Network with CRF-RNN (1)

• Variant models Mostly not so deep Networks (3)

Classical pipeline

Almost all the algorithms based on Deep Learning models follow a general pipeline:

1. patches preprocessing

2. model training

3. patches classification

4. heatmap construction

5. metastasis localization

FIGURE 3.9: Pipeline of the best algorithm [73]

From the WSIs metastatic and non-metastatic patches are extracted and, some-
times, artificial patches are generated in order to reduce overfitting and enhance the
training set.
Usually in the preprocessing phase the background is removed from patches in or-
der to reduce the computational time (background is more than 80% of each patch)
and noise. Many algorithms used the Otsu adaptive thresholding technique after
transforming the RGB color space to the HSV color space.
Then the deep model is trained with the obtained patches and the corresponding
ground truth. Sometimes pre-trained models are used for weights initialization and
then a fine-tuning is made.
After the classification of each patch, all the prediction results are embedded into a
unique heatmap image which highlights the tumor area. This can be done in sev-
eral different ways (with or without overlap, etc). On these heatmaps, each pixel
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contains a value between 0 and 1, indicating the probability that the pixel contains
tumor.
The post-processing usually takes as input a heatmap for each WSI and produces as
output a single probability of tumor for the entire WSI using an additional classifier.
This classifier evaluates the morphological features of those areas whose probability
of being tumor overcomes a certain threshold.

Public Leaderboard for WSI classification

The first task, i.e. the WSI classification, the AUC score was used. In figure 3.10
are listed the first twelve teams and the star indicates that the team has achieved
an AUC value that surpasses the AUC of the pathologist. In graphic 3.11, the ROC
curve of the first five teams is depicted.

FIGURE 3.10: Public Leaderboard for WSI classification; first 12 posi-
tions [25].

First algorithm The best solution, proposed by Wang et al. [73], achieved an
AUC of 0.9935 which defeated the AUC of 0.966 of a pathologist who independently
evaluated the test set. The architecture consists of an ensemble of two GoogLeNet,
one trained with hard-negative color-normalized patches extracted from each WSI
and one without hard-negative. The average of the two prediction results was taken
as the final prediction value. The algorithms uses the WSI standardization algorithm
by Ehteshami Bejnordi et al. [78] which standardize all the images to have the same
staining color. This first phase generates a sort of heatmap which represents the
probability of metastatic lesions. Then a random forest classifier is trained with the
features extracted from the probability map in order to localize the lesions.

Second algorithm The second team trained a fully convolutional ResNet-101
network with atrous convolution and atrous spatial pyramid pooling which enlarge
the field-of-view for prediction and allow capturing objects as well as image context
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FIGURE 3.11: ROC of WSI classification; first 5 positions and ROC of
the first 5 WSI classification related to the AUC reached by a patholo-

gist [25].



3.3. Camelyon 2016 43

at multiple scales 9. Patches of size 512*512 at level 1 were used as input to the net-
work. For each mini-batch 10 normal and 10 tumor patches were randomly taken to
train the network. The classification task is based on features extracted from tumor
probability map with a random forest classifier as described in the submission by
HMS-MIT Method 1. Further postprocessing step was used to remove candidates
that are too small for the lesion-detection task.

Third algorithm This team reproduced the algorithm of the top-performing
team but, instead of training the GoogLeNet from scratch, they used the pre-trained
GoogLeNet model trained for ImageNet classification to initialize the weights and
then fine tuned the network. Then similar strategies were taken to analyze the lesion
levels.

Fourth algorithm This team used the pre-trained VGG-16 net for initializing
their final fully convolutional network 10. To avoid over-fitting, they extracted the
patches (on-the-fly to save memory) randomly from the WSI to augment the train-
ing dataset.The post-processing step includes outliers suppression through a me-
dian filter and metastasis localization in the centroids of connected components on
the mask after thresholding. The WSI classification results were simply generated
based on the location results by selecting the maximum value of whole metastasis
probability map

Fifth algorithm This team trained a 22-layer GoogLeNet using tumor and nor-
mal patches 11. Then they applied the trained model to partially overlapping patches
from each WSI to create tumor prediction heatmaps. After evaluating the accuracy
of the heatmaps, they extracted additional training patches from the false positive
regions in order to train a final model. For the slide-based tumor classification task,
they extracted a set of geometric features from each heatmap in the training set, and
trained a random forest classifier to estimate the probability that each slide contained
metastatic cancer. Finally they applied these models (CNN and random forest clas-
sifier) to the test images to provide a slide-based estimate of the probability of cancer
metastases. For the lesion-based tumor region segmentation task, a threshold of 0.90
to the tumor probability heatmaps was applied and the tumor location was assigned
to the center of each predicted tumor region.

9https://camelyon16.grand-challenge.org/PerTeamResult/?id=MGH3
10https://camelyon16.grand-challenge.org/PerTeamResult/?id=CULAB3
11https://camelyon16.grand-challenge.org/PerTeamResult/?id=BIDMC_CSAIL
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Warwick-QU Team Approach

The Warwick-QU Team from the Warwick University, Warwickshire (UK), presented
a project based on a variant of the U-Net convolutional-deconvolutional neural net-
work that was explained in subsection 2.3.3 12.
First of all they removed the background from all images by segmenting the tissue
regions (ROI, i.e. region of interest) from fatty and white background areas in or-
der to optimize the sequent operations like in figure 3.12. This operation was done
using a simple fully convolutional network (FCN) with a single up-sampling layer.
Then they performed a stain normalization in order to deal with stain variation in
the H&E stained slide images.

FIGURE 3.12: Removal of the background from all images by seg-
menting the tissue regions (ROI, i.e. region of interest) from fatty
and white background areas (image extracted from the Warwick-QU

slides in the results section of [25]).

UNet architecture was implemented using Tensorflow in order to allow an easy
customization of the network for the cancer segmentation purpose. The output of
such network consists of a probability map, whose pixel intensity values express
the probability of being part of a cancer metastasis as can be seen in figure 3.13.
The probability of belonging to a cancer area of each pixel is further elaborated by
considering the probability values within a region and the region area. Finally, the
candidate regions are further refined using the weighted probability map.
The training dataset was composed by 20000 RGB patches of size 428 × 428 at mag-
nification level 2 (10X). From those 20000 patches, 120000 were taken from normal

12https://camelyon16.grand-challenge.org/PerTeamResult/?id=Warwick
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WSIs and 8000 from metastatic ones. The whole dataset was divided in order to per-
form the training and the validation (90% of the whole dataset for the training set
and 10% for the validation set). The network was trained for more than 50 epochs
with batch size 10 with cross-entropy as the cost function.
The team reached the 16th position in the WSI classification leaderboard and the
18th position in the tumor localization leaderboard. The results of the method are
shown in figure 3.14.

FIGURE 3.13: UNet customization by the Warwick-QU team (image
extracted from the Warwick-QU slides in the results section of [25]).
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FIGURE 3.14: The three figures show respectively the ROC curve, the
FROC curve and the average sensitivity of the developed system at
6 predefined false positive rates: 1/4, 1/2, 1, 2, 4, and 8 FPs per WSI
(image extracted from the Warwick-QU slides in the results section of

[25]).
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3.4 MICCAI 2015 - Gland Segmentation Challenge Contest

A second important challenge in Digital Pathology was GlaS, i.e. Gland Segmenta-
tion Challenge which was held in conjuction with MICCAI 2015, Munich, Germany
13. The aim of this contest was to focus on the gland segmentation problem and to
validate state-of-the-art algorithms on the same standard dataset.

3.4.1 Motivation

In this challenge the main objective was to segment glands 14, i.e. fundamental his-
tological structures which are able to synthesize and secrete proteins and carbohy-
drates (e.g. hormones) into the bloodstream (endocrine glands), into internal cavities
of the body or directly out of the external surface of the body (exocrine gland) 15.

Usually glands present a tubular structure in which it can be distinguished the
internal lumen surrounded by epithelial cells as shown in Figure 3.15 The particular
arrangement of epithelial nuclei around the lumen can be used to identify clearly
glands structures [80].

FIGURE 3.15: Hystopathological images of glands affected by differ-
ent grades of tumor. (a), (b) normal tissue, (c) particular of the struc-
ture of a normal gland taken from the red rectangle in (b), (d) and (e)

low grade tumor, (f) and (g) high grade tumor [83].

These cells structures are present in most of the organ systems and are really
important for diagnosis of several adenocarcinomas [80]. In fact, previous studies
show that the morphology of glands can be used for grading of prostate, breast and
colon adenocarcinomas [80] which are really widespread form of cancer.

In the dataset collected for the GlaS challenge, colon images are involved. Also in
this case, the morphological characteristics of the glands structure reflects the stage
and the severity of the cancerous lesion [80]. In Figure 3.15 can be seen examples of
normal tissues, low grade adenocarcinomas which still exhibits glandular structures
similar to a healthy gland and high grade adenocarcinomas where glandular struc-
tures are definitely degenerated. Therefore, an automatic segmentation of glands

13https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/
14https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/about/
15https://en.wikipedia.org/wiki/Gland
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and the subsequent statistics of their morphology can help pathologists in grading
tumors.

3.4.2 Goal

In goal of this challenge, is to collect state-of-the-art gland segmentation algorithms
on images of Hematoxylin and Eosin (H&E) stained slides consisting of a variety
of histological grades 16. The novelty of this challenge is that it focuses on various
grade of cancers (healthy, benign, intermediate and high)

The main advantage of such a challenge is the fact that all teams could train their
algorithms and validate them on a standard dataset provided by the organization,
allowing a clear comparison and ranking between them.

3.4.3 Data

The GlaS dataset consists of 165 images derived from 16 H&E stained histological
sections of stage T3 or T4 colorectal adenocarcinoma [80], [81]. Each section belongs
to a different patient, and sections were processed in the laboratory on different mo-
ments. dataset. Thus, the dataset shows an high inter-subject variability in both
stain distribution and tissue architecture. The sections were digitized into WSIs us-
ing a Zeiss MIRAX MIDI Slide Scanner with a pixel resolution of 0.465 µm and then
the WSIs were rescaled in order to have a pixel resolution of 0.620 µm which is
equivalent to a X20 objective magnification. At the end, across the entire set of the
WSIs, 52 visual fields were selected in order to cover the widest variety of tissue
architectures possible. As ground truth a pathologist classified each visual field as
benign or malignant, according to the overall glandular architecture, and segmented
each glandular object (N.B. different glandular objects in a single image may be part
of the same gland because a gland is a 3D structure which can appear fragmented
in a 2D tissue section). The visual fields were further separated into smaller, non-
overlapping images, whose ground truth is the same as the larger visual field. In the
challenge, the dataset was split into training and test set an the ground truth was
provided only for the training.

3.4.4 Evaluation

The evaluation of each proposed algorithms was based on the following criteria [81]:

• accuracy of the detection of individual glands (F1 score computed on the de-
tected objects);

• volume-based accuracy of the segmentation of individual glands (Similarity
measures like Object-Level Dice Index and Adjusted Rand Index);

• boundary-based similarity between glands and their corresponding segmen-
tation (object-level Hausdor distance)

Sometimes the volume-based segmentation accuracy involves the boundary-based
segmentation accuracy between a gland and its segmentation but it is not true all the
times [81]. In fact, the first metric is defined using the label assigned by the segmen-
tation algorithm to each pixel while the second is defined using the boundary of each
gland traced by the same algorithm. Thus, while the pixels labels may be correctly
assigned, the boundary curves may be very different.

16https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/about/
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3.4.5 Results

In this section are described the first seven positions of the final ranking. All the
informations reported below are taken from [81].

CUMedVision The method of the CUMedVision is based on a FCN which out-
puts directly a segmentation probability map and an image containing the contours
of glands separately. This was done using two different branches in the up-sampling
part of the network, one for the probability maps and one for the contours maps
while the down-sampling path is shared. This multi-task learning approach allowed
the separation of touching glands. To overcome the lack of enough data for training,
the down-sampling part of the network was initialized with the weights of a public
available model from DeepLab trained on the 2012 PASCAL VOC dataset5.
The CUMedVision2 submitted model ranked 1th and considers both gland objects
and contour masks. The first version of the team, CUMedVision1, was based only
on gland objects mask and ranked 5th.

ExB The ExB team used a multi-path CNN where each path presents a different
configuration of the convolutional layers in order to capture different features and
give a different point of view over the problem. All the paths were connected to the
same set of two FC layers interconnected by a leaky rectified linear unit as activation
function followed by a softmax layer. The training was performed using a stochastic
gradient descent with momentum, randomly initialization and a step-wise learning
rate schedule, data augmentation and zero mean and unit variance normalization
over the training data. The experimental analysis has shown that more than three
paths caused overfitting (the dataset is too small).
The simple-path networks task was the detection of borders of glands (ground truth
built optimizing the F1 score and the object-Dice index) and its output was used
together with the output of a binary classifier (2 CONV and 1 FC layers) which
discriminate between benign and malignant classes starting from the row image.
The post-processing parameters were different according to the predicted class. In
the postprocessing they cleaned noise, filled holes and removed spurious structures
through thresholding.
The ExB team submitted three proposals: ExB1 (ranked 2th) is the approach de-
scribed up to now, ExB2 (ranked 6th) is the same approach without the border detec-
tion network, ExB3 (ranked 3th) is the same approach without any post-processing.

Image Analysis Lab Uni Freiburg The Uni Freiburg team used UNet convolutional-
deconvolutional neural network described in Section 2.21 to perform the segmenta-
tion. The network takes as input a raw RGB image and returns a binary mask which
separates the glands from the background in an end-to-end fashion.
UNet was trained from scratch using an augmented dataset obtained through ran-
dom elastic deformations, rotations, shifts, flips, color transformations and blurs.
The parameters for training were taken from the original paper of UNet [10] with
the only exception of more training iterations and a slower decrease of the learning
rate. As [10], to separate touching glands, they added a very high pixel-wise loss
weight for pixels which are between two really close objects.
The first submission of the team ranked 7th and applies to the UNet output only a
connected component labeling, while the second, which ranked 4th, applies to the
output a morphological hole-filling and deletion of objects smaller than 1000 pixels.
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3.5 ISBI 2012 - 2D EM segmentation challenge

This challenge is the first one in the field of bi-dimensional segmentation of neuronal
structures in electron microscopic (EM) brain images and was held during the ISBI
2012 international conference in Barcelona, Spain. This event was organized to stim-
ulate the progress in the field of automatic reconstruction of neural circuits through
a crowd-sourcing approach. All the informations of this section, except where the
source is specified, are taken from [84] and 17.

3.5.1 Motivation

The structure of the brain is still mainly unknown. For overcoming this lack of
knowledge many engineering techniques have been developed in recent years. One
branch of research of neuroanatomy is trying to map the synaptic connections of
the brain system [11]. Studies have been conducted both on invertebrate and mam-
malian brain samples [84]. This is a really ambitious and challenging task which
requires the collaborations of clinicians and engineers. The main tools used for this
purpose is serial-section Transmitted Electron Microscopy (ssTEM) which is able to
resolve individual neurons and their shape starting from neural tissue sections of
the magnitude order of nm [11].
The segmentation of neural structures from these high-resolution images is really
time consuming and unfeasible for a human. Some semi-automated methods have
been developed to reduce the human efforts but for large volume such a way is still
unfeasible [84]. Therefore it is necessary to find a completely automated solution for
segmenting neural structures and connections of 3D neural tissue sample avoiding
gradually any human interaction. In that sense, this challenge tried to accelerate
research in this field through a crowdsourcing approach [84], which enables to com-
pare different algorithms on the same dataset with the same metrics.

3.5.2 Goal

The goal of this competition was to perform a particular type of semantic segmenta-
tion, which can be referred as boundary segmentation. The applicative aim is to seg-
ment the boundaries between neurites (neuron membranes) starting from grayscale
EM images by assigning label 1 to the pixels located inside cells and 0 to the pixels of
the boundaries. This task is particularly challenging because many boundaries are
not so well defined and can be misunderstood with the ones belonging to intracel-
lular structures like mitochondria and vesicles.

3.5.3 Data

The ISBI12 dataset consists in a set of ssTEM images of the Drosophila larva ventral
nerve cord extracted from the dataset of [85].
In Figure 3.16 [85] (A) is represented a cross-section of one Drosophila larva brain
hemisphere: primary neurons with their axon fascicles are depicted in purple. A
detail of the neuropile, which is formed by neurites, i.e. neuronal processes, is pro-
posed in Figure 3.16 (C) (scale bar 1µm). The arrow inside (C) underlines a synapse
which is zoomed in Figure 3.16 (D) (scale bar 350nm) while in (D) the right arrow un-
derlines a presynaptic vesicles and the left one an obliquely sectioned microtubule.

17http://brainiac2.mit.edu/isbi_challenge/
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FIGURE 3.16: (A) cross-section of one Drosophila larva brain hemi-
sphere, (B) its brain and ventral nerve cord, (C) detail of the neuropile

(scale bar 1µm), (D) details of a synapse (scale bar 350nm) [85].

Instead, in Figure 3.16 (B) is represented a larval brain and ventral nerve cord.
Referenced as Stack 1 and Stack 2 can be find a schematic of the positions and ori-
entations used for acquiring the serial section. The first stack contains two sets of
neuropile sections (one of 400 and the other of 100 sections), while the second stack
contains 250 sections of the ventral nerve cord. The axons that connect brain and
ventral nerve cord are depicted using colored lines.

In our case, the sections were acquired through a FEI electron microscope driven
using Leginon and equipped with a Tietz camera and a goniometer-powered mobile
grid stage [84]. The magnification is set to 5600× binned at 2, leading to a 4 × 4nm
per pixel resolution.
This type of image acquisition generates a volume of images which is highly anisotropic
in terms of axis resolution, i.e. the resolutions along the x and the y axes are really
high while the one along the z axis is really low due to the physical difficulties of sec-
tioning the tissue block. Thus the obtained images are 2D projections of the whole
section and the membranes are likely to be orthogonal to the cutting plane to look
good.
The training set, for example, is stored in a unique .tiff volume consisting in 30 con-
secutive images of 512 × 512 pixels. The total volume size is 2 × 2 × 1.5 µm, with a
resolution of 4 × 4 × 50nm/pixel. These images contain lots of noise and alignment
errors as they have to represent images acquired in a typical real-world setting. Also
the test set contains 30 grayscale images.
The ground truth is publicly available only for the training set. The test set one, in-
stead, was kept secret and used by the organizers to evaluate the algorithms and the
predicted test masks submitted by the teams.
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The ground truth of the training set was created by segmenting each 2D plane by one
coauthor (through the open-source software TrakEM2) while the ground truth of the
test set was created by other two coauthors who worked independently from each
other (one through the open-source software VAST3, the other through TrakEM2).
The definitive test labels were obtained by comparing the two labels obtained by the
coauthors and correcting manually the disagreements and guaranteeing the coher-
ence and continuity of segmentation in the .tiff volume (avoiding disagree in objects
split or merge usually).

FIGURE 3.17: Graphical description of the ISBI12 dataset [84].

3.5.4 Evaluation

Participants had to submit the prediction masks obtained by the publicly available
test set which are then compared through some metrics with a ground truth pro-
vided by an human expert as explained in section 3.5.3. Each submission was first
evaluated and ranked using bi-dimensional topology-based segmentations metrics
and the pixel error 18. The two topology metrics were the minimum splits and merge
warping error (metric that penalized topological disagreements like object splits and
merges) and the foreground-restricted rand error (metric that measures the similar-
ity between two segmentations computes as 1-max(F score) where F score is referred
to the F-score of the foreground-restricted Rand index excluding the background).
Despite a first ranking was done using these metrics, this scoring system has shown

18http://brainiac2.mit.edu/isbi_challenge/evaluation
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to be not robust to variable widths of neurite borders. After that, the organizer some
new evaluation metrics that best fitted their segmentation task:

• VRand(thinned): Rand Scoring after border thinning;

• V In f o (thinned): Information Theoretic Scoring after border thinning.

These metrics are particular normalized versions of the Rand error and Variation
of Information metrics. These two metrics are restricted only to the foreground, i.e.
they do not consider the zero labels which corresponds to the background pixels of
the ground truth. For a deeper insight in these metrics see [84].

3.5.5 Results

The complete ranking lists of the challenge can be found at [84]. The organizers say
also that the results have probably saturated due to the restricted dataset and the
inherent ambiguities of the evaluation metrics [84].
At the deadline of the competition, only seven team made their algorithms public
at the conference and their brief description can be found in the additional material
provided by [84].

FIGURE 3.18: Pipeline of the winning approach [11].

The winner was the IDSIA team [11] with the deep learning approach shown in
Figure 3.18. It was the first time that this team faced EM images. They proposed a
CNN model that acts as a single pixel classifier into the membrane or non-membrane
classes [11]. The model computes the probability of the pixel to belong to a certain
class starting from a row crop of the original image centered in that pixel. The fi-
nal probability map of a given image is obtained by classifying all the pixels of the
image. The final segmentation mask is then obtained by a weak post-processing con-
sisting in a monotone cubic polynomial calibration function (like a grayscale trans-
formation) to avoid an overrate of the membrane probability, a smoothing through
a median filter (2 pixel radius) and thresholding.
This approach wins in all three metrics and, considering the pixel error, is the only
method that outperforms also humans [11]. Moreover, all the other methods, even
if using machine learning approaches, were based on hand-crafted features [84].
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Chapter 4

Methods and Experimental Set-up

4.1 General Pipeline

Within this thesis, the possibility of applying Transfer Learning and Data Augmenta-
tion in the field of Semantic Segmentation of histopathological images is evaluated.
This is done by choosing a deep convolutional model (UNet), training it on a really
big histopathological dataset (Camelyon16) and transferring the acquired knowl-
edge to two new tasks with increasing difference from the original one (GlaS and
then ISBI12). Expressly no postprocessing is performed in order to better compare
the improvements/deterioration due to Transfer Learning and Data Augmentation.
The general pipeline followed in this experiment is:

1. Training UNet with Camelyon16 Data

2. Fine-tuning of UNet with augmented GlaS Data

3. Fine-tuning of UNet with augmented ISBI12 Data

FIGURE 4.1: General pipeline followed in this thesis
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4.2 Methods

4.2.1 OpenSlide

OpenSlide-Python is a Python library 1 which acts as a wrapper for the original
C OpenSlide library 2. This C library allows the users to easily read Whole Slide
Images (WSIs), i.e. high-resolution images that require tens of gigabytes when un-
compressed that can not be read using standard image tools [86] [87].
Moreover, a single WSI usually contains different resolution of the same images to
provide a fast navigation and zoom. In the case of Camelyon16 dataset, for exam-
ple, each WSI contains multiple downsampled versions of the original image. Then,
each image in the pyramid is stored as a series of tiles, to facilitate rapid retrieval of
specific subregions. In this case, Openslide allows reading a specific subregion at a
resolution which is closest as possible to the desired zoom level.
Therefore, this library is frequently used in the histopathological field for building
tools and GUIs for clinicians.
The library can read the following image formats [86]:

• Aperio (.svs, .tif);

• Hamamatsu (.ndpi, .vms, .vmu);

• Leica (.scn);

• MIRAX (.mrxs);

• Philips (.tiff);

• Sakura (.svslide);

• Trestle (.tif);

• Ventana (.bif, .tif);

• Generic tiled TIFF (.tif).

There are lots of possible image formats and no standard for WSIs because each
microscopy company wants the customers to use their formats, libraries and viewers
(typically only for Windows) to read images acquired using their instruments [87].
In my opinion, this is the main reason why companies usually do not document their
formats and, if they do it, the documentations lacks of many fundamentals details.
Despite all, some common characteristics of these different formats are:

• based on TIFF;

• quick access to lower resolutions;

• optimized for random access ;

• use of different lossy compression paradigms;

• effectively unbounded in width and height;

• presence of metadata.

1https://openslide.org/api/Python/
2https://openslide.org/
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The library can deal with different WSI formats and proposes to the end-user
an abstract interface that is independent of the format or the vendor [87]. This is
done hiding and overcoming all the format-specific metadata and operations. For
example, Openslide extracts only uncompressed RGBA data avoiding operations for
the decompression of data which are strictly connected to the format. Moreover, the
library avoids any image scaling operation. In particular, it provides the following
features [87]:

• a read-only interface for extracting rectangular ROIs;

• image representation as an ordered list of layers where:

– layer 0 corresponds to the maximal resolution

– each layer is the downsampled version of the previous one

• function that generates individual Deep Zoom tiles from slide objects that al-
lows3:

– Static tiling: create all the tiles

– Dynamic tiling: creates the tiles on demand (useful for web applications)

• function that computes the downsampling factor for each layer with respect to
the zero one;

• function that computes the next largest layer for a given downsamping factor;

4.2.2 Augmentor

Augmentor is a Python package whose primary purpose is Data Augmentation and
Processing for machine learning (all information are taken from [88]). The latest ver-
sion of Augmentor uses multi-threading to speed up the generation of images when
dealing with large datasets.
This library consists in a set of classes that perform image processing operations
(rotation, crop, resize and so on) that can be chains together sequentially in order
to create a multi-stage pipeline. When images are processes through this pipeline,
these operations are applied stochastically according to a probability parameter de-
cided by the user for each operation. Also, the operations parameters (e.g. rotation
range) are randomly set within a range specified by the user. This pipeline generates
a set of augmented images whose size depends on the number of operations in the
pipeline, and the range of values available for each operation. At the end, the user
can sample from the generated images how many images he wants.
The transformation that can be applied in such case can range from space transfor-
mation like elastic distortions, perspective transform, translation, rotation, warping,
vertical or horizontal mirroring, scaling, color space shifts, changing the brightness,
pads, crops, etc. These transformations can be easily traced also in the segmentation
masks, while in the case of classification tasks this would not be a problem.
This library allows doing data augmentation on the fly, i.e. during the training with-
out saving the new images through a generator. These generators return augmented
data and corresponding labels indefinitely and can be given directly as input to the
fit function. In this case the training phase is a little bit longer but it solves lots of
memory problems.

3https://github.com/openslide/openslide/issues/149
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4.2.3 Keras

Keras is a high-level neural networks Application Program Interface (API), writ-
ten in Python (compatible with Python 2.7-3.5) and capable of running on top of
TensorFlow, CNTK or Theano (see [89] for the complete library description). This deep
learning library allows for easy and fast prototyping thanks to some characteristics
like user friendliness, modularity and extendibility. Moreover, it supports both con-
volutional and recurrent networks, as well as combinations of the two and it runs
seamlessly on CPU and GPU.
In particular, in this work I used Keras with TensorFlow and Theano as backend.
Keras’s models are pre-trained deep learning models which can be used for predic-
tion, feature extraction, and fine-tuning: the network weights and parameters were
obtained from a pretraining on the imageNet dataset and they are loaded automati-
cally during the creation of the model.

4.2.4 TensorFlow

In my project I used TensorFlow as backend for running Keras applications. Specif-
ically, TensorFlow is an open source software library for numerical computation
which uses data flow graphs (see 4 for the complete library description). Nodes in
the graph represent mathematical operations, while the edges represent tensors, i.e.
multidimensional data arrays, communicating between them.
Thanks to his flexible architecture, TensorFlow allows deploying computation to one
or more CPUs or GPUs in a desktop, server, or mobile device with the same API. It
can be used for an enormous variety of applications despite it was originally devel-
oped by the Google Brain Team. This team belongs to Google’s Machine Intelligence
organization whose purpose is conducting research on machine learning and deep
neural networks.

4.2.5 Theano

The second backend I used to run my Keras applications is Theano, an open source
Python library which allows for fast numerical computation both on CPUs and
GPUs [90]. Theano was developed in the LISA lab and its name was inspired by
Pythagoras’ wife, who was a Greek mathematician 5.
This library is commonly used for all those applications which presents large amounts
of data like the implementation of Deep Learning pipelines where complex mathe-
matical expressions are repeated more and more times.
Theano is build by two main components: a computer algebra system (CAS) and
an optimizing compiler. It can not be defined as a programming language because
the user writes a Python program which builds expressions for Theano: the Python
library is, in that sense, an interface to a compiler.
Operations are expressed in terms of tensor operations by an high-level description
language while the compiler uses lots of tricks to optimize these symbolic expres-
sions (trade, heuristics, arithmetic simplification, symbolic differentiation, auxiliary
libraries, memory aliasing, GPUs and so on) to speed up the computation.
Theano can be compared to hand-crafted C implementations for speed and optimiza-
tion and can also generate customized C code for several mathematical expressions.

4https://www.tensorflow.org/
5http://deeplearning.net/software/theano/introduction.html
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4.3 Hactar Cluster Polito

For running my algorithms, it was necessary to use the HPC clusters provided by
the Polytechnic University of Turin 6. This is an academic computer center managed
by the LABINF (Laboratorio Didattico di Informatica Avanzata) under the supervi-
sion of DAUIN (Department of Control and Computer Engineering) which provides
computational resources for research activities but also for didactic ones (thesis, aca-
demic projects, courses and so on). In Figure 4.2 are summarized the characteristics
of the two clusters of the center 7. In particular, a cluster consists in a set of connected
computers (usually through a fast local area network) whose workload in scheduled
by a scheduler software.

The processes that can run on a cluster are called batch processes because their
execution is not interactive, i.e. their execution can be postponed. A job consists
in one or more of these processes and its execution depends on the scheduler soft-
ware which inserts the job in a queue with a priority that depends on the required
resources and other factors. The scheduler used by CASPAR is the SLURM scheduler
while the one of HACTAR is the Grid Engine one.

For this thesis I used the HACTAR cluster because is the only one with a high
priority queue for GPU computations (compute-1-14, 2 Cores on 1 node + 2 GPU
slots on a node). In fact, for running the training algorithms of my deep learning
models, it was almost always necessary the graphic accelerations in order to com-
plete the jobs. In fact the maximum duration of a job is 10 days and GPUs run much
faster than CPUs, also if their fastness was for long time overrated [91].

Every job must be submitted to the scheduler through the qsub command fol-
lowed by the reference to a script file (format .qsub) which contains substantially a
bash script with a set of information for the scheduler and a sequence of directives
for the command line.

In my case, a series of jobs with variable parameters had to be submitted both to
the CPUs and GPUs queues. Therefore, a Python script for the automatic generation
of the jobs and of the correspondent informations was written. This kind of approach
was particularly useful especially in the first part of the transfer learning phase in
which I was tuning the parameters. Then, once chosen the most suitable parameters,
the same script was applied to these restricted set of parameters for every dataset.

6http://hpc.polito.it/index.php
7http://hpc.polito.it/download.php
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FIGURE 4.2: Summary of the characteristics of the two HPC clusters
and of their storage system that can be find on their website.
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4.4 Stain Normalization

In histopathology it is really common to treat tissue samples using stains, i.e. colour-
ing agents which are reactive only to specific biological substances. Therefore, ac-
cording to the biological substance that the clinician wants to retrieve and underline,
different stains are used. For example, using the H&E stain, hematoxylin underlines
as blue-purple the nuclei acids while eosin underlines as bright pink the proteins
[92].
Generally, stains absorb the light that the microscope points on the sample from to
generate the image [92]. Thus, the areas reactive to a given stain will absorb light,
while in the areas that are not reactive the light passes through giving them a bright
white appearance.
The so-called stain vector contains the proportion of each wavelength absorbed [92].
Considering images acquired using an RGB camera, as for the Camelyon16 and GlaS
dataset, the wavelengths of interest are only three: the red, the green and the blue
one. Therefore, the stain vectors contains three elements. According to this reason-
ing, the amount of absorbed light and consecutively the absolute color values of the
obtained slide must be proportional to the amount of the substance of interest.
Unfortunately, the amount of biological substance of interest is not the only cause
of color variance among slides [92]. The absorbed light for a given unit of stain is
really variable among different stains but also for the same one according to the pro-
ducer, the time and method of storage (it must be noted that stains are sensible to
light, thus they can fade if exposed to it), how much and how the stain is applied to
the sample and many other factors. So this quantity can vary also between different
slides prepared in the same lab as it can be seen in Figure 4.3.

FIGURE 4.3: (First row) colorectal cancer H&E stained histopathology
images, (second row) the same images after stain normalization [93].

This variability is addressed by clinicians thanks to their experience but it can
be an issue for automatic algorithms for which drastically reduce the performances
[93]. One possible solution proposed in the last years is the stain normalization (SN),
which has shown promising results in many applications and also in CNNs-based
algorithms for H&E images processing [93]. In fact, the authors of [93] compared
two of the main state of the art SN techniques, the one of Bejnordi et al. [78] and
the one of Macenko et al. [92] and showed through experimental results the impor-
tance of the presence of SN in the training pipeline of a CNN for histopathological
purpose. In general, the aim of an SN algorithm is to match stain colors of a given
image with a given template in order to normalize the dataset.
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Personally I chose for my pipeline the SN method proposed by Macenko et al. [92]
because it was the TUPAC and AMIDA reference SN method. It is a fully automatic
algorithm which requires few parameters and no optimization and learning for find-
ing the right stain vectors for an image and then performing the color deconvolution.
The implementation I chose was provided by the deep-histopath Python project on
GitHub 8 developed for the TUPAC16 challenge within the MICCAI 2016 confer-
ence, whose goal was the automatic prediction of tumor proliferation scores from
WSIs of breast tumors.

First of all the color values must be converted into the correspondent optical
density (OD) values [92]. This is done by taking the RGB color vector I, normalizing
its components between [0, 1] and then applying the following operation [92]:

OD = −log10(I) (4.1)

This operation creates a new color space OD where the color of each pixel can
be expressed as a linear combination of two vectors corresponding to the two stains
present in the image [92]. This is based on the assumption that exist two specific
stain vectors corresponding to each of the two stains present in the image [92].

At this point, data with an OD intensity less than a given β, i.e. transparent pix-
els, are removed. This is done for every color channel, rather than considering the
average over all channels for a given pixel. Experiments showed that the optimal
value for β is β = 0.15 [92].
Then the eigenvectors of OD are computed and the two largest eigenvectors are ex-
tracted. Now the optical density values are projected on the plane generated by these
two eigenvectors and the angle that each point generates with the first plane direc-
tion is computed. Then the maximum and minimum of these angles are evaluated
(for a robust measure the α and 100 − α percentiles are considered) and converted
back to optimal stains in OD space.
Now that both the stain (V) and OD vectors are determined, the saturation of each
of the stains are computed as the following color deconvolution:

OD = VS ⇒ S = V−1OD (4.2)

8https://github.com/CODAIT/deep-histopath
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4.5 Training of UNet on Camelyon16

4.5.1 Why Camelyon2016

The first element to choose when implementing a transfer learning pipeline is the
dataset that will be used for training the deep model. This is a really important
choice because the network will learn relevant features of this dataset to perform
his segmentation task and then the same features will be used for a completely new
tasks.
As seen in the Section 3.2.2, hystopathological datasets are quite difficult to collect
with respect to more common datasets like Imagnet or MNIST. They are really expen-
sive to collect, usually not publicly available and the ground truth is really hard and
time-consuming to annotate. Thus, it is really difficult to find large datasets in this
field.
These considerations led me to choose the Camelyon2016 as my training dataset be-
cause of its interesting characteristics. First of all it was publicly available for the
Camelyon16 challenge, second it was fully annotated. Last but not least it contains
400 WSIs, i.e. high resolution images which can be tiled in order to obtain a thou-
sand of cropped images. Moreover, it was collected in two different medical centers
which led the dataset to have a considerable variability due to the different acquisi-
tion conditions. More information on this dataset can be found in Section 3.3.3.

4.5.2 Why UNet

The second element to choose was the deep learning model used for performing the
semantic segmentation. Analyzing the pipelines of the teams that took part to the
Camelyon16 challenge and considering only those of them that used deep learning
models, it was evident that the large majority did not use networks developed for
semantic segmentation. Most of the times they used network developed for a sin-
gle patch classification as seen in Section 2.3.1: usually each patch is classified as
cancerous or not cancerous and then all the predictions are embedded into a unique
heatmap image which highlights the tumor area. This second phase usually is per-
formed by a second traditional machine learning classifier. The first algorithms of
the final ranking are described in Section 3.3.5.
Instead, I was searching for a deep learning architecture that could perform a seg-
mentation task end-to-end, i.e. the output of the network is directly the segmenta-
tion mask without the need to embed any single classification outputs.
In this sense the Warwick-QU-team presented a really interesting framework from
which I took inspiration: they used a UNet architecture which is able to output di-
rectly a segmentation mask starting from the raw image. Even if it was not top-
ranked, the results are also really good. A complete description of their pipeline can
be found in Section 3.3.5
The choice of such a kind of network is really important in a transfer learning view
of the problem because is free from all those post-processing operations which are
hand-crafted and hard coded for a specific task and dataset.



64 Chapter 4. Methods and Experimental Set-up

4.5.3 Pipeline

The pipeline followed for the training of UNet on Camelyon16 dataset is depicted
in Figure 4.4. The two fundamental elements are, as said before, the Camelyon16
dataset and UNet. The result of this pipeline is knowledge, which in this particular
transfer learning approach is represented by the weights of UNet after being trained
on Camelyon16. These weights will be used in the next two phases to initialize the
network before starting the fine-tuning.

FIGURE 4.4: Pipeline followed for the training of UNet on Came-
lyon16 dataset

4.5.4 Preprocessing of Camelyon16

This section explains the preprocessing phase which every Whole Slide Image (WSI)
of the Camelyon16 dataset is subjected to.

Since CNNs can not handle .tif input files directly, their input must be reshaped
in the form of the so-called patches: small crops extracted from the original WSI with
a fixed pixel size. The choice of this size as well as the number of patches will affect
the performance of the CNN as well as its computational complexity. Therefore,
the creation of the dataset represents a crucial step in working with CNNs and it
requires lot of preprocessing of the original input.

The following section presents the preprocessing of a single WSI in order to get
RGB patches of size 512 × 512 pixels at magnification 10× of the original image.
The patches are extracted only from the ROI corresponding to the tissue regions.
The portion of the original image corresponding to the background and fat tissues
are then a priori discarded. For this purpose an initial tissue segmentation is per-
formed using Otsu’s adaptive thresholding and some image-processing filtering.
Subsequently, the patches are extracted only from the ROIs, stain-normalized and
then discarded according to the amount of tissue in the patch.
Obviously in the real code this procedure was repeated for all WSIs.
The main libraries used for the preprocessing are:

1. OpenSlide Python which is a Python interface for OpenSlide library explained
in Section 4.2.1 used for an easy managing of the .tiff format;

2. Scikit-image, a collection of Python algorithms for image processing used for
the tissues segmentation and for the evaluation and filtering of the patches 9;

3. deep-histopath, which is the Python project developed for the TUPAC16 cited
in Section 4.3 10 that I used mostly for his stain normalization implementation.

4. utils module which is a collection of useful function that I implemented for
an easy managing and preprocessing of the datasets.

9http://scikit-image.org/
10https://github.com/CODAIT/deep-histopath

http://openslide.org/
http://scikit-image.org/
https://github.com/CODAIT/deep-histopath
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FIGURE 4.5: Pipeline followed in the preprocessing of Camelyon16
dataset.
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Tissue segmentation

First of all the ROIs are segmented in order to reduce the amount of data to be con-
sidered. In fact, looking at the WSIs of the Camelyon16 Dataset (example in Figure
4.6 (A)), we can notice large blank regions corresponding to the background and
large pale portion without cell tissue corresponding to fat: both of them should be
discarded.

FIGURE 4.6: (A) RGB image extracted from the WSI, (B) grayscale
version, (C) image after Otsu’s adaptive thresholding.

In practice, this first phase consists in a raw histogram-based segmentation. It
can be considered raw because it is perform directly on the lowest resolution of
the .tif file and then projected on the full-resolution image. This allows to avoid
demanding computational resources. The size and the magnitude of the tile which
will be segmented is chosen in order to get a single tile containing the whole image.

Therefore, the ROIs and the correspondent masks are extracted at the chosen
magnitude level from the WSI using OpenSlide routines. The extracted image is
then transformed from the RGB format to the grayscale one in order to apply Otsu’s
adaptive thresholding (see Figure 4.6).
Otsu’s method is particularly successful and famous for its simplicity and effective-
ness on all those applications were the histogram of the images of interest can be
considered bimodal, i.e. there are two different and well distinguished pixel distri-
butions, one related to the ROI while the other one related to the background. In
that sense, Otsu’s method is able to compute the optimal threshold that maximize
the variance between these two classes of pixels and minimize the intra-class vari-
ance of each of the two classes 11.

11http://scikit-image.org/docs/dev/auto_examples/xx_applications/plot_thresholding.html
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FIGURE 4.7: (A) Binary mask after Otsu’s thresholding, (B) mask after
hand-fixed global thresholding, (C) final or-merged mask.

FIGURE 4.8: (A) Final mask, (B) complementary of the final mask, (C)
segmented image.
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Thanks to Otsu’s thresholding I could separate the tissue regions from the back-
ground. In this case the tissue represented a dark object on a light background.
Therefore, Otsu’s thresholding could not remove the holding pins, i.e. those re-
ally dark objects present in most of the Camelyon16 slides. I removed these object
through a simple fixed global thresholding, with an hand-tuned threshold. Then
the obtained mask is merged with the one obtained through Otsu’s thresholding
through an or operation. The merged mask can be seen in Figure 4.7.

The final mask is obtained after applying a median filtering (disk radius equal to
2). The final segmented image is obtained by a pixel-wise and between the original
image and the complementary of the mask as can be seen in Figure 4.8.

Tiles extraction

Now it is time to extract tiles from the ROIs obtained in the previous phase. First
of all the most suitable zoom level for the tile extraction must be chosen. This pa-
rameter can be obtained knowing the maximal resolution of the WSI and the desired
resolution for the patches we want to extract.

Often the maximal resolution of a .tif file is saved in his metadata but in our
case we already know that it is 40×. We know that the desired magnitude is 10×,
thus we can obtain the down-sampling factor between the magnification of the slide
and the desired one as:

max_magnitude/desired_magnitude = 40/10 = 4

Now we can extract the zoom level offset from the highest resolution level, based
on a 2× down-sampling factor in the generator as:

(max_magnitude/desired_magnitude)/2 = (40/10)/2 = 2

In our case the number of zoom levels is 19, i.e. from 0 to 18 because of the zero-
based indexing, where 0 corresponds to the lowest resolution and 18 to the highest
one. Therefore the desired zoom level for getting a 10× resolution in a slide with
maximum 40× resolution is computed as:

highest_zoom_level - offset = 18 - 2 = 16

Extracting patches only from the ROIs obtained by the tissue segmentation is a
critical problem because these ROIs are not regular. Therefore, for each image, the
minimal rectangular regions that can contain the ROIs is computed. These rectangles
are then pruned for their shape and merged in case of overlapping.

For the detection of contiguous regions a little preprocessing is required as can be
seen in Figure 4.9. The input data are blurred so the ROIs have a continuous aspect
through an uniform filter with smooth radius equal to 2 followed by an hole-filling
to get cleaner regions.

At this point, the contiguous regions in the input array are detected and isolated
with rectangle boundary boxes. As it can be seen in Figure 4.10 (A), lots of these
boxes overlap. These situations are solved by replacing two overlapping boxes with
the minimal box that contains both the contiguous regions as can be seen in Figure
4.10 (B). Finally, the boxes are pruned according to their area and eccentricity: very
oblong boxes or very small ones are likely to not contain tissue regions. The result
of this final step can be seen in Figure 4.10 (C).

At this point, using the DeepZoomGenerator function of OpenSlide, all the pos-
sible addresses of tiles of a given size with no overlap are extracted from the full



4.5. Training of UNet on Camelyon16 69

FIGURE 4.9: (A) Original mask, (B) mask after uniform filtering, (C)
mask after hole-filling.

FIGURE 4.10: (A) Boxes containing tissue regions, (B) boxes after solv-
ing overlaps, (C) boxes after pruning too small and oblong boxes.
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resolution image. This operation is repeated in an identical manner for the masks
only for the metastatic WSIs of the Training Set while for all the other cases the masks
are automatically generated as black images.
Now, only those addresses which are contained in the selected box at the desired
zoom level are selected and their correspondent tiles are actually extracted. Only
those tiles whose dimensions match and which contain more than the 90% of tissues
are kept. The selected tiles are then normalized according to the H&E stain normal-
ization described in Section 4.3 and then saved in the correct folder. These resulting
tiles are 57048 and correspond to the entries of the dataset.

FIGURE 4.11: Examples of outputs of the preprocessing phase. Orig-
inal tiles (left), their stain-normalized versions (middle) and their la-

bels (right), i.e. the mask.



4.5. Training of UNet on Camelyon16 71

4.5.5 Training of UNet

In this phase, the UNet convolutional-deconvolutional neural network is trained
using the Camelyon16 preprocessed tiles.

The number of tiles used for the training was reduce from 57048 to 12000 due to
the excessive computational load required for training the entire dataset.

The outputs of the test are probability maps, whose pixel intensity values express
the probability of being part of a cancer metastasis.

The main libraries used for the training are:

1. Keras, the Python neural networks API described in Section 4.2.3;

2. Theano, the open source library for fast numerical computation described in
Section 4.2.5 which is used as first Keras backend;

3. Tensorflow, the open source library for fast numerical computation described
in Section 4.2.4 which is used as second Keras backend;

4. unet, an UNet implementation with Keras for the TUPAC challenge provided
by zhixuhao on GitHub 12.

5. h5py, a Python library for managing the HDF5 binary data format which al-
lows for storing huge amounts of numerical data (e.g. deep learning models
and weights) 13.

To train a Keras model, it is necessary to:

1. define the model;

2. compile the model;

3. fit the model.

Define the model There are two ways to define a Keras model: a sequential way
through the Sequential class and a functional way through the Model class [89].

I can say that the sequential API is more intuitive to use because it allows to build
models layer by layer in a sequential way, i.e. each layer can be connected only to
previous and the next ones. This is also the main drawback of the class because
it is not possible to define model with multiple inputs or outputs or models that
share layers 14. Instead, the functional API is less intuitive but allows to connect
each layer to any other one. This allows for building more complex CNNs and also
UNet, where layers of the convolutional subnetwork are connected to layers of the
deconvolutional one.

In my personal case it was not necessary to build the model because UNet is a
well-known State of the Art CNN whose implementations can be found easily on the
web. I used the one provided by zhixuhao on GitHub which was, for the previously
explained reasons, built using the Model class.

12https://github.com/zhixuhao/unet
13https://www.h5py.org/
14https://jovianlin.io/keras-models-sequential-vs-functional/

https://keras.io/
http://www.deeplearning.net/software/theano/
https://www.tensorflow.org/
https://github.com/zhixuhao/unet
https://www.h5py.org/


72 Chapter 4. Methods and Experimental Set-up

Compile the model UNet was then compiled in order to configure the model
for training. It is a necessary step both before training and when loading pretrained
weights 15. In fact, the compile function of Keras takes the sequence of layers as
input and transforms them into a new representation made of a series of matrix
transforms. This new representation is expected to be more efficient and executable
both on CPUs and GPUs.
The compile function of Keras requires many parameters. The most important are
[89]:

• the optimization algorithm for training the network;

• the loss function (also known as objective function) that the optimization algo-
rithm must minimize;

• the metrics to be evaluated during both training and testing.

There are lots of possible optimizer algorithms proposed by Keras like Stochas-
tic Gradient Descent (SGD), RMSprop, Adagrad, Adadelta, Adam and so on [89].
Each of them has his advantages and drawbacks. In my implementation I chose the
Adam optimizer, a first-order gradient descent optimization algorithm which often
outperforms other methods as can be seen in Figure 4.12 for the MNIST dataset [94].

FIGURE 4.12: Cost function vs. iterations recorded during the train-
ing of a multilayer neural networks using dropout stochastic regular-
ization on the MNIST dataset extracted from [94]. Different optimiz-

ers are compared in terms of convergence.

15https://machinelearningmastery.com/5-step-life-cycle-neural-network-models-keras/
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This method adaptively estimates lower-order moments in order to minimize
stochastic objective functions [94]. This means that the optimizer estimates the first
and second moments of the gradients, i.e. the mean and variance, in order to com-
pute individual adaptive learning rates for each parameter 16. The only parameter I
set for the Adam optimizer was the initial learning rate (lr).

The choice of the loss function is strictly connected to the prediction task 17. For
example, for a regression problem the best choice would be the mean square error
while for a classification problem would be a logarithmic loss. In my implementa-
tion the binary classification loss function was chosen because the segmentation task
requires to distinguish two classes: the region and the background one. In the case
of a multiclass classification, i.e. if the classes were more than two, the best choice
would have been the categorical crossentropy.

Fit the model Finally the model is trained using the fit function of Keras. The
training parameters are summarized in the left Table of 4.1.
The epochs parameter is the number of epochs to train the model [89], where an
epoch represents an iteration over the entire training data and label sets.
The batch size, instead, represents the number of samples per gradient update [89].
This parameter was chosen really small because a bigger one would have led to
memory errors.
The validation split stands for the fraction of the training set that will be used as
validation set [89], i.e. the set of data not used for the training that are used to
evaluate the model at the end of each epoch.

To reduce the computational time, an additional check is added during the fit
phase through a so-called callback function of Keras. It is called EarlyStopping
and is able to stop the training when a monitored quantity has stopped improving.
Here improving means both decreasing or increasing according to the chosen quan-
tity to be monitored: for example, if the monitored quantity is an accuracy, the term
improving means increasing while in the case of a loss, the term means obviously
decreasing. In order to assert that the chosen quantity has stopped improving, this
function checks if no absolute minimum change (referred also as minimum delta) is
seen for a number of epochs (referred as patience). In my case, the number of epochs
was initially set to 20 but the number of epochs actually completed during the train-
ing is 17 due to the action of the EarlyStopping function. The parameters set for the
Early Stop callback are summarized in the left Table of 4.2.

One other callback of Keras called ReduceLROnPlateau is added in order to im-
prove the performances. In fact, there are evidences that in the so-called plateau, i.e.
phases in which learning stagnate, models benefits from reducing the learning rate
parameter. Also this callback, like the previous one, monitors an user-chosen quan-
tity and, in case there is not an absolute change bigger than a epsilon for the patience
number of epochs, the learning rate is updated by a given factor in the following
way:

new_lr = lr × f actor (4.3)

Obviously factor must be less than 1 because the learning rate should be reduced.
I wanted to reduce the learning rate by a factor of 10 so I set factor equal to 0.1.
The lower bound of the learning rate is set to 0. The cooldown parameter, which

16https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
17https://machinelearningmastery.com/5-step-life-cycle-neural-network-models-keras/
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represents the number of epochs before the normal operation is resume after the
learning rate has been reduced, is set to 0. By the way, a summary of the parameters
set for this callback is listed in the right Table of 4.2.

Parameter Value
batch size 5

epochs 20
validation split 0.1

Parameter Value
optimizer Adam

learning rate 1e-4
loss binary crossentropy

metrics accuracy

TABLE 4.1: Training parameters: on the left table the parameter given
as input to the fit function and on the right table the ones given to

the optimizer function.

Parameter Value
monitored quantity validation loss

patience 2
min delta 0.0001

mode decreasing

Parameter Value
monitored quantity validation loss

patience 2
epsilon 0.0001
mode decreasing
factor 0.1

cooldown 0
min lr 0

TABLE 4.2: Callbacks parameters: on the left table the parameter
given as input to the Early Stopping callback and on the right ta-

ble the ones given to the ReduceLROnPlateau callback.

4.5.6 Testing UNet on Camelyon16

In this section I am going to present the performance of my implementation of UNet
trained and tested on the Camelyon16 dataset. The performance and the results
of the approaches explained in the following sections will bi presented in the next
chapter.
In Table 4.3 the performance of UNet are reported both for the training and vali-
dation sets. A more close insight on the performance is given by the Figures 4.13
and 4.14 where the accuracy and the loss are plotted as function of the epochs. Since
there are two objective function, accuracy and loss, the curves does not show mono-
tonic behaviors: sometime the optimizer prefer one over the other. From the Fig-
ures 4.15 and 4.16, the overall training time takes around 11 hours and an epoch
takes around 39 minutes on average.

UNet performances
training validation

accuracy 0.973772068 0.9714989885
loss 0.07525953972 0.07562051125

TABLE 4.3: Final results of the Camelyon16 training.
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FIGURE 4.13: Training and validation accuracy of UNet trained on
the Camelyon16 dataset
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FIGURE 4.14: Training and validation loss of UNet trained on the
Camelyon16 dataset



76 Chapter 4. Methods and Experimental Set-up

FIGURE 4.15: Computational time per epoch over epochs required
for training UNet on the Camelyon16 dataset

FIGURE 4.16: Cumulative computational time over epochs required
for training UNet on the Camelyon16 dataset. The total time is almost

11 hours



4.6. Fine-tuning of UNet with augmented GlaS Data 77

4.6 Fine-tuning of UNet with augmented GlaS Data

4.6.1 Why GlaS Dataset

The GlaS Dataset was really interesting as second dataset for my transfer learning
problem because it is a freely available dataset with a full-annotated ground truth.
Moreover the main problem of this dataset is his size: in fact it contains only 165
images, 85 of them belonging to the training set and 80 belonging to the test set.
Moreover these 165 images are cropped images taken from WSIs, therefore there
is no possibility to extract more images by tiling as in the case of the Camelyon16
dataset.

One other interesting fact was that the content of this dataset is quite different
from the Camelyon16 one because it contains 2D sections of glands. Thus, the ob-
servation scale is really different. The advantage is that also these images are H&E
images, which may be an help for the network.
A more accurate description of the dataset is given in Section 3.4.

4.6.2 Pipeline

The pipeline followed for the Fine-tuning of UNet with augmented GlaS data is the
one depicted in Figure 4.17. The GlaS dataset is first augmented and preprocessed
and then given as input to the UNet model obtained with the training on the Came-
lyon16 dataset. The model is then fine-tuned in order to obtain a completely new
model able to segment glands in histopathological H&E images.

FIGURE 4.17: General pipeline for the Fine-tuning of UNet with aug-
mented GlaS Data

Data Augmentation and Preprocessing

In this case data augmentation is necessary because the number of samples of the
second dataset is so small that even the fine tuning will probably lead to bad results.
So a data augmentation is performed in order to augment the number of training
images for the fine tuning phase.

Operation Probability Additional parameters

random distortion 1
grid width = 4
grid height = 4
magnitude = 8

rotate 1
max left rotation = 5
max right rotation = 5

flip left right 0.5
flip top bottom 0.5

TABLE 4.4: Operations used for data augmentation of the GlaS
dataset
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The types of data augmentation are chosen based on biomedical considerations.
For example, we can say that deformation is an image-processing operation that mir-
rors some biological aspects like the deformation of cells and tissues [10]. Mirroring
and rotations are also possible operations because in histopathological images there
is no prevalent direction like in the case of a portrait or a landscape.
Data augmentation is performed using the Augmentor library described in Section
4.2.2. The augmented dataset was sampled from the pool generated by the Augmentor
generator function. In total, 1000 augmented tiles were sampled. All the operations
used for performing data augmentation and their parameters are summarized in Ta-
ble 4.4.
Then the augmented dataset is stain-normalized, resized (multiple factor 1 or 2) and
cropped to 512 × 512 tiles.
The full pipeline of the preprocessing and data augmentation phase is depicted in
Figure 4.18.

FIGURE 4.18: GlaS Dataset preprocessing pipeline

Fine Tuning

In the Fine-Tuning phase, the model trained on the Camelyon16 dataset is loaded
and retrained for the new task. Therefore the training is not performed starting from
a random initialization but from a precise set of weights.
Those weights can be selectively freeze in order to retrain only some layers. Accord-
ing to the idea that the features extracted at each layer level present and increasing
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complexity and abstractness, probably the features extracted in the last layers are
too specific for the original task while the one extracted in the first ones are generic
and can be used for every task. Therefore is reasonably that the performance of the
model on the new task will gradually decrease when the number of layers to freeze
increase. On the other side, the more layers are retrained, the more the computa-
tional time and resources are required. So it is important to find the correct trade-off
between performances and the computational load required for achieving them.
Thus, to evaluate the benefits of using a pre-trained model and find this trade-off, I
trained the model varying the number of layers to freeze. The range of variability
of this parameter is from 0 to 30 with steps of 10 layers. These values are chosen
because the total number of layers of UNet (considering all the layers and not only
the convolutional ones) is 39.
There is no need to modify the last fully connected layer. This is usually done when
the number of classes changes, i.e. the network is trained to recognize a specific
number of classes and then, when transferring the knowledge, the network has to
recognize a different number of classes. In our case, the output is always a 512× 512
black and white mask (two classes), therefore there is no need for modifying the last
layer.

Parameter Value
batch size 10

epochs 50
validation split 0.1

Parameter Value
optimizer Adam

learning rate 1e-4
loss binary crossentropy

metrics accuracy

TABLE 4.5: Training parameters for the Fine Tuning of UNet with the
augmented GlaS dataset.

Parameter Value
monitored quantity validation loss

patience 2
min delta 0.0001

mode decreasing

Parameter Value
monitored quantity validation loss

patience 2
epsilon 0.0001
mode decreasing
factor 0.1

cooldown 0
min lr 0

TABLE 4.6: Callbacks parameters: on the left table the parameter
given as input to the Early Stopping callback and on the right ta-

ble the ones given to the ReduceLROnPlateau callback.

In conclusion, to fine-tune the Keras model, it is necessary to:

1. load the model trained on Camelyon16;

2. freeze the non-trainable layers;

3. compile the model;

4. fit the model with the GlaS data.

The training and callbacks parameters used for the fine-tuning phase are summa-
rized in Table 4.5 and 4.6 and are quite the same of the ones of the original training.
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The only difference is the batch size parameter which is increased from 5 to 10 thanks
to the small amount of data used for the train and the epochs parameter which is in-
crease to 50 for the same reason (a single epochs last drastically less with a small
amount of data in the training set).

Hyperparameter Values
data augmentation True, False
stain normalization True, False

resize ×1, ×2
number of frozen layers 0, 10, 20, 30

TABLE 4.7: Hyperparameters for the Fine Tuning of UNet with the
augmented GlaS dataset.

In addition to the training settings, I searched for the optimal set of hyperparam-
eters that led me to the best results of the learning algorithm. Therefore I retrained
the model as many times as the combination of the parameters listed in Table 5.2
making a sort of grid search.
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4.7 Fine-tuning of UNet with augmented ISBI Data

4.7.1 Why ISBI12 Dataset

Due to the really good results of the Transfer Learning to the GlaS dataset, I chose to
perform Transfer Learning on a third dataset, with much more different characteris-
tics. This dataset, in fact, does not contain H&E images, and the segmentation task is
really different. Now the task is to segment the neurons membranes therefore a sort
of boundary segmentation instead of semantic segmentation. Moreover the number
of images is really small (30 for the training and 30 for the test).

4.7.2 Pipeline

The pipeline followed for the Fine-tuning of UNet with augmented ISBI12 data is
the one depicted in Figure 4.17. The ISBI12 dataset is first augmented and prepro-
cessed and then given as input to the UNet model obtained with the training on the
Camelyon16 dataset. The model is fine-tuned in order to obtain a new model.

FIGURE 4.19: General pipeline for the Fine-tuning of UNet with aug-
mented ISBI Data

Preprocessing and Data Augmentation

The preprocessing phase is really similar to the one followed for the GlaS dataset
with the only exception that in this case no stain normalization is performed because
the samples are ssTEM images and not H&E ones.
The full pipeline of the preprocessing and data augmentation phase is depicted in
Figure 4.20. The main differences between this pipeline and the previous one is that
here no stain normalization is performed because the dataset does not contain H&E
stained images.

Uperation Probability Additional parameters

random distortion 1
grid width = 4
grid height = 4
magnitude = 8

rotate 1
max left rotation = 5
max right rotation = 5

flip left right 0.5
flip top bottom 0.5

TABLE 4.8: Operations used for data augmentation of the ISBI12
dataset

In this case data augmentation is even more necessary than in the case of the GlaS
dataset because the training samples are only 30. The types of data augmentation
are chosen making the same biomedical considerations made in the previous Sec-
tion. Therefore, deformations, rotations and mirroring operations are performed and
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1000 augmented tiles were sampled from the pool generated by the Augmentor gen-
erator function. The operations used for performing data augmentation and their
parameters are summarized in Table 4.8.
Then the augmented dataset is resized (multiple factor 1 or 2) and cropped to 512 ×
512 tiles.

FIGURE 4.20: ISBI12 Dataset preprocessing pipeline

Fine Tuning

In the Fine-Tuning phase, following the same identical consideration made in the
previous Section, the model trained on the Camelyon16 dataset is loaded and re-
trained for the new task varying the number of layers to freeze. The range of vari-
ability of this parameter is from 0 to 39 with steps of 10 layers.
The performed steps are the following:

1. load the model trained on Camelyon16;

2. freeze the non-trainable layers;

3. compile the model;

4. fit the model with the ISBI data.

The parameters used for the fine-tuning phase are summarized in Table 4.9 and
4.10.

Also in this case I searched for the optimal set of hyperparameters that led me
to the best results of the learning algorithm. Therefore I made a grid search using
the parameters listed in Table 5.8. The main difference between the choice mode
for the previous dataset are that here there is no stain normalization because of the
nature of the data and no double resizing because it has shown to be bad choice with
the previous dataset. Moreover, I tried also to freeze the total model with 39 frozen
layers.
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Parameter Value
batch size 10

epochs 50
validation split 0.1

Parameter Value
optimizer Adam

learning rate 1e-4
loss binary crossentropy

metrics accuracy

TABLE 4.9: Training parameters for the Fine Tuning of UNet with the
augmented ISBI12 dataset.

Parameter Value
monitored quantity validation loss

patience 2
min delta 0.0001

mode decreasing

Parameter Value
monitored quantity validation loss

patience 2
epsilon 0.0001
mode decreasing
factor 0.1

cooldown 0
min lr 0

TABLE 4.10: Callbacks parameters: on the left table the parameter
given as input to the Early Stopping callback and on the right table

the ones given to the ReduceLROnPlateau callback.

Hyperparameter Values
data augmentation True
stain normalization False

resize ×1
number of frozen layers 0, 10, 20, 30

TABLE 4.11: Hyperparameters for the Fine Tuning of UNet with the
augmented GlaS dataset.
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Chapter 5

Results Analysis

In this chapter the results of the experiment are analyzed and a possible interpreta-
tion is given. In particular, the following analysis are performed:

• Learning Rate Analysis

• Hyperparameters Analysis

• Comparison with UNet trained on GlaS from scratch

• Comparison with UNet trained on ISBI12 from scratch

• Computational Analysis

Method An ad-hoc Python script automatically generates all the jobs required for
the analysis. A single job corresponds to the fine-tuning of a specific model with
the chosen hyperparameters. The results of each training and the corresponding
metadata are stored in a database structure.

Computational Constrains A really important detail to remember is that a job can
run on the HPC cluster for max 10 days before being killed by the scheduler. More-
over, the GPUs nodes are only two for the entire cluster and often busy. Therefore,
due to the huge number of jobs and the time requested, I choose to the use mainly
CPUs nodes. However this choice entails a slower speed in the job execution and
some of them were not able to finish the training.

5.1 Evaluation Metrics

Evaluating the performances of a semantic segmentation algorithm is not so trivial
as it seems. The evaluation can be performed in a multitude of ways which are, most
of the times, strictly application-dependent and there are no standard evaluation
metrics. This is obvious because a learning model is usually built to perform a very
specific task, thus it is considered successful only in relation that task.

For example, as seen in Chapter 3, Camelyon16, GlaS and ISBI12 challenges pro-
pose really different metrics to evaluate their candidate models. All these metrics
were closely related to the characteristics of the objects or regions of interest and
to be segmented. For instance, there are low-level metrics, such as at pixel level,
region-based metrics or contour-based metrics.

On one hand these metrics are becoming even more and more complex and diffi-
cult to be computed. This makes hard the comparison of State of the Art algorithms,
especially for learning models. On the other hand, all the proposed approaches fea-
ture a strong use of post-processing steps which introduce an additional variability.
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Instead I preferred to evaluate the benefits and highlight limitations only of the
transfer learning and data augmentation approach. For that reason I performed
no post-processing and the chosen metrics are chosen to be much more as possi-
ble application-independent.
I considered the segmentation problem as a pixel-level classification problem. At this
level, it was not possible to evaluate the accuracy on the detected objects because of
the intrinsic difference of the objects in the three datasets.

The metrics used for the evaluation of each model are the following:

• Pixel-level Model Accuracy (both for training and validation)

• Pixel-level Model Logarithmic loss (both for training and validation)

• Computational Load (in terms of time and memory)

Pixel-level Model Accuracy The Pixel-level Model Accuracy is the first and
simplest metric based on the ground truth that was computed. It represents the ratio
between true prediction of the classifier, which includes both true positives and true
negatives, and the total number of cases examined [95].

Accuracy =
TP + TN

TP + FP + TP + FN
, (5.1)

where TP represents the number of true positives, TN the number of true nega-
tive, FP the number of false positive and FN the number of false negatives.
From one other point of view, the accuracy can be seen as the complement of the
misclassification error which represents the percentage of pixels that are classified
as belonging to one class when they belong to another class [95]:

Misclassification Error = 1 − Accuracy. (5.2)

Other classification metrics that take into account the role of False Positive and
False Negative, such as Precision, Recall, are not considered in this analysis.

Pixel-level Model Logarithmic loss A loss function, or cost function, indicates
how well the built model fits the data 1. This means evaluating how much the pre-
diction differs from the actual value in an absolute way, i.e. how much incorrect they
are no matter the direction. Therefore, if the loss is high, the predictions are totally
wrong while if the loss is low the predictions are good. The loss function is also one
of the necessary parameters required to compile a Keras model and to build some of
his callbacks 2.
In the literature, many cost function have been proposed. The most famous loss
functions are Mean Squared Error, Mean Absolute Error, Likelihood loss, Logarithmic loss.

Cross-entropy loss, or Logarithmic loss (log loss), measures the performance of a
classification model whose output is a probability value, hence, a value between 0
and 1 3 . In a binary classification task, the log loss increases as the predicted proba-
bility diverges from the actual label (0 or 1). So predicting a very low probability, e.g.
0.012, when the actual observation label is equal 1 would result a high loss value. A
perfect model would have a log loss value of 0.

1https://blog.algorithmia.com/introduction-to-loss-functions/
2https://keras.io/losses/
3http://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
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FIGURE 5.1: Logarithmic loss function considering.

In this thesis I choose to use the log loss. This really common loss function is
just a logarithmic version of the likelihood function and his trend can be seen in
Figure 5.1 (courtesy of 4).

This function evaluates the cross-entropy value for a given binary classification
problems as following 5:

logloss(x, y) = −x log(y)− (1 − x) log(1 − y), (5.3)

where log is the natural logarithm, x represents the ground truth label (0 or 1)
and y represents the probability of the sample to belong to a certain class predicted
by the model.

In Figure 5.1, it can be seen the range of possible loss values when a true obser-
vation is given6. In this case, if the model predicts a value near to 1 the loss is really
low because the prediction makes only a little mistake. Instead, if the prediction is
opposite, i.e. the model predicts class 0 when the ground truth is 1, the loss value
explodes. This mechanism heavily penalizes when the model predicts the wrong
class with an high confidence 7.

4https://blog.algorithmia.com/introduction-to-loss-functions/
5http://wiki.fast.ai/index.php/Log_loss
6http://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
7https://blog.algorithmia.com/introduction-to-loss-functions/
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5.2 Learning Rate Analysis

First of all a learning rate analysis is performed in order to understand which is the
most suitable learning rate value for my particular task. The parameters setting for
this analysis is shown in Figure 5.1. In particular, no data augmentation and no
resize are done in order to speed-up the convergence of the model and see which
learning rate is the more effective and efficient. The analysis is performed only on
the GlaS dataset using Theano as backend on the CPUs nodes of the cluster.

Parameter Values
learning rate range (10−1, ..., 10−8)
data augmentation False
stain normalization True

rescale ×1
number of frozen layers 20

dataset GlaS
backend Theano
cluster CPU

TABLE 5.1: Settings for the Learning Rate Analysis

In the Figures 5.2 and 5.3, the training and validation performances per epoch
are compared according to the learning rate. In the left column of both figures can
be seen the model accuracy while in the right one the loss. The graphics in the first
row of both figures are waterfall representation of the ones in the second row. The
color scale goes from deep blue to light yellow which (yellow high accuracy (resp.
loss) and blue low accuracy (resp. loss)). I am interested in those models with an
high accuracy and a low loss. It is better if in a lower number of epochs.
From a first-view analysis, the most suitable learning rates are 10−3 and 10−4. The
performances of the model with a learning rate equal to 10−4 present a more suitable
trend because the accuracy gradually increases while the loss gradually decreases.
The performances of the model with a learning rate equal to 10−3, instead, present a
too fast trend which led me to guess it was a local minimum.
According to these considerations I chose as learning rate 10−4 for my models.
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FIGURE 5.2: Training performances per epochs versus varying learn-
ing rate: model’s accuracy (left column) and loss (right column).
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FIGURE 5.3: Validation performances per epochs versus varying
learning rate: model’s accuracy (left column) and loss (right column).
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5.3 Hyperparameters Analysis

5.3.1 Glas Dataset

A grid search is performed in order to find the best set of hyperparameters for fine-
tuning the GlaS dataset. For each combinations of hyperparameters a specific job is
generated where a UNet model is fine-tuned with a given number of frozen layers
and certain preprocessing steps.
In particular I wanted to evaluate if data augmentation provides some benefits on
the performances and if stain normalization has some influence as stated in litera-
ture. Moreover I wanted to evaluate the influence of the different scale factor be-
tween the images of the new dataset with respect to those belonging to the Came-
lyon16 one. Finally the effect of depth of frozen layers, i.e. layers for which the
original weights are frozen and not retrained, is analyzed.
The hyperparameters tested in this analysis are summarized in Table 5.2.

Parameter Values
data augmentation True, False
stain normalization True, False

rescale ×1, ×2
number of frozen layers 0, 10, 20, 30

TABLE 5.2: Hyperparameters for the Fine Tuning of UNet with GlaS data.

It is important to note that many models (10 models) were not able to complete
the training during the 10 days time allowed by the HTC cluster, in particular the
ones with the data augmentation preprocessing. These models are underlined in the
graphics with a star.
Moreover, jobs which presented both data augmentation and the rescale preprocess-
ing crashed due to memory error. These jobs are not considered in the graphics and
in the final considerations. I did not even try to resume these jobs because one of the
goal of my thesis is to reduce the computational resources required by the training
of deep learning model, and these kind of models obviously do not match these re-
quirements.
As final consideration, only 2 nodes with GPU were available, therefore all my 32
models ran in parallel on CPUs. Probably the same jobs would have finish the train-
ing if they ran on GPUs nodes.

The type of graphs used for the analysis are simple scatter plots where each
model is located in a 2D plane according to his final validation accuracy (x-axis) and
his final validation loss (y-axis). The model points are highlighted using different
colors according to the hyperparameters used.

Data Augmentation

In Figure 5.4, the different model points are highlighted in different colors if data
augmentation is performed or not. The red model points represents all those model
for which data augmentation is performed while the violet ones all those models
for which no data augmentation is performed. An additional two points are shown:
one for the model trained from scratch using an augmented dataset (yellow) and
without (green).

Considering only the final validation loss, it is evident that data augmentation
provides big benefits: all the red points present a loss value minor then the violet
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ones. This is quite logical because the loss value express how well the model fits a
certain dataset and with data augmentation this dataset is hugely augmented. The
loss is not improved, instead, with respect to the two reference models trained from
scratch, both with and without data augmentation.

The consequence is not so immediate when talking about the accuracy. Only
5 models present accuracy values major than the 80% and all these models where
trained using augmented data. A positive note is that no model had worst accuracies
than the random classifier (no accuracies are under the 50%) and every model got a
better accuracy with respect to the two reference models.

In conclusion, data augmentation drastically improves accuracy and reduces
loss, therefore is a necessary operation of the preprocessing pipeline.
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FIGURE 5.4: Augmentation vs. None (* = Interrupted job).

Stain Normalization

In literature, stain normalization is usually presented as a necessary preprocessing
step when dealing with H&E stained images. This technique, described in Section
4.3, is widely used and can be implemented in a multitude of ways which can re-
quire significant computational resources.
It is interesting to evaluate if in my case such preprocessing is really necessary. In
fact, even if my implementation of this technique is not computational demanding,
this step adds an additional variability in the general pipeline which is likely to be
avoided. Moreover the main goal of my approach is to avoid any unnecessary vari-
ability which represent an obstacle to the transfer of learning in more applications
as possible. For example, if I would like to implement a standard tool for an easy
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transfer learning in histopathology, I would have both H&E stained images and im-
ages stained using other colorants or even no colorants like in the case of the ISBI12
dataset.
Looking carefully at Figure 5.5, it can be seen that red and violet models are coupled.
Red points represents all those models with a stain normalization preprocessing,
while the violet ones presents no stain normalization. Looking at the other param-
eters, I discovered that each couple of models share the same parameters with the
exception of the stain normalization. This means that the same model with a stain
normalization preprocessing has quite the same performances of the one without
stain normalization. Therefore stain normalization has no evident influence on the
performances.

0.5 0.6 0.7 0.8 0.9
Final Accuracy

0.5

1.0

1.5

2.0

2.5

3.0

Fi
na

l L
os

s

14* 18*

27*

1 9

3*

20

5
2*

4

29
26*

0

12

28

16

25 17*

30*
22*

8

21
10

7*

24

6

from scratch
from scratch + augmentation
stain
no stain

FIGURE 5.5: Stain normalization vs. None (* = Interrupted job).

T-test As a proof of concept, a t-test analysis is conducted. The experiments results
show minimal differences in the final performances when stain normalization is ap-
plied. Thus, my hypothesis is that the application of stain normalization does not
produce statistically relevant changes in terms of final accuracy and loss.

In order to verify this hypothesis, I draw upon a procedure that, to compare two
groups of scores (in this case Accuracy without stain normalization and Accuracy
with stain normalization etc.), takes into account the differences between them. The
two samples of scores were transformed into a single sample of differences, subtract-
ing a set of scores from the other one. Table 5.3 summarized the data.

If the hypothesis that in the second condition no significant effects are produced
is true, then the mean ȳ0 detected in the control condition does not differ from the
mean ȳ1 detected in the experimental condition. Therefore I formulated the null
hypothesis as following [96]:
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Variables ȳ0 ȳ1 ȳ1 − ȳ0

Fin Accuracy 0.67957 0.65799 -0.02158
Fin Accuracy Val 0.67012 0.65569 -0.01443

Fin Loss 1.41946 1.45946 0.04000
Fin Loss Val 0.78479 0.75824 -0.02655

TABLE 5.3: The means of each variable in the two conditions and
the mean of the differences between them (which is equivalent to the
difference of the means in the two conditions). Condition 0 represents
the control condition (no stain normalization) while the condition 1

represents the experimental one (stain normalization).

H0 : µ0 = µ1 (5.4)

where µ0 and µ1 represent the means of the entire populations in the two condi-
tions. This expression is equivalent to:

H0 : µ0 − µ1 = 0 (5.5)

where the mean of the entire population is equal in the two different conditions.
Thus, the alternative hypothesis can be written as following:

H1 : µ0 6= µ1 (5.6)

To verify the evidence for or against the null hypothesis with a significance level
α = 0.95 I used the t-test of significance, in order to identify the t-score and con-
sequently the P-value [97]. The Student’s t-distribution was chosen because of the
limited dimension of the sample. In particular, the t-score is computed as following:

t =
ȳ − µ0

se
(5.7)

where

se =
s√
n

(5.8)

In Table 5.4, the results of the calculations related to the difference between con-
dition 0 and condition 1 are shown.

The t-score was also computed by another method, which however led to the
same result [98]:

t =
x̄ − ȳ
Sx̄−ȳ

(5.9)

where
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(A) Training Accuracy.

(B) Validation Accuracy.

(C) Training Loss.

(D) Validation Loss.

FIGURE 5.6: Screenshot of R when computing the t-score for the 4
variables.
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Differences se me r t-score P-value ci (1 − β = 0.95)
Fin Accuracy 0.01745 0.03841 0.913 -1.2367 0.242 (-0.06,0.02)

Fin Accuracy Val 0.01742 0.03834 0.897 -0.8286 0.425 (-0.05,0.02)
Fin Loss 0.02158 0.04750 0.998 1.8537 0.091 (-0.01,0.09)

Fin Loss Val 0.02327 0.05122 0.898 -1.1411 0.278 (-0.08,0.02)

TABLE 5.4: Results of the calculations related to the difference be-
tween condition 0 and condition 1. Standard error (se), margin of er-
ror (me), Correlation index (r), t-score, P-value and confidence interval

(ci) are reported.

S2
x̄−ȳ = S2

x̄ + S2
ȳ − 2rSx̄Sȳ (5.10)

from which

Sx̄−ȳ =
q

S2
x̄−ȳ (5.11)

Since all P-values are ≥ 0.05 (i.e. above the α level considering both the tails), it
is believed not to reject the null hypothesis at the origin of the present verification.
The stain normalization condition does not produce statistically significant effects
on the four variables taken into consideration.

The results of the earlier verification have been further checked using the statis-
tical software R as can be seen in Figure 5.6.

In conclusion, stain normalization is unnecessary to the end of my transfer learn-
ing approach.

Rescale

The third hyperparameter to choose is the rescale factor. The objects of interests
of the GlaS dataset are glands, which are represented with a different scale with
respect to the cells of the Camelyon16 dataset. Since the model is pretrained on the
Camelyon16 dataset, here I want to evaluate if the different scale factor has some
influence on the final performances.
I tried to rescale the GlaS dataset by a 2× factor. If before from each image the
extracted 512 × 512 tile was only one, after the rescaling operation, the tiles were
almost 4. Thus, this operation consists in a sort of data augmentation.
The first indirect effect on the experiments was the increase of the data. This led
the jobs with both the rescaling and data augmentation preprocessing to crash in the
majority of the cases.
In Figure 5.7, the violet points represent the small number of models with a rescaling
preprocessing that did not crash. Even if their final loss is lower than the others, their
accuracy is really low.
In Figure 5.8, only the models trained with augmented and not stain-normalized
data are shown. Here is more evident that most of the experiments which used both
data augmentation and rescaling crashed or provided really low accuracy.
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Number of Frozen Layers

Last but not least, the number of layers to be frozen at the fine-tuning phase must be
chosen. In fact, the fine-tuning will start from the weights obtained from the train-
ing of UNet on the Camelyon16. Some of these weights can be kept as they are and
others can be "fine-tuned". Generally the weights belonging to the the first layers
express more general features which can be reused for the new task. Instead, as the
depth of the layer increases, the features become even more specific for the original
task. Thus the related weights are more likely to be fine-tuned in order to adapt
them to the new task.
Taking into account these considerations, an analysis is performed to find the most
suitable number of layers to be frozen. In Figure 5.9, the models are highlighted
using different colors according to the number of frozen layers used during their
fine-tuning.
In Figure 5.10, the models of the previous scatter plot are selected according to the
considerations made in the previous paragraphs: only model with data augmenta-
tion, no stain normalization and no rescaling are considered. It is evident that there
is a trend in the performances: they gradually increase when the number of frozen
layers decrease. This is coherent with the initial hypothesis: if the number of frozen
layers is too high, the performances decrease probably because deeper features are
too specific to the source task.
In conclusion, the best choice is to avoid the freeze of the layers.
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Computational Analysis

In Figure 5.11 and 5.12 the accuracy and the loss for all the trained models as func-
tion of the training epoch are show. This plots highlight the behavior of the different
models for every epochs, while the considerations of the previous paragraph were
drawn only for the final value of accuracy and loss reached.
From both the Figures we can see that each model reaches different final perfor-
mances in a really different manner. There are models able to converge in few epochs
but also models that require more cycles to reach the convergence.
As already stated, the computational resources can be an important issues. Thus it is
preferable that a model is able to reach good performances is less epochs. However,
a note of caution: a small number of epochs does not mean that the correspondent
time is less then the one required for training one other model for a larger number
of epochs. In fact, as seen in Section 4.5.5, an epoch represents an iteration over the
entire training data and label sets. Thus, if the number of training sample is higher,
also the time to complete an epoch will be higher. Also the batch size can influence
the time required to complete an epoch. In fact, it represents the number of train-
ing samples taken into account before each gradient update. The more times the
gradient is updated, the more time will be required for a single epoch.

Thus it is necessary to analyze each model in terms of the computational time
required for its convergence. For this purpose, an additional callback is added to the
fit function of Keras in order to save the time required to complete each epoch. At
the end, the cumulative time is computed for each epoch obtaining the graphic in
Figure 5.13.
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FIGURE 5.11: Training performances of all the models. In the left
column the trend of the accuracies over epochs is reported while in

the right one the trend of the loss.
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FIGURE 5.12: Validation performances of all the models. In the left
column the trend of the accuracies over epochs is reported while in

the right one the trend of the loss.
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Some jobs have been killed because of walltime policy on the Cluster. The cluster
scheduler allows only 10 days of computing in terms of absolute time (not effec-
tively computing time), after that deadline the jobs are killed. Therefore, most of the
models did not complete the training. The peaks in the graphics (yellow entries in
the matrix) indicates the total cpu-time effectively spent by the algorithm which is
not bigger than walltime declared per job. It can be noticed that those peaks have
size around 6 × 105 seconds, i.e. around 7 days. These jobs are probably been killed
by the scheduler. Some other jobs may be killed because of some cluster policy, such
as walltime, resources and priorities.
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FIGURE 5.13: Cumulative time per epoch of each model.

Regarding the memory load, the maximal virtual memory used was 25 GB, but
most of the jobs used less than 20 GB. UNet is a really small CNN with respect to
other models in literature, leading to big advantages in terms of memory.

Usually, the memory required for training a CNN is used for storing the follow-
ing data 8:

• model parameters (weights);

• feature maps (intermediate matrices generated in the forward phase);

• gradient maps (intermediate matrices generated in the backward phase);

• workspace (temporary data).

Authors of [99] showed that features maps are the most memory-expensive data
and that the fraction of memory needed for allocating them grows as the number
of layers increase. It happens because the gradient update is layer-wise, i.e. during
the backpropagation phase features maps are taken into account [99]. This means
that features maps should be tracked and kept in memory until backpropagation

8https://medium.com/syncedreview/how-to-train-a-very-large-and-deep-model-on-one-gpu-
7b7edfe2d072



5.3. Hyperparameters Analysis 101

ends. The fraction of memory required for features maps is more relevant in the
features extraction layers and decrease in the classification ones [99]. The opposite
for weights which are more relevant in the classification layers due to the fully con-
nectivity [99]. Their computational load is in any case negligible with respect to the
features maps and workspace ones [99].

In conclusion, a CNN with a small number of layers like UNet does not require
big computational resources. Moreover, the number of parameters to train is not a
decisive factor in terms of memory. Thus, in our case, freezing more layers would
not improve the performances in that sense.

Comparison with UNet trained on GlaS from scratch

The performances are extremely promising if compared with the ones provided by
UNet trained from scratch both with and without data augmentation. In Table 5.5 a
comparison of the performances of the UNet trained with a non-random initializa-
tion of the weights and two reference models is presented. In particular, the transfer
learning model is compared with UNet trained starting from a random initialization
of the weights both with and without data augmentation.

model acc loss val acc val loss
From scratch 0.50347 0.69744 0.49040 0.69310

From scratch + data aug 0.51124 0.69326 0.53064 0.69307
Best model 0.95113 0.78814 0.93520 0.68563

TABLE 5.5: Comparison of the performances between the best new
model and UNet trained from scratch with and without data aug-

mentation.

In terms of accuracy, all the new models trained with transfer learning and data
augmentation outperformed the same model trained from scratch both with and
without data augmentation. This was particularly evident in the scatter plots of the
previous section, where the two reference models (orange and green points) where
located in the bottom-left corner of the 2D plane.

In terms of loss measures this is less true, but is well worth thinking carefully
about it. The two models trained from scratch present a really low loss but at the
same time an accuracy close to the one of the random classifier. A so-evident dis-
crepancy between the loss and the accuracy performances can occur in many situa-
tions due to the deeply different meaning they have.
A probable interpretation is that these two models are really confident when they
classify correctly the samples, while at the same time they are really low confident
when they classify wrongly the samples. As explained in Section 5.1, the logarith-
mic loss function humbly penalizes an uncertain wrong prediction while hugely pe-
nalizes a certain wrong one. In the same way, it rewards hugely a certain correct
prediction and rewards humbly an uncertain one. According to this interpretation,
these two models provide certain predictions when these are actually correct, and
uncertain predictions when these are actually wrong.
Moreover I chose as cost function the loss and not the accuracy. Thus, during train-
ing, the model tries to minimize the loss and not to maximize the accuracy. Mini-
mizing the loss means not only correct predictions, but most of all getting even more
confident in the correct predictions and less confident in the wrong ones. In this sit-
uation accuracy can even not improve while the loss is decreasing leading not to a
better model but to a more robust one.
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By the way the transfer learning results are even more promising if considering
that most of the best models did not complete the training in the 10 days allowed by
the cluster scheduler. Thus they have still some margins of improvements.

The best model chosen for the comparison is the one trained with augmented, not
stain normalized, not rescaled data without freezing any layer. His hyperparameters
are summarized in Table 5.6.

Augmentation Stain Normalization Resize Nr of frozen layers
True False False 0

TABLE 5.6: Hyperparameters of the best new model (model 26 in the
scatter plots).

Test on an independent set of data

On the best model, an additional test is done on a completely independent test set of
GlaS data. These data are even not augmented. The main objective is to evaluate the
model on never-seen images, exclude the risk of overfitting, and validate the results
provided by the fit function of Keras which automatically splits the training set into
two additional training and validation subsets.
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FIGURE 5.14: Confusion matrix of the best new model computed on
a completely independent test set.

The resulting confusion matrix is reported in Figure 5.14 while the correspon-
dent results are provided in Table 5.7. The confusion matrix and the consequent
performances are extracted from all the images simultaneously and do not represent
a mean of the confusion matrix computed for each image.
From the data it can be deduced that UNet classifies better glands than the back-
ground. UNet tends to predict glands when the true label is the background and not
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the opposite. This can be seen also in the Figures 5.15, where it is evident that UNet
oversegments glands (the violet edges are bigger than the ground truth).
In fact, the recall value, which express the proportion of actual positives that are
correctly classified, is really good while precision, i.e. the proportion of positive pre-
dictions that are actually correct, is much more lower because there are lots of false
positive.
These results are not as good as the ones computed by the fit function but are still
really promising. Moreover, if we consider that the majority of the misclassified pix-
els are false positive (which, in a biomedical setting is the best situation: is better to
classify the background as glands instead of missing a gland) and these FP represent
only an oversegmentation of glands and are not located in other area of the image.

Accuracy Misclassification Error Precision Recall F1 score
84.5 % 15.5 % 80.53 % 91 % 85.4 %

TABLE 5.7: Performances over all pixels of the best new model com-
puted on a completely independent test set.

In Figure 5.15, some examples of prediction of the best new model are shown. In
the left column there are the original grayscale images, in the central one the ground
truth masks and in the left one the predictions. Every image presents the edges of the
predicted mask superimposed in order to qualitatively evaluate the performances.
Looking carefully the ground truth labels, we can deduce that the model is able
to classify very well glands while the main difficulties are in the glands boarders.
In fact, usually glands present a tubular structure in which it can be distinguished
the internal lumen surrounded by epithelial cells as described in Section 3.4. This
particular arrangement of the epithelial nuclei around the lumen can be used to
identify clearly the lumen but the boarder itself results more difficult to delineate.

(A) Original image (B) Ground truth mask (C) Predicted mask

FIGURE 5.15: Examples of prediction of the best new model. The
violet edges are extracted from the mask predicted by the new model.
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5.3.2 ISBI12 dataset

A grid search is performed in order to find the best set of hyperparameters for the
ISBI12 dataset. For each combinations of hyperparameters a specific job is generated
where a UNet model is fine-tuned with a given number of frozen layers and certain
preprocessing steps.
Exploiting the experience had with the GlaS dataset, the hyperparameter to fix is
only the number of layers to freeze. Data augmentation is performed due to his
decisive role played with the GlaS dataset. No rescale factor is applied due to the
really bad performances and memory issues obtained with the GlaS Moreover, stain
normalization is useless because the images are acquired without any stain.
The hyperparameters tested in this analysis are summarized in Table 5.8.

Parameter Values
data augmentation True
stain normalization False

resize ×1
number of frozen layers 0, 10, 20, 30

TABLE 5.8: Hyperparameters for the Fine Tuning of UNet with ISBI12
data.

All the 4 tested models converge to a training accuracy of 85.37% and a validation
accuracy of 85.75% which corresponds to a completely blank prediction. This is
possible because here the new task is much more different than the previous one:
the task is more a boundary segmentation instead of a semantic segmentation as can
be seen in Figure 5.16 (image taken from 9).
In literature this task, generally is solved with an ad-hoc pipeline that allows for the
segmentation of particular ROIs such as boarders.

FIGURE 5.16: Example of image of the ISBI12 dataset and the corre-
sponding mask taken from the challenge website.

9http://brainiac2.mit.edu/isbi_challenge/home
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Comparison with UNet trained on ISBI12 from scratch

On the other hand, training UNet from scratch provides better results with a training
accuracy of 81.42% that is improved to 89.01% by data augmentation. In this case
the model provides reasonable masks as outputs which led to hope in better even
results if the number of training images will increase. An example of such output is
provided in Figure 5.17.
Probably the Camelyon16 initialization of the weights led the model to converge in
a local minimum which corresponds to totally blank predictions. This minimum is
avoided if the training starts from a random initialization of the weights.

(A) Original image. (B) Predicted mask.

FIGURE 5.17: Example of output of UNet trained from scartch with
augmented ISBI12 data.
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Chapter 6

Conclusions and Future Work

In this chapter, the most important results are commented, the limits of this work
are presented and some indications are stated for future improvement. Finally the
contributions and novelties of this thesis are stated.

6.1 Discussion of the Results

Within this thesis, the benefits and drawbacks of transfer learning and data augmen-
tation for image semantic segmentation have been analyzed.
The major benefits were detected in the GlaS application, where the combination
of data augmentation and transfer learning allowed to outperform the same model
trained from scratch both with and without data augmentation. Really good perfor-
mances were obtained in a reasonable computational time using an exiguous por-
tion of memory. This is a really important result because huge computational re-
sources are not within everyone’s means, especially when dealing with big biomed-
ical datasets. Moreover, most of the best models were not able to finish their training
due to the walltime policy of the cluster, which led to hope for good margin of im-
provements. One other secondary result was the fact that stain normalization does
not affect significantly the performances as stated in literature. This is true for my
transfer learning pipeline but it would be a big benefit also in other applications.

When it comes to the ISBI12, the results change dramatically. At first sight, the
performances are quite good in a quantitative sense, but going deep with the qual-
itative analysis of the test outputs I discovered that the model fell into a local min-
imum. In fact, all the predictions were blank images. Instead the model trained
from scratch with an augmented dataset provides better results. Probably the non-
random initialization of the weights led the model to extract features which were to
much connected to the segmentation of ROIs and not of thin objects like membrane
boarders.

In conclusion, I can say that transfer learning is an optimal choice for improving
the performances of a model when the computational resources and big datasets are
insufficient or not available. This approach is particularly successful when the novel
task is similar to the original one and can be an obstacle when the novel task is too
much different.

Anyhow, to my knowledge, such approach represents a novelty not only in the
biomedical field as well as in many other fields of computer vision.

6.2 Limitations

The biggest limitations I came upon while working on this thesis was the absence
of big, fully-annotated and freely available histopathological datasets. The three
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datasets I used were the only ones that matched these requirements and I could
find. Often researcher are constrained to build themselves the ground truth. This
operation is not only tedious and time-consuming but also susceptible to mistakes
which will led the model to learn wrongly from the data.

The second major limitation I had was related to the computational resources.
The HPC cluster was really useful but the 10 days of walltime policy was too much
constrain. Similarly, one other big constrain was the presence of only two GPU nodes
which generates long queues for their use.

These two limitations are the ones to cut down if academic research wants to
challenge big industries like Google, Amazon or Microsoft. Today if an industry
owns huge a computational power and has access to the user’s information (huge
datasets!!) is able to build whatever artificial intelligence it wants. I believe that
transfer learning and data augmentation will reduce the need of such factors to pro-
vide good scientific results.

6.3 Future Directions

Probably, some of the future directions will be:

• test new biomedical and not-biomedical datasets;

• test novel tasks with an increasing level of difference from the source task;

• do more testing cases for example on the parameters of the training phase, the
cost function and so on;

• evaluate the influence of the number of augmented samples and the type of
data augmentation;

• resume the best models and finish their training;

• Find a way to transfer the knowledge also to the boundary segmentation task.

6.4 Contributions and Novelty of this work

Theoretical contribution: Transfer Learning applied to Semantic Segmentation
represents, to my knowledge, an absolute novelty not only in the biomedical field,
but also in general in the computer vision one.

Practical contribution: Provide a Python code for an easy testing of Fine Tuning
and Data Augmentation on pre-trained Keras models. The code will be available on
my GitHub page as soon as possible.

Experimental contribution: Evaluation of the benefits of Transfer Learning and
Data Augmentation on real-world histopathological datasets.
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