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Abstract

District heating is one of the most efficient and environmentally friendly ways to satisfy heat demand
in densely populated areas. It allows reducing the global fuel consuption for heating purposes thanks
to a centralized production. In these systems, thermal energy is sent to users through an underground
network that provides hot water to the users. This paper has been developed in collaboration with
IREN s.p.a. and it deal with Turin district heating network, that is, with its 5700 m* of heated volume,
Italy’s biggest network. Thermo-fluid-dynamic simulations of such large networks usually require

large computational resources becouse of the complex topology that also involved loops.

The main novelty of this work is the possibility of simulating the thermal-fluid-dynamic quantity in
large networks through a very fast model. Having such compact model is useful to analyse the way
extensions and alternative management strategies affect the thermal load evolution. In this respect,
peak shaving strategies are adopted to reduce the thermal energy that must be provide during the
morning peak, by modifying the start-up schedule at the users. These strategies also allow a better
and cheaper operation of the thermal plants. For that reason, an efficient numeric scheme is required

to evaluate the effectiveness of these strategies.

This proposed model takes advantage of the simplicity of the fluid dynamics solution of tree-shape
networks, to modify the topology of the Turin network, moving from the resolution of a nonlinear

problem to a linear one.



Introduction

The case study is the Turin District Heating System that provides heat through a double pipe network
with an extension of 528 km. It is mainly divided into two parts directly connected: the transport
network and the distribution networks. The first expands across the city area and links the thermal
plants to the distribution networks; the seconds link a group of buildings to the transport network.
There are many distribution networks as the group of buildings are and have typically a tree-shape
configuration. The trasport network, instead, is unique, is characterized by large mass flow rates and

shows close path, aimed at guarantee service reliability in case of pipes failures.
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Figure 1 The Turin transport network (Iren Energia, s.d.)



Calculation of mass flow rates in a tree-shape networks is agile and implies only the solution of the

continuity equation, which means that a linear system has to be solved.

If loops are considered, solution became more complex and implies combined calculation of mass
flow rates and pressures, i.e. the solution of the continuity equation and the momentum equation. The
algebraic system derived from the two relations has as many equations as the unknown are, but its

solution is not as easy as it seems, because of three reasons:

e Continuity and momentum equations are coupled, hence have to be solved simultaneously

e The momentum equation is nonlinear

As shown in the following, a robust solution to this type of problems is the SIMPLE' algorithm,
which is an iterative strategy based on a “guess and correct” procedure. However, if the number of
nodes becomes large, this approach causes computational time to increase significantly.

In this paper, an alternative approach is proposed to the solution of the fluid-dynamic of the transport
network (network henceforth), in order to reduce computational time in case of common computation
frequencies.

The complexity of the solution is closely linked to the network topology, hence the idea of modifing
the transport network so that its description doesn’t match to the real topology but to a tree-shape

ones.

This approach implies that some branches have to be removed in order to modify the topology of
fluid network and new mass flow rates boundary conditions has to be applied in their place. Such new
boundary conditions are evaluated through a multilinear regression, whose coefficients are calculated

on simulations done using the SIMPLE strategy, as a function of mass flow rates at the power plants.

In order to perform an analysis of the accuracy of this type of model, mass flow rates and temperatures
are evaluated and a comparizon is made with respect to results coming from the nonlinear fluid
dynamic model (Guelpa et. al., 2017), which is assume as the most reliable model. Different scenarios

are proposed in the end to appreciate the variation in the accuracy with the global load.

'Semi-Implicit Method for Pressure Linked Equations - Patankar and Splanding (1980)
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1.0 The Thermo fluid dynamic model

The network fluid dynamic simulation consists in evaluating mass flow rates in each branch. In case
of tree-shape networks, this goal requires the continuity equation to be solved. If the network has
loops, a solution of the momentum equation is also required to evaluate the pressure in each node.
Once mass flow rates are known, the energy equation has to be solved to evaluate temperatures in

each node of the network.

The theoretical basis of the thermo-fluid dynamic model is mentioned hereafter, in order to introduce

conserved and nonconserved quantities that are involved in the calculation.

Further details on the conservation laws are available in (Sciacovelli et. al., 2015).

1.1 The continuity equation

The differential three-dimensional expression of the continuity equation can be written as the sum of

partial derivatives with respect to time and respect to the spatial coordinates:

9% v =0
S tTVPr= (1.1)

Or, using the definition of substantial derivative:

Do vv=0
DL TPVYE (1.2)

where p is the volumetric mass density and v is a vector whose elements are the velocities along the

three axis.
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Figure 2 The volume element AV of a coninuum body (Sciacovelli, 2015)

1.2 The momentum equation

The rate of change of momentum of a fluid can be expressed as the sum of a contribution of

momentum due to convection plus the external forces.

Referring to a generic control volume CV, the first contribution is the net rate of momentum across
the boundary of the control the volume, while external forces are the summation of surface forces

(pressure and viscous forces) and body forces, such as gravity.
The differential formulation® of the momentum equation can be written using the vector notation as:

apv_
W_—V-pvv—Vp—V'T+Pg (1.3)

where p is the static pressure, g is the gravitational field and t is the viscous stress tensor, whose

expression (Batchelor, 1967) is formulated in the case of a Newtonian fluid; according to this model

% Augustin-Louis Cauchy (1789-1857)
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stresses at the boundary of the control volume are proportional to the velocity field in the following

way:

2
T=—u(Vv+wh) + <§“ - k) (V-v)I (1.4)

Where p is the viscosity, k& is the dilatational viscosity and 7 the identity matrix.

1.3 The energy equation

In order to perform an energy analysis of the network, the energy equation is now introduced. Its
expression can be derived by considering an energy balance on a generic control volume, without

taking into account nuclear, chemical or radiative energy.

d 1
a(pu + Epvz) dV = -V -(pev)dV —V-qdV —V-pvdV —V(z-v)dV + pg - vdV (1.5)

The term on the left hand side is the net rate of change of the total energy, expressed as the variation

in time of the internal energy and kinetic energy
The first term on the right hand side is the net convective flow rate of the total energy.

The second term on the right hand side is the net heat flux, where ¢ is the heat flux which can be

formulated through Fourier’s Law?’.
The third term on the right hand side is the rate of work done by pressure

The fourth term on the right hand side is the rate of work done by viscous stresses, expressed as

product between the stress tensor T (Eq. (1.4)) and the velocity vector v.
The fifth term on the right hand side is the rate of work done by gravity.

In order to achieve a more suitable formulation of the energy equation, expressions of non-conserved

quantities have to be expressed.

3 q = —kVT, where k is the conductivity and T temperature.
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The Mechanical Energy can be obtained by multiplying Eq. (1.3) by the velocity vector v:

o1 1
a(zpv):‘v'(zpvv)‘”-Vp—v-v-ﬂpv'g (1.6)

The second and the third term on the right hand side of Eq. (1.6) can be rewrite according to the
differential operators property*:

d (1 1
E(Epw): _V-<Epm;2)_v-pv+pv-v—v-(rv)+‘t:Vv+pv-g (1.7)

Internal Energy instead result from the subtraction between Eq. (1.7) and the Mechanical energy

equation:

9]
a(pu)=—V-(puv)—V-q—pV-v—r:Vv (1.8)

If the substantial derivative definition® is used, Eq.(1.8) can be rewrite to obtain:

Du_ \Y \Y \%
pE—— q—p vVv—T. VD (19)

Using the thermodynamic definition of enthalpy®, Eq. (1.9) can be rewrite as the Enthalpy equation:

Dh _ Dp
’DD_t__V q—T.VU+D—t (1.10)

Where continuity Eq. (1.2) has been applied.
If enthalpy term mechanic equation’ is introduced:

DT Dp
pCpE:V-(kVT)—T:VU-i-,BTE (1.11)

4V-(ab)=b-a+aV-b and V'(A'b)=b'V'(AT)+A:Vb
5 %_a(PZ) .
Dt_ ot Y (pvfh) Du 1Dp p Dp
61 — Lty P _ PP
h=u+d/p)p > Dt_Dt+th p2 Dt
dp

7dh = c,dT + i (1—-pBT)dp , wherep =— % (5) is the thermal expantion coefficient
p
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where the first term on the right-hand side is the conductive term resulting from the Fourier’s

formulation.

Eq. (1.11) is a linear relation that express the definitive form of the energy equation, useful to

temperatures calculation.
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2.0 Physical approach and assumptions

A one-dimensional model has been used to simulate the fluid dynamic behavior of this district heating
network (DHN). The prevalence of the pipes length respect to the other two dimensions allows one
to neglect velocity and temperature variation along the radius and to substitute them with average

values in order to reduce computational efforts.

2.1 The continuity equation

The mass conservation has to be applied in each node of the network, as a balance between mass flow
rates that crosses the boundary of the specific control volume, and can be expressed by integrating

continuity equation over a control volume CV that involve such node:

dp dpv,
—dV + av =0 2.1
j;v at cv 0x1 @D

If an incompressible fluid and a fixed CV are considered, Eq. (2.1) can be rewritten as:

d
—pf dV+pf v, 'ndA =0 (2.2)
dt” Jey cA

where the Gauss theorem has been used in order to reduce the second term into a surface integral.

From this integration derive the final expression of the continuity equation, in witch external mass
flow rates can be can isolated in order to considered those flows that has to be set as a fluid dynamic

boundary condition in each junction (i.e. mass flow rates exchanged with users).

dM
dt t ) pjv1jAj+ Gexe =0 (2-3)
J



2.0 Physical approach and assumptions

Figure 3 Control volume for the continuity equation applied to a junction (Sciacovelli, 2015)

PiV1jA; + PjraV1jr1j41 P2 Ve jr2Ajr2 = Pj+3V1j434j43—Pj+aV1,j+aA e

+Gexti =0

15

(2.4)
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2.2 The momentum equation

In the same way, assumptions are introduced for the momentum equation.

Figure 4 Network branch (Sciacovelli, 2015)

Eq (1.3) can be integrated over the control volume CV using the one-dimensional formulation:

v, o0v,
f pEdV - - f pvl _dV f aTdV f FFRICT dV + f Fxl dV (25)
cv cv 1 cv

Where the contribution of the viscous forces Fpg;cr has been modeld through semi-empirical
correlation. A momentum source term is introduced in order to collect local effects contributions due

to pumps or junctions, in addition to gravity:

E, = Fpymp + Frocar + P9x, (2.6)

If an incompressible fluid is considered, integration of the steady state formulation of the Eq. (2.5)

leads to:
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2 2
p (v2.n) Z(V1'out) S+ Pin — Pout)S — PIZout = Zin)S — DPpricr S — AProca S+ 2.7)

+APPUMP S=0

Where:

o  APgp;crpressure difference due to friction;
o AP, ocarpressure difference due to local losses;
e APpyyp pressure difference related with the work pumps and fans;

o pg(zyut — zin)gravitational term difference

2 2
e p (V1.n) _z(vl"’“t) kinetic energy difference

Or equivalently:

(Pi - Pout) - APFRICT - APLOCAL + APPUMP =0 (28)

Where the definition of total pressure® P has been used.

Unsteady terms for both continuity and momentum equation are assumed negligible in fact the fluid-
dynamic perturbations travel the entire network in a period of time of few seconds, smaller than time

steps adopted in the numeric scheme.

Using the characteristic equations for friction and local losses (Appendix A), Eq. (2.8) can be written

as:

1 G? L
P = Pour = =5 — | 7+ ) Bx | —APpymp (2.9)
2052\ D, " £

1]2
"P=p+p—+pgz
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2.3 The energy equation

Eq. (1.11) is not directly useful to the thermal analysis of the network. A useful formulation is the so

called “temperature” formulation of the energy equation:

2(pe,T)

ot +V- (pcva) = kV?T — ¢, (2.10)

Where a negative source term has been introduced to include thermal losses through the ground.

Eq. (2.10) is a specific formulation of the enthalpy equation in which some simplifying assumptions
has been carried out (constant thermal conductivity £, negligible viscous term, and negligible

compressibility effects).

Figure 5 Control volume for the energy equation applied to a junction

The integration of Eq. (2.10) over the CV leads to the energy equation for the i-th node (junction):

a(pc,T d(pc,viT 0°T
cv ot cv axl cv axl cv
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a(pcpT)

CDLAV + ) pyey Ty = — 0 (2.12)

where the conductive term has been neglect respect to the convective one.
Density is also assumed as a contant.

In this section a steady state analysis is reported, so the unsteady term in Eq. (2.12) is neglected:

z pPicpV1iTid; = — Qu; (2.13)

Furthermore, a proper heat transfer correlation has to be introduce to consider heat losses towards the

environment:;

L;
Z% 5 U (T, — T (2.14)

Where (); is the perimeter, U; is the global heat transfer coefficient, and T is the environment

temperature.
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3.0 Numerical approach

3.1 One-Dimensional modeling of tree-shape fluid networks

The first issue is to apply continuity equation to the whole network, so a proper topological

description of the network is required.

To have this, the Graph Theory’ has been used. According to this theory, the network topology is
expressed by the Incidence Matrix A, that is characterized by a number of rows that is equal to the
number of nodes and a number of columns equal to the number of branches. The generic element 4;;
is equal to 1 if the i-th node is the inlet node of the j-th branch, while it is -1 if the i-th node is an

outlet node of the j-th branch and it is 0 in all the other cases.
A progressive notation has to be assigned to nodes and branches separately.
IR jHLoj2 13

i-2+1 0 0 0 0
i-1 -1 +1 0 0 0

0 -1 +1 -1 +1

0 0 -1 0 0
i+2]0 0 0 +1 0

0 0 0 0 -1

i+l

i+3

Figure 6 The Incidence Matrix

According to the continuity equation, such networks require the solution of a linear system:
A -G =Ggy 3.1

where G is a 1-by-NB vector whose elements are the unknown mass flow rates that flows in each
branch of the network. Column vector Gext has as many elements as the nodes are and contain the
external mass flow rates exchanged (extracted or injected) at the i-th node; if no exchange occurs, the

i-th value will be zero.

? Deo (2004); Chandrashekar and Wong (1982)
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3.2 One-Dimensional modeling of fluid networks (with loops) — The Full Model
The fluid dynamic solution of networks that show close paths requires the combined solution of both
continuity and momentum equation.

In order to cast a suitable matrix form of the momentum equation, hydraulic Resistance (Appendix

B) can be introduced in Eq. (2.9) so that:

Pin = Poue =R G — APpypyp (3.2)

The right-hand side of Eq. (3.2) can be expressed in each branch using the incidence matrix:

AP, = AT - P, (3.3)

Hence the matrix form of the momentum equation can be write as:

AT-P=R-G-t (3.4)

Where the conductance matrix ¥ = 1/R as been introduced.

Vector G, whose elements are the mass flow rates flowing in each branch of the network, is obtained

as:

G=Y-AT-P-Y-t (3.5)

Most of the critical issues are related to the momentum equation, particularly in the hidden
dependence in the conductance due to the advective term, that ends up with a nonlinear relation;
furthermore, mass flow rates appear in both continuity and momentum equation, hence a

simultaneous solution has to be reached.
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3.2.1 The SIMPLE algorithm

A way to solve these problems is to adopt a combined application of two algorithms: the SIMPLE
and the fixed point algorithm. The SIMPLE'? is an iterative strategy based on a “guess and correct”

procedure that allows one to have a simultaneous solution of both continuity and momentum equation.

The “true” value of mass flow rate and pressure can be expressed as the sum of a guess value (*) and

a correction (°):
G=G"+G' (3.6)
P=P +P (3.7
If the guess momentum equation is considered:
G =AT-Y"-P*—-Y" t (3.9)

a new relation can be expressed as the difference between the true momentum equation (Eq. (3.5))

and the guess momentum equation:
G-G=AT-(Y-P-Y -P)+t- (Y-Y) (3.9)

Assuming weak nonlinearities and ¥ = Y™, the right-hand side of the Eq. (3.9) can be modified, so
that:

G-G =AT-y'-(P—P") = (3.10)

G =AT-Yy*-P (3.11)

At this point Eq. (3.1) can be written using the guessed-correction decomposition and substitute in

Eq. (3.11), so that:
A Y AT P = —A-G" — Gy (3.12)
Eq. (3.12) can be rewrite as:

H-P' =b (3.13)

10 Semi-Implicit Method for Pressure Linked Equations - Patankar and Splanding (1980)
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Where H=A-Y*- AT.

Once the guess P* and G* are set, Eq. (3.8) can be solved and P’ and G’ can be evalueted through
Eq. (3.13) and Eq. (3.11) respectively. Nevertheless, the resulting “true” values of P and G are not

consistent with the real ones because of the assumption ¥ = ¥* made in Eq. (3.11).

As a consequence, an iteration strategy as to be applied in order to recover the initial guess values P*

and G* and reach the exact ones. This strategy is illustrated in Figure 7.

[ provide P* and } e N
Solve the guess

. momentum equation
[ Set: P =P, ]D \_ )

- ~
74N Calculate P’ and G’

L (Eq... and Eq..)

4 N\

Evaluate the “true”
values of P and G

No Yes
g Is P equal to P* and [ P and G are 1

G eqaul to G*? the “true” values

Figure 7 The SIMPLE algorithm

Despite the assumption of weak nonlinearity, the momentum Eq. (3.9) is still nonlinear, so a proper

numerical scheme has to be use to handle it. To do this, fixed point method is adopted.
This iterative method provides the guess value G* in order to assure the convergence.
According to the conductance definition, Eq. (3.8) can be reformulated as:
G*=A(G) (3.14)
Where A(G*) = Y(G*)-AT - P* +Y(G*) - t
In each iteration, the updated guess value can be expressed as a function of the previous guess value:

sz+1) == A(Al " sz) + Az - sz—l)) (3'15)
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Where A, and A, are under-relaxation coefficents, chose so that 1;,+4, = 1.

The update of G* stops when the difference between G ..y and G, is below a set tollerance.

24

Figure 8 shows the full numeric scheme in which the fixed point algorithm has been highlighted in

red.
SIMPLE
N
provide P*
and G*

J

[ Set: P*=P,

PAN

L

-
Fixed point

é R
provide G p)and Compute
(A‘l * zk) + Az "
Set: D G?k—l)) J
( ~
Compute sz +1) (Eq..)
- Y,
4 N
No Check Tollerance:
Convergence?
\ Y,
Yes
4 B
Calculate P’ and G’
L (Eq... and Eq..)
4 N
Evaluate the “true”
values of P and G
No

Yes

P and G are
the “true” values

Figure 8 The algorithm for the solution of the momentum equation

N J
] Is P equal to P*
and G
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Reference to this section can be find in (Sciacovelli, 2015)

3.3 The thermal model

The thermal problem requires that the energy equation (Eq. (2.14)) has to be solved in each i-#h node
of the network.

In order to apply Eq. (2.14) in every node of the network, the set of equations is expressed in matrix

form:

K-T=f (3.16)

where T is a 1-by-NN vector unknown temperatures, fis a 1-by-NN vector of known values and K is
the so called Stiffness Matrix (a NN-by-NN matrix). To assemble System (3.16), temperature
boundary conditions have to be applied first. According to Eq. (2.14), a proper strategy has to be

adopt in order to evaluate temperatures T; at the boundary of the control volume CV.

pr— —

. T
i i (Y
N

Figure 9 Energy conservation for the i-th node

A solution to this type of problems, where convective phenomenon prevails, is the Upwind Scheme,

a simple strategy in which boundary temperatures T; are assume equal to the temperatures in the

upstream nodes, respectivly.
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Eq. (2.14) for the i-th row (node) of System (3.16) becomes:

26

1
<Cp(Gj+1 +Gjyz) + E(LijUj + Ljt1Q41Uj41 + Ljpo Q2 Upyp + L3043 Uj+3)) T;

= pGTi—1 = ¢pGji2Ti4

g

(3.17)

1
= E(L‘Q'U' + Lj+1-Qj+1Uj+1 + Lj+29j+2Uj+2 + Lj+3Qj+3Uj+3)Too

If the i-th node is a boundary node (i.e. node where temperature is a constrain), the i-th element of

vector fis replaced with the corresponding temperature value and its constant term moves from matrix

K to vector f.

In this paper, an application of this model is used in section 9.0 to analyse the accuracy of the Compact

Model.

Further details in assembling System (3.16) can be found in (Sciacovelli et. al., 2015)
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N
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solution:

K-T=f

Figure 10 The Thermal Model
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4.0 Mapping the network

In approaching this topic, one of the first issues was to have an analytic description of the network
useful to creates plots that can easily show the evidences of the achieved results and also to identify
errors in the codes compilation. Particularly, the goal is to have a plot of the DHN as a result of a

Matlab® code that can be used to depict mass flow rates distribution.

As first step, nodes coordinates are collected from a 2-D CAD provided by IREN District Heating
Team (Appendix C).

Nodes coordinates list (containing the name and the x and y-position of each node) is extracted and
examined in order to collect those nodes where only junctions, barycenter or power plants are. This

1s possible thanks to an existing name list.

This task results in the following code lines.

function [x,Vv] = OrdinaNodi Return (

NodiCodice, NodiDaOrdinare,Ascisse,Ordinate )

for j=1:1length (NodiCodice)
for i=l:length (NodiDaOrdinare)

1f strcmp (NodiDaOrdinare (i) ,NodiCodice(j))==
NodiOrdinati (j) .nome=NodiDaOrdinare (i) ;
NodiOrdinati (j) .ascissa=Ascisse (1) ;
X (j)=Ascisse (i)

NodiOrdinati (j) .ordinata=0Ordinate (i) ;
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Y (§)=Ordinate (i) ;
X (j)=NodiOrdinati (j) .ascissa;
y(J)=NodiOrdinati(j) .ordinata;
end
end

end

end

Once nodes coordinates are collected, a map of the network can be plot.

12000

[m]

6000

Figure 11 Network map: blue circles includes both junctions and barycenter nodes
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5.0 Acquired tools

As said, this project set as goal the construction of a simplified, linear fluid dynamic model (Compact
Model henceforth) from a more complex one, that is the result of academic development on the Turin
DHN. This last model (Full Model henceforth) is already developed in a Matlab® code and simulate
the fluid dynamic behaviour of the Turin DHN using monitored data as boundary conditions. An

algorithm is also available to perform the energy analysis of the network through the Thermal Model.

Figure 12 shows the schematic of Full and Thermal Model used in this dissertation.

T 77 A dm Tm]d
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-
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Fixed Point

~

Mass Flow rates
in each branch
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GUTPUT \

N\ J

Model
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-
-
E Temperatures each node

AN J

/’ OUTPUT 3

Figure 12 The Full and Thermal Model

The Full Model section has been used to create a mass flow rates database useful to describe the fluid
dynamic behaviour of the network; these data, collected as a function of the global mass flow rates,
are then used to build the Compact Model. The thermal section instead, is used to appreciate the

difference in thermal power at the power stations, due to the linear model.

A in-depth dissertation on the Full Model and its accuracy is available in (Guelpa et. al., 2017).
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6.0 Boundary conditions

As anticipated in section 5, in order to collect data useful to achieve the linear fluid-dynamic model,

the whole network has to be simulated through the Full Model.

To do this, some boundary conditions have to be expressed in order to reproduce different fluid flow

distribution as a function of the global mass flow rate extracted/injected in the network.

Starting from the initial time, is typically required to provide increasing rates of fluid to the network,
accordingly with the morning increasing heat demand. This means that each power plant has to inject

increasing value of mass flow rate to satisfy the increasing heat demand.
The boundary conditions that have to be set are:

e Power plants nodes

e Barycenter nodes (users)

These two type of boundary conditions can be collect in two matrices named Gpp_gen and Gboar gen

respectively.

Matrix Gpp_gen is built so that each row has to receive a number of elements pp equal to the number
of power stations; each row-element represents the mass flow rate that is flowing through the j-th!!

power plant; Gpp gen has as many rows as the observations are.

Once the structure of Gpp gen 1s defined, a proper logic scheme has to be identified in order to set mass

flow rates values at each power station.

In each observation, the global mass flow rate G, is set as a percentage of the total network capacity
(that is about 5000 kg/s) and increase with increasing of i'2, from a minimum of 500 kg/s to a

maximum of 5000 kg/s .

pp
Grot = z Gppmaxi (6.1)

i=1

T Column index
12 Row index
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Where pp is the number of power plants and Gpp,,,, 1S maximum mass flow rates of each, whose

values are reported in Appendix D.

Gro¢ 1s then distributed to the singles power plants through a random thermal load coefficient

according to a priority order.

The sum of the elements of each row of Gpp gen correspond to the global mass flow rate that is

provided to the network and so to the users.

The function for the calculation of the Gpp gen matrix is reported here below:

function [BCdata] = BCcreation PowerPlants(z,BCdata)

for z=1l:length (t)
BCdata.priorita =
BCdata.priorita (randperm(length (BCdata.priorita)));
BCdata.priorital (z, :)=BCdata.priorita;

for y=l:length(BCdata.priorita)

BCdata.flag=0
if
BCdata.G globale(z)*BCdata.CoeffCarico(BCdata.priorita(y))<...

BCdata.G centrMax (BCdata.priorita (y))
BCdata.G centrModello(z,BCdata.priorita(y))=BCdata.G globale(z)*..
BCdata.CoeffCarico(BCdata.priorital(y))
else
BCdata.G centrModello (z,BCdata.priorita(y))=

BCdata.G centrMax (BCdata.priorita(y))
BCdata.flag=1



6.0 Boundary conditions 32

end

1f sum(BCdata.G centrModello (z,:))>BCdata.G globale(z)
1if BCdata.flag==

BCdata.G centrModello(z,BCdata.priorita(y))=BCdata.G globale(z)-

sum (BCdata.G centrModello(z, :))+BCdata.G centrMax (BCdata.priorita (

y))

else

BCdata.G centrModello(z,BCdata.priorita(y))=BCdata.G globale(z) -

sum (BCdata.G centrModello(z,:))+BCdata.G globale(z)*. ..
BCdata.CoeffCarico (BCdata.priorita(y))

end

break

end

end

1f sum(BCdata.G centrModello(z,:))<BCdata.G globale(z)
BCdata.G diff=BCdata.G globale(z) -
sum (BCdata.G centrModello(z,:))
BCdata.G disponibilita=BCdata.G centrMax-
BCdata.G centrModello(z, )
for i=l:length (BCdata.priorita)

if
BCdata.G disponibilita(BCdata.priorita(i))>BCdata.G diff
BCdata.G centrModello(z,BCdata.priorita(i))=...
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BCdata.G centrModello(z,BCdata.priorita(i))+BCdata.G diff
BCdata.G diff==
break
else
BCdata.G centrModello(z,BCdata.priorita(i))=...
BCdata.G centrMax (BCdata.priorita(i))
BCdata.G diff=BCdata.G diff-...
BCdata.G centrMax (BCdata.priorita(i))+...
BCdata.G centrModello (z,BCdata.priorita(i))
end
end
end
1f sum(BCdata.G centrMax)<BCdata.G globale(z)
fprintf (' [WARNING] The global load exceeds the limit valaue’)

end
end

end

Matrix Ghar_gen includes the observed data related to the mass flow rates extracted/injected through
the barycenter nodes. As anticipated, these mass flow rates are evaluated through a a coefficient

calculated as:

Gbmaxj
a.

i = TNB
i=1 Gbmaxl’

(6.2)

where NB is the number of barycenter nodes, and Gb,,4, 1s the limit mass flow rate flowing through

th j-th barycenter node, whose values are available in Appendix D.
The mass flow rate extracted/injected in each observation is evaluated as:

Gb; = Gro¢ - @ (6.3)
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The function for the calculation of the Gbar gen matrix is reported here below:

function [ BCdata ] = BCcreation bar (NetData,BCdata,A,t)

BCdata.G centrModelloExtended=zeros (length(t),length(A(:,1)));
for i=l:length(NetData.PowerPlants.Nodes)

BCdata.G centrModelloExtended(:,NetData.PowerPlants.Nodes(1i))=...
BCdata.G centrModello(:,1)

end

BCdata.G barModelloExtended=zeros (length(t),length(A(:,1)));
for z=l:length(t)
for i=1l:length (NetData.bar (:,3))
BCdata.G barModelloExtended(z,NetData.bar(i,1))=
BCdata.AlfaGbar(i)*. ..
sum (BCdata.G centrModello(z,:))
end

end

end

In the return network, mass flow rate flows from barycenter node (where users are) to the power
stations. Therefore, according to fluid dynamic signs convention, a negative sign has to be considered

for mass flow rates extracted at power plants nodes.

BC.bin=-BCdata.G barModelloExtended;

BC.bout=BCdata.G centrModelloExtended;
The number of observations # is set equal to ¢ for both matrices, that is the number of observations
chose to describe thermal transient. Higher values of this number are recommended because the

higher the number of observations is, the best is for the accuracy of the Compact Model.
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7.0 Linear approach

As said, the aim is to compile a model that simulate the network fluid dynamic behaviour with a less
complex numeric scheme, on the basis of mass flow rates data collected using the Full Model. The
construction of this model starts defining the evolution of the fluid dynamic transient that occurs
during the simulation. This means that mass flow rates' have to be set in the power plants nodes and
in the barycenter nodes and the Full Model has to be used to evaluate mass flow rates in each branch
of the DHN. At this stage, a linear relation is investigated to directly link the mass flow rate flowing
in each power plant to the mass flow rate flowing in such branches that are removed (L77B
henceforth) in order to reduce the DHN into an equivalent tree-shape network. Once this linear
relation 1s known, mass flow rate in each LT7TB can be expressed as an exclusive function of the mass
flow rate flowing in each power stations. Mass flow rates values in these branches are then set, with
the proper sign, as additional boundary conditions to the equivalent tree-shape network, in the end-

nodes of each removed branch (i.e. LTTB).

Finally, the fluid dynamic of the equivalent tree-shape network can be evaluated through the

continuity equation (3.1).

7.1 The equivalent tree-shape network
As said, Turin DHN shows close paths that improve the reliability of the system in case of pipes
failure.

Each loop has to be identified in order to modify the topological description of the network into a

tree-shape configuration.
Euler's law is used to calculate the number of these close paths:

NL=NB—-NN+1 (7.1)

13 Section 6.0 Boundary Condition
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Where NL is the number of loops (close paths), NB is the number of branches and NN the number of

nodes.

As shown in Figure 13, Turin network has 9 loops with various size that are constituted by many
branches. In each loop, one of these branches, the so called ‘Loop to Tree Branch’, is selected in
order to remove it from the Incidence Matrix A and obtain the equivalent tree-shape configuration

depicted in Figure 14.
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Figure 13 Turin District Heating Network: close paths in yellow, LTTBs in red.
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Figure 14 The equivalent tree-shape network

To do this, each loops is identified on the 2D-cad and an NL-by-2 table is expressed in order to collect
the name of the end-nodes of each LTTB (Boundary Nodes henceforth).
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Branches Boundary Nodes - name

LTTB 1 CAO051 NS007
LTTB 2 CAO055 CAO056
LTTB 3 CA065 CA066
LTTB 4 CAO082 CA083
LTTB 5 CA079 NC040
LTTB 6 NNO038 NNO039
LTTB 7 CA009 NSO019
LTTB 8 NS039 NS040
LTTB 9 NS155 NS156

Table 1 End nodes of the LTTBs - Nomenclature

According to the numeric order of the branches, each row of Table 1 corresponds to a column index

in the incidence matrix A4, so that

11041
108
115
132

LTTB,,, = |258
335
377
413

1594

Vector LTTB s express the positions of the LTTBs in matrix 4. A for cycle can be implemented in

order to obtain the incidence matrix of the equivalent tree-shape network.

A tree=A;

for i=l:length (Maglie)

Descend=1:length (Maglie) ;

Descend=sort (Descend, '"descend') ;

A tree(:,Maglie(Descend(i)))=1[];

end
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It is important to stress that, unlike branches, the number of nodes doesn’t change, hence nodes collect

in Table I are still part of the tree-shape network.

7.2 Data generation — LTTB mass flow rates

The solution of the continuity equation implies that additional boundary conditions have to be set in
the Boundary Nodes of the LTTBs. Evaluation of these new boundary conditions can be made by
considering the fact that mass flow rates flowing in the L77Bs are a function of the mass flow rates
at the power plants. A linear relation between these two sets of mass flow rates can be investigate
using the Matlab® Regress function, so that the boundary condition at each L77B can be estimated
as an exclusive (linear) function of the mass flow rates at the power plants. Expression of this linear
function will be illustrated hereafter. First, a sufficient amount of data has to be produced to have a
complete description of the network fluid dynamic behaviour, when the global load varies. To do this
mass flow rates in LTTB are computed using the Full Model in which matrices Gpp_gen and Gbpar_gen

are set as boundary conditions.

~
/

o8 | —
£.8 & -
'% ._é Extragtezi; Mass Flow Rates {% F U l l ‘ & Mass Flow Rates
RS (matrix G, gen ) S > flowing in each LTTB
5 = Model O (matrix G
z Injected Mass Flow Rates ( )
E (matix Gbar_gen )
Figure 15 The Full Model

The fluid dynamic model receives as inputs matrix Gpp gen and matrix Gbar gen €Xpressing the
boundary conditions as a variation of the global load. After running the full model, real mass flow
rates in each branch are collect in an output matrix G, which has as many columns as the branches.
Each row of matrix G results from a global load setting G, , that can be expressed as a percentage

of the total capacity.

If a row vector Gy, is isolated from matrix G, it is possible to plot a map of the network at a

prescribed load, in which each branch is depicted according to the corresponding mass flow rate.

Figure 16 show the mass flow rates distribution when Gr,; is equal to a 50% of the total capacity.
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Figure 16 Mass flow rates resulting from the Full Model
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In order to collect the mass flow rates in each L7TB, column vectors corresponding to these branches

are isolated from matrix G and a new n-by-NL matrix, named Grrp 5, 1s defined:

G _ Gt,l Gt,Z Gt,3 Gt,4 GI,S Gt,6 Gt,7 Gt,S Gt,9
LTTB901 =| . . (7.2)

G Gn,2 Gn,3 Gn,4 Gn,S Gn,6 Gn,7 Gn,8 Gn,9

n,l

This matrix contains mass flow rate in each LTTB as a function of the global load G, (25% to

100%) and will be useful in following chapter in order to build the linear model.

7.3 Multilinear Regression

7.3.1 The Linear Model

The network topology modification process from the real shape into a tree-shape requires that

boundary conditions have to be applied where L7TTBs where.

As said, the aim is to find a linear relation that allows one to evaluate the additional boundary

conditions as an exclusive function of the mass flow rates at the power plants, so that:
Gpp ' B = G118 tinear (7.3)
where:

e G,,is a l-by-pp vector whose elements are the mass flow rates at each power plants

pp

o  GLTTB linear 1S a 1-by-NL matrix containing estimated mass flow rates values in each LTTB
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e B is app-by-NL matrix of constant coefficients

Mass flow rates at power plants is considered as an input information, hence, once matrix B is
evaluated, vector GLTTB linear can be used to set the additional boundary condition in the tree-shape

network.
Calculation of B is performed using the Matlab Multilinear Regress Function.
The function accepts as input two arrays:

e an n-by-p matrix of p predictors at each of n observations

e an n-by-1 vector of observed responses
where p is equal to pp (number of power stations).

In that case, predictors are the mass flow rates at the power plants, collected in each row of matrix
Gpp_gen, whereas the vector of observed responses is equal to each column of matrix G rrp , that

collects the real mass flow rates values as a function of the global load.

The Regress Function returns a pp-by-1 vector b of coefficients, estimates for the multilinear
regression of the responses related to a single L77B. Hence a for cycle has to be implemented to
recalls the Regress function for each of the nine L77Bs. Each calls generate a b vector that will
constitutes the B matrix.

function [ ModelResults ] = RegressCoeffGeneration (
BCdata,NetData,ModelResults )

for i=l:length(NetData.LoopToTreeBranches)
ModelResults.LinearRegress.RegressCoeff (:,1)=regress...
(ModelResults.G LoopToTreeBranches(:,1),BCdata.G centrModello);

end

end
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Figure 17 The linear regression

Matrix B is evaluated, saved and no longer updated since matrix Gpp gen and matrix Gbar gen are not

modified.

0.001263 —0.00109 0.141262 -0.09931 0.032535 0.023408  0.38251  0.008372  0.093729
0.001263 —-0.00109 -0.16068 0.202635 -0.31561 -0.37444 -0.08772 0.008372 —0.30229
0.001263 —-0.00109 -0.17179 0.213738 -0.08952 0.006588 —0.08534 0.008372 —0.28039
0.001263 —-0.00109 -0.16253 0.204483 -0.28719 -0.29032 -0.07546 0.008372 —0.29782
0.001263 —-0.00109 -0.16054 0.202496 -0.31956 -0.378 -0.09063 0.008372 —0.30343
0.001263 —0.00109 0.144394 -0.10244 0.031394 0.019543 0.378414 0.008372  0.087545

Figure 18 Coefficients for the linear regression
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At this stage, we are able to evaluate a set of estimated mass flow rates in each LTTB as the product

between a generic vector G, and the matrix B, so that:

_Gppl -
pp2
pp3
pp4

pp5

[ B11 B12 B13 B14 B1s B1g B17 B1g B1g
By1 Byy Byz Byy Bas Byg By Byg Bag
B34 B3, B33 B3y B3s Bsg B37 Bag Bsg

. B4-1 B4—2 B4-3 B4-4- B4-5 B46 B4-7 B48 B4—9

BSl BSZ B53 BS4- BSS BS6 BS7 BSS BS9

LYpp6

-B61 B62 B63 364 B65 B66 B67 B68 B69

_GLTTB_linear 1 1
GLTTB_linear 2
GLTTB_linear 3
GLTTB_linear 4
GLTTB_linear 5
GLTTB_linear 6
GLTTB_linear 7

GLTTB_linear 8

_GLTTB_linearg_

(7.4)

INPUT

Extracted Mass Flow
Rates (vector Gy )

Linear

model
(Gpp ’ B)

Processing

OUTPUT

Estimated mass flow
rates in each LTTB

(vector GLTTB_linear)

Figure 19 The Linear Model
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8.0 The Compact Model

The algorithm presented till now is able to:

e cvaluate the topology of the equivalent tree-shape network
e cvaluate a vector Gb whose elements are the mass flow rates injected at the barycenters nodes
(Eq. (6.2) and Eq. (6.3))

e cstimates a vector G1yrp jinear Of mass flow rates from an input vector G, , through a linear

pp °

regression

In order to solve the fluid dynamic model of the equivalent tree-shape network, boundary condition

has to be applied and the follow linear system has to be solved:

Atree " Glinear = Gext (81)

where Aqpee 1S the Incidence matrix expressed in section 7.1, Gyipeqr 1S @ 1-by-NB vector of unknown

mass flow rates and G,,; is a 1-by-NN vector containing the external mass flow rates.



8.0 The Compact Model

Figure 20 The equivalent tree-shape network: Boundary Nodes in red, power plants in magenta
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According to Figure 20, the number NB of nodes in which extraxtions/injections occurs is equal to:

NB = pp + NB + 2(NL) (8.2)

where:

e pp is the number of power stations
e NB is the number of barycenters nodes

e NL is the number of LTTBs

Appling boundary conditions in each nodes means that vector G,,; has to contain the mass flow rates
exchanged toward environment, with the proper sign. If no fluid exchange occurs in a NB node, the

corrisponding element of G,,; is zero.

In the return network, fluid flows from the barycenters nodes to the power plants, determining a flow
direction in each branch of the network. Therefore, according to the sign convencions, mass flow
rates extracted at the power plants shall be positive, while those injected in the barycenters nodes

negative.

This two type of boundary conditions are evaluated with the same criteria used to expressed matrix

Gpp_ gen and Gbar_ gen:

1. mass flow rates at each power plants is set according to a priority order

2. mass flow rates at each barycenter nodes is set according Eq.(6.2) and Eq. (6.3)

In order to expressed vector G,,; , these two type of boundary conditions can be collect in a 1-by-NN
vector BC.b, using data in (Appendix F) to determin the indices and completed with boundary
conditions at the end-nodes of LTTBs.

First, the numeric indices of the Boundary Nodes has to be identified using vector LTT B, (section

7.1) and matrix A.

function [ NetData ] = Find LTTBNodes ( NetData,A )

for i=l:length (NetData.Maglie)

NetData.Nodi LoopToTreeBranches (i, :)=find(A(:,NetData.Maglie(i)))

end
end
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Function ‘Find LTTBnodes’ collects each nodes in a NL-by-2 matrix so that each row of that matrix
contains the end-nodes of a LTTB. The elements of  this matrix

(‘NetData.Nodi_LoopToTreeBranches’ in the function) is reported in Table 2.

Removed Branches (LTTB,,;) Boundary Nodes
LTTB 1 (115) 104 370
LTTB 2 (132) 107 108
LTTB 3 (104) 113 114
LTTB 4 (108) 129 130
LTTB 5 (335) 127 299
LTTB 6 (413) 357 358
LTTB 7 (258) 75 382
LTTB 8 (594) 402 403
LTTB 9 (377) 515 516

Table 2 End nodes of the LTTBs - numbering

In each LTTB flows a mass flow rate, according to vector Gy rrp jinear; this means that the same mass

flow rates is exchanged in each of the two Boundary Nodes, but with opposite signs.

i-th LTTB

l =
- l -}
? - |GLTTB linear * + |GLTTB linear

Figure 21 Example of a loop — topology processing

A
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According to Figure 21, sign assignment comply the flow direction in the i-th LTTB. The correct sign
can be assigns using the matrix 4.

To do this, function 'BCLinearModelCreation LTTBnodes’ receive as inputs vector BC.b, incidence
matrix 4 and vector Grrp jinear> and return as output vector Ge,,, resulting from the integration of

the mass flow rates at the Boundary Nodes.

function [ BC ] = BCLinearModelCreation LTTBnodes...
( NetData,ModelResults,BC,A,t)

for i=l:length (NetData.Maglie)
for J=1:2

BC.b ltest (NetData.Nodi LoopToTreeBranches (i, Jj))=...
(ModelResults.LinearRegress.G LoopToTreeBranches (z,1))*...

A (NetData.Nodi LoopToTreeBranches (i, j),NetData.Maglie(1i));

if
((ModelResults.LinearRegress.G LoopToTreeBranches (z,1)) *...

A (NetData.Nodi LoopToTreeBranches (i, J),NetData.Maglie(1))>0
BC.boutTreeNet (z, NetData.Nodi LoopToTreeBranches (i,]J))=...
(ModelResults.LinearRegress.G LoopToTreeBranches(z,1))*...

A (NetData.Nodi LoopToTreeBranches (i, ]j),NetData.Maglie (1))
else

BC.binTreeNet (z,NetData.Nodi LoopToTreeBranches(i,]J))=...
(ModelResults.LinearRegress.G LoopToTreeBranches (z,1))*...
A (NetData.Nodi LoopToTreeBranches (i, j),NetData.Maglie (1))
end
end

end

end
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Once vector G,,;1s obtained, the linear System 8.1 can finally be solved and mass flow rates in each

branch of the network can be collect in vector Gyipeqr-

Er =
= £ Extracted Mass Flow -
=l ( A~ Mass Flow Rates
2 £ Rates %0 . . — i
28 5 COI’ltll’ll/llly S flowing in each
5 . 7 . O branch of the DHN
=~ Injected Mass Flow 0 Equ ation
a Rates 8 (VeCtOI' Glinear)
A
\ /L
( S Power Plants Nodes: | /5‘ g
y-B= :
o Extracted Mass Flow £ 5 Evaluation of the
E ates R S mass flow rates in
Regression N the end nodes of
Cefticients for each | _~T.€ each LTTB to set
LTTB 2 as additional BC in
g the tree-shape
* network solution

Figure 22 The Compact Model
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9.0 Results and discussions

Results on the accuracy of the Compact Model will be presented in this chapter. Mass flow rates
evaluated through this model are compared to the ones elaborated with the Full Model, in order to
estimates errors that occurs if the linear approach is adopted. To have such type of comparison,

common boundary conditions are expressed for both models, using functions presented in section 6.

Once the two models are run, errors can be evaluated immediately as the difference between vectors
G and Giinear . However, the accuracy of the Compact Model is mainly influenced by the linear model,
therefore errors related to the evaluation of vector G rrp jineqr are calculated first, in order to analyse

the way the boundary conditions at the Boundary Nodes influence the whole network.

Comparison between vectors G and Giinear is then carried out by selecting four different scenarios in
which the two vectors are evaluated from different values of the global load Gy For each scenario,
increasing values of the global load G;,; are selected as a percentage of the total capacity. The
prescribed load G,; is then distributed to each power plant according to a resonable priority order:
Moncalieri and TN are switched on first, as they are cogeneration plants; storages are used to cover
the peak requests; while boilers provides heat during peak and off-peak hours, when the load exceeds

a prescribed value.

Plants scheduling

B Moncalieri BTN ™ Politecnico Martinetto (storages) ™ TN (storages) M BIT

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
SCENARIO 25% SCENARIO 50% SCENARIO 75% SCENARIO 100%

Figure 23 Power plants scheduling depending on the global thermal request
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A thermal analysis is finally performed to analyse the relevance of the fluid dynamic errors in terms

of thermal power at each power plants.

9.1 The linear model

Accuracy in mass flow rates evaluation is mainly due to boundary conditions sets in each Boundary

Node and collected in vector Grrrp jineqr- AS seen in section 7.3 , this vector results from a linear

regression of data collected in matrix Gy rrp 901.

In order to evaluate the accuracy of the linear model, vector G r7p jinear 1S €valuated in each scenario
using the corresponding boundary condition: in each scenario, vector G, is set to the corrisponding

power plants schedule illustrated in figure 23 and System 7.3 is solved, as illustrated in section 7.3.1.
The resulting output vector G17rp jineqr 15 then compared to vector Gy prp to stress the errors due to

the Linear Model.

The following plots shows a comparison of the mass flow rates between the two models, in each

LTTB, from 25% to 100% of the total capacity.

From a quick examination of these graphs it can be noticed that mass flow rate in a single LTTB
doesn’t necessarily increase with increasing values of the total load. That’s because the fluid flows
along different paths, according to the number and the position of the power plants involved, where
the least resistances occurs. For that reason, there are no generalizations at all on the accuracy respect
to the global load, outside of the singles start up schedules shown in Figure 23. Moreover, in a single
loop, no relation between the accuracy of the compact model and its mass flow rates can be stress,
since there are mutual dependences between loops. This leads to conclude that any loop can’t be

analysed independently.

Nevertheless, combined observation of the graphs and the map in Figure 13 allows one to notice that
the bigger is the loop to witch L77B belongs, the larger is the difference between the two mass flow
rates; evidences of that can be noticed in LTTB I and LTTB 2 respect to LTTB 7 and LTTB 9.
Differences below the 0.01% can be noticed in LTTB_I, LTTB 2 and LTTB 8§ ; such low values occur
because the branches of each loop cause drag and the upstream flow splits equally on the two paths.
Moreover, these differences are not affected by alterations coming from the bigger loops because they

are located in terminal branch.

Differences in the accuracy of Compact Model also occurs between loops that are in terminal paths,

respect to those who are distributed in the inner areas of the network, such as LT7TB 3 and LTTB 4
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respect to LTTB_8 (where no sensible differences occur between the two models). In this case, on the

contrary, the difference between the two mass flow rates is larger in LT7TB_3 and LTTB 4, despite

their dimensions.
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Figure 24 LTTB 1: comparison of mass flow rates

SCENARIO 50%

Compact Model

Full Model

SCENARIO 100%

Compact Model

Full Model

LTTB 1 SCENARIO 25% | SCENARIO 50% | SCENARIO 75% | SCENARIO 100%
Error% <0.01 <0.01 <0.01 <0.01

Compact vs.

Full model

Table 3 Relative errors from the Compact Model
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SCENARIO 50%

Compact Model

Full Model

SCENARIO 100%

Compact Model

Full Model

LTTB 2 SCENARIO 25% | SCENARIO 50% | SCENARIO 75% | SCENARIO 100%
Error% <0.01 <0.01 <0.01 <0.01

Compact vs.

Full model

Table 4 Relative errors from the Compact Model
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SCENARIO 25% SCENARIO 50%

Compact Model Full Model Compact Model Full Model

SCENARIO 75% SCENARIO 100%

Compact Model Full Model Compact Model Full Model

Figure 26 LTTB_3: comparison of mass flow rates

LTTB 3 SCENARIO 25% | SCENARIO 50% | SCENARIO 75% | SCENARIO 100%
Error% 0.57 9.31 8.85 0.29

Compact vs.

Full model

Table 5 Relative errors from the Compact Model
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Figure 27 LTTB_4: comparison of mass flow rates

SCENARIO 50%

Compact Model

Full Model

SCENARIO 100%

Compact Model

Full Model

LTTB 4 SCENARIO 25% | SCENARIO 50% | SCENARIO 75% | SCENARIO 100%
Error% 0.11 22.11 245.2 0.08

Compact vs.

Full model

Table 6 Relative errors from the Compact Model
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Figure 28 LTTB _5: comparison of mass flow rates

LTTB 5 SCENARIO 25% | SCENARIO 50% | SCENARIO 75% | SCENARIO 100%
Error% 1.61 0.12 5.98 0.53

Compact vs.

Full model

Table 7 Relative errors from the Compact Model



9.0 Results and discussions

SCENARIO 25% SCENARIO 50%
192
190
® » 188
&n ED
4 = 186
184
182
Compact Model Full Model Compact Model Full Model
SCENARIO 75% SCENARIO 100%
' ' - 712 | ' '
7101
i w T08 7
=D B
. =< 706 |
704 |
702t
Compact Model Full Model Compact Model Full Model
Figure 29 LTTB 6: comparison of mass flow rates
LTTB 6 SCENARIO 25% | SCENARIO 50% | SCENARIO 75% | SCENARIO 100%
Error% 2.26 2.64 2.93 1.12
Compact vs.
Full model

Table 8 Relative errors from the Compact Model
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Figure 30 LTTB_7: comparison of mass flow rates

LTTB 7 SCENARIO 25% | SCENARIO 50% | SCENARIO 75% | SCENARIO 100%
Error% 0.75 2.15 1.67 0.43

Compact vs.

Full model

Table 9 Relative errors from the Compact Model
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Figure 31 LTTB 8: comparison of mass flow rates

LTTB 8 SCENARIO 25% | SCENARIO 50% | SCENARIO 75% | SCENARIO 100%
Error% <0.01 <0.01 <0.01 <0.01

Compact vs.

Full model

Table 10 Relative errors from the Compact Model
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Figure 32 LTTB 9: comparison of mass flow rates

LTTB 9 SCENARIO 25% | SCENARIO 50% | SCENARIO 75% | SCENARIO 100%
Error% 0.19 71.91 15.40 0.14

Compact vs.

Full model

Table 11 Relative errors from the Compact Model
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9.2 The Compact Model

Evaluation of mass flow rates is now performed along the network using the Compact Model. In the
following, boundary conditions expressed in Figure 23 are used in order to simulate the fluid dynamic
behaviour of the DHN and compare it to results coming from the Full Model. In each scenario, plots
of the network show the mass flow rates derived from the Compact Model, as well as absolute and
relative errors, evaluated to the comparison with the Full Model in each branch of the tree-shape

network.

Examination of these errors proves a very good accuracy of the new model along the fluid network.
Absolute errors illustrated in the previous section in fact, tend to spread only in the loop of origin,
causing alteration on its own circulating flow. This behaviour is evident in SCENARIO 25%, 50%,
and 75% (Figures 34, 38, 42) where higher values occur in branches that are common paths for
several loops. Relative error instead shows the impact that absolute errors have relative to the
reference mass flow rate coming from the Full Model. If a single branch is considered, fluid dynamic

errors can be expressed as:

_ |Gfullk| - |Glineark| ©.1)

Err%, =

100
|Gf“”k|

where G, is a vector expressed according Section 7.2 that contains mass flow rates from the Full

Model, while Gjpeqr contains mass flow rates from the Compact Model. A compared observation of
the first and the third graph of each scenario shows large relative errors where low mass flow rates
occur: this means that the impact of these alterations on the overall fluid dynamic is limited,

particularly respect to the flow handle by power plants.

An energy analysis is also performed in each scenario using the Thermal Model. The temperatures
evaluation in each node of the equivalent tree-shape network is crucial to understand what impact the
use of the Compact Model could have on the heat fluxes, particularly where power plants are. For
that reason, these temperatures are compared to those evaluated using mass flow rates from the Ful/
Model, in order to differentiate heat fluxes from the Full+Thermal Model to those from the
Compact+Thermal Model. To do that, inlet temperatures has to be set in all the inlet nodes: if the real
DHN (with loops) is considered, temperature boundary conditions has to be set in all the barycentre
nodes, while, in the tree-shape network, also Boundary Nodes have to be considered. As in the fluid
dynamic simulation in fact, a higher number of boundary conditions is required to solve the thermal

problem in the equivalent tree-shape network: the number of boundary conditions in the tree-shape
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case increases from NB to NB+NL due to the removal of the L77Bs. Temperature in the inlet
Boundary Nodes are set equal to those evaluated using the Full+Thermal Model, while temperatures

at barycenter nodes can be found in Appendix F.

Temperatures coming from the Compact+Thermal Model are evaluated in each node and depicted
according to the topology of the network in Figures 37, 41, 45 and 49. In these plots a temperature
decreasing can be observed in moving from the centre to the outside of the network. This phenomenon
is due to thermal losses that occur along paths, from the inlet points to the power plants; however, it
tends to be less evident on higher global load levels. Moving from SCENARIO 25% to SCENARIO
100% in fact, a more homogenous temperature distribution can be noted as a consequence of the
increasing fluid velocities. Cooler nodes instead, can be noted where no mass flow rate flows, such

as disabled power stations or users.

Temperatures coming from the Full+Thermal Model are only evaluated in power plants nodes: in
each power station, inlet temperature is compared to the corresponding temperature from the Compact

Model and thermal powers are evaluate in the two cases using a fixed supply temperature.

9.2.1 SCENARIO 25%

Power plants | Moncalieri TN Politecnico | Martinetto TN BIT
mass flow (storages) (storages)
rate [kg/s]

SCENARIO 625 625 0 0 0 0
25%

Table 12 Mass flow rates at the power plants
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Figure 33 Mass flow rates, SCENARIO 25%. Power plants nodes in magenta.
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Mass flow rate - Absolut Errors - SCENARIO 25%

Figure 34 Absolute errors ErrAbs, SCENARIO 25%. Power plants nodes in magenta.

Mass flow rate - Percentage Errors - SCENARIO 25%
— 0.25

0.15
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0.05

Figure 35 Relative errors Err%, SCENARIO 25%. Power plants nodes in magenta.
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Power Temp. [K] Temp. [K] Temp. Heat Flux'* | Heat Flux'’
Plants Errors % [MW] [MW]
Compact+ Full+Thermal Compact+ Full+Thermal
Thermal Model | Model Thermal Model | Model
Moncalieri 319,7 319,5 0,06 191,80 192,30
TN 298.,4 300,9 0,85 247,50 240,95
Politecnico 319,0 304,9 4,61 - -
Martinetto 299.8 299.3 0,16 - -
(storages)
TN 299.8 300,5 0,23 - -
(storages)
BIT 319,6 319,5 0,03 - -
Table 13

!4 Constants specific heat and supply temperature (Appendix G)
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Temperatures - Compact Model - SCENARIO 25%

Figure 36 Temperature distribution from the Compact+Thermal Model
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9.2.2 SCENARIO 50%
Power plants | Moncalieri TN Politecnico | Martinetto TN BIT
mass flow (storages) (storages)
rate [kg/s]
SCENARIO 1875 625 0 0 0 0
50%
Table 14 Mass flow rates at the power plants
Mass Flow Rate.s - Compact Model - SCENARIO 50% -
1 1800
1 1600
4 1400
1200
1000 kgls
800
600
. 400
\ 200
T\

Figure 3735 Mass flow rates, SCENARIO 50%. Power plants nodes in magenta.
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Mass flow rate - Absolut Errors - SCENARIO 50%

Figure 368 Absolute errors, SCENARIO 50%. Power plants nodes in magenta.

Mass flow rate - Percentage Errors - SCENARIO 50%

Figure 39 Relative errors, SCENARIO 50%. Power plants nodes in magenta.
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Power Temp. [K] Temp. [K] Temp. Heat Flux'® | Heat Flux'®
Plants Errors % [MW] [MW]
Compact+ Full+Thermal Compact+
Model Full+Thermal
Thermal Model Thermal Model | Model
Moncalieri 3242 324,1 0,03 180,00 180,260
TN 3229 322,5 0,12 183,40 184,45
Politecnico 299,8 301,4 0,53 - -
Martinetto 3222 306,8 5,02 - -
(storages)
TN 299.0 301,2 0,73 - -
(storages)
BIT 299.8 300,8 0,33 - -
Table 15

!5 Constants specific heat and supply temperature (Appendix G)
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Temperatures - Compact Model - SCENARIO 50%

Figure 40 Temperature distribution from the Compact+Thermal Model
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9.2.3 SCENARIO 75%
Power plants | Moncalieri TN Politecnico | Martinetto TN BIT
mass flow (storages) (storages)
rate [kg/s]
SCENARIO 2000 800 500 0 0 500
75%
Table 16 Mass flow rates at the power plants
Mass Flow Rate.s - Compact Model - SCENARIO 75% -
12200
12000
1 1800
1 1600
| 1400
1200 kg/s
1000
800
600
- 400
‘.'.\ 200
]

Figure 41 Mass flow rates, SCENARIO 75%. Power plants nodes in magenta.
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Mass flow rate - Absolut Errors - SCENARIO 75%
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Figure 42 Absolute errors, SCENARIO 75%. Power plants nodes in magenta.

Mass flow rate - Percentage Errors - SCENARIO 75%
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Figure 43 Relative errors, SCENARIO 75%. Power plants nodes in magenta.
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Power Temp. [K] Temp. [K] Temp. Errors | Heat Flux!® | Heat Flux'’
Plants % [MW] [MW]
Compact+ Full+Thermal Compact+ Full+Thermal
Thermal Model | Model Thermal Model | Model
Moncalieri 327.8 327.,9 0,03 545,22 545,44
TN 327,0 326,5 0,15 221,14 222,57
Politecnico 327,1 326,7 0,12 137,88 138,70
Martinetto 325,4 308.0 5,65 - -
(storages)
TN 299,0 301,3 0,76 - -
(storages)
BIT 327.9 327.9 0,00 136,19 136,22
Table 17

!¢ Constants specific heat and supply temperature (Appendix G)




9.0 Results and discussions

Temperatures - Compact Model - SCENARIO 75%
%

-

Figure 44 Temperature distribution from the Compact+Thermal Model
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Power plants | Moncalieri TN Politecnico | Martinetto TN BIT
mass flow (storages) (storages)
rate [kg/s]
SCENARIO 2000 800 410 690 690 410
100%
Table 18 Mass flow rates at the power plants
Mass Flow Ratgs - Compact Model- SCENARIO 100% -
4 2000
1800
1600
H 1400
1200 kg/s
1000
800
600
400
\ 200

Figure 45 Mass flow rates, SCENARIO 100%. Power plants nodes in magenta.
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Mass flow rate - Absolut Errors - SCENARIO 100%

Figure 4638 Absolute errors, SCENARIO 100%. Power plants nodes in magenta.

Mass flow rate - Percentage Errors - SCENARIO 100%

78

il
oC

kg/s

=]

Figure 47 Relative errors, SCENARIO 100%. Power plants nodes in magenta.
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Power Temp. [K] Temp. [K] Temp. Heat Flux'” | Heat Flux'®
Plants Errors % [MW] [MW]
Compact+ Full+Thermal Compact+ Full+Thermal
Thermal Model | Model Thermal Model | Model
Moncalieri 331,3 331,3 0,00 516,76 516,87
TN 331,0 330,9 0,03 207,59 207,97
Politecnico 330,8 330,7 0,03 106,756 106,93
Martinetto 331,0 330,8 0,06 179,21 179,58
(storages)
TN 331,0 330,9 0,03 179,05 179,37
(storages)
BIT 331,3 331,3 0,00 105,90 105,88
Table 19

'7 Constants specific heat and supply temperature (Appendix G)
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Temperatures - Compact Model - SCENARIO 100%
3

Figure 48 Temperature distribution from the Compact+Thermal Model
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10.0 Conclusions

An alternative algorithm has been developed to the solution of fluid networks that present loops. The
main novelty of this paper is the solution of the fluid dynamic of such networks in a short period of
time, respect to the conventional tools. In this respect, a 60% decrease in computational time has been
observed, mainly due to the substitution of the iterative resolution strategy with a direct one. Mapping
the network is another feature of the presented algorithm: it allows one to observe the thermodynamic

evolutions (mass flow rates, temperatures and computational errors) directly from the map.

The algorithm is able to predict the mass flow rate in each branch of the Turin district heating network
with a good level of accuracy, as a unique function of the fluid supply at the thermal plants. Analysis
of results coming from the new approach shows a mean error rate below the 15% to the comparison
with the ‘traditional’ model, in up to 90% of the branches. The thermal power at the power station is
also evaluated with a good level of approximation: average temperature errors due to the fluid
dynamic alterations are below the 5% in all the power plants. Since a mean temperature evolution has
been used for the simulations, a further in-depth analysis can be made using monitored data as

boundary temperatures.

Considering future developments, availability and rapidity of the algorithm allows one to include this
numeric scheme in thermo-fluid-dynamic software tools that require multiple simulations, in order to

make dynamics analysis, network optimization and operation improvements.
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List of Symbols

A Incidence matrix

A_tree Incidence matrix of the equivalent tree-shape network

a User’s thermal request coefficient

B A pp-by-NL matrix of coefficients

b A pp-by-1 vector of coefficents

BC.b A 1-by-NN vector containig the boundary conditions of the network

CV Control volume

DHN District heating network

G Mass flow rates matrix evaluated in each branch of the network using the Full Model
Gb Vector of known mass flow rates exchanged at the barycenter nodes

G _full Generic row vector from matrix G

G_ext Vector of external mass flow rates

G_Linear A 1-by-NB vector of unknown mass flow rates from the Compact Model
Grrr n A n-by-NL matrix of LTTBs mass flow rates from the Full Model

G_LTTB linear A 1-by-NL matrix containing estimated mass flow rates values in each LT7TB
Gpp Al-by-pp vector containing mass flow rates flowing at the power plants

i Row index

j Column index

k Thermal conductivity

n Number of observations (simulations)

NB Number of Branches

NL Number of Loops

NN Number of Nodes

P Total pressure

pp Number of power plants

Y Conductance
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Appendix A - Empirical laws for pressure differences

Pressure Difference Characteristic expression
1 L G?
APgricr 27 D p S?
1 G*?
APpocar Ezk:ﬂkpgz
APpymp a(v) + b(vy) + c

Where:

f is the friction factor, L the duct length, p density, D Diameter, S the cross section,G the mass flow
rates, S local resistance factor, k is the number of local losses in a branch and a, b, ¢ are coefficients

for the characteristic curve of a pump.
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Appendix B - Hydraulic Resistance

, in each branch, where friction and local losses occurs.
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Junction, barycenter nodes and power plants nodes are collect in a data array in which the x-y

coordinates appear.

x-coordinate |y-coordinate

Node Name |[m] [m]

NMNO1 1391911,8 4988878,2
NMNO2 1391829,2 4988914,2
NMNO3 1391656,2 4988987,4
NMNO04 1391509,2 4989053,2
NMNO5 1391438,4 4989090,3
NMNO6 1391452,9 4989117,2
NMNO7 1391389,0 4988994,4
NMNOS8 1391913,1 4988896,6
NMNO9 1391916,8 4988953,4
NMN10 1391922,0 4989022,8
NMN11 1391894,6 4989030,2
NMN12 1391832,6 4989056,4
NMN13 1391925,4 4989065,9
NMN14 1391930,7 4989135,2
NMN15 1391933,3 4989170,5
NMN16 1392001,1 4989191,4
NMN17 1392113,2 4989160,3
NMN18 1392114,9 4989288,8
NMN19 1392191,4 4989471,4
NMN20 1392121,7 4989155,8
NMN21 1392170,3 4989130,3
NMN22 1392159,4 4989071,7
NMN23 1392192,2 4989118,9
NMN24 1392192,3 4989194,8
NMN25 1392193,9 4989217,3
NMN26 1392199,2 4989289,1
NMN27 1392216,4 4989353,0
NMN28 1392288,2 4989069,3
NMN29 1392317,7 4989089,7
NMN51 1391837,8 4988650,2
NMN52 1391830,5 4988661,7
NMN53 1391830,3 4988609,7
NMN54 1391819,8 4988484,7
NMNS55 1391812,1 4988421,0
NMN56 1391789,3 4988377,6
NMN57 1391830,5 4988310,5
NMN58 1391938,5 4988254,1

NMN59 1391861,3 4988429,0
NMN60 1391884,3 4988430,9
NMN61 1391915,0 4988417,0
NMN62 1391935,0 4988415,6
NMN63 1391943,3 4988408,3
NMN64 1391964,0 4988425,7
NMN65 1391966,6 4988414,2
NMN66 1391986,1 4988434,9
NMN67 1391747,9 4988597,4
NMN68 1391688,3 4988590,2
NMN69 1391670,0 4988685,8
NMN70 1391523,7 4988831,8
NMN71 1391582,5 4988869,5
NMN72 1391437,8 4988866,3
NMN73 1391410,5 4988817,2
NMN74 1391308,8 4988813,1
NMN75 1391643,6 4988548,3
NMN76 1391566,4 4988477,8
NMN77 1391465,2 4988340,9
TMNCAS 1391984,8 4988647,0
TMNCRE 1391982,8 4988647,1
AFCH1 1395408,6 4983065,3
AFDO1 1392282,9 4993415,5
AFPO1 1395762,0 4983820,3
AFS01 1395445,2 4984047,6
AFS02 1395273,5 4984253,7
AFS03 1394577,9 4985145,9
AFS04 1394325,3 4985790,9
AFS05 1394587,6 4989433,3
AFS06 1394366,0 4990651,3
AFS07 1392158,0 4990145,8
AFSA1l 1395050,0 4984664,2
CA001 1395454,8 4983061,8
CA002 1395350,1 4983069,8
CA005 1395061,9 4984651,8
CA006 1395030,8 4984684,3
CA007 1394955,6 4984995,1
CA009 1395169,9 4986602,2
CA011 1395468,5 4988299,9
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x-coordinate

y-coordinate

Node Name |[m] [m]

CA012 1395439,8 49882924
CA014 1394588,5 4985785,1
CAO16 1394309,2 4985786,5
CA017 1393915,6 4985787,0
CA018 1393723,1 4985819,4
CA020 1393332,6 4985887,0
CA021 1393152,1 4985894,7
CA022 1393290,9 4986181,0
CA023 1393439,1 4986449,4
CA024 1393557,3 4986759,1
CA025 1393566,6 4986777,9
CA026 1393831,7 4987276,9
CA027 1393949,8 4987525,7
CA029 1393574,9 4987675,8
CAO030 1393547,7 4987692,3
CA031 1393237,5 4987865,4
CA032 1393202,6 4987883,9
CA034 1392418,2 4988281,4
CA035 1392386,5 4988318,1
CA037 1392807,7 4985858,2
CA038 1392269,5 4986049,0
CAO039 1392261,5 4986064,0
CA040 1392217,3 4986092,4
CA041 1391408,6 4986496,0
CA042 1391215,7 4986020,7
CA045 1395101,6 4985711,0
CA046 1395152,0 4985718,9
CAO051 1395462,5 4984062,6
CAO052 1395706,6 4983874,2
CAO053 1395811,7 4983757,3
CAO055 1394591,3 4985153,4
CAO056 1394556,3 4985133,9
CA061 1395383,8 4988530,5
CA062 1395350,0 4988607,4
CA063 1394983,7 4988772,6
CAO064 1394975,7 4988692,7
CA065 1394579,5 4989406,1
CA066 1394598,4 4989464,0
CA067 1394093,9 4991631,7
CA068 1394051,4 4991632,5
CA069 1394213,9 4991690,5
CA070 1394219,2 4991772,6
CA071 1394255,0 4991921,6
CA072 1394198,5 4991968,0
CA073 1394224,4 4990780,2

CA074 1394209,8 4990733,4
CA075 1393670,1 4989975,0
CA076 1393619,0 4989929,6
CA077 1392581,1 4990282,1
CA078 1392483,9 4990325,4
CA079 1392446,6 4991690,0
CA080 1392477,3 4991747,7
CA082 1394382,2 4990643,6
CA083 1394351,9 4990659,0
CB001 1395986,5 4983727,5
CB005 1394407,1 4985116,1
CBO06 1395263,8 4984635,2
CB00O7 1394746,2 4985089,0
CB0O09 1394892,7 4985502,9
CBO11 1395307,5 4985760,5
CB0O12 1395271,2 4986958,3
CB0O13 1395451,2 4987368,6
CB014 1395653,8 4987610,1
CB016 1395413,2 4987971,2
CB017 1395456,4 4988133,5
CB019 1393789,8 4985977,5
CB020 1393791,0 4985551,9
CB021 1394112,1 4985454,8
CB023 1393804,6 4985214,4
CB024 1393755,5 4987031,9
CB025 1393432,3 4986116,8
CB026 1393159,3 4986249,0
CB027 1393308,2 4986798,9
CB028 1392350,4 4985746,3
CB029 1390677,9 4986062,8
CB030 1393624,9 4987418,4
CB031 1393320,2 4987799,0
CB033 1393079,1 4988152,8
CB034 1392952,7 4987844,8
CB035 1393907,5 4987788,4
CB036 1394181,1 4987783,8
CBO37 1394118,0 4988295,1
CB038 1394446,5 4988125,7
CB054 1392520,8 4988039,7
CB0O55 1392727,7 4988339,9
CB056 1392372,5 4988315,6
CB057 1392266,7 4988670,9
CB06B 1395291,4 4984267,6
CB10B 1395132,8 4986530,7
CB15B 1395527,5 4988209,0
CB17B 1395337,2 4988374,1
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Appendix C - Nodes coordinates

x-coordinate

y-coordinate

Node Name |[m] [m]

CB261 1392100,6 4995000,7
CB263 1392110,5 4995000,4
CB264 1392105,5 4995000,6
CB265 1392095,9 4995001,0
CB266 1392090,8 4995001,1
CB291 1392075,0 4995001,3
CB292 1392070,0 4995001,6
CB294 1392064,8 4995001,7
CB29B 1391546,6 4986417,8
CB401 1394921,5 4989060,5
CB402 1394666,1 4989361,5
CB403 1394594,3 4989395,6
CB404 1394571,0 4989475,2
CB406 1394830,6 4990032,2
CB410 1394920,2 4989776,2
CB413 1394956,7 4990366,0
CB418 1394213,3 4991009,5
CB419 1394120,6 4991145,7
CB420 1394011,6 4990513,8
CB422 1393589,7 4989933,8
CB423 1393691,7 4989968,0
CB424 1393261,9 4990047,6
CB426 1392884,2 4991011,4
CB429 1392336,4 4991245,3
CB430 1392191,3 4990803,5
CB431 1392083,5 4990548,1
CB432 1392324,0 4991355,3
CB433 1392129,1 4990826,4
CB440 1394268,8 4991913,5
CB441 1394054,2 4992045,8
CB442 1394039,6 4991634,1
CB443 1393462,0 49921924
CB445 1392982,0 4992216,4
CcB447 1392501,6 4991749,6
CB456 1392103,9 4989506,0
CB462 1393887,3 4992507,1
CB463 1393622,5 4992915,0
CB480 1393808,0 4993267,6
CBV60 1392083,6 4994993,2
CBV90 1392095,5 4994967,3
CMO001 1395274,8 4984076,7
CMO002 1394797,1 4985149,2
CMO003 1395709,0 4987571,6
CMO006 1395496,7 4988217,4
CMO007 1393966,1 4985765,5

CMO008 1392508,4 4985957,3
CMO009 1393809,6 4987335,0
CMO010 1394389,9 4988351,6
CMO011 1393707,1 4988697,3
CMO012 1393696,5 4988918,2
CMO013 1393320,9 4989182,8
CMO014 1392682,2 4989209,8
CMO015 1394598,9 4989395,4
CMO016 1394570,8 4989471,9
CMO019 1394384,9 4990616,9
CM021 1394505,8 4992808,3
CM022 1392274,8 4991275,8
CMO024 1392153,1 4990258,4
Cv001 1395253,9 4984238,0
Cv002 1393334,3 4985853,5
Cvoo3 1395338,8 4988369,8
Cvoo4 1394379,1 4988353,3
CVO005 1394682,5 4988239,4
CV006 1395019,9 4988753,7
Cvoo7 1395096,9 4988727,9
Cvo08 1395214,4 4988665,3
CVv009 1394925,3 4989061,1
Cv010 1394942,1 4990201,4
Cv011 1394744,7 4989815,9
Cv012 1394013,3 4990513,8
Cv013 1394012,7 4990510,5
Cvo14 1394012,1 4990512,2
Cvo15 1392644,4 4990208,0
CV016 1392641,0 4990205,9
Cvo17 1392641,9 4990208,1
CV018 1392081,1 4990547,5
Cv019 1392081,3 4990543,7
CVv020 1392079,9 4990546,9
Cv021 1394210,9 4991662,3
Cv022 1394096,7 4992279,3
Cv023 1394111,7 4992279,1
Cv024 1394088,5 4992332,6
CVv025 1392962,1 4992234,8
CV026 1392948,0 4992295,5
Cvo27 1392972,5 4992234,8
Cv029 1394959,8 4990365,3
CV030 1391119,3 4995178,2
Cv031 1391907,7 4994942,5
Cv032 1391847,7 4994552,6
Cv033 1392221,7 4993064,2
Cv034 1392222,2 4993067,7
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Appendix C - Nodes coordinates

x-coordinate

y-coordinate

Node Name |[m] [m]

CV035 1392993,5 4993099,3
CV036 1393413,1 4993236,8
CV038 1393682,8 4993178,1
CV039 1394060,1 4992428,8
Cvo41 1392156,1 4989317,0
NC001 1394924,4 4989062,4
NC002 1394667,0 4989363,4
NCO003 1394595,1 4989397,2
NC004 1394570,1 4989472,1
NC005 1394737,0 4989819,9
NC006 1394882,7 4989814,5
NC007 1394886,5 4989811,6
NC008 1394842,9 4990026,0
NC009 1395015,4 4990346,6
NC010 1395016,3 4990348,3
NCO11 1395019,3 4990335,7
NC012 1395104,7 4990265,8
NCO013 1394958,8 4990367,1
NC014 1394573,4 4990475,0
NC015 1394421,1 4990536,3
NCO016 1394209,8 4990725,3
NC017 1394208,4 4990725,1
NC018 1394013,0 4990512,1
NCO019 1394011,4 4990512,4
NC020 1393684,1 4989973,5
NC021 1393674,1 4989975,3
NC022 1393587,0 4989942,5
NC023 1393256,7 4990056,3
NC024 1392654,6 4990214,4
NC025 1392642,7 4990206,9
NC026 1392717,3 4990699,7
NC027 1392715,3 4990700,1
NC028 1392820,8 4990712,7
NC029 1392822,6 4990720,5
NCO030 1392607,9 4990280,8
NC031 1392085,2 4990553,1
NC032 1392081,5 4990548,7
NC033 1392080,8 4990546,7
NC034 1392164,5 4990825,5
NC035 1392168,9 4990838,6
NC036 1392303,1 4991252,1
NC037 1392308,9 4991269,6
NC040 1392335,4 4991350,5
NC041 1392492,6 4991757,7
NC043 1392911,0 4992233,3

NC044 1392968,2 4992236,6
NC045 1392975,7 4992256,9
NC046 1392944,3 4992262,8
NC047 1394199,2 4991007,4
NC048 1394174,2 4991182,1
NC049 1394180,7 4991531,2
NCO50 1394217,5 4991683,9
NC051 1394256,2 49919124
NC052 1394258,9 4991911,1
NC053 1394072,0 4992033,8
NC054 1394088,1 4992281,2
NCO55 1394107,9 4992282,1
NC056 1394105,4 4992296,5
NC057 1394087,7 4992299,0
NC058 1394109,9 4992293,2
NCO059 1393778,3 4992270,9
NCO60 1393662,7 4992264,8
NC061 1393449,6 4992256,0
NC062 1393347,2 4992259,2
NC063 1393269,0 4992237,2
NC064 1392987,8 4992235,1
NC065 1392084,1 4990534,5
NC066 1392173,8 4990199,8
NNOO1 1391108,8 4995260,2
NNO002 1391110,7 4995245,6
NNOO3 1391680,0 4994899,1
NN0OO4 1391899,1 4994850,0
NNOO5 1392082,6 4994967,8
NNOO6 1391977,4 4994672,1
NNOO7 1391884,4 4994618,7
NNOO8 1391861,4 4994576,8
NNOO9 1392235,4 4994322,7
NNO10 1392338,6 4994179,0
NNO011 1392181,5 4993798,1
NNO12 1392220,2 4993781,5
NNO13 1392294,9 4993442,9
NNO014 1392270,6 4993390,0
NNO15 1392210,2 4993182,7
NNO16 1392208,0 4993075,9
NNO17 1394087,5 4992303,0
NNO18 1394028,6 4992423,1
NNO19 1394086,9 4992428,6
NNO020 1394361,9 4992472,2
NNO021 1394430,6 4992478,6
NN022 1394436,6 4992532,5
NNO028 1393870,3 4992502,4
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Appendix C - Nodes coordinates

x-coordinate

y-coordinate

Node Name |[m] [m]

NNO029 1393603,6 4992930,6
NNO30 1393673,9 4993180,1
NNO031 1393776,9 4993284,8
NNO032 1393568,0 4993203,7
NNO033 1393391,0 4993110,0
NNO034 1392994,3 4993136,0
NNO035 1392945,0 4992274,7
NNO36 1392951,0 4992313,3
NNO37 1392978,1 4992506,5
NNO038 1392973,2 4992507,3
NNO039 1392995,8 4992724,0
NNO040 1392997,1 4993063,0
NN041 1392139,4 4993018,0
NNO042 1392022,8 4992789,8
NNO043 1391924,2 4992574,1
NNO044 1391920,2 4992565,5
NS001 13953009,2 4983073,0
NS002 1395349,4 4983681,5
NS003 1395350,3 4983834,1
NS004 1395266,0 4984072,0
NS005 1395429,5 4984033,9
NS006 1395482,6 4984046,4
NS007 1395501,3 4984004,5
NS008 1395617,2 4983967,9
NS009 1395288,2 4984265,7
NS010 1395104,1 4984645,4
NS011 1395136,9 4984690,0
NS012 1394854,0 4985175,7
NS013 1394732,1 4985121,5
NS014 1394830,0 4985502,9
NS015 1394878,9 4985701,0
NSO16 1395306,6 4985731,7
NS017 1395306,9 4985729,8
NS018 1394982,4 4986176,0
NS019 1395145,9 4986590,3
NS020 1395216,0 4986703,6
NS021 1395300,4 4986924,8
NS022 1395435,5 4987026,9
NS023 1395537,4 4987225,5
NS024 1395716,4 4987597,4
NS025 1395430,5 4987994,5
NS026 1395422,9 4987997,0
NS027 1395415,9 4987980,7
NS028 1395469,8 4988124,8
NS029 1395494,3 4988209,0

NS030 1395511,8 4988213,7
NS031 1395337,9 4988365,5
NS032 1395210,2 4988651,0
NS033 1395227,3 4988709,6
NS034 1395250,6 4988790,0
NS035 1395328,1 4988753,1
NS036 1395351,6 4988741,7
NS037 1395412,0 4988727,8
NS038 1395437,6 4988719,9
NS039 1395513,3 4988697,9
NS040 1395575,8 4988680,3
NS041 1395618,3 4988667,4
NS042 1395630,0 4988664,1
NS043 1395704,6 4988642,9
NS044 1395708,9 4988631,6
NS045 1395292,3 4988933,3
NS046 1395293,2 4988936,7
NS047 1395304,5 4988940,6
NS048 1395385,6 4988918,1
NS049 1395453,8 4988899,1
NSO050 1395574,1 4988865,5
NS051 1395575,1 4988867,7
NS052 1395680,2 4988835,6
NS053 1395745,0 4988818,7
NS054 1395807,8 4988912,2
NS055 1395852,8 4988977,9
NS056 1395888,3 4989044,1
NS057 1395939,8 4989147,7
NS058 1396011,9 4989030,4
NS059 1394985,7 4988774,9
NS060 1394630,0 4985763,4
NS061 1394342,3 4985795,5
NS062 1393970,4 4985786,3
NS063 1393970,3 4985782,7
NS064 1393904,6 4985531,3
NS065 1393901,1 4985519,3
NS067 1393709,0 4985789,6
NS068 1393705,7 4985811,1
NS069 1393313,6 4985859,9
NS070 1393316,2 4985868,3
NS071 1393209,5 4985892,4
NS072 1392531,9 4985948,3
NS073 1391563,3 4986429,8
NS074 1391424,4 4986508,9
NS075 1391275,7 4986192,9
NS076 1393293,0 4986169,6
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Appendix C - Nodes coordinates

x-coordinate

y-coordinate

Node Name |[m] [m]

NS077 1393513,0 4986724,4
NS078 1393639,8 4986888,1
NS079 1393712,7 4987042,0
NS080 1393716,8 4987043,7
NS081 1393723,4 4987064,8
NS082 1393858,2 4987331,6
NS083 1393930,0 4987558,8
NS084 1393341,5 4987824,7
NS085 1393029,1 4987992,3
NS086 1392981,0 4987899,7
NS087 1392959,6 4987879,5
NS088 1393011,0 4988001,2
NS089 1393023,5 4988012,5
NS090 1393007,9 4988002,8
NS091 1392871,5 4988076,9
NS092 1392678,9 4988181,1
NS093 1392664,0 4988189,1
NS094 1392626,1 4988189,4
NS095 1392596,2 4988184,8
NS096 1392387,3 4988339,7
NS097 1392387,2 4988337,3
NS098 1392251,1 4988531,6
NS099 1392253,5 4988531,4
NS100 1392259,6 4988544,6
NS101 1392080,1 4988635,2
NS102 1391986,8 4988673,2
NS103 1391951,9 4988647,0
NS105 1393981,8 4987630,3
NS106 1394025,3 4987722,0
NS107 1394026,5 4987724,6
NS108 1393925,4 4987784,5
NS109 1394072,4 4987821,0
NS110 1394127,0 4987806,0
NS111 1394085,2 4987850,7
NS112 1394137,0 4987964,8
NS113 1394189,4 4988068,3
NS114 1394261,3 4988217,5
NS115 1394385,6 4988161,2
NS116 1394267,8 4988232,6
NS117 1394269,3 4988235,7
NS118 1394388,3 4988348,7
NS119 1394217,9 4988445,3
NS120 1394047,5 4988508,6
NS121 1393977,1 4988560,6
NS122 1393839,5 4988620,6

NS123 1393769,5 4988868,4
NS124 1393718,8 4988914,0
NS125 1393663,1 4988935,1
NS126 1393555,5 4988989,6
NS127 1393474,1 4989103,4
NS128 1393420,0 4989133,5
NS129 1393334,8 4989176,9
NS130 1393332,4 4989178,1
NS131 1393123,1 4989287,9
NS132 1393117,9 4989290,5
NS133 1393006,1 4989347,6
NS134 1392920,6 4989391,0
NS135 1392917,9 4989392,3
NS136 1392877,3 4989413,0
NS137 1392809,2 4989383,9
NS138 1392800,3 4989269,7
NS139 1392699,0 4989201,3
NS140 1392268,7 4989256,8
NS141 1392269,7 4989258,7
NS142 1392209,5 4989284,3
NS143 1392201,6 4989269,3
NS144 1391989,0 4989183,6
NS145 1391899,9 4988909,1
NS146 1391929,7 4988654,6
NS147 1396037,0 4989097,9
NS148 1395617,8 4988852,3
NS150 1394632,1 4988211,9
NS151 1394679,1 4988232,1
NS152 1394685,6 4988247,0
NS153 1394885,5 4988634,6
NS154 1392129,6 4989511,8
NS155 1392149,4 4989877,9
NS156 1392148,4 4989883,3
P002 1395307,7 4983843,3
P0O10 1394964,9 4986192,0
P0O15 1395420,4 4987979,3
P0O58 1391977,6 4988681,0
PO61 1394221,3 4988460,0
P063 1393972,2 4988550,9
P065 1393838,1 4988617,9
P066 1393766,8 4988869,8
P067 1393716,8 4988910,2
P068 1393658,3 4988925,6
PO6A 1395621,1 4983970,1
P070 1393484,9 4989117,7
P0O71 1393415,8 4989132,3
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Appendix C - Nodes coordinates

x-coordinate

y-coordinate

Node Name |[m] [m]

P072 1393331,3 4989169,7
P073 1393334,9 49891829
P074 1393120,8 4989280,0
P0O75 1393121,6 4989294,8
P0O76 1392915,0 4989380,8
P0O77 1392923,7 4989403,2
P0O78 1392805,4 4989384,3
P0O79 1392696,5 4989196,5
P0O81 1392798,5 4989269,8
P082 1392874,6 4989409,8
P090 1394881,2 4988637,6
P091 1394629,8 4988207,4
P092 1394032,7 4987531,6
P094 1393007,3 4989341,8
P095 1393554,4 4988993,6
P097 1392278,5 4989256,4
P301 1395230,4 4988712,9
P302 1395327,2 4988761,1
P303 1395348,8 4988741,5
P304 1395413,2 4988729,5
P305 1395428,1 4988712,3
P306 1395527,7 4988707,2
P307 1395566,0 4988690,4
P308 1395621,9 4988659,4
P309 1395625,7 4988677,4
P310 1395707,4 4988625,6
P311 1395722,7 4988634,5
P312 1395288,6 4988931,4
P313 1395302,2 4988944,4
P314 1395459,4 4988902,2
P315 1395582,0 4988871,9
P316 1395678,9 4988850,8
P317 1395802,4 4988916,9
P318 1395857,5 4988980,0
P319 1395381,7 4988925,6
P320 1395563,6 4988872,3
P322 1395894,1 4989048,4
P325 1396002,7 4989013,4
P326 1396045,5 4989098,9
P329 1395618,6 4988848,1
P407 1394871,5 4989811,0
P408 1394882,3 4989829,4
P411 1395108,5 4990273,1
P412 1395269,8 4990228,3
P414 1394416,0 4990526,4

P415 1394207,1 4990724,8
P421 1393942,1 4990501,1
P425 1392828,6 4990710,6
P427 1392715,4 4990706,5
P457 1392111,1 4989871,0
P461 1394095,0 4992441,5
P464 1393034,5 4992734,5
P465 1393013,5 4993067,1
P467 1392046,5 4992780,9
P468 1391936,8 4992565,9
P469 1392124,6 4993020,5
P470 1391897,3 4992569,2
P490 1394369,5 4992483,2
P491 1394439,9 4992472,0
P492 1394448,6 4992539,6
PMO001 1395269,4 4988770,1
PMO002 1395253,5 4988799,5
PMO003 1395380,4 4988919,5
PMO004 1395698,6 4988644,6
PMO0O05 1395716,4 4988656,2
PMO006 1395753,7 4988807,3
PMO007 1395760,7 4988830,8
PMO008 1395737,3 4988820,9
PMO009 1395849,8 4988966,0
PMO010 1395951,9 4989141,5
PMO011 1395944,7 4989156,7
PMO012 1395018,8 4990345,6
PMO026 1392486,8 4988249,7
R109 1394896,1 4985710,5
R110 1394903,5 4985734,6
R1BI 1394905,9 4985707,5
R1IMO 1394888,1 4985712,9
R10S 1394915,0 4985731,1
R1VI 1394892,0 4985738,1
R206 1394023,2 4987535,4
R207 1394031,1 4987531,9
R2IN 1394006,1 4987519,6
R2MN 1394015,4 4987539,0
R2TU 1394031,2 4987532,3
R3IN 1392978,6 4985909,5
R3US 1392965,9 4985907,9
R402 1392227,6 4993066,8
R4AM3 1392227,2 4993063,8
R4R1 1392234,4 4993073,0
R4R2 1392244,3 4993071,7
RATC 1392224,6 4993067,5
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Appendix C - Nodes coordinates

x-coordinate

y-coordinate

Node Name |[m] [m]

RATE 1392224,2 4993063,9
RATN 1392225,5 4993074,1
RPNO6 1394254,2 4990856,6
RPNU 1394225,1 4990855,4
RPOO06 1394255,8 4990845,6
RPOU 1394226,7 4990844,4
RPSO6 1394257,3 4990835,4
RPSU 1394228,1 4990834,2
TBIO1 1395396,1 4985742,6
TBIO2 1395395,5 4985747,5
TBIO5 1395386,2 4985741,3
TBIO6 1395376,3 4985740,1
TBICA 1395405,4 4985748,8
TBIU 1395366,3 4985738,8
TMNO1 1391996,8 4988626,1
TMNO3 1391982,6 4988637,1
TMNO4 1391983,0 4988642,1
TMNO5 1391991,9 4988626,4
TMNO6 1391981,9 4988627,1
TMNO7 1391928,4 4988636,0
TMNAL 1391928,6 4988638,5
TMNMO 1392006,8 4988625,3
TMNTS 1391930,9 4988635,8
TMOO01 1395549,7 4983011,1
TMOO02 1395686,5 4983086,8
TMO03 1395566,9 4983056,1

TMO004 1395544,8 |  4983013,7
TMO07 1395533,9|  4983002,4
TMO08 1395525,1|  4983007,1
TMOGT2 1395544,6|  4983067,3
TMOGT3 1395697,6| 4983108,9
TMOU 1395519,7|  4983018,3
TPO15 1394256,3|  4990859,9
TPOO1 1394279,8|  4990854,1
TPO12 1394274,9|  4990853,4
TPO13 1394269,6|  4990854,7
TPO14 1394259,8|  4990853,2
TPO16 1394255,2|  4990850,1
TPO17 1394256,9|  4990838,4
TPOCA 1394280,3|  4990851,2
TTNO1 1390944,9|  4995463,2
TTNO2 1390989,5|  4995353,8
TTNO3 1390938,5|  4995393,3
TTNO4 1390945,1|  4995383,3
TTNOS 1390951,7|  4995373,3
TTNO6 1391019,2|  4995277,2
TTNO7 1391014,2|  4995273,9
TTN15 1391015,7| 49952717
TTN16 1391017,1| 4995269,5
TTN17 1391022,6| 4995261,1
TTNCA 1390934,8|  4995398,9
TTNCG 1390923,2| 49954489
TTNU 1391028,1| 4995252,8
CM023 1392147,2|  4990108,6
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Appendix D - Barycenters data

Appendix D - Barycenters data

94

Limit mass flow rate values exchanged in each barycenter node are considered (Table ....) in order

to find a linear relation between the global mass flow rate at the power plants and the user request.

Barycenter Node Name

Gbmax [kg/s]

NMNO2 2,584
NMNO3 4,276
NMNO4 1,393
NMNO6 2,399
NMNO7 1,36
NMNO8 8,248
NMNO9 3,735
NMN11 2,761
NMN12 8,757
NMN13 3,735
NMN14 7,69
NMN15 8,207
NMN16 1,337
NMN18 1,195
NMN19 13,908
NMN20 2,59
NMN22 7,29
NMN24 1,192
NMN25 2,338
NMN26 2,597
NMN27 15,513
NMN29 27,746
NMN52 7,606
NMN54 0,16
NMN56 1,735
NMN57 1,71
NMN58 4,273
NMN59 1,974

NMN60 0,787
NMN61 1,839
NMNG63 3,927
NMN64 1,574
NMNG65 0,747
NMN66 1,47
NMN69 5,002
NMN71 3,514
NMN72 4,45
NMN73 2,28
NMN74 5,456
NMN75 1,887
NMN76 8,207
NMN77 53,644
CB001 16,272
CB005 11,318
CB006 28,364
CB007 37,525
CB009 34,176
CB011 45,041
CB012 203,517
CB013 63,056
CB014 80,045
CBO16 56,634
CB017 17,819
CB019 26,665
CB020 31,631
CB021 22,812
CB023 16,985
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Barycenter Node Name

Gbmax [kg/s]

CB024 81,175
CB025 43,578
CB026 85,849
CB027 82,81
CB028 122,566
CB029 57,414
CB030 69,062
CBO31 51,369
CB033 123,174
CB034 54,434
CB035 89,948
CB036 46,821
CB037 20,35
CBO38 64,214
CBO54 44,144
CBO55 91,469
CBO56 53,076
CBO57 31,422
CBO6B 0,186
CB10B 39,466
CB15B 108,001
CB17B 43,934
CB261 16,375
CB263 21,443
CB264 9,713
CB265 23,687
CB266 0,615
CB291 135,592
CB292 37,209
CB294 26,431
CB29B 31,741
CB401 7,239

CB402 14,32
CB403 8,118
CB404 31,134
CB406 90,411
CB410 68,595
CB413 69,47
CB418 131,072
CB419 34,815
CB420 12,3
CB422 33,989
CB423 5,661
CB424 37,736
CB426 26,243
CB429 102,954
CB430 30,227
CB431 7,054
CB432 136,544
CB433 24,719
CB440 156,866
CB441 52,9
CB442 69,908
CB443 54,802
CB445 45,692
CB447 36,222
CB456 2,976
CB462 18,522
CB463 15,051
P002 136,954
PO10 148,531
PO15 14,823
PO58 31,543
PO61 3,511
P063 75,202
P065 6,902
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Barycenter Node Name

Gbmax [kg/s]

PO67 19,704
P0O68 16,201
PO6A 2,649
P0O70 59,702
PO71 3,814
P0O72 20,681
PO73 4,31
PO74 15,568
PO75 12,391
PO76 12,774
PO77 9,107
P0O78 17,564
PO79 47,944
P0O81 18,775
P082 2,8
P0OS0O 4,97
P092 17,936
P0O95 14,211
P0O97 4,382
P301 8,912
P302 5,675
P303 2,808
P304 0,966
P305 2,522
P306 11,249
P308 2,977
P309 7,252
P310 8,275
P311 14,687

P312 8,22
P313 3,898
P314 0,811
P315 6,663
P316 3,072
P317 4,472
P319 8,869
P320 0,327
P322 11,799
P325 39,937
P326 1,404
P407 14,504
P408 43,949
P411 43,139
P412 17,312
P414 62,886
P415 1,705
P421 62,452
P425 13,111
P427 4,717
P461 7,103
P464 14,478
P465 7,655
P467 20,394
P468 21,562
P469 21,645
P470 13,727
P490 9,503
P491 14,838
P492 20,435
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Appendix E - Power plants limit mass flow rate

Power Plants Gpp_max [kg/s]

Moncalieri 2070
TorinoNord 876
TorinoNord-Storages 694
Politecnico 1015
Martinetto-Storages 694
BIT 1015
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If the return network is considered, temperature in each barycenter node has to be set as boundary
condition to solve the thermal problem. For the sake of simplicity, in a single scenario these
temperatures are set equals to a unique value, that has been identified according to historic data

provides by IREN. Temperatures of the mass flow rates injected in the barycenter nodes is reported

in the Table below.

Inlet Temperature [K]

SCENARIO 25% 322
SCENARIO 50% 325.2
SCENARIO 75% 327

SCENARIO 100% 331.7
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Specific Heat [J/kg K] Cp 4186
Fluid Density [kg/m’] p 1000
Global Conductance [W/m?K] U 0.06
T Supply [K] Tsup 393
T Environment [K] Tony 280
Friction Factor [-] f 0.001
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