POLITECNICO DI TORINO

Collegio di Ingegneria Gestionale

Corso di Laurea Magistrale in Ingegneria Gestionale

Tesi di Laurea di II Livello

Valutazione delle prestazioni metrologiche di un sistema fotogrammetrico in condizioni statiche

Relatore

Prof. Luca Mastrogiacomo

Correlatore

Ing. Gianfranco Genta

Candidato

Davide Tallone

Indice

Abstract
Introduzione
1. Descrizione dell'attrezzatura
1.1 Laser tracker
1.2 Sistema EICAS (ARGO)
1.2.1 Funzionamento del sistema ARGO9
1.3 Robot industriale
2. Caratteristiche metrologiche valutate
3. Prove statiche
3.1 Progettazione
3.2 Testing
3.2.1 Attività preliminari
3.2.2 Set-up sistema EICAS19
3.3 Metodo21
3.4 Analisi dei dati
Conclusioni
Appendice
Bibliografia e sitografia
Ringraziamenti

Abstract

In seguito ad attività di ricerca ed innovazione sviluppate nel corso degli anni, si è giunti a concepire un sistema di misura senza contatto tramite multicamera. Tale metodologia appare interessante per varie aree di applicazione, in particolare per lo spazio e l'automazione industriale. La metodologia fu originariamente sviluppata in applicazioni per lo spazio, specificamente per la determinazione dell'assetto di veicoli spaziali tramite l'osservazione delle stelle. È stata poi trasferita e sperimentata con successo in applicazioni industriali nel campo della robotica e macchine utensili. Mentre in passato i sistemi di controllo della robotica assistiti dalla metrologia erano limitati nel loro grado di aggiornamento della posizione, tanto che il robot doveva essere fermato per ricevere l'aggiornamento delle coordinate metrologiche, alcuni sforzi recenti sono stati indirizzati verso il controllo dei robot usando dati di metrologia forniti in tempo reale.

In questo scritto si propone la valutazione delle prestazioni metrologiche del sistema fotogrammetrico EICAS in condizioni statiche. Dopo una breve introduzione di carattere teorico in cui vengono presentati gli strumenti di misura utilizzati e le caratteristiche metrologiche valutate, si procede con una descrizione dettagliata dell'esperimento svolto presso il laboratorio del DIGEP del Politecnico di Torino. Si possono identificare tre fasi del progetto: progettazione, testing e analisi dei dati. Vengono messe a confronto le prestazioni prodotte dal sistema fotogrammetrico EICAS con quelle del laser tracker, il quale funge da sistema di riferimento. Al termine si traggono le conclusioni riguardo al campo di adeguatezza del sistema fotogrammetrico EICAS.

Introduzione

Nella letteratura scientifica si possono trovare descrizioni di test sia statici che dinamici eseguiti con laser tracker.

Le specifiche e le modalità di testing del laser tracker sono fatte molto spesso in accordo con lo standard ASME B89.4.19 [1] o la guida VDI/VDE 2617-10 [2]. La maggior parte di questi test consiste nelle misurazioni punto-punto, dove ogni coppia di punti ricopre il ruolo sia di lunghezza di taratura sia di lunghezza del test. Per alcune realizzazioni della lunghezza di riferimento, la taratura della lunghezza avviene sul posto, mentre altre realizzazioni richiedono la taratura prima di iniziare con le prove. Oltre alle lunghezze del test, il laser tracker serve per misurare una sfera di prova per determinare la "prestazione di sondaggio" del sistema. Lo standard ASME ha anche una serie di test a due facce, per cui un catarifrangente è misurato in una singola posizione mentre gli assi rotanti del tracker sono ruotati cosicché la posizione è rilevata con una diversa combinazione di angoli degli assi, sfruttando la ridondanza possibile in questi strumenti. Questi test a due facce sono altresì descritti in un'appendice della guida VDI/VDE. Lo standard ISO 10360-10 [3] contiene requisiti simili ai documenti ASME e VDI/VDE, con test aggiuntivi di elementi accessori che consistono di uno stilo o scanner di linea per la raccolta dei punti. L'obbiettivo di questa parte di ISO 10360 è di fornire una procedura di testing ben definita per a) i produttori di laser tracker che devono specificare le prestazioni in base agli errori massimi permessi (MPEs), e b) per consentire di testare queste specifiche usando lunghezze di prova tracciabili e tarate, sfere di prova e piani. I vantaggi di questi test sono che il risultato ottenuto ha una tracciabilità diretta nell'unità di lunghezza, il metro, e che esso dà informazioni su come il laser tracker opererà in misurazioni di lunghezza simile.

In ciascun documento descritto sopra, il metodo di raccolta dei punti è di natura statica, dove il sistema sotto esame è fisso nello spazio, e molti campioni possono essere presi dallo strumento durante il tempo in cui avviene la misurazione.

Successivamente sono stati redatti articoli relativi a test dinamici, come "Dynamic testing of laser trackers" [4] e "Experimental comparison of dynamic tracking performance of iGPS and laser tracker" [5].

Lo scopo del lavoro descritto nel primo articolo è di esaminare diverse tecniche di testing che richiedono che il sistema osservato (un catarifrangente montato sfericamente, o SMR) dal laser tracker sia in movimento continuo durante le prove, dato che i produttori dello strumento permettono e pubblicizzano questo metodo di raccolta dei punti. La verifica dello strumento è spesso basata sulla specificazione dei massimi errori permessi (MPEs) dallo strumento sotto differenti condizioni dei test. Al fine di ottenere un errore, ci deve essere un riferimento rispetto al quale i risultati misurati sono comparati. Per prove dinamiche sono utilizzate figure geometriche rappresentanti un piano, un cerchio o una linea. In ogni caso, gli errori nella geometria di riferimento sono piccoli in confronto agli strumenti da testare.

Nel secondo articolo viene presentata la valutazione sperimentale delle prestazioni di misurazione in condizioni dinamiche da parte di un sistema metrologico iGPS, il quale traccia le traiettorie di un

robot industriale. Lo stesso esperimento è anche ripetuto usando un laser tracker. Oltre a mostrare i risultati delle prove, viene anche proposto un nuovo metodo per confronti di ripetibilità dinamica di strumenti di tracking.

È da queste basi letterarie che ha avuto origine il progetto realizzato presso il Politecnico di Torino.

Il problema del tracking del movimento di oggetti, attrezzature o operatori in ambienti industriali è relativamente complesso. Sistemi di tracking sono comunemente usati per una varietà di applicazioni tra cui, a titolo di esempio, la calibrazione delle macchine utensili, la guida di robot e l'analisi dei movimenti. I sistemi più frequentemente utilizzati a tale scopo sono: laser tracker o sistemi fotogrammetrici.

Il laser tracker garantisce prestazioni metrologiche eccellenti e offre la possibilità di coprire un discreto volume di misurazione (sebbene sia vincolato dall'angolazione del catarifrangente a cui è collegato), ma ha lo svantaggio di poter tracciare solo un punto alla volta. I sistemi fotogrammetrici hanno invece prestazioni metrologiche leggermente inferiori, consentendo però di misurare simultaneamente un elevato numero di punti.

Per quanto riguarda l'aspetto economico, il laser tracker è uno strumento costoso e si rende necessario l'acquisto di unità aggiuntive nel caso si voglia incrementare la copertura in volume e/o il numero di punti. Al contrario il sistema fotogrammetrico può essere costituito da telecamere relativamente a basso costo.

Al progetto ha partecipato EICAS, una piccola azienda high-tech, la quale ha messo a disposizione ed adattato opportunamente un sistema multicamera chiamato ARGO.

L'obiettivo che si pone questo documento è quello di valutare le prestazioni del sistema fotogrammetrico EICAS in condizioni statiche utilizzando come riferimento il laser tracker, in quanto il sistema EICAS è sicuramente più accessibile economicamente da parte delle aziende, ma bisogna capire fino a che livello di accuratezza riesca a lavorare e, perciò, per quale tipo di attività risulti idoneo.

1. Descrizione dell'attrezzatura

1.1 Laser tracker

Il laser tracker usa l'interferometria per misurare la distanza e un paio di trasduttori di posizione angolare ad alta risoluzione per misurare gli angoli orizzontali e verticali del raggio laser.

Figura 1 Interferometria nei laser tracker

La Figura 1 mostra schematicamente i componenti interni di un tipico laser tracker. Nella tecnica dell'interferometria un raggio laser coerente (in ottica si chiama coerenza la proprietà di un'onda elettromagnetica di mantenere una certa relazione di fase con se stessa durante la sua propagazione) di lunghezza d'onda conosciuta passa attraverso un beam splitter, ovvero un dispositivo ottico che divide un raggio di luce in due parti. Un raggio è riflesso indietro all'interno del sistema, mentre l'altro è indirizzato ad un catarifrangente montato sfericamente (SMR), che è una sfera contenente un riflettore ad angolo. Quando i due raggi si uniscono, interferenza costruttiva e distruttiva alla lunghezza d'onda del laser può essere osservata dal rivelatore. Il numero di chiari e scuri è contato dall'elettronica pertinente per calcolare la distanza. L'SMR è usato come sonda dello strumento, poiché il laser tracker è un sistema di misurazione a contatto. Il laser tracker è considerato uno dei sistemi metrologici più affidabili e consolidati. Il difetto maggiore è che la linea di vista tra la testa del laser tracker e l'SMR deve essere mantenuta in ogni istante e solo un SMR alla volta può essere inseguito. Alcuni laser tracker forniscono un sistema di misurazione della distanza assoluta (ADM), il quale modula il raggio laser ed individua la fase della luce ritornata. Riducendo gradualmente la modulazione di frequenza, la distanza assoluta del bersaglio può essere determinata con un alto grado di accuratezza. I laser tracker abilitati con il sistema ADM sono più facili da adoperare perché, quando la linea di vista è rotta, il tracker può riconnettersi con l'SMR senza portare l'SMR nella sua posizione iniziale (alla base della testa del tracker), come invece è richiesto per un sistema interferometrico. La facilità d'uso, tuttavia, costa una minima diminuzione dell'accuratezza. Questo strumento è in grado di misurare un obbiettivo statico e di tracciare e misurare un bersaglio in movimento. La prestazione metrologica di un laser tracker è influenzata da diversi fattori, tra cui: la compensazione per gli effetti atmosferici, l'espansione termica dello strumento e del suo supporto, la distorsione termica del pezzo o artefatto misurato, la lunghezza d'onda della radiazione laser, l'allineamento interno degli assi cardanici e la linearità e l'allineamento delle scale di misura angolari interne. Le più importanti tra queste potenziali fonti d'errore, che fondamentalmente limitano l'incertezza realizzabile, sono gli allineamenti meccanici e ottici interni e la qualità e l'allineamento delle scale angolari.

Il laser tracker API Radian disponibile per l'esperimento è utilizzabile in svariate applicazioni ed ambiti industriali dove sono richieste elevate precisioni della misura.

Il Radian è uno strumento altamente portatile e semplice da trasportare. Attraverso la sua telecamera integrata e tecnologia I-Vision, con il LOCKS ON è in grado di identificare la posizione di un target in un cono di 30° . La stazione meteorologica presente sul Radian assicura accuratezza in diverse condizioni operative da -10° C a 45° C. [6] Di seguito sono riportate le caratteristiche dichiarate dalla casa costruttrice.

Range delle misure

Range Lineare (Diametro): 100 m (328 ft) Performance del Sistema Range Azimuth: \pm 320° Range Elevation: + 79° / -59° Risoluzione Angolare: \pm 0.018 arcsec Accuratezza Angolare: $3.5 \mu m/m$ Risoluzione: $0.1 \mu m$ Accuratezza Bolla di Livello: $\pm 2 \operatorname{arcsec}$

Accuratezza

Misure Statiche (IFM): ± 10 µm oppure 5 ppm (2 sigma)

Laser

HeNe LAser (IFM): Classe II (eye safe) Risoluzione: 0.08 μm Accuratezza: ± 0.5 ppm IR LAser (ADM-Maxx): Classe I (eye safe) Risoluzione: 0.1 μm Accuratezza Lock-on: ± 10 μm oppure 1 ppm

Figura 2 Laser tracker API Radian e relativa accuratezza volumetrica (errore percentuale medio)

Dimensioni

Peso Laser: 9kg Dimensioni Laser: 177 mm x 177 mm x 355 mm Peso Controller: 3.2 kg Dimensioni Controller: 110 mm x 160 mm x 310 mm

1.2 Sistema EICAS (ARGO)

Il sistema ARGO è un sistema di misura multicamera, la cui funzione principale è quella di fornire in tempo reale e con elevata precisione la posa (posizione e assetto) di oggetti equipaggiati con marker inquadrati da un set di telecamere. La misura della posa dell'attrezzo markerizzato è eseguita senza contatto.

L'architettura di ARGO comprende le telecamere, il processore centrale, l'interfaccia grafica utente e gli attrezzi equipaggiati con marker. Le telecamere sono dotate di filtro all'infrarosso. I marker sono sfere del diametro di 1,5 cm riflettenti la luce infrarossa.

La *Figura 3* rappresenta graficamente l'architettura del sistema ARGO nel suo insieme, nella configurazione con 4 telecamere.

Figura 3 Architettura generale di ARGO.

I componenti che costituiscono il sistema ARGO sono descritti nella seguente tabella.

Componente	Descrizione e funzioni principali
Processore centrale	PC con RTOS Linux, connesso al sistema di telecamere mediante una scheda di rete Gigabit. Sul processore centrale viene eseguito in real-time il SW "ARGO RT" realizzato da EICAS.
Switch	Switch Gigabit Ethernet (GigE). È il dispositivo di rete che fornisce il collegamento della rete locale (LAN) con processore centrale, telecamere e generatore di trigger.
Telecamere intelligenti	Telecamere industriali dotate di processore con sistema operativo Linux e FPGA. Ciascuna camera ha la sua interfaccia di rete. L'acquisizione è

	sincronizzata da un segnale esterno fornito dal generatore di trigger. L'ottica è regolata in fase di installazione e include un filtro per la luce del vicino infrarosso (NIR). Su ciascuna camera viene eseguito in real-time il SW "ARGO CAM" realizzato da EICAS.		
Generatore di trigger	 Sistema embedded custom, dotato di interfaccia di rete ed elettronica che si occupa di: generare i segnali di comando di acquisizione (trigger) delle camere: apertura dello shutter del detettore; sincronizzare le telecamere; alimentare le camere con tensione 24V DC. 		
PC utente (opzionale)	PC con sistema operativo Windows o Linux che ha la funzione di eseguire il programma di interfaccia grafica per l'utente. È collegato in rete con il processore centrale, a cui invia i comandi di configurazione ed esecuzione e da cui riceve immagini e misure da visualizzare.		
Attrezzo con marker	Strumento su cui sono montate le sfere di materiale retroriflettivo nell'IR (Infra Red).		

 Tabella 1
 Componenti HW del sistema ARGO

1.2.1 Funzionamento del sistema ARGO

Un insieme di telecamere intelligenti è responsabile dell'acquisizione delle immagini dello scenario e della loro pre-elaborazione sulla base dei comandi e della configurazione richiesti dall'applicazione real-time "ARGO RT" che viene eseguita sul processore centrale. Oltre alle comuni operazioni di acquisizione svolte da qualsiasi telecamera non intelligente, il modo operativo normale delle telecamere intelligenti di ARGO è schematizzabile in due fasi:

- 1. riconoscimento (*pattern recognition*), rappresenta la fase di inizializzazione durante la quale il sistema ("ARGO RT") chiede alle telecamere di acquisire un'immagine a piena risoluzione (full-frame) e bassa frequenza (circa 1 Hz), all'interno della quale vengono rilevate forme, da cui vengono calcolati i fotocentri e riconosciuti i marker montati sull'oggetto da inseguire;
- 2. **inseguimento** *(tracking)*, rappresenta la fase di lavoro di regime con elevato periodo di campionamento (fino a circa 50 Hz) durante la quale il sistema chiede alle telecamere di acquisire ed elaborare esclusivamente le sotto-finestre, cioè gli intorni dei fotocentri rilevati nella prima fase, contenenti i marker dell'oggetto da inseguire.

In entrambi i casi, le telecamere sono in grado di inviare al processore centrale, su richiesta dell'applicazione real-time "ARGO RT", direttamente i pixel acquisiti oppure le coordinate dei fotocentri dei marker osservati, risultato della pre-elaborazione svolta a bordo camera, in modo da alleggerire notevolmente la dimensione dei dati da trasmettere verso l'applicazione real-time (pochi byte di coordinate di fotocentri invece che migliaia o milioni di byte di pixel) e il costo computazionale gravante sul processore centrale. Tipicamente l'invio dei pixel è usato in fase di

messa a punto o debug, mentre il calcolo dei fotocentri a bordo camera permette di raggiungere la massima frequenza di misura.

La *Figura 4* rappresenta uno schema hardware e software della telecamera intelligente: il blocco arancione corrisponde al processore principale sul quale è in esecuzione il sistema operativo Linux con patch RTpreempt e l'applicazione "ARGO CAM", che è l'applicazione real-time sviluppata da EICAS ed eseguita sul processore di ciascuna camera. Le frecce da sinistra a destra indicano il flusso dei pixel dal sistema elettro-ottico verso il software sviluppato da EICAS che le elabora.

Figura 4 Architettura hardware e software della telecamera intelligente

Le camere utilizzate sono un prodotto commercializzato da TATTILE S.r.l. come modello "Smart camera S200", con le caratteristiche principali riepilogate nella *Tabella 2*.

Figura 5 Camera del sistema ARGO: Smart camera S200 della TATTILE S.r.l.

Tipo di sensore	CMOS con global shutter
Risoluzione immagine	2048x2048 pixels (4,2 MP)
Massima frequenza di acquisizione	180 fps alla massima risoluzione
FPGA	Xilinx Artix con 85k celle logiche
Processore	Dual core Cortex-A9 ARM CPU @800 MHz
Sistema operativo	GNU/Linux PREEMPT di TATTILE
Interfacce disponibili	GPIO, strobe, encoder, RS232, RS485, Gigabit Ethernet
Alimentazione	24V DC
Grado di protezione	IP-67

 Tabella 2
 Caratteristiche della camera del sistema ARGO

Le telecamere sono connesse al processore centrale e al generatore di trigger hardware attraverso uno switch Gigabit Ethernet (*Figura 6*). Sia la tensione di alimentazione che il segnale di acquisizione (trigger hardware) sono forniti dal generatore di trigger esterno attraverso appositi cavi di rete e cavo multipoli DB25 su cui sono disponibili anche la connessione verso la porta seriale e l'alimentazione.

Figura 6 Sottosistema con le connessioni di una delle telecamere

Figura 7 Telecamera equipaggiata con illuminatore IR e ottica con filtro IR

Come si può osservare in *Figura* 7, ciascuna telecamera è montata su un cavalletto stabilizzato e su ognuna di esse è posizionato un illuminatore che emette luce infrarossa. I cavi di rete e di alimentazione delle telecamere sono del tipo M8 e M12 per automazione industriale. La seguente tabella riporta le caratteristiche tecniche dell'ottica e dell'illuminatore infrarosso.

F-number dell'ottica	1.4
Diametro dell'ottica	16 mm
Filtro infrarosso	910 μm
Potenza dell'illuminatore	5,4 W
Tensione alimentazione illuminatore	12 V DC

Tabella 3	Caratteristiche	tecniche dell	l'ottica e dell	<i>`illuminatore</i>	infrarosso
-----------	-----------------	---------------	-----------------	----------------------	------------

1.3 Robot industriale

Al fine di generare le traiettorie per l'esperimento si è utilizzato un robot articolato industriale situato presso il laboratorio del DIGEP. Il robot permette di creare in modo rapido e semplice un certo numero di traiettorie con una velocità di movimento che può essere facilmente modificata.

Nello specifico si è adoperato un robot *COMAU Smart NS-16*, il quale presenta le caratteristiche e le prestazioni elencate nella seguente tabella [7]:

VERSIONE		NS 16-1.65 Hand NS 16-1.65 Foundry NS 16-1.65 Arc		
Struttura / nº assi		Antropomorfo / 6 assi		
Carico al polso		16 kg	(1)	
Carico supplementare su avambraccio		10kg	(2)	
Coppia asse 4		44 Nm	41 Nm	
Coppia asse 5		44 Nm	41 Nm	
Coppia asse 6		23 Nm	23 Nm	
	Asse 1	+/- 180°(155°/s)	+/- 180° (155°/s)	
	Asse 2	+155°/-60°(155°/s)	+155°/-60°(155°/s)	
Corsa /(Velocità)	Asse 3	+110°/-170°(170°/s)	+110°/-170°(170°/s)	
× *	Asse 4	+/- 2700° (360°/s)	+/- 2700°(360°/s)	
	Asse 5	+/- 120°(350°/s)	+/- 125°(350°/s)	
	Asse 6	+/- 2700°(550°/s)	+/- 2700°(550°/s)	
Sbraccio massimo orizzontale		1650 mm		
Ripetibilità		+/- 0,05	mm	
Peso robot		335	(g	
Flangia attacco attrezzi		ISO 9409	-1-A63	
Motori		AC brushless		
Sistema di misura della posizione		con encoder		
Potenza totale installata		3 kVA / 4,5 A		
Grado di protezione		Hand - Arc: IP67(polso) / IP65(corpo robot)		
Grado di protezione		Foundry: IP67(polso e motori)		
Temperatura di esercizio		0 ÷ + 45 °C		
Temperatura di immagazzinamento		-40 °C ÷ +60 °C		
Colore robot (standard)		Rosso RAL 3020		
Posizione di montaggio (3)		A pavimento Soffitto (Inclinazione max 45°)		

 Tabella 4
 Caratteristiche tecniche del robot COMAU Smart NS-16

I dati più rilevanti per lo svolgimento dell'esperimento sono la ripetibilità (+/- 0,05 mm), la velocità massima (espressa in velocità angolare) e l'area di lavoro ricoperta dal braccio.

С

2. Caratteristiche metrologiche valutate

Nei test svolti interessa andare ad analizzare in particolare 4 caratteristiche metrologiche di fondamentale importanza per esprimere un giudizio complessivo sui sistemi di misurazione sotto esame: accuratezza, stabilità, ripetibilità e riproducibilità.

Si procede alla valutazione di *accuratezza* e *riproducibilità* attraverso l'elaborazione di un piano fattoriale di 16 prove (non casualizzate) da realizzare sia col sistema EICAS sia col laser tracker.

La valutazione di *ripetibilità* e *stabilità* avviene invece eseguendo 5 prove per ciascuna caratteristica (prove di stabilità realizzate ad intervalli di 1 minuto).

Per la definizione esatta di questi termini, si fa riferimento al VIM, ovvero il Vocabolario Internazionale di Metrologia [8].

[*accuratezza di misurazione*, *accuratezza*]: grado di concordanza tra un valore misurato e un valor vero di un misurando (grandezza che si vuole misurare).

NOTA 1 L'*accuratezza di misura* non è una grandezza e a essa non si assegna un valore numerico. Una misurazione è ritenuta tanto più accurata quanto minori sono gli errori di misura che la caratterizzano. NOTA 2 Il termine «accuratezza di misura» non dovrebbe essere impiegato per indicare la giustezza di misura, così come non si dovrebbe usare il termine «precisione di misura» per indicare l'*accuratezza di misura*. Resta comunque evidente che il concetto di *accuratezza* è legato a quelli di *giustezza* (grado di concordanza tra la media di un numero infinito di valori misurati ripetuti e un valore di riferimento) e di *precisione* (grado di concordanza tra indicazioni o valori misurati ottenuti da un certo numero di misurazioni ripetute dello stesso oggetto o di oggetti similari, eseguite in condizioni specificate).

NOTA 3 Talvolta l'*accuratezza di misura* è interpretata come concordanza tra i valori misurati attribuiti a un misurando.

Figura 10 Differenza tra accuratezza e precisione

[*condizione di riproducibilità di misura*, *condizione di riproducibilità*]: condizione di una misurazione, che assicura: differenti luoghi, operatori e sistemi di misura, e l'esecuzione di *misurazioni* ripetute dello stesso oggetto, o di oggetti simili.

NOTA 1 Differenti sistemi di misura possono far uso di differenti procedure di misura.

NOTA 2 Per quanto possibile, una specificazione dovrebbe indicare le condizioni che sono variate e quelle rimaste immutate.

[*riproducibilità di misura*, *riproducibilità*]: precisione di misura ottenuta in condizioni di riproducibilità.

[*condizione di ripetibilità di misura, condizione di ripetibilità*]: condizione di una misurazione, che assicura: la medesima procedura di misura, gli stessi operatori, lo stesso sistema di misura, le medesime condizioni operative e lo stesso luogo, nonché l'esecuzione di *misurazioni* ripetute dello stesso oggetto, o di oggetti simili, in un intervallo di tempo breve.

NOTA NAZIONALE Per esprimere questo concetto è spesso usato il termine *«condizione di ripetibilità (di misura) a breve termine»*.

NOTA 1 Una generica condizione di misurazione è una *condizione di ripetibilità* unicamente rispetto a un insieme specificato di *condizioni di ripetibilità*.

[ripetibilità di misura, ripetibilità]: precisione di misura ottenuta in condizioni di ripetibilità.

[*stabilità*]: attitudine di uno strumento di misura a mantenere le proprie caratteristiche metrologiche costanti nel tempo.

NOTA La stabilità può essere espressa in molti modi.

ESEMPIO 1 In termini di durata dell'intervallo di tempo nel quale una caratteristica metrologica varia di una quantità assegnata.

ESEMPIO 2 In termini di variazione di una proprietà in un intervallo di tempo fissato.

3. Prove statiche

L'obiettivo di queste prove è valutare l'errore sistematico, ovvero l'accuratezza, generato dal confronto tra i risultati prodotti dalle misurazioni di ARGO (sistema EICAS) e quelli del laser tracker, il quale funge da sistema di riferimento. I test statici svolgono il ruolo di attività preliminare necessaria in previsione di test dinamici, in cui la condizione di moto rende sicuramente più difficoltosa la misurazione.

Il progetto può essere diviso in tre fasi: progettazione, testing e analisi dei dati.

Figura 11 Fasi del progetto

3.1 Progettazione

La fase progettuale, di responsabilità del DIGEP-Polito, consiste nella preparazione e nel set-up sperimentale delle prove concordate con EICAS e comprende:

- Disegno e realizzazione della piastra di interfaccia con il robot COMAU. La piastra include i marker ed i nidi per il laser tracker (LT)
- Pianificazione delle prove sperimentali con CMM
- Taratura della piastra e dei marker su CMM

DIGEP ed EICAS hanno svolto un'attività preliminare di studio e definizione dell'attrezzo markerizzato e del piano sperimentale con l'obiettivo di consentire di eseguire le attività di qualifica del sistema ARGO. In seguito il gruppo di ricerca del DIGEP ha provveduto a progettare e realizzare la piastra markerizzata da installare sul robot COMAU. EICAS ha richiesto che si facesse attenzione a scegliere la disposizione dei loro marker in modo tale che non fossero nascosti dall'SMR posizionato in uno dei quattro nidi e che non avessero un assetto simmetrico.

Figura 12 SMR con nido

La piastra angolare con nervatura è stata prodotta in materiale polimerico grazie ad una stampante 3D e su di essa sono stati fissati i 6 marker e i 4 nidi per l'SMR. Ciascun nido fornisce un appoggio conico a tre punti (cosicché lo strumento sferico possa assestarsi in un'unica posizione possibile) ed è dotato di un magnete in grado di trattenere la sfera metallica.

Successivamente la piastra ed i marker sono stati tarati su CMM, modello Dea Iota 0101. Una macchina di misura a coordinate (CMM, dall'inglese coordinate-measuring machine) è un dispositivo meccanico per misure tridimensionali ad alta precisione, dotato di una sonda che determina le coordinate di posizione su uno spazio di lavoro.

Una volta bloccata la piastra con i marker, si è svolta l'operazione di calibrazione della macchina che avviene su una sferetta in acciaio di dimensioni date e che consiste nell'impostare il programma di prova, rilevare il primo punto (corrispondente al polo superiore) tramite misurazione manuale e i restanti in modo automatico. In caso di esito positivo della prova di calibrazione, si può procedere col test.

Sono stati registrati 80 punti (8 per ogni posizione sulla piastra) e identificate le coordinate relative e il diametro di ciascun marker.

Figura 13 CMM Dea Iota 0101

Per ogni marker, al fine di esplorare la massima superficie possibile, si è preso: il polo superiore, 4 punti sulla circonferenza massima perpendicolare alla sonda e 3 sparsi nell'emisfero superiore. La *Figura 14* mostra la piastra e riporta le coordinate dei marker misurati dalla macchina di misura.

			COORDINATE RELATIVE (mm)		COORDINATE BA	ASSOLUTE CON ARICENTRO (mi	NORIGINE NEL m)	
		ASSE X	ASSE Y	ASSE Z	ASSE X	ASSE Y	ASSE Z	
	SFERA A	151,834	-300,872	-364,180	-58,027	-70,894	1,895	
	SFERA B	156,270	-248,462	-375,817	-53,591	-18,484	-9,742	
	SFERA C	151,772	-155,993	-364,971	-58,089	73,985	1,104	
WARKER EICAS	SFERA D	281,394	-155,772	-363,322	71,533	74,206	2,753	
	SFERA E	236,478	-218,396	-365,055	26,617	11,582	1,020	
	SFERA F	281,417	-300,373	-363,103	71,556	-70,395	2,972	
	SFERA G	173,793	-270,480	-365,779	-36,068	-40,502	0,296	
	SFERA H	173,689	-185,541	-365,814	-36,172	44,437	0,261	
TORINO	SFERA I	258,904	-185,517	-364,651	49,043	44,461	1,424	
	SFERA L	258,496	-270,375	-364,743	48,635	-40,397	1,332	
BARICENTRO	SISTEMA	209,861	-229,978	-366,075	0	0	0	

Figura 14 Attrezzo con marker utilizzato per la qualifica del sistema ARGO

EICAS ha, quindi, svolto un'attività di revisione e adattamento del sistema ARGO per poter gestire il nuovo attrezzo realizzato dal DIGEP ed eseguire le attività di qualificazione del sistema di misura utili per il dimostratore realizzato nell'ambito del WP4. In particolare:

- è stato inserito un nuovo oggetto nel catalogo degli oggetti gestiti dal SW EICAS eseguito sul processore centrale;
- è stata creata una nuova funzione per il riconoscimento (pattern recognition) del nuovo attrezzo;
- sono stati inseriti adattamenti nella funzione di tracking per facilitare l'attività di qualificazione del sistema di misura.

Terminata l'attività di revisione del SW ARGO, è stata svolta in EICAS una campagna di test preliminari per poi passare alla sperimentazione di qualifica del sistema ARGO svolta presso il laboratorio del DIGEP.

3.2 Testing

3.2.1 Attività preliminari

Prima di procedere con le prove ufficiali, è stato necessario svolgere le seguenti attività:

1. Comprensione delle funzioni offerte dal software Verisurf 2017 per comandare il laser tracker tramite PC. Interessava in particolare capire come creare un piano i cui vertici fossero rappresentati dai 4 nidi sulla piastra e come raccogliere un output che includesse le coordinate sferiche del baricentro (r, θ , φ).

Figura 15 Software Verisurf 2017

2. Test di Ripetibilità: 10 misurazioni in condizioni costanti (piastra ferma nella stessa posizione) a distanza di un minuto l'una dall'altra utilizzando il laser tracker. Lo scostamento registrato tra i vari baricentri è risultato essere inferiore al centesimo di millimetro.

Figura 16 Piastra con marker ed SMR fissata al braccio robotico

 Creazione di un programma che permettesse al braccio robotico COMAU di simulare i movimenti richiesti dalle prove.
 In guesta fase si è verificato di avere il pieno controllo del robot e si sono comprese le

In questa fase si è verificato di avere il pieno controllo del robot e si sono comprese le tempistiche approssimativamente necessarie allo svolgimento del ciclo completo dei test, permettendo così di pianificare le prove ufficiali.

Figura 17 Programma per spostamenti del robot

3.2.2 Set-up sistema EICAS

Il gruppo di ricerca di EICAS e quello del DIGEP si sono riuniti presso il laboratorio del DIGEP. Si è studiato il posizionamento delle 4 telecamere nella cella di lavoro presente, definendo un layout che consentisse di avere una visione completa della piastra da angolazioni diverse tra loro.

Figura 18 Preparazione del layout del sistema EICAS

Per la taratura del sistema fotogrammetrico EICAS al centro della cella è stata posta una scatola e su di essa è avvenuta la posa di un artefatto (un tetraedro) su cui sono fissati dei marker che devono essere riconosciuti dal software di taratura su PC.

Figura 19 Taratura del sistema fotogrammetrico

In seguito si è registrato un nuovo programma per il braccio robotico cosicché le 8 posizioni selezionate per le misurazioni e la relativa inclinazione della piastra rientrassero nel cono visivo delle telecamere EICAS permettendo l'individuazione di tutti i marker.

Il volume di studio (si è cercato di ricreare un parallelepipedo con le 8 posizioni in corrispondenza degli 8 vertici) è risultato abbastanza ristretto a causa della disponibilità offerta dalle telecamere, mentre il laser tracker avrebbe permesso di spaziare maggiormente (aveva bisogno solo di un'inclinazione favorevole della piastra per non perdere il contatto con l'SMR).

Successivamente si è svolto qualche test per verificare che entrambi gli strumenti di misura riuscissero a lavorare correttamente e si è marcata con il nastro adesivo la collocazione delle telecamere e del tetraedro.

Figura 20 Test preliminare

3.3 Metodo

Si è costruito un piano sperimentale con le seguenti caratteristiche:

- **3 fattori**: giorno, layout delle telecamere e posizione dell'artefatto. Rispetto agli altri due, il giorno è un fattore che include più variabili e non è replicabile in quanto non controllabile, infatti le condizioni di temperatura, umidità e luce per esempio sono uniche. Ognuno di questi fattori cambia le condizioni di lavoro di ARGO e ne verifica la riproducibilità delle prestazioni.
- 2 livelli per ogni fattore: i fattori vengono modificati in ordine decrescente di comodità per ottimizzare i tempi. Viene quindi cambiata con maggior frequenza la posizione dell'artefatto, meno il layout delle telecamere e una sola volta il giorno.

GIORNO	LAYOUT TELECAMERE	POSIZIONE ARTEFATTO
А	А	А
А	А	В
А	В	А
А	В	В
В	А	А
В	А	В
В	В	А
В	В	В

 Tabella 5
 Piano fattoriale

- **8 posizioni della piastra** rilevate per ogni configurazione: il braccio robotico COMAU riproduce le stesse posizioni per ogni configurazione con un'elevata ripetibilità (+/- 0,05 mm).
- **2 replicazioni**: per una questione di tempistiche limitate, per ciascuna configurazione sono state effettuate consecutivamente senza cambiare le condizioni, influendo sulla poca differenza riscontrabile tra i risultati delle 2 replicazioni.

Il totale delle rilevazioni ammonta a 2^3 (configurazioni) x 8 (posizioni piastra) x 2 (replicazioni) = 128.

Avendo notato che l'SMR creava una parziale interferenza con il sistema ARGO, si è deciso di toglierlo ogniqualvolta l'addetto EICAS doveva provvedere alla registrazione della posizione della piastra. L'SMR infatti è realizzato con superficie riflettente e la luce, emessa dalle lampade ad infrarossi presenti sulle camere, produce sull'SMR riflessi che "abbagliano" i marker.

Le misurazioni sono state eseguite sia dal laser tracker che dal sistema EICAS al raggiungimento di ogni posizione da parte del robot, in modo tale da eliminare una variabile (il braccio ritorna nel medesimo punto con ripetibilità altissima, ma non perfetta) e da rendere evidenti alcuni eventuali errori che avrebbero avuto ripercussione su entrambi i sistemi.

Ogni volta che si modifica il layout delle camere, il sistema ARGO richiede una procedura di calibrazione della posa delle camere: viene posto all'interno della scena l'artefatto descritto nel sotto paragrafo 3.2.2 "Set-up sistema EICAS" e ciascuna camera misura la propria posa rispetto al sistema di riferimento dell'artefatto. Il sistema EICAS consente anche di definire un sistema di riferimento utente.

Figura 21 Prove ufficiali (qui disposizione iniziale AAA)

Si è potuto perciò procedere con le prove ufficiali.

In seguito alla taratura, si sono effettuate le misurazioni nella configurazione AAA.

La variazione da realizzare per la seconda configurazione consisteva nella rotazione intorno all'asse z (anche se forse più simile ad una rototraslazione) dell'artefatto (posizione B). Operazione delicata

per cui sono stati necessari diversi tentativi prima di riuscire a trovare una posizione del tetraedro che permettesse una corretta taratura (alcuni marker erano sfocati o si sovrapponevano). Si è quindi segnato con il nastro adesivo il nuovo assetto.

Per la terza configurazione si doveva cambiare la disposizione delle telecamere (layout B), oltre a svolgere nuovamente la taratura con il tetraedro in posizione A. Si è stabilito di assegnare una nuova collocazione alla telecamera che risultava più comoda da spostare, scegliendo una disposizione che permettesse di visualizzare i marker in tutte le posizioni. Con il nastro adesivo si è marcato qualitativamente questo nuovo layout in modo da poterlo riproporre con un buon grado di precisione.

Figura 22 Terza configurazione (ABA)

Per la quarta configurazione si è riportato l'artefatto in posizione B e svolta la taratura.

Nel secondo giorno di prove si è svolto tutto in maniera molto più rapida in quanto non c'era più niente da decidere, ma si trattava solo di eseguire un ciclo di prove come quello precedente.

Dato che le prestazioni del laser tracker possono essere influenzate dalle condizioni atmosferiche, per scrupolo si sono segnate la temperatura del dispositivo e l'umidità all'inizio e alla fine di ogni giornata di prove. Ovviamente lo scarto è stato piuttosto ridotto: da un minimo di 23.78 °C all'inizio del primo giorno fino ad un massimo di 24.26 °C alla fine della seconda giornata, mentre l'umidità rilevata è stata pari al (51 ± 1) %.

Abbiamo estratto gli output generati dai due strumenti di misura in modo da poter iniziare l'analisi dei risultati.

3.4 Analisi dei dati

Prendiamo in esame le configurazioni AAA, ABA e BBA alla prima replicazione (in Appendice si possono osservare tutti i dati raccolti).

Il sistema EICAS e il laser tracker utilizzano due unità di misura differenti, infatti il primo si esprime in metri mentre il secondo in millimetri. Si è dovuto quindi innanzitutto convertire i dati registrati da ARGO in millimetri.

COORDINATE LASER TRACKER					
POSIZIONE	X/mm	Y/mm	Z/mm		
1	-391,264	2327,853	-733,400		
2	-623,766	2024,697	-743,772		
3	-621,564	2022,321	-366,482		
4	-289,709	2408,209	-253,627		
5	65,945	2037,352	-222,366		
6	-360,736	1715,073	-222,575		
7	-238,697	1653,607	-775,348		
8	37,547	1944,899	-774,585		

COORDINATE EICAS							
POSIZIONE	X/mm	Y/mm	Z/mm				
1	94,987	-43,409	394,405				
2	295 <mark>,</mark> 949	-367,775	384,887				
3	297,269	-369,475	761,582				
4	54,239	76,742	874,312				
5	526 <mark>,</mark> 668	278,315	908,078				
6	676 <mark>,</mark> 515	-232,371	906,347				
7	779,289	-138,993	354,246				
8	604,118	221,781	357,941				

 Tabella 6
 Configurazione AAA - 1° replicazione

COORDINATE LASER TRACKER						
POSIZIONE	X/mm	Y/mm	Z/mm			
1	-391,256	2328,073	-733,416			
2	-623,726	2024,884	-743,809			
3	-621,551	2022,499	-366,471			
4	-289,691	2408,393	-253,592			
5	<mark>66,054</mark>	2037 <mark>,</mark> 573	-222,308			
6	-360,68	1715,214	-222,572			
7	-238,51	1653,722	-775,335			
8	37,671	1944,864	-774,509			

	COORDINATE EICAS									
POSIZIONE	X/mm	Y/mm	Z/mm							
1	97,013	-47,626	391,703							
2	298,277	-371,442	380,034							
3	299,634	-376,475	757,398							
4	55,913	<mark>68,916</mark>	873,059							
5	528,426	27 <mark>1,</mark> 544	907,131							
6	678 <mark>,</mark> 899	-240,330	902,010							
7	781,091	-142,750	351,296							
8	605 <mark>,</mark> 502	218,157	356 <mark>,</mark> 521							

 Tabella 7 Configurazione ABA - 1° replicazione

	COORDIN	IATE LASER TRACKER				COC	RDINATE EICAS	
POSIZIONE	X/mm	Y/mm	Z/mm	_	POSIZIONE	X/mm	Y/mm	Z/mm
1	-391,262	2327,8	-733,387		1	98,702	-40,957	394,060
2	-623,742	2024,648	-743,774		2	302,144	-363,698	384,597
3	-621,549	2022,248	-366,479		3	303,444	-366,058	761,935
4	-289,721	2408,144	-253,626		4	57,682	78,455	872,759
5	<mark>65,958</mark>	2037,283	-222,344		5	527,457	284,359	908,334
6	-360,715	1714,993	-222,591		6	681,417	-226,060	906,604
7	-238,712	1653,547	-775,293		7	783 <mark>,</mark> 564	-131,583	354,797
8	37,566	1944,78	-774,555		8	605,576	227 <mark>,</mark> 840	357,961

 Tabella 8
 Configurazione BBA - 1° replicazione

Le coordinate EICAS vengono rototraslate nel sistema di riferimento del laser tracker tramite la funzione *procrustes* di *MATLAB*. [9]

d = procrustes(X,Y) determina una trasformazione lineare (traslazione, riflessione, rotazione ortogonale e ridimensionamento) dei punti nella matrice Y per adeguarsi meglio ai punti nella matrice X. Il criterio di bontà di adattamento è la somma di errori al quadrato. *Procrustes* restituisce il valore minimizzato di questa misura di dissimilarità in *d*.

X e Y devono avere lo stesso numero di punti (righe) e procrustes fa corrispondere Y(i) a X(i).

Si devono portare le coordinate EICAS nel sistema laser tracker, quindi X rappresenta il laser tracker, mentre Y indica EICAS.

La funzione [d,Z,transform] = procrustes(X,Y) restituisce i valori di Y trasformati e la trasformazione che conduce da Y a Z. transform è un array di struttura con i campi:

- c componente di traslazione
- T componente ortogonale di rotazione e riflessione
- b componente di scala

Da cui Z = b*Y*T + c;

Il software permette di determinare *c*, *T* e *b* e di ricavare Z, la quale è la *matrice rototraslata* delle coordinate EICAS che deve essere confrontata con X, ovvero le coordinate del laser tracker. Si è quindi calcolato l'*errore assoluto*, dato dalla differenza tra le coordinate delle due matrici (ΔX , ΔY , ΔZ).

DOCIZIONE	COORDINATE EICAS ROTRASLATE			COORD	COORDINATE LASER TRACKER			ERRORE ASSOLUTO			
POSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	ΔX/mm	ΔY/mm	ΔZ/mm		
1	-390,802	2327,982	-734,278	-391,264	2327,853	-733,400	0,462	0,129	0,878		
2	-623,633	2025,005	-743,119	-623,766	2024,697	-743,772	<mark>0,1</mark> 33	<mark>0,308</mark>	0,653		
3	-622,845	2022,556	-365,918	-621,564	2022,321	-366,482	1,281	<mark>0,2</mark> 35	0,564		
4	-290,219	2407,874	-254,098	-289,709	2408,209	-253,627	0,510	<mark>0,</mark> 335	0,471		
5	65,880	2036,547	-222,694	65,945	2037,352	-222,366	0,065	<mark>0,8</mark> 05	0,328		
6	-359,534	1715,539	-222,788	-360,736	1715,073	-222 <mark>,</mark> 575	1,202	<mark>0,4</mark> 66	0,213		
7	-238,513	1653,185	-776,358	-238,697	1653,607	-775,348	0,184	0,422	1,010		
8	37,518	1944,888	-773,586	37,547	1944,899	-774,585	0,029	0,011	0,999		

 Tabella 9
 Errore assoluto nella configurazione AAA - 1° replicazione

DOSIZIONE	COORDINATE EICAS ROTRASLATE			COORDINATE LASER TRACKER			ERRORE ASSOLUTO			
TOSIEIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	∆X/mm	∆Y/mm	∆Z/mm	
1	-390,393	2327,882	-734,374	-391,256	2328,073	-733,416	0,863	0,191	<mark>0,9</mark> 58	
2	-622,834	2025,019	-743,130	- <mark>6</mark> 23,726	2024,884	-743,809	0,892	0,135	<mark>0,</mark> 679	
3	-622,927	2022,443	-365,310	-621,551	2022,499	-366,471	1,376	<mark>0,</mark> 056	1,161	
4	-290,439	2408,122	-253,638	-289,691	2408,393	-253 <mark>,</mark> 592	0,748	0,271	<mark>0,</mark> 046	
5	66,528	2037,008	-222,978	66,054	2037,573	-222,308	0,474	<mark>0,565</mark>	<mark>0,67</mark> 0	
6	-359,938	1715,361	-223,026	-360,680	1715,214	-222 <mark>,</mark> 572	0,742	0,147	0,454	
7	-238,504	1653,376	-775,654	-238,510	1653,722	-775,335	0,006	0,346	0,319	
8	37,674	1945,268	-773,816	37,671	1944,864	-774,509	0,003	0,404	<mark>0,69</mark> 3	

 Tabella 10
 Errore assoluto nella configurazione ABA - 1° replicazione

DOGIZIONIS	COORDINATE EICAS ROTRASLATE			COORD	COORDINATE LASER TRACKER			ERRORE ASSOLUTO			
POSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	ΔX/mm	ΔY/mm	ΔZ/mm		
1	-390,636	2327,705	-734,448	-391,262	2327,800	-733,387	<mark>0,62</mark> 6	<mark>0,09</mark> 5	1,061		
2	-623,232	2024,874	-743,290	-623,742	2024,648	-743,774	0,510	0,226	<mark>0,484</mark>		
3	-622,988	2022,077	-365,634	-621,549	2022,248	-366,479	1,439	0,171	<mark>0,84</mark> 5		
4	-290,178	2406,634	-255,714	-289,721	2408,144	-253,626	<mark>0,</mark> 457	1,510	2,088		
5	66,111	2036,813	-222,747	65,958	2037,283	-222,344	<mark>0,1</mark> 53	0,470	<mark>0,4</mark> 03		
6	-359,807	1715,398	-222,857	-360,715	1714,993	-222 <mark>,</mark> 591	<mark>0,908</mark>	0,405	<mark>0,266</mark>		
7	-238,645	1653,332	-775,908	-238,712	1653,547	-775,293	0,067	0,215	0,615		
8	37,179	1944,986	-773,623	37,566	1944,780	- 774, 555	<mark>0,387</mark>	0,206	<mark>0,932</mark>		

 Tabella 11
 Errore assoluto nella configurazione BBA - 1° replicazione

MASSIMO	DERRORE	ASSOLUTO			
CONFIGURAZIONE ΔX/mm ΔY/mm ΔZ/mm					
AAA	1,28	0,81	1,02		
AAB	1,36	0,61	0,97		
ABA	1,63	0,56	1,16		
ABB	1,44	0,42	1,32		
BAA	1,42	0,89	0,96		
BAB	1,45	0,83	1,01		
BBA	1,50	1,51	2,25		
BBB	1,67	0,83	1,41		

 Tabella 12
 Massimo errore assoluto in tutte le configurazioni

Si evidenziano **differenze accettabili** tra le coordinate *EICAS rototraslate* e le coordinate *laser tracker*, tuttavia le configurazioni BBA e BBB sono risultate più critiche rispetto alle altre. Si precisa che, nelle configurazioni con layout "B", due camere, in corrispondenza dei punti 3 e 4, vedono solo 2 marker della piastra in quanto gli altri quattro marker si "fondono" ovvero si sovrappongono e quindi vengono rigettati dal sistema ARGO.

Si nota inoltre, considerando tutte le configurazioni, che:

- nella posizione 3 si rilevano sempre errori assoluti rilevanti;
- il massimo errore si osserva nella posizione 4. Tale errore si spiega perché in corrispondenza della posizione 4 la piastra si trova all'estremità del campo di vista di due camere, le quali, inoltre, vedono solo 2 marker della piastra.

Occorre perciò capire se gli errori riscontrati sono dovuti al laser tracker oppure al sistema EICAS.

Si sono considerate le **distanze** tra le 8 posizioni nella configurazione AAA e nella configurazione ABA utilizzando il laser tracker, poi si è calcolato il **valore assoluto** delle **differenze**.

	DIFFERENZA TRA DISTANZE [mm]											
	1 2 3 4 5 6 7											
1	-	0,007	0,041	0,045	0,112	0,075	0,140	0,249				
2		-	0,048	0,038	0,113	0,059	0,153	0,105				
3			-	0,013	0,104	0,050	0,133	0,081				
4				-	0,038	0,037	0,079	0,149				
5					-	0,091	0,057	0,024				
6						-	0,021	0,075				
7							-	0,152				
8								-				

 Tabella 13
 Differenza tra distanze nelle configurazioni AAA e ABA con laser tracker

La **differenza massima** tra le **distanze** nelle due configurazioni è **0.249 mm**, pertanto si ritiene sia un risultato **accettabile**, tenendo conto anche del contributo di ripetibilità del robot COMAU.

	DIFFERENZA TRA DISTANZE [mm]											
	1	2	3	4	5	6	7	8				
1	-	0,248	0,822	0,571	0,042	0,109	0,270	0,374				
2		-	0,699	0,123	0,094	0,427	0,619	0,528				
3			-	0,259	0,695	0,341	0,030	0,756				
4				-	0,511	0,559	0,117	0,709				
5					-	1,338	0,177	0,105				
6						-	0,744	0,636				
7							-	0,319				
8								-				

Si è svolta la stessa operazione per EICAS utilizzando le configurazioni AAA e ABA.

 Tabella 14
 Differenza tra distanze nelle configurazioni AAA e ABA con sistema EICAS

Le differenze tra le distanze nelle due configurazioni arrivano a 1.338 mm e, come atteso, sono superiori a quelle ottenute con il laser tracker.

Andando ad analizzare le distanze della configurazione AAA con quella BBA, la differenza di prestazioni è più marcata: si ha un massimo di 0.079 mm per il laser tracker, mentre 1.855 mm per ARGO.

	DIFFERENZA TRA DISTANZE [mm]											
	1 2 3 4 5 6 7 8											
1	-	0,016	0,001	0,016	0,019	0,003	0,001	0,055				
2		-	0,005	0,024	0,005	0,002	0,024	0,002				
3			-	0,012	0,002	0,002	0,056	0,006				
4				-	0,021	0,011	0,035	0,026				
5					-	0,000	0,018	0,000				
6						-	0,079	0,049				
7							-	0,019				
8								-				

Tabella 15	Differenza	tra distanze	nelle d	configurazioni	AAA e	BBA	con	laser	tracker
------------	------------	--------------	---------	----------------	-------	-----	-----	-------	---------

	DIFFERENZA TRA DISTANZE [mm]										
	1 2 3 4 5 6 7 8										
1	-	0,065	0,833	1,324	0,285	0,348	0,164	0,342			
2		-	0,646	1,417	0,378	0,150	0,343	0,430			
3			-	0,585	0,669	0,222	0,099	0,339			
4				-	0,593	0,636	1,855	1,643			
5					-	0,917	0,209	0,324			
6						-	0,217	0,378			
7							-	0,023			
8								-			

 Tabella 16
 Differenza tra distanze nelle configurazioni AAA e BBA con sistema EICAS

Ne consegue, pertanto, che gli **errori** riscontrati, che sono da ritenersi accettabili, sono principalmente attribuibili al **sistema EICAS**.

Conclusioni

In questo lavoro sono stati presentati i risultati sperimentali delle prove statiche del sistema fotogrammetrico EICAS e questi sono stati confrontati con i risultati degli stessi esperimenti condotti con un laser tracker. Come atteso, i test hanno mostrato che ARGO ha prestazioni inferiori rispetto al laser tracker, con un errore assoluto dell'ordine del millimetro, ma offre una buona ripetibilità (comparando la prima e la seconda replicazione) dell'ordine del decimo di millimetro.

Gli output peggiori riscontrati nelle ultime due configurazioni (BBA e BBB) potrebbero essere dovuti ad errori di rilevazione sul campo.

Si osservi che il sistema EICAS è ancora in fase prototipale, pertanto alcuni aspetti devono ancora essere messi a punto prima che diventi un prodotto commerciale:

- le telecamere, essendo ad infrarossi, sono molto sensibili alla luce solare, quindi possono essere usate solo in ambienti chiusi provvisti di lampade al neon;
- il volume di misura deve essere ridotto in quanto per ogni metro cubo è previsto che il sistema generi all'incirca un errore di un decimo di millimetro;
- essendo poggiate su treppiedi, le telecamere non sono molto stabili e risentono delle vibrazioni generate nell'ambiente circostante.

Naturalmente il vantaggio notevole delle telecamere utilizzate per le prove risiede nell'aspetto economico, infatti hanno un costo di 2.5 k \in (se ne possono trovare anche di costo inferiore), mentre il laser tracker ha un costo che va dai 60 k \in ai 100 k \in .

Sebbene l'accuratezza del laser tracker sia indubbiamente migliore, il sistema EICAS può risultare più conveniente in base alla funzione da svolgere e al numero di punti che devono essere tracciati.

Avendo ottenuto dei risultati confortanti, l'intenzione è di eseguire delle prove in condizioni dinamiche nei prossimi mesi utilizzando questi due sistemi di misura, in modo tale da testare le capacità di tracking di ARGO.

Appendice

N.B. La ripetibilità è data dal valore assoluto della differenza tra le coordinate di una stessa posizione nella prima e nella seconda replicazione.

Configurazione AAA

1	1			1
	CO	ORDINATE EI	CAS	
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm
1	1	94,987	-43,409	394,405
1	2	295,949	-367,775	384,887
1	3	297,269	-369,475	761,582
1	4	54,239	76,742	874,312
1	5	526,668	278,315	908,078
1	6	676,515	-232,371	906,347
1	7	779,289	-138,993	354,246
1	8	604,118	221,781	357,941
2	1	94,974	-43,385	394,378
2	2	295,918	-367,750	385,068
2	3	297,256	-369,458	761,789
2	4	54,139	76,680	874,556
2	5	526,570	278,281	908,296
2	6	676,380	-232,327	906,607
2	7	779,199	-138,965	354,450
2	8	603,976	221,747	357,976

	RIPETIBILITÀ EICAS									
POSIZIONE	∆X/mm	ΔY/mm	∆Z/mm							
1	0,013	0,024	0,028							
2	0,032	0,024	0,181							
3	0,013	0,017	0,206							
4	0,100	0,062	0,244							
5	0,098	0,034	0,218							
6	0,135	0,043	0,260							
7	0,090	0,028	0,204							
8	0,142	0,034	0,035							

 Tabella 17
 Coordinate e ripetibilità del sistema EICAS per configurazione AAA

	DOGIZIONE	COORDIN	ATE EICAS RO	TRASLATE	COORD	COORDINATE LASER TRACKER			ERRORE ASSOLUTO		
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	∆X/mm	ΔY/mm	∆Z/mm	
1	1	-390,802	2327,982	-734,278	-391,264	2327,853	-733,400	0,462	0,129	0,878	
1	2	-623,633	2025,005	-743,119	-623,766	2024,697	-743,772	0,133	0,308	0,653	
1	3	-622,845	2022,556	-365,918	-621,564	2022,321	-366,482	1,281	0,235	0,564	
1	4	-290,219	2407,874	-254,098	-289,709	2408,209	-253,627	0,510	0,335	0,471	
1	5	65,880	2036,547	-222,694	65,945	2037,352	-222,366	0,065	0,805	0,328	
1	6	-359,534	1715,539	-222,788	-360,736	1715,073	-222,575	1,202	0,466	0,213	
1	7	-238,513	1653,185	-776,358	-238,697	1653,607	-775,348	0,184	0,422	1,010	
1	8	37,518	1944,888	-773,586	37,547	1944,899	-774,585	0,029	0,011	0,999	
2	1	-390,784	2328,002	-734,306	-391,283	2327,859	-733,420	0,499	0,143	0,886	
2	2	-623,620	2025,043	-742,938	-623,761	2024,709	-743,790	0,141	0,334	0,852	
2	3	-622,833	2022,574	-365,710	-621,558	2022,323	-366,489	1,275	0,251	0,779	
2	4	-290,312	2407,946	-253,853	-289,728	2408,157	-253,645	0,584	0,211	0,208	
2	5	65,815	2036,626	-222,475	65,936	2037,293	-222,375	0,121	0,667	0,100	
2	6	-359,539	1715,681	-222,528	-360,731	1715,000	-222,593	1,192	0,681	0,065	
2	7	-238,517	1653,279	-776,154	-238,703	1653,551	-775,319	0,186	0,272	0,835	
2	8	37,436	1945,009	-773,551	37,572	1944,833	-774,566	0,136	0,176	1,015	

Tabella 18 Errore assoluto nella configurazione AAA

Configurazione AAB

	COORDINATE EICAS									
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm						
1	1	120,284	-42,164	394,581						
1	2	437,891	-253,950	385,165						
1	3	439,040	-255,844	761,920						
1	4	32,186	49,103	874,490						
1	5	378,103	428,572	909,686						
1	6	726,724	25,879	907,818						
1	7	782,647	154,843	356,054						
1	8	473,353	410,469	359,431						
2	1	120,271	-42,126	394,537						
2	2	437,909	-253,925	385,281						
2	3	439,057	-255,756	762,005						
2	4	32,160	49,135	874,662						
2	5	378,092	428,670	909,850						
2	6	726,731	25,873	907,912						
2	7	782,559	154,865	356,186						
2	8	473,276	410,490	359,590						

RIPETIBILITÀ FICAS									
POSIZIONE	∆X/mm	ΔY/mm	ΔZ/mm						
1	0,012	0,038	0,044						
2	0,018	0,025	0,116						
3	0,018	0,088	0,085						
4	0,026	0,032	0,172						
5	0,011	0,098	0,164						
6	0,007	0,005	0,095						
7	0,087	0,023	0,132						
8	0,077	0,022	0,159						

 Tabella 19
 Coordinate e ripetibilità del sistema EICAS per configurazione AAB

	DOCIZIONE	COORDIN	ATE EICAS RO	TRASLATE	COORD	INATE LASER T	RACKER	ER	RORE ASSOLU	то
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	∆X/mm	∆Y/mm	ΔZ/mm
1	1	-390,650	2327,883	-734,115	-391,262	2327,829	-733,408	0,612	0,054	0,707
1	2	-623,599	2024,877	-743,053	-623,755	2024,679	-743,776	0,156	0,198	0,723
1	3	-622,921	2022,430	-365,860	-621,562	2022,299	-366,512	1,359	0,131	0,652
1	4	-290,197	2407,940	-254,032	-289,715	2408,184	-253,653	0,482	0,244	0,379
1	5	65,865	2036,791	-222,695	65,951	2037,334	-222,361	0,086	0,543	0,334
1	6	-359,808	1715,594	-222,793	-360,738	1715,036	-222,589	0,930	0,558	0,204
1	7	-238,619	1653,162	-776,306	-238,705	1653,588	-775,337	0,086	0,426	0,969
1	8	37,519	1944,943	-773,759	37,559	1944,871	-774,581	0,040	0,072	0,822
2	1	-390,612	2327,893	-734,159	-391,265	2327,826	-733,423	0,653	0,067	0,736
2	2	-623,574	2024,857	-742,937	-623,754	2024,668	-743,779	0,180	0,189	0,842
2	3	-622,834	2022,407	-365,775	-621,552	2022,297	-366,487	1,282	0,110	0,712
2	4	-290,162	2407,964	-253,859	-289,733	2408,181	-253,638	0,429	0,217	0,221
2	5	65,965	2036,795	-222,531	65,950	2037,267	-222,348	0,015	0,472	0,183
2	6	-359,814	1715,587	-222,699	-360,740	1714,979	-222,599	0,926	0,608	0,100
2	7	-238,591	1653,248	-776,173	-238,718	1653,541	-775,300	0,127	0,293	0,873
2	8	37,547	1945,018	-773,600	37,555	1944,810	-774,554	0,008	0,208	0,954

 Tabella 20
 Errore assoluto nella configurazione AAB

Configurazione ABA

	CO	ORDINATE EI	CAS	
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm
1	1	97,013	-47,626	391,703
1	2	298,277	-371,442	380,034
1	3	299,634	-376,475	757,398
1	4	55,913	68,916	873,059
1	5	528,426	271,544	907,131
1	6	678,899	-240,330	902,010
1	7	781,091	-142,750	351,296
1	8	605,502	218,157	356,521
2	1	97,037	-47,654	391,666
2	2	298,144	-371,546	380,016
2	3	299,490	-376,592	757,428
2	4	55,772	68,726	873,019
2	5	528,256	271,277	907,106
2	6	678,712	-240,537	902,036
2	7	780,968	-142,949	351,188
2	8	605,369	217,970	356,427

RIPETIBILITÀ EICAS								
∆X/mm	ΔY/mm	ΔZ/mm						
0,024	0,028	0,037						
0,134	0,104	0,018						
0,144	0,116	0,030						
0,141	0,190	0,040						
0,170	0,267	0,025						
0,188	0,207	0,026						
0,123	0,199	0,108						
0,133	0,187	0,093						
	RIPETIB ΔX/mm 0,024 0,134 0,144 0,141 0,170 0,188 0,123 0,133	RIPETIBILITÀ EICAS ΔX/mm ΔY/mm 0,024 0,028 0,134 0,104 0,144 0,116 0,141 0,190 0,170 0,267 0,188 0,207 0,123 0,199 0,133 0,187						

 Tabella 21
 Coordinate e ripetibilità del sistema EICAS per configurazione ABA

REDUCATIONE	DOSIZIONE	COORDINATE		TRASLATE	COORD	INATE LASER T	RACKER	ER	RORE ASSOLU	то
REPLICAZIONE	PUSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	∆X/mm	ΔY/mm	ΔZ/mm
1	1	-390,393	2327,882	-734,374	-391,256	2328,073	-733,416	0,863	0,191	0,958
1	2	-622,834	2025,019	-743,130	-623,726	2024,884	-743,809	0,892	0,135	0,679
1	3	-622,927	2022,443	-365,310	-621,551	2022,499	-366,471	1,376	0,056	1,161
1	4	-290,439	2408,122	-253,638	-289,691	2408,393	-253,592	0,748	0,271	0,046
1	5	66,528	2037,008	-222,978	66,054	2037,573	-222,308	0,474	0,565	0,670
1	6	-359,938	1715,361	-223,026	-360,680	1715,214	-222,572	0,742	0,147	0,454
1	7	-238,504	1653,376	-775,654	-238,510	1653,722	-775,335	0,006	0,346	0,319
1	8	37,674	1945,268	-773,816	37,671	1944,864	-774,509	0,003	0,404	0,693
2	1	-390,412	2327,849	-734,411	-391,190	2327,784	-733,349	0,778	0,065	1,062
2	2	-622,978	2025,107	-743,146	-623,636	2024,612	-743,733	0,658	0,495	0,587
2	3	-623,087	2022,536	-365,278	-621,453	2022,211	-366,440	1,634	0,325	1,162
2	4	-290,667	2408,187	-253,676	-289,680	2408,116	-253,591	0,987	0,071	0,085
2	5	66,218	2037,073	-222,999	66,003	2037,455	-222,372	0,215	0,382	0,627
2	6	-360,198	1715,464	-222,997	-360,677	1715,198	-222,591	0,479	0,266	0,406
2	7	-238,735	1653,421	-775,759	-238,628	1653,777	-775,384	0,107	0,356	0,375
2	8	37,451	1945,327	-773,907	37,711	1945,069	-774,627	0,260	0,258	0,720

 Tabella 22
 Errore assoluto nella configurazione ABA

Configurazione ABB

COORDINATE EICAS								
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm				
1	1	119,558	-42,659	394,197				
1	2	440,010	-248,734	385,379				
1	3	440,636	-251,307	763,119				
1	4	29,094	46,789	874,694				
1	5	368,413	432,401	910,032				
1	6	723,875	35,051	908,669				
1	7	778,348	164,946	357,335				
1	8	464,897	415,524	359,766				
2	1	119,438	-42,558	394,458				
2	2	440,039	-248,732	385,376				
2	3	440,662	-251,293	763,128				
2	4	29,154	46,837	874,637				
2	5	368,416	432,479	910,086				
2	6	723,898	35,003	908,706				
2	7	778,397	164,916	357,312				
2	8	464,919	415,435	359,801				

RIPETIBILITÀ EICAS								
POSIZIONE	∆X/mm	ΔY/mm	∆Z/mm					
1	0,119	0,102	0,261					
2	0,030	0,002	0,003					
3	0,026	0,013	0,008					
4	0,060	0,048	0,057					
5	0,003	0,078	0,054					
6	0,022	0,048	0,037					
7	0,050	0,029	0,022					
8	0,023	0,090	0,036					

 Tabella 23
 Coordinate e ripetibilità del sistema EICAS per configurazione ABB

		COORDIN	ATE EICAS RO	TRASLATE	COORD	COORDINATE LASER TRACKER			ERRORE ASSOLUTO		
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	∆X/mm	∆Y/mm	∆Z/mm	
1	1	-390,595	2327,707	-734,529	-391,239	2327,986	-733,490	0,644	0,279	1,039	
1	2	-622,939	2025,184	-743,377	-623,701	2024,807	-743,807	0,762	0,377	0,430	
1	3	-622,967	2022,760	-365,183	-621,527	2022,420	-366,482	1,440	0,340	1,299	
1	4	-290,525	2407,959	-253,697	-289,702	2408,345	-253,616	0,823	0,386	0,081	
1	5	66,193	2037,134	-222,734	65,998	2037,510	-222,364	0,195	0,376	0,370	
1	6	-359,850	1715,560	-222,892	-360,653	1715,169	-222,588	0,803	0,391	0,304	
1	7	-238,570	1653,340	-776,068	-238,604	1653,719	-775,348	0,034	0,379	0,720	
1	8	37,547	1945,208	-773,972	37,731	1945,034	-774,614	0,184	0,174	0,642	
2	1	-390,483	2327,817	-734,268	-391,240	2327,959	-733,436	0,757	0,142	0,832	
2	2	-622,939	2025,155	-743,380	-623,697	2024,790	-743,818	0,758	0,365	0,438	
2	3	-622,955	2022,733	-365,175	-621,524	2022,406	-366,495	1,431	0,327	1,320	
2	4	-290,483	2407,896	-253,755	-289,696	2408,270	-253,622	0,787	0,374	0,133	
2	5	66,271	2037,125	-222,680	66,049	2037,447	-222,367	0,222	0,322	0,313	
2	6	-359,900	1715,541	-222,855	-360,652	1715,118	-222,582	0,752	0,423	0,273	
2	7	-238,604	1653,294	-776,092	-238,592	1653,677	-775,367	0,012	0,383	0,725	
2	8	37,457	1945,194	-773,936	37,706	1944,951	-774,597	0,249	0,243	0,661	

 Tabella 24
 Errore assoluto nella configurazione ABB

Configurazione BAA

COORDINATE EICAS								
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm				
1	1	96,217	-43,974	394,635				
1	2	298,611	-367,637	384,891				
1	3	299,828	-369,431	761,703				
1	4	55,045	75,728	874,255				
1	5	526,806	279,350	907,787				
1	6	678,449	-230,930	906,444				
1	7	780,975	-136,785	354,463				
1	8	604,438	223,310	357,867				
2	1	96,296	-44,019	394,409				
2	2	298,560	-367,711	384,917				
2	3	299,818	-369,479	761,725				
2	4	55,117	75,706	874,316				
2	5	526,881	279,272	907,817				
2	6	678,541	-231,009	906,542				
2	7	780,994	-136,782	354,443				
2	8	604,460	223,300	357,871				

	RIPETIB	ILITÀ EICAS			
POSIZIONE	∆X/mm	ΔY/mm	ΔZ/mm		
1	0,079	0,045	0,226		
2	0,050	0,074	0,026		
3	0,009	0,047	0,022		
4	0,072	0,023	0,061		
5	0,074	0,078	0,030		
6	0,091	0,079	0,099		
7	0,019	0,003	0,020		
8	0,022	0,009	0,004		

 Tabella 25
 Coordinate e ripetibilità del sistema EICAS per configurazione BAA

		COORDIN	ATE EICAS RO	TRASLATE	COORD	NATE LASER T	RACKER	ER	RORE ASSOLU	то
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	ΔX/mm	ΔY/mm	∆Z/mm
1	1	-390,738	2328,037	-733,996	-391,251	2327,760	-733,391	0,513	0,277	0,605
1	2	-623,589	2024,890	-743,028	-623,719	2024,602	-743,774	0,130	0,288	0,746
1	3	-622,905	2022,532	-365,722	-621,548	2022,228	-366,483	1,357	0,304	0,761
1	4	-290,381	2407,811	-254,131	-289,719	2408,102	-253,655	0,662	0,291	0,476
1	5	65,936	2036,451	-222,966	65,949	2037,238	-222,381	0,013	0,787	0,585
1	6	-359,707	1715,583	-222,621	-360,686	1714,954	-222,582	0,979	0,629	0,039
1	7	-238,345	1653,213	-776,057	-238,704	1653,511	-775,302	0,359	0,298	0,755
1	8	37,702	1944,864	-773,614	37,564	1944,778	-774,571	0,138	0,086	0,957
2	1	-390,754	2327,947	-734,222	-391,250	2327,765	-733,447	0,496	0,182	0,775
2	2	-623,676	2024,911	-743,001	-623,732	2024,612	-743,768	0,056	0,299	0,767
2	3	-622,953	2022,524	-365,700	-621,537	2022,232	-366,484	1,416	0,292	0,784
2	4	-290,376	2407,736	-254,070	-289,704	2408,097	-253,667	0,672	0,361	0,403
2	5	65,889	2036,353	-222,936	65,947	2037,248	-222,363	0,058	0,895	0,573
2	6	-359,748	1715,469	-222,523	-360,712	1714,945	-222,583	0,964	0,524	0,060
2	7	-238,335	1653,196	-776,077	-238,729	1653,504	-775,266	0,394	0,308	0,811
2	8	37,700	1944,840	-773,610	37,550	1944,780	-774,558	0,150	0,060	0,948

 Tabella 26
 Errore assoluto nella configurazione BAA

Configurazione BAB

COORDINATE EICAS									
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm					
1	1	121,294	-40,500	394,629					
1	2	440,041	-250,949	385,144					
1	3	441,195	-252,828	762,073					
1	4	33,035	50,323	874,517					
1	5	377,510	431,393	909,370					
1	6	727,756	30,197	907,772					
1	7	782,851	159,486	356,086					
1	8	472,512	413,811	359,390					
2	1	121,265	-40,514	394,674					
2	2	440,030	-250,977	385,090					
2	3	441,189	-252,812	762,002					
2	4	33,054	50,307	874,536					
2	5	377,527	431,404	909,429					
2	6	727,820	30,215	907,831					
2	7	782,880	159,496	356,083					
2	8	472,537	413,845	359,485					

RIPETIB	ILITÀ EICAS	
∆X/mm	ΔY/mm	ΔZ/mm
0,030	0,014	0,045
0,011	0,029	0,053
0,006	0,017	0,071
0,019	0,016	0,019
0,017	0,011	0,058
0,064	0,018	0,059
0,030	0,011	0,003
0,026	0,034	0,095
	RIPETIB ΔX/mm 0,030 0,011 0,006 0,019 0,017 0,064 0,030 0,026	RIPETIBILITÀ EICAS ΔX/mm ΔY/mm 0,030 0,014 0,011 0,029 0,006 0,017 0,019 0,016 0,017 0,011 0,064 0,018 0,030 0,011 0,026 0,034

 Tabella 27
 Coordinate e ripetibilità del sistema EICAS per configurazione BAB

	DOSIZIONE	COORDIN	ATE EICAS RO	TRASLATE	COORDINATE LASER TRACKER			ERRORE ASSOLUTO		
REPLICAZIONE	PUSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	ΔX/mm	ΔY/mm	ΔZ/mm
1	1	-390,582	2327,804	-733,986	-391,242	2327,743	-733,400	0,660	0,061	0,586
1	2	-623,560	2024,612	-742,949	-623,663	2024,525	-743,746	0,103	0,087	0,797
1	3	-622,886	2022,233	-365,626	-621,431	2021,925	-366,405	1,455	0,308	0,779
1	4	-290,236	2407,707	-253,993	-289,679	2407,779	-253,620	0,557	0,072	0,373
1	5	65,869	2036,395	-222,926	65,936	2036,906	-222,331	0,067	0,511	0,595
1	6	-359,761	1715,355	-222,713	-360,646	1714,640	-222,516	0,885	0,715	0,197
1	7	-238,463	1653,095	-776,066	-238,707	1653,294	-775,182	0,244	0,199	0,884
1	8	37,680	1944,779	-773,634	37,577	1944,631	-774,507	0,103	0,148	0,873
2	1	-390,593	2327,834	-733,941	-391,231	2327,615	-733,357	0,638	0,219	0,584
2	2	-623,588	2024,625	-743,003	-623,683	2024,453	-743,723	0,095	0,172	0,720
2	3	-622,870	2022,239	-365,697	-621,491	2022,071	-366,451	1,379	0,168	0,754
2	4	-290,253	2407,689	-253,974	-289,685	2407,942	-253,641	0,568	0,253	0,333
2	5	65,879	2036,377	-222,867	65,951	2037,205	-222,345	0,072	0,828	0,522
2	6	-359,747	1715,289	-222,654	-360,705	1714,908	-222,582	0,958	0,381	0,072
2	7	-238,455	1653,065	-776,069	-238,697	1653,472	-775,279	0,242	0,407	0,790
2	8	37,713	1944,751	-773,539	37,543	1944,740	-774,551	0,170	0,011	1,012

Tabella 28Errore assoluto nella configurazione BAB

Configurazione BBA

	CO	ORDINATE EI	CAS		
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm	
1	1	98,702	-40,957	394,060	
1	2	302,144	-363,698	384,597	
1	3	303,444	-366,058	761,935	
1	4	57,682	78,455	872,759	
1	5	527,457	284,359	908,334	
1	6	681,417	-226,060	906,604	
1	7	783,564	-131,583	354,797	
1	8	605,576	227,840	357,961	
2	1	98,707	-40,931	394,018	
2	2	302,080	-363,637	384,538	
2	3	303,369	-366,099	761,903	
2	4	55,018	79,656	877,060	
2	5	527,411	284,312	908,354	
2	6	681,372	-226,102	906,631	
2	7	783,512	-131,669	354,794	
2	8	605,626	227,797	357,912	

	RIPETIBILITÀ EICAS									
POSIZIONE	∆X/mm	ΔY/mm	ΔZ/mm							
1	0,005	0,027	0,042							
2	0,064	0,061	0,060							
3	0,075	0,041	0,032							
4	2,664	1,202	4,301							
5	0,046	0,047	0,020							
6	0,044	0,042	0,026							
7	0,052	0,086	0,003							
8	0,050	0,043	0,049							

 Tabella 29
 Coordinate e ripetibilità del sistema EICAS per configurazione BBA

	DOGIZIONE	COORDIN	IATE EICAS RO	TRASLATE	COORD	INATE LASER T	RACKER	ERRORE ASSOLUTO		
REPLICAZIONE	PUSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	∆X/mm	ΔY/mm	ΔZ/mm
1	1	-390,636	2327,705	-734,448	-391,262	2327,800	-733,387	0,626	0,095	1,061
1	2	-623,232	2024,874	-743,290	-623,742	2024,648	-743,774	0,510	0,226	0,484
1	3	-622,988	2022,077	-365,634	-621,549	2022,248	-366,479	1,439	0,171	0,845
1	4	-290,178	2406,634	-255,714	-289,721	2408,144	-253,626	0,457	1,510	2,088
1	5	66,111	2036,813	-222,747	65,958	2037,283	-222,344	0,153	0,470	0,403
1	6	-359,807	1715,398	-222,857	-360,715	1714,993	-222,591	0,908	0,405	0,266
1	7	-238,645	1653,332	-775,908	-238,712	1653,547	-775,293	0,067	0,215	0,615
1	8	37,179	1944,986	-773,623	37,566	1944,780	-774,555	0,387	0,206	0,932
2	1	-390,610	2327,709	-734,490	-391,269	2327,770	-733,392	0,659	0,061	1,098
2	2	-623,197	2024,955	-743,349	-623,757	2024,607	-743,784	0,560	0,348	0,435
2	3	-623,053	2022,133	-365,666	-621,556	2022,244	-366,495	1,497	0,111	0,829
2	4	-289,951	2409,543	-251,404	-289,719	2408,125	-253,651	0,232	1,418	2,247
2	5	66,051	2036,840	-222,726	65,924	2037,263	-222,369	0,127	0,423	0,357
2	6	-359,862	1715,426	-222,830	-360,727	1714,952	-222,634	0,865	0,474	0,196
2	7	-238,744	1653,351	-775,910	-238,729	1653,522	-775,303	0,015	0,171	0,607
2	8	37,156	1944,924	-773,672	37,606	1944,776	-774,592	0,450	0,148	0,920

 Tabella 30
 Errore assoluto nella configurazione BBA

Configurazione BBB

	CO	ORDINATE EIG	CAS	
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm
1	1	122,626	-39,243	394,305
1	2	441,708	-248,543	385,116
1	3	442,977	-251,062	762,618
1	4	34,410	51,273	873,329
1	5	376,547	433,339	910,089
1	6	728,451	32,891	908,320
1	7	783,418	162,415	356,761
1	8	472,302	415,764	359,707
2	1	122,606	-39,266	394,322
2	2	441,800	-248,611	385,180
2	3	443,102	-251,070	762,593
2	4	33,691	51,322	874,568
2	5	376,662	433,352	910,045
2	6	728,544	32,927	908,324
2	7	783,501	162,371	356,820
2	8	472,419	415,704	359,675

	RIPETIBILITÀ EICAS										
POSIZIONE	∆X/mm	ΔY/mm	∆Z/mm								
1	0,019	0,023	0,017								
2	0,092	0,068	0,064								
3	0,125	0,008	0,026								
4	0,719	0,049	1,239								
5	0,115	0,014	0,043								
6	0,093	0,036	0,004								
7	0,083	0,044	0,060								
8	0,117	0,060	0,032								

 Tabella 31
 Coordinate e ripetibilità del sistema EICAS per configurazione BBB

		COORDIN	ATE EICAS RO	TRASLATE	COORD	INATE LASER T	RACKER	ER	RORE ASSOLU	то
REPLICAZIONE	POSIZIONE	X/mm	Y/mm	Z/mm	X/mm	Y/mm	Z/mm	∆X/mm	ΔY/mm	∆Z/mm
1	1	-390,483	2327,965	-734,264	-391,249	2327,774	-733,390	0,766	0,191	0,874
1	2	-623,284	2025,022	-743,216	-623,733	2024,621	-743,768	0,449	0,401	0,552
1	3	-623,200	2022,182	-365,266	-621,554	2022,278	-366,424	1,646	0,096	1,158
1	4	-290,123	2407,065	-255,000	-289,686	2407,895	-253,587	0,437	0,830	1,413
1	5	66,098	2036,849	-222,458	65,941	2037,034	-222,315	0,157	0,185	0,143
1	6	-359,934	1715,337	-222,691	-360,703	1714,914	-222,627	0,769	0,423	0,064
1	7	-238,650	1653,385	-776,078	-238,748	1653,504	-775,313	0,098	0,119	0,765
1	8	37,491	1945,123	-773,738	37,571	1944,771	-774,545	0,080	0,352	0,807
2	1	-390,504	2327,986	-734,246	-391,249	2327,755	-733,393	0,745	0,231	0,853
2	2	-623,358	2024,935	-743,152	-623,729	2024,596	-743,771	0,371	0,339	0,619
2	3	-623,217	2022,058	-365,291	-621,545	2022,242	-366,443	1,672	0,184	1,152
2	4	-290,012	2407,773	-253,757	-289,716	2408,120	-253,620	0,296	0,347	0,137
2	5	66,103	2036,734	-222,503	65,942	2037,244	-222,377	0,161	0,510	0,126
2	6	-359,905	1715,242	-222,688	-360,718	1714,949	-222,617	0,813	0,293	0,071
2	7	-238,699	1653,305	-776,019	-238,713	1653,497	-775,327	0,014	0,192	0,692
2	8	37,422	1945,011	-773,770	37,633	1944,778	-774,619	0,211	0,233	0,849

 Tabella 32
 Errore assoluto nella configurazione BBB

Si propone un ulteriore esempio per dimostrare che l'errore evidenziato è essenzialmente attribuibile al sistema EICAS.

Si sono considerate le distanze tra le 8 posizioni nella configurazione ABB e nella configurazione BBA utilizzando il laser tracker, poi si è calcolato il valore assoluto delle differenze.

	DIFFERENZA TRA DISTANZE [mm]										
	1	2	3	4	5	6	7	8			
1	-	0,011	0,085	0,137	0,084	0,069	0,034	0,091			
2		-	0,034	0,070	0,056	0,023	0,058	0,142			
3			-	0,043	0,032	0,012	0,065	0,140			
4				-	0,000	0,024	0,082	0,111			
5					-	0,047	0,059	0,056			
6						-	0,054	0,116			
7							-	0,081			
8								-			

 Tabella 32
 Differenza tra distanze nelle configurazioni ABB e BBA con laser tracker

La differenza massima tra le distanze nelle due configurazioni è 0.142 mm.

Si è svolta la stessa operazione per EICAS utilizzando le configurazioni ABB e BBA.

DIFFERENZA TRA DISTANZE [mm]								
	1	2	3	4	5	6	7	8
1	-	0,763	0,574	1,010	0,286	0,015	0,476	0,613
2		-	0,931	0,171	0,143	0,028	0,470	0,725
3			-	0,073	0,341	0,089	0,376	0,470
4				-	0,060	0,219	0,372	0,502
5					-	0,806	0,756	0,723
6						-	0,218	0,262
7							-	0,251
8								-

 Tabella 33
 Differenza tra distanze nelle configurazioni ABB e BBA con sistema EICAS

Le differenze tra le distanze nelle due configurazioni arrivano a 1.010 mm.

Bibliografia e sitografia

[1] ASME B89.4. 19-2006 Standard – Performance Evaluation of Laser-Based Spherical Coordinate Measurement Systems, www.asme.org.

[2] VDI/VDE Part 10 (2011) Accuracy of Coordinate Measuring Machines: Character-istics and Their Checking: Acceptance and Reverification Tests of Laser Trackers, Verein Deutscher Ingenieure, Dusseldorf.

[3] ISO 10360-10, Geometrical Product Specifications (GPS) – acceptance and reverification tests for coordinate measuring systems (CMS) – Part 10: laser trackers for measuring point-to-point distances.

[4] Edward Morse, Victoria Welty - University of North Carolina at Charlotte, USA - Submitted by Chris Evans, Charlotte, USA (2015) "Dynamic testing of laser trackers".

[5] Zheng Wang, Luca Mastrogiacomo, Fiorenzo Franceschini, Paul Maropoulos (2011) "Experimental comparison of dynamic tracking performance of iGPS and laser tracker".

[6] www.micro3d.it

[7] www.comau.com

- [8] www.ceinorme.it
- [9] www.mathworks.com

Ringraziamenti

È finita. È terminata un'altra esperienza importante del mio percorso di vita. È stato per me un cammino di crescita prima di tutto come persona e poi come studente.

È giunto il momento di pensare a tutti coloro che mi hanno supportato e rivolgere loro i miei più sinceri ringraziamenti.

Innanzitutto ci tengo a ringraziare il Professor Luca Mastrogiacomo e l'Ingegner Gianfranco Genta per aver avuto la pazienza di offrirmi preziose spiegazioni e assistenza durante la realizzazione del progetto che ha portato alla stesura di questa tesi. Non avrei potuto sperare di essere seguito da persone più disponibili e gentili di loro.

Ringrazio tutti i professori che ho avuto modo di ascoltare nella mia carriera universitaria perché ognuno di loro mi ha lasciato qualcosa che porterò nel mio bagaglio personale.

Grazie ai miei fantastici amici del Poli. Sembra ieri o forse una vita fa che ci siamo conosciuti e devo ammettere che non so come avrei fatto senza di voi. Siete riusciti a rendere divertenti anche le giornate più pesanti. Non siamo riusciti nell'intento di fare qualche aggiunta tattica alla banda, ma non importa, siamo stati una squadra eccezionale!

Grazie ai miei amici al di fuori dell'università perché hanno saputo darmi la forza di ricaricare le batterie, capire i miei impegni e sorbirsi a volte i miei sfoghi.

Un grande grazie ai nonni, agli zii e al mitico cuginetto futuro ingegnere. Mi siete stati vicini e avete sempre avuto una buona parola per incoraggiarmi e per dimostrare interesse verso questo mio percorso.

L'ultimo e più importante ringraziamento va di diritto alla mia famiglia. Siete stati i primi a credere in me, più di quanto ci credessi io. Mi avete spinto ad affrontare sfide sapendo che avrei potuto farcela perché in fondo avete intravisto in me qualche capacità. Senza di voi avrei perso molte opportunità di cui mi sarei pentito enormemente, quindi vi ringrazio di cuore. Continuate a spronarmi!

Non è stato facile. Ci sono stati dei momenti in cui sembrava che le cose non girassero per il verso giusto, ma probabilmente sono stati quelli che mi hanno regalato maggiori soddisfazioni, in quanto sono gli ostacoli più difficili da superare a far uscire la parte migliore di noi: la determinazione e la resilienza a non accettare la sconfitta.

Forse avrei potuto fare di più, avrei potuto essere più metodico e organizzato nello studio, avrei potuto prendere voti migliori, ma non ho grandi rimpianti, ho dato ciò che mi sentivo di offrire.

Si dice che chiusa una porta, si apra un portone e che la fine di un'esperienza coincida con l'inizio di un'altra. Speriamo che la prossima avventura sia emozionante e stimolante almeno come questa appena conclusasi.