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Chapter 1

Introduction

To Bring a Star to Earth is the goal of Fusion Energy research.
All the stars , including our Sun are powered by nuclear fusion reactions that take
place in their core. Nuclear fusion reactions, like nuclear fission reactions release en-
ergy according to the mass-energy equivalence formula discovered by Albert Einstein
in 1905:

E = mc2 (1.1)

Where m is the mass, E the energy and c is the speed of light.
In the case of nuclear fusion reactions, two or more light nuclei fuse together to form
one or more different nuclei and subatomic particles ( neutron and protons).The
mass difference between the reactants and the products is transformed in energy
with a factor equal to the square of the speed of light (≈ 9× 1016 m2/s2).
Since several decades, fusion energy as a possible energy source on earth has seri-
ously been under studies, not only for the important amount of energy released in
each reaction, but also for the fact that the fuel for this energy source would be
practically inexhaustible. In our Sun, fusion is achieved by hydrogen nuclei that
fuse into helium.The gravity in the Sun compresses the particles and enhance the
fusion reaction.On Earth it is not possible to build a machine with such a huge mass
as the Sun to confine particles by gravity for fusion. This is the reason why research
focuses on two types of confinement, the inertial confinement and the magnetic con-
finement. To understand those two techniques let’s first remember that in order to
achieve fusion on Earth, particles have to be heated at very high temperature (about
10 times the temperature in the core of the Sun). The particles are then in a state
called plasma where atoms are freed from their electrons.The plasma is known as
the fourth state of matter, the others being solid, liquid and gas. The fact that the
plasma is a mixture of ions and electrons has given an idea to physicists for their
confinement. In fact charged particles in a magnetic field experience the Lorentz
force and gyrate around the magnetic field lines.The idea of magnetic confinement
reside in creating a magnetic field in a toroidal geometry to keep plasma particles
confined and increase the probability they will collide and fuse together. The other
option, the inertial confinement, consists in heating and compressing a fuel target
in the form of a pellet that contains a mixture of light nuclei (typically deuterium
and tritium). The magnetic confinement is believed to be the most promising path
toward achieving fusion and there are many experiments in the world implement-
ing this strategy. Many of these experiments are of the so-called ”Tokamak” type,
on which this thesis focuses. This thesis work has been carried out on the DIII-D
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tokamak situated in San Diego , California.
Tokamak machines are devices with torus geometry in which two magnetic fields are
superimposed to enclose the plasma. A toroidal field generated by external coils and
a poloidal field generated by a current flowing in the toroidal direction inside the
plasma. This plasma current has the two purposes of creating a poloidal magnetic
field and to heat the plasma.The plasma current is typically driven externally,this is
done through a transformer coil which induces current inside the plasma. In princi-
ple, a time varying current is generated in the primary winding of the transformer so
that a current is driven in the plasma, which is the secondary circuit (see Fig.1.1).
The increasing current in the primary winding of the transformer can be generated
only for a limited amount of time, this is why tokamaks do not work in continuous
but in pulse mode. The plasma current also can be driven through a neutral-beam
current drive method. The method consists in a beam of high-energy neutral atoms
which is injected into the plasma along the toroidal direction. The neutral beam
will freely enter the plasma since it is unaffected by the magnetic field. The neutral
atoms become ionized by collisions with the electrons. The beam then consists of
energetic positively charged nuclei that are confined within the plasma by the mag-
netic field. The high-speed ions travel toroidally along the magnetic field and collide
with the electrons, pushing them in one direction and thereby producing a current
(Fig. 1.2).
There is a particular component of the plasma current which adds to the ones we
described above.This component is called the Bootstrap Current and has been ex-
perimentally observed for the first time by Michael C. Zarnstorff working in his
PhD thesis (Experimental Observation of Neoclassical Currents)[1]. The motiva-
tions for our research work come from this experimentally observed current which
arises naturally in tokamak plasmas every time there is particle density and temper-
ature gradient.The discovery of this current was so stimulating because it opened the
opportunity for the study and the development of a steady-state fusion reactor.In
fact, the low efficiency of the methods for driving the current inside the plasma
and the large cost associated to external current drive system has generated interest
in the study of the bootstrap current. Moreover, in magnetic confinement fusion
research, an important topic is the macroscopic plasma behaviour, i.e. how it can
reach an equilibrium and stability in toroidal geometry, considering all the macro-
scopic forces that act on it. This field that looks at a plasma as a fluid is called
MHD (MagnetoHydroDynamics), and MHD studies plasma equilibrium and stabil-
ity. The bootstrap current has been observed to be an important part of the total
current in the plasma (especially in the edge region of the tokamak where it can
make up to 70% to 90% of the total current)[1][2], it then plays a crucial role on
MHD analysis. Those analysis are performed sometimes integrating together many
codes, dealing with different physics aspects , this is what we refer to as integrated
modelling.For integrated modelling, fast and accurate calculation of the bootstrap
current is fundamental in order to study its implication on the plasma stability and
equilibrium.
All this environment was already set before I arrived at General Atomics for this
thesis work, and our mission was to provide a fast and accurate formula to calculate
the bootstrap current. The first step was to understand how the current is presently
calculated.The two most popular calculation methods both have a drawback. The
first one is based on a computer simulation code called NEO [3],it gives accurate
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result but is CPU demanding and consequently slow. The other option for calcu-
lating the bootstrap current is the world-wide used Sauter analytic formula [4][5],
which is faster; the issue with the formula is that it is not accurate at all plasma
regimes[2][6]. The challenging goal we had was to develop a method to compute
the bootstrap current which should ideally be as fast as the Sauter model and as
accurate as the NEO simulation code. Our idea was to try and build a formula that
rely on artificial neural networks or simply neural networks (NN) [7]. Neural net-
works are specific algorithms in the field of machine learning that in the past have
been successfully used for critical physics issues. They have been used for example
to predict turbulent transport fluxes in tokamak plasmas [8]. What is the most
interesting about neural networks is that they are capable of breaking the speed-
accuracy trade-off that is expected in traditional physics models, and this definitely
convinced us to rely on NNs to build our formula. The remainder of this thesis will
provide in detail all the steps of our work and the important results we obtained.
The structure is as follows:
In Chap. 2, an overview of nuclear fusion research and the world energy challenge
is given.The following chapter (Chap. 3 ) starts first by describing the principles of
a tokamak reactor and then explains the neoclassical component of the transport
in tokamak plasmas and one of its most important effects: the bootstrap current.
Chap. 4 describes more deeply the neoclassical bootstrap current, highlighting the
actual bootstrap current models and their limitations. At the end of this chapter,
one might understand why a new bootstrap current model is needed and also by
looking at the unsuccessful previous models why this work had to be thoughtfully
done. Chap. 5 and Chap. 6 present the Neural Network (NN) approach to calcu-
late the bootstrap current. The accuracy of our physics model is also discussed.
Chap. 7 naturally follows showing the NN prediction of experimental bootstrap cur-
rent profiles. This exercise has been done not for present tokamak machines only;
an extrapolation to future tokamak devices is also discussed.This is possible since
we developed a formula that can be extended to other fusion devices, and to any
impurity species, not only carbon impurity as in DIII-D simulations. The new cal-
culation of the bootstrap current, which offers an important improvement to prior
models, has several applications; those are presented in Chap. 8. Finally, all the
results obtained in this work are highlighted in the Conclusion with a summary of
all the applications of our work and the relevance for the ITER machine.
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Figure 1.1: Principle of a tokamak reactor. The plasma is the secondary of the
transformer circuit.
Source: Max-Planck-Institut fur Plasmaphysik.

Figure 1.2: Illustration of a Neutral Beam Injection.
Source: The European journal for science teachers.
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Chapter 2

The energy challenge and the
fusion research

2.1 The energy challenge

How can the world continue to develop, and poor countries continue to grow, without
excessive costs — whether financial or environmental?
One-third of the world’s population use organic material, like wood or charcoal for
cooking, heating, and lighting. This has the consequence of high levels of indoor
air pollution and a considerable increase in the incidence of respiratory infections:
pneumonia, tuberculosis, chronic obstructive pulmonary disease, etc. This leads to
up to 2.5 million premature deaths each year, mostly women and children according
to the World Health organization.Figure 2.1 illustrates a typical cooking time in an
average home in a poor country.The family will absorb particulates because they
will spend the most of the time in the kitchen, using fire sometime also for heating
purposes during the night. Figure 2.2 shows a comparison of the relative harm of
different energy sources in developing country, biomass by air pollution is causing
the most damage. It is interesting though to stress the fact that the families that
use biomass mainly do not have access to electricity. This leads to an important
challenge in those countries, the challenge of having a clean and affordable energy
source.

On the other hand Urbanization and Industrialization have always seemed to be
the key to wealth and better living, but in reality, it has been shown that, although
it leads to better conditions of living, it affects our environment by air pollution and
ultimately also contributes to climate change[9]. An example is illustrated in figure
2.3, which shows several hundreds of deaths in a single pollution event in London due
to a high concentration of SO2 in the atmosphere. This pollution event in London
is known as the great smog of London. It started in early December 1952, a period
of cold weather.Airborne pollutant arising mainly from the use of coal was collected
by an anticyclone and windless conditions to form a thick layer of smog over the
city.It lasted from Friday 5, to Tuesday 8 December 1952 and caused more than 10
000 death in England. Figure 2.3 shows the trend of the damage during the days the
pollution reached its pick, on the picture we clearly see how the damages(deaths)
are linked to the pollutant concentration.

In this situation we understand better why the environmental challenge is im-
portant and so also the energy challenge both in developed and in developing coun-
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Figure 2.1: Developing country biomass use generates indoor particulates.
Source: World Health Organization Picture: Practical action

Figure 2.2: Relative harm of biomass (fuel) in developing countries

tries.Especially given the fact that the growth in energy use is enormous.In fact
there are two characteristic regions of the world: near saturated energy demand
and dramatically growing energy demand. Recently, just the growth in Chinese
consumption has equaled the total German consumption.

Figure 2.4 shows how the situation is changing with respect to the past where
energy use was mainly dominated by OECD countries (with < 20% of the global
population).

The growing energy demand has to be met in an economically feasible and en-
vironmentally friendly way. The issues associated with the emission of greenhouse
gases motivate one to not push on the use of coal and fossil fuels as energy sources.

A possible solution could be to increase the production of actual carbon-free
energy (nuclear fission, solar panels, wind, etc.). This solution still will not be
convenient in the long term because of the non negligible issues associated with
radioactive wastes or low and variable production from renewable sources. This has
been the motivation toward the research of unlimited, eco-friendly, and economically
achievable source of energy . This new source will be integrated in the actual energy
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Figure 2.3: Example pollution event in London
Source: Wilkins

Figure 2.4: Predicted energy growth
Source: World Energy Council,World Bank

mix.

2.2 The fusion research

Fusion research aims at using as an energy source the energy from the nuclear fusion
of two light nuclei. Like nuclear fission, nuclear fusion produces energy from a nuclear
reaction according to the Einstein relation E = mc2 . In fact what is important
is how tightly the protons and neutrons are held together. If a nuclear reaction
produces nuclei that are more tightly bound than the originals then energy will be
produced. It turns out that the most tightly bound atomic nuclei are around the
size of iron (with 26 protons in the nucleus). That is, one can release energy either
by splitting very large nuclei like uranium with 92 protons to get smaller products
(nuclear fission) or fusing very light nuclei like hydrogen with just one proton to get
bigger products (nuclear fusion). In both cases the reaction shifts the size of the
atoms involved towards iron, that is towards lower energies in the “valley” pictured
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below. The energy gain is released in the form of kinetic energy of the products of
the reaction which is then converted to heat.

Figure 2.5: Nuclear binding energy
Source: EUROfusion

A particularly interesting fusion reaction is the reaction between deuterium and
tritium, which are isotopes of hydrogen. Deuterium has a natural abundance in
Earth’s oceans of about one atom in 6420 of hydrogen, and so can be considered as
a limitless resource. Tritium, on the other hand, is a radioactive isotope of hydrogen;
naturally occurring tritium is extremely rare on Earth but can be produced during
the following nuclear reactions.

6Li+ n −→ T + α + 4.8Mev (2.1)

7Li+ n −→ T + α + n− 2.5Mev (2.2)

Naturally, Lithium contains about 7.4% of 6Li and 92.6% of 7Li. Nevertheless the
reaction involving Lithium 6 is the easier. Tritium then can be produced using
that reaction. It is important to notice that this reaction can happen directly in
the blanket surrounding the region where the fusion reaction is happening. In this
way the blanket will be the supplier of Tritium; this is the concept of the breeding
blanket in fusion research. The availability of 6Li and Deuterium (D) confirm that
fusion energy has the potential to provide a very long-term energy supply, all with
less damage to the environment (i.e. no greenhouse gases, almost no CO2 emission,
and most importantly no radioactive wastes — as an example the product of the
fusion reaction between deuterium and tritium is Helium-4 and a neutron. Helium-4
is non-radioactive isotope of the element Helium). It is interesting now to discuss
another very important characteristic of fusion reactions. Unlike the nuclear fission
reaction where an uncontrolled chain reaction can start, fusion (in a fusion reactor)
is in that sense stable. In fact fusion reactions need heat to occur. In case of an
accident on a fusion reactor, without another huge supply of heat, the reactions will
automatically stop without any possibility of an uncontrolled chain reaction.

2.2.1 The promising D-T fusion reaction

Let’s discuss in detail the fusion reaction between Deuterium and Tritium to under-
stand its feasibility in an actual reactor and the amount of energy involved . The
D-T reaction is

D + T −→ α + n+ 17.6Mev (2.3)
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α is the Helium-4 isotope we mentioned above. The energy comes from the mass
difference (∆m) between reactants and products.

∆m = m(D) +m(T )−m(α)−m(n)

∆m = m(1H
2) +m(1H

3)−m(2He
4)−m(0n

1)

According to Ref. [10]:

∆m = 2.014102 + 3.016050− 4.002603− 1.008665

So, ∆m = 0.018884 a.m.u. [10] are converted to energy for every nucleus of deuterium
(or tritium) that fuse. Therefore,

∆E = ∆mc2

= (0.018884a.m.u)(
1.66056× 10−27kg

1a.m.u
)(3× 108m

s
)2

= (2.82× 10−12J)(
6.242× 1012MeV

1J
)

= 17.6MeV/nucleus

The D-T reaction is not the only interesting one as far as the produced energy
is concerned. Under study are also D-D (deuterium-deuterium) reactions and D-
He-3 (deuterium-helium-3) reactions. The issue with the other two reactions is
the initiation — the temperature required to initiate is much higher than the one
required in the D-T reaction. This is clear looking at Fig. 2.6.

Figure 2.6: Experimentally measured cross sections for the D-T,D-3He, and D-D
fusion reactions as a function of deuteron energy kD = mDv

2
D/2. The cross section

of the D-T reaction is the highest at low energies (close to 100 keV). [8, 11]

Figure 2.6 illustrates how hot the given mixture of D/T should be to allow fusion
to occur (hundreds of millions of degrees). This is even hotter than the temperature
in the core of the sun. The hot gas mixture here is in plasma state.
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2.2.2 The other fusion reactions

Under studies there is also the fusion of helium-3 as a future energy source. helium-3
is a light , non- radioactive isotope of helium with two protons and one neutron.
It has the important property that his fusion will release large amount of energy
without causing the surrounding material to become radioactive. The issues associ-
ated with helium-3 are mainly that it requires higher temperatures for fusion, and
that its abundance is thought to be greater in the moon than in the Earth. Here
are summarized the different fusion reactions, it is important to observe also the
number of neutrons produces.

D +D −→3 He+ n+ 3.268Mev (2.4)

D + T −→4 He+ n+ 17.571Mev (2.5)

D +3 He −→4 He+ p+ 18.354Mev (2.6)

15



Chapter 3

Neoclassical transport and
bootstrap current in tokamak
plasmas

3.1 Tokamak reactors

Understanding the neoclassical transport physics starts by studying tokamak reac-
tors principles. Tokamak reactors use the magnetic confinement fusion principle,
which is the approach to generate the fusion power using magnetic field to confine
the hot fusion plasma. The other approach, the inertial confinement fusion is be-
yond the scope of this thesis work. To have a good view of the magnetic confinement
principles we should first focus our attention on the very basic principle of the mo-
tion of a charged particle in a magnetic field. If a charged particle of charge q with
velocity ~v is introduced in a magnetic field B, it experiences the Lorentz force:

~F = q~v × ~B. (3.1)

The Lorentz force which is both perpendicular to the magnetic field direction and
the velocity of the particle constrains the particles to gyrate around the magnetic
field lines. The spiral motion around the magnetic field lines has inspired plasma
physicists in the design of the tokamak. The tokamak (an acronym from the Russian
words for toroidal magnetic confinement) consist in a doughnut-shape device with
magnetic field line winding hellicaly around the torus. This configuration allows
the particle that gyrate around the field lines, to be confined inside the torus. The
Tokamak for its properties, is believed to be the most promising solution for using
fusion energy in the future. The geometry allowing this is a torus shown in figures
3.1a, 3.1b taken from [8]. R and z are the radial and vertical coordinates of the
torus; R0 is the major radius and a the minor radius; the plasma section plane
parallel to the R,z plane is called the poloidal plane and the angle θ is the poloidal
angle; Φ is the toroidal angle.

3.1.1 Drifts

The particles, travelling with a spiral motion in the toroidal direction experience
motions drifts that push them outward and so they are not well confined [12]. In
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(a)
(b)

Figure 3.1: Toroidal coordinates definition and magnetic field components repre-
sentation 3.1a. Charged particle orbit in dashed line in a toroidal magnetic field
(continuous line) 3.1b. [8]

this section we will enumerate the different drifts particles are subject to during
their motion around the magnetic field lines.

E x B Drift

Considering a charged particle moving in a system with a uniform magnetic field
B and a uniform electric field E which is in the direction perpendicular to the
local magnetic field B. If this particle has no velocity component parallel to the
local magnetic field and magnetic momentum of this particle is conserved, then
its velocity is found to be the sum of its gyro motion velocity a time independent
guiding center drift velocity.

~v = ~vgyro + ~vdrift. (3.2)

~vdrift is found to be :

~vdrift =
~E × ~B

B2
(3.3)

It is important to notice that in this case the direction of the guiding center drift
velocity do not depend on the sign of the charged particle.

Gravitational Drift

The gravitational is a generalization of the previous drift. If we consider a charged
particle moving in a system with a uniform magnetic field ~B and a uniform grav-
itational field ~g which is again perpendicular to the local magnetic field, then the
guiding speed drift is found to be equal to :

~vdrift =
m~g × ~B

qB2
(3.4)

Drift speed of gravitational drift increases with increasing particle’s mass.

Curvature Drift

Considering a charged particle with constant magnetic moment and non-zero veloc-
ity component parallel to the local magnetic field. If curvature of the magnetic field
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line is non-zero and RB is the radius of curvature, then the particle experience a
curvature drift:

~vdrift =
mv2
‖

qB2
(
~RB

RB

× ~B) (3.5)

Drift speed of the curvature drift increases with increasing mv2
‖ (which is propor-

tional to particle’s kinetic energy in the direction parallel to local magnetic field).

Grad B Drift

Now considering a charged particle moving in a system with non-uniform magnetic
field ~B(r). If the non-uniformity of the magnetic field is small enough such that
we can use the first two terms in Taylor expansion to estimate magnetic field based
on magnetic field information at guiding center of the charge particle. The we still
can decompose the velocity of this particle into sum of the gyration velocity and a
guiding center drift, in this case the drift velocity is expressed as :

~vdrift =
mv2
⊥

2qB

(−∇⊥B)× ~B

B2
(3.6)

In this case, the grad-B drift speed increases with increasing perpendicular kinetic
energy.

Polarization Drift

This drift arises when the charged particle is in a system where the electric field
is not constant anymore. for instance where ~E = ~yE(t) and ~B = ~zB. The total
velocity here is written as :

~v(t) = ~vgyro(t) + ~vExB(t) + ~vPolarization (3.7)

we then find the guiding center drift velocity as:

~vPolarization = ~y
mĖ(t)

qB2
(3.8)

Polarization drift can result in polarization current

The drifts we enumerated are an issue to the confinement, however if the mag-
netic lines are twisted, the drifts can be neutralized. In a tokamak the twisting
is done by inducing a plasma current in the toroidal direction, which generates
a poloidal magnetic field see figure 3.2. in the other hand the toroidal magnetic
field is produced by coils that surround the toroidal vacuum chamber containing
the plasma (see figure 3.3), in those coils flows current and the research is oriented
towards superconducting field coils.

Typically in a tokamak machine the magnitude of the toroidal field is greater
than the poloidal one BΦ > Bθ.

Now, The plasma current is normally induced by a transformer coil. This is why
a tokamak does not work in continuous, but in pulsed mode: In a transformer it is
only for a limited time that an increasing current can be generated in the primary
winding so that a current can be driven in the plasma. The transformer must, then
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Figure 3.2: The toroidal plasma current J induces the poloidal field component Bp.
The sum of toroidal and poloidal magnetic field results in the helical magnetic field
B (twisted).[12]

Figure 3.3: A toroidal magnetic field. The magnet coil currents, I, create a toroidal
magnetic field, Bt (dashed lines). [13]

be ”discharged” and the current started up afresh. In order to achieve steady state
operation in a future tokamak power plant, investigations are being conducted on
methods of generating current in continuous mode, e.g. by means of high-frequency
waves.

3.1.2 The DIII-D tokamak at General Atomics

This master thesis has been done at the DIII-D National Fusion Facility, at General
Atomics.DIII-D is the largest magnetic fusion research experiment in the United
States and one of the main operating tokamaks in the World.with a program mission
to establish the scientific basis for the optimization of the tokamak approach to fusion
energy production. DIII-D is an evolution of the earlier Doublet I and Doublet
II experiments, where doublet is a two lobed toroidally symmetric plasma shape
configuration. a picture of Doublet 2 is shown in figure 3.4. DIII-D started operating
in 1978, and stopped in 1986 for a major upgrade, and restarted again in 1986. Main
DIII-D parameters are summarized in table 3.1.

3.2 Neoclassical transport

We described how fusion works and where we want to achieve fusion: in a tokamak
device. In that machine there is transport of particles, momentum, and heat. In
this section we will focus on the neoclassical component of the the total transport
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Figure 3.4: A picture of the Historical Doublet II magnetic confinement machine in
San Diego (General Atomics)

Major radius R0 1.67m
Minor radius a 0.67m
Maximum plasma current Ip 3MA
Maximum toroidal field BΦ 2.2T
Available Ohm magnetic flux 10.5V s
Heating 23MW
Wall Carbon

Table 3.1: Main DIII-D parameters

process in a tokamak.

Interesting historical fact

The pioneers of plasma physics and tokamak physics, during the early design of toka-
mak reactors, believed that the transport would be essentially neoclassical. Neoclas-
sical transport is due to coulomb collisions adapted to a toroidal geometry. Then
it happened that during experiments, all of the measured quantities (heat fluxes,
temperatures, densities) did not match the theoretically predicted ones. The scien-
tists wondered how were the particles being ”transported” — they wondered what
the other component of transport in tokamak plasmas was. Later on, we found out
that the other component, or actually the main component of the transport is the
anomalous transport — the so-called turbulent transport processes, which actually
dominate transport phenomena in tokamak plasmas. Even if the neoclassical trans-
port is not the dominant part of the transport in a tokamak, it still is one of the
pillars of the physics of magnetically confined plasmas [14],[15].

The neoclassical transport theory provides a model for transport of particles,
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momentum, and heat due to Coulomb collisions in confined plasmas and in toroidal
geometries. The difference between the classical and neoclassical models lies in the
incorporation of geometric effects, which give rise to complex particle orbits and
drifts.

The theory starts from the kinetic equation for the particle distribution function
fα(~x,~v, t)[14] known as the Boltzmann equation:

∂fα
∂t

+ ~v · ∇fα +
~F

m

∂fα
∂t

= Cα(f) + Sα (3.9)

where α indicates the particles species, ~v is the velocity, ~F is the Lorentz force
(Equation 3.1) acting on the particle. In the next section we will define some useful
terms for the understanding of the theory.

3.2.1 Some definitions

moments

The Boltzmann equation (Eq: 3.9) describes how the phase-space density changes
around a particle with time due to collisions .The Boltzmann equation can be used
to describe the time-evolution of macroscopic quantities such as density, macroscopic
velocity , etc. This is done by considering the moment equations of the Boltzmann
equation. In mathematics the nth-moment of a real valued, continuous function f(x)
is:

µn =

∫
xnf(x)dx (3.10)

So in relation to our analysis we can define the quantity:

g(~x, t) =

∫
Q(~v)fαd

3~v (3.11)

and there are few functions Q(~v) that are for particular interest :
if Q(~v) = 1 −→ g(~x, t) = n(~x, t), zeroth-order moment.
if Q(~v) = m~v −→ g(~x, t) = ρ(~x, t), first Order moment. and so forth.

Maxwellian distribution function

Another important concept is the normal distribution function or the Maxwellian
distribution function. It is defined as :

f(~v) = (
m

2πkT
)3/2 exp−mv

2

2kT
(3.12)

where m is the particle mass and kT is the product pf the Boltzmann constant and
thermodynamic temperature . It was first used for describing particle speeds in
idealized gases where the system of particle is assumed to have reached the thermal
equilibrium.
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Gyroradius

Now we will define what we will refer to as the gyroradius. The gyroradius or
the Larmor radius is the radius of the circular motion of a charged particle in the
presence of a uniform magnetic field. It is often used as a comparison length for
many plasma phenomena. Starting from Equation 3.1; we can derive the larmor
radius:

rg =
mv⊥
qB

(3.13)

where m is the mass of the particle and v⊥ is the component of the velocity perpen-
dicular to the direction of the magnetic field , q is the absolute value of the electric
charge of the particle and B the strength of the magnetic field.

pedestal

We will be using many times the word pedestal in this thesis.The simplest definition
we can give is that the pedestal in a high confined tokamak plasma is the region in
the edge where steep gradients in the density and temperature are observed. It is
an important region for the bootstrap current since the bootstrap current is driven
by those gradients.

MHD equations

The moments we described previously constitute the basics of the fluid theory of
the plasma.With respect to fusion research, the fluid model provide a reasonably
accurate description of all the important phenomena: macroscopic equilibrium and
stability, transport, heating and current drive. From the moments of the Boltzmann
equations , we are provided with the conservation equations for each species in the
plasma namely the electrons and the ion. This is called the two fluids model. The
MHD(Magnetohydrodynamics) model is a reduction of the two-fluid model to a
single fluid model derived by focusing attention on the length and time scales char-
acteristic of macroscopic behavior, and defining proper single fluid variables(ρ,u).
An important aspect to stress is the fact that while in a single particle theory ,
the electric field and the magnetic field are prescribed (section o the drifts), MHD
is a self-consistent theory including the field created by the moving particles. the
summary of MHD equations are :
mass: dρ

dt
+ ρ∇ · ~v = 0 ;

momentum : ρd~v
dt

= ~J × ~B −∇p;
Ohm’s Law: ~E + ~v × ~B = 0;
energy : d

dt
( p
pγ

) = 0;

Maxwell : ∇× ~E = −∂ ~B
∂t

; ∇× ~B = µ0J ; ∇ · ~B = 0;
p in the momentum equation is the macroscopic pressure, J is the current, γ is the
heat capacity ratio.

Flux surfaces

The steady state form of the mometum equation is given by :

~J × ~B = ∇p (3.14)
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This means that ∇p is perpendicular to both ~J and ~B. By definition the vector ∇p
is perpandicular to p = const.contours. It then follows that:

B · ∇p = 0 (3.15)

The implication is that the magnetic field lines (i.e., the lines parallel to ~B) must
lie in the surfaces of constant pressure; there is no component of B perpendicular to
the surface.Hence, these surfaces are also called flux surfaces. In a confined plasma
the pressure and flux contours coincide, forming a set of closed, nested, toroidal
surfaces. The concept of flux surface if fundamental in tokamak physics , because
the physics of the center of the tokamak can be studied only in one dimension (the
radial dimension), since properties are constant in a flux surface.Figure 3.5 shows
flux surfaces in a tokamak.

Figure 3.5: Magnetic flux surfaces in a tokamak.

Sα and Cα in Equation 3.9 represent the source and the collision operator. If
the chosen collision operator is the Fokker-Planck operator [16], the equation is
called the Fokker-Planck equation.Instead the collisionless Boltzmann equation is
sometime called the Vlasov equation.

Generally the derivation of this operator is non-trivial and requires making many
assumptions. The collision operator must satisfy some obvious conservation laws
(conservation of particles, momentum, and energy). Once the collision operator is
decided, the moments of the kinetic equation can be computed . if we call u the
macroscopic velocity of the moving particles, Theses fluid moments are:
~n =

∫
fd3~v (particle density)

~Γ =
∫
vfd3~v (particle flux)

~P =
∫

mv2

2
~vfd3~v (energy flux)

~P ′ =
∫
m(v − u) · (~v − ~u)fd3~v (pressure tensor) and

~Q =
∫ m(~v−~u)2

2
(~v − ~u)fd3~v (heat flux).

We can give an example of the evolution equation of the first moment , which
becomes :

∂n

∂t
+∇(nu) = Sn (3.16)

The principal goal of the neoclassical theory is to provide a closed set of equations
for the time evolution of these moments, for each particle species in the plasma. It
is interesting to notice that the determination of any moment requires knowledge of
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the next order moment. Usually some assumptions are made in order to facilitate
the analysis, for example: small gyroradius, large parallel transport ( with respect
to the magnetic field), Maxwellian distribution function, etc. So finally after these
assumptions the equations can be restated to reflect the radial transport;i.e the
transport normal to magnetic flux surfaces and averaged over flux surface. (A flux

surface is a given smooth surface S with normal ~n where ~B · ~n = 0 everywhere on
S, in other words, the magnetic field does not cross the surface S anywhere, i.e.,
the magnetic flux traversing S is zero). We mentioned at the very beginning of the
section on neoclassical theory that it takes into account the toroidal geometry; so
all particle motion associated with the curved geometry is considered, specifically,
∇B and curvature particle drifts[11].

An important prediction of the neoclassical theory is the bootstrap current that
we will discuss in the following section.

3.3 Bootstrap current

The bootstrap current is a self-generated current which arises in toroidal plasmas
driven by temperature and density gradients. Since this current occurs naturally
and the tokamak plasma relies on a current for its equilibrium, the bootstrap current
can be thought of as an advantage. It is automatically generated if one confines a
high-pressure plasma. In principle the bootstrap current can allow for a steady-state
tokamak reactor in which only a small fraction of the total current is driven through
external means. The relatively low current drive efficiency of the known external
non-inductive methods demand a high bootstrap current fraction for the reactor
to be economically attractive. What is even more interesting with the bootstrap
current, beyond its natural occurrence, is that the steep pressure gradient we have
in the plasma edge leads to a large localized bootstrap current, making it the main
component of the total plasma current; see figure 3.6. So in a tokamak machine the

Figure 3.6: Steep pressure gradient in the plasma edge leads to large bootstrap
current fraction, almost all the total current in that region
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bootstrap current will be typically 70% to 90% of the total current in the edge. The
importance of the bootstrap current in confinement, stability and for a steady-state
fusion reactor is summarized in the next subsections.

Relation between bootstrap current, confinement and MHD stability

There are many studies in literature which focus on bootstrap current implications
on stability and confinement. As an example it was found simultaneously by Callen
[17] and Carrera [18] that the bootstrap current leads to a type of instability called
the neoclassical tearing mode. Basically it can be understood in this way: at a
magnetic surface with a rational value of q (the safety factor) even the smallest
perturbation in the magnetic field that is resonant with the field line winding changes
the topology and generates an island structure. This perturbed magnetic field must
be generated by a current of correct helicity and the bootstrap current can supply
such a perturbed current. The neoclassical tearing mode is then seen as a clear
disadvantage of the bootstrap current. It is expected to be a real issue in a reactor
like ITER, possibly leading to an unacceptable degradation of confinement. This is
an area of intensive current research.

The steady state tokamak reactor

A high fraction of bootstrap current would be necessary for an economically at-
tractive steady-state reactor. This is due to the low efficiency of externally driven
current, which is expensive. Following the observation of a high bootstrap current
fraction, up to 80% in a JT-60 discharges [19], some reactors have been proposed
like the SSTR proposed by M. Kikuchi et al. in Conceptual design of the steady
state tokamak reactor (SSTR)[20] and ARIES-1 devices [21]. The SSTR concept
was originally developed in 1989 as a DEMO concept (aiming to demonstrate sus-
tained electric power generation from fusion) see Fig: 3.7. However a reactor with
high fraction of bootstrap current would face many issues (from M.Kikuchi work in
[24]). Further studies on the feasibility of this reactor and the limitations of a high
bootstrap current fraction can be found in [25].

3.3.1 The concept of Low and high collisionality

Let’s define as νee and νei the electron-electron collision frequencies and the electron-
ion frequency. In magnetically confined fusion the collisionality ν∗ is the average
number of times a particle is scattered into a passing particle before completing a
banana orbit.

ν∗ =
νRq

ε3/2vth
(3.17)

in Equation 3.17 ν is the collision frequency q the safety factor ε the inverse aspect
ratio, that we will define in more details later, and vth the thermal velocity of the
ion or the electrons. The low collisionality regime is when ν∗ << 1, in this regime
trapped particle exist for many banana regime. This is also called the banana regime.
[14][26]. In the other hand when ν∗ >> 1 we are in the high collisionality regime,the
so called Pfirsch-Schluter regime.
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Figure 3.7: View of SSTR(Steady State Tokamak Reactor) tokamak proposed by
S.Nishio et al in [22][23].

3.3.2 The physical mechanism behind the bootstrap current

We mentioned in the previous section that neoclassical transport describes, among
other effects, the bootstrap current; especially at in the low collisionality regime.
We also pointed out the importance of the boostrap current. The experimental
verification of the bootstrap current has been reviewed by Kikuchi and Azumi[27].
The bootstrap current is related directly to the inhomogeneity of the magnetic field
strength B ∝ 1/R. From the conservation of energy (E = mv2/2) and magnetic
moment (µ = mv2/2B) a physical picture of the trapped particle and the related
bootstrap current can be given. Let’s first focus on an effect called the mirror
effect. We can understand mirroring by examining Fig. 3.8. The figure shows the

Figure 3.8: The mirror effect: as a particle moves into a region of higher B, v⊥
increases and v‖ decreases;[11]

trajectory of a particle moving from a region of lower magnetic field to a region
of higher magnetic field. The particle starts with a certain value of v⊥ and v‖.
When the particle reaches the high field region, B increases and as a consequence
the perpendicular velocity should increase as well to keep constant the magnetic
moment µ. Now let’s remember that the total kinetic energy should also remain
constant,E = m(v2

‖ + v2
⊥)/2. As a result of this energy conservation an increase of
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v⊥ must be accompanied by a decrease of v‖. It follows that if the increase in B
were very large the particle eventually will reach a point where v‖ = 0. This point
is called the reflection point. Once reflected, the parallel velocity of the particle
reverses direction and the guiding center starts moving to the left in Fig. 3.8. With
some manipulation one can derive that particles with

(
v‖
v⊥

)2 <
Bmax −Bmin

Bmin

(3.18)

are trapped in the mirror formed by the magnetic field variation along a field line.
Bmin (Bmax) is the minimum (maximum) magnetic field strength on the magnetic
surface. The trapped particles reside on the outboard side and a poloidal projection
of a typical orbit is called a banana orbit (see Fig. 3.10). Because of the inhomogene-
ity of the magnetic field the particles do not follow magnetic field lines exactly but
have a drift, which in a tokamak is in the vertical direction, leading to a radial width
of the orbit. Let’s consider now two trapped ions with the same energy and magnetic
moment that start from the same point on the magnetic surface with a different sign
of the parallel velocity. From figure 2.8 it can be seen that (with the chosen value
of the sign of the poloidal field) the ion with negative (positive) parallel velocity
drifts inwards (outwards). The averaged radius of this orbit is smaller (larger) than
that of the considered flux surface. Consequently, if a radial gradient in the density
exists, this orbit will be populated more (less) than one expects from the density
on the flux surface. This leads to an asymmetry in the velocity distribution, also
shown in figure 3.9b, with more trapped ions moving in the negative compared with
the positive toroidal direction (see Fig. 3.9a). Because the drift of the electrons is in
the opposite direction, the asymmetry in the electron distribution has the opposite
sign and the radial density gradient leads to a parallel current. This current is how
the bootstrap current is generated or at least a part of it that we will refer to as the
banana current.The other contribution to the bootstrap current being given by the
momentum exchange between the trapped and passing particles.

(a)
(b)

Figure 3.9: (a) More particles follow the orbit further inside than the orbit further
out. (b) Distribution function as a function of the parallel velocity for constant
perpendicular velocity.[25]
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Figure 3.10: Drawing of three banana orbits corresponding to a deeply trapped
particle, a moderately trapped particle, and a weakly trapped particle. [11]
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Chapter 4

Bootstrap current models and
their limitations

4.1 Definitions

4.1.1 The Drift-Kinetic Equation DKE

The “drift-kinetic equation” is the basis for all calculations of neoclassical trans-
port and flows, as well as the bootstrap current. There are several variants of the
equation; one standard form is:

v‖~b · ∇f̄1 + ~vd · ∇f0 −
Ze

T
E‖v‖f0 = C(f1) (4.1)

We already have introduced the maxwell distribution, f0 represent the leading-order
maxwellian distribution and f̄1 is the gyroaverated perturbed distribution. We in-
troduced the gyroradius in the previous section, many times plasma quantities are
averaged over gyroradii. ~b is the vector along the magnetic field line and most im-
portantly ~vd is the sum of magnetic, E×B, and parallel drifts we already introduced.

So, the bootstrap current is the self-generated current which arises in our toka-
mak plasmas driven by density and temperature gradients. Since it is experimentally
hard to measure the bootstrap current, we will rely on physics models for the cal-
culation. On the one hand we have first-principle codes like NEO[3] or NCLASS
[28] .Those codes, by computing the actual distribution function, can offer a very
accurate calculation of the bootstrap current[2]. On the other hand we have ana-
lytic models like the well-known Sauter model[5][4] which have the advantages of
being fast but are limited in accuracy.In an attempt to improve the accuracy of the
Sauter model, another analytic model was developed the: KCK12 model[29] [2], a
modification of the Sauter model. The KCK12 failed in trying to improve the Sauter
model, and provides a bootstrap current calculation which is not accurate. In the
following sections we will present with more details the various bootstrap current
models and highlight their limitations.
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4.2 The first principle code NEO

NEO is a first-principle code that solves the drift-kinetic equation(Equation 4.1)
coupled to the Poisson equation. NEO assumes transport to be a local phenomenon,
meaning that fluxes at one radial location only depend on plasma parameters at that
same radial location.It is important to specify that NEO is part of a suite of codes
solving the whole transport equation in a tokamak, NEO solving the neoclassical part
and GYRO [30] solving the anomalous(turbulent) part.NEO has been extensively
benchmarked with analytic theories, as well as with NCLASS[28] over a wide range
of parameters and in various asymptotic limits. (NCLASS is the neoclassical codes
that has ben used all over the years for it’s excellent accuracy ),

NEO is considered the state-of-the art of neoclassical code, and for our purposes
NEO will be used to validate the analytic models, since direct measurement of the
bootstrap current is difficult.

4.3 The Sauter model

The Sauter model [4, 5] is an analytic formula, developed by Olivier Sauter and
Carlo Angioni. The general form of the model is given by:

〈
j‖B

〉
= −Ipe

[
L31

p

pe

dlnp

dΨ
+ L32

dlnTe
dΨ

+ L34α(
p

pe
− 1)

dlnT i

dΨ

]
+ σ

〈
E‖B

〉
(4.2)

Where I is related to the toroidal magnetic field strength by I = RBΦ, and p
is the total pressure.The coefficients σ(the neoclassical conductivity), α (the ion
parallel flow coefficient) and L31, L32 and L34 are functions of the fitting parameters
Sauter has used. These coefficients can be analytically computed from equations
(13) through (18) in [4]. the functional form of j‖ in equation (4.2) is correctly
written in the erratum [5] to the original Sauter et al paper [4]. The erratum also
contains the corrected equation for α.

The Sauter model then provides a much faster calculation of the bootstrap cur-
rent than the neoclassical code NEO. It is a fitting formula based on numerous
scans with the neoclassical codes CQLP and CQL3D which also solve the drift-
kinetic equation (Eq: 4.1) but unfortunately only in the case of pure plasma, which
means an ideal plasma constituted only of electrons and main ions (electrons and
deuterium ions if considering DIII-D tokamak for example ). Furthermore the Sauter
model uses as fitting parameters the trapped fraction (the fraction of trapped par-
ticles)the collision frequency, and ion charge. It is clear from those considerations
that the Sauter model will be limited in accuracy when applied to realistic plas-
mas with many impurity species. Another limitation of the Sauter model is that
it does not cover all collisionality regimes [2] and typically will underestimate the
bootstrap current at low collisionality and overestimate it at high collisionality. We
will discuss more in details the accuracy of the Sauter model, now we can mention
only that at the time the model was developed, in 1999, Sauter did not have the
available resources (computer power etc.) to go to higher collisionalities, while at
low collisionalities the inaccuracy comes from the fitting parameters themselves.
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Figure 4.1: NEO vs Sauter bootstrap current. The Sauter model overestimates the
current at high collisionality (shot 145701) and underestimates it at low collisionality
(shot 149220) . [2]

4.4 The KCK12 model

In an attempt to improve the accuracy of the Sauter model, a new model has been
proposed by Koh [29]: the KCK12 model. In fact the KCK12 model is not an
entirely new formulation; it is rather a modification of the Sauter model. It is based
on a fit to simulations with the neoclassical particle code XGC0 [31]. This code
still solves a form of the drift-kinetic equation. The objective of the authors was
to improve the accuracy of the Sauter model especially in the plasma pedestal and
edge. We mention this model in order to illustrate how difficult it can be to improve
the accuracy of the Sauter model, during our researc work , while working to make a
more accurate formulation, we mainly realized that the model by Sauter was a really
good model, many attempts to improve it has failed and it is therefore necessary to
work on the details the Sauter model did not consider.

Comparison of the models

The comparison of the three models was made by E. Belli in [2], considering ex-
perimental cases in both the DIII-D and NSTX tokamaks. The entire bootstrap
current ”radial” profile is analyzed. Let’s first discuss the difference between the
two tokamaks, which is important for the bootstrap current profiles analysis. The
difference in the configuration resides in a parameter called the inverse aspect ratio,
ε. The aspect ratio (1/ε) is defined as the ration R/a; where R (a) is the major
(minor) radius. From this definition a tokamak with low aspect ratio (so large ε)
will be more spherical and a tokamak with low ε are referred to as large aspect ratio
tokamak (DIII-D, JET, etc.) (see Fig. 4.2). The aspect ratio is not the only differ-
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Figure 4.2: Low aspect ratio tokamaks are spherical, an example is the NSTX
tokamak; DIII-D is a more starndard tokamak with large aspect ratio. Copyright
2000 America Institute of Physics

ence between the two tokamaks. The temperature in NSTX is generally lower than
in DIII-D; this is important since a lower temperature means higher ion collision
rate.If we assume for a typical particle mev

2 ≈ Te it follows that[11]:

ν ≈ nee
4

4πε20m
1/2
e T

3/2
e

(4.3)

The first comparison we show is in the simplified case of a pure plasma with
electrons and only deuterium ions. On DIII-D both the Sauter model and the
KCK12 model agree remarkably well with NEO in the pedestal while the relative
errors in the core are large. The core is the region of relatively low collisionality,
in contrast to the region of high collisionality in the pedestal. The large relative
discrepancy observed in the core in Fig. 4.3a is not likely to have a significant effect
on the plasma stability since the contribution of the bootstrap current to the total
current in this region is small (10-20%). In the NSTX tokamak figure 4.3b shows
how the KCK12 model largely overestimates the bootstrap current in the pedestal.
This result is sufficient to conclude that the KCK12 model is not an improvement
of the Sauter model for NSTX pedestal parameters. E. Belli showed in [2] that the
KCK12 model generally is inaccurate for large ε and high collisionality. It appears
then at the end of this simplified pure plasma case that the KCK12 model [29],
which was designed for large inverse aspect ratio and large collisonality, is probably
less accurate than the Sauter model in this regime.

Now let’s consider a more realistic case including impurities. We should note
that the Sauter model, even if it is often applied to multi-ion plasmas in analysis,
is based on fitting coefficients for strictly pure plasmas. Also, because of the lower
pedestal temperatures, the regime in the pedestal is essentially a relatively high
collisionality regime. The results of this comparison are summarized in Table 4.1.

Table 4.1 shows the clear correlation between the collision frequency and the
error. The Sauter model understimates the bootstrap current at relatively low col-
lisionality i.e ν∗e < 1 , with increasing error as ν∗e decreases (as we approach the
banana regime). Similarly the Sauter model overestimates the bootstrap current for
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(a) (b)

Figure 4.3: Bootstrap current profile comparing the NEO simulation results with
the Sauter model and the KCK12 formula, for the case of pure plasma. The error
between the NEO result and the respective model is shown for a DIII-D H-mode
shot (a), and for an NSTX H-mode (b). [2]

large collisionality ν∗e > 1 with error increasing as ν∗e increases towards a regime
called the Pfirsch-Schluter regime.

Impurities

In this section we will discuss the impact of the impurities on the accuracy of the
different models. We will compare the Sauter models against NEO simulations for
plasma with carbon impurities. We define the carbon impurity fraction as fI =
ZnC/ne. In figure we show a comparison of the NEO results with the Sauter model
with varying carbon density scaled uniformly across the profile from the original
experimental profile labeled ‘exp’.

The effect of impurity species as we move towards the edge is non negligible:
this is the reason why the Sauter model that was designed for a pure plasma is
not accurate in the pedestal of a multi-ion plasma experiment. The KCK12 model
unfortunately was not able to provide a more accurate formula. The NEO code
remains the model that provides the most accurate calculation.Being a first-principle
code has the consequence of being computationally expensive (especially when we
increase the number of species) For a typical bootstrap current profile the NEO
code will take about 25 minutes , if we increases the species and the resolution
the NEO code can take even an hour to compute a profile. In integrated modelling
applications, usually the NEO calculation is embedded into another codes so that the
computed bootstrap current is used to study another phenomenon, The fact that the
NEO code takes many minutes makes it the slowest part of the modelling and then
a crucial issue. Also when we deal with real time analysis, ie analysis taking place
while the experiment is being carried out, the NEO calculation is definitely too slow.
real time analysis takes very few seconds, and we would need an analytic formula
or a formula that only takes seconds or micro-seconds to compute a current profile.
These were our motivations to look for a new model to calculate the bootstrap
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Table 4.1: Bootstrap current analysis comparing NEO and Sauter for a range of
DIII-D discharges. The values of the collision rate ν∗e, the carbon impurity fraction
fI , the NEO bootstrap current, and the relative error between NEO and Sauter are
shown at the radial location of the center of the pedestal.[2]. QH-mode is Quiescent
H-mode detailed in [32]

.

Shot # Description ν∗e fI 〈jboot〉(MAm−2) 1− 〈jboot〉sauter〈jboot〉neo
(%)

149220 QH-mode 0.068 0.62 0.399 4.7%
145098 QH-mode 0.092 0.26 0.373 2.6%
145421 H-mode 0.398 0.25 0.360 1.7%
144987 H-mode 1.297 0.058 0.184 -20.3%
144977 H-mode 1.383 0.046 0.287 -18.4%
144981 H-mode 2.434 0.034 0.255 -32.4%
145701 H-mode 4.202 0.11 0.07 -49.5%

current. A model that would be much faster than NEO (at least a thousand time
faster) and at the same time more accurate than the analytic Sauter model.
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(a) (b)

Figure 4.4: Bootstrap current profile for DIII-D H-mode shot 145421 at t = 2283
ms, comparing the NEO simulation results with the Sauter model 4.4a, for the
case of kinetic electrons, deuterium ions, and carbon impurities with varying carbon
density scaled uniformly across the profile from the original experimental profile
labeled ‘exp’4.4b. The fractional error between the NEO result and the respective
models is also shown. [2]
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Chapter 5

Neural network approach

The Neural Network paradigm is capable of breaking the speed-accuracy trade-off
that is expected in traditional physics models. In the field of magnetic fusion it
already has been applied to many other problems. As an example, it has been used
to predict the onset of plasma disruptions [33, 34] and real time control systems
[34]. More recently it also has been successfully used to predict turbulent transport
fluxes and the pedestal structure [7]. The model for the prediction of turbulent
fluxes and pedestal structure was developed at General Atomics, in the same group
where this thesis work has been done. Our motivation was to try and apply the
Neural Network approach to predict experimental bootstrap current profiles. Let’s

(a)
(b)

Figure 5.1: Neural Network based models used to predict turbulent transport fluxes
5.1a, and the pedestal structure 5.1b. [7]

go back first over the very basic principle of Neural Networks.

5.1 Neural Networks (NN) generalities

Neural Networks, either artificial or biological, are vast networks of neurons. The
artificial neural network was inspired by the complex biological network of neurons
in the human brain. The natural neuron receives signals through synapses located
on the dendrites or membrane of the neuron. The single natural neuron then, when
it receives signals that surpass a certain threshold, is activated and emits a signal
through the axon. This signal can be propagated to other neurons and so forth.

To study Artificial Neural Networks it is good to start from the single neuron.
First because many neural network models are built out of single neurons. And
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(a) (b)

Figure 5.2: Biological Neural network (in the human brain ) 5.2a. Artificial neural
network: artificial neurons are organized in layers with connections. 5.2b.

second because a single neuron is itself capable of ”learning”. Before we proceed
let’s clarify the difference between supervised neural networks and unsupervised
neural networks. Supervised neural networks are given data in the form of inputs
and targets, the targets being the teacher’s specification of what the neural network’s
response should be. Unsupervised neural networks are given data in an undivided
form – simply a set of examples – where the algorithm should find the patterns. We
focus on supervised neural networks.

The single neuron

Figure 5.3: A single neuron [35].

A single neuron illustrated in figure 5.3, has a number of inputs xi and one output
that we will here call y. Each input is associated with a weight wi. Sometimes there
is a parameter wo called the bias. The connections of the single neuron are directed
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from its inputs to its output: it is a feedforward device. When the single neuron
receives inputs its activation is computed as a =

∑
iwixi.The output of the single

neuron is then set as a function f(a) of the activation; f is generally a sigmoid
function. If the single neuron is in a network with other neurons, the output f(a)
is fed to the neurons of the next layer.

For a network, several configurations and architectures exist. We focus on the
one that is generally called Multi-Layer-Perceptron (MLP). It consists of an input
layer with nO entries, one or more intermediary layers and one output layer with nm
outputs. Neurons of each layer are connected with all the neurons of the previous
layer. The weights are determined with the aid of the set of known input-output
pairings, called the training set. An error function related to the differences between
these expected values and the ones delivered by the network is then minimized by
iteratively modifying the weights. Each time the weights are modified corresponds
to one iteration or one epoch. The mean squared error is generally chosen for the
iterative minimization, which is a standard and efficient method.

5.2 Neural network for the bootstrap current

In this section we will explain how we used Neural Networks to predict the bootstrap
current. We will also define all the important quantities we used for the fitting.

From the flow equations the neoclassical bootstrap current can be defined as

〈
j‖B

〉
=
∑

a

zae
〈
nau‖,aB

〉
, (5.1)

where the subscript a denotes the species index, za the charge of the specie a and the
angle brackets denote a flux-surface average (we already introduced the flux-surface).
The species-dependent parallel flow is given by

u‖,a =
1

na

∫
d3vv‖f1a , (5.2)

where f1a is the first-order distribution function for species a which can be computed
via solution of the drift-kinetic equation [26]. The source term in the drift-kinetic
equation is given by

vD · ∇f0a = −df0a

dr

(
v2
‖ + µB

)( I

ψ′
b · ∇B
ΩcaB

)
, (5.3)

where f0a is the zeroth-order equilibrium distribution function, which has the Maxwellian
form

f0a =
na

(2πv2
ta)

3/2
e−v

2/(2v2ta) , (5.4)

vta =
√
Ta/ma is the thermal speed, Ωca = zaeB/(mac) is the gyrofrequency, ψ is

the poloidal flux divided by 2π, ψ′ = ∂ψ/∂r, and I(ψ) is related to the toroidal
magnetic field stregth by I(ψ) = RBt. Note that

df0a

dr
= f0a

[
d lnna
dr

+
d lnTa
dr

(
v2

2v2
ta

− 3

2

)]
. (5.5)
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Because the drift-kinetic equation is a linear PDE(Equation 4.1)[14][36] and the
neoclassical source term is linear in the equilibrium gradients, the distribution func-
tion itself and thus the bootstrap current can be separated into a sum of coefficients
multiplied by the equilibrium gradients for each species, as follows:

〈
j‖B

〉
∼
∑

a

Cna
d lnna
dr

+ CTa
d lnTa
dr

. (5.6)

We find it convenient to normalize the coefficients as follows:

〈
j‖B

〉

jGBBunit

= − I

ψ′
a
∑

a

|za|
na
ne

[
Cna

d lnna
dr

+ CTa
d lnTa
dr

]
, (5.7)

where we have separated out the flux-function geometry factor I/ψ′ in the neo-
classical source term in equation (5.3). In equation (5.7), we have introduced the
normalizing gyroBohm unit of current

jGB = enecs(ρs,unit/a) , (5.8)

where cs =
√
Te/mD is the deuteron sound speed, Te is the electron temperature, ne

is the electron density, mD is the deuteron mass, and ρs,unit is the effective ion-sound
gyroradius,

ρs,unit
.
=

cs
eBunit/(mDc)

. (5.9)

Here the effective magnetic field Bunit is defined with reference to a global equilib-
rium through the relation Bunit(r) = (q/r)ψ′. Besides the complicated mathematical
expressions which arises mainly from normalization and geometric coefficients, the
important thing to remember is that the bootstrap current can be written as a sum
over all the plasma species of the drivers (density and temperature gradients) multi-
plied by coefficients. Those coefficients Cna and CTa can be computed directly from
the numerical solution of the drift-kinetic equation. As an alternative, we can train
a Neural network to perform a nonlinear multivariate regression of each coefficient
as a function of selected local dimensionless parameters. We built the network using
the state-of-the art integrated modelling tool OMFIT (One Modeling Framework
for Integrated task) [37]. OMFIT provides a platform to build the network and
compiles databases on which we can train it and benchmark its performance.

5.3 Some useful definitions in the framework of

Neural Networks

libraries

In computer science a library is a collection of resources used by computer pro-
grams. These may include configuration data, documentation, pre-written codes
and subroutines, classes etc.In the field of Neural networks there are many open
source libraries and usually we will rely on those to build neural network models for
our purposes.
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Training data set

The dataset which is the ensemble of data available for the model are a set of inputs
and outputs. Each output corresponds to an input. Usually the dataset is divided
ion two parts, the training dataset and the validation dataset. The training dataset
the part of the total datasey used during the training of the NN. Each programmer is
free to divide the dataset as he desires, usually more data are chosen for the training
than for the validation.

Over-training, Over-fitting

A neural network is said to be over-trained, when the training has led to a situation
in which the NN is not able to generalize anymore. This means that the NN has
been trained too much to reproduce the data on the traning dataset, and is not able
to extrapolate to data it has never seen during the training. Figure 5.4 illustrates
how a dataset is being over-trained,the fitting that should be a line is a curve trying
to reproduce any single point of the training dataset including noises.

learning and learning rate

The learning process is a process during which the NN adjusts the weights of the
connections. The NN reads an input , try to predict the output and change the
weights according to the difference between the predicted output and the desired
output. This process has been described in the previous section. The learning rate
instead can be defined as the capabilty the NN has to abandon old belief to a new
one.In scientific terms the learning rate is a hyper-parameter that controls how much
we are adjusting the weights of our network with respect the loss gradient. It may
need few iterations to find the adequate number for each network.

weight decay, connection weight

When training neural networks, it is common to use weight decay where after each
update, the weights are multiplied by a factor slightly less than 1. This prevents
the weights from growing too large.

5.4 Algorithm

We used the FANN (Fast Artificial Neural Network) library to build our network.
We split all the dataset into a training dataset and a validation dataset. The training
dataset is used to adjust the weights on the neural network, while the validation
dataset is used to ensure that the model is not over-trained. One has to be careful
about over-training, because an over-trained NN will be good on the training dataset
and will lose its capability to extrapolate on new data. In this work, an ensemble
of 16 neural networks was developed, each with 3 hidden layers of 10 neurons each.
Each network is fully connected. The learning rate was set to 0.7 and the weight
decay was set to 0.1. The neural networks in the ensemble use the same training
and validation datasets but are initialized with random connection weights. A single
prediction is given using an average of the outcomes from the ensemble of neural
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Figure 5.4: An illustration of Over-training.

networks. Using an ensemble, rather than a single neural network, helps to obtain
a reliable estimate of the error.

5.5 Parametrization

The training dataset is obtained from a large database of runs with the NEO code
[3, 38], which provides a direct solution of the drift-kinetic equation. We used more
than 57000 NEO runs; this was to ensure that we were covering ranges of parameters
relevant for a typical large aspect ratio tokamak (See Table 5.1). Also, we wanted
to cover the high collisionality regime, which was lacking in the Sauter model. We
considered to begin a three species plasma consisting of electrons, deuterium ions,
and impurity ions. The plasma densities are assumed to be quasi-neutral, and
the ion species are assumed to be in thermal equilibrium with equal temperatures.
Six input parameters are chosen, describing the geometry, collisionality, and ion-
impurity physics:

ε inverse aspect ratio
ft trapped fraction
q safety factor
ν̄e electron collision rate

ni/ne main ion-to-electron density ratio
Ti/ne ion-to-electron temperature ratio

Here ε=r/R0(r), where r is the midplane minor radius R0 is the major radius of the
flux surface, and the effective fraction of trapped particles is defined as

ft = 1− 3

4

〈
B2
〉 ∫ 1/Bmax

0

λ dλ〈√
1− λB

〉 , (5.10)

where λ = v2
⊥/(v

2B) is the pitch angle parameter. For general geometry, it is
assumed that the geometry equilibrium data is captured entirely by ε, ft, q, and the
I/ψ′ overall scaling factor in equation (5.7). For the collision frequency parameter,
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Parameter min value max value
ε 0.05 0.35
ft 0.323 0.766
q 1 10
ν̄e 0.01 10

ni/ne 0.6 0.99
Ti/Te 1.0 3.0

Table 5.1: Range of the fitting parameters

we introduce the dimensionless electron collision frequency [2],

ν̄e =
R0

cs
τ−1
ee =

R0

cs

√
2πe4ne

m
1/2
e T

3/2
e

ln Λ . (5.11)

The dimensionless effective electron collision frequency is related to this by

ν∗e =
4

3
√
π

q

ε3/2
nics
nevte

Zeff ν̄e , (5.12)

where Zeff is the effective charge, which for the case of a single impurity species is
Zeff = (ni + Z2

InI)/ne.

5.6 Training

The training dataset is obtained from running the NEO code. We assumed that
the geometry equilibrium data is captured entirely by ε, ft, and the I/ψ′ scaling
factor. Note that the trapped fraction is not a direct input for NEO, but is rather
an intermediate parameter dependent on ε and the assumed geometry equilibrium
model. It is well-known that the trapped fraction is the appropriate parameter
describing the geometry in banana-regime neoclassical transport theory [14]. In the
Pfirsch-Schluter regime, the geometry dependence is weaker [36]. Here we consider
as the impurity species fully stripped carbon ions with zI=6, though the model can
easily be retrained for different impurity ion species. The input values are as follows:

Usually with a normal resolution, a bootstrap current profile has about 250
points. We have to run NEO once to get a set of input-output for each of our
6 coefficients, this means that we need to run NEO six times to get the set of
input-outputs for the 6 coefficients at one radial location.To cover a typical profile
we would need 6 × 250 = 1500 NEO runs. So to train the NN on 38 discharges
for example 38 × 1500 = 57000 NEO runs are needed. All these NEO runs were
made easy by the fact that NEO can be run in parallel , furthermore NEO is also
considered to be a very fast code among other neoclassical codes, If we used heavier
codes like NCLASS or XCG0 we could not get all those data points in a reasonable
time.
In Figure 5.5 it is represented the Neural Network we built to predict our coefficients.
First of all it is important to remember that we have assumed the transport to be a
local phenomenon, meaning that the outputs (fluxes, transport coefficients, etc.) at
one radial location only depend on plasma parameters at that same radial location.
This assumption is reflected in the topology of the NN (see Fig. 5.5), which has
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only one neuron for each of the input/output quantities. This should be contrasted
to a global transport assumption, which would require multiple neurons for each
input/output quantity for the NN to have knowledge of the plasma parameters at
multiple locations across the plasma radius. In general, this assumption is satisfied
by turbulent and neoclassical transport phenomena at sufficiently small Larmor
radii.The NN approach we describe in this work does not make any simplifying
assumption about the functional form of the underlying transport physics, besides
locality. Always looking in figure 5.5 we can observe 3 hidden layers(layers in between
the input and the outputs layers ). Figure 5.6 is a very important figure, it shows

Cne Cni1 Cni2 CTe CTi1 CTi2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

ε q νee ni1
ne

Ti1
Te ft

Figure 5.5: A representation of the Neural Network we have built to predict the
coefficients for the bootstrap current. The configuration has allowed an accuracy
within 1%.

how smooth the parameters are over a long range of collisionality. The fact that
the coefficients are smooth tells us that their prediction with NN can be done with
high accuracy. The idea of developing this new formula with these coefficients as
unknowns is a good one, since a functional form of the coefficients can be given in
a future work.

A proof of the fact that the NN will perfom well in predicting our coefficients is
shown in Figure 5.7. Where the training error and the validation error are shown, the
both decrease with the number of epoch (we defined an epoch in the beginning of the
chapter). The data for the training both cover the same dataset the only difference
is that we trained on 3/4 of the dataset and we validated on the remaining 1/4 of
the data.
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Figure 5.6: The coefficients CTa and Cna are smooth over range of collisionality.
this is the reason why the neural network successfully predicted them. The new
formulation of the bootstrap current as the sum of theses coefficients was the best
approach to develop a NN model to predict bootstrap current profiles.

100 101 102 103

Training epoch

10-2

10-1

NN ensemble training convergence

Training error
Validation error

Figure 5.7: Training and validation errors. The validation error going down as fast
as the training error is the proof that we did not over-trained the network. It still
will be good even in data it never saw during the training.
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Chapter 6

Accuracy of the NN model

It is now time to discuss the accuracy of our model. Here we intend to discuss the
accuracy of our actual physics model. This do not include only the capability of the
NN to predict the coefficients, but also how good are the selected input parameters to
capture the underlying physics. The most important part of our entire work was the
understanding of the parameters we will use to accurately predict the coefficients. If
we trained the NN with other input parameters, the NN would still be predicting the
six coefficients as a function of those parameters, but this would not mean the NN is
giving the coefficient that will produce the correct bootstrap current profile.The goal
of this chapter is to compare and discuss the accuracy ofour coefficients against the
NEO and Sauter coeffcients. It is important to remember that the two targets for our
model were quickness and accuracy.The NN model is as fast almost as an analytic
formula requiring only a few CPU − µs per data point, what we need now is to
evaluate how accurate it can be. To evaluate the accuracy of the model, we consider
a representative DIII-D H-mode discharge at the location in the pedestal where the
bootstrap current is maximum. DIII-D H-mode shot #145421 has previously been
extensively analyzed for bootstrap current physics in reference [2]. An important
parameter to define first is the radial coordinate ρ. ρ tells us at which location
we are , in the radial dimension, rho ≈ 0 will indicate the core of the plasma and
rho ≈ 1 the edge of the plasma. For simplicity for our purposes we can define ρ as
: ρ = r/a, r is the radius we are considering and a is the plasma minor radius, ρ is
a dimensionless parameter then. Many other plasma geometrical parameters as the
plasma elevation Z0,the plasma elongation κ the triangularity δ and the squareness
ζ are well defined and explained in [39].

The NEO-computed bootstrap current was found to be maximum at ρ=0.968
with a value of 0.360 MA/m2. The equilibrium and geometry parameters at this
location are listed in table 6.1.

For these parameters, a scan of the bootstrap current density and temperature
gradient scaling coefficients Cna and CTa over electron collision rate ν̄e is shown in
Figure 6.1. The Sauter model and neural network model are compared with the
NEO simulation results. For circular plasma parameters (same as training data),
the inaccuracy of the neural network is less than 3%. Figure 6.2 shows the difference
in the variation of the trapped fraction with ε between a circular and the shaped
plasma. The dominant geometry influence results from the large triangularity and
triangularity gradient. For the shaped plasma, the neural network shows better
qualitative agreement with NEO than the Sauter model for each of the coefficients
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Table 6.1: Equilibrium and geometry parameters for DIII-D #145421 at the location
in the pedestal where the bootstrap current is maximum. Here R0 is the major
radius, Z0 is the elevation, κ is the elongation with sκ = (r/κ)dκ/dr, δ is the
triangularity with sδ = rdδ/dr, ζ is the squareness with sζ = rdζ/dr.

ε 0.339 dR0/dr -0.269
q 4.435 Z0 -0.029
ν̄e 0.798 dZ0/dr -0.886
ni/ne 0.741 κ 1.775
zI 6 sκ 1.558
mI/mi 6 δ 0.407
ni/ne 0.043 sδ 1.955
Ti/Te 1.564 ζ -0.042

sζ -0.228

at high collision frequency, ν̄e > 1. The inaccuracy of the Sauter model at high col-
lision frequency has been reported previously [40, 2]. More significantly, the neural
network provides a large improvement for the impurity coefficients, for which the
Sauter model does not accurately reproduce the trend with collisionality. Although
the Sauter model is often applied to multi-ion plasmas, it is based on fitting coef-
ficients for cases of strictly pure plasmas. It was previously found that the Sauter
model is able to accurately capture the electron-impurity interaction through the
use of zeff in ν∗e due to the large mass ratio separation between the two species, but
does not accurately model the ion-impurity interaction [2]. While the contributions
of the impurity density and temperature gradient scaling coefficients to the boot-
strap current are generally small due to the small carbon impurity fraction, they
can become important in the plasma edge.

A more detailed comparison of the models

Figure 6.3 shows the trend of the coefficients Cne and CTe with increasing collision
frequency. In principle the Sauter model and the NN model should be following the
red curve of the NEO model.The Sauter model,designed for pure plasmas should
be able to capture at least the electron physics. This is what happens at low col-
lisionality where the three curves are very close for both the temperature and the
density coefficient. Discrepancies arise when we move from low to high collisionality
regime. Here while the NN model still follows the trend of the NEO model, the
Sauter model is unable to reproduce the same result. These plots show how, at least
for the electron physics, the NN is doing a better job especially at high collisionality.
The good performance of the NN is due to our training dataset that we purposely
extended to very high collisionalities, which was made easy by the quickness of the
NEO code: we could run it in parallel very quickly and increase our data ranges.
This feature is not possible with other neoclassical codes like NCLASS.

Figure 6.4 instead focuses on the main ion physics. The coefficient for the ion
density gradient is well captured by the Sauter model and the NN model . For the
temperature gradient, while the NN follows the trend of the NEO coefficient, the
Sauter model exhibits a strange behaviour. This trend is due to an error in the
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Figure 6.1: Bootstrap current density and temperature gradient scaling coefficients
versus electron collision rate for the DIII-D-like pedestal parameters given by ta-
ble 6.1, comparing NEO simulation results with the Sauter model and the neural
network model.
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Figure 6.2: Trapped fraction versus inverse apsect ratio comparing a circular plasma
with a shaped plasma using the DIII-D-like pedestal geometry parameters in table
6.1.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
log ν̄ee

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
n
e

NEO

Sauter

NN

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
log ν̄ee

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

C
T
e

NEO

Sauter

NN

Figure 6.3: Electron temperature and density gradient coefficients compared

analytic formulation of the Sauter model, the error is pointed out in [2].
The pair of coefficients in Figure 6.5 are the ones showing how the different

models capture the impurity physics. We have already mentioned that the Sauter
model was meant for pure plasmas, so without any surprise the Sauter model does
not reproduce the trend of the coefficients independently of the collision frequency
we choose. On the other hand the NN model performs a great job, by closely
following the NEO model. This pair of plots clearly shows that the NN model is
much more accurate than the Sauter model by the fact that it captures very well
the impurity physics.

Conclusion on the accuracy

It is important to conclude this section by highlighting the fact that the improve-
ment in accuracy of the NN model over the Sauter model comes mainly from two
sides.The fact that we explored higher collisionalities regime , and the inclusion of
the impurities. We carefully selected the fitting parameters so that even at lower
collisionalities we still have good results. The NN did not introduce itself any physics
or any assumption; it has been helpful to quickly calculate the coefficients we needed
for our model (actually a physics model). We preferred this fitting method (Neural
Network non linear regression) because it is accurate and quick. It was perfectly
combined with our analytic theory to provides a model which is as fast as a pure
analytic one and at the same time very accurate. By Analytic theory we mean the
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Figure 6.4: Main ion temperature and density gradient coefficients compared
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Figure 6.5: Impurity temperature and density gradient coefficients compared

fact that we have re-written the bootstrap current as in the Equation 5.7. In this
way we used the NN to predict only the coefficient for the temperature and density
gradients CTa and Cna. The series of figures we showed in this Chapter show the
accuracy of our model.
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Chapter 7

NN prediction of experimental
bootstrap current profiles

7.1 DIII-D

In this section, we explore the accuracy of the prediction of the bootstrap current
profile from the neural network model compared with the NEO solution for represen-
tative DIII-D QH-mode and H-mode plasmas covering a range of collision regimes
and carbon impurity fractions. The results for the fractional discrepancy between
NEO and the Sauter and neural network models are shown in table 7.1. For each
case, the neural network shows better agreement than the Sauter model in both the
core and the edge. The improvement is particularly notable for higher collisionality
cases. Profiles of the edge bootstrap current for the moderate collisionality and high
collisionality DIII-D cases are shown in figure 7.1 and figure 7.2. Similar results
were found for JET, as shown in table 7.2.

A closer look at low collisionality

Figure 7.4 shows a bootstrap current profile in a case of low collisionality in DIII-D.
It appears that both the Sauter model and our NN model are doing great. This
case is interesting because even in this case where the Sauter model was showing
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Figure 7.1: Bootstrap current edge profile for DIII-D H-mode shot #145421 at
t=2283 ms, comparing NEO simulation results with the Sauter model and the neural
network model. The fractional error between the NEO results and the respective
models is also shown for the entire profile.
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Figure 7.2: Bootstrap current edge profile for DIII-D H-mode shot #145701 at
t=59 ms, comparing NEO simulation results with the Sauter model and the neural
network model. The fractional error between the NEO results and the respective
models is also shown for the entire profile.

Figure 7.3: Shot #145701 zoomed the main discrepancies arise in the edge.

Table 7.1: Bootstrap current model analysis comparing NEO simulation results with
the Sauter model and the neural network model for a range of DIII-D QH-mode and
H-mode discharges. The values of the effective electron collision rate ν∗e and the
carbon impurity fraction fI = zInI/ne are shown at the radial location of the center
of the pedestal. The values for the Sauter model and the neural network model are
the mean values in the core (0 ≤ ρ < 0.9) and in the pedestal (0.9 ≤ ρ < 0.99) of the
percent error between the NEO result and the model, 100(1− 〈j‖B〉model/〈j‖B〉neo).

DIII-D Core Core Edge Edge

Shot # νped
∗e fped

I Sauter NN Sauter NN
149220 0.068 0.623 8.0% 1.5% 7.7% 7.3%
145098 0.092 0.262 10.2% 2.3% 4.7% 3.2%
145421 0.378 0.259 7.5% 4.9% 9.6% 3.4%
144987 1.297 0.058 7.0% 2.8% 29.9% 14.0%
144977 1.383 0.046 7.5% 0.9% 19.2% 6.8%
144981 2.434 0.034 9.2% 1.0% 34.2% 11.7%
145701 4.202 0.108 11.4% 1.4% 38.9% 21.0%
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particularly accurate results, we still were able to provide a more accurate result.
Not only we improved the model at high collisionality, but even at low collisionality
we can offer a more accurate bootstrap current.

We discussed why the Sauter model behaves poorly at high collisionality; here we
will offer the physical reason why at low collisionality we can offer a more accurate
result. The low collisionality regime is also called the ”Banana regime”. The three
parameters Sauter used for the fitting of the coefficients for the bootstrap current
are : ν∗e, ft, Ze. The limitation at low collisionality comes from the parameter
ν∗e which in the banana regime cannot be considered a single parameter; in fact it
should be separated in those three parameters: q, ε, νe, and each variation of those
parameters should be considered a part. This is because ν∗e ∼ q

ε3/2
τee−1

cs/R0

ni
ne

[2]. This
shows how we also improved at low collisionality: we selected separately as our 3
input parameters (q, ε, νe) rather than encapsulate them inside the ν∗e .

Figure 7.4: Sauter and NN botstrap current compared at low collsionionality. With
the zoom into the edge it is clear that both models behave well. Still the error
associated with the NN is smaller. Sauter: 9.6% error; NN: 3.4% error.

7.2 JET

We applied the new method to the JET tokamak and similar results have been ob-
tained as indicated in table 7.2.

7.3 ITER and the future tokamak reactors

To conclude our discussion let’s discuss how the new bootstrap current calculation
will behave when it will be applied to the ITER tokamak.

ITER

ITER which means ”the way” in Latin is certainly one of the most ambitious en-
gineering and physics projects today. It is a magnetic fusion device which is being
constructed in southern France. The project is funded and run by by 7 members
entities: the European Union, India, Japan, China, Russia, South Korea, and the
United States. The main goal of ITER is to demonstrate the feasibility of fusion as a
source of energy. ITER will be the first fusion machine to produce net energy, which
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Table 7.2: Bootstrap current model analysis comparing NEO simulation results with
the Sauter model and the neural network model for a range of JET H-mode dis-
charges. The values of the effective electron collision rate ν∗e and the carbon impurity
fraction fI = zInI/ne are shown at the radial location of the center of the pedestal.
The values for the Sauter model and the neural network model are the mean values
in the core (0 ≤ ρ < 0.9) and in the pedestal (0.9 ≤ ρ < 0.99) of the percent
discrepancy between the NEO result and the model, 100(1− 〈j‖B〉model/〈j‖B〉neo).

JET Core Core Edge Edge

Shot # νped
∗e fped

I Sauter NN Sauter NN
075976 0.532 0.210 5.3% 1.1% 5.3% 6.5%
078682 0.560 0.236 3.2% 2.1% 10.9% 3.1%
075652 2.250 0.146 4.3% 1.5% 50.3% 8.9%
076678 2.395 0.153 6.9% 2.5% 33.2% 10.2%

means to produce and energy output higher that the input energy (approximately
10 times higher). Figure 7.5shows the size of the ITER tokamak. It is defined as an
engineering meagproject.

There are two characteristics of the ITER tokamak that are particularly relevant
to the present thesis. The first is that ITER will operate at higher temperatures
(10-20 keV ) than DIII-D, which means in ITER the collision frequencies will be
low, and essentially we will be in a low collisionality regime. The other characteristic
is the high fraction of impurities that is expected in ITER . We should remember
that the main improvements over the Sauter model of our new formula resides in
the ion-impurity physics and the high collisionality regime. Our model handle many
ions species and works well at low collisionality: this is a reason to believe that,
for the ITER tokamak, the NN bootstrap current can be used as a model rather
than the Sauter model. The principal issue the Sauter model will face is too many
impurity species. A possible work that can be done for the ITER tokamak is to train
a NN with ITER impurities datas. In our work we limited ourselves in a database
with only carbon impurity. Be able to build a database with with ITER inputs and
outputs, including impurities is the main stage to appply our formula to the ITER
tokamak. We have seen during our research work that the coefficients CTa and Cna
for the temperature and density scale lengths remain smooth when we change the
impurity . This is not a surprise since NEO itself is capable of handling more than
6 impurity species.
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Figure 7.5: Rendition of the ITER design. To illustrate the colossal scale of the
device, a person is shown standing on the lower left portion of the figure
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Chapter 8

Applications of the new bootstrap
current calculation

Since the introduction of this work, we tried to make clear that the bootstrap current
not only can replace the inductively driven current but can have a much broader
importance. It has an impact on both stability and confinement. Moreover since
it is about 70-90% of the total current in the edge , it can be used in the current
constraint for MHD equilibria reconstructions.

8.1 Implications for MHD equilibrium reconstruc-

tions

8.1.1 The Grad–Shafranov equation

The Grad–Shafranov equation is the equilibrium equation in ideal magnetohydrody-
namics (MHD) for a two dimensional plasma or example the axisymmetric toroidal
plasma in a tokamak. (We introduced the MHD equations in Chap.3) It is a two-
dimensional, linear, partial-differential equation obtained from the reduction of the
ideal MHD equations to two dimensions, often for the case of toroidal axisymme-
try[41]. The equation :

4∗ψ = −µ0R
2 dp

dψ
− 1

2

dF 2

dψ
(8.1)

Where ψ is the flux function, µ0 is the magnetic permeability, p(ψ) the pressure and
F (ψ) = RBφ , the magnetic field and current are given respectively by :

~B =
1

R
∇ψ × ~eφ +

F

R
~eφ (8.2)

µ0
~J =

1

R

dF

dψ
∇ψ × ~eφ −

1

R
4∗ψ~eφ (8.3)

The elliptic operator 4∗ is :

4∗ψ ≡ R2~∇ · ( 1

R2
~∇ψ) (8.4)

Many codes that reconstruct the equilibrium in the plasma solve the Grad-shafranov
equation (Eq: 8.1). In particilar the EFIT code we used for our anaylsys [42]
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efficiently solves for the equilibrium numerically by dividing ψ = ψP + ψext into a
plasma and an external component, ψP and ψext , separately computed using the
differential and the integral forms of the equilibrium Eq: 8.1[43].

In an equilibrium reconstruction, the equilibrium Equation: 8.1 must be solved
together with the available measurements as constraints on the plasma current
source Jφ. Figure 8.1 shows an example in DIII-D of the measurements techniques.

Figure 8.1: A cross section of DIII-D summarizing in one plane the locations of the
external coils, external magnetic probes, flux loops, internal MSE, Li beam, and
Thomson scattering kinetic profile diagnostics for the measurements.[42]

This is where comes the definition of the equilibrium parameter χ2:

χ2 =
∑

i(
Mi − Ci
αi

)2 (8.5)

where Mi is the ith magnetic measurement, Ci is the comuted value at the ith
magentic measurement and αi is the uncertainty associated with the ith magnetic
measurement.

Figure 8.2 shows a typical DIII-D tokamak reconstrcuted equilibrium using
EFIT.

To study the potential applications of the new bootstrap current calculation on
an MHD equilibrium reconstruction, we will use an extremely high collisionality
DIII-D shot. In this shot the error associated with the Sauter model is very high.
So it can be interesting to compare an equilibrium reconstruction with the Sauter
and the NN bootstrap current as constraints. We use EFIT equilibrium solver,
which uses external magnetic measurements and kinetic profile measurements. This
example of an integrated modelling application between EFIT and NEO has been
demonstrated for the first time in [2], using OMFIT [37].
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Figure 8.2: Contour plot of the square root of the toroidal flux, ρ, using the NN
bootstrap current for the EFIT reconstruction.

In figure 8.3 it is shown the edge total current used as a constraint. In the same
figure the value obtained for the EFIT reconstruction for this DIII-D case is also
reported. What E. Belli et al. found during this exercise is that independently of
the weight of the different constraints, the NEO bootstrap current is more consistent
with magnetic measurements than the Sauter model, see [2]. To discuss quantita-
tively this result, let’s remeber that the quantity χ2 that we already defined, provides
a figure of merit for the accuracy of the fitted parameters and a larger χ2 in our
case will mean that the computed bootstrap current is less consistent with magnetic
measurements.

This exercise has shown that the NEO bootstrap current is more consistent
with magnetic measurements than the Sauter model. The NEO bootstrap current
constraint has led to lower χ2 values of the equilibrium reconstruction than the
Sauter model: χ2

NEO = 64.1 and χ2
Sauter = 85.0. This is where the importance of

our new model comes.Since the NEO model is a relatively slow model, it cannot
be used to compute the bootstrap current current for equilibrium reconstruction
in real time analysis nor integrated modeling applications. Figure 8.6 shows how
much time NEO requires for a typical Boostrap current profile. The bootstrap
current model ideal for these purposes is the NN bootstrap current model. The NN
bootstrap current model is more accurate than the Sauter model and can be used in
real time equilibrium reconstructions since it is also fast. On the same DIII-D high
collisionality shot the NN bootstrap current has been used and has given χ2

NN =
64.1. This confirms the implication of our work on MHD equilibrium reconstructions.
We have instrumented the workflow for equilibrium reconstructions in OMFIT to
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Figure 8.3: Comparison of the total toroidal currents in the edge with the NEO or
Sauter current used as the bootstrap current model and embedded into the EFIT
total current constraint.[2]

use the NN bootstrap current model. In figure 8.4 it is shown an example of current
constraint for MHD equilibrium reconstruction. The dots represent the points where
numerically computed values of the current are used. This is important since the
bootstrap current is very difficult to measure and only models can provide values of
the current there for the current constraint.

Figure 8.4: An example of current constraint for MHD equilibrium reconstruction
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Figure 8.5: An example of a DIII-D high collisionality shot. The Sauter model
largely overestimate the bootstrap current; the NN model has a much lower error
with respect to NEO, especially in the edge, this is the reason why also the NN
bootstrap current is more consistent with magnetic measurements and should be
used for equilibrium reconstructions rather than the Sauter model

Figure 8.6: Nθ in blue is the number of poloidal points NEO uses in its computation.
NEO increases the resolution towards the egde. In red is the time NEO uses at each
radial point. In a 3 species plasma with 256 radial points NEO takes about 25min
to compute the current profile.
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Chapter 9

Conclusion

There is a particularly interesting consequence of the neoclassical transport in toka-
mak plasmas: the self-generated current called bootstrap current. The bootstrap
current is that current which arises in toroidal plasmas driven by density and tem-
perature gradients. This current is important for the study and the development
of a steady state fusion reactor. A fast and accurate calculation of this current in
the other hand is fundamental for integrated modelling applications such as MHD
equilibrium reconstructions and pedestal structure predictions. Previous models to
calculate the bootstrap current all had limitations: the Sauter model had the big
disadvantage of being inaccurate especially at high collisionality regimes and in real-
istic multi-species plasmas; the NEO model offers a very accurate bootstrap current
calculation through a numerical simulation, but as such takes too much time to
compute a typical current profile (too much is with respect to real time analysis and
integrated modeling purposes). We offered a new calculation of the bootstrap cur-
rent based on a nonlinear multivariate regression using neural networks. This new
calculation takes as inputs some dimensionless parameters that we carefully selected
using analytic theory and exploring the physics mechanism behind the bootstrap
current. Our new formulation not only has had an important improvement over the
Sauter model in accuracy, but also, it only requires a few CPU − µs to compute
the current. Having the advantages of being fast and accurate, the new calculation
is the ideal one to use for equilibrium reconstructions, as we have demonstrated
in this work.Most importantly,our formula can be used in real time, while plasma
experiments are taking place. We also have shown that our new calculation is not
only applicable to the DIII-D tokamak where this research has been performed, but
can easily be extended to other tokamak machines like JET where we also found
very interesting results. Finally, we also have discussed the implication of this work
for the for ITER, where the NN bootstrap current calculation would still be prefer-
able to the previous one, because we handle in a better way the impurities in the
plasma and we cover a broader range of collisionality regimes. The results of this
thesis work have been well received in the fusion research community.The work has
been successfully presented at the 59th edition of the American Physical Society Di-
vision of Plasma Physics Meeting as well as at the DIII-D scientific meeting.Finally
this work has been presented at the Swiss plasma center to scientists including Dr.
Olivier Sauter who developed the previous formula receiving its positive feed-back.
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