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Sommario

L’oggetto di questa tesi si colloca all’interno dello studio di metodi di mitigazione
per l’accumulo di carica su sistemi spaziali.
Su di un satellite viene depositata una carica netta diversa da zero, quando sussiste
una differenza di potenziale tra esso e l’ambiente circostante.
Dalla letteratura scientifica è noto che l’accumulo di carica causa diversi tipi di
danneggiamento al mezzo spaziale e può perfino compromettere l’intera missione.
Secondo la National Aeronautics and Space Administration (NASA), l’analisi del-
l’accumulo di carica e di sistemi di attenuazione di tale fenomeno, richiede ulteriori
sviluppi, nonostante varie strategie di mitigazione siano state proposte negli scorsi
decenni.

L’indagine condotta nel presente lavoro di tesi si focalizza su una particolare ap-
plicazione spaziale: viene affrontato il problema dell’accumulo di carica in un satel-
lite che emette un fascio di elettroni nella magnetosfera. Gli elettroni del fascio si
muovono lungo una linea del campo magnetico terrestre, fino a colpire la ionosfera.
Durante il loro cammino essi creano un fascio luminoso che permette di stabilire
una connessione tra la zona della magnetosfera in cui si trova il satellite e la regione
della ionosfera raggiunta.
In tale assetto, il satellite viene caricato positivamente, in quanto gli elettroni emessi
portano con sé una carica negativa proporzionale alla potenza del fascio stesso. Il
sistema richiede perciò uno schema di mitigazione; nel caso in esame, per eliminare
la carica in eccesso dal mezzo spaziale, viene utilizzato un plasma ad alta densità,
emesso prima e durante l’iniezione nello spazio del fascio elettronico. Viene proposto
dunque un modello numerico per simulare il transitorio durante il quale il plasma si
espande; viene infine seguito un approccio semi-analitico.

iv



The goal of this thesis concerns the charging mitigation of a spacecraft that emits
a high-power electron beam in the magnetosphere.
Reports in the scientific literature suggest that the hazards caused by spacecraft
charging are divers, potentially compromising a space mission. Therefore, NASA
identifies the impact of spacecraft charging as an area that needs further develop-
ment. Charging mitigation strategies are similarly expanding: different technologies
have been designed to get rid of excess electric charge on the space probe and to mi-
nimize that of the most severe spacecraft charging. Various charge control systems
have been proposed and developed in past decades to find a suitable solution for
spacecraft charging, in both steady-state and transient conditions.

Amongst recent active space experiments, the application under study involves the
utilization of an electron beam fired from a magnetospheric spacecraft. The beam
shot from an electron gun is used to track the magnetic field line along which elec-
trons move, until they strike the ionosphere. This respective electron beam allows
for the determination of the ionospheric footprint of the specific magnetosphere re-
gion in which the satellite is placed. This configuration is finally aimed to clarify
the longstanding issue of magnetosphere-ionosphere coupling.
On the other hand, after its emission, the electron beam leaves behind a positive
charge, resulting in high charging potentials of the satellite if a mitigation system is
not employed.
To overcome this charging problem, a mitigation method based on the emission of
a high-density plasma is adopted. At first, the spacecraft emits the plasma only; in
the second stage plasma and electron beam emissions are simultaneous.
The spacecraft transient is simulated via computer modeling for which both nu-
merical and analytical approaches model the physical system in its early phase of
the transient, when the plasma shot from the satellite expands in the low-density
magnetosphere.
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Chapter 1

Introduction

A satellite emitting a high-power electron beam experiences a charge build-up.
Spacecraft charging arises whenever the satellite potential differs from the potential
of the surrounding energetic environment. Different approaches have been devel-
oped to solve this issue and are discussed in the following work.
Before entering in detail of the main topic, some introductory notions are given, in
order to understand the merit of such scientific researches and applications.
We start from a brief description of plasma environment around Earth.

1.1 Solar Wind, Ionosphere and Magnetosphere
Earth is enveloped by the atmosphere, whose upper layer, the ionosphere, is made
of partially ionized gas surrounded by a high-density cloud of neutral gas.
The ionosphere lies as the interface between the atmosphere and the magnetosphere.

Earth’s magnetosphere is the plasma region around our planet in which the ter-
restrial magnetic field exerts its influence on the motion of charged particles.
In the solar system, magnetospheres of celestial bodies are perturbed by solar wind,
a stream of charged particles flowing outward from the upper atmosphere of the sun,
known as the corona. Furthermore, the structure of the magnetosphere is affected
by an interplay between solar wind particles and charged particles originating in the
upper layers of Earth’s atmosphere.
The outer boundary of the magnetosphere is the magnetotail.

Solar wind sweeps supersonically toward the Earth at speeds of ∼ 400 km/s,
dragging with it a weak magnetic field (B Ä 0.5 nT). The component of the solar
magnetic field that is carried from the corona by solar wind is identified as the In-
terplanetary Magnetic Field (IMF).
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1 – Introduction

When the solar wind encounters the magnetic field of Earth, a supersonic shock
wave is created sunward of Earth, and a bow shape boundary forms,known as the
Bow Shock.
Kinetic pressure of solar wind compresses the magnetosphere sunward side to a dis-
tance of 6 to 10 times the Earth’s radius; the night-side magnetosphere is stretched
to 1000 times Earth’s radius. The dipolar terrestrial magnetic field is compressed on
the dayside as well, and it is dragged on the nightside, forming a tail-like structure
[1].

 

Figure 1.1: Earth’s magnetosphere and solar wind sketch. Magnetic field lines are
compressed in the dayside, while nightside magnetosphere is elongated in a tail-like
structure of hundreds of Earth radii [2].

The Earth’s magnetosphere is a highly dynamic structure that responds dra-
matically to solar variations. When the magnetosphere is sufficiently disturbed by
the solar wind, there can be a significant loss of magnetospheric energy inside the
ionosphere. In fact, ionosphere and magnetosphere constitute a system of different
and interacting entities, whose coupling mechanism is not well understood yet.
A deeper description about the physical processes taking place in these two interfa-
cial regions follows in the next section.
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1.2 – Implications of Magnetosphere-Ionosphere Coupling

1.2 Implications of Magnetosphere-Ionosphere
Coupling

Magnetosphere and ionosphere form a closely-coupled system, since Earth’s mag-
netic field connects these two regions electrically; the resulting interaction causes an
exchange of energy and momentum between them.
As net result, when the magnetosphere-ionosphere system is not treated as a whole
and it is not examined in its entirety, it is not possible to have a complete overview
of high and low-altitude regions of Earth-space.
The reciprocal coupling between these interacting entities is identified in several pro-
cesses which conjoin the lower-altitude ionospheric plasma with the energized plas-
mas of the high-altitude magnetosphere: their connection is responsible for space
weather phenomena as magnetospheric substorms, ionospheric signatures, and the
penetration of high-latitude electric field into low latitudes [3]. Between the previ-
ously mentioned space events, this study is concentrated within auroral signatures.

Common to all of these features, there is not a full understanding of magnetospheric
generator mechanisms responsible for phenomena observed in the ionosphere.
The energy transfer from the magnetosphere to the ionosphere has been widely de-
scribed by theoretical models; on the other hand, without adequate observations in
the source region, no theories can be verified [4].
The absence of mapping magnetospheric measurements to the ionosphere prevents
the knowledge of the energy extraction from the magnetosphere and the conditions
and location of ionospheric phenomena.
The application that is analized for the magnetic field line mapping between the
magnetosphere and ionosphere is the use of a satellite floating in the magnetosphere
and emitting an electron beam.

1.2.1 Ionospheric Signatures

Auroras occur when there is a temporary disturbance of Earth’s magnetosphere
coming from the sun in the form of solar wind, high-energy particle clouds, or X-
rays.
The initial disturbance from the sun exhibits as an increased plasma movement
through the magnetosphere and an increased electric current in the ionosphere. In
fact, most of the sun particles and radiation are deflected by the magnetosphere,
but some of them are trapped.
Trapped charged particles are accelerated through the magnetic field toward the
polar regions and they precipitate into the upper atmosphere.

3



1 – Introduction

Figure 1.2: A view of the aurora australis taken by the Imager for Magnetopause-
to-Aurora Global Exploration (IMAGE) spacecraft on January 2005. The auroral
oval is visible [5].

Figure 1.3: Northern Lights over Alaska in the night of February 16,2017, Poker
Flat Research Range, Fairbanks [5].
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In particular, streaming electrons and ions form ring-shaped areas centered
around the magnetic poles of Earth, called auroral ovals (fig.1.2).
The diameter of an auroral oval diameter is approximately 3000 km, growing larger
when the magnetosphere is more disturbed.
When particles strike the ionosphere, they collide with atmospheric constituents.
As fast-moving particles from the magnetosphere rain into the ionosphere, atmo-
spheric gases receive energy and they move to an excited state. Molecules return to
their normal state losing their energy by emission of photons.
If a considerable amount of collisions occur, the atmospheric elements emit light
within the visible spectrumm (fig.1.3). The color of the aurora depends on which
gas is excited and on how much energy is exchanged [5].
The two main molecular constituents of the atmosphere comprise that of oxygen
and nitrogen, which emit a green-orange/red light, and blue or red light respec-
tively. The oxygen and nitrogen molecules also emit ultraviolet light, which can
only be detected by special cameras on satellites. Green is the most common color.

About 30 % of the total energy of the magnetotail goes into Joule heating and
precipitation heating of the auroral ionosphere.
On the other hand, since a coupled system is considered, auroras have a significant
impact on the magnetosphere too. There is not still an unambiguous determina-
tion of the generator mechanisms that rule the ground signatures, so the returning
impact of auroras on the magnetosphere is not known as well.

1.2.2 A possible solution for MI coupling understanding
The auroral ionosphere and nightside magnetosphere are connected through the time
varying magnetic field. In order to study how auroras are powered by the magneto-
sphere, the measurements from the respective regions needs to be collected.
A versatile and possible solution to perform space measurements can be the use
of a satellite flying at a geosynchronous orbit (the generator region of ionospheric
signatures).
The first consideration is to determine if the satellite is on a magnetic field line that
connect to the aurora in the ionosphere [6]. For this purpose, it is possible to mount
an electron gun on the magnetopheric satellite: the electrons fired from the space-
craft travel along the magnetic field line, producing a detectable beam spot in the
atmosphere. In other words, the electron beam illuminates the magnetic footpoint
of the satellite in the upper atmosphere: it is used as a magnetic field line tracer, to
connect magnetospheric phenomena with their image in the ionosphere.

One major difficulty of the electron gun approach is the spacecraft charging. As
the electron beam is fired, the spacecraft charges and it can reach high levels of
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1 – Introduction

potential that prevent the emission itself. In the worst case scenario, the spacecraft
charging could be catastrophic for the mission success.
We devote the last section of this chapter to a qualitative description of spacecraft
charging.

1.3 Spacecraft charging
Spacecraft charging occurs when charged particles from ambient plasma and the sur-
rounding environment stop on the spacecraft [7]. A net positive or negative charge
is accumulated on the satellite. Likewise, if the spacecraft potential relative to the
surrounding plasma potential is different from zero, the spacecraft is charged.
Different classes of spacecraft charging can be distinguished.
When the spacecraft is made of a conductive material, charges lie on the surfaces
(surface charging case). If the spacecraft is composed of electrically separated sur-
faces, they can be at different potentials.This is a differential charging situation. The
spacecraft may be surrounded by a high-energy particle environment, and electrons
and ions may penetrate dielectrics. This spacecraft charging is called bulk charging.

 

Figure 1.4: Potential of a charged spacecraft. Since the spacecraft potential differs
from ambient potential, a sheath around it is formed. The plasma inside the sheath
is nonneutral [2].
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1.3.1 Cause and effects
Satellite charging levels are determined by current balance [2]: spacecraft can be
considered as a node in a circuit in space, and, according to Kirchhoff’s circuital laws,
in equilibrium conditions all currents (incoming and outgoing) sum to zero. The
current balance equation determines the potential at which equilibrium is achieved;
in particular, the resulting potential is the potential difference between a spacecraft
and the surrounding space plasma environment [7].Equilibrium is typically reached
in a few milliseconds. A spacecraft orbiting around Earth is subject to different
currents:

• background current, carried by ions and electrons coming from background
plasma;

• secondary current, due to charged particles hitting spacecraft’s surface that
might cause the emission of the so-called secondary electrons;

• backscattering current: when electrons from space impact the satellite and they
are absorbed, they can experience a series of scattering inside the material;
then these particles are emitted again;

• photoelectric current, given by exposure of material to photons coming from
the sun (satellite emits electrons);

• artificial current, including electrons beams, ion thrusters, plasma contactors.

Some currents will charge the spacecraft positively, others will have the opposite
effect.
At equilibrium, spacecraft will be in floating conditions1, and its charge will be
nonzero. Spacecraft charging relies basically on the space region in which spacecraft
is, material of its surface and space weather.
If electron or ion beams are emitted, the net beam currents leaving the probe have
to be taken into account also; the higher the beam-induced potentials are, the more
significant current flows are.
Usually, four separate locations are identified [2]:

1. geosynchronous altitudes
At geosynchronous altitudes, the spacecraft is in this low-density and high-
energy plasma region, so high-level spacecraft charging may occur.

1A floating potential is the potential assumed by a probe when the net current collected by it
is zero.
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2. Low Earth orbits
These altitudes (few hundreds of kilometers) are characterized by a low-energy
and high-density plasma; background can provide a sufficient current to neu-
tralize a charged spacecraft. For this reason, Low Earth Orbit (LEO) satellite
charging is not of considerable concern.

3. Auroral latitudes
At auroral latitudes (60ř - 70ř latitudes) high-energy electrons precipitations
take place. The energy distribution of electrons in the excited state is equiva-
lent to an electron beam energy distribution; when energetic particles precip-
itate at these latitudes, high-level surface charging arises.

4. Radiation belts
The Earth has two radiation belts, located at the inner region of magneto-
sphere. Radiation belts are highly energetic charged particles zones. They
actually act like barriers that prevent electrons from reaching the Earth. The
belts endanger satellites, because of the very high radiation. For this reason,
deep dielectric charging is an important issue: fast particles penetrate noncon-
ducting materials, and finally deposit their energy. Spacecrafts orbiting for a
long time in this area must be projected with an adequate shielding, because
internal damage may occur.

Orbit Description Altitudes
LEO Low Earth orbit 200 − 2000 km

MEO Medium Earth orbit 2000 − 35790 km

GEO Geosynchronous orbit 35790 km

HEO High Earth orbit > 35790 km

Table 1.1: Altitude classification of various Earth orbits [8].
Low Earth orbit region is characterized by a high-density and low-energy plasma
(n ∼ 105 cm−3, T ∼ 0.1 eV); at geosynchronous orbit, space plasma has high energy
(about 1 keV) and low density (< 1 cm−3) [2].

Satellite charging is hazardous mainly for onboard electronics and scientific mea-
surements on spacecraft itself [2].
Charging in a radioactive environment affects operations, navigation and surviv-
ability of the spacecraft. If the spacecraft is not accurately screened, there can
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be disturbances that affect telemetry. When the spacecraft surfaces are at differ-
ent potentials, electrical problems such as arching or uncontrolled fast discharges
between surfaces and the external space may occur. Electrical discharges are of seri-
ous concern as they cause interferences and malfunctioning in the electronic onboard
instruments.

The interference with scientific measurements is related to the fact that a charged
object repels one type of charge and attracts the other.
Around a charged spacecraft a sheath is created: the spacecraft is surrounded by
a thin ’layer’ in which ion and electron densities are not equal. The creation of
a sheath inevitably affects the measurements of density, energy, electric fields and
pitch angle (the angle between the vectors representing the local magnetic field and
the velocity of a particle).

1.3.2 Mitigation
All orbiting spacecrafts accumulate electric charge from the surrounding natural
space plasma.
Varied mitigation systems have been tested to reduce the impact of phenomena
caused by spacecraft charging.
Mitigation methods can be primarly divided into two classes: active and passive.
Active methods need a power source and control commands. Passive methods acti-
vate and work automatically.
Alternatively, mitigation methods are divided in two additional groups, according
to their operating principle: injection or collection. In the former case the removal
of the charge accumulated on the satellite relies on the emission of charged particles
away from the spacecraft. The collection technique consists of drawing a neutralizing
current from the background environment to compensate for the excessive charge
on the satellite.
Basic mitigation designs are presented in short.

• Electron emission
Electron emission is the most direct method to eliminate excess electrons from
a conducting spacecraft. On the other hand, electron emission is not a suitable
technique for dielectric surfaces, that are not conductive. In the latter case,
differential charging occurs.

• Ion emission
Idealizing a highly negatively charged spacecraft, an ion emission may be ef-
fective in the elimination of net satellite charge.

9
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If the beam energy is low, ions are attracted back toward the probe. If ion
potential energy is higher than spacecraft potential, after their emission ions
escape.
Satellite surface neutralization by returning ions may be attributed to two
processes: returning ions deposit their positive charge and, at the same time,
they generate secondary electrons that exit the spacecraft, leaving behind an
additional positive charge [9]. This method is effective in mitigating differen-
tial charging.
The experimental satellite SCATHA (Spacecraft Charging AT High Altitude),
launched in 1979, was one of the first research satellites designed to explore
the effects of spacecraft charging at geosynchronous altitudes. In this orbit a
spacecraft is usually negatively charged when it goes under eclipse. Electron
and ion beam experiments have been conducted on SCATHA, revealing that
the electron beam has been inefficient for discharging. Low energy ion beam
succeded in the complete removal of satellite excess charge.

• Plasma emission
An alternative concept for spacecraft charging mitigation is emitting particles
of both species.
The accumulation of an eccessive charge on the satellite may be prevented
more efficiently with plasma ejection, which is more effective with respect to
electron or ion emission alone.

The level of discharging depends on the beam current and energy, as well as ambient
conditions. Ejection of electron and ion beams, or plasma emission can control the
spacecraft potential, when the beam current exceeds the ambient current.
Mitigation technologies for spacecrafts emitting an eletron beam will be examined
in the next chapter.
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Chapter 2

Theoretical model for the
transient of a magnetospheric
spacecraft emitting a high-power
electron beam

In this chapter spacecraft charging issue is detailed, focusing on applications that
include high-power electron beams. Different mitigation solutions are investigated
in section 2.1. In section 2.2, a theoretical model aimed to simulate time evolution
of the system based on the most suitable mitigation scheme is introduced.

2.1 Spacecraft charging mitigation scheme

2.1.1 Spacecraft charging equation
The spacecraft charging equation is shown in order to prove that a beam emitted
in either a vacuum or a low-density background returns to the spacecraft [10]. As
explained in section 1.3.1, probe charge is subject to a transient that ends when the
satellite reaches floating conditions.
The net charge on the spacecraft is indicated with Qsc.

dQsc

dt = Ibge + Ibgi + Isece + Ibse + Iphe + Iae + Iai (2.1)

• (Ibge + Ibgi ) is associated to electron and ion fluxes from background;

• Isece is secondary electron current;

11



2 – Theoretical model for the transient of a magnetospheric spacecraft emitting a high-power electron beam

• Ibce is backscattering current;

• Iphe indicates photoelectron current;

• (Iae + Iai ) represents artificial currents emitted by the spacecraft itself.

Secondary, backscattering, photoelectron currents are ignored from now on.

We start from the vacuum case.
If the spacecraft is approximated to a spherical conductor of radius Rsc, a capaci-
tance Csc is in turn introduced to express the spacecraft charge as a function of its
potential φsc. Capacitance of a conductive sphere of radius Rsc is defined as (where
ε0 is the vacuum permittivity):

Csc = 4πε0Rsc (2.2)

The net charge on the satellite is the product between potential and capacitance:

Qsc = 4πε0 Rsc φsc (2.3)

For a spacecraft emitting a beam in vacuum, with current Ibe , equation (2.1) is
reduced to :

4πε0Rsc
dφsc
dt = Ibe (2.4)

The attempt is to establish in which conditions the electron beam returns to the
spacecraft, giving a numerical example. Electrons of the beam return when the
satellite potential equals the kinetic energy of the beam:

eφreturnsc = 1
2mev

2
b (2.5)

Quantities in the equation above are the elementary charge e, the electron mass me,
and the beam velocity vb.
From equations (2.4) and (2.5), assuming φsc = 0 at t0 = 0, the time t̃ required to
the beam to be pulled back is:

t̃ = 4πε0Rsc
φreturnsc

Ibe
(2.6)

For a 100 keV beam, with a current Ibe = 10 mA fired from a spacecraft whose radius
Rsc = 1 m, t̃ Ä 1.1 ms.

We consider now the background plasma case.
The calculation of the spacecraft potential at equilibrium conditions is performed;
the target is to derive the current needed to be carried by background plasma itself
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2.1 – Spacecraft charging mitigation scheme

to balance the electron beam. The equilibrium condition is set by imposing a null
time derivative of Qsc in the equation (2.1):

Ibe + Ibge + Ibgi = 0 (2.7)

Background currents are estimated through Orbital-Motion-Limited (OML) theory
[11], [12]; this expression is a function of background plasma parameters, and is valid
when the probe potential is greater than zero. Magnetic fields effects are neglected
in the OML theory.

Ibge = −e
√

8πR2
scne

ó
Te
me

A
1 + e

φsc
Te

B
(2.8a)

Ibgi = e
√

8πR2
scni

ó
Ti
mi

exp
A

−eφsc
Ti

B
(2.8b)

Electron and ion background densities are identified with ne and ni, with Te and
Ti representing their temperatures. Typical values of density and temperature at
geosynchronous orbit are ne = ni = 106 m−3, Te = Ti = 1 keV.
Solving the equation numerically for a beam of current Ibe = 10 mA, the spacecraft
should reach an equilibrium potential of about 1 MV to collect background electrons
that can compensate the beam current [10]. On the other hand, the equilibrium po-
tential is higher than φreturnsc , and the emitter would decelerate the beam, preventing
its escape to infinity.
In conclusion, background plasma with typical geosynchronous orbit characteristics,
cannot provide a returning current that is sufficient to offset high-power electron
beams.

The background current may increase, as can be deduced from equation (2.8a),
if spacecraft radius is bigger, or when the background electron density and temper-
ature are higher.
Specifically, density dependence justifies the success of past missions and beam ex-
periments in the ionosphere, where spacecraft can draw a substantial neutralizing
current from the surrounding plasma medium [13], [14]. High background density
prevents beam electrons to return, providing an appreciable current that impedes
an excessive spacecraft charging.

2.1.2 Electron beam balanced by ion beam
The first strategy to mitigate spacecraft charging is to balance the electron beam
with an ion beam of equal current.
To investigate the feasibility of ion beam emission, a simple system is considered,
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2 – Theoretical model for the transient of a magnetospheric spacecraft emitting a high-power electron beam

consisting of the spacecraft, or the emitter, and the zero-potential background1, as-
suming a 1D planar geometry. The described system can be considered as a diode
where charges are emitted from the satellite (anode) at φ > 0 and collected on a
grounded surface (cathode), located at a certain distance d. An electric force moves
ions toward the grounded surface, and an ion current is established.
Current that can be carried by ions is limited by space charge effects.
The notion of space charge is to look at discrete point-like particles as a continuum
of charges enclosed in a finite volume region. Ions that are injected in the interelec-
trode volume create a space charge, proportionally to their current. If the current
increases, a greater number of ions is injected in the system and the space charge
rises. However, the space charge accumulated between the electrodes creates a po-
tential distribution, inducing a repulsive force on the anode ions. As a consequence,
the space charge may reduce the current that flows in the diode.
For the limit case of zero injection velocity [15], the maximum density current Jmaxi

that it is possible to carry has the following expression :

Jmaxi = K
φ3/2

d2 (2.9)

K is a constant φ is the potential difference between anode and cathode; d is the
distance separating the cathode and the anode.
Equation (2.9) is the well-known expression of Child-Langmuir’s law [16],[17]; it
states that the space charge limited current (SCLC) in a planar diode varies directly
as the three-halves power of the potential difference and inversely as the square of
the distance between electrodes.

If ions have a non-zero injection velocity [15], the potential distribution may be
non-monotonic and present a maximum point φmax in front of the anode, known as
virtual anode.
The virtual anode reflects back ions with a kinetic energy smaller than the potential
difference (φmax − φ). As a result, only a fraction of the emitted current will reach
the cathode.

Since the Child-Langmuir space charge limit lowers ion emission, it is not feasi-
ble to draw a large ion current with an ion beam.
Authors of [18] performed numerical simulations, proving that the maximum draw-
ing current before space charge effects become dominant is lower than the current

1In the spacecraft charging community, the ambient space plasma potential is defined as zero.
Actually, space plasma densities are subject to fluctuations, that are much faster than spacecraft
potential variation, since plasma characteristic time scale is proportional to the inverse of plasma
frequency [2].
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2.1 – Spacecraft charging mitigation scheme

needed to balance a high-power electron beam.
The ion beam scheme does not overcome the problem of spacecraft charging.

2.1.3 Plasma contactor

An alternative mitigation scheme to the ion beam is through plasma contactor tech-
nology.
A high-density plasma is fired from the spacecraft before beam activation and si-
multaneously with its emission.
A plasma contactor, made up of movable electrons and ions, creates a conductive
path through which background plasma particles are collected, and ultimately neu-
tralize the built up charge on the spacecraft.
In other words, contactor plasma takes on the role of a conducting bridge between
ambient plasma and the satellite: it collects particles from the background (increas-
ing the collection area surrounding the probe), and thus particles collected inside
this high conductivity region, move toward the spacecraft.
Plasma contactor technology has been adopted to prevent spacecraft charging in
different missions [19], [20], [21]. Nonetheless, in space active experiments with elec-
tron beams in the low-density magnetosphere, this mitigation scheme has yet to be
tested.
Particle-In-Cell (PIC) simulations have been performed in [10] and [18], to inves-
tigate which conditions ensure the removal of residual positive charge left behind
from the electron beam.
Numerical simulations results have shown that electron collection mode fails to draw
a sufficient returning current from the background.

When contactor emission occurs only before the beam activation, contactor elec-
trons are reabsorbed by the spacecraft, once the beam is turned on. At this point,
the probe loses contact with contactor ions, that are pushed away; there is nomore
a plasma cloud that allows for the collection of ambient particles able to neutralize
the satellite. The global effect is equivalent to a situation where contactor plasma
is absent.

If contactor emission is maintained for the entire transient, with a contactor current
Ic smaller than beam current Ib, background electrons may be accelerated through
the contactor plume, but it would not be guaranteed that they are trapped inside
the collection surface. In fact, the contactor cloud is collisionless and for this reason,
it is transparent to background electrons [4].
The conclusion is that the plasma contactor cannot make contact between magne-
tospheric plasma and spacecraft.
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However, in the case in which contactor plasma is kept on prior to and during
beam emission, setting Ic > Ib, it may work as a net positive charge emitter.
After the beam firing and contactor electrons absorption, the spacecraft does not
lose contact with ion cloud, that keeps expanding, reaching a size in which there are
no space charge limits on ion emission. The crucial difference with respect to the
electron collection route is that satellite potential no longer depends on the connec-
tion with the surrounding environment and background parameters, but rather it is
controlled by the current emitted at the surface of contactor cloud.
Since contactor plasma enables a substantial ion current, this configuration is re-
ferred to as ion emission mode.

Numerical PIC simulations confirmed that the potential transient can be mitigated
through ion emission configuration; actually PIC codes can be employed to represent
just the early stage of a space experiment transient; later behavior of the system
still needs to be reproduced and predicted.
Upon this basis, a mathematical model has been developed.

2.1.4 CONNEX
CONNEX (CONNection EXplorer) is a mission currently under development, aimed
to establish a connection between the magnetosphere and ionosphere, using an ac-
tive mapping technique.

CONNEX is a multi-component system: the space segment is made up of a
large satellite and four smaller satellites in constellation in the geosynchronous-orbit
equator (see fig. 2.1); the ground component has a set of all-sky cameras, optical
beam-spot locators and ionospheric radars [22].
The mother spacecraft has an electron accelerator that certifies the satellite-auroral
conjugacy by marking magnetospheric footpoint in the ionosphere. The electron
beam is fired with a pulse of 0.5 s. Its nominal power is 1 kW, the kinetic energy
is 1 MeV and its current 1 mA. Alternatively, a 100 keV electron beam, carrying
a current of 10 mA can be used.To prevent severe charge accumulation, the probe
emits a plasma contactor. Daugther spacecrafts measure critical plasma gradients
and fields in the magnetosphere.
The CONNEX mission presents different challenges in its architecture: spacecraft
charging mitigation issues, validation of new relativistic electron accelerator tech-
nologies, and beam propogation, stability and detection [23].
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2.2 – Theoretical model

 

Figure 2.1: Sketch of CONNEX spacecrafts and spot of electron beam traveling
along a magnetic field line [22].

2.2 Theoretical model
In this section, the spacecraft-charging mitigation scheme based on plasma contac-
tor is analyzed.
The spacecraft charging process is separated into two phases: in the first stage, until
τ = τc, the spacecraft emits only the contactor plasma (contactor expansion regime);
for τ ≥ τc, the electron beam is fired, while the contactor emission is preserved (beam
emission regime).
During the transient, contactor electrons and ions leave the satellite with currents
equal to Ie and Ii, respectively. When the beam is turned on, beam electrons move,
resulting in the drawing of a current Ib.
Being that the fundamental process that determines the surface potential at equi-
librium is the current balance [2], the emitter is regarded to be in floating conditions
during both regimes. In particular, at the time of beam emission, neglecting non-
artificial currents:

Ii = Ib + Ie (2.10)
A semi-analytical model has been developed from authors of [24] to simulate the
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2 – Theoretical model for the transient of a magnetospheric spacecraft emitting a high-power electron beam

transient of beam emission regime.

2.2.1 Basic assumptions
The studied system includes the spacecraft, the electron beam and the plasma con-
tactor; it has a simple reference geometry:the spacecraft is represented as a sphere
of radius r = Rsc, located in a finite domain, having an outer boundary that is a
grounded sphere of radius r2, concentric to the spacecraft.

The problem has spherical symmetry, and both emissions of electron beam and
contactor plasma are assumed to be isotropic. The model is one-dimensional along
the radial coordinate r.

Contactor electrons at the injection point have a Maxwellian-distributed velocity,
while contactor ions are cold and are accelerated through a finite drift velocity di-
rected radially. Electron thermal speed is greater than drift velocity, and, accounting
for equal densities of electrons and ions at injection [10], [18], there are different cur-
rents at the emission point.

Once the beam is turned on, it leaves behind a positive charge equal to Qb = Ib · t.
Consequently, spacecraft potential increases in time, affecting contactor cloud ar-
rangement: contactor electrons are pulled back to the satellite, adapting their pos-
tion to the charge accumulated on the emitter itself. At this point, two areas of the
contactor cloud can be distinguished: a quasi-neutral region, from the spacecraft
position to rqn, and an ion region, that starts at point rqn until ri. In the first
region, electron and ion densities balance each other ni ≈ ne, while in the ion region
plasma is non-neutral (ni > ne).

The quasi-neutral cloud is supposed to enclose a net charge equal to zero. Even
if in this zone the total charge is not exactly null, it is still negligible with respect to
the overall charge of the system, Qtot ≈ 0. Since the quasi-neutral region is consid-
ered to be neutral, the positive charge Qb is transferred instantaneously to the ion
region.
The model allows for no potential drop across quasi-neutral cloud: φ(Rsc) = φ(rqn).

It is assumed that beyond the ion region there is vacuum (r ≥ ri).
The plasma plume and the background plasma densities are very different, the
physics of the plume expansion is described well enough by studying its expan-
sion in vacuum [25].
This hypothesis is conservative, since [10] has been proven that a low-density back-
ground plasma slightly attenuates spacecraft charging.
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2.2 – Theoretical model

Two other assumptions that are consistent with the previous one are taken into
account: the electron beam velocity is infinite; beam current equals ion contactor
current.
The latter supposition implies the neglect of fast electrons transient; their dynamics
is not studied and the electron contactor current approaches rapidly to zero as the
beam is turned on (Ie → 0). Equation (2.10) is simplified to Ii = Ib.

The characteristic time scale of ions is longer than the corresponding electrons;
it is assumed that system evolution is driven by ion dynamics and the electrons are
assumed to be in equilibrium.
Time evolution is studied with a quasi-static approximation; a snapshots of static
state sequences, and instantaneous quantities are calculated at each step, solving
equations that are valid in steady state.

r2

Rsc

rqn
ri

Figure 2.2: Reference geometry of semy-analytical model: spacecraft (dark grey),
quasi-neutral region (cyan), ion region (yellow), vacuum (gray).
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2.2.2 Normalization
Characteristics or properties of a system are expressed very often through dimen-
sionless parameters, such that any change in scale does not affect the magnitude of
these quantities.
To obtain normalized variables, we need to specify reference quantities.
Reference density nref temperature Tref are defined, because through them two im-
portant parameters in plasma physics can be determined: Debye length and electron
plasma frequency.
Normalization procedure that was followed for single variables is summarized in ta-
ble 2.1.

Quantity Reference quantity Normalization

Temperature T Tref T̂ = T/Tref

Density n nref n̂ = n/nref

Length r λref =
ò

KBTref

nref e2 ε0 r̂ = r/λref

Velocity v vref =
ñ

KBTref

me
v̂ = v/vref

Time t ωref =
ò

nref e2

meε0
τ = t · ωref

Electrostatic potential φ φref = KBTref

e
ψ = φ/φref

Current I Iref = e · nrefvrefλ2
ref Î = I/Iref

Charge Q Qref = e · nrefλ3
ref Q̂ = Q/Qref

Table 2.1: Normalized variables

To normalize an entire equation, all the variables that appear in it have to be nor-
malized.
An example by means of the equation of motion is given considering the case of a
particle with charge q, moved by an electric force q ·E in a generic one-dimensional
geometry. 

dr
dt = v

dv
dt = q

m
E

(2.11)
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We set the following equalities:

v = v̂ · vref
t = τ/ωref (2.12)

E = Ê · Eref

The reference electric field is simply the ratio between the reference potential
and the Debye length: Eref = φref/λref .
The second equation of the system (2.11) can be rewritten as follows:

dv̂
dτ · vref · ωref = q

m
Ê · Eref (2.13a)

dv̂
dτ = q

m
Ê

φref
λrefvrefωref

(2.13b)

The right hand side of the previous expression can be simplified:

φref
λrefvrefωref

= KBTref
e

·

óKBTref
nrefe2 ε0 ·

ó
KBTref
me

·
ó
nrefe2

meε0

−1

= me

e
(2.14)

So, calling q̂ = q/e and m̂ = m/me, the normalized equation of motion will be:

dv̂
dτ = q̂

m̂
Ê (2.15)

2.2.3 Model equations
The four unknows of the theoretical model are: radius of quasi-neutral cloud rqn,
ion front position ri, ion front potential φi and spacecraft potential φsc; they are
derived from the equations we present below.
The non-dimensional quantities and the obtained equations are valid for the nor-
malization summarized in table 2.1.

The parameter r̂qn can be properly described through a model that includes electron
dynamics. However, assuming Îb = Îi, in the moment the beam starts to be fired,
contactor electrons move toward the emitter very quickly with respect to the tion
characteristic time scale; they readjust in response to the satellite potential in a time
span during which ions have not moved considerably. After electron rearrangement,
that can be thought as instantaneous, the electron contactor cloud does not vary
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2 – Theoretical model for the transient of a magnetospheric spacecraft emitting a high-power electron beam

over time. The quasi-neutral coordinate is assumed to be equivalent to value of r̂qn
at the beginning of beam emission regime. The relation used is in line with results
shown in [18]:

r̂qn(τ) = r̂qn,0 (2.16)

The equation of motion for ions is used to calculate the ion front position ri:

d2r̂i
dτ 2 = q̂i

m̂i

Ê(r̂i) (2.17)

The electric field at the ion front position is obtained from Gauss’s law

Ê(r̂i) = Q̂(r̂i)
4πr̂2

i

(2.18a)

It is noticed that the ion front is crossed only by the beam current, since contactor
electrons are reabsorbed by the spacecraft. Calling Q̂i,0 the charge inside the sphere
of radius r̂i at τ = τc, charge Q̂ is:

Q̂ = Q̂i,0 + Îbτ (2.18b)

The final expression of ion equation of motion is written with its initial conditions:


d2r̂i
dτ 2 = q̂i

m̂i

Q̂i,0 + Îbτ

4πr̂2
i

r̂i(τc) = r̂i,0

dr̂i
dτ

-----
τ=τc

= v̂i,0

(2.19)

It is indicated that r̂i,0 and v̂i,0 are position and velocity of the ion front at τ = τc
respectively.

The equation to obtain the electrostatic potential at the ion front ψi is the Pois-
son’s equation in vacuum. In the domain r̂ ∈ [r̂i, r̂2], we have:
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1
r̂2

d
dr̂

A
r̂2 dψ

dr̂

B
= 0

ψ(r̂2) = 0

dψ
dr̂

-----
r̂=r̂i

= −Q̂i,0 + Îbτ

4πr̂2
i

(2.20)

Solving the system above, the final expression of the ion front potential is the
following:

ψi = Q̂i,0 + Îbτ

4π
r̂2 − r̂i
r̂2r̂i

(2.21)

Alternatively, an equivalent vacuum capacitance C such that ψi = Q̂/C can be
introduced:

C = 4π r̂2r̂i
r̂2 − r̂i

(2.22)

The final equation that is neededt for he spacecraft potential value is the Poisson’s
equation in the ion region (r̂ ∈ [r̂qn, r̂i]). In fact, satellite potential is controlled by
current that flows between the quasi-neutral cloud and the ion front.

1
r̂2

d
dr̂

A
r̂2 dψ

dr̂

B
= n̂e − n̂i

ψ(r̂i) = ψi

dψ
dr̂

-----
r̂=r̂qn

= 0

(2.23)

Densities appearing in the Poisson equation have steady-state expressions. Ions are
considered cold and they enter the system with a drift velocity v̂d; ion density n̂i is
derived from continuity and momentum equations in steady-state:

n̂i = Îb
4πv̂dr̂2

1 + ψsc − ψ

m̂iv̂
2
d

2


−1/2

(2.24)

23



2 – Theoretical model for the transient of a magnetospheric spacecraft emitting a high-power electron beam

In the model, electrons have a Maxwellian distribution at the quasi-neutral sur-
face and their density is expressed through Orbital-Motion-Limited approximation
[12].

n̂e =
ò
π

2
Ĵe

exp

A
ψ − ψsc

T̂e

B
1 + erf

öõõô ψ

T̂e
− 2√

π

öõõô ψ

T̂e
exp

A
− ψ

T̂e

B
−

√
z2 − 1
z

exp
A

ψ − ψsc

T̂e(z2 − 1)

B (2.25a)

if ψ(z) ≤ ψsc/z
2

n̂e =
ò
π

2
Ĵe

exp

A
ψ − ψsc

T̂e

B
1 + erf

öõõô ψ

T̂e
+ 2√

π


öõõô 1
T̂e

A
ψ − ψsc

z2

B
−

öõõô ψ

T̂e

 exp
A

− ψ

T̂e

B

−
√
z2 − 1
z

exp
A

ψ − ψsc

T̂e(z2 − 1)

B1 + erf

öõõô 1
T̂e

z2φ− ψsc
z2 − 1


(2.25b)

if ψ(z) ≥ ψsc/z
2

The second boundary condition of the Poisson equation derives from the as-
sumption of net charge inside the quasi-neutral cloud, set to be zero. Therefore, the
electric field in the quasi-neutral region is null. Finally, from the differential equation
(2.23) ψqn = ψ(r̂qn) is obtainedt, whose value is equivalent to the spacecraft poten-
tial, for the previous hypothesis of no potential drop across the quasi- neutral region.

In summary, the fundamental equations upon which the model is based are:

1. quasi-neutral position expression (2.16);

2. ion equation of motion (2.19);

3. Poisson equation in vacuum (2.20);

4. Poisson equation in the ion region (2.23).

To solve all the equations above, we need their initial conditions: r̂qn,0, r̂i,0, v̂i,0
and Q̂i,0. The subscript ’0’ refers to the onset of electron beam.
These quantities depend on contactor expansion evolution, prior to beam emission.
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In particular they correspond to values calculated at the end of expansion τ = τc.
A model for contactor expansion regime is needed; thanks to the latter complemen-
tary model, the entire transient would be fully described. In addition, spacecraft
potential behavior for different input conditions can be predicted.
A model for contactor expansion is proposed in chapter 3.
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Chapter 3

Shell model for expansion of
contactor plasma

In this chapter, the model developed by means of the so called shell method is
presented. This model is used to study the transient of plasma contactor expansion
before the electron beam emission. After giving some general concepts of the method
in section 3.1, we apply it in the case of interest (section 3.3) and its results are
compared to PIC outcomes (section 3.5). In section 3.6, the implemented shell code
is utilized to obtain a scaling law for the spacecraft potential.

3.1 Algorithm
The shell method is a particle-based, gridless technique, suitable for problems in-
volving symmetries in Vlasov-Poisson systems [26].
The advantage of using a gridless particle technique can be appreciated mainly in
dealing with problems in which the physical domain filled by particles varies rapidly
in time (e.g. plasma expansions and explosions).
The shell method algorithm employes a set of computational particles, that behave
like spherical shells, upon which electric charge is distributed uniformly; for this
reason, the method is used for spherical symmetry cases.

The generic formulation of the shell method starts initializing the phase-space co-
ordinates x and v, for each of the N computational particles used during the simu-
lation. Particles are then sorted according to their radial coordinate Ri = |xi|, with
Ri > Rj if i > j.
Taking into account the spherical symmetry of the system, the electric field Ei is
purely radial and depends on the total charge located at R ≤ Ri.
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3 – Shell model for expansion of contactor plasma

It can be computed through Gauss law:

Ei = 1
4πε0

i−1Ø
j=1

qj + 1
2qi

 xi
R3
i

(3.1)

In the equation (3.1):

•
i−1Ø
j=1

qj is the total charge of particles located inside the sphere of radius Ri

• 1
2qi is a correction factor that provides the correct value of the field if a lin-
ear behaviour of E is asssumed. It can be explained considering that [26] for

R = Ri − ε (ε > 0, ε → 0+) and R = Ri + ε, total charge is respectively
i−1Ø
j=1

qj

and
iØ

j=1
qj.

The basic hypotheses through which we calculate the electric field exclude point-like
particle interactions, seen that physical charges are represented by spherical shells
whose charge is distributed along a surface. Thus, plasma collisionality is reduced
[27] as the number of shells increases, and vanishes with N → ∞.
Hence, the shell algorithm is appropriate for systems dominated by collective inter-
actions (electrostatic, collisionless plasmas).
Since particles move under the action of a self-consistent electric field, ion and elec-
tron dynamics are simply described by equations of motion:



dxi
dt = vi

dvi
dt

= qi
mi

Ei i=1,2,...,N

(3.2)

Equations (3.2) after having calculated E for each Ri can be solved by using
a suitable numerical method and choosing a time step smaller than the inverse of
plasma frequency ωp.
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3.2 A simpler formulation of the method
As anticipated in section 3.1, the electric field depends on distance R only, so the
force law is spherically symmetric, and the angular momentum L = x × (mv) is
conserved.
In particular, the direction of the angular momentum vector, always perpendicular
to the plane defined by x and mv, does not change, and the motion of particles will
be confined on that fixed plane [28]. This problem can be further reduced to a 2D
description.
After having generated the initial 3D coordinates for space x = (x, y, z) and velocity
v = (vx, vy, vz), a set of 2D coordinates are introduced as follows:

X = (R,0) (3.3a)
V = (vR, v⊥) (3.3b)

where:
R = |x|

vR = v · êR = v · x
R (3.4)

v⊥ =
ñ

|v|2 − v2
R

Particles are sorted according to their radial position ri = |Xi|.

3.3 Shell method for contactor expansion simula-
tion

The shell method is now adopted to simulate the transient of contactor plasma ex-
pansion, before electron beam ignition.
This application of the shell method is aimed to provide initial conditions of the
system related to the model discussed in chapter 2. For this reason, the shell model
is built starting from hypotheses provided by authors of the work [24], that have
been summarized in section 2.2 .

The implemented code has been written in Matlab and FORTRAN.

3.3.1 Initial distribution
It is considered that the spacecraft is a perfectly spherical plasma source of radius
Rsc; at each time step, contactor plasma is emitted in vacuum at a distance r = Rsc,
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3 – Shell model for expansion of contactor plasma

isotropically from the surface, with a radial drift velocity vdrift.
Since vth,e º vd, it can be assumed that electrons are ejected according to the half-
width Maxwellian distribution at rest, while ions motion is basically driven by drift
velocity.
At time t → 0−, the spacecraft is neutral, so its total charge is zero.
At t = 0, there is the first emission; ejected particles, located on the surface, are
characterized by an initial velocity and charge.

As discussed in section 3.2, dealing with a central force system, evolution of particles
depends on their radial coordinate only, although the initialization of phase space
coordinates provides 3D vectors of position and velocity.
Regarding the hypotheses made on velocity, we point out that initial conditions of
particle distribution function f(v) determine and affect the entire transient of the
system [29].
It is assumed that the distribution function f(v) is the product of three independent
normally distributed velocity variables, with a variance σ2 = (KBT )/m = v2

th and a
mean value µ = 0.

f(v) = f(vx) · f(vy) · f(vz) (3.5)

For each component of the velocity vector vk (k = x, y, z), the Maxwell-Boltzmann
distribution is:

f(vk) =
ó

m

2πKBT
e

−
m v2

k

2KBT (3.6)

Switching to a 2D coordinated system equation (3.3b), there is a straightforward
distinction between radial and tangent coordinates.
In Particle Simulations, a charge injection from a boundary into the system is re-
produced using the flux of a distribution. The boundary can represent a physical
interface or a computational case, as the spatial grid used in a PIC simulations.
The direction of the flux at the surface is established by the normal to the emitting
surface itself.

vr

r

Figure 3.1: Example of a particle entering from the left boundary of a rectangular
spatial grid with velocity vr.
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The velocity of particles coming from a Maxwellian source and entering the
system was determined, starting from:

• Maxwellian flux with no drift for electrons;

• Maxwellian flux with a finite drift for ions.

The cumulative distribution function maps the flux of a distribution to uniformly
distributed numbers ξ, between 0 and 1 [29].
For electrons and ions we can set respectively:

ξ = F (ve) =

Ú ve

0
vÍ
e e

−vÍ2
e / 2v2

th,e dvÍ
eÚ ∞

0
vÍ
e e

−vÍ2
e / 2v2

th,e dvÍ
e

(3.7)

ξ = F (vi) =

Ú vi

0
vÍ
i e

−(vÍ
i−vd)2/ 2v2

th,i dvÍ
iÚ ∞

0
vÍ
i e

−(vÍ
i−vd)2/ 2v2

th,i dvÍ
i

(3.8)

Both expressions can be inverted to obtain the injection velocities. For electrons:

ve = vth,e
ñ

−2 (log (1 − ξ)) (3.9)

In the case of a Maxwellian flux with a drift, velocity cannot be written in a
closed form, the equation can be inverted numerically.
On the other hand, if the drift is larger than the thermal velocity, the cumulative
function of the flux can be approximated to that one of the distribution [29]:

ξ = F (vi) =

Ú vi

0
e−(vÍ

i−vd)2/ 2v2
th,i dvÍ

iÚ ∞

0
e−(vÍ

i−vd)2/ 2v2
th,i dvÍ

i

(3.10)

Whenever the drift velocity has not a relativistic component, it is added linearly to
v (vÍÍ

i = vÍ
i − vd). From the latter equation, the ion velocity expression is deduced:

vi = vd +
√

2 vth,i erf−1
A
ξ + (1 − ξ) erf

A
− vd√

2vth,i

BB
(3.11)

Thus, it is emphasised that in the other directions, initial velocities are ob-
tained from distribution and not from flux definition: the Maxwellian velocity can
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3 – Shell model for expansion of contactor plasma

be derived through equation (3.11), or, alternatively, recurring to the generation of
normally distributed pseudorandom numbers.

To compute particle charge, an arbitrary number of shells shot at each time step dt
needs to be chosen.
The single computational particle charge qs is derived from the ratio between total
charge emitted in a shot, proportional to input current, dQs and ∆Ns (s = e for
electrons, s = i for ions):

Qs = Isdt (3.12a)

qs = dQs/∆Ns (3.12b)

Hence, at the first injection, the total charge left on the spacecraft is Qsc(t0) =
−dQi + |dQe|.

3.3.2 Time evolution
At each time step dt, ∆Ne electrons and ∆Ni ions are fired in vacuum: number
of particles in the system increases and therefore the net charge on the spacecraft
changes during the transient.

After the emission, charge motion is affected by the self-consistent electric field.
It can happen that a particle reaches the satellite during its motion; hence, it has to
be removed from the simulation, taking into account that its charge is accumulated
onto the spacecraft surface.
Generally, the spacecraft charges negatively when an electron collides with it and it
is absorbed.
Whenever an ion approaches to the surface, one or more electrons are stripped from
the surface itself, to form a neutral atom. The global effect is that the satellite loses
a number of electrons equal to the net charge of positive ion, and charges positively.

In the case of concern, the contactor currents are different at injection; in par-
ticular Ie > Ii. At the beginning of the transient, a net positive charge progressively
accumulates on the spacecraft, and ions never reach its surface again. For what
concerns electrons, fast negative particles of the system escape swiftly, while less
energetic electrons are attracted back toward the satellite and some of them are
absorbed.
Particles hitting the space probe can be identified by their radius r ≤ Rsc. The final
expression for the charge accumulated on the spacecraft, assumed to be a conductor,
includes the correction of returning electrons.
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3.3 – Shell method for contactor expansion simulation

At a generic time instant t:

Qsc(t) = Qsc(t− dt) − dQi + |dQe| −
---Ø qe

---
r≤Rsc

(3.13)

Whenever the emitter net charge is non-zero, the emitter itself creates a sheath
that turns some of the emitted particles back, and in its neighborhood Qtot ≈ 0 (see
section 2.2.1).
Furthermore, a positive spacecraft potential forms a sheath that is shielded by rec-
ollected electrons, after they readjust the current to Ie ∼ Ii [18].
A quasi-neutral region is created as electrons move back toward spacecraft; it ex-
tends from spacecraft to position rqn; beyond this region, ions acquire a well-defined
front (ion region). Finally, electrons that move ahead of the ions because of their
greater thermal velocity, form a pure electron cloud beyond the ion region [30].

Additional functions for the calculation of potential and density are implemented,
in such a way all the variables that are needed for the beam emission regime model
can be defined.

3.3.3 Electric field
The expression of E is obtained from the definition of the electric field generated
by uniformly charged shells; in this case, the most internal shell coincides with the
spacecraft charge, that affects the total charge of the system. The electric field
equation, according to the simpler formulation explained in 3.2, is as follows:

Ei = 1
4πε0

Qsc +
i−1Ø
j=1

3
qj + 1

2qi
4 Xi

r3
i

(3.14)

3.3.4 Potential
The potential of the system is computed following two different approaches.
The first procedure is based on two observations:

1. total charge of all shells sums to zero;

2. potential φ(r) = 1
4πε0

Q(r)
r

+ C is defined below a constant, and a reference
point at zero potential has to be established.
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3 – Shell model for expansion of contactor plasma

r
r1 r2 · · · · · · rN−1 rN

Figure 3.2: Shells sorted according to r in increasing order.

Considering N computational particles, already sorted in increasing order, at dis-
tances greater than the last particle position, r ≥ rN , total charge is zero and we
set the potential to be null. The constant C is chosen to be zero for r ≥ rN . Taking
two generic subintervals M and M + 1 of r bounded by points ri−1, ri, ri+1, the
expressions of the potential can be written:

φ(r)
M

= Qi−1

4πε0r
+ Ci−1 if r ∈ [ri−1; ri]

φ(r)
M+1

= Qi

4πε0r
+ Ci if r ∈ [ri; ri+1]

The charges Qi−1 =
i−1Ø
j=1

qj and Qi =
iØ

j=1
qj are the total charge enclosed by the sphere

of radius ri−1 and ri respectively.
At point r = ri the potential has to be continuous, so we set:

Qi−1

4πε0ri
+ Ci−1 = Qi

4πε0ri
+ Ci (3.15a)

Ci−1 = Ci + Qi

4πε0ri
− Qi−1

4πε0ri
= Ci + qi

4πε0ri
(3.15b)

Knowing that C∞ = CN = 0,

CN−1 = qN
4πε0rN

CN−2 = qN−1

4πε0rN−1
+ CN−1 = qN−1

4πε0rN−1
+ qN

4πε0rN...

C2 = 1
4πε0

A
q3

r3
+ · · · + qN−1

rN−1
+ qN
rN

B

C1 = 1
4πε0

A
q2

r2
+ q3

r3
+ · · · + qN−1

rN−1
+ qN
rN

B
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3.3 – Shell method for contactor expansion simulation

Finally, we compute the potential as a function of r:


φ(ri) = 1

4πε0

Qi

ri
+

NØ
j=i+1

qj
rj

 i = 1,2, ..., (N − 1)

φ(rN) = 0
(3.16)

The second approach is not derived by the total charge conservation, but rather
implies the potential calculation through Gauss law. Knowing that E(r) = −dφ(r)/dr,
the potential difference between two successive radial coordinates is:

φi+1 − φi = − 1
4πε0

Ú ri+1

ri

Qi

r2 dr = Qi

4πε0

A
1
ri+1

− 1
ri

B
(3.17)

It is indicated once again that the cumulative charge inside the sphere of radius
r ≤ ri through the quantity Qi.
At the last charge position, the potential is φN = QN/rN . The potential value at
different points ri can be evaluated as:

φN − φN−1 = QN−1

4πε0

A
1
rN

− 1
rN−1

B
(3.18a)

φN−1 = QN

4πε0rN
− QN−1

4πε0

A
1

rN−1
− 1
rN

B
(3.18b)

The final expression of the potential is the following:

φi = QN

4πε0rN
−

N−1Ø
j=i

Qj

4πε0

A
1
rj+1

− 1
rj

B
i = 1,2, ... (N − 1) (3.19)

3.3.5 Charge Density
We build a function to estimate charge density.
Because electrons traver at a much greater velocity than ions, they reach distances
at which ion density is zero. To appreciate ion and electron density profiles and to
compare them, a common sample space interval is used, by uniformely subdividing
space between Rmin = Rsc and a given Rmax. For each species, the charge density
in the generic interval bounded by points RH and RH+1 is calculated as the product
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3 – Shell model for expansion of contactor plasma

between the density of computational particle, N /∆V , and the elementary charge
qs:

ρs = Ns

∆V · qs (3.20)

According to the assumption of shell-shaped particles, ∆V = 4/3π(R3
H+1 −R3

H).

3.4 Shell method convergence study
A convergence analysis of the shell method is performed testing the code with differ-
ent input parameters. This study is aimed to determine how outputs are sensitive
to initial data variation.
This technique is effective to test the robustness of a model and to evaluate the
accuracy of results at different numerical grid refinement levels.
The emphasis is placed on two discretization parameters that influence numerical
process: time step dτ and number of shells emitted at each iteration ∆Ns.
If the refinement of solution grid is increased (i.e. dτ is reduced and ∆Ns rises) and
the numerical model approaches to a fixed value, the model is convergent.
The code here used simulates the expansion of a Helium plasma in vacuum.
Helium atoms are assumed to be partially ionized, so plasma is composed of elec-
trons and ions He+, whose charge is |e|.
The mass ratio between the two species is mi/me = 7344.
The shell code is developed using normalized variables; the reference values are
Tref = 2.3 eV and nref = 104 cm−3. According to the normalization illustrated in
section 2.2.2, input data are grouped below:

Quantity Value

T̂e 1
T̂i 0.2

v̂drift 0.055
Îi 77.6
Îe 560
τc 1500

Table 3.1: Input data

The adopted numerical method to solve the differential equation of motion (3.2)
is the leapfrog integration scheme.
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3.4 – Shell method convergence study

Leapfrog integration is a second-order method that solves Newton’s law equations
taking advantage of the decoupling of space and velocity vectors from their deriva-
tives.
The numerical approximation of the system (3.2) employes time-centered finite-
differential equations:

xn+3/2 = xn+1/2 + vn+1∆t (3.21a)

vn+1 = vn + q

m
En+1/2∆t (3.21b)

Since the initial phase space coordinates are x0 and v0, at the first iteration (n =
0), the quantity xn+1/2 is not known. It is possible to make a first approximation
doing a single Euler half step:

x1/2 = x0 + v0
∆t
2 (3.22)

Once the position advances in time, the electric field for t = t0 + ∆t/2 can be cal-
culated, and can be used to obtain velocity v1 through the equation (3.21b).
The leapfrog method is used because it is simple to implement and it has a favorable
stability when computing oscillatory solutions [31].

3.4.1 Time discretization
First, four simulations in which the time step dτ is progressively decreased are eval-
uated (see table 3.2). The number of shells ejected from the source at each iteration
is fixed as ∆Ni = 10 and ∆Ne = 10.

Simulation Time step
dτ

a 0.1
b 0.05
c 0.02
d 0.01

Table 3.2: Input time steps for convergence study
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3 – Shell model for expansion of contactor plasma

The time step variation has an impact on other quantities of the model. For ex-
ample, it is noticeable from the equation (3.12) that the charge of a computanional
particle qs is directly proportional to the time step and inversely proportional to the
number of shells.

qs ∝ dτ

∆Ns

(3.23)

A change of the elementary charge affects the electric field calculation, and conse-
quently the dynamics of particles.
On the other hand, time steps used for the convergence study diverge by an order of
magnitude at most; it is expected that the main quantities of collected simulations
to not vary significantly between them.

Decreasing the time step, a smoother profile of potential distribution close to the
spacecraft at the end of expansion (figure 3.3b) is exhibited. The asymptotic be-
haviors do not show a significant difference.
From figures 3.3c and 3.3d, it can be seen that ion density distributions present a
negligible difference by refining the time step; the electron charge densities differ for
the oscillation amplitude, that is reduced progressively from simulation a to simu-
lation d.
It is evident from figures in 3.3e and 3.3f that quantities depending on charge show
oscillations of different magnitude amplitude. After an initial peak, both spacecraft
charge and potential settle around an average value; their oscillations are dampened
as dτ goes down.

It should also be noticed that modifying the time step has a secondary effect on
the simulation: the ejections of (∆Ni + ∆Ne) particles occurs at each dτ . For this
reason, varying the resolution of time discretization, the number of computational
shells introduced in the system is modified.
For instance, the results of simulation d show a less fluctuating profiles in time and a
more uniform distributions in space of quantities of interest, because there are both
a greater number of:

• numerical iterations needed to solve differential equations;

• computational particles ejected from the emitter, through which the total
charge of the system is represented.

Both effects smooth the curves and reduce the oscillations.
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Figure 3.3: Convergence study plots varying time step dτ :
dτ = 0.1 (blue), dτ = 0.05 (red), dτ = 0.02 (green), dτ = 0.01 (black).
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3.4.2 Number of shells
To establish the influence of the number of shells, it is fixed dτ = 0.01 and the
number of shells is changed, as can be seen in table 3.3.

Simulation Ion shell number Electron shell number
1 1 1
2 1 4
3 4 8
4 10 10

Table 3.3: Input number of shells for convergence study

At the end of expansion, potential distributions in space (figures 3.4a and 3.4b)
are slightly perturbed for cases in which the sum of computational particles is low.
This effect is tempered further away from the spacecraft.
Values of density at the end of the transient are very close.

In figures 3.4e and 3.4f, it is clearly shown that oscillations of spacecraft charge
and potential are more evident when ∆Ns = 1, while their amplitude is gradually
reduced by increasing the number of shells.
We give a possible interpretation of the oscillating trend of these two quantities,
referring to the simulations 1 and 4, between which ∆Ns differs by a factor of 10.
In the first simulation, the whole system is represented by a minor number of parti-
cles, that are characterized by a bigger elementary charge with respect to the latter
case (qs ∝ 1/∆Ns). Thus, when particles are absorbed by the satellite surface, their
’greater’ charge is accumulated on the spacecraft, causing a more significant varia-
tion of Qsc.
Indeed, in the second instance, the higher number of shells involves in the system
more computational particles, whose elementary charge is inferior.

These results confirm that the increase in the number of shells provides an im-
provement in the solution, comparable to that one obtained through the reduction
of dτ .

In conclusion, the results obtained from simulations show a convergent trend.
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Figure 3.4: Convergence study plots varying time step ∆Ns: simulation 1 (blue),
simulation 2 (red), simulation 3 (green), simulation 4 (black).
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3.5 CPIC -Shell simulations parallelism
In this section, a comparison between the results from Curvilinear Particle-In-Cell
(CPIC) simulation [24] and from shell model presented in section 3.3, for the case
of Helium plasma are made.
The reference shell outputs derive from the most refined grid simulation (dτ = 0.01,
∆Ni = 10 and ∆Ne = 10). Compared outputs are:

• radius of quasi-neutrality cloud surrounding spacecraft r̂qn;

• position r̂i and velocity of the ion front v̂i;

• potential distributions at the end of expansion (paying attention to values of
ion front ψi and spacecraft ψsc potentials);

• density distribution in space at τc.

For the calculation of r̂qn, it was hypothesized that the quasi-neutrality region ends
when the relative difference between ion and electron density (n̂i − n̂e)/n̂e exceeds
the value 0.15 [24], in order to keep the statistical noise of PIC method to acceptable
values.

The ion front coordinate is determined by the position of the farthest ion; once
r̂i is obtained, the values of potential at that point (ion front potential φi) and last
ion velocity v̂i can be extrapolated.

Output variable CPIC Shell method
r̂qn 65.30 62.12
r̂i 150.96 158.11
v̂i 0.10 0.10
ψi 2.30 2.21
ψsc 7.39 7.1

Table 3.4: Summary of results in CPIC and shell method simulation

Figures in 3.5 display a positive relationship between the CPIC and shell model,
for the entire transient of the expansion.
Figure 3.5a represents the potential distribution in the early stage of system evo-
lution (τ = 50), when particles still have not reached great distances from the
spacecraft. The shell model is gridless, so the potential is calculated up to the last
particle coordinate; CPIC model contrarily subdivides the domain in meshes.
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Figure 3.5: Potential space distribution at different time instants before the end of
transient.
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Figure 3.6: Potential distribution in space at the end of expansion τc = 1500.
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Figure 3.7: Spacecraft potential time evolution.
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Figure 3.8: Total charge accumulated on the spacecraft.
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Figure 3.9: Zoom of the figure 3.8 in the first transient instants.
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Figure 3.10: Density profiles at the end of expansion τc = 1500.

The outer boundary of the domain is delimited by the coordinate r̂2 = 900, and at
every time instante each parameter is calculated on the entire PIC domain.
Similarly, later behavior of the system is fully represented by the shell method, that
stores coordinates of all particles. The CPIC domain is finite, and when a particle
crosses r̂2, it is delated from the simulation.

As can be noticed from convergence study graphs (section 3.4), the shell method
quantities related to charge manifest oscillating behaviors in time, as opposed to
CPIC profiles.
Two interpretations of this result are given: numerical fluctuations can reproduce a
physical oscillation of the system charge, whereas electrons moving both back and
forth with respect to spacecraft position. On the other hand, the model approxi-
mates a continuous ejection of particles with discountinuous and repeated emissions,
occurring at each time step. This hypothesis is coherent with the oscillation ampli-
tude attenuation, that is noticeable at a lower temporal discretization. In the latter
case, the oscillations are entirely of numerical nature.

In conclusion, we can confirm that shell model is in a good agreement with CPIC,
in fact relative errors of quantities compared in table 3.4 are bounded within a
maximum of 6 %.
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3.6 Scaling Law for Spacecraft Potential
A parametric study is performed in order to achieve a scaling law for spacecraft
potential.
Spacecraft potential forecasts are paramount from a mission point of view; for this
purpose, scaling law is a uselful tool because it allows to predict values of this vari-
able as a function of some other significant quantities.

ψmaxsc = f
3
mi

me

, Îb, τc

4
(3.24)

The spacecraft potential is affected by the variation of contactor ion mass, beam
current and contactor expansion time. The dependence relation above contains nor-
malized variables.

The dependency on mass ratio and beam current has been studied in [24].
The results show that:

ψmaxsc ∝
3
mi

me

40.35
(3.25a)

ψmaxsc ∝ Î0.76
b (3.25b)

Since the beam current is kept equal to the ion contactor current, the variation
of Îb implies the variation of Îi.
The dependency of spacecraft potential on τc is taken into account, simulating the
contactor expansion at several times; the contactor is kept on for a time interval on
the order of milliseconds.

Simulation tc τc
[ ms] [-]

T1 5 2.8 e5
T2 10 5.6 e5
T3 20 11.2 e5
T4 50 2.8 e6
T5 100 5.6 e6

Table 3.5: End expansion time inputs

From each simulation, the potential profile in space during the beam emission
regime is obtained, solving Poisson equation (2.23) with the initial conditions r̂qn,
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r̂i, v̂i and Q̂i at the end of expansion. Electron beam is kept on for a time interval
of τb = 2.5e6.
All contactor expansion simulations have been repeated varying the contactor input
current, as shown in table 3.6.

Cases Ii Îi
[ mA] [-]

I 1 77.6
II 0.1 7.76
III 5 388.2

Table 3.6: Ion contactor current inputs

Outuput quantities obtained from contactor simulation and used as initial con-
ditions are displayed in tables 3.7, 3.8 and 3.9.

variable T1 T2 T3 T4 T5

r̂qn 1410 2412 4814 12423 23502
r̂i 3016 6191 12682 32627 66552
v̂i 0.1119 0.1145 0.1170 0.1200 0.1221
Q̂i 1.15e5 2.33e5 4.56e5 1.10e6 2.18e6

Table 3.7: Results for case I
variable T1 T2 T3 T4 T5

r̂qn 476 1210 2211 5415 10554
r̂i 2644 5403 11014 28175 57259
v̂i 0.0975 0.0993 0.1009 0.1030 0.1045
Q̂i 5.88e4 1.18e5 2.35e5 5.79e5 1.15e6

Table 3.8: Results for case II
variable T1 T2 T3 T4 T5

r̂qn 2011 4414 7417 20632 40989
r̂i 3356 6889 14108 36266 72993
v̂i 0.1246 0.1274 0.1300 0.1332 0.1348
Q̂i 1.65e5 2.93e5 5.99e5 1.42e6 2.6e6

Table 3.9: Results for case III
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An approximation law for the maximum value of the spacecraft potential ψmaxsc

is deduced using two functions:

• power law approximation
ψmaxF IT ∝ τ γc

• polynomial approximation

ψmaxF IT ∝ a1τ
n
c + a2τ

n−1
c + ... + anτc + an+1

We fit values of ψmaxsc by the least square method: the approximated function
minimizes the sum of the squares of the residual ρi = |ψmaxsc − ψmaxF IT |.

3.6.1 Power law approximation
The first consideration is that ψmaxF IT = Aτ γ, where A is a constant.
Thus, the parametric study in the three cases in table 3.6is performed in order to
verify if and how the dependency of ψmaxF IT as a function of τc is influenced by Îi.

The results are summarized in table 3.10:

Simulation γ Relative error (%)
I −0.17 12
II −0.23 9
III -0.15 11

Table 3.10: Power law approximation results

3.6.2 Polynomial approximation
In this case, ψmaxsc is fitted with a cubic polynomial. The degree of polynomial is
chosen according to the number of data points, in such a way the polynomial is
unique.
Since the polynomial is badly conditioned, it has been rescaled using the mean µ
and the standard deviation σ of the vector containing the values of τc shown in 3.5.
Next, we find the coefficients of the polynomial in τ̂c:

τ̂c = τc − µ

σ
(3.26a)

ψmaxF IT = a1τ̂
3
c + a2τ̂

2
c + a3τ̂c + a4 (3.26b)
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3.6 – Scaling Law for Spacecraft Potential

Simulation a1 a2 a3 a4 Relative error %
I −14.45 32.78 −36.54 177.45 0.76
II −5.76 10.38 −5.23 25.93 7.22
III −47.40 98.52 −100.65 580.75 4.27

Table 3.11: Polynomial approximation results

The extrapolated coefficients are summarized in table 3.11.
As can be seen from tables 3.10 and 3.11, the polynomial approximation provides

more accurate results; at the same time, when the current Îi is changed, polynomial
coefficients vary more significantly than the power law γ, whose values are weakly
modified.
The power law approximation can be used without taking into account the small
variations due to Îi, in order to have a more general and facile applicable relation.
A value of γ = −0.18 is chosen.
At the end, we can establish that maximum spacecraft potential reached during
beam emission regime depends on contactor expansion time prior to beam emission.
Increasing time during which contactor plasma expands, weakly reduces the severity
of the transient.
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Figure 3.11: Best fit of spacecraft potential values (case I).
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3 – Shell model for expansion of contactor plasma
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Figure 3.12: Best fit of spacecraft potential values (case II).
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Figure 3.13: Best fit of spacecraft potential values (case III).
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3.7 – Shell method for beam emission regime

3.7 Shell method for beam emission regime
After the validation of the shell model with a convergence study and its comparison
to CPIC simulation, the numerical method is now applied to the second stage of the
spacecraft transient: the beam emission regime. The results are compared to the
outcomes of the semi-analytical model proposed in [24], which will be referred to as
the base model.
The electron beam and plasma contactor are fired simultaneously at each time step
dτ .
Taking advantage of the assumption of infinite-velocity beam, dynamics of electrons
fired from the electron gun is ignored, since they instantaneously reach an infinite
distance.
The effect of the beam is included in the expression for the spacecraft charge 3.13,
that is modified as follows:

Q̂sc(τ) = Q̂sc(τ − dτ) − dQ̂i +
---dQ̂e

---+ ---dQ̂b

---− ---Ø qe
---
r≤Rsc

(3.27)

The beam charge dQ̂b = Îbdτ .
The beam current Îb in the present case is equal to the contactor ion current Îi:
contactor electron current is assumed to vanish instantaneously (see section 2.2.1).
The spacecraft charges positively and its potential increases proportionally with
time. Time evolution of spacecraft potential can be seen in figure 3.14.
Contactor electrons are attracted to the spacecraft, and their escape is prevented
by the higher attraction force exerted by the satellite.
Contactor ions continue their expansion, reaching, in this regime, distances in which
electrons are absent (fig. 3.15).
Finally, the shell method applied to the beam emission regime shows results that
are in good agreement with the base model.
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3 – Shell model for expansion of contactor plasma
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Figure 3.14: Time evolution of spacecraft potential during the beam emission: elec-
tron beam is fired at τc = 1500 until τb = τc + 50000.
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Figure 3.15: Density distribution in space at τ = 11500.
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3.7 – Shell method for beam emission regime
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Figure 3.16: Potential spatial distribution at the end of the transient τb.
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Chapter 4

Semi-analytical model for
expansion of contactor plasma

In the current chapter a semi-analytical model under development is introduced.
The model expects to be an alternative tool to the shell method to simulate the
expansion of a plasma emitted by a source.

4.1 Basic assumptions
The fundamental idea behind the development of the semi-analytical model is the
decoupling of electron and ion dynamics, since they are characterized by significantly
different time scales.

The model equations are referred to a one dimensional radial problem: electrons
are assumed to be continuously fired from a spherical source (the spacecraft) with
a constant radial velocity v0e. Electron current Ie is constant as well. The source
emits also ions with a velocity v0i; their dynamics is described with the shell ap-
proximation. No background magnetic field is considered.

Electron and ion characteristic time scales are proportional to the inverse of electron
and ion frequency, so they differ by a factor equivalent to the square root of the mass
ratio me/mi and thus ion motion is the slower process.
On that basis, in the simplified model, the expansion can be partitioned into two
phases: in the first, ions are assumed to be static, while electrons reach an equilib-
rium condition quickly; the second stage is the expansion of ions in vacuum [32].
This phenomenon is influenced by the electric charge distribution developed in the
former phase.
The transient proceeds by a time step dt, after which new particles are ejected and
the two-step procedure is repeated.
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4 – Semi-analytical model for expansion of contactor plasma

The numerical method to solve the ion equation of motion takes into account at
each iteration a new steady-state distribution of electrons.
The wide separation of time scales improves the computational performances, as the
adequate time step to reproduce the expansion accounts for the slower phenomenon
only [33].
The suitable time step to follow ion motion is bigger than the time step used in
shell simulations, that treat both species dynamics. This advantage is reflected in a
reduction of computational time required to reproduce the whole transient.

The potential energy U(r) is considered zero at the emission point r = Rsc. This
is possible because the potential is defined up to a constant. In this case, the total
energy is the electron kinetic energy Ôtot = mev

2
0e/2.

For any sequence of electron equilibrium configurations, no quantity depends on
time.
If the initial kinetic energy of electrons is sufficiently high to overcome the maximum
potential energy, electrons escape indefinitely far away from the spacecraft. In this
situation, electron dynamics is not treated; the only effect is on the charge that is
carried at infinite distance, which is subtracted by the spacecraft.
Electrons are trapped if at any point of the domain, the potential energy1 equals
the total energy:

mev(r)2

2 + U(r) = Ôtot (4.1a)

v(r) =
ó

2
me

(Ôtot − U(r)) (4.1b)

Each particle stops reaching a maximum distance rmax when Ôtot = U(rmax), and it
comes back toward the spacecraft.

4.2 Model equations
For the case in which electrons are trapped, a set of equations is arranged.
It is assumed that the source has a net charge Qsc. With the exception of the elec-
tron current at injection Ie and the physical constants, all the variables appearing
in the following equations are a function of the radial coordinate. For simplicity’s
sake, in equations’ writing, the dependence on r is omitted.

1Potential energy value U(r) derives from both electron and ion contributions.
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4.2 – Model equations

The fundamental equations of the model are obtained starting from the simplifi-
cations made in section 4.1, applied to the Poisson equation in spherical coordinates
[34].

1
r2

d
dr

A
r2 dφ

dr

B
= − ρ

ε0
(4.2)

The total charge density ρ is the sum of electron and ion density. The equation
is rewritten substituting the potential energy U = −eφ to the potential.

1
r2

d
dr

A
r2 dU

dr

B
= e

ρe + ρi
ε0

(4.3)

Electron and ion densities are evaluated knowing injection electron current2 and
ion cumulative charge in space Qi

3 respectively .

ρe = 2Ie
4πr2v

(4.4a)

ρi = dQi

dr
1

4πr2 (4.4b)

The ODE obtained from the Poisson equation with its boundary conditions fol-
lows: 

d
dr

A
r2 dU(r)

dr

B
= e

4πε0

A
−2Ie
v

+ e
dQi

dr

B

U(Rsc) = 0

dU
dr

-----
r=Rsc

= −edφ
dr

-----
r=Rsc

= e

4πε0

Qsc

R2

(4.5)

Equation 4.5 is valid in the range [Rsc; rmax]. The maximum radius reached by elec-
trons is the point in which the velocity is zero (v ∈ [0; v0e]).
To reduce the ODE of second order into two ODEs of first order, we introduce a

2The corrective factor two is needed since there are a flux of electrons shot from the source and
electrons that move back toward it.

3Qi(r) =
Ú r

Rsc

ρi(rÍ)4πrÍ2drÍ
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4 – Semi-analytical model for expansion of contactor plasma

new variable Ψ:

Ψ = r2 dU
dr (4.6)

The system of ODEs is defined below.

dU
dr = 1

r2 Ψ

U(Rsc) = 0

dΨ
dr

= e

4πε0

A
−2Ie
v

+ dQi

dr

B

Ψ(Rsc) = e

4πε0
Qsc

(4.7)

The maximum distance rmax reached by electrons prior to the return toward the
spacecraft is not known. To overcome this difficulty, the domain is changed and the
problem is inverted:

U(r) → r(U)
Potential energy varies from zero to the total energy value U ∈ [0; Ôtot].
Inverting the differential system 4.7, expressions for derivatives of r and Ψ with
respect to U have to be found.

d
dU = dΨ

dr · dr
dU = r2

Ψ
e

4πε0

A
−2Ie
v

+ dQi

dr

B
(4.8a)

dΨ
dU = dΨ

dr · dr
dU = r2

Ψ
e

4πε0

A
−2Ie
v

+ dQi

dr

B
(4.8b)

On the other hands, the system (4.7) has a singularity: the electron velocity

v =
ó

2
me

(Ôtot − U) approaches to zero when U → Ôtot. We rewrite the equation:

− v
d

dU (Ψ) = r2

Ψ
e

4πε0

A
2Ie − v

dQi

dr

B
(4.9)

− d
dU

ó 2
m

(Ôtot − U)) · Ψ
 = r2

Ψ

A
2Ie − v

dQi

dr

B
(4.10)
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4.2 – Model equations

We define a new quantity p such that:

− d
dU

ó 2
m

(Ôtot − U))
 = d

dp (4.11)

Integrating the expression (4.11), it is noticeable that the quantity p is the momen-
tum mev.
Finally, the radial coordinate r and the quantity Ψ are function of p ∈ [0;mev0e].

dr
dp = − p

m

r2

Ψ

r(p0) = R

dΨ
dp = r2

Ψ
e

4πε0

A
2Ie − p

m

dQi

dr

B

Ψ(p0) = e

4πε0
Qsc

(4.12)

The resolution of the system 4.12 provides the position for both electrons and ions
within rmax, and the quantity Ψ, equivalent to the electric field flux ΦE, multiplied
by a constant.

Ψ = r2 dU
dr = er2E (4.13a)

ΦE = 4πE = Q

ε0
(4.13b)

Ψ = e

4πΦE (4.13c)

Q is the cumulative charge at r.
Since Ψ allows quantitative knowledge of the electric field, the total charge at each
position r is known as well. In order to solve the ion equation of motion, the electric
field is interpolated on ion coordinates ri.
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4 – Semi-analytical model for expansion of contactor plasma

4.2.1 Numerical example
We provide a numerical example of the described model. The simulation reproduces
the expansion of a helium plasma emitted by a charged space probe, during the phase
in which electrons are trapped. The spacecraft charge Q0 at the first time instant is
greater than zero; this charge can be regarded as the positive charge arisen on the
spacecraft when a neutral satellite emits electrons and ions with a current Ie > Ii:
at early stage, faster electrons have a kinetic energy higher than the potential and
escape. After that negative particles leave the spacecraft, its charge increases; the
potential rises as well, and electrons are trapped when mev

2
0e/2 ≤ |U(r)|.

Normalized input data are shown in table 4.1.

Quantity Value
v̂0e 0.5
v̂0i 0.05
Îe 1
Îi 0.5
Q̂0 800
τc 1500
dτm 5

Table 4.1: Input data of numerical example

The results of the semi-analytical model and shell method have been compared.
In the shell model, since both species dynamics are followed, the chosen time step is
one hundred times smaller than dτm. During the transient, electrons surround the
spacecraft and some of them are absorbed, decreasing the satellite charge (figure
4.1); ions are repulsed from the positively charged spacecraft and expand ahead of
electrons.
In figures 4.2 and 4.3, profiles of quantities as density and potential at the end of
transient exhibit a very good accord with the shell model.

It clearly appears that the separation of electron and ion time scales, consider-
ing electrons in a sequence of equilibrium states, might be a valuable approximation
to describe the physics of the plasma expansion.
Furthermore, this model allows to use a bigger time step, reducing the computa-
tional time needed for the numerical simulations. In the present example, the time
spent to run the code is reduced of about two orders of magnitude with respect to
shell code. This advantage is a strength of the model, that can replace shell method
to simulate longer transients.
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4.2 – Model equations

The obtain results suggest that wider applications of the model can be advanced.
Further developments of this theory may be the subject of a future work.
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Figure 4.1: Charge accumulated on the spacecraft in time.
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Figure 4.2: Potential distribution in space at the end of expansion τc = 1500.
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Figure 4.3: Ion density profile in space at the end of expansion τc = 1500.
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Chapter 5

Conclusions

In the present work, the plasma contactor technology has been examined as a miti-
gation configuration for a spacecraft equipped with an electron gun.
In the first place, plasma contactor expansion has been modeled using the numerical
shell method.
The shell model has been tested under a set of different input values, in order to
determine the effect on its outputs and to evaluate its accuracy behavior. In addi-
tion, the obtained quantities of interest have been compared to CPIC simulations,
showing convergent trends. After the validation of the shell method, the model has
been employed to predict the system behavior under new experimental conditions,
deriving a scaling law for the spacecraft potential.

The study conducted with this numerical approach, is accompanied by the anal-
ysis of an additional semi-analytical model, currently under development.
Since a long-lasting contactor expansion prior to the beam emission will reduce the
magnitude of the transitory, one of the main interest in the contactor expansion
study is investigating the responses of the system to longer transients. Faster sim-
ulation tools are required, and the semi-analytical model appears to be promising
for this purpose.
A further step in this research field might be removing some of the simplyfing as-
sumptions that have been made. One example is the study of the phenomenon
considering the contribution of a background plasma. Furthermore, we can neglect
the assumption on the spherical symmetry at the ejection point: in practice the
emission of the plasma occurs on a limited area of the spacecraft. A potential
comparison between cases ruled by different hypotheses is helpful to judge wheter
approximated solutions can fairly describe an injection profile and be used in real
applications.
Finally, the model can be examined in contrast to results of ongoing experiments
testing ion emission technique, to ultimately confirm its range of validity and appli-
cability.
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