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Abstract 
 
This thesis represents the synthesis of almost two years of collaboration within the 

CubeSat team at the Polytechnic University of Turin, and its scope is to illustrate the 

development of a user-friendly, multi-functional simulator for small satellites. 

This simulator, called by the proprietary name of StarSim v2.0, will have to perform at 

least three different kind of in-the-loop simulation: Algorithm-in-the-loop, Software-in-

the-loop and Hardware-in-the-loop, and each of these has to be consistent with the 

previous ones. 

In the first chapter, a general introduction to System Engineering is provided, completed 

with the necessary knowledge to Model-Based Design and Validation techniques, upon 

which all the rest of this work is based. 

Chapter 2 shows in details the completed product, completed with user experience 

description, basic source code explanation and graphic diagrams to explain the general 

architecture of the Software for the three different operative modes. 

In Chapter 3 the standard library in detailed: this library of algorithmical models have 

been developed in parallel to StarSim and provides all the basic models to perform a 

standard simulation, such as the orbit propagator, the sun vector computer, the solar 

panel, the battery models and so on. 

Chapter 4 is devoted to the case study, a comprehensive dynamic modeling and 

simulation of the electric power system of an orbiting CubeSat, from the Algorithms to 

the actual hardware, which fulfills the aim of validating all the previous work. 
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Chapter 1 

1 System Engineering and Simulation Technologies 

 

1.1) System Engineering for Aerospace professionals 

A system is a more or less articulated set of elements, created to the purpose of obtaining 

a specific goal. 

Complexity of a system arises from its structural relationships and the dynamics of its 

component entities, and it’s not fully determined by its size alone. 

A system consists in components or block which, considered in their mutual interaction, 

run towards a shared target. 

 

Main feature of a system is the fact that block and components, through this interaction, 

are meaningful only if considered as integral part of the system and may miss the target 

or loose significance if taken singularly. 

The definition of system engineering, as given by the International Council of System 

Engineering (INCOSE) is: 

 

“Systems Engineering is an interdisciplinary approach and means to enable the realization 

of successful systems. It focuses on defining customer needs and required functionality 

early in the development cycle, documenting requirements, then proceeding with design 

synthesis and system validation while considering the complete problem” 

 

System engineering is concerned with: 

1) Definition and documentation of system requirements in the early feasibility 

study. 

2) Development phase in which the project begins taking its own shape 

3) Testing of the completed system 
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System engineering comes into account along the entire project development process, 

starting from the first creative idea and going thorough design, assembly, verification and 

validation, encompassing both technical and economical aspects. 

It is important to define also the systems-of-systems (SoS), aggregates of heterogeneous 

systems coordinated and interacting among themselves called subsystems. 

The overall system thus will be a set of subsystems, developed in order to obtain one or 

more goals. 

 

The definition of system engineering encompasses the mutual dependencies and 

dynamics among the different components of a system; within system engineering some 

conventional terms play a major role due to their current widespread use, such as 

System, element, subsystem, assembly, subassembly, component, part. 

These terms intensify the overall complexity of the system in a more and more detailed 

way, going from the general to the specific. 

System engineering as a topic doesn’t come yet with a single modeling language and has 

to free itself completely from the specific technical subjects that constitute the system: its 

main concept, as well as its most challenging task, consists in addressing all the blocks and 

components towards the shared goal, aggregating them in a coherent and logical way. 

This target is reached by taking advantage of a common pool of tools and operations both 

is the stage of requirements analysis and in the stage of project development, such as 

design, development, verification, testing, validation, integration, documentation, risk 

analysis and possible future evolution. 

In the field of Aerospace Engineering, a major source of information and standardization 

has been coming insofar from ESA’s ECSS E-10 family, a comprehensive set of documents 

encompassing every possible aspect of System Engineering to be used at system level in 

ESA projects. 

They include: 

 

 ECSS E-10 Standards  

 ECSS E-10 Handbooks  

 ECSS E-10 Technical Memoranda  

 ISO Norms  
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 ESSB Handbooks  

 

These standards shall be used (possibly after tailoring) to complement a project’s own 

specific requirements documents, which traditionally include:  

 Mission or System Requirements Document (MRD/SRD )  

 Tasks description  

 Documents for Interfaces (with Launcher Authority, Payload, etc.)  

 Specific documents (Environment definition, Regulations, etc.)  

 
This impressive amount of documents provides a general description and guidelines on 

system engineering tasks in the field of Aerospace Engineering, as well as partitioning 

them per project phases: it defines what should be available from system viewpoint at 

the end of each phase. 

The outline of project development phases is described by the following table: 

 

 

Project phases 

Phase A Phase B Phase C Phase D Phase E 
Mission analysis 

• Development of 

system concept 
and configuration 
alternatives 

• Analysis of these 

concepts and 
configurations, 
"system-trade-
offs" 

• Development of 

standardized 
documentation for 
the selected 
variant 

System design 
refinement and 
design verification 

• Development 

and 
verification of 
system and 
equipment 
specifications 

• Functional 

algorithm design 
and performance 
verification 

• Design support 

regarding 
interfaces 
and budgets 

Subcontracting of 
component 
manufacturing 

• Detailed design 

of 
components and 
system layout 

• EGSE 

development 
and test 

• On-board 

software 
development and 
verification 

• Development and 

validation of test 
procedures 

• Unit and 

subsystem tests 

Software 
verification 

• System 

integration 
and tests 

• Validation 

regarding 
operational and 
functional 
performance 

• Development 
and 
verification of 
flight 
procedures 

Ground segment 
validation 

• Operator training 

• Launch 

• In-orbit 

commissioning 

• Payload 

calibration 

• performance 

evaluation 

• Prime contractor 

provides trouble 
shooting support 
for spacecraft 
 

Picture 1-1 : Project phases 
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1.1.1) Model based system engineering 

 

It can be noticed from the previous paragraphs how the traditional approach to System 

Engineering is strongly document-based, and this began to cause an increasing number 

of concerns to involved professionals. 

In facts, its main challenge consists in creating unequivocal and formally correct 

specification documents, in which every relevant information to all the stakeholders 

participating in the projects are to be presented in a manner promoting synchronization 

and compatibility among all the different disciplines. 

Until recently there wasn’t a single tool commonly used to support these writing 

processes, and problems began to arise as System Engineers had to interface with 

Software Engineers. 

Interaction between system- and software engineering plays indeed an important role in 

making sure that system requirements will be translated correctly in the correspondent 

software application. 

The Model Based System Engineering concept was born in this context, in order to avoid 

unnecessary duplication of information and parallel development between System- and 

Software teams. 

In fact, System- and Software Engineers work at different abstraction levels and with 

different points of view: while System Engineering is concerned with the definition of 

what has to be created, the purpose of Software Engineering is to define how that goal 

is achieved. 

Both activities can work through models, which are anyway of a consistently different 

kind: in System Engineering the model is an abstraction of the real system, while the 

software developer thinks of the model as a good decomposition of the real system; 

possible discrepancies have to be taken care of in the verification phase. 

Conventional solutions for System Engineering are mostly based on drawing tools and 

databases, often correlated with some Excel sheet or similar frontend software. 

These solutions however do not specify a standard process or a set of convections, so 

it’s possible that every team is using its own different modeling language or its own 

tools, besides implementing different overall philosophies. 
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Model-based solutions have already been common practice among professional 

software businesses, and are enjoying an increasing popularity also among System 

engineers. 

These solutions offer new concepts for the analysis and development of critical systems 

in the Space engineering industry: they build heavily on block diagrams and state 

machines, are formally well-defined and provide a strong and unambiguous tool to 

describe univocally the behavior of the intended object.  

The two major frameworks for MBSE that are presented in the following sections, UML 

and SysML, fulfill the main goal of a more efficient and effective system engineering by 

moving from a document-centric to model-centric approach making use of the 

capabilities that modern computer can offer. 

 

1.1.2) UML & SysML 

 

Unified modeling language has been the first standard graphic language developed by the 

Object Management Group with the purpose of univocally define the prospective 

behavior of a software. 

Given its generalist nature, it makes use of graphical notations in order to create abstract 

models starting from complete systems or partial subsystems: this allows for easy 

specification, visualization, development and documentation of particular software. 

UML consists of two distinct levels, Model and Diagram, and features a modular 

structure, so that it is possible to work with just one part of the language without losing 

accuracy in the system modeling process. 

The model level is concerned with the complete description of the system, while the 

diagram level consists of various portions, each analyzing only one specific aspect: 
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Picture 1-2: structure of modeling languages 

 

In April 2006, its successor SysML (Sysem Modeling Language) has been accepted as 

standard, even though actually this standardization process has prolonged by almost one 

year until OMG published version 1.0 in September 2007. 

SYSML is a graphical modeling language, extending the capabilities of UML to the main 

purpose of allowing the description, analysis and verification of more complex systems 

under multiple points of view such as hardware and software as well as database 

management, human resources management and other business-related considerations. 

In the framework of SysML it is possible to re-use many diagrams already present in UML; 

some other are being renamed and extended, and only two are totally brand new: the 

requirement diagram and the parametric diagram. 

SysML also consists of two levels: the Model level and the diagram level; 

With respect to UML, the framework has been sub-divided into three sections: Structural, 

Behavioral and Generic. 

SysML is based on four main pillars: 

 

1. Structure: System hierarchies, Interconnections (block diagram, internal block 

diagram) 

2. Behavior: Function-Based Behaviors, State-Based Behaviors (use case, interaction, 

activity, state diagrams) 

3. Requirements: Requirements Hierarchies, Traceability 

4. Proprieties: Parametric Models, Time Variable Attributes 
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Picture 1-3: block structure of s SysML diagram 

 

1.1.3) Benefits of MBSE 

 

MBSE offers several advantages over its traditional document-centered competitor: 

 

 Improved communications, as it is quicker and easier to share information in the 

form of graphical diagrams, independently of the tool and methodology of the 

specific field. 

 

 Assists in managing complex system development: complex systems can be 

represented efficiently in SysML in a compact and standardized way, whereas this 

would require potentially hundreds of pages in verbose, document-based form. 

 

 Separation of concerns: each specialist can model its own system independently 

and the diagrams can be simply integrated at the end, reducing the need for cross-

subject text revisions. 

 

 Hierarchical modeling: subsystems can inherit all the properties and method of 

their parent class and extend them with their own particularities; this translates 
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into one of the core strengths of Object Oriented Programming, which has been 

widely taken advantage of during the writing of StarSim v.02. 

 

 Supports incremental development & evolutionary acquisition: standard diagrams 

are easier to extend in time and the result will be much cleaner with respect to 

the same output in verbose form. 

 

 Improved design quality, because it forces the developers to complete all the nine 

required diagrams, thus thinking extensively about any possibility that they could 

have missed or anything that could be improved. 

 

 Reduced errors and ambiguity, since the diagrams are standard. 

 

 More complete representation, since every possible aspect of the system has 

been taken into account and standardized, so that nothing can be forgotten or 

omitted. 

 

 Early and on-going verification & validation to reduce risk: this is probably the 

most significant strength of MBSD with respect to the scope of this work, as it 

allows the simulation to start before the system is actually assembled or even 

before it is completely defined. 

 

 Enhanced knowledge capture, as information provided in graphic form as usually 

easier to retain and the process of drawing the required number of diagram forces 

the developers to grab a good overall understanding of the system in object. 

 

 

1.2) Theory of simulation 

The concept of simulation theory represents the first step towards the realization of the 

goal to perform a system simulation for a small satellite. Authors such as Law, Kelton and 

Zeigler provide in their books Simulation Modeling and Analysis [Law & Kelton '00] and 

Theory of Modeling and Simulation [Zeigler '76] a detailed insight into the theory of 
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simulation and a guide with practical approaches and techniques for creating simulation 

models. The following paragraphs are intended to give a rough overview of the state-of-

art of this subject as needed for understanding the rest of this work. 

The term simulation generally refers to imitating the behavior of a system or process to 

the purpose of analyzing such systems that are too complex for analytical or formal 

treatment. 

Especially when dynamic systems are involved, simulation becomes a very helpful tool on 

the way to system analysis. 

Specifically, simulation means performing experiments on a model in order to gain insight 

over the real-world object; in the context of simulation the system is said to be 

implemented through the realization of one or more algorithmic models, that involve an 

abstraction of the original system to be analyzed focusing on its structure, function ad 

behavior. 

The first step therefore consist in finding a suitable existing model or creating  a new one, 

which takes as input a certain number of parameters to feed to the constitutive 

equations. 

After that, running a simulation with concrete values is what we previously mentioned as 

the simulation experiment; the result will be subsequently interpreted and transferred 

back to the real system. 

By varying the input parameters of the simulation with regard to the actual situation or 

alternatively a desired target one and observing how the outputs change accordingly, it is 

possible to formulate conclusions and behavioral laws about the real system. 

Needless to say, nowadays simulations are almost exclusively computer based, even if 

theoretically it is also possible to run this process by hand, e.g. for educational purposes. 

To carry out a scientific study of the system involved, assumption about the real behavior 

are required to be built into the model, and these assumptions usually take the form of 

mathematical or logical relationships. 

If the model relationships are simple enough, it may be the case that a mathematical or 

theoretical model is able to describe them completely with an analytical solution; most 

systems in the real world however are way too complex for analytical solutions and 

require numerical methods. 
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In this case great importance must be posed onto correct modeling, because faulty or 

inadequate model relationships can quickly lead to  out-of-control errors. 

 

As seen before,  a system is a set of objects, not necessarily of the same type, that 

interact with each other in a logical context. 

The models are written in such a way to provide answers to the particular questions that 

are being investigated; the status of a system is defined as the set of models parameters 

that are necessary to determine the answers to the specific research goal at any given 

time 

 

1.2.1) Type of simulations 

 

Systems can be generically divided into two groups: discrete and continuous. 

In a discrete system the parameters change only at specific time intervals, whereas 

continuous systems have parameters that evolve continuously during time; actually, only 

a few systems are simply fully discrete or fully continuous. 

In a continuous simulation the state parameters of the models change their value 

smoothly as the time goes by, and relationships for such models are generally in the form 

of simple differential equations for which an analytical solution is usually not possible. 

We have therefore to recur to numerical methods and make sure that a consistent initial 

value is provided in order to solve these equations. 

Conversely, in a simulation with discrete time advancement the parameters are 

coordinated to change their value at specific time steps, which must be defined within the 

models themselves. 

At these points can also other kind of event be called into action,  which can change again 

the system status or bring about some specific action; this way each step changes the 

current status of the simulation or at least influences its future behavior. 

Many models need to combine continuous and discrete relationships, with help of a so-

called combined simulation; such a case is increasingly common and three different types 

of interaction can be defined between continuous and discrete parameters: 
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1) A discrete time step can cause a discrete change of an otherwise continuous 

parameter 

 

2) A discrete time step can cause a continuous state parameter to change at a 

specific time point. 

 

 

3) When continuous parameters reaches its physical limit can trigger a discrete event 

e.g. being reset for a future time point. 

This is frequently the case in StarSim for parameters than need to be contained 

within determined boundaries (e.g. the charge level of  a battery cannot drop 

below zero and cannot exceed the maximum capacity value); when such 

parameters hit their boundary, a exception-handling routine is called to take 

appropriate action and make sure the simulation does not loose physical meaning. 

 

The dynamic nature of a discrete simulation requires the step-by-step advancement of 

time during its course; to this purpose a model is required, that increments the simulation 

time within itself and makes it available to the other models. 

Complex models have been developed to find the optimal time-advancement step, but 

since StarSim need to synchronize many different models each with its own numerical 

solver hard-coded, a simpler fixed-step advancing mechanism has been preferred. 

Generally speaking there is no relation between  the simulated time within a model and 

the (actual) time that the computer requires to run the simulation; for a basic simulation 

is therefore unimportant how fast the simulated time is advancing. 

Only when the model need to interact with an eternal object with real-time 

requirements, such as an on-board processor or even only a piece of real-time software, 

then simulated time must be correspond to real time. 

Such software-in-the-loop or hardware-in-the-loop simulations require a strict 

synchronization mechanism among all the object taking part in the simulation and 

represent a major technical challenge. 
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1.2.2) Model based testing and validation  

 

Since the beginning of the golden era of MBSE in the early ‘00s,  the traditional space 

system industry has seen a wide assortment of elaborate and thus costly models being 

developed so far; in fact any discipline such as attitude control, thermal or structural 

design, requires its own specialized models to explore functional issues in the design and 

experimentation of the actual space conditions. 

The final verification of the whole design system will eventually take place on a full-scale 

mockup satellite model. 

Renowed satellite manufacturers have been using these technological frameworks for 

several years, already from the early stage mission development and design in order to 

ensure the greatest possible success probability. 

 

It is indeed at the phase of testing and validation that MBSE unleashes its full potential: 

the particular use of MBSE to this specific purpose is known as the Model Based 

Development and Verification technique, and consistently with the already seen general 

advantages offers a systematic and standardized development and verification 

framework in the frame of a comprehensive, multi-system satellite simulator. 

This allows the user to see the satellite components modeled and verified on a functional 

level (with no need for the physical object), so that complex and cost-intensive 

development of individual subsystems and key-technologies are drastically reduced. 

Especially for low-budget & small satellites this technological environment brings about a 

significant breakthrough while simultaneously increasing the efficiency of the overall 

system design. 

The test and simulation principles used in this environment can be divided in two main 

groups: firstly, the purely functional simulation, in which each component is represented 

by one or more scripts in the target programming languages. 

Secondly, the more detailed simulation, taking into account the real behavior of the 

project-specific hardware and software i.e. including them in the simulation cycle. 

For the present work, these two groups share the fact that they are only supposed to 

implement and simulate individual systems, while a complete satellite simulation remains 
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beyond scope as, besides probably exceeding computational resources, will come with an 

unacceptable degree of uncertainty. 

In simpler simulations like the one here described it is indeed possible to integrate 

satellite hardware and software into the simulation cycle, but only if the on-board 

processor is used with the real on-board software the results will be consistent and the 

test setup will provide advance verification capabilities. 

This testing potential is not fully exhausted in small satellite projects since the simulation 

setup is limited to individual subsystems; the system-wide point of view of a spacecraft, 

as far as simulation and testing are concerned, has anyway been proven to increase the 

reliability of the system as a whole. 

This is usually the case of small satellite projects, mainly due to financial reasons and time 

constrains that limit the verification of requisites that had previously been detailed by 

looking at the spacecraft as an overall system. 

The scope of this work consisted in the development and verification of an innovative 

spacecraft system simulator which has been called StarSim v.02 to enhance both the 

legacy and the differences with respect to the previous version (v.01), from which it 

differs both in programming languages, capabilities and design pattern. 

The use of freely available open source software eliminates the needs for costly licenses; 

actually since of the major aims of model based verification and validation is cost 

reduction, especially for small sized projects, the application exclusively of open source 

software is a prominent strength of this work. 

 

The concrete results in the subject of system simulation for the CubeSat project can be 

divided into two areas: firstly, StarSim supports and enables  the verification of 

potentially the entire satellite under real-time condition. 

This is relevant mainly for the development of on-board control algorithms, attitude 

determination and control algorithms and testing the transition between operating 

modes. 

The second great advantage comes from the software and hardware verification tool 

itself: starting with a purely algorithmically simulation, it is possible to integrate 

progressively all the software (first) and the hardware (later) relative to one or more 

desired subsystems, verifying correct behavior at each step. 
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1.2.3)  Model Based development and verification 

 

In space flight engineering there are many systems to be tested fully before the take-off 

of the rocket vector; after take-off is a correction usually not possible anymore and so 

every possible fault must be unquestionably identified in advanced and taken appropriate 

care of. 

Traditionally all the system models of the satellite were eventually implemented in 

hardware to run tests about their functional, electrical or thermal behavior; these models 

where realized taking care to correspond in the greatest possible measure to the 

condition in which they would be operational in outer space. 

This, before the advent of MBDV, has been for a long time the only way to test the 

spacecraft components; this implies that to run parallel simulation on multiple systems 

different models had to be built. 

Assembly, verification and validation play a great role in the budget allocation for a 

spacecraft development project, and moreover the overall feasibility of the project is 

limited by the available testing technologies. 

In the latest space exploration projects, this method has become financially almost 

unbearable, besides having just as likely hit its technological limits. 

 

In more contemporary times it has become common practice for spacecraft producers to 

integrate model based computer-run simulations in their verification processes; this has 

approach has been preferred for the great cost-reduction that comes with, while being 

made possible by the continuously increasing processor computational capabilities. 

The definitive functionality of on board system is still tested on ready-to-fly models, but 

this new simulation approach can almost completely replace physical models in all the 

previous phases of the design process. 

In the earliest project phases, each subsystem is separately developed and simulated; as 

the project moves forward, functional integration of all the different systems brings two 

major concerns: the physical and communicative interaction between such subsystems. 
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Both aspects cannot be tested effectively in the independent simulation that were run in 

the previous phases of the process, but now is possible to research these issues with the 

help of simple, cost-effective simulated models. 

This provides manufacturers with a second, even greater, advantage in terms of time and 

money: they don’t have to wait until the real hardware is ready to test the overall 

functionality of the system; software models can be written starting from the datasheet 

of the producers and according to their own interest. 

 

Model based validation and verification provides a substantial advantage when it comes 

to test the functionality of a system: its simulator infrastructure allows the creation of 

models independently from the project phase, and these models will be progressively 

integrated with on-board software and hardware when they will become available. 

Furthermore, elements of previous simulation can be re-used and adapted to present 

needs, greatly reducing both project costs and risks. 

The whole design and verification process can be reassumed in the well-known V-shape, 

here shown in the version of J. Eickhoff from his milestone work Simulating Spacecraft 

Systems 

 

 

Picture 1-4: standard V-model for system engineering 

 

The whole V-model, high lightened in blue in the picture above, actually breaks down in a 

series of interlinked V-steps: firstly the integrated control algorithms must be developed 

and tested, then they are implemented in actual On-Board Software, again to be 

developed, optimized and tested. 
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Finally, specific hardware (OBHW / OBC) has to be design and verified in order to 

accommodate the software. 

As it can be seen in the picture, completing one of these verification steps marks the 

beginning of the verification of the next one. 

 

Practically speaking, the process in divided into four phases: 

 

1. The first step concerns the control algorithms: they are not yet implemented in 

the target programming language, neither on targeted hardware, but simply run 

from within the simulator to check their accuracy. This type of test is called 

Algorithm in the Loop (AIL). 

 

2. Secondly, the algorithms are coded in software in the target language. The now 

available control software is completed with its environment and software 

communication lines to be fully operational. This type of tests is called Software in 

the Loop (SIL). 

 

 

3. The third step is to load the control software onto a representative target 

computer. The final software on the target computer now has simulated system 

physics. This principle is called Controller in the Loop (CIL).  

 

4. The fourth and final step of system testing now aims to make the control software 

on the target hardware now control the real system, and no longer the test 

stand's system simulation. This deployment phase is called Hardware in the Loop 

(HIL) 

 

A strong tendency to shift entirely toward MBDV “in-the-loop-simulations” is settling in 

among professionals due to the following advantages: 

 

1. It allows dynamic, detailed modeling with the purpose of investigating the overall 

functionality of the component. 
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2. Simulations can be run even in the early project phases, before on-board software 

or hardware is available; sometimes even before the system is completely 

defined. 

3. The on-board software can be tested independently from its hardware 

4. Functional procedure encoded in the on-board software can be fully tested and 

understood in a software-in-the-loop simulation; timing  synchronization between 

hardware and software will take place in the next step, hardware-in-the-loop. 

5. The simulator can be used as training tool by prospective systems engineers, and 

to test new potential software even outside the framework of an on-going space 

exploration project. 

6. Development of numerical models is quicker and cheaper than the assembly of 

hardware testing mockups 

7. Software models can be much more easily adapted to changes and undergo 

corrections 

8. Simulators based only on software models can be quickly installed to speed up the 

process, eliminated issues regarding hardware availability and compatibility. 

9. It eliminates completely the needs for shipping and logistics. 

 

1.3) Simulator features 

 

Keeping in mind the aforementioned advantages, the following list of requirements has 

been written for StarSim v.02: 

 

1. Multi-language support: the simulator will be able to work with models written in 

Python in the AIL simulation section; this is a very popular, object-oriented 

programming language very easy to learn, to keep the creation of new models as 

simple as possible. When SIL or HIL simulations are involved, it will work with C 

models, the actual on-board target programming language. 

 

2. Real-time capability: it will be able to perform simulations in a real time 

environment by appropriately synchronizing internal and external time; this is 

particularly important for SIL and HIL simulations. 
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3. No previous experience needed: user input will be limited to the selection of the 

intended models to be simulated and the input of related parameters; no previous 

programming experience is required. 

 

4. Automatic code generation: the actual code performing the simulation will be 

self-generated according to the chosen model list and the chosen parameters; this 

allows for maximum flexibility and efficiency with minimal user input. 

 

5. Optimized, cross-compiling: in the context of SIL simulation, it will be able to 

compile the target simulating program according to a specifying processor unit, 

optimizing it for speed and accuracy. 

 

6. Same functionality among all test phases: passing to one simulation phase to the 

next will be easy and straightforward, as the simulator will behave exactly in the 

same manner and no ambiguity will be allowed. 

 

7. Simple, self-explanatory GUI: the Graphic User Interface will be elegantly 

designed but at the same time sober and minimalistic, concentrating focus on the 

main functionalities and intuitively guiding the user step by step. 
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Chapter 2 

2 Using the simulator 
 

 

2.1) Usage of the simulator 

At the present date, StarSim v.02 consists of about 114 files, for a total of over 2,600 lines 

of code. 

The use of code snippets has been kept to a bare minimum, in order not to create too 

much confusion in the reader; anyway, the full source code of StarSim v.02 is available in 

the StarSim Project directory of the CubeSat Team Dropbox folder. 

No previous experience is required to run a simulation, except of course a sufficient 

understanding of MBSE; again, to enhance simplicity of use, graphic user interface design 

has been kept sober and minimalistic. 

The working low of the simulator will be shown first; then the main algorithm behind it 

will be explained with help of graphic flow diagrams and possibly some code snippet; the 

division of the software into a certain number of programs will be then introduced. 

Picture 2-1 belows shows a simple schematics of the whole simulator infrastructure. 

The Command Consol block is usually hosted on a standard PC and hosts the Graphic User 

Interface as well as other software components to process user’s inputs. 

The simulator block (the one enclosed with a black line on the left) is also hosted on the 

same PC as the Command Consol in this case, but generally speaking it can be made to 

run on a separate workstation if high speed or real time precision is required. 

The yellow blocks represent “well-known” models, whose output is known to be correct 

and are used to provide complementary information to the models to be tested, i.e. the 

red blocks, whose output is not known and needs to be validated. 
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Picture 2-1: simulator schematics 

 

These “red blocks” can be simply algorithmical models in the same programming 

language as the rest of the simulator (AIL simulation) or can be software models in the 

target programming language (SIL simulation). 

Wishing to perform a HIL simulation, the satellite block (on the right) can be added and 

integrated via standard RS232 interface. 

Ground Control System is the block responsible for reading the hardware results of the 

HIL simulation, receiving them on in form of radio-transmitted packages as it would do 

with a real orbiting satellite. 

 

2.2) Main window 

 

The main window of StarSim v.02 is shown in picture below: it consists of three main 

vertical sections, namely the directory navigator on the left side of the page, the text 
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container in the middle and the auxiliary section on the right composed of the Recent 

Activities tab and the Available Models tree. 

To load one a previous simulation setup from the Recent Activities tab, the user can 

simply double click on it: related simulation results will be shown in the main text 

container and all other simulation parameters will be loaded. 

To load another saved simulation not present in the Recent Activities tab, navigate to it in 

the left-side directory navigator and double click on the related .sts file, or click File > 

Open project and select it in the pop-up window. 

To obtain information about a single AIL model, double click on it on the Available Models 

tab: it will show name, category, and full python code in the main text container. 

 

 

Picture 2-2: StarSim main window 

 

 

2.3) AIL simulation 

 

To start a new AIL simulation, click File > New AIL simulation project or the equivalent icon 

on the icon bar. 

This will show the Project window, again divided in three vertical sections:  
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The simulation model tree on the left, already divided by categories, the main model list 

container in the middle and a right section temporarily unused; it can be used, if the user 

wishes so, to display an image associated to the current model (e.g. a workflow diagram). 

The whole simulation setup process is organized in a very linear and straightforward 

manner: the user starts by selecting the algorithmic models he wants to include by double 

clicking on them on the left section. 

The selected model will appear in the central section, the model list, under the column 

“model”. 

To adjust the execution order, Move Up and Move Down buttons are provided; to remove 

a model from the list just double click on it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1)  Setting conditions 

 

In order to enhance the flexibility of the simulation, the user has the possibility to set 

some condition on particular models to determine in which case they should be executed 

Picture 2-3: StarSim project window 
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(normally a model is executed at every iteration): after selecting the model from the main 

model list, click the  

Set Condition button to open the related window. 

 

 

 

 

 

 

 

 

 

 

 

The list of possible conditions to impose (“Action to perform”) is pretty much self-

explanatory: it allows for condition-based loops, permanent activation or deactivation of 

a model after a specific condition has been met or conditional execution of a model 

(where the condition is checked at every iteration). 

In the bottom text field the user can enter his condition using standard symbols <, >, ==, 

=! (different from), >=, <=; to enter the name of a parameter to perform the condition on, 

he is required not to write it directly but select it from the table above, which has been 

automatically assembled by parsing all the free parameters from all the already selected 

models. 

That is because when the simulation file will be created, all free parameters and variable 

will be initialized in a single common class, called “var”.  

Picture 2-4: setting condition ona certain model 
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This allows for simplicity and flexibility in source code, as every AIL model can simply call 

class var to access any possible variable of the simulation, even if pertinent to other 

model (otherwise we will need a complex setup of “import” statements, making for a 

heavier and less readable code). 

Disadvantage to this strategy is that, according to Python rules, to call a variable for class 

var from outside the class, it needs to have “var.” prefixed to it. (e.g. variable time 

becomes var.time). 

 

So by clicking on an entry named time in the variables list, it will actually insert var.time in 

the text field (if the user is just a bit more expert, he can directly write var.time himself). 

 

2.3.2)  Simulation setup 

 

As the user proceeds in his choice of models, the auxiliary column on the right side of the 

screen provides information about the model input, output and general behavior: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Picture 2-5: sample orbit simulator setup 
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In the picture above, a project window is show where the user has selected models 

relative to the spacecraft’s motion; the Sun vector model (i.e the currently selected 

model) is detailed on the right column. 

 

After the model flow has been determined and the necessary conditions imposed, the 

user can start the simulation setup process: click on the Run icon (the green arrow) in the 

icon bar to call the Set Variables window: it will ask the user to provide the start time of 

the simulation (usually 0), the final time and the time step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Below it, all the free parameter from all selected model are presented (automatically 

parsed) and the user is asked to provide a value for them. 

By click next, the Configure output window is called: in this window, the user decides 

which variables he wants to see as output in the main text container of the main window 

at the end of the simulation, and which parameter he wants to plot. 

Each of the selected variables will be shown as column vector correlated to the time 

vector (obviously, one value of the variable for each step of the time vector). 

Picture 2-6: Set parameters window 
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By clicking next, the simulation file is automatically created and run; the main window is 

called back on top of everything and results of the selected variables are displayed in its 

main text container. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.3) Plotting 

 

Plotting happens automatically if the user selected the desired parameter to be plotted in 

the configure output window; anyway, he can always decide to add some more 

information to the plot or plotting new results, so a feature is provided to add a new plot 

one the simulation has ended by clicking Tools > Set Plot. 

The Plot window is again very self-explanatory and allows the user to select different start 

/ end values, color and line style for every parameter he wishes to plot; furthermore, it 

allows the user to select custom scales for both axes, choose the autoscale option 

(absolute maximum and minimum values of plotted variables are used as extreme axis 

values) or logarithmic scale. 

Picture 2-7: select desired output  
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The plot is opened in a separate window that allows for custom view sizing, subplot 

configuration and image saving. 

To save these results, select File > Save Project; they will be saved as .sts file and anyway 

added to the Recent Activities tab. 

 

Picture 2-8: plotting window 

 

2.4) SIL Simulation 

The SIL (Software-in-the-loop) simulation is the direct evolution of the AIL simulation: in 

this case, the models to iterate are separate executable files, completely autonomous 

from StartSim itself, written in the real programming language that is supposed to be 

used in the mission (usually C). 

Practically, the simulation aims at reproducing the behavior of the real  source code that 

will be actually used, complete with its environment and communication lines to other 

section of the software. 



36 
 

To start a SIL-simulation, click File > New SIL simulation project; this will immediately call 

the Set Software processes window, in which the user has to select the external files that 

will constitute the simulation loop. 

All entries must be ready-to-run, compiled, executable files; in this instance, we have 

selected only two sample files named Model_1.exe and Model_2.exe. 

 

 

 

 

 

 

 

 

 

Generally these files must be selected in the order in which they are supposed to run, 

even though while defining the communication lines later on it is possible to allow 

exceptions. 

 

2.4.1)    SIL Communication setup 

 

Once the models have been selected, the Set communication lines window pops-up by 

clicking on next. 

This window allows the user to create as 

many communication lines (i.e. pipes) as he 

wants; option are provided to ensure a 

maximal length and decide between Stack 

and Queue model for each pipe (that 

means, FIFO or LIFO behavior). 

 

Once the communication lines have been 

created, the users has to decide how to 

Picture 2-9: select software processes for SIL 
simulation 

Picture 2-10: open new pipe 
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connect them to the various models to setup his intended simulation architecture: this 

work is carried out in the Set communication window, which allows deciding how pipes 

are connected to each models. 

In this software, the C-written executable files that constitute the core of the simulation 

work by command-line argument: each file, representing a particular function to be 

performed in the mission, accepts one or more parameters in form of command line 

arguments and provides one (and only one) output. 

The pipes practically work as lists, memorizing the outputs of a particular file and feeding 

them as command-line argument to another one, in the same order; so for instance if a 

function requires three parameters, all of which are output of previously executed 

functions, the users has to create three communication lines, connect their origin to the 

output of those function and connect their end to the input of the current file in the right 

order, so that each expected command line argument can be provided accordingly. 

The Set communication windows allows the 

user to select the pipe on which the current 

model will write its output (bottom 

section), and to decide which pipes must be 

taken as input: in this example we have 

instructed the model “Model_2.exe”, that 

expects two command-line arguments, to 

take its first one from Pipe_1 and its second 

one from Pipe_2, as well as to write its 

output on Pipe_2. 

This means that Model_2.exe is a recursive 

function, that takes its own output as input. 

 

 

2.4.2)    Initial values 

 

Of course, this whole process cannot work properly at the first iteration, since the pipes 

are still empty and can’t provide inputs. 

Picture 2-11: pipes setup 
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This is why a final window pops-up, the Set Initial command line argument window, in 

which the user is asked to write, relatively to the first iteration, the full string of 

command-line arguments for each model as if it were called as stand-alone file on the 

command prompt. 

This is the equivalent of setting the initial values and boundary condition of the 

simulation. 

 

 

 

 

 

 

 

 

 

 

 

Differently from the AIL simulation, in order to test the efficiency of the software pipes, 

the SIL simulation is intrinsically programmed to run real-time; this means that on 

operating systems supporting this functionality, such as UNIX with custom real-time 

kernel, it will provide exact real time result. 

On different operating systems, it will anyway stop the program for all the time that has 

to be simulated (pseudo real-time), but in this case time values are not to be taken with 

great accuracy due to OS interrupts and operation that the software cannot handle. 

 

2.5) Source code analysis 

 

The “structural core” of the simulator is the file called config.py, which works as a module 

containing all the different objects needed both functional (lists, dictionaries…) and 

structural (windows). 

Here is shown a small snippet of the config file: 

Picture 2-12: setting initial arguments 
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plot_dict = {} 

out_dict = {} 

path_to_open = "" 

plot_selected_value = "" 

frame = None 

pw = None 

svw = None 

 

The first four lines refer to internal variables of the simulator, namely two dictionaries 

holding data about plotting and outputting and two strings, all initialized empty. 

The last three lines refers as windows (frame is the main window, pw is the project 

window and svw is the Set Variable window) and are all initialized to None (non-existent). 

When an object is created or modified, the change in status is performed only on the 

config file; since this package is imported by all the other StarSim files, the modification 

will be immediately shared among all components, allowing for great flexibility for the 

programmer and saving a lot of hassle that we would have otherwise coordinating all the 

modules.   

For instance, when the Set Variable windows need to be called, the process goes like this:  

 

if config.svw is None: 

    # Creates and spawns Set Variable Window 

    config.svw = svw_gui.SetVariablesWindow(config.pw, "set custom variables") 

else: 

    config.svw.Show() 

    config.svw.Raise() 

 

In the third line you can see the calling function assigning an instance of the class 

SetVariableWindow, which is contained in the module svw_gui (extended, it sounds like 

“Graphic user interface of the set variable window”) to the svw object in the imported 

package config. 
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This class requires two arguments to create an instance and those are provided between 

brackets: the name of the parent window (pw stands for Project windows, and it also is an 

object belonging to config) and the name of the newly-created child window. 

All the modules that make up StarSim are divided in just two folders: GUI and Sources. 

The GUI file, which is solely responsible for the graphic user interface, needs to import its 

related source code in order to be actually working:  the two files are distinguished also 

by a name convention, i.e. the main part if the shortened name of the window followed 

either by _gui or _src: svw_gui and svw_src. 

The source file needs to import the GUI file of the next window to be called in order to be 

able to effectively generate it, otherwise trying to create an instance of that class will 

result in an error. 

This snippet, taken from the very beginning of the pw_src file (i.e. the file that manages 

the internal working of the AIL Project Window) gives an idea of all the import statements 

that are necessary in order to successfully connect the various modules: 

 

import wx 

import config 

from GUI import SetVariableWindow as svw_gui 

from GUI import SetConditionWindow as scw_gui 

Here are imported the wx library that allows the creation of GUIs, the config file to ensure 

synchronization with respect to all other modules, and the GUI file of the two windows 

that can be spawned from within the Project window, namely the Set Variable window 

and the Set Condition window. 

Of course, any window has all the necessary functions (in object-oriented programming 

called methods) to read the input from the user, parse it, check it for completeness and 

accuracy, and save it in an appropriate data structure in the config file. 

Once completed this jobs, it carries on by calling the next window with some lines very 

similar to those shown in the second snippet and this process iterates for how many 

windows are necessary. 

When all the windows have been called and all user input has been read, it is the moment 

to perform the actual simulation; the process can be sum up in three steps: 
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1) A module named SimSetup calls its (only) method create_process(): this creates a 

new .py file and write on it the final simulation code; if there are no conditions 

imposed on the models, that code consists simply in a list of import statements 

(one for each model), a line initializing a new method named Process() and a list of 

the names of the models to be called, enclosed in a  for-loop. 

 

2) The SimSetup module closes the file he was writing, which now becomes available 

for further use; it consist of a class called Variables, which contains all the 

variables from all the selected models, and the actual Process() method, that 

works on an instance of the Variables class named var. 

The idea behind this class is that of enabling easy access to any variable from any 

part of the code, independently of the particular model it is originated from; that 

means, given a variable called random_var we can simply access it via 

var.random_var and be sure that this works, otherwise we would have to retrieve 

the model it’s firstly declared in, by parsing again through a list or dictionary, and 

access the variable from its particular parent model, e.g. Sample_4.random_var, 

making for a much more complex code. 

The Process.py is the file that contains the actual (auto-generated) simulation 

code; it’s pretty short and can be wholly shown here, in the event of a simple 

simulation with four sample models and no condition imposed: 

 

from Models import Sample_1_file 

from Models import Sample_2_file 

from Models import Sample_3_file 

from Models import Sample_4_file 

import config 

 

class Variables(): 

   def __init__(self): 

      self.t = 1 

      self.a = 1 

      self.b = 2 



42 
 

      self.d = 3 

      self.e = 4 

      self.g = 5 

      self.h = 6 

      self.l = 7 

      self.m = 8 

      self.n = 0 

      self.c = 0 

      self.f = 0 

      self.i = 0 

 

def Process(): 

   var = Variables() 

   output_list = [] 

   for n in range(0, 13): 

      output_list.append([]) 

   n = 1 

   while var.t <= 12: 

      Sample_1_file.Sample_1(var) 

      Sample_2_file.Sample_2(var) 

      Sample_3_file.Sample_3(var) 

      Sample_4_file.Sample_4(var) 

      output_list[0].append(var.t) 

      for i in range(0, len(config.var_save_list)): 

         output_list[n].append((vars(var))[config.var_save_list[i]]) 

      var.t +=1 

      n +=1 

    

   del var 

   return output_list 
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The Process() methods create an instance of the Variables class, creates a list of 12 

empty elements (12 is the final time selected by the user in this case), and run 12 

iterations of the four sample models, saving their output in pre-defined data 

structures. 

 

3) A module called execute.py calls its two methods in a row: firstly execute_process, 

to actually run the above file, and then display_output to write the results in the 

text section of the main window. 

 

The same whole process runs also for the SIL simulation, with minimal differences. 

The whole action diagram for a StarSim AIL simulation is detailed in the following pages 

(given its length it has been split up in more figures): 
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 Picture 2-13: StarSim complete flow diagram 
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2.5.1) Pre-Processing 

 

The pre-processor fulfils the purpose of providing all information to the user in a human-

friendly manner, allowing for him to choose models and parameters of the simulation, 

translating back his choices into machine code and feed the result to the (self-generated) 

actual process file. 

In order to achieve this scope it consists of the following functional units: 

 

 GUI spawner: spawns the graphic user interface and keeps listening for user 

inputs. 

 

 Model parser: presents all the models available in the folder in form of a 

hierarchical tree to the user, so that he can choose. 

 

 Model lister: after the user has made his choice of models, translates this in form 

of a Python list. 

 

 Parameter parser: for each model in the list, its custom parameter are extracted 

and presented back to the user in the Variables window in order to receive an 

actual value. 

 

 

Note that these are not programs by themselves; these are just functional units for the 

scope of clarification, each consisting of more programs according to Python’s best 

practices. 

 

2.5.1.1) GUI spawner 

 

A certain number of programs are responsible for the correct management of the Graphic 

User Interface and its interactions; this is a very complex part of the design of StarSim and 

it’s not fully reported in this work as it is not strictly related to aerospace engineering; it’s 

listed anyway in appendix B. 
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The generic flow chart that sums up the behavior of the whole GUI is the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the main window is an object (like anything else in python) defined in the 

config file, and thus available to all other files for synchronization purposes. 

The __init__ call invokes python’s initialization method and actually creates the window 

with its defined parameters 

 

2.5.1.2) Model parser 

 

The model parser scans each model present in the Models folder and reads its first line; 

according to StarSim’s models protocol, this first line indicates the category of the model, 

which can be one of the following: 

 

 Sensors 

 Signal Handling 

 Actuators 

Picture 2-14: GUI action diagram 
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 Power Sources 

 Spacecraft motion 

 Environment 

 Control strategies 

 Determination strategies 

 Guidance strategies 

 Time management 

 Conversions 

 Math operation 

 Ground support equipment 

 

The models contained within each category and their inner functioning are detailed in 

chapter 3, The standard library. 

Once that its category has been determined, the model can be added to the model tree; 

here is the flow chart diagram for the model parser: 

 

Picture 2-15: model parser action diagram 
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2.5.1.3) Model lister 

 

Once the GUI has been created and the available model listed up in the model tree, the 

users selects the models he wants to use in its simulation; the model lister program 

comes here into play and makes sure that every selected model is added to the 

model_list array that will be fed to the actual simulation process. 

In particular, if a model is selected more than once (e.g. a solar panel), it must 

automatically add  a serial number to it to avoid confusion; to achieve this scope, a 

repeated_model_dict is created, a dictionary to which a model is immediately added at 

the moment of selection if it’s already in the selected model section of the GUI. 

This dictionary will associate to each selected model the number of it occurrences, and it 

will be useful later on to the parameter parser, that needs to add a serial number to each 

repeated model to avoid confusions. 

Here is the model lister flow diagram: 

 

Picture 2-16: model lister action diagram 
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 2.5.1.4) Parameter parser 

 

Once that the user has chosen its models ant those have been listed into the model_list 

structure by the model_lister, it’s time to choose the actual values of the parameters: 

According to StarSim’s models protocol, each model begins with a commented section 

that, being fully transparent to the Python code, brings important information such as the 

model category, its input and output parameters. 

In particular, this section is organized according to the following scheme (the ‘#’ symbol 

and the triple quote string both represent a commented line or section in Python): 

 

 

# model_category 

’’’ 

CONFIG 

Input_paramater_1 [unit] 

Input_paramater_2 [unit] 

Input_paramater_3 [unit] 

Output 

Output_parameter_1 [unit] 

Output_parameter_3 [unit] 

END_CONFIG 

’’’ 

 

Here is an example from the battery model: 

 

# power_sources 

""" 

CONFIG 

nominal_voltage [V] 

capacity [mAh] 

depth_of_discharge [%] 

max_discharge_rate [C] 

output 

battery_I_out 

actual_voltage 

END_CONFIG 

""" 
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The action flow for the parameter parser is thus the following: 

It starts by reading one by one every single line in the beginning of the model code; as 

soon as it find the “CONFIG” word, it sets up flag telling the software to save every 

successive line as an independent input parameter into the var_dict structure. 

This will leave out the first line, which as already seen is useful for the model parser in 

order to find out the current category. 

A secondary function is run on each read line to extract the measurement unit and save it 

separately. 

When the “output” word is found, the flag changes to that the parser save any future line 

in the out_dict data structure, flagging them as output parameters. 

This continues until the “END_CONFIG” signal is reached, telling the parser to close this 

model (no more parameters to read) and start next one. 

The procedure is exemplified in the following diagram: 
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Picture 2-17: parameter parser action diagram 

 

 

2.6) Process.py 

 

The Process.py file is the real heart and soul of StarSim: it call one by one the selected 

models in a loop (until the user-defined time expires) and registers the value of the 

parameters that the user selected to be saved (or plotted) 

Its action diagram can be sum up as follows: 
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The Process.py file work by the following steps: 

 

 Initialize a new class var, containing all the parameters of the selected models 

 

 Initialized the value of those parameters as selected by the user 

 

Picture 2-18: main simulation process 
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 Start time loop; for every iteration, call all selected models in a row 

 

 Each model is passed as argument the previously created class var, so that it  

modifies parameter in that class which will be later passed to the next model; this 

ensures that ach models works on the latest version of the parameter set and 

avoid the annoyance of passing them one by one in the models call. 

 

 At the end of every iteration, parameters saved in the save_list or plot_list are 

read from the var class and their value is stored in the appropriate output list. 

 

 If the simulation is real-time, the sleep() function is now called for about one 

second, otherwise next iteration starts immediately.  

 

2.7) Post-processing 

 

The post processor has the aim to present simulation results back in a user-friendly way 

by following these steps: 

 

 Plot selected parameters automatically 

 

 Call back main window 

 

 Activate new menu item that were previously grayed out: Add plot, save, export 
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Chapter 3 

3 The standard library 

 

3.1) Mission models 

 

These models are normally selected first when setting up a simulation and simulate the 

satellite motion, its orbit, the relative position of the sun vector and other environmental 

phenomena such as the magnetic field and the thermal fluxes balance. 

 

 3.1.1) Orbit propagator 

 

This model constitutes the foundation of every simulation and has the scope to simulate 

the satellite’s orbit due to Earth’s gravitational field. 

First step is then is to make sure that the motion of the satellite is described in an 

appropriate coordinate system, namely the Earth-Centered-Earth-Fixed reference system 

(ECEF). 

This system does not rotate and its origin lies in the center of the Earth; its z-axis comes 

out from the North pole, the y-axis exits from the interception point of the prime 

meridian and the equator, and the x-axis complete the tern according to the right-hand 

rule. 

The motion of the satellite around the Earth, assuming its mass to be totally negligible 

(total mass of a CubeSat is about 1.3 Kg), is accurately described by the following system 

of equations: 

     
       

    
  

    

  

 

Where G is the gravitational constant. 

Note that this model does not include determination of the satellite’s attitude, which has 

to be determined separately. 
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Many integration method are available to solve the above mentioned system, each with 

its own advantages and disadvantages; this model implements a so-called RK4 integrator 

(4th order  Runge-Kutta), which was found to be a good compromise between accuracy 

and computational load. 

The RK4 need as input already known pos (3-components position vector) and v (velocity) 

values, as well as the function to be approximated: 

 

        
       

    
   

 

Where pos is the representation of the position vector r in Python syntax: 

 

                       

 

Then it works by dividing a single time steps into four sub-steps at which the function is 

evaluated, and computing a weighted average of those value representing the total 

increment. 

The algorithms used to compute these sub-steps make use of the user-defined time step 

h (usually  1 second): 

 

 first sub-interval: 

       

            

 Second sub-interval: 

        
 

 
    

           
 

 
    

 Third sub-interval: 

        
 

 
    

           
 

 
    

 Fourth sub-interval: 
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 Compute total increment based on the three sub intervals, giving greater weight 

to the central values: 

 

         
             

 
 

       
             

 
 

 

 Update current values: 

 

                    

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that this is an explicit method is used i.e. solution at the next step in time depends 

only from results at previous time steps and not from itself already; this is simpler to 

Picture 3-1: sample orbit propagator results 
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implement as it avoids the need of solving nonlinear systems at each step, but brings 

about the disadvantage that if the step is not chosen wisely  (i.e. if the step it’s to large) 

the method can be unstable, so the orbit appear to diverge. 

 

 

 

Picture 3-2: numerically diverging orbit 

 

 

Picture 3-3: numerically stable orbit for a time step lesser than 0.01 
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Inputs and outputs for the Orbit Propagator model can be sum up as follows: 

 

Input: 

 major_semiaxis [km] : from the surface (not including Earth's radius) 

 eccentricity [-] 

 Inclination [deg] 

 longitude_of_the_ascending_node [deg] 

 argument_of_periapsis [deg] 

 true_anomaly [deg] 

 

Output: 

 x : spacecraft position along x axis  

 y : spacecraft position along x axis 

 z : spacecraft position along x axis 

 r : total distance of the spacecraft from the center of the Earth 

 Vx : velocity along the x axis 

 Vy : velocity along the x axis 

 Vz : velocity along the x axis 

 

 

 3.1.2) Sun motion 

 

This model uses an explicit, fixed-step Runge-Kutta 4th order method to integrate 

Newton's equation of motion and return the Earth's path around the Sun. 

Output is given in Sun Centered System, whose axis are aligned with ECEF's. 

No input is required from the user, as the following parameters are hard-coded: 

 

 major_semiaxis: 149597870.7 Km 

 eccentricity: 0.0167 

 inclination: 7.155 deg 
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 longitude_of_the_ascending_node: 174.9 deg 

 argument_of_periapsis: 288.1 deg 

 

Output: 

 

 Earth_x : spacecraft position along x axis  

 Earth_y : spacecraft position along x axis 

 Earth_z : spacecraft position along x axis 

 Earth_r : total distance of the Earth from the center of the Sun 

 Earth_Vx : velocity along the x axis 

 Earth_Vy : velocity along the x axis 

 Earth_Vz : velocity along the x axis 

 

 3.1.3) Sun vector: 

 

This model calculates the components of the sun vector; no input is required if "Sun 

Motion" model is present, otherwise the user has to manually enter the three 

coordinates of the sun vector: 

 

Input:  

 earth_x [km]: Earth x-coordinate in Sun-centered reference system 

 earth_y [km]: Earth y-coordinate in Sun-centered reference system 

 earth_z [km]: Earth z-coordinate in Sun-centered reference system 

 x [km]: satellite x-coordinate in ECEF system 

 y [km]: satellite y-coordinate in ECEF system 

 z [km]: satellite z-coordinate in ECEF system 

 

Output: 

 

 sun_vector_x: sun vector x-component in Sun-centered system 

 sun_vector_y: sun vector y-component in Sun-centered system 

 sun_vector_z: sun vector z-component in Sun-centered system 
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 sun_vector_magnitude: module of the sun vector 

 sun_vector_direction_i: normalized x-component of the sun vector 

 sun_vector_direction_j: normalized y-component of the sun vector 

 sun_vector_direction_k: normalized z-component of the sun vector 

 

It is as simple as performing a vector-wise sum between the Earth’s and the spacecraft 

position vectors. 

 

 3.1.4) Magnetic field dipole: 

 

This model computes the three mutually normal components of Earth's magnetic field in 

ECEF system. 

It takes as input a specific point in the (latitude, longitude, altitude) format, so an 

converter from ECEF to latitude-longitude-altitude model is required; this model is also 

provided in the standard library. 

Earth's magnetic field is approximated as simple dipole field. 

 

Input: 

 

 lat [deg]: latitude of current point 

 long [deg]: longitude of current point 

 alt [deg]: altitude of current point 

 

Output: 

 

 Bx: x-component of magnetic vector in ECEF system 

 By: y-component of magnetic vector in ECEF system 

 Bz: z-component of magnetic vector in ECEF system 

 B_mod: module of the magnetic vector 

 

It approximates the radial and tangential component of the magnetic field as: 
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Where R includes Earth’s radius,   is the magnetic permeability, m is a constant of value 

            and   is the angled defined as 
 

 
  ,   being the usual latitude value. 

This approximation is definitely not too much accurate, but will do the job for a quick, 

first order estimation. 

 

To obtain a much greater accuracy, a more detailed model such as the standard World 

Magnetic Models is required. 

The World Magnetic Model, freely available over the Internet, describes in a particular 

detailed fashion Earth’s magnetic field and its changes in time; it was originally developed 

jointly by the United States National Geophysical Data Center  and the  British Geological 

Survey and it is actualized every 5 years. 

It works by approximating the magnetic field with help of 12 spherical 

harmonic expansion of the magnetic potential of the geomagnetic main field generated in 

the Earth’s core; due to its highly intrinsecal complexity its computational cost is also very 

high, so it has been decided to avoid using this model is the present thesis; such a  great 

order of accuracy is not needed anyway for a preliminary phase. 

Anyway, WMM has already become the standard in many national and international 

services and it’s the default choice in all devices equipped with a magnetic sensor (e.g. 

Smartphones); it is capable of delivering the correct measure of Earth’s magnetic field for 

one kilometer under Earth’s surface until 850 Km above. 

 

Another magnetic mode that has been taken into consideration was the International 

Geomagnetic Reference Field (IGRF) developed by the International Association of 

Geomagnetism and Aeronomy (IAGA).  
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 3.1.4) Thermal fluxes 

 

Knowledge of each face temperature is required to perform a detailed simulation, as it 

deeply affects the current output generated by the solar panels. 

This model solves the thermal balance equation separately for each face to determine 

face temperature. 

Only radiative fluxes are considered (convection between adjacent faces is neglected). 

Infrared radiation from Earth is assumed to be     
 

  
 and albedo is 29% of the solar 

constant. 

The following constants are assumed: 

 

 absorption coefficient = 0.92 ( ) 

 emissivity = 0.85 ( ) 

 density = 5000 
  

   (average density of face and solar panel combined) 

 Cp = 1500  

Input:  

 Temperature [K]: initial temperature for all faces 

 face_area []: face area of all faces 

 

Output: 

 

 T_x: temperature of face "x" 

 T_y: temperature of face "y" 

 T_z: temperature of face "z" 

 T_neg_x: temperature of face "-x" 

 T_neg_y: temperature of face "-y" 

 T_neg_z: temperature of face "-z" 

 

The model works by the following steps: 

 

 Calculate the incoming heat flux: 
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 Compute the flux generated by the satellite itself by dissipating power within its 

electronics; since we can assume that this flux equally distributed among all 6 

faces, and being known the efficiency of the internal load we can write: 

 

      
           

 
 

 

 Compute the flux irradiated by the satellite into space according to Boltzman’s 

law: 

 

           
        

     

 

 Compute total flux exchanged by the satellite: 

 

              

 

 Compute the final temperature of that face: 

 

   
    

    
       

 

 

3.2) Power sources and actuators 
 

These models have been studied specifically to model the electric power system of the 

satellite, finding  a reasonable compromise solution between accuracy and computational 

cost. 
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Since this thesis is modeled around the needs of a students’ CubeSat, only solar panels 

are considered as appropriate power sources. 

 

 3.2.1) Constant resistive load: 

 

This model represents a simple, constant resistive load. 

A power_bus model must be present in order to connect this model to solar panels or 

batteries and all resistive loads are considered to be set in parallel. 

 

Input: 

 load_dissipated_power [mW]: power dissipated by the satellite 

 

Output: 

 

 load_voltage 

 load_current 

 load_dissipated_power 

  

This model assumes that at any given time the spacecraft dissipates a constant, known 

amount of power, given in mW. The actual value of power dissipated varies according to 

the current mission phase and their evolution is detailed in the section “modeling the 

eps”; it can be roughly estimated as 1590 mW when the satellite is not transmitting to the 

main ground station. 

Output values are easily computed from Ohm’s law. 

 

 3.2.2) Solar panel: 

 

This model represent a realistic, non-linear solar panel. 

The model comes with the following hard-coded constants: 

 

    Ki = 0.002: single cell short circuit current [A] 

    n = 1.2: diode ideality factor 
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    Tr = 298.15: nominal temperature [K] 

    Eg0 = 1.1: energy band gap [eV] 

    Rs = 0.001: series resistance [Ohm] 

    Rsh = 1000: shunt resistance [Ohm] 

 

Input: 

 sun_vector_direction_i [-]: not present if "Sun_vector" model is included 

 sun_vector_direction_j [-]: not present if "Sun_vector" model is included 

 sun_vector_direction_k [-]: not present if "Sun_vector" model is included 

 face_position [string]: face on which the panel is positioned, e.g "x", "z", "-x" 

 short_circuit_current [A]: as reported on the datasheet, under standard 

irradiation values 

 open_circuit_voltage [V]: as reported on the datasheet, under standard 

irradiation values 

 load_resistance [Ohm]: not present if at least one resistive model is included in 

the simulation. 

Output: 

 solar_panel_I_out [A] : current being produced by the solar panel 

 solar_irradiation [W/m^2] 

 

This model can work in three different modes: 

 

1. Eclipse: is the spacecraft is being eclipsed; its output voltage and current are both 

zero. 

 

2. With MPPT (Maximum Power Point Tracker): is a MPPT is also present in the 

selected model list, this panel will output in maximum possible current value; for 

more information about how the MPPT works, refer to its section in this chapter. 

 

 

3. Direct load connection: is no MPPT is present the panel is connected directly to 

the load (possibly with a battery in between); In this case, as the characteristic 
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equations are given in the form on I-V dependency, it performs an iteration cycle 

to reach convergence in the value of V (an thus I), given the load. 

 

In mode 2) and 3), output voltage and current are required to conform to the general 

solar panel characteristic curve (below), which is found by following these steps: 

 

 

 

 

 

 

 

 

 

 

 

1. Photovoltaic current: 

                   
  

    
 

2. Reverse saturation current: 

    
   

    
     

        
 

3. Saturation current: 

       
 

  
 
 

    
     

  
 
 

 
 

 

  
   

4. Shunt-resistance current: 

    
 

  

  
     

   
 

5. Output current: 

                    

 
  

  
  

  

   
         

 

Picture 3-4: standard solar panel  charachteristc curve 
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As already mentioned before, since both V and      are originally unknown,  the algorithm 

iterates over steps 4) and 5) until convergence is reached. 

 

 

Picture 3-5: solar panel curve implemented in MATLAB for testing 

 

3.2.3) MPPT 

 

This acronym stand for Maximum Power Point Tracking and it’s the models responsible 

for maximizing the output of a given solar panel. 

The algorithm used is relatively simple and its key concept consist in introducing a 

perturbation in the panel operating voltage (physically this would be done by modifying a 

converter duty cycle). 

Picture 3 below illustrates the functioning principle of a Perturbe and Observe algorithm 

for a MPPT: 
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Picture 3-6: MPPT  perturbe & observe algorithm 

 

After performing an increase in the panel operating voltage, the algorithm compares the 

current power reading with the previous one. If the power has increased, it keeps the 

same direction (increase voltage), otherwise it changes direction (decrease voltage). This 

process is repeated at each MPP tracking step until the MPP is reached. 

After reaching the MPP, the algorithm naturally oscillates around the correct value. 

 

3.2.4) Battery 

 

This model represent a standard LiPo battery pack, and comes with the following 

implemented features: 

- 8-th order polynomial to represent variation of nominal voltage as function of the Depth 

of Discharge i.e. nominal voltage at each time step is computed as 

 

                                                           

                                  

 

- Peukert's law for capacity-discharge rate dependency with hard-coded exponent 1.15 

 

Input: 
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nominal_voltage [V]: as reported on the datasheet, at 1C discharge rate 

capacity [mAh]: maximum capacity of all cells combined, at 1C discharge rate 

load_resistance [Ohm]: not present if at least one other resistive model is present 

in the    simulation 

maximum discharge rate [C]: maximum rate at which the current can be drawn 

out of the battery; 1C is the rate of discharge that will completely discharge the 

battery in one hour. 

 

Output: 

 

 battery_I_out [A]: the current being drawn out of the battery 
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Chapter 4 

4 Case Study 

 

4.1) Modeling the Electric Power System  

A cubesat satellite can be expected to work in different operative modes according to the 

current mission phase, summed up in the table below. 

The different operating modes can be detailed as follows: 

 

 Dormant mode: the satellite will stay turned off during the launch, with no voltage 

present; this is the so called dormant mode. 

 

 Activation mode: this is a transient mode, which activates as the satellite exits the 

launch Pod: it then turns on its OBC and starts its activation sequence. 

 

 Detumbling mode: this mode starts as soon as the activation sequence is complete 

and lasts about 100 minutes (one orbit), and the ADCS is operated; 

 

 Basic Mission / Full Mission mode: the nominal operating mode if a Cubesat, 

distinguished into basic or full according to which system is actually operating. 

 

 Fail safe mode: in this mode, the OBC and EPC remain active and consume 

minimum power; its main aim is to avoid an incorrect activation of the satellite. 

 

 Safe Mission mode: this mode is activated in the eventuality of payload loss; it’s 

still possible to communicate with the spacecraft, even though its attitude can no 

longer be controlled. 
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Picture 4-1: CubeSat’s operating modes 

 

4.1.1) Dissipated power 
 

The total power consumption for the Full Mission mode can be computed by taking into 

account the power consumption for a single orbit. 

There are three main kinds of orbit that can affect the total power requirement: 

 

• Case I) the spacecraft does not pass over the main GCS. The e-st@r Cubesat is designed 

to transmit the telemetry every two minutes, and the signal lasts about 2 seconds. It 

remains this basic transmission mode for 103 sec per orbit (1.72 min/orbit). 

Transmitting the signal takes up about 2500 mW, while idle power consumption in this 

mode is estimated in 900 mW. 

This means: 

 

   
    

  
           

        

  
                 

 

• case II) the spacecraft passes over the main GCS. The satellite stays in full transmission 

mode for 11.4 min, meaning that in this period it is transmitting continuously. Therefore 

it remains in basic transmission mode for 2 seconds every two minute for 103-11.4 min 

per orbit (1.52 min/orbit). 
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• case III) detumbling: taking into account how the of ADCS subsystem has been designed, 

a longer phase has to be considered to achieve the stabilization of the satellite.  

This phase lasts about 9000 seconds (150 min). 

Case III (detumbling) will be ignored in the following of this work, and attention will be 

focused mainly on case I, the one that most commonly occurs. 

In order to proceed with a detailed modeling of a Cubesat’s EPS, precise information 

about the actual solar panels and battery in use is needed. 

 

4.1.2)  Solar panel 

Our Cubesat relies mainly on GaAs (Gallium Arsenide) Triple junction solar cells 

The primary energy source for e-st@r satellite are Triple Junction GaAs solar cells, 

positioned on five out of the six available faces (one face is reserved for the antenna and 

its deployment system). Each solar panel is constituted by 2 solar cells connected in 

series, the single solar cell dimensions featuring  4 cm x 7 cm in size (limited by face 

dimensions) 

 

Solar cell type GaAS Triple Junction 

Efficiency 27.82 % 

Open circuit voltage 2.60 V 

Short circuit current 454.67 mA 

Voltage @ Pm 2.33 V 

Current @ Pm 427.56 mA 

Picture 4-3: solar cell features 

 

4.1.3) Battery 

The Cubesat comes equipped with two batteries, each being constituted by two Li-Ion 

cells in series; this kind on batteries are one of the most common off-the-shelf 

components and have already been used by a certain number of small satellites in the 

past. 

They feature  a dimension fully compatible with a Cubesat’s size restriction and their 

energy density is also acceptable. 

The main characteristics of such batteries are listed in the table below: 

Picture 4-2: solar cell size 
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4.1.4) Full model 

 

The full-functioning EPS is the schematized as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell type Li-Ion 

Nominal voltage 3.7 V 

Capacity 1800 mAh 

Charge rate Standard (0.5 C) 

Max. discharge rate 1C 

Height  10.5 mm 

Width 34.0 mm 

Length 50.0 mm 

Weight 41.2g 

Picture 4-4: battery features 

Picture 4-5: battery size 

Picture 4-6: full EPS 
simplified model 
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The dynamic behavior of solar panels, batteries and MPPT has already been detailed in 

chapter 3. 

A certain number of assumptions has been made in order to simply the model to be 

simulated: 

 

 Filters and voltage regulator are negliged 

 

 The satellite dissipates a constant power equal to 1590 mW as seen in section 

4.1.1 

 

 MPPTs are totally efficient and produce no oscillation in their outputs 

 

 The two batteries are modeled as a single battery pack with a cumulative voltage 

of 7.4 V 

 

4.2) AIL EPS Setup and scenarios 

 

A certain number of AIL simulations can be now carried on to validate the proposed 

schematics of the EPS. 

 

 4.2.1) Single panel, fully irradiated 

 

In this scenario, we suppose to have only one solar panel in full irradiation (pointing 

directly towards the Sun) and all the other in full shadow; the satellite is flying a standard 

orbit and no telemetry is currently being transmitted apart from the usual 2 seconds 

signal. 

Power consumption thus can be assumed as 1590 mW. 
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This translates to the following model list: 

 

Environmental models: 

 Orbit propagator 

 Sun motion 

 Sun vector 

 Thermal fluxes 

 

Actuators: 

 Constant resistive load 

 

Power Sources: 

 Solar panel 

 MPPT 

 Power bus 

 Battery 

 

 

 

 

 

 

Picture 4-7: schematic model for single-panel simulation 
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The picture above shows a partial screenshot of StarSim’s project window where this 

setup has been implemented. 

The simulation is setup to run 50.000 seconds (about 8 orbits), with a time step of one 

second; no real-time is required. 

 

 

 

 

 

 

 

 

 

 

 

 

Picture 4-8: EPS simulation implemented in StarSim project window 
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 4.2.2) Three panels, standard orbit 

 

If no attitude determination algorithm is present (i.e. the satellite does not rotate),then 

no more than three panels need to be simulated as the remaining two are constantly 

shadowed. 

Standard orbit for a CubeSat mission is about 400 km of height and 96° of inclination; 

again, estimated dissipated power is 1590 mW. 

The model flow changes with respect to the situation above as long as now three solar 

panel models are present instead of one: 

 

 

Picture 4-10: three panels simulation setup 

 

The picture above shows a partial screenshot of StarSim’s project window where this 

setup has been implemented. 

The simulation is setup to run 50.000 seconds (about 8 orbits), with a time step of one 

second; no real-time is required. 

 

In the parameter definition window, StarSim has already taken care of differentiating 

them by adding a serial number: 
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Picture 4-11: parameters setup for full-panels simulation 

 

 

4.3) AIL results analysis 

 

Results for the single-panel, standard-orbit simulation are shown here in graphic form: 

StarSim makes use of the common matlab-style matplotlib library to enable the user to 

produce easy and fast plots and to save them in a multiplicity of formats. 

 

 

Picture 4-12: solar panel voltage results 
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Picture 4-13: solar panel current results 

 

 

 

Picture 4-14: current drawn from battery 
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Picture 4-15: battery capacity results 

 

 

Picture 4-16: load voltage results 

 

The voltage and current values provided by the solar panel model are fully satisfactory; 

they appear to be constant (apart of course for the eclipse periods) because the 

simulated time doesn’t run long enough to see a significant difference as the Earth 

changes its angulation revolving around the Sun (keep in mind that in this scenario the 

solar panel is being constantly kept pointing towards the Sun). 
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The battery starts the mission with a 20% depth of discharge and quickly comes back to 

its maximum nominal value of 1800 mAh (the charge then stops abruptly, like if a 

regulator circuit was present). 

The maximum discharge reached by the battery in this scenario is roughly 10%. 

The actual voltage provided by the battery pack oscillates (modestly) around the nominal 

value of 7.4V due to the variation in the depth of discharge; in this case nominal voltage is 

the one defined when the battery is fully charged, but be aware that different 

manufacturers can define their nominal voltage as the one provided when the battery is 

80% charged (it must be anyway stated in the datasheet). 

Since the load model is programmed to dissipate a constant power of 1590 mW, the 

actual current flowing out of the battery also oscillates (describing sinusoid arcs) 

following the fluctuation in the battery voltage to keep the power constant. 

 

For the second simulation scenario, plots  of battery state of charge and current drawn 

can be immediately extracted as well: 

 

 

Picture 4-17: battery actual voltage 
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Picture 4-18: current drawn from battery 

Note that the battery discharge very little in this scenario, no more than 10%. 

 

 

 

 

4.4) HIL setup 

 

It is possible to perform a Hardware-in-the-loop simulation by integrating a signal 

generator device into the algorithm loop; the process follow the following steps: 

 

 Open a serial port communication for the device 

 

 Set its address and baud rate 

 

 Define a one-to-one correspondence between channels of the device and 

parameters of the simulation 

 

 Send the device in output mode and then start the simulation. 
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Once the AIL model flow has been defined, the user can click over Tools > Add hardware 

interface and set up the following windows: 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adding a hardware interface will force real-time mode on the simulator, but it is still 

possible to set a time step different from 1. 

Picture 4-19: addding hardware interface 

Picture 4-20: channel setup 
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The device used in this simulation was an isotech-ips-3202 generator, connected to the 

workstation through a RS-232 serial port. 

It takes advantages of three different channels, and each one of them can accept an input 

command in the form of either voltage or current. 

 

 

 

Picture 4-21: isotech-ips-3202 generator 

 

 

 

 

Picture 4-22: RS232 standard 

 

A personal computer or workstation fitted with a COM port is essential in order to 

operate the device via the RS232 interface; the port must then be made available to the 

software by the simple routine such as the following: 
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def port_init(address, timeout_time, baudrate): 

    ser = serial.Serial(address, timeout=timeout_time)  

    ser.baudrate = baudrate 

    port_name = ser 

    return port_name 

 

The actual values of address, timeout time and baud rate are defined in the process.py 

file; while the baud rate is almost always constant at 9600, the timeout time is set to be 2 

seconds more than the total simulated time (to be sure the port is freed at the end of the 

simulation) and the address (e.g. COM1, COM2…) depends upon which physical port has 

been connected. 

This function returns the in-the-loop port name (in this case, ser) that will be used by the 

software to command the device. 

 Commands for a single channel are send in the following form: 

 

                              

 

Where \n is the usual syntax for the line feed (LF) that signals the termination of a 

command. 

Wishing to command all the three channels, such strings can simply be concatenated: 

 

                                                           

:                            

 

A formatting function is then necessary, to read input parameters from the results 

provided by the AIL simulation and format it to be ready to be fed to the generator. 

 

 

 4.4.1) Hardware integration 

 

The complete setup for the hardware-in-the-loop simulation consisted of the following 

items: 

 

 Personal computer where StarSim was running 



88 
 

 

 Function generator to output currents and voltages of the solar panels 

 

 Satellite boards completed with batteries (item to be tested) 

 

 Ground station to receive real-time diagnostic data 

 

 

Picture 4-23: laboratory setup 

 

In the picture represents the generator and its connection to the CubeSat’s internal 

boards: from the bottom to the top they are the ADCS (Attitude & Determination Control 

System), the COMSYS and the EPS, with the two batteries enveloped in the bright 

reflective layer on top. 

The larger board at the bottom is an expanded version of the OBC (On-Board Computer), 

which allows for easier testing and experimenting. 

The setup schematic was the following: 
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Picture 4-24: HIL setup schematics 

 

Scope of this HIL simulation is to validate the behavior of the solar panels and the 

charge/discharge cycle of the batteries; therefore, three channels are needed, one for 

each solar panel (the other two of them are constantly shadowed). 

 

 4.4.2) HIL process 

 

The Hardware-in-the-loop core process does not differ significantly from the standard AIL 

simulation, except of course in the addition of hardware interfaces; the whole process 

can be summed up in the following steps: 

 

Initialization phase: 

 Initialize a new class var, containing all the parameters of the selected models 

(same as AIL simulation) 

 

 Initialized the value of those parameters as selected by the user 

 

 Open communication port selected by the user and setup its baud rate 

 

Simulation phase: 
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 Start time loop; for every iteration, call all selected models in a row 

 

 Each model is passed as argument the previously created class var, so that it  

Modifies parameter in that class which will be later passed to the next model;  

 

 At the end of every iteration, parameters saved in the save_list or plot_list are 

read from the var class and their value is stored in the appropriate output list. 

 

Command phase: 

 

 At the end of every iteration, parameter selected to be sent to the device as read 

from the var class and formatted into the string pattern described in the previous 

chapter. 

 

 This command string is then sent to the device input port; voltages and currents 

on the output channels of the device are instantly updated. 

 

Sleep phase: 

 

 Since a Hardware-in-the-loop simulation forces real-time mode, the sleep() 

function is now called for one second.  

 

 

 4.4.3) HIL results and comparison 

 

A simulation was carried out for 10800 seconds (3 hours), enough to simulate of three 

complete Earth orbits; results are in good accord with the expected behavior computed 

by the algorithmical simulation. 
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Picture 4-25: actual voltage results 

 

Oscillations naturally occur and are mainly due to: 

 

 Old equipment, on which other tests had already been run and that probably was 

already damaged. 

 

 Inability of the generator to output exactly voltage and current as commanded, 

due to the resistive nature of the load. 

 

 Approximation in the model used to describe the battery state of charge. 
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Conclusion and further development 

 

StarSim v.02 can well satisfy its intended requirements of simplicity, flexibility and 

performance; although minor bugs are surely still present (for instance in the plotting 

window), the software is ready to be taken towards further development. 

This can include, in supposed chronological order: 

 

1. Enhancing the present library by adding different models and algorithms used in the 

AIL simulation; this work will require the assistance of the experts in each particular 

field, and great emphasis shall be posed onto standardization of the AIL models 

source code, following the example of those already present in the folder Models in 

the StarSim directory. 

 

2. Build the software on a UNIX core with real-time capabilities, to enhance significance 

of the SIL and HIL simulations. 

 

3. Have the software running on a network server, to instantly share result among all 

team members, allow for multi-user simulation or run-time user intervention during 

the simulation (e.g. to simulate radio commands). 
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Appendix A 

Models code 

 

A.1) Orbit propagator 

# spacecraft_motion 

""" 

CONFIG 

major_semiaxis [km] 

eccentricity [-] 

inclination [deg] 

longitude_of_the_ascending_node [deg] 

argument_of_periapsis [deg] 

true_anomaly [deg] 

output 

x 

y 

z 

r 

Vx 

Vy 

Vz 

END_CONFIG 

 

INFO 

Orbit Propagator 

END_INFO 

""" 

 

def Orbit_propagator(var, np): 

    h = var.t_step 

    mu = 398600 

    earth_radius = 6373 

 

    if var.IsFirstIteration == True: 

        a = var.major_semiaxis + earth_radius 

        e = var.eccentricity 

        i = np.deg2rad(var.inclination) 

        W = np.deg2rad(var.longitude_of_the_ascending_node) 

        o = np.deg2rad(var.argument_of_periapsis) 

        n = var.true_anomaly 
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        p = a*(1-e**2) 

        r_perifocal = p / (1 + e*np.cos(n)) 

        Vp = np.sqrt(mu/p)*(-np.sin(n)) 

        Vq = np.sqrt(mu/p)*(e + np.cos(n)) 

 

        r11 = np.cos(W)*np.cos(o) - 

np.sin(W)*np.sin(o)*np.cos(i) 

        r12 = - np.cos(W)*np.sin(o) - 

np.sin(W)*np.cos(o)*np.cos(i) 

        r13 = np.sin(W)*np.sin(i) 

        r21 = np.sin(W)*np.cos(o) + 

np.cos(W)*np.sin(o)*np.cos(i) 

        r22 = - np.sin(W)*np.sin(o) + 

np.cos(W)*np.cos(o)*np.cos(i) 

        r23 = -np.cos(W)*np.sin(i) 

        r31 = np.sin(o)*np.sin(i) 

        r32 = np.cos(o)*np.sin(i) 

        r33 = np.cos(i) 

 

        R = np.matrix(([r11, r12, r13], [r21, r22, r23],  

[r31, r32, r33]), dtype=float) 

        pos_perifocal = np.array([[r_perifocal*np.cos(n), 

r_perifocal*np.sin(n), 0]]) 

        V_perifocal = np.array([[Vp, Vq, 0]]) 

        pos = R * pos_perifocal.T 

        v = R * V_perifocal.T 

    else: 

        pos = np.array([var.x, var.y, var.z]) 

        v = np.array([var.Vx, var.Vy, var.Vz]) 

 

 

    def g(pos): 

        r = np.sqrt(pos[0]**2 + pos[1]**2 + pos[2]**2) 

        r3 = np.power(r, 3) 

        value = (-(mu*pos)/r3) 

        return value 

 

    var.r = np.sqrt(pos[0] ** 2 + pos[1] ** 2 + pos[2] ** 2) 

 

    k0 = h*v 

    l0 = h*g(pos) 

 

    k1 = h*(v+0.5*l0) 

    l1 = h*g(pos+0.5*k0) 
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    k2 = h*(v+0.5*l1) 

    l2 = h*g(pos+0.5*k1) 

 

    k3 = h*(v+0.5*l2) 

    l3 = h*g(pos+0.5*k2) 

 

    afx = (k0+2*k1+2*k2+k3)/6 

    afv = (l0+2*l1+2*l2+l3)/6 

 

    pos = pos + afx 

    v = v + afv 

 

    if var.IsFirstIteration == True: 

        var.x = pos[0,0] 

        var.y = pos[1,0] 

        var.z = pos[2,0] 

        var.Vx = v[0,0] 

        var.Vy = v[1,0] 

        var.Vz = v[2,0] 

    else: 

        var.x = pos[0] 

        var.y = pos[1] 

        var.z = pos[2] 

        var.Vx = v[0] 

        var.Vy = v[1] 

        var.Vz = v[2] 

 

 

A.2) Sun Motion 

# environment 

""" 

CONFIG 

true_anomaly [deg] 

output 

earth_x 

earth_y 

earth_z 

earth_r 

earth_Vx 

earth_Vy 

earth_Vz 

END_CONFIG 

""" 
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def Sun_motion(var, np): 

    h = var.t_step 

    mu = 1.327*(10**11) 

    sun_radius = 695508 

 

    #  Earth orbit parameters 

 

    major_semiaxis = 149597870.7 

    eccentricity = 0.0167 

    inclination = 7.155 

    longitude_of_the_ascending_node = 174.9 

    argument_of_periapsis = 288.1 

 

    if var.IsFirstIteration == True: 

        a = major_semiaxis + sun_radius 

        e = eccentricity 

        i = inclination 

        W = longitude_of_the_ascending_node 

        o = argument_of_periapsis 

        n = var.true_anomaly 

        p = a*(1-e**2) 

        r_perifocal = p / (1 + e*np.cos(n)) 

        Vp = np.sqrt(mu/p)*(-np.sin(n)) 

        Vq = np.sqrt(mu/p)*(e + np.cos(n)) 

 

        r11 = np.cos(W)*np.cos(o) - 

np.sin(W)*np.sin(o)*np.cos(i) 

        r12 = - np.cos(W)*np.sin(o) - 

np.sin(W)*np.cos(o)*np.cos(i) 

        r13 = np.sin(W)*np.sin(i) 

        r21 = np.sin(W)*np.cos(o) + 

np.cos(W)*np.sin(o)*np.cos(i) 

        r22 = - np.sin(W)*np.sin(o) + 

np.cos(W)*np.cos(o)*np.cos(i) 

        r23 = -np.cos(W)*np.sin(i) 

        r31 = np.sin(o)*np.sin(i) 

        r32 = np.cos(o)*np.sin(i) 

        r33 = np.cos(i) 

 

        R = np.matrix(([r11, r12, r13], [r21, r22, r23],  

[r31, r32, r33]), dtype=float) 

        pos_perifocal = np.array([[r_perifocal*np.cos(n), 

r_perifocal*np.sin(n), 0]]) 

        V_perifocal = np.array([[Vp, Vq, 0]]) 
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        pos = R * pos_perifocal.T 

        v = R * V_perifocal.T 

    else: 

        pos = np.array([var.earth_x, var.earth_y, 

var.earth_z]) 

        v = np.array([var.earth_Vx, var.earth_Vy, 

var.earth_Vz]) 

 

 

    def g(pos): 

        r = np.sqrt(pos[0]**2 + pos[1]**2 + pos[2]**2) 

        r3 = np.power(r, 3) 

        value = (-(mu*pos)/r3) 

        return value 

 

    var.earth_r = np.sqrt(pos[0] ** 2 + pos[1] ** 2 + pos[2] 

** 2) 

 

    k0 = h*v 

    l0 = h*g(pos) 

 

    k1 = h*(v+0.5*l0) 

    l1 = h*g(pos+0.5*k0) 

 

    k2 = h*(v+0.5*l1) 

    l2 = h*g(pos+0.5*k1) 

 

    k3 = h*(v+0.5*l2) 

    l3 = h*g(pos+0.5*k2) 

 

    afx = (k0+2*k1+2*k2+k3)/6 

    afv = (l0+2*l1+2*l2+l3)/6 

 

    pos = pos + afx 

    v = v + afv 

 

    if var.IsFirstIteration == True: 

        var.earth_x = pos[0, 0] 

        var.earth_y = pos[1, 0] 

        var.earth_z = pos[2, 0] 

        var.earth_Vx = v[0, 0] 

        var.earth_Vy = v[1, 0] 

        var.earth_Vz = v[2, 0] 

        var.earth_r = np.sqrt(pos[0,0] ** 2 + pos[1,0] ** 2 + 

pos[2,0] ** 2) 
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    else: 

        var.earth_x = pos[0] 

        var.earth_y = pos[1] 

        var.earth_z = pos[2] 

        var.earth_Vx = v[0] 

        var.earth_Vy = v[1] 

        var.earth_Vz = v[2] 

        var.earth_r = np.sqrt(pos[0] ** 2 + pos[1] ** 2 + 

pos[2] ** 2) 

 

A.3) Sun Vector 

 

# environment 

""" 

CONFIG 

earth_x [km] 

earth_y [km] 

earth_z [km] 

x [km] 

y [km] 

z [km] 

output 

sun_vector_x 

sun_vector_y 

sun_vector_z 

distance 

sun_vector_magnitude 

sun_vector_direction_i 

sun_vector_direction_j 

sun_vector_direction_k 

END_CONFIG 

""" 

 

def Sun_vector(var, np): 

    var.sun_vector_x = var.earth_x + var.x 

    var.sun_vector_y = var.earth_y + var.y 

    var.sun_vector_z = var.earth_z + var.z 

    # 

    #  eclipse detector 

    # 

 

    eclipse = False 

    earth_radius = 6371 
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    if np.sign(var.x) == np.sign(var.earth_x) and (var.z < 

earth_radius) and (var.y < earth_radius): 

        eclipse = True 

    if eclipse == True: 

        var.sun_vector_x = 0 

        var.sun_vector_y = 0 

        var.sun_vector_z = 0 

        # 

        var.sun_vector_direction_i = 0 

        var.sun_vector_direction_j = 0 

        var.sun_vector_direction_k = 0 

        var.sun_vector_magnitude = 0 

        # 

    else: 

        var.sun_vector_direction_i = -1 

        var.sun_vector_direction_j = 0 

        var.sun_vector_direction_k = 0 

        ''' 

        var.sun_vector_magnitude = 

np.sqrt((var.sun_vector_x**2)+ 

(var.sun_vector_y**2)+(var.sun_vector_z**2)) 

        var.sun_vector_direction_i = var.sun_vector_x / 

var.sun_vector_magnitude 

        var.sun_vector_direction_j = var.sun_vector_y / 

var.sun_vector_magnitude 

        var.sun_vector_direction_k = var.sun_vector_z / 

var.sun_vector_magnitude 

 

 

 

A.4) Magnetic field (dipole) 
 

# environment 

''' 

CONFIG 

lat [deg] 

long [deg] 

alt [deg] 

output 

Bx 

By 

Bz 

B_mod 

END_CONFIG 

''' 
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def magnetic_field_dipole(var, np): 

    R = 6371 

    r = (var.alt/1000) + R 

    m = 7.94e22 

    mu0 = np.pi * 4e-7 

    theta = np.pi/2 - np.deg2rad(var.lat) 

 

    Br = (2 * mu0 * m * np.cos(theta)) / (4 * np.pi * r ** 3) 

    Bt = (mu0 * m * np.sin(theta)) / (4 * np.pi * r ** 3) 

 

    if var.long > -np.pi/2 and var.long < np.pi/2: 

        Brx = Br * np.sin(theta) 

        Brz = Br * np.sin(theta) 

        Btx = Bt * np.sin(np.deg2rad(var.lat)) 

        Btz = -Bt * np.cos(np.deg2rad(var.lat)) 

    else: 

        Brx = -Br * np.sin(theta) 

        Brz = Br * np.sin(theta) 

        Btx = -Bt * np.sin(np.deg2rad(var.lat)) 

        Btz = -Bt * np.cos(np.deg2rad(var.lat)) 

 

    var.Bx = Brx + Btx 

    var.Bz = Brz + Btz 

    var.By = 0 

    var.B_mod = np.sqrt(var.Bx**2+var.Bz**2) 

 

A.5) Constant resistive load 
 

# actuators 

""" 

CONFIG 

load_dissipated_power [mW] 

efficiency [%] 

output 

load_voltage 

load_current 

END_CONFIG 

 

INFO 

dummy resistive load for eps testing purposes 

END_INFO 

""" 

''' 

def constant_resistance_load(var, np): 
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    from Sources import config 

    if "power_bus" in config.model_list: 

        var.load_current = var.I_out_total 

    if "battery" in config.model_list: 

        var.load_current = var.battery_I_out 

    var.load_voltage = var.load_current * var.load_resistance 

    var.load_dissipated_power = var.load_current * 

var.load_voltage 

''' 

def constant_resistance_load(var, np): 

    if var.IsFirstIteration == True: 

        setattr(var, "target_power", 

var.load_dissipated_power) 

    var.load_current = var.battery_I_out 

    var.load_voltage = var.actual_voltage 

    var.load_dissipated_power = var.load_current * 

var.load_voltage 

 

A.6) Solar panel (full) 
 

# power_sources 

""" 

CONFIG 

sun_vector_direction_i [-] 

sun_vector_direction_j [-] 

sun_vector_direction_k [-] 

face_position [string] 

short_circuit_current [A] 

open_circuit_voltage [V] 

number_cells_in_series [-] 

load_resistance [Ohm] 

output 

solar_panel_I_out 

solar_panel_V_out 

solar_irradiation 

END_CONFIG 

 

INFO 

Rectangular solar panel; normal vectors are in own body 

reference frame. 

END_INFO 

""" 

 

def solar_panel_full(var, np): 

    from Sources import config 
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    if var.IsFirstIteration is True: 

        if not hasattr(var, 'face_normals'): 

            normals_dict = {'x': np.array([1, 0, 0]), 'y': 

np.array([0, 1, 0]), 'z': np.array([0, 0, 1]), 

                            '-x': np.array([-1, 0, 0]), '-y': 

np.array([0, -1, 0]), '-z': np.array([0, 0, -1])} 

            setattr(var, "face_normals", normals_dict) 

 

    normal_vector = var.face_normals[var.face_position] 

    sun_vector = np.array([var.sun_vector_direction_i, 

var.sun_vector_direction_j, var.sun_vector_direction_k]) 

    scalar_product = np.dot(normal_vector, sun_vector) 

    theta = (np.arccos(scalar_product)) 

    var.solar_irradiation = float(1367) * (- np.cos(theta)) 

    I_sp = 0 

    # 

    # case 1) eclipse 

    # 

    if var.solar_irradiation < 0: 

        var.solar_irradiation = 0 

        I_sp = 0 

        V_sp = 0 

 

    # 

    # case 2) no MPPT present, voltage is determined by load 

    # 

    elif "MPPT" not in config.model_list: 

        I_sp = 0 

        load = var.load_resistance 

        attempted_V = 1 

        converged = False 

        already_attemped_V = [] 

        while not converged: 

            resulting_I = find_I(attempted_V, var, np) 

            already_attemped_V.append(attempted_V) 

            expected_I = attempted_V / load 

            error = abs(resulting_I - expected_I) 

            if error < 0.01: 

                converged = True 

                V_sp = attempted_V 

                I_sp = resulting_I 

            else: 

                attempted_V = resulting_I * load 

                if attempted_V in already_attemped_V: 

                    converged = True 
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                    I_sp = 0 

    # 

    # case 3) MPPT present, maximum current is generated 

    # 

    else: 

        I = [] 

        P = [] 

        V = [] 

        start = var.open_circuit_voltage/100*80 

        for v in np.arange(start, var.open_circuit_voltage, 

0.01): 

            i = find_I(v, var, np) 

            V.append(v) 

            I.append(i) 

            P.append(i*v) 

        P_max_index = P.index(max(P)) 

        I_sp = I[P_max_index] 

        V_sp = V[P_max_index] 

 

    var.solar_panel_I_out = I_sp 

    var.solar_panel_V_out = V_sp 

 

def find_I(V, var, np): 

    Isc = var.short_circuit_current 

    Ki = 0.002  # single cell short circuit current 

    Voc = var.open_circuit_voltage 

    q = 1.6e-19  # electron charge 

    Np = float(1) 

    n = 1.2  # diode ideality factor 

    k = 1.3805e-23  # Boltzman constant 

    Tr = 298.15  # nominal temperature 

    Eg0 = 1.1  # energy band gap [eV] 

    Ns = var.number_cells_in_series 

    Rs = 0.001  # series resistance 

    Rsh = float(1000)  # shunt resistance 

 

    Ir = var.solar_irradiation 

    T = float(280) 

 

    Iph = (Isc + (Ki * (T - 298))) * (Ir / 1000) 

    Irs = Isc / (np.exp(q * Voc / (Ns * k * n * T)) - 1) 

    I0 = Irs * ((T / Tr) ** 3) * np.exp((q * Eg0 / (n * k)) * 

(1 / T - 1 / Tr)) 

    Vt = (k * T) / q 

    Ish = (V * (Np / Ns) + Iph * Rs) / Rsh 
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    I_out = Np * Iph - Np * I0 * np.exp(((V / Ns) + (Rs / 

Np)) / (n * Vt) - 1) - Ish 

    if I_out < 0: 

        I_out = 0 

    return I_out 

 

A.7) Battery 
 

# power_sources 

""" 

CONFIG 

nominal_voltage [V] 

capacity [mAh] 

depth_of_discharge [%] 

max_discharge_rate [C] 

output 

battery_I_out 

actual_voltage 

END_CONFIG 

""" 

 

def battery(var, np): 

    from Sources import config 

    # 

    if var.IsFirstIteration == True: 

        setattr(var, "capacity_max", var.capacity) 

        var.capacity = var.capacity * (100 - 

var.depth_of_discharge) / 100 

    # 

    dod = (var.capacity_max - var.capacity) / 

var.capacity_max 

    actual_voltage = var.nominal_voltage*(-8.281 * dod ** 7 + 

23.5743 * dod ** 6 - 30 * dod ** 5 + 23.7053 * dod ** 4 

                           - 12.5877 * dod ** 3 + 4.1325 * 

dod ** 2 - 0.8658 * dod + 1) 

    if 'constant_resistance_load' in config.model_list: 

        I_out_max = var.capacity_max/float(1000) * 

var.max_discharge_rate 

        var.battery_I_out = (var.target_power/float(1000)) / 

actual_voltage 

        if var.battery_I_out > I_out_max: 

            var.battery_I_out = I_out_max 

    # 

    # discharge 
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    # 

    var.capacity = var.capacity - var.t_step * 

var.battery_I_out*(float(1000) / 3600) 

    if var.capacity <= 0: 

        var.capacity = 0 

        var.battery_I_out = 0 

        actual_voltage = 0 

    # 

    # charge 

    # 

    if "power_bus" in config.model_list: 

        var.capacity = var.capacity + var.t_step * 

var.I_out_total * (float(1000) / 3600) 

        if var.capacity >= var.capacity_max: 

            var.capacity = var.capacity_max 

 

    var.depth_of_discharge = dod * 100 

    var.actual_voltage = actual_voltage 

 

A.9) Thermal fluxes 
 

''' 

CONFIG 

Temperature [K] 

face_area [m^2] 

output 

T_x 

T_y 

T_z 

T_neg_x 

T_neg_y 

T_neg_z 

q_x 

END_CONFIG 

''' 

 

def thermal_fluxes(var, np): 

 from Sources import config 

 alpha = 0.92 

 epsilon = 0.85 

 area = var.face_area 

 dn = 100 

 Sc = 1367 / (1+0.33412*np.cos(2*np.pi*(dn-3)/365)) 

 IR = 239 

 Albedo = 0.29*Sc 
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 sigma = 5.6704e-8 

 T_space = 4 

 T = var.Temperature 

 rho = 5000 

 V = area*0.1 

 Cp = 1500 

 # 

 if var.IsFirstIteration == True: 

  if not hasattr(var, "face_normals"): 

   normals_dict = {'x': np.array([1, 0, 0]), 'y': 

np.array([0, 1, 0]), 'z': np.array([0, 0, 1]), 

       '-x': np.array([-1, 0, 

0]), '-y': np.array([0, -1, 0]), '-z': np.array([0, 0, -1])} 

   setattr(var, "face_normals", normals_dict) 

   temp_dict = {'x': T, 'y': T, 'z': T, '-x': T, 

'-y': T, '-z': T } 

   setattr(var, 'temp_dict', temp_dict) 

 

 dissipated_power = 0 

 if "dummy_load" in config.repeated_models_dict: 

  for i in range(0, 

config.repeated_models_dict["dummy_load"]): 

   string = "(1 - 

var.efficiency_"+str(i)+")*var.load_dissipated_power_"+str(i) 

   dissipated_power += eval(string) 

 elif "dummy_load" in config.model_list: 

  dissipated_power = (1-

var.efficiency/100)*var.load_dissipated_power 

 # 

 faces = ["x", "y", "z", "-x", "-y", "-z"] 

 earth_versor = np.array([var.x, var.y, var.z]) / var.r 

 if var.sun_vector_magnitude != 0: 

  sun_vector = np.array([var.sun_vector_direction_i, 

          

var.sun_vector_direction_j, var.sun_vector_direction_k]) 

  sun_versor = sun_vector / var.sun_vector_magnitude 

 else: 

  sun_versor = np.array([0, 0, 0]) 

 for face in faces: 

  normal = var.face_normals[face] 

  cos_sun_angle = np.dot(sun_versor, normal) 

  cos_earth_angle = np.dot(earth_versor, normal) 

  # 

  Sc = Sc *cos_sun_angle 

  IR = IR * cos_earth_angle 
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  Albedo = Albedo * cos_earth_angle 

  q_in_ext = alpha*(Sc+IR+Albedo)*area 

  q_in = q_in_ext + dissipated_power/6 

  q_out = sigma*epsilon*(var.temp_dict[face]**4 - 

T_space**4)*area 

  q = q_in - q_out 

  var.temp_dict[face] += q/(rho*Cp*V)*var.t_step 

 # 

 var.T_x = np.linalg.norm(var.temp_dict["x"]) 

 var.T_y = np.linalg.norm(var.temp_dict["y"]) 

 var.T_z = np.linalg.norm(var.temp_dict["z"]) 

 var.T_neg_x = np.linalg.norm(var.temp_dict["-x"]) 

 var.T_neg_y = np.linalg.norm(var.temp_dict["-y"]) 

 var.T_neg_z = np.linalg.norm(var.temp_dict["-z"]) 
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Appendix B 

Simulator  code 

 B.1) Model parser 

 
def parse_lines(model_list): 

    flag = 0 

    flag_out = 0 

    vardict = {} 

    out_dict = {} 

    count = 0 

    temp_varlist = [] 

    temp_outlist = [] 

 

    # Opens every selected models file and reads the CONFIG 

section 

    for i in range(0, len(model_list)): 

        with open("Models" + '/' + model_list[i] + ".py", 

"r") as ins: 

            for line in ins: 

                if line.find("CONFIG") != -1: 

                    flag = 1 

                if (flag == 1) and (line.find("CONFIG") == -

1) and (line.find("output") == -1): 

                    # So here we are in the CONFIG input 

section; here are listed the parameters that 

                    # the users has to fill in order to have 

the model running 

                    var = str(line.split()[0]).strip() 

                    if (var not in temp_varlist) and (var not 

in temp_outlist): 

                        vardict[count] = [model_list[i], 

[var, str(line.split()[1])]] 

                        count = count + 1 

                        temp_varlist.append(var) 

                if line.find("output") != -1: 

                    flag = 0 

                    flag_out = 1 

                if (flag_out == 1) and 

(line.find("END_CONFIG") == -1) and (line.find("output") == -

1): 

                    out_dict[count] = [model_list[i], 

str(line).strip()] 



111 
 

                    temp_outlist.append(str(line).strip()) 

                    count = count + 1 

                if line.find("END_CONFIG") != -1: 

                    flag = 0 

                    flag_out = 0 

        ins.close() 

        config.out_dict = out_dict 

        # 

        for item in vardict.values(): 

            config.param_dict[item[1][0]] = item[0] 

        for item in out_dict.values(): 

            if item not in config.param_dict.keys(): 

                config.param_dict[item[1]] = item[0] 

                # 

    return [vardict, out_dict] 

 

 

def configure_repeated_models(): 

    # 

    #  creating copy files for repeated models 

    # 

    for entry in config.repeated_models_dict.keys(): 

            with open("Models/" + str(entry) + ".py", "r") as 

f_original: 

                var_list = [] 

                flag = 0 

                for line in f_original: 

                    if line.find("CONFIG") != -1: 

                        flag = 1 

                    if line.find("END_CONFIG") != -1: 

                        flag = 0 

                    if flag == 1: 

                        var_list.append(line.split()[0]) 

                var_list.remove("CONFIG") 

                var_list.remove("output") 

                var_list = remove_constants(var_list)  # e.g 

the sun vector is constant for all repeated models, 

                # it must not be given the incremental number 

                f_original.close() 

                # 

                for i in range(1, 

config.repeated_models_dict[entry]+1): 

                    with open("Models/" + str(entry) + ".py", 

"r") as f_original: 
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                        with open("Models/" + str(entry) + 

"_" + str(i) + ".py", "w") as f_copied: 

                            for line in f_original: 

                                if line.find("def") != -1: 

                                    line = 

line.replace(entry, entry+"_"+str(i)) 

                                for item in var_list: 

                                    if 

line.find(item.split()[0]) != -1: 

                                        new_item = 

item+"_"+str(i) 

                                        line = 

line.replace(item, new_item) 

                                f_copied.write(line) 

                            f_copied.close() 

                        f_original.close() 

 

 

def remove_constants(var_list): 

    constant_list = ["sun_vector_x", "sun_vector_y", 

"sun_vector_z", "sun_vector_magnitude", 

                       "sun_vector_direction_i",  

"sun_vector_direction_j", "sun_vector_direction_k"] 

    items_to_remove = [] 

    for item in var_list: 

        if item in constant_list: 

            items_to_remove.append(item) 

    # 

    for item in items_to_remove: 

        var_list.remove(item) 

    return var_list 

 

B.2) Parameter parser 

 
def parse_lines(model_list): 

    flag = 0 

    flag_out = 0 

    vardict = {} 

    out_dict = {} 

    count = 0 

    temp_varlist = [] 

    temp_outlist = [] 
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    # Opens every selected models file and reads the CONFIG 

section 

    for i in range(0, len(model_list)): 

        with open("Models" + '/' + model_list[i] + ".py", 

"r") as ins: 

            for line in ins: 

                if line.find("CONFIG") != -1: 

                    flag = 1 

                if (flag == 1) and (line.find("CONFIG") == -

1) and (line.find("output") == -1): 

                    # So here we are in the CONFIG input 

section; here are listed the parameters that 

                    # the users has to fill in order to have 

the model running 

                    var = str(line.split()[0]).strip() 

                    if (var not in temp_varlist) and (var not 

in temp_outlist): 

                        vardict[count] = [model_list[i], 

[var, str(line.split()[1])]] 

                        count = count + 1 

                        temp_varlist.append(var) 

                if line.find("output") != -1: 

                    flag = 0 

                    flag_out = 1 

                if (flag_out == 1) and 

(line.find("END_CONFIG") == -1) and (line.find("output") == -

1): 

                    out_dict[count] = [model_list[i], 

str(line).strip()] 

                    temp_outlist.append(str(line).strip()) 

                    count = count + 1 

                if line.find("END_CONFIG") != -1: 

                    flag = 0 

                    flag_out = 0 

        ins.close() 

        config.out_dict = out_dict 

        # 

        for item in vardict.values(): 

            config.param_dict[item[1][0]] = item[0] 

        for item in out_dict.values(): 

            if item not in config.param_dict.keys(): 

                config.param_dict[item[1]] = item[0] 

                # 

    return [vardict, out_dict] 
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def configure_repeated_models(): 

    # 

    #  creating copy files for repeated models 

    # 

    for entry in config.repeated_models_dict.keys(): 

            with open("Models/" + str(entry) + ".py", "r") as 

f_original: 

                var_list = [] 

                flag = 0 

                for line in f_original: 

                    if line.find("CONFIG") != -1: 

                        flag = 1 

                    if line.find("END_CONFIG") != -1: 

                        flag = 0 

                    if flag == 1: 

                        var_list.append(line.split()[0]) 

                var_list.remove("CONFIG") 

                var_list.remove("output") 

                var_list = remove_constants(var_list)  # e.g 

the sun vector is constant for all repeated models, 

                # it must not be given the incremental number 

                f_original.close() 

                # 

                for i in range(1, 

config.repeated_models_dict[entry]+1): 

                    with open("Models/" + str(entry) + ".py", 

"r") as f_original: 

                        with open("Models/" + str(entry) + 

"_" + str(i) + ".py", "w") as f_copied: 

                            for line in f_original: 

                                if line.find("def") != -1: 

                                    line = 

line.replace(entry, entry+"_"+str(i)) 

                                for item in var_list: 

                                    if 

line.find(item.split()[0]) != -1: 

                                        new_item = 

item+"_"+str(i) 

                                        line = 

line.replace(item, new_item) 

                                f_copied.write(line) 

                            f_copied.close() 

                        f_original.close() 
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def remove_constants(var_list): 

    constant_list = ["sun_vector_x", "sun_vector_y", 

"sun_vector_z", "sun_vector_magnitude", 

                       "sun_vector_direction_i",  

"sun_vector_direction_j", "sun_vector_direction_k"] 

    items_to_remove = [] 

    for item in var_list: 

        if item in constant_list: 

            items_to_remove.append(item) 

    # 

    for item in items_to_remove: 

        var_list.remove(item) 

    return var_list 

 

B.3) Simulation Setup 

 
import config 

import execute 

from HIL import hil_connector 

 

 

def create_process(): 

        # 

        # 'Prints "import" statements in process.py 

        temp_list = [] 

        activate_condition_list = [] 

        deactivate_condition_list = [] 

        act_cont = -1 # used to count the conditions of the 

"ACTIVATE" type 

        deact_cont = -1 

        with open("Sources\Process.py", "w") as process: 

            for i in range(0, len(config.model_list)): 

                if config.model_list[i] not in temp_list: 

                    process.write("from Models import 

"+str(config.model_list[i])+"\n") 

                    temp_list.append(config.model_list[i]) 

        # 'Print the variables class in Process.py 

            process.write("import matplotlib.pylab as 

plt\nplt.switch_backend('WXagg')\nimport time\nnp = 

__import__('numpy', globals(), locals())\n") 

            process.write("spr = __import__('subprocess')\n") 

            if config.hil == 1: 
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                process.write("from HIL import 

hil_connector\n")   # <--------------------------------------

-----------------------HIL 

            process.write("import config\n\nclass 

Variables():\n\tdef __init__(self):\n\t\tself.t = 

"+str(config.svw.time_settings[0])+"\n") 

            process.write("\t\tself.t_step = 

"+str(config.svw.time_settings[2])+"\n\t\tself.IsFirstIterati

on = True\n") 

            for i in range(0, len(config.var_value_list)): 

                

process.write("\t\tself."+str(config.var_value_list[i][1])+" 

= "+config.var_value_list[i][2]+"\n") 

            for i in range(0, len(config.out_dict.values())): 

                

process.write("\t\tself."+str(config.out_dict.values()[i][1])

+" = 0\n") 

            n_max = int(((config.svw.time_settings[1])-

(config.svw.time_settings[0]))/(config.svw.time_settings[2])) 

            process.write("\ndef Process():\n\tvar = 

Variables()\n\toutput_dict = {}\n\ttime_vector = []\n") 

            # 

            # The "activate" and "deactivate" condition are 

initialized and the list is created 

            # 

 

            for i in range(0, len(config.condition_list)): 

                if config.condition_list[i].split(' ', 1)[0] 

== "ACTIV": 

                    act_cont = act_cont + 1 

                    

activate_condition_list.append(str(config.condition_list[i].s

plit(' ', 1)[1])) 

                    

process.write("\tactivate_condition_flag_" + str(act_cont) + 

" = 0\n") 

            for i in range(0, len(config.condition_list)): 

                if config.condition_list[i].split(' ', 1)[0] 

== "DEACTIV": 

                    deact_cont = deact_cont + 1 

                    

deactivate_condition_list.append(str(config.condition_list[i]

.split(' ', 1)[1])) 
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process.write("\tdeactivate_condition_flag_" + 

str(deact_cont) + " = 0\n") 

 

            # 

            process.write("\tfor param in 

vars(var):\n\t\toutput_dict[param] = []\n") 

            if config.hil == 1: 

                port_address = str(config.port_address) 

                baudrate = str(config.baud_rate) 

                process.write("\tport_name = 

hil_connector.port_init('" + port_address + "', 100, " + 

baudrate + ")\n") 

            process.write("\tn = 1\n\twhile var.t <= 

"+str(config.svw.time_settings[1])+":\n\t\t\n")  # start_time 

= time.clock()\n") 

            # 

            # Checking the "activate" and "deactivate" 

conditions 

            # 

            for i in range(0, len(activate_condition_list)): 

                process.write("\t\tif " + 

activate_condition_list[i] + 

":\n\t\t\tactivate_condition_flag_" + str(i) + " = 1\n") 

            for i in range(0, 

len(deactivate_condition_list)): 

                process.write("\t\tif " + 

deactivate_condition_list[i] + 

":\n\t\t\tdeactivate_condition_flag_" + str(i) + " = 1\n") 

        # 

        # 

            act_cont = -1 

            deact_cont = -1 

            nest_cont = 0 

            extra_tab_counter = 0 

            extra_tab = "" 

            exit_condition = "" 

            for i in range(0, len(config.model_list)): 

                # 

                # 

                if  config.condition_list[i].split(' ', 1)[0] 

== "EXEC": 

                    process.write(extra_tab + "\t\tif " + 

config.condition_list[i].split(' ', 1)[1] + ":\n\t") 
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                    process.write((extra_tab + "\t\t" + 

config.model_list[i] + "." + config.model_list[i]) + "(var, 

np)\n") 

                elif config.condition_list[i].split(' ', 

1)[0] == "SKIP": 

                    process.write(extra_tab + "\t\tif not(" + 

config.condition_list[i].split(' ', 1)[1] + "):\n\t") 

                    process.write((extra_tab +"\t\t" + 

config.model_list[i] + "." + config.model_list[i]) + "(var, 

np)\n") 

                elif config.condition_list[i].split(' ', 

1)[0] == "ACTIV": 

                    act_cont = act_cont + 1 

                    process.write(extra_tab + "\t\tif 

activate_condition_flag_" + str(act_cont) +" == 1:\n\t") 

                    process.write((extra_tab + "\t\t" + 

config.model_list[i] + "." + config.model_list[i]) + "(var, 

np)\n") 

                elif config.condition_list[i].split(' ', 

1)[0] == "DEACTIV": 

                    deact_cont = deact_cont + 1 

                    process.write(extra_tab + "\t\tif not 

(deactivate_condition_flag_" + str(deact_cont) +" == 

1):\n\t") 

                    process.write((extra_tab + "\t\t" + 

config.model_list[i] + "." + config.model_list[i]) + "(var, 

np)\n") 

                    # 

                elif config.condition_list[i].split(' ', 

1)[0] == "LOOP_START" or config.condition_list[i].split(' ', 

1)[0] == "LOOP_START_always": 

                    for j in range(i, 

len(config.condition_list)): 

                        if config.condition_list[j].split(' 

', 1)[0] == "LOOP_START" or config.condition_list[j].split(' 

', 1)[0] == "LOOP_START_always": 

                            nest_cont = nest_cont + 1 

                            print "added one: nest_cont = ", 

nest_cont 

                        if config.condition_list[j].split(' 

', 1)[0] == "LOOP_EXIT": 

                            nest_cont = nest_cont - 1 

                            print "removed one: nest_cont = 

", nest_cont 

                            if nest_cont == 0: 
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                                exit_condition = 

config.condition_list[j].split(' ', 1)[1] 

                    if config.condition_list[i].split(' ', 

1)[0] == "LOOP_START_always": 

                        process.write(extra_tab + "\t\tif 

True:\n") 

                    else: 

                        process.write(extra_tab + "\t\tif " + 

config.condition_list[i].split(' ', 1)[1] + ":\n") 

                    process.write(extra_tab + "\t\t\twhile " 

+ exit_condition +":\n") 

                    extra_tab_counter = extra_tab_counter + 2 

                    extra_tab = 

extra_tab_update(extra_tab_counter) 

                    process.write( 

                        (extra_tab + "\t\t" + 

config.model_list[i] + "." + config.model_list[i]) + "(var, 

np)\n") 

 

                # 

                elif config.condition_list[i].split(' ', 

1)[0] == "LOOP_EXIT": 

                    process.write( 

                        (extra_tab + "\t\t" + 

config.model_list[i] + "." + config.model_list[i]) + "(var, 

np)\n") 

                    extra_tab_counter = extra_tab_counter - 2 

                    extra_tab = 

extra_tab_update(extra_tab_counter) 

                # 

                else: 

                    process.write( 

                        (extra_tab + "\t\t" + 

config.model_list[i] + "." + config.model_list[i]) + "(var, 

np)\n") 

 

            #   NEW STUFF 

            

process.write("\t\ttime_vector.append(var.t)\n\t\tfor i in 

range(0, len(config.var_save_list)):\n") 

            process.write("\t\t\tparam = 

config.var_save_list[i]\n") 

            

process.write("\t\t\toutput_dict[param].append((vars(var))[pa

ram])\n") 



120 
 

            process.write("\t\tfor k in range(0, 

len(config.var_plot_list)):\n") 

            process.write("\t\t\tparam = 

config.var_plot_list[k]\n") 

            process.write("\t\t\tif param not in 

config.var_save_list:\n") 

            

process.write("\t\t\t\toutput_dict[param].append((vars(var))[

param])\n") 

 

            process.write("\t\tvar.t 

+="+str(config.svw.time_settings[2])+"\n\t\tn +=1") 

            

process.write("\n\t\tconfig.apb.AIL_bar.SetValue(100*n/" + 

str(n_max) + ")" ) 

            if config.svw.realtime.IsChecked(): 

                #  process.write("\n\t\telapsed_time = 

(time.clock() - start_time)") 

                

process.write("\n\t\ttime.sleep(var.t_step)\n\t\t")   #print 

time.clock()") 

            process.write("\n\t\tvar.IsFirstIteration = 

False") 

            if config.hil == 1: 

                process.write("\n\t\tcommand_string = 

hil_connector.read_values(var, config)")  # <----------- HIL 

                

process.write("\n\t\thil_connector.command_input(port_name, 

command_string)")  #  <----------- HIL 

            process.write("\n\tconfig.apb.Close()") 

            process.write("\n\tconfig.output_dict = 

output_dict\n\tconfig.time_vector = time_vector") 

            if config.hil == 1: 

                

process.write("\n\thil_connector.port_close(port_name)") 

            if len(config.var_plot_list) > 0: 

                process.write("\n\n\t# PLOT SECTION\n") 

                process.write("\n\tif 

len(config.var_plot_list) > 0:") 

                colors = ['red', 'blue', 'green', 'orange'] 

                for i in range(0, len(config.var_plot_list)): 

                    process.write("\n\t\tplt.figure()") 

                    label = str(config.var_plot_list[i]) 

                    color = colors[i % len(colors)] 

                    #  output_plot_list[" + str(i) + "], " 
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process.write("\n\t\tplt.plot(time_vector, output_dict['" + 

str(config.var_plot_list[i]) +"']," + 

                                                            

"label='" + label + "', color= '" + color + "')") 

                    

process.write("\n\t\tplt.grid(True)\n\t\tplt.legend(loc='lowe

r left')\n\t\tplt.axis((0, 10000, 0, 8))\n\t\tplt.show()\n") 

 

            process.close() 

            execute.exec_process() 

 

 

 

def extra_tab_update(extra_tab_counter): 

    extra_tab = "" 

    for t in range(0, extra_tab_counter): 

        extra_tab = extra_tab + "\t" 

    return extra_tab 

 

B.4) self-generated Process file for case study 

 
from Models import Orbit_propagator 

from Models import Sun_motion 

from Models import Sun_vector 

from Models import constant_resistance_load 

from Models import solar_panel_full_1 

from Models import solar_panel_full_2 

from Models import solar_panel_full_3 

from Models import MPPT 

from Models import power_bus 

from Models import battery 

import matplotlib.pylab as plt 

plt.switch_backend('WXagg') 

import time 

np = __import__('numpy', globals(), locals()) 

spr = __import__('subprocess') 

from HIL import hil_connector 

import config 

 

class Variables(): 

 def __init__(self): 

  self.t = 0.0 

  self.t_step = 1.0 
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  self.IsFirstIteration = True 

  self.major_semiaxis = 400 

  self.eccentricity = 0 

  self.inclination = 96 

  self.longitude_of_the_ascending_node = 0 

  self.argument_of_periapsis = 0 

  self.true_anomaly = 0 

  self.load_dissipated_power = 1590 

  self.efficiency = 0.8 

  self.face_position_1 = "x" 

  self.face_position_2 = "y" 

  self.face_position_3 = "z" 

  self.nominal_voltage = 7.3 

  self.capacity = 1800 

  self.depth_of_discharge = 0 

  self.max_discharge_rate = 1 

  self.x = 0 

  self.y = 0 

  self.z = 0 

  self.r = 0 

  self.Vx = 0 

  self.Vy = 0 

  self.Vz = 0 

  self.earth_x = 0 

  self.earth_y = 0 

  self.earth_z = 0 

  self.earth_r = 0 

  self.earth_Vx = 0 

  self.earth_Vy = 0 

  self.earth_Vz = 0 

  self.sun_vector_x = 0 

  self.sun_vector_y = 0 

  self.sun_vector_z = 0 

  self.distance = 0 

  self.sun_vector_magnitude = 0 

  self.sun_vector_direction_i = 0 

  self.sun_vector_direction_j = 0 

  self.sun_vector_direction_k = 0 

  self.load_voltage = 0 

  self.load_current = 0 

  self.solar_panel_I_out_1 = 0 

  self.solar_panel_V_out_1 = 0 

  self.solar_irradiation_1 = 0 

  self.solar_panel_I_out_2 = 0 

  self.solar_panel_V_out_2 = 0 
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  self.solar_irradiation_2 = 0 

  self.solar_panel_I_out_3 = 0 

  self.solar_panel_V_out_3 = 0 

  self.solar_irradiation_3 = 0 

  self.I_out_total = 0 

  self.battery_I_out = 0 

  self.actual_voltage = 0 

 

def Process(): 

 var = Variables() 

 output_dict = {} 

 time_vector = [] 

 for param in vars(var): 

  output_dict[param] = [] 

 port_name = hil_connector.port_init('COM3', 100, 9600) 

 n = 1 

 while var.t <= 10800.0: 

   

  Orbit_propagator.Orbit_propagator(var, np) 

  Sun_motion.Sun_motion(var, np) 

  Sun_vector.Sun_vector(var, np) 

 

 constant_resistance_load.constant_resistance_load(var, 

np) 

  solar_panel_full_1.solar_panel_full_1(var, np) 

  solar_panel_full_2.solar_panel_full_2(var, np) 

  solar_panel_full_3.solar_panel_full_3(var, np) 

  MPPT.MPPT(var, np) 

  power_bus.power_bus(var, np) 

  battery.battery(var, np) 

  time_vector.append(var.t) 

  for i in range(0, len(config.var_save_list)): 

   param = config.var_save_list[i] 

   output_dict[param].append((vars(var))[param]) 

  for k in range(0, len(config.var_plot_list)): 

   param = config.var_plot_list[k] 

   if param not in config.var_save_list: 

   

 output_dict[param].append((vars(var))[param]) 

  var.t +=1.0 

  n +=1 

  config.apb.AIL_bar.SetValue(100*n/10800) 

  time.sleep(var.t_step) 

   

  var.IsFirstIteration = False 
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  command_string = hil_connector.read_values(var, 

config) 

  hil_connector.command_input(port_name, 

command_string) 

 config.apb.Close() 

 config.output_dict = output_dict 

 config.time_vector = time_vector 

 hil_connector.port_close(port_name) 

 

 # PLOT SECTION 

 

 if len(config.var_plot_list) > 0: 

  plt.figure() 

  plt.plot(time_vector, 

output_dict['I_out_total'],label='I_out_total', color= 'red') 

  plt.grid(True) 

  plt.legend(loc='lower left') 

  plt.axis((0, 10000, 0, 8)) 

  plt.show() 

 

  plt.figure() 

  plt.plot(time_vector, 

output_dict['capacity'],label='capacity', color= 'blue') 

  plt.grid(True) 

  plt.legend(loc='lower left') 

  plt.axis((0, 10000, 0, 8)) 

  plt.show() 

 

  plt.figure() 

  plt.plot(time_vector, 

output_dict['battery_I_out'],label='battery_I_out', color= 

'green') 

  plt.grid(True) 

  plt.legend(loc='lower left') 

  plt.axis((0, 10000, 0, 8)) 

  plt.show() 

 

  plt.figure() 

  plt.plot(time_vector, 

output_dict['actual_voltage'],label='actual_voltage', color= 

'orange') 

  plt.grid(True) 

  plt.legend(loc='lower left') 

  plt.axis((0, 10000, 0, 8)) 

  plt.show() 
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