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Introduction 
One of the issues currently more sensitive in the world of electrical engineering is to create more and more 

efficient motors. In fact, the new European targets related to the efficiency are on the agenda (eg Directive 

2005_32_EC_Ecodesign Requirements for Electric Motors_22 July 2009, or the EU 327-2011 - 

Fan Ecodesign).  
This period is therefore distinct from IE4 and IE5 standards as efficiency classes, hence it sees the groups 

of R & D develop new prototypes of motors to be within the strict rules that these efficiency 

classes recomand.  
In addition, as we know, the motors must also be competitive in terms of performance regarding the 

application and economic environment. 

There are three design targets for R&D teams: 

• Performance 

• Efficiency  

• Cost 

In this environment particular interest was addressed by companies to the reluctance motors, particularly 

those with assisted reluctance (PMASR - permanent magnet assisted synchronous reluctance), as it does 

not involve high costs like PMSM motors despite the presence of magnets. In fact they don’t need to use 

these rare earth as the only source of magnetic flux, but the magnets are used here to "assist" the motor in 

the field weakening, making them competitive in these terms to induction motors while remaining 

physically synchronous. They also remain strongly overloadable, the driver must not be 

oversized, contrarily to what happens for PMSM 

motors (surface mounted permanent magnet), mechanically they are very easy to build and their efficiency 

is very high, making them suitable for a type IE4 / IE5 mission. 

The thesis presented here was conducted entirely in the industrial complex of 'ABB  
Vittuone (MI), in the R & D division for application to low-voltage motors (LV - low voltage). 

The elaborate is therefore in line with the questions that a real company poses to herself and it’s useful to 

ensure consistency between its various divisions, which is often a critical passage as the entire motor driving 

system is only adapted, not revolutionized when a company faces technological changes of this type, while 

physically the motor is completely revolutionized. 

This thesis tries to get into the action of the R & D group that meets the objectives set by the 

European community.  
 
At this  document will also be attached most of the Matlab script in the appendix(useful for the 

understanding of the analysis step of the control trajectories) and the description of the calculation sheets 

made. 
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The topics discussed in the thesis are organized in three parts, each divided into several chapters. 

 

Part I is purely introductory, both in terms of the theories that surround the thesis and inherently the 

industrial context where it is made, marking the instruments used to carry out the activities set forth in this 

paper.  
It is divided into three chapters:  
Chapter 1 It is introductory about the basic theory, which is necessary for the understanding of the thesis, 

of the motors described: PMASR and, in general, reluctance motors (SynRel) that includes the first ones.  
Chapter 2 starring the ABB business environment, in particular the programs and calculation tools available 

in the office, highlighting the potential and limitations.  
In Chapter 3 will be described the objectives to which IE4 and IE5 classes set. Then, it will be described the 

range of prototypes developed by R & D group ABB, seeing in particular the delicate phase of optimization, 

which is fundamental for the company to reduce production costs, but annoying from the point of view of 

maintaining the characteristics in terms of efficiency, performance and mechanical safety coefficient. It will 

also make a short note on the Pareto method with regard to the used optimization methods. 

 

Part II finally enters into the heart of this elaborate. Here are described in chapters the steps for 

characterizing the Max Torque per Ampère control characteristic (MTPA) by finite element analysis (FEM) 

with high precision. After considerations on the distance of LM characteristics (loss minimization) from 

MTPA at different speeds, and the influence that the temperature has on the MTPA trajectory, the last goal 

of the second part is to highlight any difference between the trajectories derived from FEM time 

dependent analysis, whose trajectory must be searched "manually", and the trajectory resulting from an 

analytical study on the magnetic flux table by magnetostatic simulations, mediated and not with respect to 

an excursion angle of 60 electrical degrees of the rotor to evaluate the effects of stator on the useful 

magnetic flux in the gap.  
This is divided into six chapters:  
Introductory to this second part, Chapter 4 tries to clarify what the company wants and why, thus 

introducing and justifying the work that was proposed to carry out during this thesis activity.  
Chapter 5 describes the method used to search the MTPA trajectory from time step simulations, doing as 

a brief overview regard to the FEM techniques.  
Chapter 6 performs the method of manipulation of the information enclosed by the outputs of a 

magnetostatic simulation, to extrapolate information useful to the description of the minimum current 

trajectory even for high levels of overload.  
Chapter 7 will use the same method of manipulation of the magnetic flux table in direct and quadrature 

axes, but this time the table will be made from about 260000 simulations which mediates the effect that 

the teeth and the stator slots have on the magnetic flux, as well as the effects saturation of axis and cross 

effects, to get more and more physical considerations and make the machine less ideal. The effects that the 

ripple of the rotor flux has on the MTPA characteristic comparing the two minimum current trajectories 

resulting from magnetostatic simulations will be highlighted here.  
Chapter 8 will take the scruple to see how the characteristic of a minimum current control that maximizes 

the torque is influenced by the temperature; it also highlights, through time step simulations, the distance 

that exists between this trajectory and those with maximum efficiency at different speeds.  
In Chapter 9 will be compared the trajectories from the two types of FEM simulation and it highlights the 

correction of MTPA trajectory previously found in step time, due to an error on identifying the direct axis 

committed by the simulation program.  
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In Part III, it will remain to be checked if the simulations correspond at which pilots the ABB drive 

with its CDT (Direct Torque Control) control technique.  
The true control characteristic will then be compared to those derived from FEM simulations assuming the 

reasons for the deviations, trying to enter into the control logic implemented by the ABB drive.  
It is divided in two chapters:  
In Chapter 10, we will describe the test bench and measuring instruments, accompanied by photos. It also 

describes the modus operandi used to trace the searched control feature.  
The last chapter of the elaborate, Chapter 11, will compare the three trajectories found highlighting the 

distances and the points instead of closeness, assuming how the ABB drive acts in order to command the 

PMASR motor to the MTPA logic, even in overload. 
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Chapter 1 

PMASynRel  

Construction & Control Theory 
This chapter, as mentioned above, will give the basics of theory useful for understanding the entire elaborate, 

assuming consolidate, even superficial, the functional knowledge of an asynchronous or synchronous 

permanent magnet machine. 

It will start by describing the electrical and magnetic formulations of the reluctance machine and then its 

constructive aspects, after that it will continue with the modification of these for the permanent magnet 

assisted machine. After finishing this part, you will see models in the dq axis of the machine until the 

output of the equivalent circuits in the two axes, direct and quadrature, with particular attention to the 

vector diagrams.  
It will then be described the vector control by describing the control technique following the MTPA and 

MTPV deflection trajectories,  

 
The final part of this chapter will make a direct comparison between the various types of motors and the 

one considered here, highlighting their conveniences and disadvantages.  
 
For further information, refer to the bibliographic notes. 

  

1.1     Electro-magnetic model of SynRel machine on dq axes 
  

1.1.1        Background 

 
The peculiarity of this motor is the rotor; we don’t have, in fact, neither permanent 

magnets nor coils, but its geometry gives it a strong anisotropy.  
We will refer to the simplest anisotropic structure, the classical "bone structure", which will prove 

completely unsuitable for applications in reality, but which is useful for understanding the basic 

concepts of physics related to the operation of this particular machine. 

 

 
Fig 1.1: salient pole structure 
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1.1.2     Mathematical model               
Let us first remember the equations valid for quadrature axes for an induction motor: 

  

 Assuming, 

T – torque 

P – pole pair �� – stator flux �� – stator current vector � – angle between rotor flux vector and its vector on dq axes � – angle between rotor and staror’s flux vector ��− stator inductance ���/isq – the axes components of is vector 

   � = 
� ∗ 
 ∗ ��� ∧ ��� = 
� ∗ 
 ∗ |��| ∗ |��| ∗ ����� − ��  (1.1) 

 ��� = �� ∗ ��� = �� ∗ ��� (1.2) 

 ��� = � ∗ �� ∗ ��� = �� ∗ ��� (1.3) 

 

 

From these equations it is important to observe how the motor is asynchronous, however 

constructively totally isotropic, modeled in quadrature axes enjoy a certain " equivalent 

anisotropy " due to the presence of rotor currents (generated due to the non-synchronism 

between the two windings), where Ld >> Lq because �  is about 0.05, that represent the 

ratio ������ ;  

This equivalent but non-physical anisotropy guarantees to the asynchronous motor to 

provide high performance. 

 
The question that comes is: if rotor currents did not circulate, but I still managed to 

guarantee � quite similar to the induction motors ones only constructively, for example 

privileging or preventing rotor flow in an axis rather than in the other by lowering thus, or 

raising its inductance? 

  

The figure that appears in our minds, the classic bone structure mentioned before, will let 

us understand the mathematical model of the machine.  
On direct axes the inductance matrix is decoupled, in fact there are no mixed diagonal 

terms, the axes are not mutually coupled and the matrix simply becomes: 

 

��� 00 ���     (1.4) 

 

From here, the equations:  �� = �� ∗ �� (1.5) �� = �� ∗ �� (1.6) 

 

  

As can be seen, the equations in quadrature axes are the same as for the SMPM motors, in 

fact the machine that we analyze is still synchronous and the mathematical model can follow 
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the classic formulation of these machines, but with the absence of the direct-axis flow 

component of the magnets, here not present for the main component on axis d (which we 

remember being the axis with minimum reluctance). 

 

By analogy to the brushless, the electric equations and the expression of the torque 

in dq axes will be as follows, where it is simply located the portion of magnetic flux equal to 

zero (�� = 0) because in the motor we study there aren’t the permanent magnets and the 

relative contribution: 

 ��� = ���� + �!���" + #$���  (1.7) 

 ��� = ��� ∗ ���   (1.8) 

 � = 
� ∗ 
 ∗ ���� ∧ ����  (1.9) 

 

where the multiplier factor j $;indicates the term motion because it is modeled on speed-

rotating axes, at speed $; 
 

 

 

 

1.2     Constructional aspects of the Synchronous Reluctance Machine's rotor 
  

1.2.1      Performance Analysis of Salient Pole Rotor 

After modeling, briefly, the particular electric machine, we extrapolate some more information from 

the relationship that indicates the torque: 

� = 32 ∗ 
 ∗ ���� ∧ ���� = 32 ∗ 
 ∗ ��� ∗ �� − �� ∗ ��� = 32 ∗ 
 ∗ ��� ∗ �� ∗ �� − �� ∗ �� ∗ ��� 

 � = 
� ∗ 
 ∗ ��� − ��� ∗ �� ∗ ��;   (1.10) 

 

The need to maximize the difference  ��� − ��� is evident as well as having low ratio ������ as 

mentioned in the previous chapter when comparing the performance with the induction machine. 

The classic two-pole structure we have referred to the start is inadequate for such a mission. Let's 

see why: 

                                                                           d 

                                  β 

 

 q 

 

 

Indicated with ), the anti-clockwise rotation angle from d axis. 
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β is the pole step and doing the assumption that the magnetic flux is just below the pole step, we will 

have that: 

1. Ad will be proportional to *+��)� 

2. Aq will be proportional to ����)� 

Where Adq is the magnetic potential vector. 

Let us see the functions of the magnetic fluxes in the dq axes under the pole, given a magnetic 

potential distribution as described above: 

 

 

     

(a)                   Distribution on d axis 

 

(b)                   Distribution on q axis 

Figure 1.2: magnetic flux distribution under the pole step. 
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The inductances of the two axes will then be proportional to the square of the potential magnetic 

function of the respective axis integrated along the respective path where there is a magnetic 

flux; we have to refer to the image above: 

��~ - cos��)� �)1�
21�

= - 1 + cos�2)�2 �)1�
21�

= β2 + sen�β� + sen�β�4 = β2 + �8��β�2  

  
��~2 - sin��)� �)1�

: = - 1 − cos�2)�2 �)1�
21�

= β2 − sen�β� + sen�β�4 = β2 − �8��β�2  

The goal is to maximize the difference ��� − ���; then we can find the maximum of the function: 

���� − ����; = 0 

�<�8��;�=�; = *+��;� = 0 

; = >2 

hence, the polar step that maximizes reluctance between the two axes is ?� radians. 

Having established and maximized the difference between Ld and Lq, it remains to be seen whether 

their relationship is competitive with respect to that of the asynchronous machine: 

�2@ = ���� = ABCDE�A�A2CDE�A� = FGB@FG2@ ≅ 4.5 ≪ 20 of the asincrhonous machine  

It is therefore inappropriate the use of high-salient geometry for the construction of a reluctance 

motor. 

 

1.2.2   High anisotropy structures 

The principle of these particular structures is to isolate magnetically different segments dividing the 

rotor into several parts. The purpose is to drive the direct axis inductance �� → M, mutual inductance of the asynchronous motor, and �� → 0; 

 

Fig 1.3: High anisotropy structures 

 

Magnetic saturated 

 bridge  

Flux barrier 
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Direct-axis induction depends exclusively on the induction on the gap, as it did for induction 

machines and �� → M as wanted; in addition, the quadrature axis sees only the circulation flow 

due to the air barriers present in the structure and "counts" the amount of air that encounters: the 

distribution of magnetomotive force in axis q polarizes the rotor; increasing the number of flow 

barriers we decrease more and more the rotational flow rate in q-axis. 

 

Fig 1.4: distribution of MMF and its flow in q axis 
as the number of flow barriers increases 

Ideally, if the flow barriers tended to an infinite number, the circulation flow would be reduced to 

zero and �� → 0. 
Obviously, there is a mechanical limitation in order to do this, also they would lead to high ripple of 

anisotropic torque to be compensated due to the interaction with the statoric slots. 

 

1.2.3   Metal sheet  lamination techniques 

 Axial lamination 

 

 

 

Fig 1.5: Diagram of a rotor pole with axial lamination 

 

 

Supporting amagnetic 

structure 

Metal sheet pack 

Fixing interposer 



19 

 

The most obvious advantages of this structure are essentially two: 

1. very high number of segments, which guarantees high anisotropy; 

2. Thickness of the magnetic material sufficiently high, which guarantees high ratios ������ and 

consequently high anisotropy. 

However, there are numerous disadvantages, in fact, in addition to a non-conventional lamination 

method, this type of structure does not allow skewing practice and, last but certainly not least, 

doesn’t cut pathways of parasitic currents.  
               
Another disadvantage of this technique is the enormous losses in the iron which it would go 
encounter during its use.  
In fact, the magnetic potential jumps would be high when the considered magnetic sheet goes from 

being under a stator tooth (high induction level) to a slot (very low magnetic flow). The high 

frequency at which this magnetic potential jump occurs would lead to very high losses in the iron, 

losing efficiency. 

               v=ωr 

 

 

 

Fig 1.6: high frequency magnetic potential jumps 

 

 

 

 

 

 

 

 

 

 

 

  

Magnetic sheets 
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Tooth  
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Cross laminating 

 

Fig 1.7: transverse lamination structure 

The most obvious advantages is the using of cross-lamination method as it is conventional, cuts the 

paths to parasitic currents and optimizes each magnetic sheet of magnetic flow so as to improve its 

permeance; for the latter reason, Bq()� is very close to the trend of an ideal sinusoid, as a direct 

consequence of having very low torque ripple despite the anisotropy is not altogether distributed. 

 

  

  

 

Ultimately, with both structures are reached values of �2@ = ���� ≅ 10, however lower of the 

asynchronous machine, but constructively we won’t do anything anymore. 

I advance here the key factor that allows the motors of this type, including assisted PM, to compete 

in performances with asynchronous motors: without rotor windings, these don’t have rotor 

resistance (Rr = 0) and consequently there are no period of electrical transients, as well as the 

losses for Joule effect in the rotor; that is, despite the fact that these motors always need 

magnetizing current in quadrature axis like asynchronous machines, the control may vary to 
pleasure both d and q, because they don’t generate delays in control because the rotor flux that 

derives from it does not follow transient and it can, therefore, vary differently from what happens 

with asynchronous motors, where the control sets a certain value of  �r and therefore of the id (field 

oriented control). 

In these machines, the cross - saturation effects can’t be neglected:  the current in an axis always 

has demagnetizing effect for the other axis.  
This means that the axis magnetic flux will not only affected by its own current axis, but will also 

vary depending on the presence or absence of current in the other axis; this phenomenon follows 

the physical principle of equality of coenergy, namely  ��!����N�� = ��!����N��   (1.10.1) ; 

  

 

Iron bridges Magnetic bridges 

Magnetic structure 

Air flux barrier 
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Below the images taken directly from the prototype motor that the thesis has as main object that 

makes it well-known as what just affirmed. 

 

(a) cross saturation                                                             (b) cross saturation 

q axis                                                                                       d axis 

       Fig. 1.8 

 

The two areas that are identified between the characteristics 0A and 7A in the two plots must be the 

same for the principle of coenergy before defined. 

 

 

1.3  From SynRel to PMAssistedSynRel 
 

Switching from reluctance to reluctance rotors assist by magnets is constructively simple and 

consists in inserting into the axis with most reluctance value some permanent magnets.  
Let’s see how the expression of the torque in this case changes and the various pros and cons of 

this choice in terms of performance, flux weakening and efficiency. 

 

 

1.3.1   Used Convention 

 

Before starting to analyze what the presence of magnets involves, we need to have the understand 

about the different conventions that can be used for this type of machine. 

There are, in fact, two different ways of thinking about which is the quadrature axis and which is the 

direct. 

  

Indeed, the presence of magnets would suggest that, as was in the case of SMPMs, these are oriented 

as the direct axis; if instead we considered the definitions of the two axes more strictly, that is the 

one with a minimum reluctance and the one in quadrature with maximum reluctance, the magnets 

would be considered in the quadrature axis. 
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The convention used in this paper is the one that sees the magnets oriented as the direct axis, this due to 

the fact that in ABB it is the most used. Any switch to other convention during the elaborate  will be 

announced time to time. 

 

 

 
Fig. 1.9: Used Convention 

 

1.3.2  Machine performance and efficiency considerations 

 Let’s see how the torque equation changes for an assisted reluctance motor: 

   �O8P       = 
� ∗ 
 ∗ Q��� − ��� ∗ ��R ∗ ��                 (1.11) 

  �SMTU� = 
� ∗ 
 ∗ Q�� + ��� − ��� ∗ ��R ∗ ��      (1.12) 

 

As evident from the expression of torque, which usually comes from the energy balance on 

machine, the presence of magnets adds torque due to the isotropy given by the presence of them. 

 
Differently from SMPM machines, the portion of magnetic flux from the added magnets can’t be 

high (like rare earth magnets) due to the fact that the axis to which they are oriented (the direct 

one, for our convention) has a high magnetic reluctance due to geometry and it could be saturated 

under the action of the magnets.  
To reinforce this last statement, let’s think about the machine flux weakening.                
In fact, the key reason for adding permanent magnets is to add direct axis flux, in order to increase 

machine constant power range. In order to weak the flux in the gap of the machine, we have to add 

demagnetizing current: if the flow deriving from magnets �� was too big, the demagnetizing 

currents would be as high as the flux of the magnet is high; the consequence would be a drastic 

drop in efficiency, depending on its quadratic function.  
The most used magnets are ferrite, the choice is justified by the last observations.  

                                                                           
    fig 1.10: magnetic material hysteresis cycle 
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Wanting to summarize the advantages of adding permanent magnets to the direct axis, these are 

essentially 3: 

1. Increased cosϕ and therefore the available torque 

2. Increased constant power range (flux weakening characteristic) 

3. Direct consequence of the first, the ratio 
VWVXY  for assisted reluctance motors is very similar to 

the induction motors ones, with consequent advantage for the inverter that doesn’t need to be 

oversized. 

  

On the other hand, the controversies resulting from this change can be summarized in four points: 

 

1. Increased Joule loss for high speed as it increases quadrature axis current 

2. The control is very complex, such as the inversion of the torque 

3. UGO problems (uncontrolled generator operation), although not to the same dimension of 

SMPM because (��PMASR << ��SMPM) 

4. Ferrite thermal drift, which will limit the field weakening once certain temperatures have been 

reached 

 

1.3.3  Vector diagram in dq axes and electrical equivalent circuits 

The diagrams refer to the other convention, the one for which the magnets are oriented along the 

axis in quadrature; the transition from one convention to the other is trivial and it involves the 

following passage for obvious geometric issues:                    

 � → �   � → �−�� 

Vector diagrams derive directly from the mathematical model of the motor already seen, except for 

the change of convention. 

 

Fig 1.11: vector diagram flows and currents PMASR 

The vector diagram would be the same as simple reluctance motors, but with the addition 

of magnetic flux we will have a different vector and �̅O8P → �̅[+[ = �̅ + �̅��. 

 The trajectories in the figure are those that are maintained by the constant current, that is: 

��� + ��� = *+��[\�[  (1.13) 

!�G
�� + !�G

�� = *+��[\�[   (1.14) 

 The second equation represents an ellipse, the first a circumference. 
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Ideally, following the trajectories shown in the figure, �̅[+[ never meets the bisector of the first 

quadrant, point at which the maximum voltage value would be to a certain  speed and after which 

the machine will no longer be a feature  X] constant, the flow will have to go down to keep the voltage 

constant, as well as the current, in front of a further increase of speed. Ideally, therefore, the speed 

range of the reluctance motor assisted is infinite. In truth, the phenomena of thermal drift of the 

ferrites limit this hypothesis and the deflection range will be about the same as the induction 

motors. These statements are anticipations of what will be described later when it comes to control 

trajectories but that help to understand the vector diagram. 
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1.4 Control Trajectories 
  

The following discussion does not have the purpose of studying in detail the control loops for an 
assisted reluctance motor, but it is intended to provide the basis to the reader about the 

trajectories of control according to the mechanical angular velocity of the rotor, thus justifying the 

course of the electromechanical torque delivered according to the angular velocity.  
 
The key places for a vector control are three: 

  

              -MTPA (maximum torque per amp) 

              -MTPV (max torque per volt) or MTPF (maximum torque per flux) 

              -LM (loss minimization) 

  

These three trajectories always identify a characteristic of current in a dq plane and the switching 

from one to the other is detected by physical states, such as the maximum value of voltage reached 

by the converter or the achievement of the maximum current. 

It is important to note that, as they are defined, the MTPA feature is the one that minimizes the Joule 

losses, while MTPV is the one that minimizes losses in iron; the LM trajectory itself will find the two 

closest to one rather than to the other depending on the motor rotor speed. 

  

Below you can see a vector diagram in dq axes that highlights the first two features, speed-

independent. 

NB: the figure refers to the convention where the magnets are directed towards the axis in 

quadrature. 

   

 
Fig 1.12: motor control trajectories 

 

 The current and torque constant locations are also highlighted. 

 

1-MTPA    (0 < $ < $1)    

From 0 to $1 , for any torque required above 240Nm, the drive checks the motor MTPA 

characteristic for which torque is required for the motor, the current is controlled in module and 

phase so that it lies on the characteristic MTPA. The torque stays constant and the speed rises. The 

power consequently rises.  
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2-FLUX WEAKENING  ($1 < $ < $2) 

By increasing the speed, reaching the maximum power that can be delivered, it increases the 

voltage up to become the maximum for the driver. You will no longer be able to work 

second constant flux logic (� ≅ #$�, neglecting the stator resistance) and it must be decreased 

entering in flux weakening control region. During this phase, the module of the current is kept 

constant and the voltage is maximum. The torque, as seen from the figure, will drop in particular 

with hyperbolic trend, proportional to $2@ and the power will remain constant, making the coarse 

hypothesis that the PF of the machine does not var y and it keeps constant throughout the feature.  
Keeping these conditions would lead to enormous iron losses and almost an instantaneous 

falling of mechanical feature. 

  

 

 

  

3-MTPV  ($2 < $ < $�\_) 

This phase coincides with the maximum point of the machine static feature, which corresponds to 

the voltage that you would have to maintain the maximum torque depending on the speed of the 

motor, that corresponds to the best magnetic flux condition, in module and phase.  
During this phase, the voltage remains high but the current module lowers inversely proportional 

to the angular speed of the machine; the torque trend is inversely proportional to the square of the 

angular velocity of the torque and consequently lowering power. 

 

  

1.5  Performance comparison between AC motors 

 
The comparison in terms of performance is done based on the torque density of the machine, that 

is, referring to a current, considered equal to the required torque, the dimensions of the machine 

and the cooling conditions, the ratio between the torque identifying currents for the various types 

of motors. All this is equivalent to making comparisons in terms of efficiency in delivering torque 

under stalled conditions. 

` = ababBW� = cbcbBdefg
      (1.16) 

 The maximum performance condition will be: 

max ` → max  �0k� 

  

Let us analyze the machines to be compared, first considering the stator differences, then those 

rotor. 

The stator is identical for all types of AC motor (induction, brushless, synchronous reluctance and 

synchronous reluctance assisted); saying that the stator is the same for all, means to say that the 

induction peak at the air gap Bmax is common to all. But this doesn’t mean having the same flux!  

This is because the presence of magnets or less influence the waveform of the air gap induction, 

making it more or less wide (Brushless have in fact the higher flux in the gap via the use of rare earth 

magnets, tracing the characteristic waveform of flux helmet under the gap).  
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For this reason, simple coefficients are defined: 

Brushless:           �l~ml ∗ ��l (1.17) 

 

Induction: ��~mO ∗ ��� (1.18) 

 

Reluctance:  �O~m�� ∗ ��O (1.19) 

 

The three coefficients are: 

- 1 <  ml < 2/√3  

- mO < 1~√0.94 

- m�� < 1~0.9 

 

The rotor, on the other hand, is not equal for everyone and it is responsible for a different 

formulation for the torque T: 
 �l = 
� ∗ 
 ∗ �� ∗ ��l           (1.20) 

�� = 
� ∗ 
 ∗ mO ∗ �O ∗ ���           (1.21) 

�O = 
� ∗ 
 ∗ ��� ∗ ��O − �� ∗ ��O�~ �1 − ����� ∗ �� ∗ ��O → �O = 
� ∗ 
 ∗ m�� ∗ �� ∗ ��O (1.22) 

 

Let us assume now that all the motors produce the same power lost Wd: 

 

 k� =
qrs
rt kl = 
� ∗ � ∗ ��l2

kO = 
� ∗ � ∗ ���O2 + ��O2�
k� = 
� Q� ∗ ����2 + ���2� + �O ∗ �mO ∗ �����R

 

 

In fact, the brushless does not require a direct axis current because it is already excited by his 

surface mounted magnets; the induction motor, in addition to the stator windings, also has rotor 

motors and the dissipated power is distributed between the rotor and the stator.  
 

 

To continue the discussion, empirical values will be used that make sense of the comparisons that 

we want to do; generally, it will be assumed the N�N�  ratio; as the radial dimension increases, id 

proportionally decrease and therefore the ratio 
N�N� will do the same: this ratio for reluctance 

machines is supposed to be 0.4. In addition to the ratio between currents, the relationship 

between rotor and stator resistance of the asynchronous will be assumed as uvu  0.8, which can be 

justified by averaging between starting values and nominal values.  
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kl = kO 

��l2 = ��O2 + ��O2 = �1 + 0.4�� ∗ ��O2 → ��l = x1 + 0.4� ∗ ��O → ��O ≅ 0.93��l 

 

kl = k� 

��l2 = ���2 ∗ y1 + �O� ∗ mO2z + ���2 = ���2 ∗ {y1 + �O� ∗ mO2z + 0.4�| → ��� = 0.7��l 

 

This means that, to have the same losses that would occur in a brushless motor by a current path 

of 1 Ampère, 0.93A would be enough for a reluctance motor or even 0.7A for one by induction.  
For assisted reluctance motors, the only disadvantage that they have with respect to Brushless is 

the presence of the magnetizing current, however with a ratio lower than 0.4 between the currents 

of two axes in quadrature. Ultimately, it would take about 0.97A to have the same losses of 

brushless paths by 1A. 

 
The considerations made so far are indicative, of course, of the machine returns.  
Below, we see a table that also highlights the costs and range of flux weakening: 

 

 

 T0  Deflux (
VXYVW ; c�c@) Affordability Applications 

NdFeB 1 / -- Assi 

Ferrite 0.7 / +- Assi 

Induction 0.55/0.6 2;4 ++ Mandrini 

Reluctance 0.7/0.75 3;4 ++ Assi/Mandrini 

PMASR 0.9 <2;4 +- Mandrini  

 

Table 1.1  
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Chapter 2 

ABB  

Industrial contest and programs used 
 

In this chapter we will make a general statement of the industrial context in which the document was created, 

both programs were used. This is to allow the reader to have an idea of the tools necessary to do an analysis 

similar to the one that it will be in the second part of the elaborate to give knowledge about how a large 

company like ABB will arrange for meet European development targets. 

 

2.1 R&D team 
The team of R & D (research and development) is a team that aims to keep pace with today's 

technology, developing innovative design of electric machines and testing them in view of a 

possible industrial production.  
The team receives ABB internal orders for special applications, in this case all the motors are 

developed for low-voltage applications (220 / 380V), with various power range, from hundred W to 

nearly a hundred kW.  
 

2.2 Used program 
The programs used are essentially two, one used for FEM simulations, in turn internally composed 

of multiple programs that carry out separate phases of processing and post-processing, and the other 

used for the processing of the data, MATLAB; as well as for data processing, MATLAB was also used 

to invoke external programs doing in a loop some callout according to precise logics, manipulating 

the input data to the simulation. About MATLAB and its use, see the website of Mathworks, readily 

available from any search motor. 

2.2.1  Adept for FEM simulation 

The simulation program used is internal ABB.  
  

Great potential of this software tool is being able to automatically generate the geometry for 

analysis by providing only a few key dimensions of the stator and rotor structure to be studied with 

the finite element analysis.  
  

The screen interface is simple and intuitive, here you can modify the simulation data, being able to 

vary the supply voltage, the mechanical power output and the target frequency, but not only: you 

can vary the geometry, the rotor temperature and stator system, you can select a time dependent 

simulation or static depending on the output of the useful simulation.  
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Below you can see a flow chart of how Adept works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig 2.1: ADEPT flow chart 

 

Looking the image above, we should focalise our attention to the FCSMEK blocks. This is the core 

program about ADEPT FEM simulations.  
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ADEPT.EXE 

FCSmek.EXE 

Results.dat 

results.txt 
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2.2.2  FCSmek input 

 

The FCSmek calculation profile in Adept is divided into four groups of parameters; operating points, 

geometry parameters, calculation parameters and time stepping parameters. 

 
Fig 2.2: Calculation profile of FCSmek 

 

Operating points 

Single point   

Single point from zero field: This can be used for example to calculate dynamic start of a motor with 

 time stepping analysis using motion equation.  

 Nominal point 

 No-load 

 No-load open circuit: current supply with zero current. Current supply with zero current. 

 Locked rotor: operating point where slip is 100 % 

 Tmax: operating point which gives maximum torque 

 Partial loads: operating points for 25 %, 50 %, 75 % and 125 % of nominal power. 

Saturation curve: for induction machines this means no-load current and power as function of 

supply voltage. For synchronous machines this means open-circuit voltage and short-circuit current 

as function of field current curves. 

Id/Iq characteristics of SM: table of direct and quadrature axis flux as a function of direct and 

quadrature axis currents is calculated. This task is valid only for synchronous machines and its main 

use is to provide parameters to people who tune frequency converter parameters. 

Torque curve as function of rotor slip 

Torque curve as function of rotor angle 

Geometry parameters 

Use existing geometry data: It is so that after each calculation Adept reads from calculation folder 

FCSmek geometry definition files to Adept as parameters. If this option is enabled Adept will write 

those files to calculation folder before next calculation. This is useful behaviour if user has modified 

the geometry manually and wishes to use the same geometry also for next calculation.  

See next option for more details on geometry modification. 
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Edit geometry before calculation 

Use advanced mesh generator 

Order of elements: This defines the order of the elements to be used in the simulation. The 

recommended selection is to use second order elements. Experience has shown that by using third 

order elements one does not gain much in accuracy but loses a lot in simulation time 

Mesh refinement: Factor for increasing the mesh density near air-gap region. 

(a)

(b) 

Fig 2.3: (a) output geometry (b)input data for auto generation of geometry  
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Calculation parameters 

 

That parameters control the calculation process. 

 

Method: This defines the simulation type, time harmonic or time stepping 

Computing resource: This defines where the calculation is done. Default option is to do the 

calculations in the local computer; there is the option that can use remote environment in order to 

not use the local CPU and run more process in parallel. 

 
 

Fig 2.4: Condor: remote CPU usage 

 

Time stepping parameters 

 Steps per period: the number of time steps used per every period of supply. is important to specify 

 here high enough number to catch all phenomenas user is interested. This number for example 

  directly how high frequencies are available after FFT spectrum analysis. 

 Periods: this defines how many supply periods the simulation is run 

 Power iteration tolerance: This value is used to determine how accurately the power iterations will 

 be done. Maximum allowed power error as percentages of nominal power 

 Line voltage: this option defines what kind of supply will be used. 

 Spectrum of the radial stress or flux density in the air gap 

 Magnetic force calculation 

 Number of harmonic components in iron loss computation: the default value here is 100 harmonics 

 in iron loss components. 
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2.2.3  FCSmek output 

 

The outputs of the program are derived from processing and post processing practices and they 

depends on the request made as input for the program. They are organized into text files and Excel 

files, each containing different information, output from the magnetostatic simulation or those of 

the simulation time stepping. The following images are going to show some standard outputs that 

allow us to do both evaluations snapshots or data processing. 

 
                                       (a) results-1     

                                          

Fig 2.5: output for immediate analysis  
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Numerous other output will be used to do frequency dependent analysis of electrical, mechanical 

and magnetics quantities, that are also useful to build the flux matrice, also considering the cross-

saturation effects and the possible thermal drift of the permanent magnets.  
 
Here are some plots resulting from these outputs: 

 
Fig 2.7: Output that evidence the harmonic distortions 
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Another useful tool that FCSmek provides is the PostFCSmek ; it graphically illustrates the geometry 

highlighting the characteristics of both mesh and physical. It shows precisely, using chromatic scales, 

the density of the losses on the motor geometry, the one of the magnetic flux, the temperature 

distribution, the geometry and the division into areas for the study FEM, the current density on the 

cables in the stator slots etc. 

The following images are going to show some outputs examples from PostFCSmek.  
 

                      

           

 

 

 

 

 

                       (a) Temperature distribution   (b) mesh result                                   

 

 

 

 

 

 

            

(c) Complete machine materials    

                                             

Fig 2.8: (a) (b) (c) PostFCSmek output 
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2.2.4      Adept optimization tool 

One of the most powerful tools, is surely the one for the optimization phase.  
Following optimization techniques according to genetic algorithms and using for example the 

Pareto method (which will be mentioned on the third chapter), this tool is able to optimize 

objective functions building an extremely high number of individuals and generations.  
 
Of course, the output of the optimization tool can be varied depending on how you are going to set 

the optimization parameters; it shows an example in the picture, which anticipates in part the third 

chapter, but it is useful to understand this practice.  
 

 

 
Fig 2.9: optimization tool output 

 

In the picture the target to which the simulation aims are vertically highlighted, the lines that 

continue horizontally represent the best individual of each generation. In the upper figures, the 

points in blue and red represent the population of a generation, the red ones are the individuals who 

exceed a certain level of fitness in the environment set where they "live" (with environment we 

intent a complex system of inter-related functions). 

 

2.2.5       Limitations 

The limitation that I have encountered in using this powerful software is the fact that it can’t carry 

out simulations to find the feature that maximizes the torque for the same current module (MTPA) 

or other characteristics like that. It is not thought to control studies on the motor, but to make as 

easier as possible the construction of the electric motor.  
 
The search for that kind of features has been made, therefore, manually, searching the points of 

interest by doing simulations in groups between two limit supply voltages, with a certain 

discretization of the voltage set.  
Despite the speed of single simulation, this type of research activity was too slow.  
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A second limitation of the program, is that the output of the magnetostatic simulations, to define 

the matrix of the machine flows, don’t mediate the effects that teeth and stator slots have on the 

state of flows. The simulation can’t provide, in addition, a complete matrix of flows but leaves 

some elements at zero when there is a high level of saturation of the iron.  
This function also doesn’t make possible to customize the range of currents you want. In Chapter 7 

will be described how to solve all these problems, because the processing of the provide data 

makes possible to find all the machine control trajectories.  
Furthermore, there is no correspondence between the matrix of inductances and those of the flux 

from the same simulation. It must be a program bug.  
 

 

Another bug concerns the direct axis detection for the simulations time stepping and 

magnetostatic; it will be seen in chapter 5 how this error can be easily remedied using a simple 

spreadsheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

Chapter 3 

SynRM2  

Objective, design and optimization phase 

 

This chapter will describe the different stages faced by the R & D team for the development of high-

efficiency motors, passing from mechanical considerations to energy considerations, as well as the quality 

in the torque developed. It will then be taken, for example, a prototype, following each procedure in detail. 

ABB calls the reluctance motors assisted by magnets SynRM2 instead of PMASR.  
Firstly, it will be clarified what we mean when we talk about efficiency classes, in particular regarding the 

IE4 and IE5 ones. It will also be made an introduction about the used optimization technique.  

 

 

 
As we know, the energy efficiency of an electric motor is very important, considering that about 

75% of the electric energy consumed in the industrial sector is due to deliver the power to the 

electric motors.  

 

The standard EN 60034-30 determines a classification of the performance of motors according to 

the IE code (International Efficiency):  

1.     IE1 Standard;  
2.     IE2 High;  
3.     IE3 Premium;  
4.     IE4 Super Premium; 

 

 

 
Fig 3.1: Efficiency class for a 4 poles motor, 50 Hz 
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It is expected the introduction of IE5 level in a forthcoming edition, with the aim of further reducing 

losses by 20% compared to IE4 class.  
 
But what are the motors that fit the standard?  

The new standard includes a wider range of products. The power range has been extended and 

starts from 120 W up to 1000 kW. All types of electric motors in AC fall in the standard if they are 

dimensioned for direct operation by the network. This includes the following types:  

- electric motors with single speed (mono and three-phase), 50 Hz and 60  
- 2, 4, 6 or 8 poles  
- nominal power PN from 0.12 kW to 1000 kW  
- nominal voltage UN exceeding 50 V up to 1 kV  
- motors capable to operating in continuous service to the respective nominal power with over      

temperature value within the limits of the specific thermal insulation class  
- marked motors with an ambient temperature range between -20 ° C and + 60 ° C  
- marked motors with a maximum altitude of 4000 m above sea level. 

The following motors are not included in the standard IEC / EN 60034-30-1 

- single speed motors with 10 or more poles or multi-speed motors  
- totally integrated motors in a machine (for example, pumps, fans or compressors) that can’t be 

tested separately from the machine  
- electric motors self-brake, if the brake can’t be dismantled or separately power supply.  
 
How is it marked a class IE? 

The lowest efficiency value of voltage combinations listed and the relative IE class are marked in 

the motor nameplate. 

Reported below is the table according to IEC / EN 60034-30-1: 2014 regarding the efficiency of the 

motor based on the number of poles and the output power: 

 
Fig 3.2: efficiency value based on poles number and mechanical power output (from ABB web site) 
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3.2 SynRM2 ABB 
This range of motors is classified according the size identifiable through the rotor height from the 

ground.  
They are distinguished in 6 sizes:  

- H71 

- H80 

- H90 

- H100/112 

- H132 

- H160 

 

For the following discussion, reference will be made about one of these sizes; for industrial 

confidentiality reasons and copyright ABB, we will focus only on the procedure used and some 

engineering techniques used to address specific problems, omitting images or darken parts and 

results for which this document is not authorized to show information about. 

 

3.2.1  Preliminary mechanical evaluation 

This section aims to make a preliminary analysis with the purpose of dimensioning the critical parts 

of the lamination of the rotor, i.e. the iron bridges. All assessments were made referring to 

electrical datasheet of magnetic sheet steel M400-50A; below some basic properties, as well as some 

design assumptions about the mechanical bridges: 

(a) 

(b) 

Fig 3.3: (a) main hypotheses for mech evaluation (b) materials properties 

Let's see how proceeds the mechanical assessment of the preliminary section of the rotor, H80 

SynRM2; 
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Fig 3.4: preliminary cross section – example 

Simulation results are summarized in the following table, for different dimension of the bridges: 

(a) 

(b) 

Fig 3.5: (a) Simulation max stress results (b) simulation output figure 

It is here fixed the initial geometry once obtained a safety factor greater than 2. 

 

 

3.2.2  Optimization phase 

Abstract - Genetic Algorithm 

The optimization method used by ABB for this phase is the genetic algorithm, for which will make a 

brief introduction; for the insights, refer to bibliographical notes.  
 
The genetic algorithm is heuristic, and it’s based on the principle of natural selection and biological 

evolution theorized in 1859 by Charles Darwin. The "genetic" adjective comes from the fact that 

the evolutionary model is Darwinian explanations of a branch of biology, called genetics, and 

genetic algorithms implement similar mechanisms of choice to those of biochemical processes 

discovered by this science.  
 
To apply it to our case, without going into the heart of algorithm, for which reference should be 

made to the bibliographical notes where you can find both the genetic operators, as well as the 

various definitions, one must understand how this algorithm meanwhile reasons.  
The genetic algorithm, involves the construction of an environment, a generation composed by 
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more individuals and an assessment of a fitness factor. In other words, the environment is made up 

of rules, which are determined by well-defined functions that make up the physical environment in 

which the various generations should "live". The generations are group of individuals, composed by 

equations, who must still comply with the laws of the environment, with the objective to stay in 

that environment with more and more fitness. Among individuals, the differences are genetic, 

which will be changed key parameters of equations depending on how many degrees of freedom 

will be given, and they will try to get the maximum fitness level, hence the level identified by 

optimization (maximization) of an objective function, which will be a mix between cost functions, 

functions which determine the desired output or similar equations and, very important, limits and 

target objective.  
The genetic algorithm is iterative, depending on certain conditions previously set, and it passes 

from one generation to the next, which can take as the initial individual the one with the best 

fitness level in the previous generation. The number of generations must be chosen before 

iteration starts.  
Result of this method will be the achievement of specific target user-defined, or the obtaining of 

the best individual who will have its key parameters, which may be some constructive issue. 
 

 
Optimization phase - identifying the best individual according to different specifications 

The designers of the R & D ABB group, analyse the performance of the initial geometry and from 

there they speculate improvements. 

We see the results that derive from the preliminary geometry that works in a given operating point 

previously chosen. 

 
Fig 3.6: simulation output of primary geometry 

There can be seen that the motor complies with the IE4 efficiency level (85.7%) with a margin of 

1.4%. The motor has a good power factor 92%, but a quite large torque ripple, 35%. 
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The following are some of the design constraints adopted: 

• Stator lamination geometry and mechanical parts are inherited from M3AA H80 motor 

of the ABB induction motor catalogue. 

• Single layer winding 

• Supply line to line voltage = 370V 

• Operating temperature range: [-20÷105°C] 

• Overloadability = 1.5 

• RE free PMs; Br = 400mT  

• Minimum fillet radius = 1mm 

• Maximum acceptable value of the torque ripple (TTHD) is to be determined. 

Some details on the FE simulation settings are listed as follows: 

• Order of the elements 2 

• Mesh refinement 1 

• Steps per period 180 

• Periods of run 2 

 

Two different optimization studies will done. 

 

1. Two filled flux barriers and one empty flux barrier 

 

Population size set: 600; 

(a) 

(b) 

Fig 3.7: (a) optimization objectives; (b) optimization variables 

 

 

 

Below we can see the output of the generic algorithm form Pareto fronts, as well as the identification 

of the best individual: 
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Fig 3.8: optimization output 

 

 

Fig 3.9: procedure of selection of the optimum candidate 
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Fig 3.11: New geometry - working point simulation results 

Fig 3.11 shows the main characteristics of the selected candidate. As can be seen, its efficiency 

exceeds the efficiency target (IE4 level = 85.7%) by a margin of 2.2%. A high value of the minimum 

flux density in the PMs, at steady state rated operation, can be observed (PMBMIN=220mT). The 

main issue of such motor might be represented by the high torque ripple: TTHD=16%.  

 

 

2. Three filled flux barriers with PM 

Population size set: 600; 

(a)

(b) 

Fig 3.12: (a) optimization objectives; (b) optimization variables 

Below we can see the output of the generic algorithm form Pareto fronts, as well as the identification 

of the best individual: 
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Fig 3.13: optimization output

 

 
Fig 3.14: procedure of selection of the optimum candidate 
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Fig 3.16: New geometry - working point simulation results 

Figure 3.16 summarizes the performances of the selected optimal motor. The efficiency target 

(85,7%) is achieved with a high margin, 2.6%. The model shows good values of PMBMIN and power 

factor, respectively equal to 226 [mT] and 91%. The main issue of such design might be represented 

by the high torque ripple, TTHD = 14%. Further investigation is to be done to determine the 

maximum acceptable value of such variable. The figure 3.15 shows the geometry and the field 

solution at rated operation. 
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3.2.3   Final design 

You can see below the two results derived from the optimizations compared on the main features: 

 
Fig. 3.17: main characteristics of the optimized H80 motors   

In this case, both solutions are valid from every point of view. For this reason, we can’t prefer one 

over the other and continue the discussion with both optimized geometries because from the 

electrical point of view are equivalent. 

Analysis of demagnetization in worst condition 

In order to determine the worst condition for the magnetic state of the PMs, the load angle at 

which the minimum of PMBMIN occurs has been searched for several different values of current 

amplitude, above the rated value. For each position of the current vector in the dq plane, a time-

transient simulation of the motor has been performed. This analysis is reported only for the motor 

with three filled barriers. 

The worst condition corresponding to: 

• imax = 5A, i.e. 2.5 times the amplitude of the rated current, at -20°C 

• imax = 7A, i.e. 3.5 times the amplitude of the rated current, at 20°C. 

A complete plot of the maximum current capability against rotor temperature can be traced, on the 

basis of more detailed characteristics of the PMs material, to be requested to the manufacturer. 

 

Fig. 3.18: BH characteristic - working point in worst condition 
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Additional considerations are made in conditions of overload at high temperatures rotor to assess 

any effects of PM demagnetization. 

 

Comment on possible reduction of inertial mass 

The two architectures summarized are equivalent from the electrical design point of view. The 

saturation level is the only discriminant, as can be seen in Figure 3.X and Figure 3.X, where the 

colour maps of the flux density in the cross sections of the two architectures are shown. There can 

be seen that the architecture with three filled barriers shows a more uniform flux density 

distribution. On the other hand, the architecture with two filled barriers might have lower 

manufacturing costs and higher speed capability. To the aim of this work, a choice between the two 

solutions is not necessary. 
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Mechanical revision  

After completing the optimization phase and the various considerations on the demagnetization of 

the magnets worst condition, must mechanically review the output geometry, in addition to 

consider the working conditions in other work points, different from the one considered for the 

optimization.  

The results of mechanical stress simulations are summaries in the following results table, we have 

to hide the real results for confidential reasons. 

    

 

Fig. 3.19: mechanical simulation – stress results of the optimate geometry 
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Part II 
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Chapter 4 
Thesis proposal 

 

This chapter is introductive for the second part of this paper.  
It helps to understand the topic of thesis work in relation to the questions that the company poses herself  

in relation to various themes, for example about the ABB drivers that they use in their laboratory.  

 

4.1 ABB  
ABB is a company organised by matrix structure for organizational matters.  
In addition to the "mechatronic" field, which sees robotics as protagonist, in Vittuone their work 

regards also middle and low voltage converters and electric motors. 

 

Fig. 4.1: ABB motors drive 
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4.2 Thesis proposal 
Considering the use of assisted reluctance motors, as the technology is not yet mature status of the 

control development is improvable. The purpose of this thesis is to support the development of the 

control with a description as accurate as possible of the characteristics of the motor from the point 

of view of control, and then check whether the ABB drivers follow or not the control strategy, in 

this case the MTPA one.  
 
To do this, basically we’re going to follow three steps:  
1. Research of the MTPA feature by time stepping simulation;  
2. Research of the characteristic by analytical model that manipulates data provided by 

magnetostatic simulations;  
3. Trace the control characteristic in the laboratory through constant torque demand. 

Lastly, we will compare the three characteristics by assuming time to time the reasons for the 

various divergences between these, trying to predict the techniques of the ABB drives. 

4.3 Grade of access to the motor drive  
The R & D team has several motor test benches, each with two inverters. However, there is no way 

to pleasure handle the power supply voltage of the motor in the laboratory.  
 
This restricts the third part of this work, as also the data that drives releases to the PC: they can’t 

be selected but the data are some standard outputs.  
  
Lastly, the ABB control for PMASR motors is one modified control existing for SMPM, and therefore 

it doesn’t consider many things. But we will see along the third part of the elaborate what this fact 

implies regarding the max torque per current characteristic.  
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Chapter 5 
MTPA trajectory 

Time-step simulations 

 
Let’s go to show how to extrapolate the characteristic MTPA through the output of a time dependent 

simulation using ADEPT.  
The discussion will follow each step and will attach to the appendix all the scripts and spreadsheets used 

commented in each part.  
 
It will be briefly treated what is meant by finite element simulation (FEM) on the electric motors 

application. 

 

5.1 FEM - theory overview 
 

The FEM study consists essentially of 5 steps: 

-Portion of domain (dA), where the portion of the mesh gives the domain;  
-Choice of interpolation function;  
-Formulation of the system (in that case, flux equations to solve);  
-Solution of the problem;  
-Post processing.               

For the solution of the problem and the formulations annexes to the magnetic flux, it is necessary 

to provide boundary conditions that follow more or less strong assumptions.  
The hypotheses that we make are two, periodic, and provide the domain boundary conditions 

(mesh) studied: 

- Dirichlet 
- Neumann 

These hypotheses provide immediate considerations regarding the magnetic potential on the 

surface.  
 
Stator windings are characterized by the distribution of unitary FMM for whose theory reference is 

remanded to bibliographic notes.  
 
What actually studies a simulation of finite elements is the value of the magnetic potential 

between two surfaces so, as the magnetic potential (defined below less than two variables) is 

defined, we need two contour conditions.  
To draw flux lines, the following formulations are used: 

    

~_ = �Y���   (5.1) 

~� = 2�Y��� = 0   (5.2) 
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For any surface, 

� = ∬ ~�� ∙ ��� �U = ∬ O+[�T� ∙ ��� �U = ∮ T ∙ P �P  (5.3) 

� = <T�1 − T� − �T�2 − T��= ∗ ��[m  (5.4) 

� = �T�1 − T�2� ∗ ��[m    (5.5) 

In the case of many conductors, it is considered the average value of Az on the surface of conductors 

� = <� T�1 �U���B − � T�2 �U���2 = ∗ ��C"V��� �  (5.6) 

 

Once found the value of magnetic flux, the concatenated one will be given by the following formula, 

with ��� as the number of conductors in series for each slot, Q as total number of slot, q the 

considered slot, p as poles pairs and the unitary distribution of magnetomotive force  

N(x): 

                             ∧ # = 2
 ∗ ��[m ∗ ��� ∗ ∑ ��_��# ∗ T�����G���@    (5.7) 

Consequently, induced electromotive force will be calculated as: 

 �\ = @√� ∗ $ ∗∧ # (5.8) 

 

Knowing the voltage, the magnetic field flux and the stator current distribution can be calculated, 

identifying the rotor position with respect to the rotating axes in quadrature, the axis inductances 

and dq currents.  
 

Through post processing we can now find all the other quantities of interest. 

 

 

5.2 MTPA trajectory research 
 

Due to the limitations already seen of the program, multiple working point have been simulated 

individually for the detection of the minimum current by setting a supply voltage range in which the 

motor should provide the torque for that working condition.  
This iterative work was done for 8 speeds and hence different frequencies for 8 torque values, 

analysing in total 64 physical conditions for the motor, in order to compensate, by mediating, the 

error deriving from the fact that Adept can’t use a continuous function of voltage but a discretization 

more or less dense from one value of power supply voltage to the next. 

The 8 different MTPA features have been mediated, which obviously doesn’t depend on the speed 

as it is defined (minimizes joule losses and hence would be the same, ideally, as blocked rotor), 

finding the ultimate trajectory. 
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5.2.1 MTPA research  

 

As anticipated, several points of operation of the machine have been simulated; let see the results 

of this phase referring to the outputs of the simulation at nominal speed, but not before clarifying 

the constructive features of the considered machine. 

 

Machine characteristics 

 

SynRM2 H90 

 

Nominal power 

[kW] 

Nominal velocity 

[rpm] 

Nominal Torque 

[Nm] 

Poles pair Voltage [V] 

4 3000 12.73 2 370 

 

 

MTPA construction at nominal rotor speed 

 

The values above are in p.u. (per unit, normalized) of the nominal torque and, by calculating the 

power output, we can set the simulation parameters; 

 

 
Fig. 5.1: Considered working point 

 

 

ADEPT inputs for simulations of this type are only three that permit us to change operating point: 

  

              -Power [kW]; 

              -Voltage [kV]; 

              -Frequency [Hz]; 

  

Regarding power and frequency, these two inputs came directly from the chosen operating 

point. Regarding the supply voltage, it’s necessary to change it to find the point that would 

minimize the Joule losses until there was a supply voltage value that gives us the minimum  

value of current in that determinate working point. 
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The output of the 100% speed simulation, 87.5% torque, gave the results in figure 5.2, where you 

can see an Excel spreadsheet that relate the effective value of the current to the power supply 

voltage and therefore sees that the simulation with 395V has given as output the lowest current. 

 

 
Fig 5.2: simulation output 100%velocity 87.5%torque 

 

 

In this case, as you can see, a voltage step of 5V was good for our assessments but, in some cases, 

it had to be investigated up to the step of one Volt. 

  

Identified the simulation that provided the lowest current, we have now to look the other outputs 

of that, taking note about the current components in the rotating axes and the position of the 

direct axis as well as the PF.  
 
These considerations are made for all simulated torque values.  
All of that is reported on a spreadsheet; the results are illustrated in the figure 5.3. 

 

 
Fig. 5.3: Idq MTPA value at nominal velocity 

 

For more precision which determines the MTPA feature, we can make further considerations on 

the value of the power factor (PF), which for all points may not differ too much. It was then 

blended a spreadsheet which has as its purpose to refine the search already made recommending 

in some cases other simulations for which the practice was to decrease the voltage range and using 

a lower delta for the voltages that we simulate, in a way as to obtain more accurately the module 

of the lower current.  
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Now we can plot on a dq plane the MTPA feature found to the considered speed. In section A1 in 

the appendix you can find the script useful to plot the feature like the one in the figure below. 

 
Fig. 5.4: preliminary MTPA at nominal speed 

You already see how the point at 9.59Nm is not too consistent with the trend we can expect. The 

interpolation used was chosen here to highlight aspects of this type. 

5.2.2   MTPA mediated from all preliminary characteristics 

The operations described above are made for 8 different speeds; then we will get a contest like the 

type shown in Figure 5.5 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5: all velocity MTPA characteristic 
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Now comes the time to mediate the features to find another one as accurate as possible, which 

compensates gross errors that, as already mentioned, can’t find the exact voltage value for which 

the current is lower.  
The script used to mediate and plot the result can be found in appendix to section A2. 

The result is shown in Figure 5.6. 

 
Fig. 5.6: time step MTPA output 

 

Let's look some key characteristics in order to justify its course.  
The characteristic starts more inclined to the q axis and, growing the effects of saturation, it falls 

down the d axis. The effects of saturation and cross-saturation have an effect of this type for this 

characteristic, the effect that the control that works in MTPA logic must be taken into account.  
Let’s see the angle of the current angle ɣ trend in Figure 5.7: 

 

 
Fig. 5.7: Current angle on the MTPA 
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These waveforms will then be compared to those resulting from the magnetostatic calculation, topic 

of the next chapter. 

 

5.2.3      Mediated MTPA supply voltage characteristics 

Now the objective is to trace the power supply characteristics for further comparison when the 

motor will be tested via the ABB drive.  
 
The calculation is simple and depends firstly from the frequency and the effective value of the 

stator current. The calculation sheet of figure 5.9 was used, repeated for all the speeds that we 

have analysed. 

 

Fig. 5.9 

Repeating the calculation for each torque, we obtain the voltage characteristics that drive the 

MTPA trajectory at each different power frequency. The results can be seen in Figure 5.10. 

 
Fig. 5.10 
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Chapter 6 
MTPA trajectory 

Magneto-static simulations 

 
Here is explained how to derive the minimum current characteristic through the manipulation of the table 

of flux resulting from a lot of magnetostatic simulation (each point of the matrix is one magnetostatic 

simulation).  
 

6.1 Flux tables 
The flux table is one of the outputs of the magnetostatic simulation if required; the computing time 

is high as many working point are simulated; they take into account the cross-saturation effects 

between the axes.  
 

After finishing the simulation, we will have these data in an Excel file, that is shown in Figure 6.1. 

(a) Fq 

(b) Fd 

Fig. 6.1: mgt-static simulation output: Flux table 

 

 

 

 

 

 

 



66 

 

 

Representing them on a 3D plane, they will appear as in Figure 6.2. 

(a)

(b) 

Fig. 6.2: Flux 3D representation 

The script used is contained in Appendix A3.  
 
Inline and cross interpolation operations must be made to fitting the amount of data in order to 

make them as complete and suitable as possible for a post-process analysis. Also this time, the 

script used is in appendix at section A3. 

I have to remember that the outputs from a magnetostatic simulation aren’t mediated on a period, 

but it fixes the position of the rotor. For this reason, the stator effects are relevant. You will see in 

the next chapter how to consider such effects and how to mediate them. 
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6.2  Search MTPA trajectory by manipulating the flow chart 
NB: the following discussion refers to the convention in which the magnets are oriented as the q 

axis. Please refer to section 1.3.1 and 1.3.3 of this document if this agreement is not yet fully 

understood. 

Handling Flow Charts consist on the use of scripts in appendix A3, fully commented. 

To summarize the algorithm used by the script, the manipulation consists in the construction of a 

torque matrix that contains in its interior all the features iso-torque as a function of d and q axis 

currents; the formulation of the torque used in this step is the (1.12). We have now current feature 

resulting from iso-torque characteristics. The point with lowest current corresponds to the searched 

point; relying on it, the MTPA feature will be built. 

(a) 

Fig. 6.3: (a) Torque surface 

 

 

 

 

 

 

 

 

 

 

 

 

Iq [Apk] Id [Apk] 

Torque [Nm] 
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The following figures show the outputs of the script that searches the lowest current point; in 

section A3 in the appendix, you can find this script and others that do the same, here will be clear 

inputs and outputs of this, for easy reuse. 

 
                                          (a)                                   (b) 

 
                                         (c)                                                                                    (d) 

         
                                       (e)                                                                                      (f) 

(g) 

Fig. 6.4: MTPA main characteristics 
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We’re now ready to compare this MTPA with the one found in the previous chapter through time-

step simulations.  
The problem is, as anticipated, the fact that simulations of this type do not mediate 

the stator effects. In the next chapter we will see how to consider such effects and then finally we 

will be able to evaluate the differences between one feature and the other. 
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Chapter 7 
Compensation of ripple derived by stator effects 
 

We will scrupulously follow every step of this discussion; then the conceptual approach that has been 

followed will be explained, as well as how to implement it with the available tools.  
 

7.1 Method 
In this section, you will see all the logical process that leads to the hoped result. 

7.1.1  Stator effects 

The stator effects influence the rotor flux flowing over the air gap.  
In fact, machine flux can’t be the same under the stator tooth (which is iron, �O → ∞), and under 

the slot, filled with copper and air depending on the slot fill factor.  
What said is evident in the figure 7.1, where you can see the flux lines under the slots and under 

the stator teeth. 

 

 

Fig. 7.1 

In fact, it is evident the change of density of the magnetic flux lines if it is under a stator cave or under 

a stator tooth. Above in the figures, it is noted how this influence the waveforms of the magnetic 

flux. 

 
 

 

 

Rotor excursion [°] 

Fd [Wb] 
Fq [Wb] 

Rotor excursion [°] Id [increment] Iq [increment] 
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7.1.2  Problem solving 

The goal is to build a new flux matrix that has the substantial difference in mediating the effects 

previously exposed.  
 
This can be done by fixing the currents of rotating axes dq following a rotor travel of 60 ° with 

respect to the stator, one degree at a time. The results are sixty flux values for each couple of 

idq; the mediated element will occupy a position in the final flux matrix.  
 
Once the new matrix is built, it will be enough manipulated it to get the new MTPA feature. 

 

 

7.2 Application 
The previous section has described how to fix the problem after identifying it.  
In this section we will see how to solve it from a practical point of view.  
All the scripts used are in section A4. 

7.2.1  Idea 

The basic idea is to be able to use Adept in order to simulate “n” motor conditions imposing the 

current in the simulations in such a way that the change in the rotor angle doesn’t change anything 

of it. For each simulation we have to capture the flux resulting from dc.out (output of 

Adept, mentioned in chapter 2 of this paper) and save it. 
 
To get as much as possible a full flux matrix, we want to simulate the largest number of pairs 

id/iq and for this reason has been chosen to simulate 66 couples of dq currents that allow to have 

ample fit results in an extended range. 

But let's make two accounts:  
only considering the fact that we consider 66 pairs of currents, we will have to run the simulation 

program for 66x66 simulations; thinking about the fact that for each pair of currents given, we 

have to make a 60° rotor excursion, by step of 1°, we have to compute a total number of 66 ∗ 66 ∗60 = 261.360 simulations, it is therefore impossible to manually set up the .ini file that contains 

the information useful to initialize Adept for simulations, doing simulations time to time, and save 

the results.  
 

It is spontaneous to think of a script that can do everything, recalling the executable of FCSmek and 

getting the results by elaborating them, but how long?  
Considering about 3 seconds per simulation, there will be 784,080 seconds of simulation that are 

expected to match approximately 9 days of computation.  
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7.2.2  Realization and results                

The script can be found in appendix A4.  
In practice, it manipulates a .ini file according to the currents to be fixed and the rotor angle, which 

will then be passed to a function that recalls the FCSmek .exe file; after that it saves the results of 

the dc.out simulation and process them.  
 
Some outputs of this script are shown in figure 7.2. 

 

 
                                          (a)                                           (b) 

 
                (c)      (d) 

   
      (e)      (f) 
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    (g)      (h) 

                   Fig. 7.2 

These figures are ordered in pairs depending on what they want to highlight.  
The first two, 7.2 (a) and (b), show how flux characteristics change according to the rotor angle 

only, without considering cross-saturation effects. It’s evident that the flux characteristic to be 

used to make precise calculation data can’t be derived from a single magnetostatic simulation that 

fixes the position of the rotor, because it strongly depends on it. 

The figures (c) and (d), give an idea of the effects derived from only cross-saturation, without 

considering the effects of the stator.  
The images (e) and (f), without highlighting cross-saturation effects, want to show stator effects for 

a 60° rotor mechanical excursion for 3 different current values in the axis considered. The 

undulation effects on the flux are evident.  
The last two, (g) and (h), show how stator effects also vary depending on the cross-saturation 

phenomenon for a given axis current.  
 
The problem results very complex to be considered and to be predicted. A study like that makes 

the average of all these effects closely related phenomena; the flux matrix, 66x66 in this case, can 

be obtained and it allow us to find the most veritable MTPA possible. 
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7.3 MTPA final 
In this section we shall see, always using the scripts, like in Chapter 6, that can be found in 

the appendix, the construction of the MTPA trajectory with the new matrix of flux just found. It will 

then be compared to the one obtained without taking into account the stator effects. 

 

7.3.1      Characteristic construction from new flux table 

Below you will see all the results from simulations that mediate stator effects. 

    

(a)                                             (b)  

    

          (c)                     (d) 

    

           (e)                  (f) 

Fig. 7.3: main MTPA characteristics with mediated stator effects 
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7.3.2  Comparison between the two magnetostatic simulations 

In this section we will compare outputs from the two magnetostatic simulations, pointing to 

agreement and disagreements points between the two. 

 

Fig. 7.4 

 

Before commenting on the trajectories, let’s observe the different curves iso-torque; in light-blue, 

the old iso-torque curves, in blue the MTPA trajectory derived by time step simulation found in the 

chapter 5, associated with the trajectory that mediate stator effects, the one just found (in red).  
In fact, you will see that the new iso-torque MTPA are correct, once you will compare this with the 

trajectory output from time step simulations discover in Chapter 5. 

In spite of this substantial difference, the features are similar, but in a control perspective, where 

accuracy is essential for a good drive technique, this error becomes sensitive and unacceptable. 

 

 

 

 

 

 

 

 

iso-torque 

iso-current 

MTPA 
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Then, looking at the characteristics of fluxes, you can immediately notice differences that justify the 

concern about the effects of the stator; in the first magnetostatic simulation in which the stator 

effects were not mediated, the d-axis flux characteristic considered that cross-saturation effects with 

iq=7A, crosses and exceeds that the one with iq=0A starting by id approximately 6A. 

 

                (a)                                                              (b) 

Fig.7.5: (a) Fd characteristics with stator effects; (b) new Fd characteristics  

Obviously, such a situation should not occur: in fact, it should be against the principle of energy 

and coenergy described by the formula (1.10.1) in Chapter 1.  
As expected, mediating the stator effects, these problems disappear, as seen in Figure 7.5 (b). 

Other considerations can be made about the axis q. You can see how the cross-saturation effect 

follow a more consistent behaviour with respect to the theory. 

 
Fig. 7.6: cross saturation effects compare 

 

 



78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

Chapter 8 
Dependence on temperature of MTPA and maximum efficiency 

characteristics  

 
The characteristics just found are referred to the same temperature of environment, rotor and stator. But 

how much do these temperatures influence the characteristic at minimum current per torque? In this 

chapter the results obtained for different temperatures will be compared and you will see how the 

temperatures actually affects this trajectory.  
As we know, MTPA by definition is the trajectory that minimizes Joule losses, while MTPV minimizes iron 

losses and parasitic currents. Maximum efficiency characteristics (Loss Minimization - LM) are those that 

minimize all losses, hence it minimizes a power function that will be the sum of all types of 

leaks. Therefore, we can say that the MTPA characteristic coincides with that of LM when the rotor's radial 

velocity is equal to zero, while the MTPV coincides with the LM when the rotor speed is ideally infinite. It 
can be concluded that all other loss minimization at different speeds will be closer to one or another 

trajectory depending on whether the speed is close to zero or to speed limit of rotor.  
Let's see the results of time-step simulations to highlight what's just said. 

8.1 MTPA at different temperature 
Time-step simulations have been made to search the MTPA characteristic at two different 

temperatures; the case called “A” refers to 25°C ambient temperature, with a rotor temperature 

regime of 120°C, and 80°C the stator temperature; the case B, on the other hand, at 0°C ambient 

temperature, 80°C rotor and 40°C stator at regime. 

The method used to find the characteristics is the same as the one seen in chapter 5, via time-step 

simulations.  
Before displaying the results, let's see what we can expect and how the temperature can affect the 

electrical and magnetic parameters of the machine.  

 
First of all, we have to consider the thermal drift of the ferrite, for which we see features from the 

datasheet of the magnets used for that motors, in Figure 8.1. 

 

                        
Fig. 8.1: demagnetization characteristics 
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Secondly, there is the combined effect between the resistances of the windings and 

the Bemf (back electro-motive force);  the temperature decrease so:  
              - Stator resistance drops  
              - Bemf increase 

The effect on the stator current will be affected in positive or in negative depending on whether one 

or the other effect prevails. 

8.1.1  Case A vs case B 

In the first analysis, it was seen how much the different temperatures in the two cases changed the 

inductances. It was initially calculated the percentage difference between inductances, output of the 

magnetostatic simulation, through a script that can be viewed in Appendix A5, whose outputs are 

given in Figure 8.2. 

(a) (b)                                                           

                                                   Fig. 8.2: percent deviations between inductances 

You see how the percent deviation effects follow discordant trends as the cross-saturation effect 

increases. 
It should also be noted that the inductance in the direct axis were more influenced then the other 

in the q axis by temperature; this is justified by the presence of the magnets in this axis 

(temperature drift of ferrite). 

The MTPA of the two cases, A and B, are shown in Figure 8.3. It’s evident that these two actually 

don’t differ too much, although the temperature is very different in the two cases considered. This 

is because the temperature effects already mentioned tend to compensate each other. 

 

Fig. 8.3 
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8.2 LM characteristics 
Here it will be shown the features at maximum efficiency, always found using the outputs of time-

step simulations. These characteristics generally require a lower power supply than the one used 

for the MTPA characteristic, because the iron losses depends not only from speed, but also from 

voltage.  
For calculating efficiency and manually search the high efficiency points, a spreadsheet was created 

to calculate the active electrical power and relate it to the mechanical power output, known as the 

PF, power supply voltage, and rms value of the current, whereas the power supply is three-phase. 

It’s important to clarify that the fact that the simulation software used in ABB also provides an 

estimate of the iron power losses, which is unusual in the world of FEM simulation, but very useful. 

 
Fig. 8.4: research feature LM 

Three different frequencies were considered:  
              a) 25% of the rated frequency - (25Hz)  
              b) 62.5% of the rated frequency - (62.5Hz)  
              c) 100% of the nominal frequency - (100Hz)  
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The results are shown in Figure 8.6. It is noted, as predicted, that the distance between the LM 

feature from the MTPA increases as the speed increases. 

 

Fig. 8.5: LM characteristics at different frequency 
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Chapter 9 
Cross verify on time step characteristic 

Comparison between different MTPA derived by FEM studies 
 

Let’s make a further check on the MTPA founded during the use of time step simulations, identifying an 

error of assessment regarding the position of the axis d by FCSmek. It will be useful to see how an error like 

that can affect the control’s trajectory. 
Subsequently, the two MTPAs derived from FEM simulations will be compared, hypothesizing what may be 

the reasons for any discordance. 

9.1 Cross-check – MTPA from time-step correction 
To be able to verify the characteristic obtained in time step, a cross-check is made between the 

outputs of the magnetostatics simulations with the flux table and the outputs in torque, currents 

and flux showed by time-step simulation. 

9.1.1      Problem individuation 

To find out any problems, a spreadsheet was built; that can be seen in every part in Figure 9.1.   

 

                    
                                                                       Fig. 9.1 
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In practice, a check was made to compare torque outputs according to formula (1.9) and 

(1.12). The time-step simulation was taken into account at the nominal point and the outputs were 

taken (highlight in yellow); fixing once the currents (highlight in green), once the fluxes (highlight in 

orange) of this simulation, it has been read in the fluxes table how effectively the currents and the 

corresponding fluxes are valid or how much the currents set the values of flow. Further verification 

was made using the inductance matrix, this time fixing the currents (highlighted in blue). The latter 

is a further output of the magnetostatic simulations that also provided fluxes tables, but didn’t 

match the simple formula that sees the relationship between flux and current in the respective 

axes, so it was taken as a third part of the comparison.   
The torque was compared to the nominal value and between themselves. As it can be seen from 

the spreadsheet, the cross-checking has highlighted a problem that is certainly greater than the 

fact that magnetostatic simulations don’t mediate the stator effects. The torque values coming out 

of the various tests, differentiated by the different colours, are very far from the nominal value. 

 

 

9.1.2   Problem solution 

 The possible causes of the problem are essentially two: 

-Error in identifying the direct axis position with respect to the peak of the voltage in the phase ‘a’ 
of the triad;  
-not very high precision of the interpolation method of the flux matrix; 

The entities of the error let us assume that the first hypothesis is the one responsible for the 

error. This fact plays to our advantage because an incorrect direct detection axis does not affect 

the current module, but only its angle, and then the components id and iq. Therefore, it is 

necessary to test with a current simulation set at the same value of module already obtained, and 

manually change the rotor angle to achieve concordant results between the two simulations.  
 

Direct axis detection 

For assisted reluctance motors, it is easy to locate the direct axis angle once the stator reference 

position is known. Let see the Figure 9.2. 

 

Fig. 9.2: axes position on the complete geometry of a four poles machine 
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As we know, considering the pole shown in the figure, the straight axis is at 45° precise mechanics.  
Adept fixes the stator reference coincidentally with the peak of the phase voltage and considers 

always fixed angle 0° of the stator, as shown in the figure.  
 
Considering an angle of 0 ° rotor, we will have that the position of d axis with respect to the Xs axis 
is 75° mechanical degrees, which, for a 2 pole pairs motor, corresponds to 150 electrical degrees. 

 

 

Constant current simulations with fixed d axes position of 150°  
 
This kind of simulation brought the reconciliation between outputs as desired. The results are 

shown in Figure 9.3. In yellow the results of the simulation with current imposed, which can be 

done by modifying the .ini file in the dedicated section.  
The torque output of the flux matrix checkout, as we see, approaches far to the nominal value, as 

desired. The result is not exactly the same, but this is justified by the fact that interpolation can 

lead to minimal errors and also that the flux matrix used derives from a single magnetostatic 

simulation and that, therefore, it doesn’t mediate of  the stator effects widely discussed in the 

previous chapters. 

 

Fig. 9.3 

 

 

 

9.1.3  MTPA adjustment 

After a focus of the problem, we know that Adept, for an unidentified reason, missed the direct 

axis direction and, therefore, we are ready to correct all the points of the MTPA feature in addition 

to the nominal point, working point taken into account to check the problem.  
But using or not the process seen so far that use imposed current simulations? The answer is, of 

course, no: it is not necessary to re-perform all the simulations, we will need to locate and calculate 

the error made by the simulation, and because the current module isn’t affected by the detection 

of this angle, it’s only necessary to recalculate the components of the MTPA feature. 

 

 

To do this, it’s enough to create a spreadsheet. In fact, knowing the PF, the electrical rotation of 

the rotor (rotAngle e = p x rotAngle) and taking into consideration the fact that the voltage is 

concatenated, while the voltage vector is a phase vector (we will have another 30 electrical 
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degrees to be added), we can find the current angle with respect to the axis d and then we can 

correct the components by the following formulas: 

ɣ = 150 + 30 + \O*+��S�� + O+[T��P8 (9.1) �� = √2�� ∗ *+��ɣ� (9.2) �� = √2�� ∗ ����ɣ� (9.3) 

The results of these adjustments can be seen in figure 9.4; as you can see, the after characteristics 

differ in a greatly way, despite the axis detection errors not exceeding  5°. This let us know how the 

identification of the direct axis position is a subject that requires a lot of precision, because of the 

strong impact it has on control trajectories. 

 
(a)

(b) 

Fig. 9.4: (a) evidence the difference from the correct and the previous MTPA (b) new MTPA from 

time-step simulation 
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9.2 MTPA from FEM simulations compare 

 
NB: for the subsequent considerations, reference will be made to the convention which consider the 

flux of the permanent magnets in ferrite is oriented as the axis in quadrature. Refer to section 1.3.3 

if it’s not clear for the reader at this time. 

Figure 9.5 puts the outputs from all FEM simulations made up to date on the same graph. We will 

refer to this for all subsequent considerations. 

 

       Fig. 9.5 

Focus our attention on the 3 points indicated in the figure. 

 

A 

The indicated point is that in orange which indicates a torque of 7.96Nm, as by time dependent 

simulation.  
This point makes easily observable which iso-torque curves, if those blue or azure, are the correct 

ones. Pausing on the fact that 7.96Nm is a value just less than 8Nm, you can easily become aware 

of the fact that, considering the azure curves, this point should correspond to a torque of about 

8.2Nm; referring instead to the blue iso-torque curves, or those deriving from MTPA found in the 

seventh chapter of this paper, the indicated point is slightly below the characteristic iso-8Nm, as 

expected. 

This speech reinforces and confirms what was said when discussing this previously (Chapter 7), 

confirming once again the correctness of the MTPA feature that considers the effects on the 

magnetic flux of the stator. 

 

 

A 

MTPA COMPARE 

Time-step MTPA 

Mediated MTPA 

Mgt-stat   MTPA 

C 

B 
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B  

The area indicated by the arrow shows a zone (around the point which indicates 4.77Nm) of strong 

disagreement between the red (without stator effects) and the green trajectory resulting from 

time-dependent simulations.  
In the other points, the two simulations agree, except for the start and end portions, which we will 

comment below. 

Why is this point in disagreement?  
It is noted in the meantime as this point is not in disagreement with the curves iso -torque. In fact, 

it is exactly where you expect to find it. This means that, in addition to strengthening again what is 

said in the step A, the time-step simulation was not wrong to identify the operating point, is simply 

far the current vector identified in this case.  
However, as mentioned in Chapter 5, the fact that the detection of the minimum current points 

was made by means of finite power supply voltage step, or, by modifying this, the minimum current 

point was noted, thus making a mistake from this finished step of voltage, more or less serious; this 

fact was mediated on 8 different points that united the torque, but not the speed. In this case, 

however, the error consists and is evident.  
 

C  

The areas indicated by the arrows show divergence between the characteristics, despite the fact 

that the orange points (which are typical of the MTPA time-step feature) almost fit the MTPA in 

red.  
The reason for this is the choice of two different types of interpolation in Matlab, one making use 

of the spline method, the other a linear interpolation method interpol1. 
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Chapter 10 
Test bench and tests description  
 

The test bench is always located at the ABB in Vittuone (Milan). Let’s describe the tools used to carry out the 

tests on the motor under test and then will be described the actions that the test involves in order to obtain 

the desired feature. 

 

10.1 Test bench overview 
The test bench, figure 10.1, is composed by: 

-           1 computer 

-           1 power analyser 

-           1 torque transducer and its reader tool 

-           1 current sensor 

-           1 thermocouple bench 

-           2 drivers 

-           1 motor / generator 

-           1 bench for mechanical coupling 

-           1 plexiglas structure for protection 

        
Fig. 10.1: ABB test bench 
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Referring to Figure 10.2, you can better understand the functionality of the tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.2: LAB functional scheme 

 

 

Power analyser 

The power analyser provides real-time measurements of all electrical quantities.  
Thanks to the computer, you can real-time logging these measures to accumulate process data. 

The figure 10.3 shows the interface screen and the power analyser used. 

      
Fig. 10.3 

Due to the high sampling frequency, the instrument allows precious analysis to the harmonics of the 

waveforms measured. 

 

 



93 

 

Kistler torque transducer 

The torque transducer used have a high precision and allow us to know the real working point of the 

motor as well as to centre it during tests. 

The torque sensor consists of two steel disks, between which a ring is fitted which contains several 

shear-sensitive quartz plates. The crystal axes of the quartz plates are oriented tangentially to the 

peripheral direction and therefore yield a charge exactly proportional to the applied torque.  

The quartz set is protected by the tightly welded and rustproof steel case. The sensor is oil- and 

splashproof if a tightly fitted cable connector is used. 

 

 (a)   (b) 

  

Fig. 10.4: (a) torque sensor; (b) torque reading tool  

Inverters 

The access to the drivers, though limited, allows us to know the actual values of control 

(measurements of the DC side voltage, AC output voltage, effective current measurement, speed 

in rpm etc ...), the current values of direct-axis and quadrature and the control loop gains of the DT 

and also allows us to act on the appointed parameter "voltage reserve "; this parameter will allow 

us to change the AC output voltage from the drive.  
All through an easy interface program. 

    

 
Fig. 10.5: driver program interface 
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10.2 Experiment description 
The tests are essentially two, the first with the stator at ambient temperature (25-30°C) and the 

second one at a higher temperature (60-70°C). 

By observing the measurements at different working points of the motor under test, we can trace 

the drive control trajectory.  
Having a direct torque drive, it always works in MTPA; our aim is to discuss how, in fact, the drive 

would centre this feature in different operating conditions. 

The brake motor is torque driven, with an open speed loop. The one tested, however, is driven in 

speed and responds to the torque disturbance given by the brake because they are mechanically 

coupled. By setting the SynRm2 speed at the rated speed (3000rpm), it is possible to observe 

several working points of this motor by setting the braking torque provided by the brake motor 

through a simple DC power supply.  
The torque is known through the measurement of the torsiometer, which also provides the speed 

measurement. 

Once set the operating point, we take note of the supply voltage output from the drive, 

the rms current of the fundamental (measured by the power analyser and from the drive via LEM 

sensor) and the direct axis current and in quadrature estimated and filtered from the drive, viewable 

in real-time interface screen. The control feature set by the drive is now traceable. 

But how do you figure out if the current we measured is actually the minimum for that torque or is 

the best point that the drive can do with the actual DC voltage? Is that enough?  
The supply voltage has to be varied: in fact, at slightly higher or slightly lower voltages, there are 

noticeable changes of the current; if you had to find the lower current than the one you initially 

had, the drive was not actually working on the lowest current feature.  
  

On the output voltage of the drive we can act on the "voltage parameter reserve ", a parameter 

that affects the characteristics of field weakening of the motor (the amplitude of the range at 

constant power, in fact, depends greatly on the DC voltage available), and not only. The voltage 

reserve is a parameter that operate on the output voltage giving a value under the maximum 

theoretically possible as output for the motor to be drive. As known, the relationship between DC-

link voltage and maximum output voltage from the drive (ignoring losses by switching and 

conduction) is: 

�+�[ = ��*√2 ; 
The parameter influences the value of Vdc, lowering up to 50% of its initial value and increasing it 

by 4% maximum.  
Working on this parameter, it is possible to vary the output voltage from the drive.  
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Limitations of test bench 

The main limitation is basically that it is not possible to increase the output voltage from the drive 

when it is already at the point of MTPA estimate by the driver control algorithm.  
This is a big limitation; in fact, it’s not possible to see if there is a lower current for a higher motor 

supply voltage than the one set by the inverter.  
By simulation, the power supply voltage that gives the MTPA was higher than the one estimated 

and provided by the drive. We can only draw the control characteristic as a result of pure 

observations, comparing it with the MTPAs derived from FEM simulations. 
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Chapter 11 
Experiment results 
 

In this chapter will be seen and commented the results of the tests described in the previous chapter.  
Tests are the two made at a different temperature.  
 

11.1 Case A: stator temperature of 35°C  
For this test are also considered  overload working conditions, not particularly critical due to the 

low stator temperature of departure; this allow us to guess how the control works and if it changes 

when the torque is less or greater than the nominal torque.  
  

Between the beginning and the end of the test, which was made from the highest torque value to 

the lowest torque value, the temperature increased by 7°C between the front and rear of the stator 

(4 thermocouples are used, two on the front and two on the rear of the stator, inside the carcass).  
For each point, we were concerned about having enough DC-link voltage so that the inverter 

wouldn’t saturate the live output but actually worked at the estimated MTPA point (DC-link voltage 

may be from 200V to 750V DC, according to drive datasheet). 

It is recalled that all tests were made at the rated speed of 3000rpm.  
Below can be seen the results, in Table 11.1, which will then be shown graphically in Figure 11.1. 

Torque[Nm] Current[Arms] Voltage[V] Id[Apk] Iq[Apk] 

17.5 9.257 450 -11 7.1 

15.9 8.34 435 -9.76 7.04 

14.32 7.74 419 -8.5 6.94 

12.73 7.1 400 -7.28 6.87 

11.14 6.45 384 -6.23 6.6 

9.55 5.8 365 -5.4 6.11 

7.96 5.12 353 -4.53 5.515 

6.37 4.46 323 -3.81 4.92 

4.77 3.62 286 -2.98 4.17 

3.18 2.76 239 -2.07 3.32 

1.59 1.68 188 -1.12 2.06 

Tab. 11.1 
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Below, there are the plots of the measures and the derived information during the experiment and 

then the MTPA plot. 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

(c) 
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(d) 
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(g) 

Fig. 11.1: experiment results – caseA 

There is a strong saturation of the axis q when the nominal torque is exceeded.  
We represent the current control angles, knowing the points of this characteristic (Fig. 11.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.2 

There is a strange change in convexity in the characteristic when the torque exceeds the nominal 

value. 
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A comment that can be made is about how the driver drives the motor under test; in fact, this 

changes completely when the nominal torque is exceeded and it saturates all the axis q. In fact, what 

may seem like a inflection point at the rated torque point of the current angle control feature (from 

literature, the current angle should touch a peak and then go down again). 

 

11.2 Case B: stator temperature of 65°C  
For this test, differently from the first, we will stop at the nominal point for evaluating the piloted 

feature. 

The temperature between the start and end of the test has dropped by about 5 ° C. 

Torque[Nm] Current[Arms] Voltage[V] Id[Apk] Iq[Apk] 

12.73 7.12 408 -7.08 7.15 

11.14 6.47 390 -6.26 6.63 

9.55 5.84 378 -5.43 6.14 

7.96 5.09 356 -4.6 5.6 

6.37 4.42 326 -3.85 4.99 

4.77 3.39 288 -2.87 4.16 

3.18 2.71 239 -2.06 3.32 

1.59 1.69 190 -1.04 2.15 

Tab. 11.2 

 
Fig. 11.3: MTPA from drive – caseB 
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11.3 Case A and case B compare 
It has been already sensed from the Fig.11.3 what we’re going to say: the control does not consider 

changes in temperature as the system variables for the determination of a minimum current 

characteristic.  
In fact, they are identical (except for measurement errors or small scraps), as shown in Figure 11.4. 

 
Fig. 11.4: MTPA comparison 
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Conclusions 
In conclusion, we can compare the simulation outputs with the MTPA obtained in the laboratory, 

highlighting its primary characteristics.  
Remember that it was not possible to check the actual MTPA in the lab because of the lack of drive 

accessibility, as the output voltage could not be raised by the inverter. 

 
     Fig. C.1 

From the lowest torque, the two MTPAs are quite far.  
  

In conclusion, we can’t focus on the correctness of neither of the two characteristics for simple reasons: 

1- also if the red characteristic resulting from FEM simulations have until now centered every point of 

investigation, this comes still from FEM calculations which, of course, comply with the mathematical model 

of the motor and for this reason it follows very well the literature; but the mathematical model as we know 

it’s approximated in a more or less strong way, the errors of such simulations can start from the initial data, 

due to material imperfections, of the magnets etc ... which however in reality matter in a modest way.  
Finite element analysis is much more useful in terms of machine dimensioning, which gives the idea of 

current and voltage values so that the entire motor can be dimensioned electrically and mechanically. This 

thesis shows the difficulty encountered using FEM analysis for control applications that requiring much 

accuracy and field measurements and direct or indirect derivations of other quantities. 

2- the control characteristic traced by the drive can’t be questioned due to the fact that that does not allow 

us to search for a lower current point raising the motor supply voltage, thing that very easily occurs: from 

simulation, the power supply voltages of the motor to have minimum current were higher than the drive 

supplied to the motor. Also, by lowering 1% of the supply voltage to the motor, there were significant 

changes of current value, which suggests that the point is not actually MTPA, since, around this point, the 

current varies very little. Figure C.2 shows this fact, result obtained by simulations in Chapter 5 and here 

again to reinforce the thesis. 
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Fig. C.2 

Figure C.2 shows the power supply voltages on the abscissa axis and the effective phase currents related to 

the working point at 3000rpm, 11.14Nm.  
With a 5V delta, the current changes in the order of a few thousandths of an ampere. This does not happen 

when you move away from the lower current point (here at 395V), for example, going from 405V to 410V, 

the current module changes by 2 cents.  
In the lab, the same workstation was driven by the drive with a current of 6.47Arms and a voltage of 

390V. By varying the tension of 1%, with about 386V of power supply voltage, the current increased by 4 

cents Ampere, arriving at 6.51Arms value. This sensitive rise of current lets us assume that we are not close 

to the lowest current point, despite the fact that this is the minimum value of current we can obtain in the 

laboratory. Probably, increasing the voltage in this case we can obtain a lowest current value than the 

first. But all this has not been demonstrated because of lack of drive accessibility. 

3- An observation which criticizes the accuracy of the FEM simulations is the fact that the points highlighted 

in the figure in the trajectory followed by the drive in green, are those considered up to now. These are not 

completely in agreement with the iso-torque curves arising from FEM simulations.  
Since the torque was measured by a torque transducer in the laboratory, we can be sure that those points 

are to the specific torque, so the level curves in Figure C.1 are incorrect.  
This does not mean, however, that the MTPA traced in the lab is right, but only that the points found are 

right with respect to the measured torque, ignoring the accuracy of the instrument. 
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A1 

Plot characteristic MTPA 

------------------------------------------------- 

x=[ 
-0.914454201 
-2.866478651 
-4.775681896 
-6.673433699 
-2.206 
-4.132 
-5.343 
-7.810 
];  %% d axis current 
  
y=[ 
1.889744937 
3.636449975 
4.701796473 
5.439550032 
3.117 
4.158 
5.802 
5.797 
];  %% q axis current 
xx=[-10:0.001:0]; 
MTPA_interp1=interp1(x,y,xx); 
plot(xx,MTPA_interp1,x,y,'o') 
hold on 
  
legend 

 

------------------------------------------------- 

This simple code is used to plot a MTPA characteristic found at a set speed; the couples (x,y) derive from 

the simulations done. A linear  interpolation is then done between them and the result will be plotted. 

Code inputs 

-x 

-y 

from simulation results 

 

Code outputs 

-MTPA_interp1 

                      a vector composed by 10000 value that follow the xy point 

-a plot of MTPA_interp1 with a legend 
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A2 

MTPA average  

 
--------------------------------------------------------------------------------------------------------------------------------------------- 

%% MTPA-meshed 
%% linearly weighted point in an iso-torque locus 
id159=0; 
iq159=0; 
id318=0; 
iq318=0; 
id477=0; 
iq477=0; 
id637=0; 
iq637=0; 
id796=0; 
iq796=0; 
id955=0; 
iq955=0; 
id1114=0; 
iq1114=0; 
id1273=0; 
iq1273=0; 
  
for j=1:8  %for loop in order to give us the sum of all data 
     
        id159=id159+T159(j,1); 
        iq159=iq159+T159(j,2); 
         
        id318=id318+T318(j,1); 
        iq318=iq318+T318(j,2); 
         
        id477=id477+T477(j,1); 
        iq477=iq477+T477(j,2); 
         
        id637=id637+T637(j,1); 
        iq637=iq637+T637(j,2); 
         
        id796=id796+T796(j,1); 
        iq796=iq796+T796(j,2); 
         
        id955=id955+T955(j,1); 
        iq955=iq955+T955(j,2); 
         
        id1114=id1114+T1114(j,1); 
        iq1114=iq1114+T1114(j,2); 
         
        id1273=id1273+T1273(j,1); 
        iq1273=iq1273+T1273(j,2); 
end 
  
%filter the sum from the minimum and the maximum value at the corresponding 
%Torque output and then, give the mean. 6 because 8 value minus 2 removed from 
%the filter operation 
 
id159=(id159+abs(min(T159(:,1)))+abs(max(T159(:,1))))/6; 
iq159=(iq159-abs(min(T159(:,2)))-abs(max(T159(:,2))))/6; 
  
id318=(id318+abs(min(T318(:,1)))+abs(max(T318(:,1))))/6; 
iq318=(iq318-abs(min(T318(:,2)))-abs(max(T318(:,2))))/6; 
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id477=(id477+abs(min(T477(:,1)))+abs(max(T477(:,1))))/6; 
iq477=(iq477-abs(min(T477(:,2)))-abs(max(T477(:,2))))/6; 
  
id637=(id637+abs(min(T637(:,1)))+abs(max(T637(:,1))))/6; 
iq637=(iq637-abs(min(T637(:,2)))-abs(max(T637(:,2))))/6; 
  
id796=(id796+abs(min(T796(:,1)))+abs(max(T796(:,1))))/6; 
iq796=(iq796-abs(min(T796(:,2)))-abs(max(T796(:,2))))/6; 
  
id955=(id955+abs(min(T955(:,1)))+abs(max(T955(:,1))))/6; 
iq955=(iq955-abs(min(T955(:,2)))-abs(max(T955(:,2))))/6; 
  
id1114=(id1114+abs(min(T1114(:,1)))+abs(max(T1114(:,1))))/6; 
iq1114=(iq1114-abs(min(T1114(:,2)))-abs(max(T1114(:,2))))/6; 
  
id1273=(id1273+abs(min(T1273(:,1)))+abs(max(T1273(:,1))))/6; 
iq1273=(iq1273-abs(min(T1273(:,2)))-abs(max(T1273(:,2))))/6; 
 
%creation of the matrix 8x2 that contain the average value at considered Torque 
%[Nm*10-3] 
  
MTPA_average=[id159 iq159;id318 iq318;id477 iq477;id637 iq637;id796 iq796;id955 
iq955;id1114 iq1114;id1273 iq1273;]; 
  
for i=1:8 
     
x(i)=MTPA_average(i,1); 
y(i)=MTPA_average(i,2); 
  
end 
%interpole function – spline method 
xx=[-10:0.001:0]; 
MTPA_interp1=spline(x,y); 
figure (8); 
plot(MTPA_interp1,x,y,'o') 
hold on 

 
--------------------------------------------------------------------------------------------------------------------------------------------- 

Code inputs 

-Txxxx vectors taken by simulations at all the 8 different Torque outputs considered. “xxxx” is to be 

considered in [Nm*10-3]  

Code outputs 

-MTPA_average 

-MTPA_interp1 

-a plot of the average trajectory 
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A3 

a- 3D flux rapresentation 

-------------------------------------------------------------------------------------------------------------------------------------------- 

 
load fdfq_idiq_n32.mat 
  
r1 = 1; r2 = 24; 
  
figure 
surf(Id(r1:r2,:),Iq(r1:r2,:),Fd(r1:r2,:)) 
xlabel('i_d [A]','Fontsize',12), ylabel('i_q [A]','Fontsize',12), 
zlabel('\lambda_d [Vs]','Fontsize',12) 
  
  
figure 
surf(Id(r1:r2,:),Iq(r1:r2,:),Fq(r1:r2,:)) 
xlabel('i_d [A]','Fontsize',12), ylabel('i_q [A]','Fontsize',12), 
zlabel('\lambda_q [Vs]','Fontsize',12) 
  
  
figure 
surf(Id(r1:r2,:),Iq(r1:r2,:),Id(r1:r2,:)) 
xlabel('i_d [A]','Fontsize',12), ylabel('i_q [A]','Fontsize',12), zlabel('i_d 
[A]','Fontsize',12) 
  
  
figure 
surf(Id(r1:r2,:),Iq(r1:r2,:),Iq(r1:r2,:)) 
xlabel('i_d [A]','Fontsize',12), ylabel('i_q [A]','Fontsize',12), zlabel('i_q 
[A]','Fontsize',12) 
  
 
-------------------------------------------------------------------------------------------------------------------------------------------- 

Code inputs 

-matlab workspace fdfq_idiq_n32.mat 

a file that contain a 32x32 matrix of flux value on the two axes and the corresponding                        

vectors of 32 value of currents, data from simulation. 

 

Code outputs 

- Four figures that show the flux in a 3D region 
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b- Flux matrix interpolation 
 

 
------------------------------------------------------- 
%%D axes 
  
  
%coloumn fitting 
  
for i=1:32 
    pos=1; 
    flag=0; 
    for j=2:32 
        if(flag==1) 
            pos=pos+49; 
            flag=0; 
        end 
       delta_row=Fd(j,i)-Fd(j-1,i); 
       step=delta_row/11; 
       for m=0:50 
      Fd_row(pos+m,i)=Fd(j-1,i)+step*m;       %#ok<*SAGROW> 
      if (m==50) 
          flag=1; 
     end 
       end 
    end   
end 
  
%row fitting 
  
  
for i=1:length(Fd_row) 
    pos=1;flag=0; 
    for j=2:32 
        if(flag==1) 
            pos=pos+49; 
            flag=0; 
        end 
     delta_coloumn=Fd_row(i,j)-Fd_row(i,j-1); 
     step=delta_coloumn/11; 
     for n=0:50 
      Fd_frs(i,pos+n)=Fd_row(i,j-1)+step*n;       %#ok<*SAGROW> 
      if (n==50) 
          flag=1; 
      end 
     end 
    end   
end 
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%%Q axes 
 
%coloumn fitting 
  
for i=1:32 
    pos=1;flag=0; 
    for j=2:32 
        if(flag==1) 
            pos=pos+50; 
            flag=0; 
        end 
     delta_row=Fq(j,i)-Fq(j-1,i); 
     step=delta_row/50; 
     for m=0:50 
      Fq_row(pos+m,i)=Fq(j-1,i)+step*m;       %#ok<*SAGROW> 
      if (m==50) 
          flag=1; 
      end 
     end 
    end   
end 
  
%row fitting 
  
  
for i=1:length(Fq_row) 
    pos=1;flag=0; 
    for j=2:32 
        if(flag==1) 
            pos=pos+50; 
            flag=0; 
        end 
     delta_coloumn=Fq_row(i,j)-Fq_row(i,j-1); 
    step=delta_coloumn/50; 
     for n=0:50 
      Fq_frs(i,pos+n)=Fq_row(i,j-1)+step*n;       %#ok<*SAGROW> 
      if (n==50) 
         flag=1; 
      end 
     end 
    end   
end 
  
------------------------------------------------------- 
The script interpoles the tables adding 50 linearly interpolated values among the elements of line and those 

of column of the fluxes matrix. 

Code inputs 

-fdfq_idiq_n32.mat 

Code outputs 

-fdfq_idiq_n1600.mat 
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c- MTPA trajectory from flux matrix manipulation 

Iterative method A 

-------------------------------------------------------------- 
 
% input:    fdfq_idiq_n1600 
  
  
% output:   
% 1) MTPA trajectory on id iq plane 
% 2) control rulez MTPA idref = f(Tref), iqref = F(Tref) 
% 3) tabelle.txt 
  
  
% close all, clear all 
  
motor_name = 'SynRM2'; 
p = 2; 
Imax = 14; 
axes_type = 'SR';  % Synch Rel style 
  
load fdfq_idiq_n1600.mat; 
  
  
% mgt model 
figure(1) 
plot(Id(1,:),Fd([33 20 1],:)), grid on 
xlabel('i_d [A]'),ylabel('[Vs]','Fontsize',12), title('flusso d','Fontsize',12) 
legend('\lambda_d(i_d,0A)','\lambda_d(i_d,7A)','\lambda_d(i_d,12A)','Location','
South') 
set(gca,'Fontsize',12) 
figure(2) 
plot(Iq(:,1),Fq(:,[1 20])), grid on 
xlabel('i_q [A]','Fontsize',12),ylabel('[Vs]','Fontsize',12), title('flusso 
q','Fontsize',12) 
legend('\lambda_q(0,i_q)','\lambda_q(7A,i_q)','Location','South') 
set(gca,'Fontsize',12) 
  
% Torque, flux module e current model on matrix Id Iq  
id = Id(1,:); iq = Iq(:,1)'; 
TI = 3/2 * p * (Fd .* Iq - Fq .* Id); 
FI = sqrt(Fd.^2 + Fq.^2);  
II = sqrt(Id.^2 + Iq.^2); 
  
% PM flux 
lm = interp2(Id,Iq,FI,eps,eps); 
  
% contour of torque 
TLevel = max(max(TI))*(0.01:0.01:1); 
CurveIsoTI=contourc(id,iq,TI,TLevel); 
  
% contour of current 
Imax_interp = max(max(abs(id)),max(abs(iq))); 
ILevel = Imax_interp *(0.01:0.01:1); 
CurveIsoII=contourc(id,iq,II,ILevel); 
  
% MTPA - ILevel and TLevel curve contact 
Curve = CurveIsoII; Level = ILevel; 
Tot = 0; Valori = 0; NuovoValore=[]; 
a = cell(length(Level),1); 
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id_KtMax = []; iq_KtMax = []; T_KtMax = [];  
  
m = 1; finito = 0; count_finito = 0; 
  
while (m<=length(Level) && finito == 0) 
     
    Tot=Tot+Valori+1;     
    if Tot > length(Curve) 
        break 
    end 
    Valori = Curve(2,Tot);    %n of points at this level 
     
    if NuovoValore==Curve(1,Tot) 
        Tot=Tot+Valori+1; 
        Valori=Curve(2,Tot); 
    end 
    NuovoValore=Curve(1,Tot); 
     
    idIso=Curve(1,Tot+[1:Valori]); 
    iqIso=Curve(2,Tot+[1:Valori]); 
     
    T_I = interp2(id,iq,TI,idIso,iqIso);    % T at given I - 1st round 
    [Tmax_I, indiceM]=max(T_I); 
     
    id_KtMax(m) = idIso(indiceM);     % max T / I (Nm/A)locus 
    iq_KtMax(m) = iqIso(indiceM); 
     
    if ((indiceM == 1)||(strcmp(axes_type,'SR') && (indiceM == length(idIso)))) 
        count_finito = count_finito + 1; 
        id_KtMax(m) = NaN;     %  max T / I (Nm/A) locus 
        iq_KtMax(m) = NaN; 
        Tmax_I = NaN; 
    end 
     
    if count_finito == 100 
        finito = 1; 
    end 
    T_KtMax(m) = Tmax_I; 
            
    m = m + 1; 
end 
  
% filter Not a Number (non valid solutions) 
id_KtMax = id_KtMax(not(isnan(id_KtMax))); 
iq_KtMax = iq_KtMax(not(isnan(iq_KtMax))); 
T_KtMax  = T_KtMax(not(isnan(T_KtMax))); 
  
% polynomial fitting  
p_KtMax_i = polyfit(id_KtMax,iq_KtMax,7); 
p_KtMax_T = polyfit(id_KtMax,T_KtMax,7); 
id_KtMax_p = linspace(0,max(id_KtMax)*1.05,length(id_KtMax)); 
iq_KtMax_p = polyval(p_KtMax_i,id_KtMax_p); 
T_KtMax_p = polyval(p_KtMax_T,id_KtMax_p); 
  
ind = find(abs(iq_KtMax_p + j* id_KtMax_p)>=0.94*Imax,1,'first'); 
  
id_KtMax = id_KtMax_p; 
iq_KtMax = iq_KtMax_p; 
T_KtMax = T_KtMax_p; 
I_KtMax = abs(id_KtMax + j* iq_KtMax); %#ok<*IJCL> 
  
  
figure(4) 
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plot(I_KtMax,T_KtMax), grid on 
xlabel('phase current [A]','Fontsize',12), ylabel('torque - Nm','Fontsize',12) 
title('torque versus peak current along the MPTA') 
set(gca,'Fontsize',12) 
  
cut_point = 7; 
  
figure(5) 
plot(I_KtMax(cut_point:end),T_KtMax(cut_point:end)./I_KtMax(cut_point:end)), 
grid on 
xlabel('phase current [A]','Fontsize',12), ylabel('kt - Nm/Apk','Fontsize',12) 
title('kt versus current along the MPTA','Fontsize',12) 
set(gca,'Fontsize',12) 
  
  
for i=1:length(iq_KtMax) 
    if (iq_KtMax(i)<0) 
        iq_KtMax(i)=0; 
        id_Ktmax(i)=0; 
    end 
    if (i==1) 
        iq_KtMax(i)=0; 
        id_Ktmax(i)=0; 
    end 
         
end 
  
  
figure(6) 
  
% MTPA  
plot(id_KtMax,iq_KtMax,'-r','LineWidth',2), hold on 
[c,h]=contour(id,iq,TI,[1:1:23],'b'); clabel(c,h,'LabelSpacing',200) 
[c,h]=contour(id,iq,II,'k'); clabel(c,h), hold on, axis equal 
grid on, xlabel('i_d [A]','Fontsize',12),ylabel('i_q [A]','Fontsize',12) 
axis equal, axis([0.5 7.1 0 7.5]) 
legend('MTPA','iso-coppia','iso-corrente','Location','SouthEast') 
set(gca,'Fontsize',12) 

 
  
motor_name = 'ABB - type SynRM2'; 
T_KtMax(1) = 0; 
  
% LUT 
m = 1;  % numero righe 
n = 32; % numero colonne (la tabella sarà di dimensione n + 1) 
  
Tmax = T_KtMax(end); 
step = Tmax / 32; 
T_set = 0:step:Tmax; 
  
id_set = interp1(T_KtMax,id_KtMax,T_set); id_set(1) = 0; 
iq_set = interp1(T_KtMax,iq_KtMax,T_set); iq_set(1) = 0; 
  
% stampa tabella 
fid = fopen('tabelle.txt','w'); 
fprintf(fid,'//SIGLA MOTORE: %s\n',motor_name); 
fprintf(fid,['//' date '\n']); 
fprintf(fid,'float Tmin = 0;\n'); 
fprintf(fid,'float Tmax = %4.3f; //Nm\n',Tmax); 
fprintf(fid,'float DT    = %4.4f; //Nm\n',step); 
fprintf(fid,'float inv_DT    = %4.4f; //Nm^-1\n',1/step); 
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StampaTarga(fid,id_set,m,n+1,'ID_TAB','//MTPA - id','%6.3f') 
StampaTarga(fid,iq_set,m,n+1,'IQ_TAB','//MTPA - iq','%6.3f') 
  
fclose(fid); 
  
% debug 
figure (8) 
plot(T_KtMax,id_KtMax), hold on, grid on, 
plot(T_KtMax,iq_KtMax,'r'), 
plot(T_set,id_set,'xk'), plot(T_set,iq_set,'xk'), hold off, 
legend('id set point','iq set point','LUT','LUT'); 
xlabel('T\_set - Nm'), ylabel('Apk') 
  
edit tabelle.txt 

 
-------------------------------------------------------------- 
Code inputs  
-fdfq_idiq_n1600 
  
  
Code outputs 

-MTPA trajectory on id iq plane 

-control rulez MTPA idref = f(Tref), iqref = f(Tref) 

-tabelle.txt 
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Iterative method B 

 

-------------------------------------------------------------- 
%%          from flux to MTPA       %%%%%%%%%%%%%%%%%%%% 
  
%flux matrix dimension nxm 
  
n=24; 
m=24; 
  
%%p.u. value range of the current 
%%Ibase*SerieMoltD*sqrt(2)=current in d-axes. The same for the q-axes. 
Ibase=6.89775; %%Arms 
SerieMoltD= [-1.44;-1.38;-1.32;-1.26;-1.2;-1.14;-1.08;-1.02;-0.96;-0.9;-0.84;-
0.78;-0.72;-0.66;-0.6;-0.54;-0.48;-0.42;-0.36;-0.3;-0.24;-0.18;-0.12;-0.06]; 
SerieMoltQ= 
[1.44;1.38;1.32;1.26;1.2;1.14;1.08;1.02;0.96;0.9;0.84;0.78;0.72;0.66;0.6;0.54;0.
48;0.42;0.36;0.3;0.24;0.18;0.12;0.06]; 
 
%Copy and paste the FluxD [nxm] and the FluxQ [mxn] matrix and put it on the 
Workspace 
  
%depure the FluxD matrix from the magnet flux (FluxD when no current pass: 
%Id=Iq=0; 
 
FLUX_PM=0.2079; 
  
for i=1:m 
    for j=1:n 
        if (FluxD(i,j)>0) 
            FD(i,j)=FluxD(i,j)-FLUX_PM; 
        else  
            FD(i,j)=0; 
        end 
    end 
end 
  
  
%remove the iq=0 coloumn and id=0 row from FluxD and FluxQ --> delete it on 
%the workspace 
  
%Organization of the matrix FluxQ --> it has to become an [nxm] matrix 
%row to coloumn 
%  
for i=1:m 
    for j=1:n 
        FQ(j,i)=FluxQ(m-i+1,n-j+1);            
    end 
end 
  
  
% apparent inductances calculation 
LD_correct=FD./(sqrt(2)*SerieMoltD*Ibase); 
LQ_correct=abs(FluxQ./(sqrt(2)*SerieMoltQ*Ibase)); 
  
Ldiff=(LD_correct-LQ_correct); 
  
% permanent flux from magnet calculation (depending on rotor temperature) 
  
Tr=40;   %%rotor temperature at continuative work condition 
Ts=80;   %%stator temp 
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FLUX_PM=flux_PM_spline(1,Tr*100); 
  
%idea: 
%iq(iter-1)-iq(iter)<e. 
  
%range define for id; 
id_range=-14:0.01:-0.58336;  %% [1.44 to 0.6 p.u.] 
sz=size(id_range); 
p=sz(2); 
  
%Considerated working point: torque [Nm] 
T=[1.59000000000000 3.18000000000000 4.77000000000000 6.37000000000000 
7.96000000000000 9.55000000000000 11.1400000000000 12.7300000000000];  
  
  
  
  
for l=1:8  %%more ext for --> first iteration initialization and new Torque 
value 
    flag=0; 
    iq_hold=0; 
     
for i=1:p  %% that for is used for change id value, for each value of id, we 
have to iter on iq in order to have convergence on it value 
     
       tmpd=id_range(i)/sqrt(2)/Ibase; 
    %%    
    %%%%  
    for k=2:24 
       %id_pu research; 
       if( tmpd>SerieMoltD(k-1) && (tmpd<SerieMoltD(k))) 
            id_fix_pu=k; %%fix of p.u. Id (fix the row on the Ldiff matrix) 
       else 
           continue; 
       end 
    end 
        
        
       %at the first iteration, we consider iq=0 (no cross saturation) 
            if(flag==0) 
                %interpolation beetween the two nearest point to tmpd on the 
                %id_pu row 
                a=abs(tmpd-k); 
                b=abs(tmpd-(k-1)); 
                c=(Ldiff(k,24)*a+Ldiff(k-1,24)*b)/(a+b); 
                flag=1;   %%end of first iteration 
            end 
          
     %%%% 
     
 
 
 
 
 
 
  
     %% 
     %%%% 
        if(flag==1) 
            %%iq_pu research 
            q_state_pu=Iq_hold(i)/sqrt(2)/Ibase; 
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            for h=1:24 
                if(q_state_pu<SerieMoltQ(h-1) && (q_state_pu>SerieMoltQ(h))) 
                    iq_tmp_pu=h; 
                    break;  %coloumn position  
                else 
                    continue; 
                end 
            end 
            
            %calc of Ldiff h and in h-1 with interpolation on the tmpD 
            intermediateD_Ldiff_h=Ldiff(id_fix_pu,h)+(tmpd-
abs(SerieMoltD(id_fix_pu)))/(abs(SerieMoltD(id_fix_pu-1))-
abs(SerieMoltD(id_fix_pu)))*(L_diff(id_fix_pu-1,h)-Ldiff(id_fix_pu,h)); 
 
            intermediateD_Ldiff_hminus1=Ldiff(id_fix_pu,h-1)+(tmpd-
abs(SerieMoltD(id_fix_pu)))/(abs(SerieMoltD(id_fix_pu-1))-
abs(SerieMoltD(id_fix_pu)))*(L_diff(id_fix_pu-1,h-1)-Ldiff(id_fix_pu,h-1)); 
 
             
 
 
 

%interpolation for Q pu position 
      %(weighted average) 
            a=abs((h-1)-q_state_pu); 
            b=abs(h-q_state_pu); 
            c=(intermediateD_Ldiff_h*b+intermediateD_Ldiff_hminus1*a)/(a+b); 
        end 
    %iq calculation 
    iq(i,l)=T(l)/1.5*(2*(FLUX_PM+c)*Id_range(i)); 
     
    %%check of the error treshold 
    if(abs(iq(i,l)-iq_hold(i,l))>0.1)  
        iq_hold=iq; 
        p=p-1;  %block the id iteration  
    else 
        continue; %%to the for with i=1:p 
    end 
     
end 
    
end 
 
%%max kt locus research and MTPA plot 
Kt=zeros; 
  
  
for i=1:m 
    for j=1:n 
        Kt(i,j)=1.5*2*(FLUX_PM-deltaLdq(i,j)*Ibase*SerieMoltD(i)*sqrt(2)); 
        if (Kt(i,j)==0.623582774000000) %error for the zero value in flux matrix 
to remove 
            Kt(i,j)=0; 
        end 
    end 
end 
  
for l=1:8 
    for i=1:m 
        for j=1:n 
            iq(i,l)=T(l)/Kt(i,j); 
        end 
    end 
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end 
  
for l=1:8 
    for i=1:m 
        Is(i,l)=sqrt(iq(i,l)^2+(Ibase*SerieMoltD(i))^2); 
    end 
end 
  
  
for l=1:8 
    flag1=0; 
    for i=2:m 
        if(min(Is(:,l))==Is(i,l)) 
            I_MTPA(1,l)=(Ibase*SerieMoltD(i)*sqrt(2))/2; 
            I_MTPA(2,l)=Iq(i,l)/2; 
            flag1=1; 
            break; 
        end 
    end 
end 
figure(1) 
plot(Is) 
figure(2) 
plot(Iq)  
figure (4) 
xx=[-20:0.01:0]; 
MTPA_interp1=interp1(I_MTPA(1,:),I_MTPA(2,:),xx); 
plot(xx,MTPA_interp1,I_MTPA(1,:),I_MTPA(2,:),'o') 
hold on 

 
-------------------------------------------------------------- 
 
 
Code inputs 

-fdfq_idiq_n32.mat 

 

Code outputs 

-MTPA trajectory on id iq plane 
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A4 
Note: to use this script, the Adept program must be installed on your computer. You need also to organize 

the reference folder for matlab: just copy and paste a standard simulation output to the folder and add the 

following scripts and .bat files. 

a- 60 degree elt excursion of rotor – simulations and mediated output 

 

clear all  %#ok<CLALL> 
close all  
clc 
  
RPM     =3000;      % [rpm] 
pp      =2;         % pole pairs 
FN      =RPM/60*pp; % nominal freq 
Irated  =7.27;      % [Arms] 
  
%%temperature fixed 
RotTemp=105; 
StatTemp=65;  %according to the other Adept simulations 
  
i=1; 
j=1; 
k=1; 
  
CREF=zeros; 
IphiE=0; 
  
iq=0.001*1.4142:0.03:1.4*1.4142; 
pos=1;  
    %%CurrentDefinition 
    
         
        while i<=66 %iq=0.001*1.4142:0.03:1.4*1.4142  
             
            Iq=iq(i); 
            Id=-iq(pos); 
             
            if((k/66)-floor(k/66)==0&&k<4356)  %% è multiplo intero di 66 
                flag=1; 
                pos=(k/66)+1; 
            end 
             
             
            
            alpha   = atan2(Iq,Id)*180/pi; 
            Is(i,j) = Irated*sqrt(Id^2+Iq^2)/sqrt(2); %#ok<*SAGROW> 
            CREF = Is(i,j); 
             
            for IphiE=0:1:60 
                CurrStr = num2str(CREF); 
                AngleStr = num2str(IphiE); 
                %RotorAngleDefinition 
                RotAngle_e  = -alpha - 150 + IphiE;  
 
                %launch simulation program 
[data,dc_out]=launchFCSmek(RotAngle_e,CREF,RotTemp,StatTemp,0,150,pp,FN,IphiE,1) 
 
                %aquisition of data 
                Fd(k,IphiE+1)=dc_out.data(12); 
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                Fq(k,IphiE+1)=dc_out.data(16); 
                id_result(k,IphiE+1)=dc_out.data(21); 
                iq_result(k,IphiE+1)=dc_out.data(23); 
            end 
             

Fd_mediated(j,i)=mean(Fd(i,:));  %%mediated Flux -- filtered from 
Stator induced ripple 

            Fq_mediated(j,i)=mean(Fq(i,:)); 
            Id_out(j,i)=id_result(k,1); 
            Iq_out(j,i)=iq_result(k,1); 
            k=k+1; 
             
            if(k==200) 
                break; 
            end 
            if(flag==1) 
                i=1; 
                j=j+1; 
                flag=0; 
            else 
                i=i+1; 
            end 
        end 
--------------------------------------------------------------------------------         
Code inputs 

            - empty workspace 

 

Code outputs 

            - Fd, Fq, id, iq mediated from stator effects (input workspace for A3 c) 

 
 
---------------------------------------------------------------------------------------------------------------- 

 

b- launchFCSmek.m matlab function 

 

function 
[data,dc_out]=launchFCSmek(RotAngle_e,CREF,TST,TRT,source,theta0,pp,FN,IphiE,Use
_d_ax) 
  
% [data, dc.out]=launchFCSmek(RotAngle_e,CREF,TST,TRT,source) 
              ini = IniConfig(); 
              ini.ReadFile('FCSMEK_calc.ini'); 
switch source 
    case 0 
              %     Stator source? /Current=0/Voltage=1/ 
              ini.SetValues('[SYDC]', 'ITSTJ', source); 
              %     Rotational angle of the rotor 
              ini.SetValues('[SYDC]', 'ALFA', RotAngle_e); 
              %     Line current for stator 
              ini.SetValues('[SYDC]', 'CREF', CREF); 
              %     Temperature of the stator windings 
              ini.SetValues('[SYDC]', 'TST', TST); 
              %     Temperature of the rotor windings 
              ini.SetValues('[SYDC]', 'TRT', TRT); 
              %     Stator phase angle in order to fix Id and Iq value 
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              %     only fluxes value change for ripple fact 
              ini.SetValues('[SYDC]', 'ANGLE', IphiE); 
              %     Use D_axis_angle 
              ini.SetValues('[SYDC]', 'USE_D_AXIS_ANGLE', Use_d_ax); 
              %     D_ax to theta0 150° elt 
              ini.SetValues('[SYDC]', 'D_AXIS_ANGLE', theta0); 
               
               
               
               
              ini.WriteFile('FCSMEK_calc.ini'); 
               
    case 1 
              %     Stator source? /Current=0/Voltage=1/ 
              ini.SetValues('[SYDC]', 'ITSTJ', source); 
              %     Rotational angle of the rotor 
              ini.SetValues('[SYDC]', 'ALFA', RotAngle_e); 
              %     Line current for stator 
              ini.SetValues('[SYDC]', 'CREF', CREF); 
              %     Temperature of the stator windings 
              ini.SetValues('[SYDC]', 'TST', TST); 
              %     Temperature of the rotor windings 
              ini.SetValues('[SYDC]', 'TRT', TRT); 
              %     Use D_axis_angle 
               ini.SetValues('[SYDC]', 'USE_D_AXIS_ANGLE', Use_d_ax); 
              %     D_ax to theta0 150° elt 
              ini.SetValues('[SYDC]', 'D_AXIS_ANGLE', theta0); 
              %     Stator phase angle in order to fix Id and Iq value 
              %     only fluxes value change for ripple fact 
              ini.SetValues('[SYDC]', 'ANGLE', IphiE); 
               
              ini.WriteFile('FCSMEK_calc.ini'); 
               
               
               
         

end 
              
  
              dos('launchFCSmek.bat'); %launch only magneto static with .bat   
                                                                              
              [data]=1; 
              dc_out = importdata('dc_out.dat',';'); 
               
              fprintf( '\n\nHello, %d worlds!\n\n', 20 ) 
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c- IniConfig.m 

 
Download at https://www.dropbox.com/sh/yo5fav88u1axi6o/ACIapj0SvC441dfju529iGa?dl=0 

 

 

d- launchFCSmek.bat 

 

@echo off 
"C:\Program Files (x86)\Adept\FCSmek\mesh.exe" 
"C:\Program Files (x86)\Adept\FCSmek\sydc.exe" 
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