
POLITECNICO DI TORINO

Master’s Degree Course in Electrical Engineering

Master’s Degree Thesis

Model-Based Design for STM32 Nucleo
boards applied to motion control

Supervisor:
prof. Gian-Mario Pellegrino

Candidate:
Cesar Olivera
Student Id: 238578

Academic Year 2017-2018

Abstract

In the field of Power Electronics, several types of motor control systems have been
developed using microprocessors. Many of them are based on systems of differential
equations, use state observers and need to handle multiple tasks in order to execute an
optimal operation of the motor. The more complex is the system, the harder is to im-
plement. Traditionally, many steps are carried out from the modelling stage to the real
operation of the control systems, and require iterative tests to ensure the absence of error.
A major part of the effort is focused on embedded software representation of the control
system, which demands a large amount of code lines that may contain hard-to-detect bugs.

The Model-Based Design is a method in which most of the design is centred in the
model, while the code representation and embedded integration is automatically carried
out. In this work, simplified implementation and validation methods are proposed using
Model-Based Design for motor control systems, exemplified with an I-Hz control. Taking
advantage of the Matlab/Simulink graphical tools, a control system can be modelled as
a combination of block diagrams and state machines to reduce the mathematical com-
plexity and schedule multiple tasks. Also, the STM32 Embedded Target toolbox is used
for automating the generation and integration of the modelled control algorithm to an
embedded software representation compatible with the STM32 Nucleo boards, avoiding
to write any code manually and carry errors.

Validation of the designed control system is eased when exactly the same simulated
control algorithm is integrated to a microprocessor because the names of the variables are
shared. The variables involved in the operation of the control system can be read from the
microprocessor’s memory using a serial monitor with USART communication protocol.
Minimal differences took place when the real and simulated results were confronted due
to some nonidealities, but under certain tolerance ranges that allowed the model to be
endorsed.

In conclusion, the proposed method for designing motor control systems allowed to
skip or to simplify many steps that are traditionally carried out, specially what regards
to the mathematical modelling and code programming, so time and effort reduction was
successfully accomplished.

Page 3 of 66

To the Olivera de la Calzada family

around the world...

Acknowledgements

Un aroma a incienso, mi tacita de café y una lluvia primaveral por mi ventana me
acompañan este d́ıa en Torino... Aqúı me encuentro, tan lejos y tan cerca de todo, bus-
cando las palabras para explicar cómo es que llegué a este punto. No sé si es la meta o
un punto de partida, o si tan solo es una de las cosas que ocurren entre medio. Lo que śı
tengo certeza es de que esto no lo siento normal, un poco atormentado por el cambio que
llegará a suceder. ¡Un momento! ¿Esto no lo hab́ıa vivido antes?

Me parece que fue a los 9 años cuando me desped́ı de mi ciudad natal, Lima, para
ir a Santiago con mis padres y hermanos. Tal vez me enojé mucho con mis padres por
este gran cambio que me atormentó desde temprana edad. Sin embargo, ellos siempre
estuvieron firmes con la idea de que estaban haciendo lo mejor para sus hijos, y efec-
tivamente aśı fue. Nunca fueron padres ausentes, siempre nos entregaron motivación y
apoyo en nuestro crecimiento como personas. Recuerdo que yo queŕıa hacer de todo... ser
músico, deportista y buen estudiante, y alĺı ellos estaban... en mis presentaciones tocando
la guitarra, en mis torneos de basketball y en mi graduación del colegio.

Creo que me desvié del tema... ¿Cómo es que llegué a este punto?... ¡Ah śı! Fue
un tema de querer poner mis propias decisiones en práctica con respecto a lo que seŕıa
mi futuro. Recuerdo momentos sentado en el parque con mi guitarra, aprovechando el
silencio del barrio para pensar qué haŕıa. Mis abuelos desde Perú me dećıan que tome la
decisión que yo quisiera, pero que siempre trate de ser el mejor en ello, y aśı fue... Decid́ı
irme a estudiar afuera, bien lejos, y empezar una nueva vida armada por mı́ mismo... Ok,
eso no fue exactamente lo que ocurrió.

Entré a estudiar ingenieŕıa eléctrica en la UC, para nada arrepentido, incluso llegué a
conocer amistades incréıbles, profesores muy buenos, y por su puesto... grandes experi-
encias. El deporte y la música nunca los dejé de lado por los estudios, a ello se sumaron
tantos viajes y fiestas. Pero el foco nunca lo perd́ı, poco más de cuatro años pasaron
cuando logré continuar mis estudios y experiencias en Italia.

Fueron muchos amigos de los que me tuve que despedir, con los que compart́ı tiem-
pos de estudio, fiestas, paseos en bicicleta, subidas a las montañas, partidos de basket,
presentaciones musicales, viajes a la playa o al sur... Es realmente dif́ıcil despedirse,
agradezco todo lo que he vivido con ellos y les deseo lo mejor también en sus vidas. ¿De-
spedida? Cavolo! esto es solo un “hasta luego”, porque les aseguro que nos volveremos a
ver muchas veces más... Creo que ya solté una palabra en italiano...

Aparentemente no vine solo a Torino, fueron muchos otros compañeros de la UC que
tomaron la misma decisión, y ahora también son queridos amigos mı́os. En general, me
gusta referirme al grupo como la familia Baretti, porque es la dirección de la casa que nos
acoge... No, no... No todos vivimos en esta casa, pero śı compartimos acá gran parte del
tiempo, nos reunimos a conversar, hacer ejercicios, comer, tirar la casa por la ventana...
Realmente los he considerado una familia para mı́, no sé que seŕıa sin ellos en este mo-
mento. Todos nos apoyamos, nos felicitamos, nos escuchamos en los momentos dif́ıciles,
nos aconsejamos, viajamos juntos por Europa... Gracias a todos por estar conmigo, y
hacer de esta experiencia “La Dolce Vita”. Y cómo no mencionar a los amigos del viejo

Page 6 of 66

continente que he hecho este último par de años. También los considero parte de la fa-
milia Baretti. Tanto compartimos todos juntos que veces no nos damos cuenta si estamos
hablando en español o italiano. Grazie mille per tutto, ragazzi!

Ya se ha consumido el incienso, me terminé el café, y ahora hay truenos acompañando
las fuertes lluvias primaverales. Este agitado d́ıa está llegando a su fin y se siente como
si hubiesen sido seis años... ¡Efectivamente! Fueron seis años muy agitados que me han
marcado como persona, dejándome ante un futuro incierto pero emocionante. Finalmente,
para cerrar esta dedicatoria, quisiera reiterar mi agradecimiento infinito a mis padres y
hermanos, que dentro de poco atravesarán medio mundo para venir a verme y celebrar
este valioso hito.

¡Gracias Totales!

Page 7 of 66

Contents

1 Introduction 11
1.1 State of art . 11
1.2 Model-Based Design overview . 13

2 Software and hardware requirements 16
2.1 Software . 16
2.2 Hardware . 17

3 Modelling the control algorithm 20
3.1 The Simulink model of the control algorithm 20

3.1.1 Description of the subsystems and Matlab functions 22
3.1.2 Signal classification . 27

3.2 Model-in-the-loop test . 28

4 Code Generation 33
4.1 Overview of the Code Generation . 33

4.1.1 Code Generation example . 34
4.2 Integrating Code Generation with the STM32 Nucleo boards 37

4.2.1 Peripherals initialisation using STM32CubeMX 37
4.2.2 Linking to the peripherals via STM32 Embedded Target 39
4.2.3 Description of the Simulink model for the Code Generation 39
4.2.4 Bottom unit . 43

5 Results 44
5.1 The generated C project . 44
5.2 Experimental set-up . 44
5.3 Experimental operation and debug . 47

5.3.1 Test 1 . 47
5.3.2 Test 2 . 50

6 Conclusions 53

References 55

7 Annexes 56
A1 Model Explorer configurations for the control algorithm 56
A2 STM32CubeMX GUI for the peripherals configuration 58
A3 Blocks configuration for the STM32 Embedded Target 60
A4 KEIL uVision IDE . 66

List of Figures

1 S-Function approach . 12
2 Inputs/Outputs of the control algorithm 13
3 I-Hz control . 14
4 Model-Based Design approach . 14
5 The operation and debugging of the real control system 15

Page 8 of 66

6 STM32F3RETx Nucleo board . 17
7 X-NUCLEO-IHM08M expansion board . 18
8 S140-2B353 Permanent Magnet Synchronous Motor 18
9 Hardware set-up . 19
10 The control algorithm model in Simulink: IHz model.slx 20
11 Stateflow state machines . 21
12 I-Hz Simulink Function . 21
13 ramp block . 22
14 gen theta ref block . 22
15 PIreg d block . 23
16 Clarke transformation . 24
17 Inverse Clarke transformation . 24
18 Park transformation . 25
19 Inverse Park transformation . 25
20 Plant model . 28
21 MIL test . 29
22 Signal visualisation, i∗d = 0.8 [A] and ω∗mec = 400 [rpm] 29
23 Signal visualisation in steady state, i∗d = 0.8 [A] and ω∗mec = 400 [rpm] . . . 30
24 Signal visualisation, i∗d = 1.0 [A] and ω∗mec = 500 [rpm] 30
25 Signal visualisation in steady state, i∗d = 1.0 [A] and ω∗mec = 500 [rpm] . . . 31
26 Signal visualisation, i∗d = 1.2 [A] and ω∗mec = 600 [rpm] 31
27 Signal visualisation in steady state, i∗d = 1.2 [A] and ω∗mec = 600 [rpm] . . . 32
28 Code Generation example . 34
29 Interfacing the physical ports and peripherals from STM32CubeMX 38
30 STM32 configuration . 39
31 STM32 configuration and interrupt service routines 40
32 rstEncoder ISR . 40
33 Control ISR . 41
34 if-else statement . 42
35 The project outline . 43
36 Experimental set-up . 45
37 Detailed pin connection . 45
38 Set-up with data acquisition . 46
39 The virtual oscilloscope . 46
40 Simulation with i∗d = 0.8 [A] and ω∗mec = 400 [rpm] 48
41 Stator currents and rotor position . 49
42 Stator currents iαβ and idq . 49
43 PWM duty cycles . 49
44 Simulation with i∗d = 1.0 [A] and ω∗mec = 500 [rpm] 50
45 Stator currents and rotor position . 50
46 Stator currents iαβ and idq . 51
47 PWM duty cycles . 51
48 Stator currents and rotor position . 51
49 Stator currents iαβ and idq . 52
50 PWM duty cycles . 52
51 Rotor speed . 52
52 Model Explorer: IHz model . 56
53 Model Explorer: Chart . 56

Page 9 of 66

54 Model Explorer: Simulink Function . 57
55 TIM1 configuration . 58
56 TIM4 configuration . 59
57 ADC1 configuration . 59
58 USART2 and pin configuration . 60
59 STM32 Config . 60
60 TIM1 interrupt signal . 61
61 GPIO Exti block . 61
62 TIM4 encoder mode . 62
63 ADC1 . 63
64 GPIO Read block . 63
65 GPIO Write block . 64
66 TIM1 PWM ports . 64
67 TIM1 PWM ON . 65
68 TIM1 PWM OFF . 65
69 C project in KEIL uVision IDE . 66

List of Tables

1 Simulation parameters . 28
2 Hardware ratings . 47

Page 10 of 66

1 Introduction

An AC electric motor is a machine that carries out electromechanical conversion. Be-
ing supplied by alternate current the machine is capable to apply a certain power and
speed on the rotor, depending on its mechanical load. Control systems can be imple-
mented to control the states of the motor such as the applied torque, rotor speed, stator
voltage and current, among others. Generally, the logic of a control system is executed
in a Micro-Controller Unit (MCU) to process the motor readings and drive the inverter
for supplying power to the motor, however, this logic has to be properly tested before the
implementation to ensure a safe performance. There are multiple methods for correctly
implementing an AC motor control system, among which the Model-Based Design will
be presented in this work. The purpose of this work is to use the Model-Based Design
method for motor control implementation using Matlab/Simulink and the STM32 Em-
bedded Target toolbox. This particular toolbox incorporates full compatibility with the
STM32 MCUs, so the simulation of the control system and the code generation can be
achieved from the Simulink environment, targeting in this case the STM32 Nucleo boards.
In this work is also explained how to deal with the debugging process of the implemented
control system.

1.1 State of art

Before introducing the Model-Based Design method, common implementation tech-
niques of control systems are going to be explained. A control system involves a plant (an
inverter and an AC motor in this case) and a controller (the MCU) to control the states
of the plant using a feedback loop. This is graphically represented in block diagrams
and mathematically validated. As the control system becomes more complex, computa-
tional tools are required to validate the system using numerical methods and simulation.
There are some platforms for graphical modelling and simulating control systems like
Matlab/Simulink and PLECS. As said before, the MCU executes the control logic. This
logic must come from a C file that is a transcription of the modelled controller in pro-
gramming language. A handwritten transcription from the block diagram to C code is
susceptible to carry a lot of errors, specially when the system is very complex. So testing
processes are also required for validating the C code.

From the Simulink environment, handwritten C code can be simulated with a modelled
plant to test the performance of the control logic before being integrated to the MCU. This
can be done using the S-Function block[6] from the Simulink Library. An S-Function is a
C file that carries the same algorithm that is going to be loaded in the MCU. S-Functions
are compiled as MEX files to be called from the Simulink environment and to interact with
other blocks. Once the simulation works properly, the control algorithm is integrated to
the MCU using an Integrated Development Environment (IDE). This integration consists
in linking the inputs and outputs of the control algorithm to the peripherals of the MCU
in order to interface the real plant. The integration is manually written and requires the
inclusion of the MCU’s drivers in the C project. Figure 1 shows how the control algorithm
is first simulated and then integrated to MCU from the C project.

1 Introduction Page 11 of 66

- controlAlgorithm.c

- main.c
- scheduler.c

•SourceFiles

•HeaderFiles

- motorControl.h
- constants.h

- macros.h
- variables.h

- dataTypes.h

S-Function

controlAlgorithm.c
Plant Model

Feedback

REF

Signals

Scope

Code Editor

/* scheduler.c */

control(inputs,outputs);

Simulation model IDE - C project

Figure 1: S-Function approach

One thing to keep in mind is that the S-Function C file is not exactly the same con-
trol algorithm file. The S-Function contains some additional functions for interfacing the
Simulink inputs/outputs and for being compiled and executed in the simulation model.
The code adaptation between the common C file and the S-Function can be handwrit-
ten or generated using the Legacy Code Tool[7]. The Legacy Code Tool generates the
S-Function by receiving the C file and the specifications of which are the inputs/outputs
and other internal parameters or data types.

After loading the control algorithm onto the MCU, a monitoring and debugging process
has to be carried out in order to validate the correctness of the real execution. Debugging
and measurements for the real-time execution can be done using external lab instruments
(such as oscilloscope and tachometer), or establishing a communication protocol with the
MCU to read the state of the internal variables from a serial terminal. Some debug-
ging tools available in the market for real-time execution analysis are dSpace, Speedgoat,
OPAL-RT and RT Box. These tools let the MCU interface to an emulated or real plant1

for monitoring the internal values of the MCU and the states of the plant.

As competitiveness in the technology market increases, faster and more optimised de-
signs are being pursued. Important companies like Airbus, Eurocopter, Schneider Electric
and CSEE Transport are using automatic Code Generation tools for skipping the com-
plexity of the C code handwriting and testing in order to accelerate their developments.
Some of these tools are SCADE, ADI Beacon, MATRIXx and Matlab/Simulink. One of
the methods that takes advantage of Code Generation is the Model-Based Design (sec.
1.2).

1Emulation hardware are used to emulate the plant for the Hardware-in-the-loop (HIL) test.

1 Introduction Page 12 of 66

1.2 Model-Based Design overview

The Model-Based Design is a methodology to design software for embedded systems[8].
As its name says, the development process of a control system is focused on the model by
exploiting the graphical modelling and Code Generation capabilities. While the graphical
modelling reduces the complexity of the mathematical representation of the system, the
Code Generation avoids the transcription process to programming language that might
carry errors hard to detect. In this sense, the designing problem is simplified to the cre-
ation of the graphical model and its validation with the proper tests and simulations,
while the rest of the process is practically automated.

The C code handwriting, verification and tests are time consuming, specially when the
target system becomes more complex. These steps can be skipped with the Code Gen-
eration in order to achieve an important time saving. Error detection and mathematical
details are easier to handle from the high level perspective of the graphical modelling.

The software used in this work for modelling and simulating control systems is Mat-
lab/Simulink, which offers graphical tools like block diagrams and state machines to
reduce the complexity of the control system modelling. The block diagrams eliminate the
need to formulate differential equations and the states machines are an easy way to deal
with conditional statements. At this point, a properly working simulation is enough to
start generating the C code and loading it onto the MCU.

The proposal of this work is to use the Matlab/Simulink tools and the STM32 Em-
bedded Target toolbox for modelling, implementing and debugging a control system for
motor control. A summary of the steps detailed in this work are explained below.

1. The control algorithm is modelled in Simulink (sec. 3.1). The model (fig. 2) receives
the reference parameters and the plant readings in order to determine the input of the
plant. In this work, an I-Hz control will be developed using the Model-Based Design
method. The I-Hz control is executed by the control algorithm in order to regulate the
stator current vector of the AC motor, based on the scheme of figure 3.

Stator 3-phase currents in [A]

Inverter DC-Link voltage in [V]

Rotor position in [rad]

Reference rotor speed in [rpm]

Start and Reset commands

Inverter 3-phase duty cycle

PWM stop logic value

Other signals for debugging

Control
Algorithm

Figure 2: Inputs/Outputs of the control algorithm

1 Introduction Page 13 of 66

PIreg

∫

gen theta reframp

e−jθ

invPark
Π−1

invClarke

ejθ

Park
Π

Clarke

PWMduty
+

−

p · π

30

i∗d = I

i∗q = 0
i∗dq

idq

v∗dq v∗αβ v∗abc dabc

VDC

iabciαβ

θ∗

ω∗
rpm

(iabcs)

(duty abc)

(Vdc)

(omega ref rpm)

Figure 3: I-Hz control

2. Test of the control algorithm with a modelled plant in order to verify the correctness
of the control logic execution (sec. 3.2).

3. Use the STM32 Embedded Target toolbox for creating a Code Generation environ-
ment in Simulink (sec 4.2). This toolbox enables Simulink blocks for representing the
MCU’s peripherals, so the integration between the control algorithm model and the
peripherals are graphically done and it avoids the handwritten integration (see fig. 4).
It may be noted that the same control algorithm model is used for both simulation
and integration.

Control
Plant Model

Feedback

REF

Signals

Scope

Simulation model Code Generation model

algorithm

Control
algorithm

ADC

GPIO

TIMER
Encoder Mode

TIMER
PWM

USART

Figure 4: Model-Based Design approach

4. The Code Generation environment from the previous step will automatically generate
a C project with all the control logic and the integration to the MCU, so no manual
modification to the C code is required (sec. 5.1). The C project is opened from an
IDE with the capability of building and loading it onto the MCU.

5. The MCU interfaces the real plant, which consists of the inverter and the AC motor
(sec. 5.2). A debugging process is done using a serial monitor or virtual oscilloscope in
order to visualise the relevant signals of the plant in real-time such as stator currents,
voltages, duty cycles, rotor position, etc. The debugging process requires a serial
communication protocol that for this case is carried out by the USART peripheral of

1 Introduction Page 14 of 66

the MCU. In figure 5 is shown how the generated C project is loaded onto the MCU
that drives the real plant and its states are being monitored using serial communication
for the debug.

MCU

Serial communication

Signal 1

Signal 2
Build and Load

Serial Monitor/Virtual OscilloscopeIDE - C project

Target board

Plant: Inverter + AC motor

Sensor readingsDrive signals

Figure 5: The operation and debugging of the real control system

1 Introduction Page 15 of 66

2 Software and hardware requirements

This section aims to clarify which software and hardware are required in order to carry
out the presented project. The set-up of the project is based on the STM32 evaluation
kit, consisting of a STM32 Nucleo board and the X-NUCLEO-IHM08M low-voltage-motor
driver, which are meant for educational purposes.

2.1 Software

• Matlab/Simulink from MathWorks (version R2015b or later): Environment for
graphical modelling, simulating and analysing dynamical systems, based on the
interconnection of high-level blocks that represents logical and mathematical func-
tions. Some add-ons are required for this work:

– Stateflow[9]: Provides an environment to design a state machine in Simulink.

– Simscape[10]: Includes pre-modelled electrical systems, such as voltage sources
and electrical motors.

– Embedded Coder[12]: Tool for translating a system representation from a
Simulink model into C code.

• STM32CubeMX[5] from STMicroelectronics (version 4.21.0 or later): Graphical
software configuration tool that allows the generation of C initialisation code for
STM32 MCUs using graphical wizards.

• STM32 Embedded Target toolbox[1] from STMicroelectronics (version 4.4.2): Is a
Matlab extension that links a Simulink model to an STM32CubeMX file in order
to enable the peripheral blocks of the STM32 MCUs. Its purpose is to graphically
connect a modelled system to the MCU for generating a totally integrated code
using Embedded Coder.

• KEIL uVision IDE[13] from KEIL (version 5 or later): Integrated Development
Environment with the MDK-ARM toolchain to compile and load a C project onto
the STM32 MCUs.

2 Software and hardware requirements Page 16 of 66

2.2 Hardware

• STM32F303RETx Nucleo board[2] from STMicroelectronics. The main specifica-
tions of this board are:

– 72 [MHz] clock source

– 4 ultra-fast 12-bit ADCs with 5 MSPS

– 3 Timers with PWM and encoder mode

– Full-speed USB for USART communication up to a 2,000,000 baud rate

Figure 6: STM32F3RETx Nucleo board

Alternative boards with these minimum requirements can be used, such as the
STM32F4 and STM32F7 Nucleo board series.

• X-NUCLEO-IHM08M[4] 3-phase motor driver from STMicroelectronics. The main
characteristics of this device are:

– 2-level output signal per leg

– DC-link from 8 to 48 [VDC]

– Imax
out = 15 [ARMS] in each phase

– 3.3 [V] compatible NMOS gate driver

– Power NMOS with RDS = 0.0014 [Ω]

– 3 current shunt sensor

– DC-link voltage sensor

– Shield compatible with STM32 Nucleo boards

2 Software and hardware requirements Page 17 of 66

Figure 7: X-NUCLEO-IHM08M expansion board

• S140-2B353[14] Permanent Magnet Synchronous Motor with encoder from Microphase.
The main ratings of this motor are:

– Vsupply = 17 [VAC]

– Istall = 6.7 [A]

– Pnom = 100 [W]

– Tnom = 0.32 [Nm]

– ωmec
nom = 3000 [rpm]

– KT = 0.05 [Nm/A]

– Ru−v = 0.5 [Ω]

– Lu−v = 0.53 [mH]

Figure 8: S140-2B353 Permanent Magnet Synchronous Motor

Alternative AC motors that can operate with less than 24 [VAC] and 100 [W] can
be also used.

• DC power supply with at least 24 [V] and 3[A].

2 Software and hardware requirements Page 18 of 66

Figure 9 shows the hardware set-up based on the STM32 evaluation kit, where the inverter
converts the DC power into a 3-phase sinusoidal waveform to supply the motor using a
wye connection.

Figure 9: Hardware set-up

2 Software and hardware requirements Page 19 of 66

3 Modelling the control algorithm

3.1 The Simulink model of the control algorithm

A control algorithm is a set of instructions that are executed depending on the input
readings and the current state of the internal variables, making changes on these internal
variables and updating the output values. This is called once at each cycle of a clock
source or timer, triggered by its rising edge.

The purpose of the control algorithm developed in this work (fig. 10) is to control the
behaviour of a Permanent Magnet Synchronous Motor (PMSM) by an MCU, exemplified
in this case with an I-Hz control2 and shown in fig. 3 as a block diagram. However, the
algorithm should be organised as a state machine to schedule the tasks execution properly.
This can be done using the Stateflow toolbox[9] of Simulink.

ia_in

ib_in

ic_in

Vdc

posCount

omega_ref

rst

Go

duty_a

duty_b

duty_c

pwm_stop

out1

out2

out3

1

iabcs

2

Vdc

3

posCount

4

omega_ref_rpm

5

commands

2

pwm_stop

1

duty_abc

3

ia

4

ib

5

ic

pwm_stop

Figure 10: The control algorithm model in Simulink: IHz model.slx

The Chart block of Stateflow (available in the Simulink Library Browser) is a kind of
subsystem were states machines can be drawn. In fig. 11 are shown three parallel state
machines:

1. ControlFlow: There are three internal states. Firstly, the ERROR state in which the
internal variables are initialised and the PWM ports are set to 3-state logic (turned
off). When the Go command goes HIGH it proceeds to the READY state where the
PWM ports are enabled, the bootstrap capacitors of the inverter are charged and the
offsets of the ADCs are measured. After some cycles, the START state becomes active
and the I-Hz control is executed in a Simulink Function. Whenever the reset command
is HIGH, the ERROR state becomes active and the Simulink Function variables are
cleared.

2. CurrentProtection: This state machine checks the intensity of the currents to decide
whether the operation is within the safety limits or it should be turned off.

3. UpdateValues: In this part the offset is subtracted from the input currents. Also,
the output values of the chart are updated.

2The I-Hz control regulates the position and amplitude of the stator current vector in rotating axes.

3 Modelling the control algorithm Page 20 of 66

UpdateValues

VALUES
entry,	during:
ia	=	ia_in-offset_current_a;
ib	=	ib_in-offset_current_b;
ic	=	ic_in-offset_current_c;
out1=ia;
out2=ib;
out3=ic;

33

CurrentProtection

NORMAL
entry,	during:
reset	=	0;
if	(rst>0)	reset	=	1;	end

y=HighCurrent(u1,u2,u3,Imax)

MATLAB	Function

DANGER
entry,during:
reset=1;

[~HighCurrent(ia,ib,ic,CRT_PROT)]

[HighCurrent(ia,ib,ic,CRT_PROT)&&n>=10000]

22ControlFlow

START
during:
[duty_a,duty_b,duty_c]	=	IHz(omega_ref,Vdc,ia,ib,ic);
exit:
[duty_a,duty_b,duty_c]	=IHz(single(0),single(0),ia,ib,ic);

[duty_a,duty_b,duty_c]	=	IHz(omega_ref,Vdc,i_a,i_b,i_c)

Simulink	Function

READY
entry:
pwm_stop=0;
during:
pwm_stop=0;
if	(n>5000)
				if	(counter_offset<400)
								if	(counter_offset>=200)
												offset_a	=	offset_a+ia_in;
												offset_b	=	offset_b+ib_in;
												offset_c	=	offset_c+ic_in;
								end
								counter_offset	=	counter_offset+1;
				elseif	(counter_offset==400)
								offset_current_a	=	offset_a*0.005;
								offset_current_b	=	offset_b*0.005;
								offset_current_c	=	offset_c*0.005;
				end
end
n	=	n+1;

ERROR
entry,during:
pwm_stop=1;
n=0;
counter_offset=0;
offset_a=0;
offset_b=0;
offset_c=0;
offset_current_a=0;
offset_current_b=0;
offset_current_c=0;
duty_a=0.5;
duty_b=0.5;
duty_c=0.5;

[reset]

2

[Go	&&	~reset]

[n>=10000	&&	~reset]

1

[reset]

11

Figure 11: Stateflow state machines

The Simulink Function inside the START state (fig. 12) represents the same idea of
the I-Hz block diagram (fig. 3). It consists of the interconnection of subsystems (white
blocks) and Matlab functions (grey blocks that contain Matlab code), whose modes of
operation are explained in section 3.1.1.

f()

f

pprpm2rad_s

pp*rpm2rad_s

[Vdc]

[Vdc]

ab

theta

dq

ab->dq

123 ab

123->ab

[Vdc]

in

vdc
out

PIreg_d
0

in

vdc
out

PIreg_q

[theta]

[theta]

[Idq]

[Idq]

dq

theta

ab

dq->ab

omega_ref omega

ramp

omega theta

Gen_theta_ref

v123

vdc

duty_a

duty_b

duty_c

ab 123

ab->123

1

duty_a

2

duty_b

3

duty_c

2

Vdc

3

i_a

4

i_b

5

i_c

id_ref

1

omega_ref

iq_ref

V_d

V_q

theta

omega_rpm

omega_rad_s

i_a

i_b i_q

i_d

V_a

V_b

V_1

V_3

V_2

i_3

i_2

i_1

id_ref

duty_a

duty_b

duty_c

Figure 12: I-Hz Simulink Function

3 Modelling the control algorithm Page 21 of 66

3.1.1 Description of the subsystems and Matlab functions

• ramp: Generates a ramp reference input instead of a step to avoid an abrupt
response of the plant. It uses a Matlab Function inside.

omega_ref

delta

omega_prev

ydelta

1

omega_ref

1

omega

omega_rpm

Figure 13: ramp block

function y = ramp(omega ref , de l ta , omega prev)
tmp = s i n g l e (0) ;
tmp = omega prev+de l t a ;
i f (tmp>omega ref) tmp=omega ref ; end

y = tmp ;

• pp*rpm2rad s: Gain that converts the rotor speed reference in [rpm] to an elec-
trical speed reference in [rad/s].

• Gen theta ref : Calculates the angle from the reference speed integrating its value.

omega

Ts

theta_prev

thetaTs

1

omega

1

theta

theta

Figure 14: gen theta ref block

function theta = g e n t h e t a r e f (omega , Ts , the ta prev)
tmp = s i n g l e (0) ;
tmp = theta prev + omega∗Ts ;
i f (tmp>=2∗pi) tmp=tmp−2∗pi ; end
i f (tmp<0) tmp=tmp+2∗pi ; end
i f (omega==s i n g l e (0)) tmp=s i n g l e (0) ; end

theta = tmp ;

3 Modelling the control algorithm Page 22 of 66

• PIreg d and PIreg q: Proportional-Integral controllers for the stator currents.

Kp_d

in

kp

ki

lim

Ts

integ_prev

out

integ

Ki_d

sqrt(1/3)

Ts

1

in

2

vdc

1

out
Kp_d

Ki_d

integ_d

Figure 15: PIreg d block

function [out , i n t eg] = PIreg (in , kp , ki , lim , Ts , i n t e g p r e v)
prop = s i n g l e (0) ;
i n t l i m = s i n g l e (0) ;
tmp = s i n g l e (0) ;

prop = in ∗kp ;
i f (prop>l im) prop=lim ; end
i f (prop<−l im) prop=−l im ; end

i n t l i m = lim−abs (prop) ;
tmp = i n t e g p r e v+in ∗ k i ∗Ts ;
i f (tmp>i n t l i m) tmp=i n t l i m ; end
i f (tmp<−i n t l i m) tmp=−i n t l i m ; end

out = prop+tmp ;
i n t eg = tmp ;

3 Modelling the control algorithm Page 23 of 66

• 123->ab: Clarke transformation (signal representation from 3-phase to 2-phase).

1

123

1

ab

0.5
2/3

sqrt(1/3)

Figure 16: Clarke transformation

[
Xa

Xb

]
=

[2
3
−1

3
−1

3

0 1√
3
− 1√

3

]

X1

X2

X3

• ab->123: Inverse Clarke transformation.

0.5
2

sqrt(3)
1

ab

1

123

Figure 17: Inverse Clarke transformation

X1

X2

X3

 =

1 0

−1
2

√
3
2

−1
2
−
√
3
2

[
Xa

Xb

]

3 Modelling the control algorithm Page 24 of 66

• ab->dq: Park transformation (signals on rotating axes).

sin

cos

1

ab

2

theta

1

dq

Figure 18: Park transformation

[
Xa

Xb

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
Xd

Xq

]

• dq->ab: Inverse Park transformation.

sin

cos

1

dq

2

theta

1

ab

Figure 19: Inverse Park transformation

[
Xd

Xq

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
Xa

Xb

]

3 Modelling the control algorithm Page 25 of 66

• PWMduty: Generates the duty cycle for the PWM, comparing the desired voltages
with the DC-Link level and subtracting the zero-sequence voltage.

function [duty a , duty b , duty c] = PWMduty(v123 , vdc)
tmp1=s i n g l e (0) ;
tmp2=s i n g l e (0) ;
tmp3=s i n g l e (0) ;
vdc inv=s i n g l e (0) ;
pwm zero seq=s i n g l e (0) ;

i f (vdc>0) vdc inv = 1/vdc ;
else vdc inv=s i n g l e (0) ; end

i f (v123 (1) > v123 (2))
tmp1 = v123 (1) ;
tmp2 = v123 (2) ;

else
tmp1 = v123 (2) ;
tmp2 = v123 (1) ;

end

i f (tmp1<v123 (3)) tmp3 = tmp1 ;
else

i f (tmp2>v123 (3)) tmp3 = tmp2 ;
else tmp3 = v123 (3) ; end

end

pwm zero seq=tmp3 ∗ 0 . 5 ;

duty a = 0 .5 + (v123 (1) + pwm zero seq)∗ vdc inv ;
duty b = 0 .5 + (v123 (2) + pwm zero seq)∗ vdc inv ;
duty c = 0 .5 + (v123 (3) + pwm zero seq)∗ vdc inv ;

i f (duty a>1) duty a = s i n g l e (1) ; end
i f (duty b>1) duty b = s i n g l e (1) ; end
i f (duty c>1) duty c = s i n g l e (1) ; end

i f (duty a<0) duty a = s i n g l e (0) ; end
i f (duty b<0) duty b = s i n g l e (0) ; end
i f (duty c<0) duty c = s i n g l e (0) ; end

3 Modelling the control algorithm Page 26 of 66

3.1.2 Signal classification

The components of the control algorithm, called IHz model.slx (fig. 10), have to be
classified as inputs, outputs, local variables or global variables in the Model Explorer
window.

• In the IHz model of fig. 10, the inports and outports are named and set as single data
type (see fig 52 of annex A1). The inports of the block are iabcs for the sensed stator
currents, Vdc for the DC-Link level, posCount for the position counter given by the
encoder, omega ref rpm for the reference angular speed in [rpm] and commands for
the start and reset commands. The outports are duty abc for the duty cycles of the
3-phase PWM inverter, pwm stop for disabling the gates of the inverter, and three
general outputs for monitoring other variables.

• In the Stateflow chart of fig. 11, the variables are configured as inputs, outputs or
local variables with their initial conditions. All of them are treated as single data
type (see fig 53 of annex A1).

• In the Simulink Function of fig. 12, the relevant signals are named and configured to
ExportedGlobal for being treated as global variables during the Code Generation (see
fig 54 of annex A1). The values of some Constant and Gain blocks are called from the
Matlab workspace. One last setting has to be done for enabling the ExportedGlobal
mode:

> Configuration Parameters

> Model Referencing

> Total number of instances allowed per top model

> one

It is important to recall that all variables and operations should work as single type
that is equivalent to the float32 type of the MCU.

3 Modelling the control algorithm Page 27 of 66

3.2 Model-in-the-loop test

The first testing stage of the Model-based Design approach consists in running a
simulation of the control algorithm and a modelled plant, this test is called Model-in-the-
loop (MIL). Both the inverter and the AC motor are considered the plant of the system,
where the PWM signals are the inputs and the stator currents are the outputs (see fig.
20). The rotor position given by the encoder will not be used for the I-Hz control but can
be monitored.

b

VDC

i123

v123

θencoder
duty123

PWMsig

Timer peripheral Plant: inverter + motor

Figure 20: Plant model

In a simulation model of Simulink (see fig. 21) the inverter is represented by an
amplifier of PWM signals and the AC motor is represented by a Permanent Magnet
Synchronous Machine block[11] set with the manufacturer data of the real motor. The
PWM signals are given by the timer peripheral of the MCU, comparing the duty cycles
with an up-down triangular carrier wave at the sampling frequency of 4 [kHz]. This
peripheral is depicted in the simulation by comparators and a repeating sequence wave.
The inverter amplifies the signal to the levels 0-Vdc in order to supply voltage to the
motor. After the plant is modelled, the control algorithm is placed on the MIL test using
the Model Reference block3 and triggered at the sampling frequency by a 4 [kHz] clock
source. It is important that the sample frequency of the simulation is enough higher than
the clock source to ensure an approach to a continuous behaviour of the plant.

PMSM model parameters: Control system constants:
• 4 pole pairs in each of the 3 phases • Kpd = 0.4
• Voltage constant (KE): 3.15 [Vrms/Krpm] • Kiq = 80
• Rotor inertia (JR): 0.06 [kg·cm2] • Kpd = 0.4
• Phase-Phase Winding resistance (Ru−v): 0.5 [Ω] • Kiq = 80
• Phase-Phase Winding inductance (Lu−v): 2.2 [mH] • VDC = 24 [V]

Table 1: Simulation parameters

3The Model Reference block calls an external Simulink model.

3 Modelling the control algorithm Page 28 of 66

4	[kHz]	triangular	carrier

iabcs

Vdc

posCount

omega_ref_rpm

commands

duty_abc

pwm_stop

ia

ib

ic

IHz

4	[kHz]	clk

Vdc

inverter

DC-Link

Vdc

0

[i123]

omega_ref

1

start	btn

15	sec

15.01	sec

reset	btn

m
A

B

C

Tm

Continuous

s

-
+

s

-
+

s

-
+

[i123]

30/pi

2rpm

u y

DC-Link

duty_cycle_abc

duty_cycle_a

iabcs	[A]

omega	[rpm]

<Rotor	speed	wm	(rad/s)>

<Rotor	angle	thetam	(rad)> rotor_position	[rad/s]
1SHYPI

Figure 21: MIL test

Once the simulation environment is set, the relevant signals are chosen to be visualised
in the scope. These are the duty cycles, stator currents, rotating speed and position of the
rotor. Three simulations are run to check if the motor readings follow the set of control
references. The signal visualisation is shown below for each set of control reference.

• i∗d = 0.8 [A] and ω∗mec = 400 [rpm]

• i∗d = 1.0 [A] and ω∗mec = 500 [rpm]

• i∗d = 1.2 [A] and ω∗mec = 600 [rpm]

Figure 22: Signal visualisation, i∗d = 0.8 [A] and ω∗mec = 400 [rpm]

3 Modelling the control algorithm Page 29 of 66

Figure 23: Signal visualisation in steady state, i∗d = 0.8 [A] and ω∗mec = 400 [rpm]

Figure 24: Signal visualisation, i∗d = 1.0 [A] and ω∗mec = 500 [rpm]

3 Modelling the control algorithm Page 30 of 66

Figure 25: Signal visualisation in steady state, i∗d = 1.0 [A] and ω∗mec = 500 [rpm]

Figure 26: Signal visualisation, i∗d = 1.2 [A] and ω∗mec = 600 [rpm]

3 Modelling the control algorithm Page 31 of 66

Figure 27: Signal visualisation in steady state, i∗d = 1.2 [A] and ω∗mec = 600 [rpm]

The simulation results show how the current amplitude and the rotor speed track the
i∗d and ω∗mec references in the steady state. Now that a correct operation was ensured in
the simulations, it is time to proceed to the next stage: the Code Generation (sec. 4).

3 Modelling the control algorithm Page 32 of 66

4 Code Generation

4.1 Overview of the Code Generation

After designing the control algorithm graphically, it is necessary to represent it in
C code to be compiled and then loaded onto the MCU. The Code Generation is the
capability of a software to create the code representation of an algorithm automatically.
Compared to the handwritten code, the Code Generation brings a number of advantages:

• High level error detection: As the graphical algorithm is designed, it is easier
to detect errors visually or by simulations. The errors propagated to the code are
harder to find.

• Ease of dealing with complexity: The machine uses advanced optimisations for
precise control of the generated code. As the algorithm becomes more complex, the
code representation becomes harder and it is more likely to carry errors due to the
handwriting.

• Traceability: Optimisation settings offers the possibility of generating readable and
compact code, in order to trace which part of the block diagram is being represented
in each part of the C code.

• Cost and time reduction: Easier designs and early error detection let save time
and money from the debugging process and the implementation stage of the model.

The tool used in this context is Embedded Coder[12] for Matlab/Simulink. Given a
Simulink model or subsystem, Embedded Coder is capable of building the C code. The
way in which the code is generated and integrated to a processor will be explained with
an example model and some pseudo codes in section 4.1.1.

4 Code Generation Page 33 of 66

4.1.1 Code Generation example

A simple example of a simulink model is presented, consisting of a subsystem that
sums the values of two inputs and the result is multiplied by 10 (fig. 28).

1

Constant

Sine Wave

Scope

DC_signal

AC_signal

WAVE_signal

Subsystem

1

DC_signal

2

AC_signal

1

WAVE_signal

10

Gain

Figure 28: Code Generation example

The steps for generating the code of the subsystem are:

> Right-click on the Subsystem

> C/C++ Code

> Build This Subsystem

Then, three files are generated:

• rtwtypes.h : Contains the hardware specific data-types.

/∗ . . . code . . . ∗/
typedef signed char int8 T ;
typedef unsigned char uint8 T ;
typedef short int16 T ;
typedef unsigned short uint16 T ;
typedef int int32 T ;
typedef unsigned int uint32 T ;
typedef f loat rea l32 T ;
typedef double rea l64 T ;
/∗ . . . code . . . ∗/

4 Code Generation Page 34 of 66

• Subsystem.h : Contains the model specific data-types and the function declaration.

/∗ . . . code . . . ∗/

/∗ model s p e c i f i c data−t y p e s ∗/
typedef struct {

const char T ∗ volat i le e r r o r S t a t u s ;
} M;
/∗ . . . code . . . ∗/

/∗ f u n c t i o n d e c l a r a t i o n ∗/
extern void S u b s y s t e m i n i t i a l i z e (M ∗const Subsystem M ,

rea l T ∗ input1 , r ea l T ∗ input2 , r ea l T ∗output) ;
extern void Subsystem step (M ∗const Subsystem M ,

rea l T input1 , r ea l T input2 , r ea l T ∗output) ;
extern void Subsystem terminate (M ∗const Subsystem M) ;

/∗ . . . code . . . ∗/

• Subsystem.c: Contains the source code for the model. Three functions are created:

– initialize: Executed once when the MCU is turned ON to reset the model state

– step: To execute one integration step for the model. This is executed at each
cycle of the task scheduler or timer ISR with a fixed-step time.

– terminate: Executed once to clean-up memory after the last execution of the
model.

/∗ . . . code . . . ∗/

void S u b s y s t e m i n i t i a l i z e (M ∗const Subsystem M ,
rea l T ∗ input1 , r ea l T ∗ input2 , r ea l T ∗output)

{/∗ . . . ∗/}

void Subsystem step (M ∗const Subsystem M ,
rea l T input1 , r ea l T input2 , r ea l T ∗output)

{
/∗ . . . ∗/
∗output = (input1 + input2) ∗ 1 0 . 0 ;
/∗ . . . ∗/

}

void Subsystem terminate (M ∗const Subsystem M)
{/∗ . . . ∗/}

/∗ . . . code . . . ∗/

4 Code Generation Page 35 of 66

These files are placed in the C project that will be compiled and loaded onto the
MCU. The three functions are called from the source code of the project, using the
MCU’s peripherals as inputs and outputs. An example pseudo code is shown below:

/∗ . . . code . . . ∗/

int main (void) {
/∗ p e r i p h e r a l s i n i t i a l i s a t i o n ∗/
TIMER init () ;
USART init () ;
ADC init () ;
GPIO init () ;

/∗ i n i t i a l i s e genera ted model ∗/
S u b s y s t e m i n i t i a l i z e (Model , GPIO input ,

ADC input , USART output) ;

while (1) {
/∗ end o f model e x e c u t i o n ∗/
i f (stop ()) break ;

}

/∗ t erminate genera ted model ∗/
Subsystem terminate (Model) ;
return 0 ;

}

void TIMER ISR (void) {
/∗ i n t e g r a t i o n s t e p f o r the model ∗/
Subsystem step (Model , GPIO input ,

ADC input , USART output) ;
}

/∗ . . . code . . . ∗/

4 Code Generation Page 36 of 66

4.2 Integrating Code Generation with the STM32 Nucleo boards

4.2.1 Peripherals initialisation using STM32CubeMX

As explained before, a C project consists of a set of C files in which the control algo-
rithm is called and linked to the MCU’s peripherals. A toolchain is required in order to
compile and link the C project to the MCU. Some of the toolchains are EWARM, TrueS-
TUDIO, SW4STM32 and MDK-ARM. For this case, the chosen toolchain was MDK-ARM
that is compatible with the KEIL uVision IDE[13].

It was already shown how to generate the C code corresponding to the control algo-
rithm, but the connection with the peripherals requires a previous initialisation of them
from the chosen IDE. For the peripherals initialisation, it is necessary to include a set of
header files from the STM32 HAL Library4 and manipulate the values of some registers
to have the desired configuration. The peripherals communicating with the IHz model.slx
control algorithm (sec. 3.1) and its settings are the following:

• TIM1: Timer peripheral based on an up-down counter at a 4 [kHz] frequency. It
makes an Interrupt Service Routine (ISR) at the beginning of each cycle and sets a
PWM output in three physical ports of the MCU.

• TIM4: Timer peripheral in encoder mode. It counts the pulses given by the encoder
to compute the rotor position of the motor. Two physical ports are enabled to receive
both channels A and B from the encoder.

• ADC1: 12 bit ADC registers that receive the current and voltage sensor measure-
ments.

• USART2: USART register for communicating to the PC at a baud rate of 2,000,000
for monitoring the state of the internal variables of the MCU in real-time.

The PC application STM32CubeMX[5] is capable of auto-generating the peripherals
initialisation code, providing a GUI (Graphic User Interface) for doing all the settings.
These configurations are targeted to a specific MCU, in this case the STM32F303RETx
Nucleo[2] was chosen. After the MCU selection in the application, the HCLK is set to 64
[MHz] from the Clock Configuration tab and the physical ports are interfaced with the
peripherals from the Pinout tab (see fig. 29).

4The Hardware Abstraction Layer (or HAL) Library contains high level C functions for the STM32
MCUs in order to simplify the initialisation and configuration of the peripherals

4 Code Generation Page 37 of 66

Figure 29: Interfacing the physical ports and peripherals from STM32CubeMX

From the Pinout tab, the channels of the peripherals are chosen and from the Con-
figuration tab, their registers are configured to work as explained before (see annex A2).
Finally, the MDK-ARM V5 toolchain is selected from the Project Settings and the code
is generated. The auto-generated main.c file contains all the initialisation functions of
the peripherals and here the functions of the control algorithm may be added.

/∗ . . . code . . . ∗/
int main (void) {

MX GPIO Init () ;
MX USART2 UART Init () ;
MX TIM1 Init () ;
MX ADC1 Init () ;
MX TIM4 Init () ;

while (1) ;
return 0 ;

}
/∗ . . . code . . . ∗/

4 Code Generation Page 38 of 66

4.2.2 Linking to the peripherals via STM32 Embedded Target

Until now, it is presumed that the Code Generation of the control algorithm and
the linking to the MCU’s peripherals are separated processes. However, a useful tool
is provided by STMicroelectronics to perform all parts of the Code Generation together
from a single platform, this is the STM32 Embedded Target[1] for Matlab and Simulink.
This tool provides a set of Simulink blocks in the Library Browser that represents the
peripherals of the STM32 MCUs, whose ports can be graphically connected to the control
algorithm in a Simulink model. STM32 Embedded Target is linked to Embedded Coder,
so the entire C project (control algorithm, peripherals initialisation and their connection)
is auto-generated and ready to be compiled, with no need to add handwritten code.

The installation instructions for the STM32 Embedded Target is explained in [1].
After the installation is done, an empty Simulink model is created with the following
configuration:

> Configuration Parameters

> Code Generation

> System target file

> stm32.tcl

The peripheral blocks are under the label Target Support Package - STM32 Adapter in
the Browser Library. Drag and Drop the STM32 Config block to the model (see fig. 30).
This block calls an ioc file5 to enable the Simulink blocks corresponding to the configured
peripherals in section 4.2.1. The name of the STM32 Config block will change to the
targeted MCU.

STM32FxxSTM32Fxx

STM32_ConfigSTM32_Config

STM32F303RETxSTM32F303RETx

Control()

Control

STM32

Timers

TIM1

IRQ

UP

STM32

GPIO_Exti

GPIOB
Exti

2

rstEncoder()

rstEncoder

Figure 30: STM32 configuration

4.2.3 Description of the Simulink model for the Code Generation

• According to the project, two ISR are executed: a Timer ISR for the step function
of the control algorithm and an External Interrupt for the Z channel of the encoder.
Drag both the Timer and the GPIO Exti blocks to the model, whose configurations
are detailed in annex A3. The interrupt signals of these peripherals are updated in
their outports. Each of these signals triggers an ISR inside a Function-Call block6

(see fig. 31).

5The application STM32CubeMX creates files with ioc extension.
6This is a kind of subsystem that is executed when it is triggered by an external signal.

4 Code Generation Page 39 of 66

STM32FxxSTM32Fxx

STM32_ConfigSTM32_Config

STM32F303RETxSTM32F303RETx

Control()

Control_ISR

STM32

Timers

TIM1

IRQ

UP

STM32

GPIO_Exti

GPIOB
Exti

2

rstEncoder()

rstEncoder_ISR

Figure 31: STM32 configuration and interrupt service routines

• The ISR triggered by the Z channel of the encoder resets the counting of the timer
TIM4. In figure 32, the Reset CNT inport of the Timer block corresponding to
TIM4 is set.

f()

rstEncoder

STM32

Timers

TIM4

CNT

DIR

Reset	CNT1

f()

rstEncoder

STM32

Timers

TIM4

CNT

DIR

Reset	CNT1

Figure 32: rstEncoder ISR

• The ISR triggered by TIM1 contains the Model Reference block that calls the
IHz model.slx control algorithm (see fig. 33).

4 Code Generation Page 40 of 66

f()

Control

STM32

GPIO_Read

GPIOC Pin13

STM32

GPIO_Write

GPIOAPin5

STM32

ADC_Read

ADC1

Ch1_i1

Ch7_i2

Ch6_i3

Ch2_i4

STM32

Timers

TIM1

duty	CH1

duty	CH2

duty	CH3

IHz_model

iabcs

Vdc

posCount

omega_ref_rpm

commands

duty_abc

pwm_stop

ia

ib

ic

IHz_model

100

Vdc

omega_ref

scala_current

0

1-u

2*pi/8192

STM32

Timers

TIM4

CNT

DIR

Reset	CNT

stop

PWM_STOP

Vdc

omega_ref

iadc_c

iadc_a

V_dc

iadc_b

btn

posCount

Powered by TCPDF (www.tcpdf.org)

Figure 33: Control ISR

This ISR also contains the following peripheral blocks7:

– ADC1: Called from the ADC Read block. It reads the injected channels from
the corresponding physical inports of the MCU and gives a 12-bit value (0 to
4095). The channels corresponding to the current measurements are multiplied
by a scale factor, so they can be treated as the actual values of the currents by
the iabcs port of the control algorithm.

– TIM4: Called from the Timers block. It provides the counted pulses given by
the encoder. The counter value is scaled to get the angle value of the rotor in
radians.

– GPIOC: Called by the GPIO Read block. It reads the binary value of a push
button to carry out the Go command.

– GPIOA: Called by the GPIO Write block. Turns ON or OFF a LED depend-
ing on the state of the Go command. The LED is ON only when the push
button is pressed, otherwise it is OFF. Its purpose is just for debugging.

– TIM1: Called from the Timers block. It receives the duty cycle values between
0 and 100, so the PWM signal is produced in the corresponding physical ports
of the MCU.

– PWM STOP: Depending on the value of its input, the PWM channels are
enabled or disabled using the if-else statement blocks. The enabling or disabling
of these channels are done in the REGISTER Access block as shown in figure
34.

7The detailed information of the blocks configuration is in annex A3

4 Code Generation Page 41 of 66

if	{	}

Action	Port

STM32

REGISTER	Access

TIM1
MOE	=	0	(output	off)

if	{	}

Action	Port

STM32

REGISTER	Access

TIM1
MOE	=	0	(output	off)

else	{	}

Action	Port

STM32

REGISTER	Access

TIM1
MOE	=	1	(output	on)

else	{	}

Action	Port

STM32

REGISTER	Access

TIM1
MOE	=	1	(output	on)

u1
if(u1	>	0)

else

if	{	}

MOE	=	0	(output	off)

else	{	}

MOE	=	1	(output	on)

1

stop

Figure 34: if-else statement

• LabView: It contains a routine for communicating with a virtual oscilloscope de-
signed in the LabView software. The used protocol is USART.

• The last step for the Code Generation is to press Build Model in Simulink. When
the project is built, it will be asked to open the C project within the IDE (see annex
A4). There is no need no modify the code, so the Compile option has to be selected
and then is time to load the compiled files onto the MCU by the ST-LINK protocol8.

8The ST-LINK debugger/programmer interface is included the STM32 Nucleo boards and its protocol
is compatible with the KEIL uVision IDE.

4 Code Generation Page 42 of 66

4.2.4 Bottom unit

The layers of the full executable project and their provenance are summarised in
figure 35. It is also shown in the centre that the C project contains the control algorithm
and their signals linked to the MCU’s peripherals, and the latter interface the hardware
through the physical ports of the MCU on the sides.

code generated by
Control Algorithm

ADC1
iabcs

Vdc

posCountTIM4

GPIO commands

pwm stop

duty abc

Scheduler/Timer ISR

Current sensor
TIM1

other signals USART2

Peripherals initialised

by STM32CubeMx

Embedded Coder

input and output

signals

Voltage sensors

Encoder pulses

Push button

C project integrated and generated by STM32 Embedded Target
Physical

ports of

Physical

ports ofSensors Actuators

the MCU the MCU

Inverter

PC

Figure 35: The project outline

4 Code Generation Page 43 of 66

5 Results

5.1 The generated C project

The C project and its components are named after Code Generation platforms9. As
shown in annex A4, it contains a set of sub-folders with the C and header files. Only the
most relevant files will be explained below:

• main.c: This file contains the peripherals initialisation and calls the initialize and
step functions of the PROJECT NAME.c file. The terminate function does not
exist because the MCU clears its memory when it is reset or turned off.

• PROJECT NAME.c: It contains the initialize function, where the initial values
of the signals that connects the peripherals and the control algorithm are given, the
interrupt service routines are enabled and the control algorithm is started. The step
function is empty and instead the execution is written in the corresponding ISR.

• PROJECT NAME EXTI.c: It contains the ISR that resets the counter value
of the encoder pulses.

• PROJECT NAME TIM.c: Here, the step function is run inside the timer ISR.
In this instance, the step function is called IHz model (declared in the IHz model.c
file) and its inputs and outputs are the scaled values of the corresponding registers
with the readings/writings of the physical ports.

• IHz model.c: It contains the IHz model function with the logic of the control
algorithm.

5.2 Experimental set-up

The experimental set-up consists of interfacing the MCU board, the inverter, the
current sensors, the voltage sensor, the power supply and the AC motor. The inverter
and the sensors are included in the X-NUCLEO-IHM08M1 shield, which is compatible
with the STM32F303RETx Nucleo board. The mentioned shield has a port for connecting
the inverter’s DC-link to a power supply, and three output ports corresponding to the
three phases that supply the AC motor. The AC motor corresponds to the Microphase
S140-2B353 permanent magnet synchronous motor that also includes an encoder, whose
channels (A, B and Z) are connected to the Nucleo board for reading the rotor position.
Figure 36 shows the experimental set-up.

9The whole project is named after the selected ioc file. The names of the files generated by Mat-
lab/Simulink starts with the Simulink model’s name (PROJECT NAME).

5 Results Page 44 of 66

Figure 36: Experimental set-up

The advantage of using a shield-based inverter is that no wires are required for the
connection between the inverter drivers and the sensors to the MCU board. The shield
also lets the user access to the debugger and the reset buttons of the MCU board. On
the other hand, for interfacing the encoder to the MCU, the A, B and Z channels and the
5V supply are connected using wires. The detailed pin connection is shown in the figure
below.

PA0

PC1

PC0

PA1

PA8

PA9

PA10

PWM channel 1

PWM channel 2

PWM channel 3

I1 sensor

I2 sensor

I3 sensor

DC-link sensor

PB6

PB7

PB2

Channel A

Channel B

Channel Z

STM32F3
Nucleo Board

X-NUCLEO-IHM08M1
Shield

Microphase S140-2B353
Motor + Encoder

V123

DC-link

5V

5V

GND

GND

Figure 37: Detailed pin connection

Finally, the MCU board communicates to a computer using the USART protocol (with
an USB cable) for doing the debugging. A serial communication is established in order
to collect data from the MCU and visualise it in real-time while the control system is
operating. For this work, a virtual oscilloscope software created in LabView is used to
visualise the sensor measurements and other internal values of the MCU. This software

5 Results Page 45 of 66

receives a map file10, so the name of a certain variable can be sent to the MCU as its
address pointer in order to receive or modify the stored value. Figures 38 and 39 show
the set-up for the data acquisition.

Figure 38: Set-up with data acquisition

Figure 39: The virtual oscilloscope

10When the C project is built from the IDE, a map file is generated. The map file contains the memory
address of each of the MCU’s variables.

5 Results Page 46 of 66

5.3 Experimental operation and debug

As the simulation of section 3.2 was successful, it is expected to have similar results
in the real implementation of the control system. The modelled control system was based
on the hardware ratings, whose main values are detailed in table 2.

PMSM 3-phase Inverter shield
• Vsupply = 17 [VAC] • 2-level output signal per leg
• Istall = 6.7 [A] • DC-link from 8 to 48 [VDC]
• Pnom = 100 [W] • Imax

out = 15 [ARMS] in each phase
• Tnom = 0.32 [Nm] • 3.3 [V] compatible NMOS gate driver
• ωmec

nom = 3000 [rpm] • Power NMOS with RDS = 0.0014 [Ω]
• KT = 0.05 [Nm/A]
• Ru−v = 0.5 [Ω]
• Lu−v = 0.53 [mH]

Table 2: Hardware ratings

Two tests with different control references are carried out to check the behaviour of the
AC motor. Relevant values such as stator currents, rotor position, and PWM duty cycle
are acquired and plotted for being confronted with the simulations of section 3.2. Some
differences might be noticed between both responses due to the nonidealities ignored
in the simulation, however, those differences should be minimal to validate a correct
implementation. Also, readings of the transient behaviour of the motor are acquired for
a dynamical analysis, to be sure that the plant operates within the safety limits.

5.3.1 Test 1

The first implementation to test uses the control references of i∗d = 0.8 [A] and ω∗mec =
400 [rpm]. The current measurements and duty cycle data in steady state are collected
and compared to the simulation results (fig. 40).

5 Results Page 47 of 66

Figure 40: Simulation with i∗d = 0.8 [A] and ω∗mec = 400 [rpm]

The data acquired from the real implementation is shown in figures 41, 42 and 43.
It can be appreciated that the duty cycles in both simulation and implementation are
very similar. The current amplitudes are 0.8 [A] as it was set in the reference, but it
also can be noticed an oscillation of the current offset. This phenomenon is caused by
the nonidealities that were not considered in the simulation, such as the high-frequency
noise of the inverter, the eccentricity and the motor harmonics. The first nonideality is
the noise introduced by the switching of the transistors, generating current peaks that are
read by the shunt sensor. The eccentricity is a condition of unequal air gap that exists
between the stator and the rotor, which produces different currents in each phase due to
the reluctance irregularity. Finally, the saturation and non-sinusoidal flux distribution in
the stator introduces harmonics in the currents.

The noise produces an error that is integrated and reduced by the PI regulator, causing
an oscillating component in the output current but keeping the main value as the control
reference. In contrast, the rotation speed of the rotor is less affected by the noise propa-
gation due to its inertia. From the acquired data, it can be appreciated the frequency of
the rotor position signal is exactly the same as the speed reference value.

5 Results Page 48 of 66

-2	

-1	

0	

1	

2	

3	

4	

5	

6	

7	
0	

0.
01

07
5	

0.
02

15
	

0.
03

22
5	

0.
04

3	
0.
05

37
5	

0.
06

45
	

0.
07

52
5	

0.
08

6	
0.
09

67
5	

0.
10

75
	

0.
11

82
5	

0.
12

9	
0.
13

97
5	

0.
15

05
	

0.
16

12
5	

0.
17

2	
0.
18

27
5	

0.
19

35
	

0.
20

42
5	

0.
21

5	
0.
22

57
5	

0.
23

65
	

0.
24

72
5	

0.
25

8	
0.
26

87
5	

0.
27

95
	

0.
29

02
5	

0.
30

1	
0.
31

17
5	

0.
32

25
	

0.
33

32
5	

0.
34

4	
0.
35

47
5	

0.
36

55
	

0.
37

62
5	

0.
38

7	
0.
39

77
5	

0.
40

85
	

0.
41

92
5	

0.
43

	
0.
44

07
5	

0.
45

15
	

0.
46

22
5	

0.
47

3	
0.
48

37
5	

0.
49

45
	

i_1	[A]	

i_2	[A]	

i_3	[A]	

theta_rotor	[rad]	

Figure 41: Stator currents and rotor position

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

0	
0.
01

02
5	

0.
02

05
	

0.
03

07
5	

0.
04

1	
0.
05

12
5	

0.
06

15
	

0.
07

17
5	

0.
08

2	
0.
09

22
5	

0.
10

25
	

0.
11

27
5	

0.
12

3	
0.
13

32
5	

0.
14

35
	

0.
15

37
5	

0.
16

4	
0.
17

42
5	

0.
18

45
	

0.
19

47
5	

0.
20

5	
0.
21

52
5	

0.
22

55
	

0.
23

57
5	

0.
24

6	
0.
25

62
5	

0.
26

65
	

0.
27

67
5	

0.
28

7	
0.
29

72
5	

0.
30

75
	

0.
31

77
5	

0.
32

8	
0.
33

82
5	

0.
34

85
	

0.
35

87
5	

0.
36

9	
0.
37

92
5	

0.
38

95
	

0.
39

97
5	

0.
41

	
0.
42

02
5	

0.
43

05
	

0.
44

07
5	

0.
45

1	
0.
46

12
5	

0.
47

15
	

0.
48

17
5	

0.
49

2	
0.
50

22
5	

i_d	[A]	

i_q	[A]	

i_alpha	[A]	

i_beta	[A]	

Figure 42: Stator currents iαβ and idq

0.35	

0.4	

0.45	

0.5	

0.55	

0.6	

0.65	

0	
0.
01

	
0.
02

	
0.
03

	
0.
04

	
0.
05

	
0.
06

	
0.
07

	
0.
08

	
0.
09

	
0.
1	

0.
11

	
0.
12

	
0.
13

	
0.
14

	
0.
15

	
0.
16

	
0.
17

	
0.
18

	
0.
19

	
0.
2	

0.
21

	
0.
22

	
0.
23

	
0.
24

	
0.
25

	
0.
26

	
0.
27

	
0.
28

	
0.
29

	
0.
3	

0.
31

	
0.
32

	
0.
33

	
0.
34

	
0.
35

	
0.
36

	
0.
37

	
0.
38

	
0.
39

	
0.
4	

0.
41

	
0.
42

	
0.
43

	
0.
44

	
0.
45

	
0.
46

	
0.
47

	
0.
48

	
0.
49

	
0.
5	

duty_a	

duty_b	

duty_c	

Figure 43: PWM duty cycles

5 Results Page 49 of 66

5.3.2 Test 2

The results of the simulation with the control references of i∗d = 1.0 [A] and ω∗mec = 500
[rpm] are shown in figure 44.

Figure 44: Simulation with i∗d = 1.0 [A] and ω∗mec = 500 [rpm]

The same event happens with those references, in which the measured id current
oscillates around 1.0 [A] due to the introduced noise (see 45, 46 and 47). Nevertheless,
the designed control system has been capable to make the plant track the reference values
and reduce the error around zero, even with these nonidealities.

-2	

-1	

0	

1	

2	

3	

4	

5	

6	

7	

0	
0.
01

07
5	

0.
02

15
	

0.
03

22
5	

0.
04

3	
0.
05

37
5	

0.
06

45
	

0.
07

52
5	

0.
08

6	
0.
09

67
5	

0.
10

75
	

0.
11

82
5	

0.
12

9	
0.
13

97
5	

0.
15

05
	

0.
16

12
5	

0.
17

2	
0.
18

27
5	

0.
19

35
	

0.
20

42
5	

0.
21

5	
0.
22

57
5	

0.
23

65
	

0.
24

72
5	

0.
25

8	
0.
26

87
5	

0.
27

95
	

0.
29

02
5	

0.
30

1	
0.
31

17
5	

0.
32

25
	

0.
33

32
5	

0.
34

4	
0.
35

47
5	

0.
36

55
	

0.
37

62
5	

0.
38

7	
0.
39

77
5	

0.
40

85
	

0.
41

92
5	

0.
43

	
0.
44

07
5	

0.
45

15
	

0.
46

22
5	

0.
47

3	
0.
48

37
5	

0.
49

45
	

i_1	[A]	

i_2	[A]	

i_3	[A]	

theta_rotor	[rad]	

Figure 45: Stator currents and rotor position

5 Results Page 50 of 66

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

2	

0	
0.
01

02
5	

0.
02

05
	

0.
03

07
5	

0.
04

1	
0.
05

12
5	

0.
06

15
	

0.
07

17
5	

0.
08

2	
0.
09

22
5	

0.
10

25
	

0.
11

27
5	

0.
12

3	
0.
13

32
5	

0.
14

35
	

0.
15

37
5	

0.
16

4	
0.
17

42
5	

0.
18

45
	

0.
19

47
5	

0.
20

5	
0.
21

52
5	

0.
22

55
	

0.
23

57
5	

0.
24

6	
0.
25

62
5	

0.
26

65
	

0.
27

67
5	

0.
28

7	
0.
29

72
5	

0.
30

75
	

0.
31

77
5	

0.
32

8	
0.
33

82
5	

0.
34

85
	

0.
35

87
5	

0.
36

9	
0.
37

92
5	

0.
38

95
	

0.
39

97
5	

0.
41

	
0.
42

02
5	

0.
43

05
	

0.
44

07
5	

0.
45

1	
0.
46

12
5	

0.
47

15
	

0.
48

17
5	

0.
49

2	
0.
50

22
5	

i_d	[A]	

i_q	[A]	

i_alpha	[A]	

i_beta	[A]	

Figure 46: Stator currents iαβ and idq

0.35	

0.4	

0.45	

0.5	

0.55	

0.6	

0.65	

0	
0.
01

	
0.
02

	
0.
03

	
0.
04

	
0.
05

	
0.
06

	
0.
07

	
0.
08

	
0.
09

	
0.
1	

0.
11

	
0.
12

	
0.
13

	
0.
14

	
0.
15

	
0.
16

	
0.
17

	
0.
18

	
0.
19

	
0.
2	

0.
21

	
0.
22

	
0.
23

	
0.
24

	
0.
25

	
0.
26

	
0.
27

	
0.
28

	
0.
29

	
0.
3	

0.
31

	
0.
32

	
0.
33

	
0.
34

	
0.
35

	
0.
36

	
0.
37

	
0.
38

	
0.
39

	
0.
4	

0.
41

	
0.
42

	
0.
43

	
0.
44

	
0.
45

	
0.
46

	
0.
47

	
0.
48

	
0.
49

	
0.
5	

duty_a	

duty_b	

duty_c	

Figure 47: PWM duty cycles

To make sure the system is operating within the safety limits, the data is acquired
during the start of the motor (figures 48, 49, 50 and 51). The fact of using a slow ramp in
the speed reference limits the speed increase under a given acceleration. This avoided an
abrupt response of the system, having its current in the desired range without a significant
overshoot.

-2	

-1	

0	

1	

2	

3	

4	

5	

6	

7	

0	
0.
04

17
5	

0.
08

35
	

0.
12

52
5	

0.
16

7	
0.
20

87
5	

0.
25

05
	

0.
29

22
5	

0.
33

4	
0.
37

57
5	

0.
41

75
	

0.
45

92
5	

0.
50

1	
0.
54

27
5	

0.
58

45
	

0.
62

62
5	

0.
66

8	
0.
70

97
5	

0.
75

15
	

0.
79

32
5	

0.
83

5	
0.
87

67
5	

0.
91

85
	

0.
96

02
5	

1.
00

2	
1.
04

37
5	

1.
08

55
	

1.
12

72
5	

1.
16

9	
1.
21

07
5	

1.
25

25
	

1.
29

42
5	

1.
33

6	
1.
37

77
5	

1.
41

95
	

1.
46

12
5	

1.
50

3	
1.
54

47
5	

1.
58

65
	

1.
62

82
5	

1.
67

	
1.
71

17
5	

1.
75

35
	

1.
79

52
5	

1.
83

7	
1.
87

87
5	

1.
92

05
	

1.
96

22
5	

i_1	[A]	

i_2	[A]	

i_3	[A]	

theta_rotor	[rad]	

Figure 48: Stator currents and rotor position

5 Results Page 51 of 66

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

0	
0.
04

	
0.
08

	
0.
12

	
0.
16

	
0.
2	

0.
24

	
0.
28

	
0.
32

	
0.
36

	
0.
4	

0.
44

	
0.
48

	
0.
52

	
0.
56

	
0.
6	

0.
64

	
0.
68

	
0.
72

	
0.
76

	
0.
8	

0.
84

	
0.
88

	
0.
92

	
0.
96

	 1	
1.
04

	
1.
08

	
1.
12

	
1.
16

	
1.
2	

1.
24

	
1.
28

	
1.
32

	
1.
36

	
1.
4	

1.
44

	
1.
48

	
1.
52

	
1.
56

	
1.
6	

1.
64

	
1.
68

	
1.
72

	
1.
76

	
1.
8	

1.
84

	
1.
88

	
1.
92

	
1.
96

	

i_d	[A]	

i_q	[A]	

i_alpha	[A]	

i_beta	[A]	

Figure 49: Stator currents iαβ and idq

0.35	

0.4	

0.45	

0.5	

0.55	

0.6	

0.65	

0	
0.
03

92
5	

0.
07

85
	

0.
11

77
5	

0.
15

7	
0.
19

62
5	

0.
23

55
	

0.
27

47
5	

0.
31

4	
0.
35

32
5	

0.
39

25
	

0.
43

17
5	

0.
47

1	
0.
51

02
5	

0.
54

95
	

0.
58

87
5	

0.
62

8	
0.
66

72
5	

0.
70

65
	

0.
74

57
5	

0.
78

5	
0.
82

42
5	

0.
86

35
	

0.
90

27
5	

0.
94

2	
0.
98

12
5	

1.
02

05
	

1.
05

97
5	

1.
09

9	
1.
13

82
5	

1.
17

75
	

1.
21

67
5	

1.
25

6	
1.
29

52
5	

1.
33

45
	

1.
37

37
5	

1.
41

3	
1.
45

22
5	

1.
49

15
	

1.
53

07
5	

1.
57

	
1.
60

92
5	

1.
64

85
	

1.
68

77
5	

1.
72

7	
1.
76

62
5	

1.
80

55
	

1.
84

47
5	

1.
88

4	
1.
92

32
5	

1.
96

25
	

duty_a	

duty_b	

duty_c	

Figure 50: PWM duty cycles

0	

50	

100	

150	

200	

250	

300	

350	

0	
0.
04

1	
0.
08

2	
0.
12

3	
0.
16

4	
0.
20

5	
0.
24

6	
0.
28

7	
0.
32

8	
0.
36

9	
0.
41

	
0.
45

1	
0.
49

2	
0.
53

3	
0.
57

4	
0.
61

5	
0.
65

6	
0.
69

7	
0.
73

8	
0.
77

9	
0.
82

	
0.
86

1	
0.
90

2	
0.
94

3	
0.
98

4	
1.
02

5	
1.
06

6	
1.
10

7	
1.
14

8	
1.
18

9	
1.
23

	
1.
27

1	
1.
31

2	
1.
35

3	
1.
39

4	
1.
43

5	
1.
47

6	
1.
51

7	
1.
55

8	
1.
59

9	
1.
64

	
1.
68

1	
1.
72

2	
1.
76

3	
1.
80

4	
1.
84

5	
1.
88

6	
1.
92

7	
1.
96

8	

Speed	[RPM]	

Figure 51: Rotor speed

5 Results Page 52 of 66

6 Conclusions

In this work was illustrated a method to implement a motor control system with
an STM32 Nucleo board using the Model-Based Design approach. Many steps that are
commonly used were skipped or simplified, specially what regards to the mathematical
modelling and code programming. Most of the project was focused in the modelling and
simulation of the control system, while the implementation was practically automated
using the proper software. A complex mathematical model was simply implemented by
linking blocks and no C code was ever written.

For creating the I-Hz controller, a control algorithm was programmed with blocks us-
ing the tools provided by Matlab/Simulink. Complex mathematical representations for
differential equations were simplified with discretisation and high level function blocks,
while different tasks such as variables adaptation, control execution and over-current
protection were scheduled in parallel states machines, whose tools are provided by the
Stateflow toolbox.

Organising the control logic graphically in block diagrams and states machines facili-
tated the understanding of the algorithm and made easier the error detection from a high
level perspective. The performance of the control algorithm was successfully tested with
a modelled inverter and motor in a simulation, from which a similar behaviour is being
expected in the experimental implementation of the control system.

The STM32CubeMX application provides an easy way to enable the MCU’s periph-
erals and configure their registers. The configuration is done from a Graphic User Inter-
face, where the pinout of the MCU and the available peripherals’ options are displayed.
The STM32 Embedded Target toolbox links a Simulink model to an ioc file (from the
STM32CubeMX application) in order to make available the enabled peripheral blocks in
the Simulink environment. Interfacing the control algorithm with the peripheral blocks
from a Simulink environment is an easy and fast task if compared to the modelling and
simulating stages.

The Simulink model that links the control algorithm with the peripherals contains
all the control logic integrated to the target MCU, so the Embedded Coder toolbox was
capable of carrying out the Code Generation of whole C project. The main advantage of
having used the STM32 Embedded Target toolbox is that no manipulation is required in
the C project for adding the HAL library and integrating the generated functions to the
MCU’s peripherals and routines because all this steps are automated. Other advantage is
that the project is generated in a readable way, so it can be revised to trace the matching
between the code and the graphical model.

From the KEIL uVision IDE is a C project editor, compiler and target linker, how-
ever, only the two latter options were required. The purpose of the IDE is just to load
the control logic onto the STM32 Nucleo board, which is then ready to be connected
to the hardware of the control system and start operating. A virtual oscilloscope was
also included in the real implementation in order to acquire and to visualise the data,
corresponding to the sensor readings, encoder readings and other internal variables of the
MCU during the real operation.

6 Conclusions Page 53 of 66

Regarding the results, it has been seen that the control algorithm works similar to
the simulated model, but it also has to deal with the noise introduced due to the high-
frequency switching of the inverter, the eccentricity of the rotor and the motor harmonics
that are propagated into the feedback loop. These nonidealities are not normally included
in the default Simulink models of electric motors, and in the real implementation they
produce some oscillation in the response due to the error integration by the PI regulator.
Anyway, the error presence can be tolerated if it remains within certain limits and does
not affect the performance of the control system significantly.

The Model-Based Design method was carried out with the proper software in order
to implement a motor control system, both in simulation and in hardware from a single
platform. The transition from the modelling to the real implementation becomes faster
and carries exactly the same logic, so the same involved variables could be monitored in
both cases for comparing them and validate the results. Using this method, time and
effort reduction in the control system development process was achieved.

6 Conclusions Page 54 of 66

References

[1] STMicroelectronics, “STM32-MAT/TARGET Hands On”, Rev 2.1, 2014.

[2] STMicroelectronics, “STM32F303xB/C/D/E, STM32F303x6/8, STM32F328x8,
STM32F358xC, STM32F398xE advanced ARM R©-based MCUs”, Reference manual,
Rev 8, 2017.

[3] STMicroelectronics, “STM32F405/415, STM32F407/417, STM32F427/437 and
STM32F429/439 advanced ARM R©-based 32-bit MCUs”, Reference manual, Rev 15,
2017.

[4] STMicroelectronics, “Getting started with X-NUCLEO-IHM08M1 low-voltage BLDC
motor driver expansion board based on STL220N6F7 for STM32 Nucleo”, User man-
ual, Rev 2, 2016.

[5] STMicroelectronics, “STM32Cube initialization code generator”, [Online]. Available
on: http://www.st.com/en/development-tools/stm32cubemx.html. Accessed on
2018.

[6] MathWorks, “S-Function Basics”, [Online]. Available on: https://www.mathworks.

com/help/simulink/s-function-basics.html. Accessed on 2018.

[7] MathWorks, “Legacy Code Integration”, [Online]. Available on: https:

//www.mathworks.com/help/simulink/legacy-code-integration.html. Accessed
on 2018.

[8] MathWorks, “Model-Based Design”, [Online]. Available on: https://www.

mathworks.com/help/simulink/gs/model-based-design.html. Accessed on 2018.

[9] MathWorks, “Stateflow: Model and simulate decision logic using state machines
and flow charts”, [Online]. Available on: https://uk.mathworks.com/products/

simpower.html. Accessed on 2018.

[10] MathWorks, “Model and simulate electrical power systems”, [Online]. Avail-
able on: https://www.mathworks.com/help/physmod/sps/powersys/ref/

permanentmagnetsynchronousmachine.html. Accessed on 2018.

[11] MathWorks, “Permanent Magnet Synchronous Machine”, [Online]. Avail-
able on: https://www.mathworks.com/help/physmod/sps/powersys/ref/

permanentmagnetsynchronousmachine.html. Accessed on 2018.

[12] MathWorks, “Embedded Coder: Generate C and C++ code optimized for em-
bedded systems”, [Online]. Available on: https://www.mathworks.com/products/

embedded-coder.html. Accessed on 2018.

[13] Keil, “µVision IDE”, [Online]. Available on: http://www2.keil.com/mdk5/

uvision/. Accessed on 2018.

[14] Microphase, “S140 series brushless servomotors”, Datasheet.

[15] O. Moreira, “Rapid Control Prototyping Using an STM32 Microcontroller”, Research
Bachelor Thesis, Institut fur Elektrische Informationstechnik, Technische Universitat
Clausthal, Clausthal-Zellerfeld, Germany, 2015.

References Page 55 of 66

http://www.st.com/en/development-tools/stm32cubemx.html
https://www.mathworks.com/help/simulink/s-function-basics.html
https://www.mathworks.com/help/simulink/s-function-basics.html
https://www.mathworks.com/help/simulink/legacy-code-integration.html
https://www.mathworks.com/help/simulink/legacy-code-integration.html
https://www.mathworks.com/help/simulink/gs/model-based-design.html
https://www.mathworks.com/help/simulink/gs/model-based-design.html
https://uk.mathworks.com/products/simpower.html
https://uk.mathworks.com/products/simpower.html
https://www.mathworks.com/help/physmod/sps/powersys/ref/permanentmagnetsynchronousmachine.html
https://www.mathworks.com/help/physmod/sps/powersys/ref/permanentmagnetsynchronousmachine.html
https://www.mathworks.com/help/physmod/sps/powersys/ref/permanentmagnetsynchronousmachine.html
https://www.mathworks.com/help/physmod/sps/powersys/ref/permanentmagnetsynchronousmachine.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/embedded-coder.html
http://www2.keil.com/mdk5/uvision/
http://www2.keil.com/mdk5/uvision/

7 Annexes

A1 Model Explorer configurations for the control algorithm

Figure 52: Model Explorer: IHz model

Figure 53: Model Explorer: Chart

7 Annexes Page 56 of 66

Figure 54: Model Explorer: Simulink Function

7 Annexes Page 57 of 66

A2 STM32CubeMX GUI for the peripherals configuration

Timer TIM1: Three channels and their negated channels (CHx and CHxN) are enabled
for generating a PWM output. A fourth channel is only enabled to act as a trigger for
the ADC conversion. The Counter Mode is Center Aligned mode 3 to generate an up-
down counter. The Counter Period is set to 8000, so the timer frequency for the ISR is
64[Mhz]/2/8000 = 4 [kHz]. The Repetition Counter is set to 1 so the ISR only happens
at the beginning of the up-counting. A dead time between the main channels and their
negated channels is 0x40 = 64 pulses = 1 [µs]. The polarities of the CHx and CHxN
channels are set to High and Low, respectively, to work properly with the gates of the
inverter.

Figure 55: TIM1 configuration

7 Annexes Page 58 of 66

Timer TIM4: This timer operates in encoder mode, so it counts the encoder pulses from
0 to 8191 (Counter Period is set to 8191).

Figure 56: TIM4 configuration

Analogue to Digital Converter ADC1: Only Injected Conversions are enabled and
triggered by the Timer 1 Capture Compare 4 event (channel 4 of TIM1). According to
the used inverter the ranking order is: channel 1 in rank 1, channel 7 in rank 2, channel
6 in rank 3 and channel 2 in rank 4.

Figure 57: ADC1 configuration

7 Annexes Page 59 of 66

USART2 and pins: A 2,000,000 baud rate for asynchronous mode is set for the US-
ART2. In the Pin configuration three pins are selected: an input for the Go push button,
an output for a LED, and an External interrupt for the Z channel of the encoder to reset
the counting of TIM4.

Figure 58: USART2 and pin configuration

A3 Blocks configuration for the STM32 Embedded Target

STM32 Config block: The ioc file with the peripherals initialisation is located to enable
their corresponding blocks in the Simulink Library Browser.

Figure 59: STM32 Config

7 Annexes Page 60 of 66

Timers block for the TIM1 interrupt signal: The Prescaler is set to 0 to avoid the
source clock division and the Counter period is set to 8000 to compute a 4 [kHz] timer
frequency, as explained in A2. The UP interrupt is enabled in order to trigger the timer
ISR.

Figure 60: TIM1 interrupt signal

GPIO Exti block: The Z channel port is selected, so the interrupt signal is generated
as soon as it is detected in the corresponding physical port.

Figure 61: GPIO Exti block

7 Annexes Page 61 of 66

Timers block for the TIM4: The Counter period corresponds to the number of pulses
of the encoder in one revolution of the motor. In this case, 0 to 8191 pulses are counted.

Figure 62: TIM4 encoder mode

7 Annexes Page 62 of 66

ADC Read block: The injected channels are selected to be the outports of the block.

Figure 63: ADC1

GPIO Read block: The push button port is selected to detect the Go command.

Figure 64: GPIO Read block

7 Annexes Page 63 of 66

GPIO Write block: The LED port is selected to visualise the binary state of the Go
command.

Figure 65: GPIO Write block

Timers block for the TIM1 PWM ports: It is configured to receive the duty cycles
in each of its channels and generate the PWM signals in the corresponding physical ports.

Figure 66: TIM1 PWM ports

7 Annexes Page 64 of 66

REGISTER Access blocks: Certain registers can be modified. For this case, the
BDTR register of the TIM1 is accessed to turn ON or OFF the PWM ports.

Figure 67: TIM1 PWM ON Figure 68: TIM1 PWM OFF

7 Annexes Page 65 of 66

A4 KEIL uVision IDE

Load into
the MCU

Compile
the code The editor

The C project

C and header files
generated by
Matlab/Simulink

Figure 69: C project in KEIL uVision IDE

7 Annexes Page 66 of 66

	Introduction
	State of art
	Model-Based Design overview

	Software and hardware requirements
	Software
	Hardware

	Modelling the control algorithm
	The Simulink model of the control algorithm
	Description of the subsystems and Matlab functions
	Signal classification

	Model-in-the-loop test

	Code Generation
	Overview of the Code Generation
	Code Generation example

	Integrating Code Generation with the STM32 Nucleo boards
	Peripherals initialisation using STM32CubeMX
	Linking to the peripherals via STM32 Embedded Target
	Description of the Simulink model for the Code Generation
	Bottom unit

	Results
	The generated C project
	Experimental set-up
	Experimental operation and debug
	Test 1
	Test 2

	Conclusions
	References
	Annexes
	Model Explorer configurations for the control algorithm
	STM32CubeMX GUI for the peripherals configuration
	Blocks configuration for the STM32 Embedded Target
	KEIL uVision IDE

		Politecnico di Torino
	2018-07-12T14:33:47+0000
	Politecnico di Torino
	Gian Mario Luigi Pellegrino
	S

