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Sommario

Il riconoscimento dei gesti della mano si è espanso notevolmente nel-

le ultime decadi, soprattutto per quanto riguarda l'interfaccia uomo-

macchina, questo grazie agli sviluppi riguardanti le tecnologie mecca-

troniche necessarie a realizzarlo. Numerosi dispositivi di classi�cazione

dei gesti della mano sono stati sviluppati ultimamente, con prestazioni

soddisfacienti in termini di a�dabilità e varietà nel riconoscimento dei

gesti della mano. Tuttavia, questi prodotti presentano degli svantag-

gi signi�cativi: un costo elevato ed una complessità eccessiva, mentre

l'obiettivo del progetto corrente è la realizzazione di un sistema basato

su un sensore capacitivo a basso costo e di facile uso. In questa tesi,

per ottenere le condizioni descritte sopra, sono stati adottati un largo

insieme di caratteristiche estratte (features extraction set) ed una mac-

china a vettori di supporto come classi�catore (support vector machine:

SVM).Il sistema così realizzato risulta essere in grado di riconoscere �no

a 5 gesti della mano con soddisfacente a�dabilità: chiusura, apertura,

zoom-in, zoom-out e "ok". Questi sono solo un esempio di come si pos-

sano aggiungere gesti utili per migliorare l'interfaccia uomo-macchina.

Inoltre è stato aggiunto un sesto gesto, il quale permette di bloccare il

sistema con una "combinazione" scelta dall'utilizzatore e quindi evitare

usi indesiderati del sistema.
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Abstract

The hand gestures recognition has expanded considerably in recent

decades, especially with regard to the human-machine interface, thanks

to the developments concerning mechatronic technologies necessary to

achieve it. Numerous devices to classify hand gestures have been devel-

oped lately, with satisfactory performances in terms of reliability and

variety in the recognition of hand gestures. However, these products

have signi�cant disadvantages: a high cost and an excessive complexity,

while the objective of the current project is the realization of a sys-

tem based on a low cost capacitive sensor. The hardware used in this

project is composed of a multi-layer printed electronics circuit which

forms a mesh of sensors composed of conductive rows and columns.

Such mesh allows detection of the human hand proximity by each of

the rows and columns. Such hardware is then used along with a SVM

based classi�cation algorithm in order to detect �ve hand gestures, in-

cluding closing, opening, zoom-in, zoom-out and "ok". Results shows

that this combination is able to classify these gestures with an overall

classi�cation accuracy of 91%, measured during 3 sessions with 3 dif-

ferent users.These are just some examples of how it is possible to add

useful gestures to improve the human-machine interface. In addition, a

sixth gesture has been added, which allows the system to be locked with
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a "combination" chosen by the user and therefore to avoid unwanted

use of the system.
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Chapter 1

Introduction

This chapter introduces the contents of this dissertation, providing the reasons
that have led to this project, and giving the objectives to be achieved.

1.1 Overview and Motivations

Hand gesture has been one of the most common and natural communication media
among human being.

The hand gesture, during daily life, is a natural communication method mostly
used only among people who have some di�culty in speaking or hearing.

Gesture is also a symbol of physical behavior or emotional expression. It in-
cludes body gesture and hand gesture. It falls into two categories: static gesture
[4] [5] [6] [7] and dynamic gesture [8] [9] [10] [11]. For the former, the posture of
the body or the gesture of the hand denotes a sign. For the latter, the movement
of the body or the hand conveys some messages.

Re�ering to the recent advances and interest in alternative methods for HMI,
gesture recognition can be also used as a tool of communication between computer
and human [12] [13] [14]. It is greatly di�erent from the traditional hardware based
methods and can accomplish human-computer interaction through gesture recog-
nition. Gesture recognition determines the user intent through the recognition of
the gesture or movement of the body or body parts.Gesture recognition has be-
come a hot topic for decades. In the past decades, many researchers have strived
to improve the hand gesture recognition technology. To do so, researchers have
focused on development of appropriate hardware, such as armbands, for detection
and classi�cation of gestures.

Hand gesture recognition research has gained a lot of attention because of its
applications for interactive human-machine interface and virtual environments.

With the use of hand gesture recognition systems, people can interact with
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1.1. OVERVIEW AND MOTIVATIONS

computers in a more intuitive mode. Hand gesture recognition owns wide appli-
cations in sign language recognition [15] [16] [17] [18], computer games [19] [20],
virtual reality [21] [22] and HCI systems [23] [24]. There were numerous gesture
recognition methods established for tracking and recognizing numerous hand ges-
tures. Each one of them has their advantage and disadvantage.

Wearable hardware is one of these, in which in order to interface with the
computer system, users need to wear them. The best example for the wearable
technology is the instrumented gloves. These electronic gloves have some sensors,
and thanks to these sensors they provide information related to location of the
hand, position orientation of �ngers etc. Output results of data gloves are good
but they are expensive [6].

The most recent ones are the optical markers. The optical markers detect
the location of hand or tips of �ngers by projecting Infra-Red light and re�ect
this light on screen. These systems also o�er a worthy result but need a very
complex con�guration. Nowadays some new methods have been proposed for
hand gesture recognition, such as Image based systems which needs processing
of image structures like texture, color etc. The approaches on optical markers
are expensive and have very di�cult con�guration [6]. Also the technique based
on image processing is vulnerable to diverse illumination situation, color texture
modifying, which leads to variations in observed outcomes [25]. However, the
performance of gesture recognition directly based on the features extracted by
image processing is relatively limited. Recently, there have been an increasing
number of gesture recognition research using vision-based methods. Although the
performance has improved as the appearance of advanced sensors, like Microsoft
Kinect sensors, the relatively higher price of such devices is still an obstacle to
the large-scale application of gesture-based HCI systems. They are also bulky
for the time being and cannot be integrated for instance in a touchpad. Besides,
such advanced sensors perform even more unreliably than optical cameras in some
certain environment. For instance, the attenuation of infrared ray in water could
largely limit the use of those like Microsoft Kinect sensors in water with a good
light condition.

The most common is the touchpad, which in recent years has not been im-
proved, remaining able only to detect the touch. Consider how with a thin �lm
of capacitive sensor is possible to implement, in addition to the touchpad, other
functions, such as gesture recognition, without the need to touch it.

The nature of gesture recognition is a classi�cation problem.

There are lots of approaches to handle 2D gesture recognition, including the
orientation histogram [26], the hidden Markov model [27], particle �ltering [28],
support vector machine (SVM) [29], etc. [30] [31]. Most of those approaches need
preprocessing the input gesture image to extract features. The performance of

2



CHAPTER 1. INTRODUCTION

those approaches depends a lot on the feature learning process.
This dissertation is focused on a hand gestures recognition through another

type of sensor, capacitive sensor. Our system shown in Figure 1.1 is composed by
the capacitive sensor and the board to send the data.

Figure 1.1: System

Capacitive proximity sensors allow not just the detection, but a distance esti-
mation of conductive, grounded objects, such as the human body. In the past, this
property has already been used to create devices that can estimate the position of
one or more hands [32] [33], or the posture of a person on di�erent pieces of furni-
ture [34] [35]. A distinct advantage of capacitive proximity sensors is their ability
to detect objects without being disturbed by nonconductive materials. They can
be installed invisibly behind solid objects, which allows for an unobtrusive applica-
tion. In questions of functionality and reliability, capacitive sensor-based devices
used for hand tracking are comparable to gesture recognition systems that are
based on other technologies such as cameras [36] and accelerometers [37]. Many of
the corresponding gesture recognition software frameworks are based on algorithms
that use learning-by-example [38], for instance used in conjunction with pointing
devices [39], accelerometer-based input devices [37] and camera-based [36] gesture
recognition systems.

Depending on the form factor of the appliance, required input dimensions and
precision, size and weight, learnability and acceptable cost, the use of capacitive
sensing may be an interesting alternative to conventional techniques.

As it has already been said, there are various technologies available to recog-
nize gestures in open space. Common methods include cameras [40], depth sensors

3
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[41] or capacitive systems [32]. This work is focusing on the latter. Compared to
the other systems capacitive sensors can be employed unobtrusively, work through
various materials and do not have a high computational cost [33]. However, there
are also various drawbacks, including a lower resolution, limited detection dis-
tance, sensitivity towards dynamic electric �elds in the immediate, environment
and shielding issues in various materials [42].

In this dissertation the objective is �xed then to have a simple and intuitive
classi�cation system, based on a SVM theory, for recognizing gestures, ensuring
reliability of the classi�cation, reasonable time for calibrating the algorithm and
a fast response of the system to a gesture performing. The speci�c goals of the
dissertation are outlined in the following section.

1.2 Objectives

In order to correctly design the system able to recognize gestures, the following
objectives are �xed:

� Analyze the concepts and the already developed techniques for the clas-
si�cation methods and how they are most appropriate to perform gesture
recognition in di�erent situations.

� De�ne static and dynamic gestures to be able to know which threshold is the
most appropriate to acquire a gesture.

� Decide a classi�cation method able to recognize both dynamic and static
gestures.

� Decide the features to extract from the signals and the classi�er to separate
the 5 classes (gestures), given the requirements of the ability to recognize
static gestures, dynamic gestures and complexity. More in details, these
constraints are traduced in the following goals:

1. The training set dimension acquired for each gesture is reduced to the
minimum.

2. The classi�er must achieve good gestures recognition percentage.

3. The processing time for calibration should not exceed 1 min; moreover,
the algorithm must be trainable with a small training set, asking the
user to perform a minimum number of gestures for the calibration.

4. The system response to a gesture recognition (acquisition threshold
crossing) must not exceed 1 s.

4



CHAPTER 1. INTRODUCTION

5. The classi�er should allow use without retraining it for every session;
the classi�cation system hence must reach good performances even when
the algorithm is not recalibrated, that is, session independence.

� Test the realized classi�cation method in di�erent contexts, to assess the
prede�ned requirements for the design and give conclusions and suggestions
for future developments.

1.3 Thesis Organisation

The thesis is divided in 5 chapters.
In chapter 1 an introduction is given to the dissertation, together with the

objectives and the reasons that have led to this project.
In chapter 2 an overview is provided about the state of the art capacitive sensor

and about systems already on the market able to recognize gestures.
Chapter 3 illustrates the design of the sensor,on the board used, the software,

the classi�cation methods, explaining the reasons of the SVM algorithm.
Chapter 4 reports the tests carried out to assess the validity of the design,

adding also some new solutions. For every �xed objective, a test is performed and
results are obtained.

In chapter 5 the conclusions about the design and the tests are explained,
evidencing which parts of the project should be modi�ed to achieve better results
and which give instead satisfying performances. Moreover, suggestions for future
developments and future works are given.
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Chapter 2

State of the art

2.1 Hand Gesture Recognition

The basic goal of Human Computer Interaction is to improve the interaction be-
tween users and computers by making the computer more receptive to user needs.
Human Computer Interaction with a personal computer today is not just limited
to keyboard and mouse interaction. Interaction between humans comes from dif-
ferent sensory modes like gesture, speech, facial and body expressions. Being able
to interact with the system naturally is becoming ever more important in many
�elds of Human Computer Interaction.

Both non-vision and vision based approaches have been used to achieve hand
gesture recognition. An example of a non-vision based approach is the detection
of the hand with a capacitive sensor. Theoretically the literature classi�es hand
gestures into two types static and dynamic gestures. Static hand gestures can be
de�ned as the gestures where the position and orientation of hand in space does
not change for an amount of time. If there are any changes within the given time,
the gestures are called dynamic gestures. Dynamic hand gestures include gestures
like waving of hand while static hand gestures include joining the thumb and the
fore�nger to form the �Ok� symbol.

The literature survey conducted provides an insight into the di�erent meth-
ods that can be adopted and implemented to achieve hand gesture recognition.
It also helps in understanding the advantages and disadvantages associated with
the various techniques. The literature survey is divided into two main phases i.e.
the camera module and the detection module. The camera module identi�es the
di�erent cameras and markers that can be used. The detection module deals with
the pre-processing of image and feature extraction. The commonly used methods
of capturing input from the user that has been observed are data gloves, hand
belts and cameras. The approach of gesture recognition [72] and [73] uses input

7



2.1. HAND GESTURE RECOGNITION

extraction through data gloves. A hand belt with gyroscope, accelerometer and a
Bluetooth was deployed to read hand movements are used [74] [75]. The authors
[76] used a creative Senz3D Camera to capture both colour and depth information
and [77] used a Bumblebee2 stereo camera. A monocular camera was used by
[78]. Cost e�cient models like [79], [80] and [81] have implemented their systems
using simple web cameras. The methods [82] [83] make use of a kinect depth
RGB camera which was used to capture colour stream. As depth cameras provide
additional depth information for each pixel (depth images) at frame rate along
with the traditional images [84] [85]. Most technologies allow a hand region to
be extracted robustly by utilizing the colour space. These do not fully solve the
background problem. This background problem was resolved in [86] by using a
black and white pattern of augmented reality markers (monochrome glove). While
inbuilt webcams do not give depth information, they require less computing costs.
Hence in our model, we used a webcam available in the laptop without the use of
any additional cameras or hand markers such as gloves. A large number of meth-
ods have been utilized for pre-processing the image which includes algorithms and
techniques for noise removal, edge detection, smoothening followed by di�erent
segmentation techniques for boundary extraction i.e. separating the foreground
from the background. The authors [80] [87] used a morphology algorithm that
performs image erosion and image dilation to eliminate noise. Gaussian �lter was
used to smoothen the contours after binarization [81] [88]. To perform segmenta-
tion, in [77] a depth map was calculated by matching the left and right images with
the SAD (Sum of Absolute Di�erences) algorithm. In [77], the Theo Pavildis Al-
gorithm which visits only the boundary pixels was used to �nd the contours. This
method brings down the computational costs. In [80] [84] [87] the biggest contour
was chosen as the contour of the hand palm after which the contour was simpli-
�ed using polygonal approximation. Classi�cation is a process in which individual
items are grouped based on the similarity between the items. The approach [89]
uses Euclidean distance based classi�er to recognise 25 hand postures. Support
Vector Machine (SVM) classi�er was used in [90] and [82].

2.1.1 Leap Motion

The Leap Motion controller is a small USB peripheral device which is designed to
be placed on a physical desktop, facing upward. It can also be mounted onto a
virtual reality headset.

8



CHAPTER 2. STATE OF THE ART

Figure 2.1: Leap Motion device [91]

Using two monochromatic IR cameras and three infrared LEDs, the device
observes a roughly hemispherical area, to a distance of about 1 meter.

Figure 2.2: hemispherical area [91]

The LEDs generate pattern-less IR light and the cameras generate almost 200
frames per second of re�ected data. This is then sent through a USB cable to
the host computer, where it is analyzed by the Leap Motion software using "com-
plex maths" in a way that has not been disclosed by the company, in some way
synthesizing 3D position data by comparing the 2D frames generated by the two
cameras. In a 2013 study, the overall average accuracy of the controller was shown
to be 0.7 millimeters.

The smaller observation area and higher resolution of the device di�erentiates
the product from the Kinect, which is more suitable for whole-body tracking in
a space the size of a living room. In a demonstration to CNET, the controller
was shown to perform tasks such as navigating a website, using pinch-to-zoom
gestures on maps, high-precision drawing, and manipulating complex 3D data
visualizations.

9



2.1. HAND GESTURE RECOGNITION

Figure 2.3: Leap Motion System [91]

Leap Motion initially distributed thousands of units to developers who are
interested in creating applications for the device. The Leap Motion controller was
�rst shipped in July 2013. In February 2016, Leap Motion released a major beta
update to its core software. Dubbed Orion, the software is designed for hand
tracking in virtual reality.[91]

2.1.2 Myo Armband

In the last years, the myoelectric control has grown signi�cantly, and not only
for prostheses applications, but also for controlling several electronic devices of
daily usage, that is, for human-computer interaction. This is done for the user
comfort, but mainly to allow access and manipulation of these devices also during
hand-busy situations (imagine a driver which could access the navigation system
without removing his hands from the steering wheel) [92],[93].

Concentrating on the EMG armbands, we start describing one recent and well
known device on the market and that re�ects the most common structure and
capabilities of an armband: the Myo armband from Thalmic Labs [94] (Figure
2.4).

10
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Figure 2.4: Myo Armband [2]

The Myo armband has the following characteristics:

� Is equipped with 16 electrodes (bipolar, so 8 signals) placed around the
forearm of the user, sharing a common ground.

� It embeds an Inertial measurement unit (IMU) to detect arm movements.

� It comprehends a Bluetooth unit to connect with other devices.

� It has elastic material to push the electrodes to the skin and in order to
adapt to the user arm size.

Five prede�ned gestures can be recognized: close, opening, wrist right, wrist left,
and �ngers-tap (Figure 2.5). However, developers can combine these preset ges-
tures with arm motions (data from the IMU) to create new gestures.

11



2.2. CAPACITIVE SENSING

Figure 2.5: 5 gestures recognized by Myo armband [2]

It provides satisfying performances, but also some important drawbacks (given
in decreasing order of importance) are present:

1. It has a reasonable cost (around 200 $). However, this can still be expensive
for the application of a low-cost myo-armband, in which the total cost of the
hand is around 200$.

2. The dimensions of the armband are too big for a good comfort.

Most of the armbands already developed present similar characteristics:

� The eight bipolar electrodes are used by other devices [95],[92],[96]. This is
because by placing eight bipolar electrodes around the forearm, a good dis-
placement between them and a satisfying coverage of the underlying muscles
are reached; hence it is mainly a dimensional cause.

� The inertial measurement unit is often integrated to the armband [97],[95],[96],[98],
since it gives informations on arm movements and multiplies the possible de-
�nable gestures.

� The elastic material, or a Velcro, is common in all of the armbands analyzed,
since a certain adaptability to the user's arm is always required.

2.2 Capacitive Sensing

In this section we outline the basic concept of capacitive sensing and review relevant
research.

Although capacitive sensing has evolved since the �rst Theremin, we show the
potential of this interaction technique which could be utilized in HCI.

The simplest capacitor consists of two metal plates put close together without
touching each other. When current is placed on those plates they can store energy.
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When the current is removed and the plates are connected through a circuit, the
stored energy initiates a current. Thus, a capacitor works like a small accumulator.
The capacity (capacitance) depends on the size of the plates and their distance.
Using the e�ect mentioned above, one can measure and track the distance between
a sensor and an object. For this, one of the two plates of a capacitor is replaced
by the object to be tracked. In order to hold enough free electrons or charged
molecules, the object has to have a relatively high dielectric constant. Most of these
materials are electrically conductive like metal, water or the human body. When
the object gets closer to the plate, the capacitance of this capacitor increases. One
can measure the capacitance of this capacitor and from this estimate the distance
between sensor plate and object. Connecting the object or person to ground can
increase the availability of free electrons in it - and thus the sensitivity of the
device.

Figure 2.6: Capacitive sensing principle [1]

The most common way to measure the capacitance of a capacitor is to use a
resonant circuit. Depending on the capacitor's capacitance, the resonant circuit
resonates faster or slower. This technique of measuring distances between a sensor
and an object is called capacitive sensing. Such sensors allow measurement of
microscopic displacements in the range of micrometers. They are the industry
standard for ultra-high precision measurements in many application areas.[43]

However, capacitive sensing can also be used to track objects, e.g. the human
hand as electrically conductive object, in larger ranges. The feasibility of using
capacitive sensing for position and gesture input to enable intuitive HCI is the
main contribution of this work.

Capacitive sensing for gesture interfaces is not a totally new idea. Artists have
used Theremins as input devices for video installations or light shows: One of
the �rst capacitive sensing interfaces was a musical instrument called Theremin,
which was invented in 1919. The music instrument player can adjust volume and
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pitch by changing the distances between his hands and two antennas. In such an
arrangement, the sensing is relative and due to the feedback (the music created) the
absolute position is of minor importance. Changes in the environment and in the
system are automatically compensated by the artist as he or she considers the tone
rather than the absolute position of the hand as the relevant parameter. Making
music in the air using novel technologies, away from traditional instruments, is
quite common for performance artists.

An extensive discussion of physical interfaces in arts in general is given by
Bongers in [44]. This work also discusses capacitive sensing as input modality.
Here, too, using capacitive sensing as relative input with a direct feedback removes
many problems faced when creating more generic human computer interfaces.

The technology of capacitive sensing itself is already part of today's computers,
e.g. in the touchpads of current laptops. There, input is limited to a very small
range of sensor to hand. We extend the sensing range to explore the impacts on
the way input to a system can be generated.

Smith et Al. [45] and Zimmerman et Al.[46] explored the potentials of electric
�eld sensing as input modality. They e.g. developed contactless hand tracking
devices using electric �eld sensing. This technique uses sensor plates which produce
an electric �eld and measure its disturbance by the human hand. Electric �eld
sensing yields higher resolution than capacitive sensing but requires signi�cantly
more hardware and processing.

Jacky Lee et al. [47] developed a 3D interface device for CAD workstations
which uses capacitive sensing. This device (iSphere) only measures three di�erent
states (distant, close, pressure). The user needs to touch the iSphere for interac-
tion. Interaction at a distance is not supported.

Di�erent commercial integrated circuits (IC) are available that are based on
capacitive sensing. These ICs are targeted at touch control applications. Ether-
touch [48] is a recently developed capacitive sensing IC which provides 12 channels
for sensors and was engineered for higher precision than Thracker.

Overall in human computer interacting there are very few results discussed
that make use of capacitive sensing on a larger scale.The support for gesture input
using several sensing plates, as introduced in this paper, is to our knowledge new.

2.2.1 Advantages of Capacitive Sensing

� Low cost sensors:

Sensors can be built at very low cost. As only some standard ICs and a
commonly available USB interface chip are used mainly for the components
realizing the USB-connection. When integrating the concept of capacitive
sensing into the device (e.g. appliances or a tablet PC) the cost for the
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hardware can in many cases be neglected.

� Small size, robustness and invisibility:

Capacitive sensors can be built in a very small form factor. When larger
distances (dozens of centimeters) have to be measured, bigger sensor plates
may be necessary. However, those can be very �at. The sensor form can
be adjusted to �t certain requirements. Capacitive sensing devices do not
need moving parts, and can be embedded into solid cases without openings
for sensors. This makes them ideally suited for areas with a high threat of
vandalism and heavy duty environments. Certain devices already have metal
parts that could be reused as sensors. Capacitive sensing can be embedded
into devices without showing any signs of it on the outside. This eases design
of visually attractive interface devices.

� Scalability, high precision and speed:

When a greater area has to be covered, additional sensors can easily be
installed. Administrative overhead is relatively small. Capacitive sensing
allows for a precision in micrometer ranges. This is of course only possible
in close proximity. But even in the range of up to 20 centimeters it can sense
small movements of about a centimeter. As very little processing is needed
on the acquired data, capacitive sensing is very fast. Unlike optical tracking
the sensors do not su�er from occluded markers or changing light conditions
in the environment. Changes in humidity or temperature do not in�uence
the measured values signi�cantly.

� Ease of use: Once calibrated, capacitive sensing devices do not need addi-
tional care. Users interacting with them do not have to carry a transponder
or optical marker. Using such a device is intuitive and in most cases no
explicit training is needed.

2.2.2 Limitations of Capacitive Sensing

� Sensitivity quickly decreases:

The major problem with capacitive sensing is that its resolution is highly
dependent on the distance. To measure distances of over 30 cm larger sensor
plates and highly sensitive circuits have to be built. Active sensing methods
can provide greater ranges. Passive capacitive sensing seems to be un�t for
tracking objects in larger areas (e.g. 30 centimeters or more).

� Objects interferance:
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Capacitive sensors only detect the presence of electrically conductive objects.
This need not be the object to be tracked but can be another object which
rather should not be tracked. Even if the interfering object does not move
it dampens the signals and reduces the tracking resolution. This can only
partly be compensated by shielding.

� Limited and ambiguous data:

The only information a capacitive sensor returns is its capacitance. A certain
capacitance can result from one person standing in front of the sensor or from
two persons standing a little further away. Disambiguation can sometimes
be achieved by using additional sensors and �ltering.

2.2.3 Theremin

The theremin is an electronic musical instrument controlled without physical con-
tact by the thereminist (performer). The name come after the Westernized name
of its Soviet inventor, Léon Theremin, who patented the device in 1928.

Figure 2.7: Theremin [49]

The instrument's controlling section usually consists of two metal antennas
that sense the relative position of the thereminist's hands and control oscillators
for frequency with one hand, and amplitude (volume) with the other. The electric
signals from the theremin are ampli�ed and sent to a loudspeaker.

The theremin was used in movie soundtracks such as Miklós Rózsa's Spell-
bound, The Lost Weekend, and Bernard Herrmann's The Day the Earth Stood
Still. It has also been used in theme songs for television shows such as the ITV
drama Midsomer Murders. This has led to its association with eerie situations.
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Theremins are also used in concert music and in popular music genres such as
rock.

The theremin is distinguished among musical instruments in that it is played
without physical contact. The thereminist stands in front of the instrument and
moves his or her hands in the proximity of two metal antennas. The distance
from one antenna determines frequency (pitch), and the distance from the other
controls amplitude (volume). Higher notes are played by moving the hand closer
to the pitch antenna. Louder notes are played by moving the hand away from the
volume antenna.

Figure 2.8: Block diagram of a theremin. Volume control in blue-grey, pitch control
in yellow and audio output in red. [49]

Most frequently, the right hand controls the pitch and the left controls the vol-
ume, although some performers reverse this arrangement. Some low-cost theremins
use a conventional, knob operated volume control and have only the pitch antenna.
While commonly called antennas, they are not used for receiving or broadcasting
radio waves, but act as plates of capacitors.

The theremin uses the heterodyne principle to generate an audio signal. The
instrument's pitch circuitry includes two radio frequency oscillators set below 500
kHz to minimize radio interference. One oscillator operates at a �xed frequency.
The frequency of the other oscillator is almost identical, and is controlled by the
performer's distance from the pitch control antenna.

The performer's hand acts as the grounded plate (the performer's body be-
ing the connection to ground) of a variable capacitor in an L-C (inductance-
capacitance) circuit, which is part of the oscillator and determines its frequency.
In the simplest designs, the antenna is directly coupled to the tuned circuit of
the oscillator and the 'pitch �eld' that is the change of note with distance, is
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highly nonlinear, as the capacitance change with distance is far greater near the
antenna. In such systems, when the antenna is removed, the oscillator moves up
in frequency.

To partly linearise the pitch �eld, the antenna may be wired in series with an
inductor to form a series tuned circuit, resonating with the parallel combination
of the antenna's intrinsic capacitance and the capacitance of the player's hand in
proximity to the antenna. This series tuned circuit is then connected in parallel
with the parallel tuned circuit of the variable pitch oscillator. With the antenna
circuit disconnected, the oscillator is tuned to a frequency slightly higher than
the stand alone resonant frequency of the antenna circuit. At that frequency, the
antenna and its linearisation coil present an inductive impedance; and when con-
nected, behaves as an inductor in parallel with the oscillator. Thus, connecting the
antenna and linearising coil raises the oscillation frequency. Close to the resonant
frequency of the antenna circuit, the e�ective inductance is small, and the e�ect
on the oscillator is greatest; farther from it, the e�ective inductance is larger, and
fractional change on the oscillator is reduced.

2.2.4 Thracker

The Thracker device is a circuit board containing four separate equal sensing
modules (Figure 2.9) � one for each sensor plate.They share a common 5V power
supply and ground from the USB port and a clock signal generated by a NE555
timer IC.

Figure 2.9: Thracker [43]

The Thracker device is about the size of a cigarette box. The sensor plates are
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4 cm wide.
A NAND gate, a 300 kOhm resistor and a sensor plate in each module provide a

rough resonant circuit. When a hand approaches the sensor plate, the capacitance
of the sensor plate increases resulting in a lower frequency of the resonant circuit.
It usually resonates at 60kHz - 120kHz depending on the distance of the hand.

This signal is fed into a 14-bit binary ripple counter. A clock signal controls
whether the signal from the resonant circuit reaches the counter. This is needed
to assure that the value of the counter does not change while copying it into the
latch.

The raw values are �ltered for obviously invalid values and averaged to remove
jitter. From this data the software calculates the distance of the hand with regard
to each of the sensing plates using hard-coded reference values.

An obvious usage area for Thracker-equipped screens are interactive displays in
museums, exhibitions or public places. Users can interact with art, underground
maps or timetables in an simple and intuitive way. Thracker is resistant to vandal-
ism, does not require people to touch the input device and is quite cheap. Existing
displays can be easily equipped with a Thracker device. While large TFT dis-
plays may dampen the sensitivity of the Thracker device, rear- or front-projection
displays are ideally suited.

As Thracker is low-cost, even static paper posters could be made interactive.
An interactive poster could sense if someone is standing in front of it. The user
could tap special areas on the poster to hear additional voice information or a
music sample.

Workers who have to wear protective gloves have di�culty interacting with
touchscreens or mice. Thracker enables them to interact with a computer without
exposing its input devices to hazardous environments. Similarly in a sterile operat-
ing room surgeons may not touch unsterile input devices like mice. Thracker could
enable them to easily pan and zoom in x-ray images by simple hand movements.
Thracker could also be integrated in vandalism-proof ticket vending machines.

On a larger scale Thracker could be used to track persons in a room. On a
smaller scale Thracker could be used in interactive toys, e.g. a small robot which
always turn in the direction of its owner's �nger.[43]

2.2.5 E-Skin

While previous attempts on capacitive sensing of human hand was mostly focused
on a single cell measurement, or have used rigid electronics systems, our inspiration
in this project is the human skin. Human skin is a the largest sensing organ in our
body and is composed of a large number of sensors. In addition is it �exible and
stretchable. An electronic skin composed of several sensing elements within a large
area, can be used for sensing proximity of the hand at various points. Moreover,
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if such skin is �exible, it can wrap around any 3D surface for the same purpose,
i.e. gesture, or event detection. This can be bene�cial for a safe, interactive
and rich form of human machine/ human robot interaction, provided that the
machine/robot are equipped with such type of sensor over their body. Human skin
is highly intuitive, making it easy to neglect the complexity of the largest sensory
organ in our bodies. Our skin is the physical barrier through which we interact
with our surroundings, allowing us to perceive various shapes and textures, changes
in temperature, and varying degrees of contact pressure. To achieve such high
sophistication in its sensing capabilities, several di�erent types of highly specialized
sense receptors are embedded within our skin. These receptors � rst transduce
information generated by physical contact into electrical signals and subsequently
send it to the central nervous systems for more complex processing. The collected
signals are eventually interpreted by the somatosensory cortex,[50] permitting us
to successfully navigate our physical world with ease. The e�ort to create an arti�
cial skin with human-like sensory capabilities is motivated by the possibility of
such large, multi-sensory surfaces being highly applicable for autonomous arti� cial
intelligence (e.g., robots), medical diagnostics, and replacement prosthetic devices
capable of providing the same, if not better, level of sensory perception than
the organic equivalent. Endowing robots with sensing capabilities could extend
their range of applications to include highly interactive tasks, such as caring for
the elderly, [51] and sensor skins applied on or in the body could provide an
unprecedented level of diagnostic and monitoring capabilities. [52] An arti� cial
skin with such sensory capabilities is often referred to in the literature as sensitive
skin, smart skin, or electronic skin (e-skin). Although the primary function of
human skin is mechanical force sensing, electronic versions can be augmented
with additional capabilities. In arti� cial platforms, researchers can incorporate
chemical and biological sensors onto � exible substrates.
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Figure 2.10: A brief chronology of the evolution of e-skin [53]

The prospect of creating arti� cial skin was in many ways inspired by science
� ction, which propelled the possibility of e-skin into the imagination of both the
general public as well as the scienti� c community. One of the � rst science � ction
books to explore the use of mechanical replacement organs was Caidin's Cyborg in
1971, on which the famed Six Million Dollar Man television series about a man with
a bionic replacement arm and eye was later based (1974). [54] Shortly after, at the
beginning of the 1980s, George Lucas created a vision of a future with e-skin in the
famous Star Wars series. In particular, he depicted a scene showing a medical robot
installing an electronic hand with full sensory perception on the main character,
Luke Skywalker. [55] Shortly after, in 1984, the Terminator movie series depicted
humanoid robots and even a self-healing robot. [56] These �ctitious renditions of
e-skin took place against a real-life backdrop of vibrant microelectronics research
that began bridging science � ction with scienti� c reality. Early technological
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advancements in the development of e-skin were concomitant with their science �
ction inspirations. In 1974, Clippinger et al. demonstrated a prosthetic hand capa-
ble of discrete sensor feedback. [57] Nearly a decade later, Hewlett-Packard (HP)
marketed a personal computer (HP-150) that was equipped with a touchscreen,
allowing users to activate functions by simply touching the display. It was the
�rst mass-marketed electronic device capitalizing on the intuitive nature of human
touch. In 1985, General Electric (GE) built the �rst sensitive skin for a robotic
arm using discrete infrared sensors placed on a �exible sheet at a resolution of 5
cm. [58] The fabricated sensitive skin was proximally aware of its surroundings, al-
lowing the robot's arm to avert potential obstacles and e�ectively maneuver within
its physical environment. Despite the robotic arm's lack of � ngers and low resolu-
tion, it was capable of demonstrating that electronics integrated into a membrane
could allow for natural human�machine interaction. For example, the robotic arm
was able to `dance' with a ballerina without any pre-programmed motions. [58]
In addition to the ability of an arti��cial skin to interact with its surroundings,
it is equally critical that the arti��cial skin mimics the mechanical properties of
human skin to accommodate its various motions. Hence, to build life-like pros-
thetics or humanoid robots, soft, � exible, and stretchable electronics needed to
be developed. In the 1990s, scientists began using � exible electronic materials
to create large-area, low-cost and printable sensor sheets. Jiang et al. proposed
one of the � rst � exible sensor sheets for tactile shear force sensing by creating
silicon (Si) micro-electromechanical (MEM) islands by etching thin Si wafers and
integrating them on �exible polyimide foils. [59] Much work has since been done to
enhance the reliability of large sensor sheets to mechanical bending. [60] Around
the same time, �exible arrays fabricated from organic semiconductors began to
emerge that rivaled the performance of amorphous Si. [61] Just before the turn
of the millennium, the � rst �Sensitive Skin Workshop� was held in Washington
DC under the aegis of the National Science Foundation and the Defense Advanced
Research Projects Agency, bringing together approximately sixty researchers from
di�erent sectors of academia, industry, and government. It was discovered that
there was signi� cant industrial interest in e-skins for various applications, ranging
from robotics to health care. A summary of concepts outlined in the workshop
was compiled by Lumelsky et al. [62] In the early 2000s, the pace of e-skin de-
velopment signi� cantly increased as a result of this workshop, and researchers
began to explore di�erent types of sensors that could be more easily integrated
with microprocessors.

Signi�cant progress in the development and advancement of e-skin has been
achieved in recent years, in which particular emphasis has been placed on mim-
icking the mechanically compliant yet highly sensitive properties of human skin.
Suo and coworkers have developed stretchable electrodes, [63] and Rogers and
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coworkers have transformed a typically brittle material, Si, into � exible, high-
performance electronics by using ultrathin (100 nm) �lms connected by stretchable
interconnects. [64] Someya and coworkers have fabricated � exible pentacene-based
organic � eld-e�ect transistors (OFETs) for large-area integrated pressure-sensitive
sheets with active matrix readout, [65] while Bauer and coworkers have investi-
gated novel pressure sensing methods using foam dielectrics [66] and ferroelectrets
[67] integrated with FETs. Our group has investigated the use ofmicrostructured
elastomeric dielectrics for highly sensitive capacitive pressure sensors [68] and has
developed a composite conductive elastomer exhibiting repeatable self-healing and
mechanical force sensing capabilities. [69] Other groups have developed stretch-
able optoelectronics, including light-emitting diodes (LEDs) [70] and organic pho-
tovoltaics (OPVs) [71] for integration with e-skin. A timeline outlining the major
milestones towards the development of e-skin is depicted in Figure 2.10 .

2.3 Classi�cation

This section describes the most used classi�cation algorithms. For every reported
classi�er, advantages and drawbacks will be reported, together with a brief de-
scription of the working principles.

The classi�er is de�ned as an algorithm which can detect between a certain
number of classes the di�erences present in the features extracted, and so output
the correct performed gesture.

Depending on the feature properties, time constraints and data dimensions
present on the overall system, the optimum choice can vary signi�cantly.

2.3.1 K-nearest neighbor

Some binary classi�cation problems (distinction between two classes) can easily
be solved sometime (depending on structure) by the usage of a simple and basic
algorithm: the k-nearest neighbor [99] (Figure 2.11).

In its simplest form (K = 1), the algorithm �nds the nearest feature point
(belonging to the training set) to the gesture to be classi�ed, and then assigns
its label; for K > 1, the assignment depends on the majority of labels present in
the K nearest neighbors (Figure 2.11). The distance evaluation can be Euclidean
or not, and has to be chosen carefully, since the algorithm performance depend
almost entirely on this choice.

This algorithm however presents some important limitations:

� Strong noise dependence; that is, if the data is very noisy, the algorithm will
surely perform bad.
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Figure 2.11: K-Nearest neighbor

� It does not perform well in terms of classi�cation time for large training set
and K >> 1.

2.3.2 Neural networks

The neural networks (Figure 2.12) represent surely the most used classi�cation
algorithm ([100],[101] to give some examples). This is because of their several

Figure 2.12: General structure of an Arti�cial Neural Network (ANN)

properties:
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� A neural network, depending on the presence of hidden layers, can represent
both linear and non-linear systems.

� The learning of the relationships between the variables is self-calibrating,
that is, an ANN can create its own representation of the information it re-
ceives during learning time, only depending on the data structure. In other
words [102], neural networks have the ability to detect implicitly any com-
plex nonlinear relationships between independent and dependent variables,
and represent them by automatically adjusting the connection weights in its
structure.

� Neural networks can be developed using multiple di�erent training algo-
rithms, so the best performing (fastest) one can be selected among many.

� The neural networks meet real-time constraints, since computations may be
carried in parallel.

However, due to their implicit structure, they present some drawbacks [102], which
makes them not the best choice for some projects:

� Identify the modeled (by the network) relationships between the variables is
hard; also, for causal inference ANN are not preferable.

� Hidden layers and nodes have to be selected accurately, otherwise it is prob-
able to encounter the problem of over-�tting.

� They often require a big computational resource, especially when they in-
clude hidden layers.

The input nodes of an ANN are simply the features extracted, so their size is
�xed; then, depending on the complexity and linearity of the modeled system, the
number of hidden layers and their nodes is decided. There is no clear algorithm
to de�ne the number of neurons (nodes) of the hidden layers [100]. Only general
rules can be followed,as for instance:

� As the complexity in the relationship between the input data and the desired
output increases, the number of the processing elements in the hidden layer
should also increase.

� The amount of training data available sets an upper bound for the number
of processing elements in the hidden layer.

Once the structure has been determined, the network needs to be trained, and
this is done by adjusting the weights (wij, wjk in Figure 2.12) that connect the
variables between the layers.
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The di�erent possible solutions are compared through a proper de�nition of a
cost function C, for which obviously the optimal solution represents a minimum.
As already said, there are many di�erent algorithms to train an ANN, but they
can be grouped, as can be done for every learning algorithm, in the following
categories:

1. Supervised learning: N labeled training examples {(x1, y1); (x2, y2); ...; (xN, yN)}
are given, where Xi indicates the feature vector and yi the class. In this case,
a common technique is to de�ne as cost function the mean-square error (an
error is the di�erence between yi and ypredictedi ), and use the gradient de-
scent to train the network: this technique is indicated as back-propagation
algorithm.

2. Unsupervised learning N not labeled training examples are given; the
cost function depends on the task and a priori assumptions; a commonly
used algorithm is the K-means, which divides the data into k clusters such
that each point in a cluster is similar to points from its own cluster than
with points from some other cluster.

3. Reinforcement learning Data are usually unknown, but generated by a
software agent. The learning is aimed to automatically determine the ideal
behavior within a speci�c context, in order to maximize its performance.

It is worth citing a speci�c case of neural network: the single layer perceptron
(SLP, Figure 2.13). As said, is a single layer network, with a threshold activation
function, capable of separating two classes; it's capabilities are quite limited, since
only linear separable data can be classi�ed.

Figure 2.13: Single Layer Perceptron (SLP)

The output of the network is:

y = f(
N∑
i=1

wi ∗ xi) (2.1)
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f(a) =

{
1 if a ≥ 0

−1 if a < 0
(2.2)

Basically, the working principle of the SLP is the evaluation of a hyperplane (∈
RN+1) that could separate the two classes.

Equal to the SLP is also another basic form of a classi�er: the linear support
vector machine. This will be explored in detail further on.

2.3.3 Fuzzy logic

Another approach for classifying is using the fuzzy logic principles. This method
presents important advantages [103],[104]:

� Biomedical signals are not always strictly repeatable, and may sometimes
even be contradictory. One of the most useful properties of fuzzy logic sys-
tems is that contradictions in the data can be tolerated.

� Discover patterns in data which are not easily detected by other methods is
possible, as can also be done with neural network.

� The experience of medical experts can be incorporated. Integrate this incom-
plete but valuable knowledge into the fuzzy logic system due to the system
reasoning style is possible, which is similar to that of a human being. This
is a signi�cant advantage over the arti�cial neural network (ANN).

� It has been shown that the fuzzy logic can be a "universal approximator" in
a manner similar to the ANN [105].

As described by Chan [103], the step of the classi�cation are the followings:

1. The fuzzy systems at �rst "fuzzify" inputs into membership degrees of fuzzy
sets. This means that a fuzzy clustering is made, where data elements can
belong to more than one cluster, and associated with each element is a set
of membership levels.

2. Inference by fuzzy logic through rules is made. This is the kernel of a fuzzy
system: the knowledge of an expert or well-classi�ed examples are expressed
as or transferred to a set of �fuzzy production rules� of the form IF-THEN,
leading to algorithms describing what action or selection should be taken
based on the currently observed information.

3. The out-coming value is then "defuzzi�ed" to take a decisions. For instance,
the simplest but least useful "defuzzi�cation" method is to choose the set
with the highest membership, loosing informations. A common and useful
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"defuzzi�cation" technique is center of gravity which consists in adding in
some way the results of the inference engine.

Fuzzy logic also presents a crucial disadvantage [106]:

� Develop fuzzy rules and membership functions and fuzzy outputs is tedious
and can be interpreted in a number of ways making analysis di�cult. More-
over, it requires lot of data and expertise to develop a fuzzy system. Also,
fuzzy logic performances will be bad for small training set, making this clas-
si�er inappropriate for the current project.

2.3.4 Hidden Markov

The Hidden Markov model (Figure 2.14) is part of a bigger group, which will
not be explored since it goes beyond the purpose of this Chapter: probabilistic
approaches.

The cause of the interest on these classi�ers, is that our signal is stochastic,
hence, probabilistic approaches that are based on the probability of each class may
outperform other classi�cation approaches [107].

Concentrating on Hidden Markov models, their structure is a Markov chain
topology consisting of Hidden states (vector x) and state transition probabilities
(matrix A). Associated with each state is an observation probability density func-
tion, which accounts for the probabilistic nature of the observed data [108].

Figure 2.14: Hidden Markov model

Given the observation vector (the features extracted y1, y2, y3, observables) and
the previous state probabilities (�xed from experience), the HMM can determine
which state has the highest probability of being the current state; the intended limb
motion associated with the state with the highest probability is the classi�cation
decision for the current time index t [108].
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Since initial state probabilities , called π, and the state transition matrixA, are
selected preliminarily and �xed, training is only limited to the computation of the
mean vector and covariance matrix of the probability functions of state observa-
tion (e1, e2, e3) The HMM can reach very high classi�cation accuracies [108],[109],
and have relatively low computational complexity, either for calibration and clas-
si�cation. To achieve this, A good tuning of the probabilities vectors and matrix is
crucial: for instance, since the application is a prostheses control, the probability
of remaining in a particular state should be set relatively high.

This probability tuning anyway allows the HMM to adapt to various systems
and applications, and represent a more natural, more e�ective means of myoelectric
control by providing high accuracy, low response time, and an intuitive control
interface to the user. Moreover, the low computational overhead associated with
training an HMM, also enables the possibility of adaptive classi�er training while
in use [107].
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Chapter 3

Materials and Methods

3.1 System Description

In this section the system which is composed of the capacitive sensor and the board
to send the signal is introduced.

3.1.1 Sensor

In order to match the mechanical compliance and deformability of their natural
counterparts, electronic skin (E-Skin) sensor arrays and circuits are typically com-
posed of ultrathin metal �lms, conductive elastomer composites, or liquid metal
(LM) micro�uidics [110], [111], [112], [113]. LM-based circuits are of particular
interest because they can be engineered to exhibit a low elastic modulus ( ∼ 0.1-1
MPa), high strain limit (100-1000 % ), and low electrical resistance (∼ 0.1-1 Ω)
[114]. Another reason for their popularity is the ease with which circuits can be
fabricated using elastomer casting, microcontact printing, stencil lithography, 3D
printing, laser patterning, and a variety of other synthesis techniques [115]. Eutec-
tic gallium-indium (EGaIn) is a popular liquid metal for micro�uidic electronics
since it has low viscosity, negligible toxicity, and can readily wet to most surfaces
[116]. Early e�orts with EGaIn electronics focused on low-cost microelectronics
prototyping [117], stretchable wiring [118], and strain sensing [119]. Strain sens-
ing with liquid metal was originally shown by RJ Whitney, who created a highly
stretchable strain gauge using mercury-�lled rubber tubing [120]. Building on this
seminal work, Majidi & Wood et al. introduced pressure [121] and bend sensing
[122] for applications in contact detection, wearable computing, and joint proprio-
ception. In recent years, EGaIn-based micro�uidic sensors have been extended to
tactile sensing [123], electrocardiography (ECG) monitoring [124], and variety of
medical applications [125], [126], [127].
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Proximity detection is important for many E-Skin applications but had previ-
ously not been demonstrated with LM micro�uidics. Being stretchable is a key
factor toward implementation of a bio-inspired skin architecture, which can be
wrapped around a robotic arm, a robotic hand or even a mobile robot and pro-
vide an excellent distributed sensing information on touch and pressure. Adding
proximity sensing to a stretchable e-skin is attractive for robotics applications,
with application on prevention of accidents between humans and robots, for a
safer human robot interaction. In a more advanced form, such skin might be used
for detection of objects shape, size, and geometry in a distributed architecture,
to overcome the limitations of computer vision systems. Yao & Zhu presented
wearable multifunctonal sensors for pressure and touch sensing using capacitive
sensing, introducing also the proximity sensing, using Silver NanoWires[128].

Figure 3.1: Capacitive sensor

Liquid Metal was used as a conductive electrode for several reasons; To allow
the sensor to be stretchable; To rapidly fabricate the sensor in an additive manner,
and to exploit the deformation of the conductive layer for measuring the changes
of the resistance in case of touch.In this chapter, we address this by introducing
a multi-layer circuit that is capable of combined proximity and touch. The multi-
modal sensor is composed of 24 X 11 capacitive electrodes arranged in two layers
(Fig. 3.1). When a �nger or other conductive body is above the sensor (but not
in contact), the capacitance measurements will change with changes in vertical
distance and horizontal motion.
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Sensor Design and Fabrication Referring to Fig.3.2, the sensor contains two
layer of EGaIn:(i) top capacitor electrodes, (ii) bottom capacitor electrodes.

Figure 3.2: Capacitive sensor design

The capacitive sensor array is composed of two electrode layers, each with
10 columns and 23 rows of diamond-shape electrodes, respectively. The layers
are aligned so that the electrode in one layer �ts perfectly in the space between
electrodes of the other capacitive layer.
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Figure 3.3: Capacitive sensor scheme design

Layers are produced sequentially by �rst depositing the silicone elastomer with
a thin �lm applicator (ZUA 2000 Universal Applicator; Zehntner). After the
polymer is cured (100 °C in an oven for 10 minutes), it is covered with a laser-cut
stencil (VLS 3.50: Universal Laser Systems, Inc) and EGaIn is spray deposited
[129]. To interface the LM connections to the measurement board, a patterned
�exible circuit is used (Fig. 3.3). A �exible copper coated polyimide �lm was
patterned using a UV laser micromachining system (Protolaser U3; LPKF). As
shown in Fig. 3.4, the EGaIn layers are deposited in a way that they all interface
with the leads of the �exible circuit, which is placed below the bottom-most layer
of EGaIn.

Electrical interfacing is accomplished using one of two di�erent techniques. In
the �rst approach, the silicone layers only cover the EGaIn without covering the
copper traces. In this way, after spraying EGaIn, the LM interfaces with the
copper are unsealed (Fig. 3.4). Using thin layers of EcoFlex (200µ m), the liquid
metal of the second layer can be sprayed over the silicone and copper leads without
discontinuities, since the step from the copper to the second conductive layer is
small. The process is then repeated for the remaining layers, resulting in a layup
with the side view shown in Fig. 3.4. In the second approach, the �ex circuit leads
are coated with an anisotropic conductor that conducts only through its thickness
(�z-axis�). This z-axis conductor is prepared based on the method explained in
[130]. Ag-coated nickel particles (15 µ m diameter) are mixed with silicone at 30
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% wt. After deposition, the sample is placed over a magnet and cured in an oven,
during which the ferromagnetic particles self-align along the z-axis. Consequently,
subsequently layers of EGaIn that are deposited over the leads are sealed in with
the z-axis conductive elastomer. Since the elastomer is only conductive through
its thickness, the EGaIn traces and Cu leads will not short within the plane.

Figure 3.4: Sensor design

3.2 Gestures choice

The �rst decision it has to be taken is which hand physical movements match with
the gestures.Theoretically the literature classi�es hand gestures into two types
static and dynamic gestures.

Static Gestures Static hand gestures can be de�ned as the gestures where the
position and orientation of hand in space does not change for an amount of time.
Some static hand gestures used for our work are shown in the following �gures.
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Figure 3.5: Static Gestures

Non-Static (Semi-Dynamic) Gestures A dynamic gesture is intended to
change over a period of time. The �gures below show some dynamic gesture
used in this project.

Figure 3.6: Dynamic Gestures

To understand a full message, interpretate all the static and dynamic gestures
over a period of time is necessary. This complex process is called gesture recogni-
tion.
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3.3 Signal Acquisition

In this section the acquisition of the signal coming out from the board will be
analyzed.

Figure 3.7: Algorithm

The application used for reading the data acquired from the sensor, PsoC
Creator (board used CY8C4248AZI-L485) has a new component: the Capacitive
Sensing. This component supports various widgets, such as Buttons, Matrix But-
tons, Sliders, Touchpads, and Proximity Sensors. The most used for controlling
the acquisition in terms of proximity or pressure is the Proximity.

The Proximity widget can detect the proximity of conductive objects. It has
two di�erent type of thresholds: one is the proximity threshold for detecting an
approaching and one is the touch threshold for detecting the touching on the
sensor. The data are a�ected by noise but the values are analysed and �ltered
next to the acquisition. Is possible to use di�erent �lters but the noise is not to
much so we decide to analyse the real signal values.

To avoid the algorithm to classify continuously a prede�ned windows is needed,
of a de�ned maximum length, where memorize the signal, otherwise the classi�ca-
tion error would be quite high; the classi�cation should then only start in response
to an event, which represents the starting of a gesture. The technique used in
this design is the threshold crossing (Figure 3.8), when the signal (continuously
acquired) crosses a certain threshold, the algorithm will start saving his values
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until:

� The hand is removed. When the signal crosses a prede�ned lower threshold;

or

� For a maximum prede�ned period (window). The maximum length of the
window of observation is decided from experience, and is a trade-o� between:

� The average duration of the gestures, which sets a lower bound, since a
complete gesture should be recorded in order to have a good classi�ca-
tion.

� The real-time constraints, which set an upper bound; the duration of
the window indeed should not exceed a certain value. The duration
upper bound is then set from experience to 1 second

Figure 3.8: Threshold

The threshold selected for this design is the mean of all 33 sensors, this to avoid
acquiring when there are peaks in just few sensors due to interferences from the
surrounding environment.

The sketch of this operation is represented in Figure 3.9.
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ADC

Signal

Extract
Threshold TRUE

Figure 3.9: Acquisition sketch

Once the threshold has been crossed, the next N ADC output values will be
recorded (with maximum N experimentally set to 100, corresponding to an overall
window length of ∼ 1s) and processed to extract proper features.

3.4 Features Selection

Choosing the right features to extract from the signal is an important step in the
hand gestures classi�cation. This section will analyze deeply the block "Extract"
depicted in Figure 3.9. The block carries out the signal, and then:

� Sends the obtained features vector as an instance to train the classi�cation
algorithm, if the user is requiring a Calibration.

� Classi�es the obtained features vector, if the user is using the system.

Before analyzing the choice of the features to extract, all the 33 sensors for the 5
gestures are shown in Figure 3.10, to give an idea of which characteristics separates
them from each other.
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Figure 3.10: 33 sensors 5 gestures

Figure 3.11: Gestures

In order to select the right features to extract, start from the desired charac-
teristics that these features should have is recommended:

1. The processing time to extract the features should be as low as possible,
because the user, once it completes the gesture, would obviously desire a
quick actuation of his commands.

2. The features serve as an input for the classi�er, so should separate the ges-
tures, static and dynamic, from each other as good as possible.

Having a good number of sensors (33) available, to identify a gesture the value
of each sensor, at the same time, is su�cient. What we use in this project is to
capture a snapshot of all the sensors in the desired instant. The static gestures are
not changing during the time so is enough to capture only one snapshot to classify
them correctly. To classify a dynamic gesture the system needs two di�erent
snapshots, one before the changing and one after. To do this is necessary to �nd
a good way to understand where there is a change.

We can think about a gesture as a composition of 3 parts:
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� Approaching to the sensor.

� Changing or standing if is static.

� Removing from the sensor.

Since that small changings can happen also in a static gesture, little movements
of the hand cause changing, instead of acquire the snapshots before and after the
changing is better to acquire them after the approaching and before the removing.
Doing this also with the static gesture, theoretically, two "equal" snapshots are
acquired, this allows to set the number of features, 2 X n°of sensors, for both
categories and it is possible to classify the gestures with the same algorithm.

Figure 3.12: 2 Snapshots 1 instant acquiring

To achieve good results it is better to use more than one instant for each
snapshot. After the �rst tests we decided to use the mean of 3 instants after the
approaching and the same before the removing. Doing so we exclude the change
part and we improve the system because each snapshot contains the informations
of 3 sequential moments as shown in Figure 3.13
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Figure 3.13: 2 Snapshots mean of 3 sequential instants

3.5 Classi�cation Algorithm

This section describes the used classi�cation algorithm: starting from the moti-
vations which brought to this choice, explaining after the principles beyond the
operations present inside the calibration part, and �nally showing how the pure
gestures classi�cation works.

The characteristics and requirements of the system are listed below:

� The feature space is separable, probably linearly; hence, a complex classi�er
is not necessary.

� Due to real-time application, a very fast classi�cation (feature extraction
+ classi�cation time tc < 1s) is required, even if the feature space or the
training set are quite large.

� Give the possibility to decide some parameters of the classi�er is preferable,
mainly for future developments. These parameters can be:

1. Training set dimensions, to feed faster the algorithm (less instances to
give).

2. Rigidity to separability. In other words, with relatively large training
sets is possible that there is no reachable l.s., due to bad instances
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given to feed the classi�er; hence, forcing the algorithm to �nd a linear
separator (hyperplane) could result in long time calibration and mis-
classi�cation. Give the possibility to set the so-called "Soft margin" is
necessary.

3. Error-tolerance and time limit for the calibration, to speed up the pure
training time.

For all these requirements and peculiarities, a support vector machine classi�er
was chosen (Figure 3.14). Such classi�er is trained with the sequential minimal
optimization algorithm, developed by John Platt [131].

Figure 3.14: Support vector machine

In this design the technique of one vs one is used, In the one vs one reduction,
one trains K ∗ (K − 1)/2 binary classi�ers for a K multiclass problem (5 in this
case); each receives the samples of a pair of classes from the original training
set, and must learn to distinguish these two classes. At prediction time, a voting
scheme is applied: all K ∗ (K − 1)/2 classi�ers are applied to an unseen sample
and the class that got the highest number of +1 predictions gets predicted by the
combined classi�er.

Support vector machine introduction The binary s.v.m. principle is the
construction of an hyperplane which can separate as clear as possible (maximizing
a distance) the two classes of instances (Figure 3.15); that is, given N instances
{(x1, y1); (x2, y2); ...; (xN, yN)}, where xi ∈ Rd and yi ∈ {1,−1}, the purpose of
the s.v.m. algorithm is to train a separating hyperplane f(x), which in the linear
case can be written like:

f(x) = sgn(w · x− b) (3.1)
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Figure 3.15: Support vector machine principle

The role of this classi�er is to separate the two classes with a de�ned margin.
Hence, the calibration of the classi�er will be a modi�cation of the weights w in
order to have two parallel hyperplanes (H1,H2) such that:

H1 : w · x− b = ζ for class 1 (3.2)

H2 : w · x− b = −ζ for class 2 (3.3)

The two constraints can be uni�ed:

yi(w · xi − b) ≥ ζ ∀i (3.4)

ζi ≥ 0 i = 1, .....,m (3.5)

The margin that separates the classes is the distance between the two hyperplanes
(Figure 3.16), so in the case ζ = 1:

|H2 −H1| =
|w · x− b|
||w||

=
2

||w||
(3.6)
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Figure 3.16: Margin of the s.v.m.

To obtain a good separation of the two classes then, ||w|| is to minimize,
which is equal to minimize 1

2
wTw. The classi�er, in the linear case, can then be

determined solving this quadratic programming problem:

min
w,b

1

2
wTw with yi(w · x− b) ≥ 1 ∀i. (3.7)

To solve this problem, introduce the so-called Lagrange multipliers is convenient,
create the dual problem, and solve it.

Lagrange multipliers and dual problem To understand the theory of the
Lagrange multipliers, following [132], start from an original minimization problem
of the type is convenient:

min
w

f(w) (3.8)

Subject to the primal constraints:

gi(w) ≤ 0 i = 1, ..., N (3.9)

hi(w) = 0 i = 1, ...,M (3.10)

To solve the problem, the best way is to de�ne the so-called generalized Lagrangian:

L(w, α, β) = f(w) +
N∑
i=1

αigi(w) +
M∑
i=1

βihi(w) (3.11)
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The Lagrangian multipliers are αi and βi. If the following quantity is considered:

p = max
α,β,αi≥0

L(w, b, α, β) (3.12)

it is easy to verify that, given a generalw, if it violates any of the primal constraints
(gi(w)leq0 or hi(w) = 0) the solution of the previous problem is:

p = max
alpha,beta,αi≥0

[f(w) +
N∑
i=1

αigi(w) +
M∑
i=1

βihi(w)] =∞ (3.13)

If then it is considered:
min
w,b

p = min
w

max
α,β,αi≥0

L (3.14)

it can be seen that is exactly the original problem (Equation 3.9) and has then the
same solutions.

If then the following quantity is considered:

d = max
alpha,beta,αi≥0

min
w,b
L(w, b, α, β) (3.15)

it can be easily demonstrated that d ≤ p and under certain conditions d = p; that
means that the above problem (Equation 3.16, called dual problem) can be solved
to �nd the solutions of the primal one (the dual problem �nds α∗, β∗ and the
primal �nds w∗, but it will be shown that they are dependent from each other)
This is useful because often the dual problem is much easier to solve than the
primal one. So all is needed is then to satisfy the following conditions, called
Karush-Kuhn-Tucker (KKT) conditions, to be able to state that d = p:

∂

∂wi
L(w∗, α∗, β∗) = 0 i = 1, ...., L (3.16)

∂

∂βi
L(w∗, α∗, β∗) = 0 i = 1, ....,M (3.17)

α∗i gi(w
∗) = 0 i = 1, ....., k (3.18)

gi(w
∗) ≤ 0 i = 1, ....., k (3.19)

α∗i ≥ 0 i = 1, ....., k (3.20)

It is important to notice that the link between the KKT conditions and the solu-
tions of the primal (w∗) and dual (α∗, β∗) problems is bi-directional. This means
that if some w∗, α∗, β∗ satisfy the KKT conditions, than they are also solutions of
the primal and dual problem p and d.
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Going back to the original s.v.m. problem, now is possible rewrite it in the
following way:

min
ψ,w,b

1

2
||w||2 (3.21)

gi(w) = −yi(w · xi + b) + 1 ≤ 0 i = 1, ....., N (3.22)

The last constraint is present for each training example i.

For the third constraint of the KKT conditions (Equation 3.19) the only train-
ing examples that will have αi > 0 will be the ones that have functional margin
exactly equal to one (i.e., the ones corresponding to constraints that hold with
equality gi(w) = 0). These training examples are the so-called support vec-
tors. This fact is useful when working with large training set, because only a few
examples will have αi > 0, hence the classi�cation will be anyway fast.

In other words, in the support vector machine algorithm, the value of αi indi-
cates the weight of the i-th training point in the classi�cation of gestures: this can
be seen in the last paragraph. Since the s.v.m. problem now is in the standard
form, it can be created the Lagrangian:

L(w, b, α) =
1

2
||w||2 −

m∑
i=1

αi[y
i(w · xi + b)− 1] (3.23)

The βi are not present since only inequality constraints are present.

Find the dual problem of the primal form is now convenient. Firstly then, �nd
the minimum of the Lagrangian L(w, b, α) with respect to w and b is needed. To
do so, the derivatives are set to zero, it is then obtained:

∇wL(w, b, α) = w −
m∑
i=1

αiy
ixi = 0 (3.24)

The following relation is then obtained:

w =
m∑
i=1

αiy
ixi (3.25)

Setting the derivative of the Lagrangian L(w, b, α) with respect to b to zero, the
following constraint is instead obtained:

m∑
i=1

αiy
i = 0 (3.26)

Combining the last two equations with the primal form of the problem, then obtain
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the �nal dual form is possible, which is:

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj(x
i · xj) (3.27)

αi ≥ 0 i = 1, .....,m (3.28)
m∑
i=1

αiy
i = 0 (3.29)

The KKT conditions for d=p are also satis�ed, hence to solve the dual problem
and then �nd the solutions (w) for the primal one using 3.26 is allowed. The
algorithm to solve the problem will be discussed in the paragraph "Sequential
minimal optimization". Now the non-linear s.v.m. will be discussed, together
with the kernel functions.

Kernel functions and non linear s.v.m From the dual problem outlined in
equation 3.28, it can be seen that the quantity to be minimized depends only on
the inner product of the data: xi ·xj. Express the entire algorithm in terms of only
inner products between input feature vectors is feasible, and by using this property
a non-linear support vector machine algorithm can be reached, which will be very
fast even in high-dimensional spaces.

As depicted in Figure 3.17, some classi�cation problems could require a non-
linear separation border, which can not be achieved by using only the simple inner
product; a transformation φ(x) of the feature variables to another high dimensional
space such that the data points will be linearly separable is needed.
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Figure 3.17: Non-linear s.v.m.

The quantity to be maximized will be then:

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj(φ(xi) · φ(xj)) (3.30)

Since only the inner product φ(xi) · φ(xj) is present, everything can be expressed
as φ(xi) · φ(xj) = k(xi,xj), where k(xi,xj) is a kernel function in the input space,
that represents a measure of similarity between feature points. Expand the form
φ(x) is not necessary. In this way it is easy to face also non-linear problems with
the usage of the support vector machine algorithm and kernel functions.

The function k(xi,xj) expresses the closeness of the two feature points xi and
xj, in other words how similar they are.

There are many possible choices of the function k(xi,xj), the only constraint
is that it should reach a maximum when i = j, since the two points are then as
close as possible (they are equal). A very common choice is using the simple inner
product xi · xj, but that can bear only linear problems (since no transformation φ
is carried out). Another famous form, and the one that will be used in this project,
is the Gaussian kernel (Figure 3.18):

K(xi,xj) = e
||xi−xj ||

2

2σ (3.31)
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Figure 3.18: Gaussian kernel

To establish if a function can be used as a kernel function, one can use the
Mercer conditions, which can be easily found on the web. Obviously the Gaussian
kernel satis�es these conditions.

Imperfect separation The above support vector machine algorithm assumes
that the data are perfectly separable, that is, no points exist between H1 and H2.
With large training set this is not always the case, so a separation could not be
reached, or even worse, to �nd an hyperplane which separates the two classes,
the margin decays dramatically (Figure 3.19). To avoid that, a �nite penalization
is inserted for the points which cross the boundaries: C. If C = ∞ the original
problem is obtained, since no errors are tolerated.

Figure 3.19: Imperfect data separation
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The original primal problem becomes then:

min
w,b

1

2
||w||2 + C

m∑
i=1

ζi (3.32)

yi(w · xi − b) ≥ ζ i (3.33)

ζi ≥ 0 i = 1, .....,m (3.34)

So now have examples with functional margin less than 1 is permitted, adding
because of that a cost to the weighting function equal to Cζi. Hence, the parameter
C controls how much tolerance it is wanted to the misclassi�ed training samples.

Anyway, since it is way easier to solve the dual problem d, the e�ect that this
new cost function has to it must be investigated. Without going in details, the
only di�erence between the old dual problem and the new is the addition of an
upper bound on the α, the new problem becoming:

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαi alphaj(x
i · xj) (3.35)

0 ≤ αi ≤ C i = 1, .....,m (3.36)
m∑
i=1

αiy
i = 0 (3.37)

This �nal form is going then to be used for the classi�cation, since has the following
important properties:

� Can deal with large training set and high-dimensional feature space, main-
taining always good results in terms of classi�cation speed.

� The algorithm is able to classify also non-linearly separable data sets, thanks
to the usage of the Gaussian kernel.

� For large training sets, the algorithm can tolerate non perfectly separable
data; and this tolerance can be tuned by changing properly the parameter
C.

The next step is then �nd a fast algorithm to solve the maximization problem of
equation 3.37. In 1998 Platt [131] found a satisfying solution to this problem: the
sequential minimal optimization.
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Sequential minimal optimization Considered the following maximization (which
derives from the s.v.m.):

max
α

W (α) (3.38)

To �nd the optimal solution, the technique is to proceed step by step, that is, to
�x m− 2 of the αi values, and change a pair of them by putting a derivative equal
to zero.

Consider the αi in pairs is necessary because of the constraint
∑m

i=1 αiy
i = 0

that does not allow to change a single α, since it can be determined by the other
m− 1 values immediately.

The SMO algorithm can be synthesized with the next two steps:

� Loop until convergence or time expired [

1. Select two multipliers αi and αj to update.

2. Re-optimizeW (α) with respect to this two values, maintaining the other
multipliers �xed.

]

The process principle can be seen in Figure 3.20, where the maximum of a quadratic
function (depending on two variables) is found varying only one parameter at a
time:

Figure 3.20: Sequential minimal optimization principle

The single iteration of the algorithm works as follows: once two multipliers
are selected, called for simplicity α1 and α2, the following relation holds from the
constraint 3.39:

α1y
1 + α2y

2 = −
m∑
i=3

αiyi (3.39)
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And since the right part of the equation is �xed:

α1y
1 + α2y

2 = ψ (3.40)

Then rewrite one multiplier as a function of the other is possible:

α1 = (ψ − α2y
2)y1 (3.41)

The function to be maximized becomes then:

W (α1, α2, ...., αm) = W ((ψ − α2y
2)y1, α2, ....., αm) (3.42)

Since α3, α4, ....., αm are by now constants, the above function is quadratically
dependent from α2 and a maximum can be found easily.

Once an optimal value for α2 is found, it is necessary to bound it because of
the constraints coming from 3.42 and 3.38: two bounds, L and H, are then found
from easy mathematical operations and depending on the values of y1 and y2. The
α2 is then clipped as follows:

αnew2 =


H if α2 ≥ H

α2 if L < α2 < H

L if α2 ≤ L

(3.43)

The new value of α2 is then used in combination of equation 3.43 to �nd also the
optimal value of α1.

The iterations are repeated until a certain time expires, or a tolerance for every
αi is reached. The heuristic methods to �nd two multipliers will not be described
here since they are quite straightforward.[133]

The code implementation carried out in this dissertation is inspired by the one
developed in the National Taiwan University, Taipei, department of Computer
Science [3]. The last step now is to take a look at how the already calibrated
algorithm (that means once all the αi are found) classi�es new instances coming
from the feature extraction.

3.5.1 LIBSVM

A classi�cation task usually involves separating data into training and testing sets.
Each instance in the training set contains one �target value� (i.e. the class labels)
and several �attributes� (i.e. the features or observed variables). The goal of SVM
is to produce a model (based on the training data) which predicts the target values
of the test data given only the test data attributes.
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Given a training set of instance-label pairs (xi, yi), i=1,...,l where xi ∈ Rn and
y ∈ {1,−1}l, the training vectors xi are mapped into a higher (maybe in�nite)
dimensional space by the function φ . SVM �nds a linear separating hyperplane
with the maximal margin in this higher dimensional space. C >0 is the penalty
parameter of the error term. Furthermore, K(xi, xj) = φ(xi)

Tφ(xj) is called the
kernel function. Though new kernels are being proposed by researchers, beginners
may �nd in SVM books the following four basic kernels:

� linear: K(xi, xj) = xi
Txj.

� polynomial: K(xi, xj) = (γxi
Txj + r)d, γ > 0.

� radial basis function (RBF): K(xi, xj) = exp(−γ||xi − xj||2), γ > 0.

� sigmoid: K(xi, xj) = tanh(γxi
Txj + r)

Here, γ, r, and d are kernel parameters.

Used Procedure

� Transform data to the format of an SVM package

� Conduct simple scaling on the data

� Consider the RBF kernel K(x, y) = e−γ‖x−y‖
2

� Use cross-validation to �nd the best parameter C and γ

� Use the best parameter C and γ to train the whole training set (The best
parameter might be a�ected by the size of data set but in practice the one
obtained from cross-validation is already suitable for the whole training set.)

� Test

We discuss this procedure in detail in the following sections.

Scaling Scaling before applying SVM is very important. [134] explains the im-
portance of this and most of considerations also ap- ply to SVM. The main advan-
tage of scaling is to avoid attributes in greater numeric ranges dominating those
in smaller numeric ranges. Another advantage is to avoid numerical di�culties
during the calculation. Because kernel values usually depend on the inner prod-
ucts of feature vectors, e.g. the linear kernel and the polynomial ker- nel, large
attribute values might cause numerical problems. Linearly scaling each attribute
to the range [−1,+1] or [0, 1] is recommended. Of course we have to use the same
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method to scale both training and testing data. For example, suppose that we
scaled the �rst attribute of training data from [−10,+10] to [−1,+1]. If the �rst
attribute of testing data lies in the range [−11,+8],we must scale the testing data
to[−1.1,+0.8].

Model Selection In general, the RBF kernel is a reasonable �rst choice. This
kernel nonlinearly maps samples into a higher dimensional space so it, unlike the
linear kernel, can handle the case when the relation between class labels and at-
tributes is nonlinear. Furthermore, the linear kernel is a special case of RBF since
the linear kernel with a penalty parameter �C has the same performance as the
RBF kernel with some parameters (C,γ). In addition, the sigmoid kernel behaves
like RBF for certain parameters.

The second reason is the number of hyperparameters which in�uences the com-
plexity of model selection. The polynomial kernel has more hyperparameters than
the RBF kernel.

Finally, the RBF kernel has fewer numerical di�culties. One key point is
0 < Kij <= 1 in contrast to polynomial kernels of which kernel values may go to
in�nity (γxTi xj + r > 1) or zero (γxTi xj + r < 1) while the degree is large.

There are some situations where the RBF kernel is not suitable. In particular,
when the number of features is very large, one may just use the linear kernel, not
in our case.

Cross-validation and Grid-search There are two parameters for an RBF
kernel: C and γ . We do not know beforehand which C and γ are best for a given
problem; consequently some kind of model selection (parameter search) must be
done. The goal is to identify good ( C,γ ) so that the classi�er can accurately
predict unknown data (i.e. testing data). Note that it may not be useful to
achieve high training accuracy (i.e. a classi�er which accurately predicts training
data whose class labels are indeed known). As discussed above, a common strategy
is to separate the data set into two parts, of which one is considered unknown.
The prediction accuracy obtained from the �unknown� set more precisely re�ects
the performance on classifying an independent data set. An improved version of
this procedure is known as cross-validation.

In υ-fold cross-validation, we �rst divide the training set into υ subsets of equal
size. Sequentially one subset is tested using the classi�er trained on the remaining
υ−1 subsets. Thus, each instance of the whole training set is predicted once so the
cross-validation accuracy is the percentage of data which are correctly classi�ed.

The cross-validation procedure can prevent the over�tting problem.
Figure 3.21 represents a binary classi�cation problem to illustrate this issue.

Filled circles and triangles are the training data while hollow circles and triangles
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are the testing data. The testing accuracy of the classi�er in Figures 1a and 1b is
not good since it over�ts the training data. If we think of the training and testing
data in Figure 1a and 1b as the training and validation sets in cross-validation,
the accuracy is not good. On the other hand, the classi�er in 1c and 1d does
not over�t the training data and gives better cross-validation as well as testing
accuracy.

We used a �grid-search� on C and γ using cross-validation. Various pairs of
( C,γ ) values are tried and the one with the best cross-validation accuracy is
picked. We found that trying exponentially growing sequences of C and γ is a prac-
tical method to identify good parameters (for example, C= 2−5, 2−3, ..., 215, γ =
2−15, 2−13, ..., 23).

Figure 3.21: An over�tting classi�er and a better classi�er [3]

The grid-search is straightforward but seems naive. In fact, there are several
advanced methods which can save computational cost by, for example, approx-
imating the cross-validation rate. However, there are two motivations why we
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prefer the simple grid-search approach.
One is that, psychologically, we may not feel safe to use methods which avoid

doing an exhaustive parameter search by approximations or heuristics. The other
reason is that the computational time required to �nd good parameters by grid-
search is not much more than that by advanced methods since there are only two
parameters. Furthermore, the grid-search can be easily parallelized because each
( C,γ ) is independent. Many of advanced methods are iterative processes, e.g.
walking along a path, which can be hard to parallelize.

Since doing a complete grid-search may still be time-consuming, we used a
coarse grid �rst. After identifying a �better� region on the grid, a �ner grid search
on that region can be conducted. [3]

3.6 Lock/Unlock detection

Figure 3.22: Lock/Unlock

An appreciated property of the real time application is for sure the possibility to
"Lock" the classi�cation of the gestures, in order to allow the user to move freely.
To achieve this, two possible expedients could be adopted:
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3.6. LOCK/UNLOCK DETECTION

� To ask the user to do it manually, by pressing a physical button. This
technique is the most reliable, and assures a sure locking of the gesture
detection.

� To add a 6th gesture to the previous ones, that when classi�ed, it locks/un-
locks the detection of the other 5 hand movements. This is for sure a more
comfortable solution, since can be a "secret" gesture that lock the system,
for this purpose touching the sensor is preferible to avoid misclassi�cation
with the other gesture, use this solution is not that di�cult because the
di�erences between touching the sensor and just approaching are huge.

Since the purpose of this project is to create a hand gestures classi�er, the second
solution is preferable.
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Chapter 4

Tests and Results

In this chapter tests will be carried out to assess the algorithm performances in
di�erent applications and con�gurations:

1. Pure algorithm performances: A classi�cation performance evaluation,
using a training set of 7 instances for each gesture. Moreover, the calibration
of the algorithm is done before every usage, and so session independence is
not assessed.

This test is carried out to verify the algorithm functioning in an ideal situ-
ation, verifying if there is a limit in the classi�cation performances for the
SVM.

2. Session independence: To assess the possibility of not recalibrating the
classi�er at every utilization, speeding up the usage of the system. The
algorithm is trained once, the model saved and the board is turned o�; after
a certain period, the system is used again and the board is turned on; gestures
are then performed, without requesting a new calibration. A comparison is
made between performances immediately after the calibration (Test 1) and
after a certain period.

Every test is repeated for 3 di�erent subjects, one expert, one intermediate, some-
one who knows something about the system and what we did, and one basic user
who do not know anything about the usage of the system.

The acquisition threshold (Section 3.4) which activates the features extraction
is set to 40.

The maximum observation window length is �xed to 100 iterations (ADC con-
versions), which translates in ∼ 1s, and during this window, no more than 3300
values are taken(100values∗33sensors) and 66 features are extracted.
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4.1 Rules for a good utilization

In this section some suggestions about how to perform the 5 gestures are given, in
order to help the user in the training and reach good results in terms of classi�ca-
tion accuracy.

1. With this sensor all the gestures must be performed with the left hand to
avoid interferences with the connections on the right of the sensor.With a
shield this is not anymore necessary.

2. Every time that a gesture is performed is important the approaching and the
removing part. The hand must approach the sensor enough to overpassing
the threshold, perform the gesture (if is dynamic) and removing the hand to
stop the acquisition.

3. The static gesture ("OK") should be performed clearly, spreading the �ngers
well, the gesture measuring should end removing the hand with the gesture
still performed. The "OK" can be seen in Figure 4.1:

Figure 4.1: OK gesture

This is done to di�erentiate clearly the "OK" gesture from the others that
could be similar in some sessions.

4. The "Zoom in" and "Zoom out" gestures should not be performed pretty
fast, also, the position of hand should be further than the �ngers performing
the gesture (Figure 4.2). This helps to separate accurately the "Zoom" from
the "OK" and "Close-Open".

60



CHAPTER 4. TESTS AND RESULTS

Figure 4.2: Zoom gesture

5. The "Open-Close" and "Close-Open" gestures should not be performed pretty
fast, in order to activate the gesture measurement with the initial peak the
hand should approach open in the "Open-Close" and close in the "Close-
Open".

Figure 4.3: Open-Close gesture

6. To perform the "Lock" gesture, we use a simple "combination", to press
the bottom left corner as shown in Figure 4.4. This is asked to di�erentiate
greatly this gesture from the random signal caused by other body movements,
and so to allow the user to move freely after the system was locked or to avoid
unwanted uses by people.
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Figure 4.4: Lock gesture

In addition to these requirements, we suggest to think about a immaginary plan,
close to the sensor, where perform the gestures as on a touchpad.

In the tests there will be di�erentiated the results for an expert user and the
others not expert. Nevertheless, even for the beginner, some time was left to train
(less than half an hour) and get used to the gesture performing.

4.2 Pure algorithm performances

7 instances of each gesture are given for the training of the algorithm.

After the calibration, 20 instances of each gesture are performed, changing type
every 2 of the same kind, in order to not let the user to adapt to the movement and
simulate a more real application. For every subject, a confusion matrix is built,
which indicates the classi�cation outputs for each of the 5 classes.
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OK ZI ZO CO OC

OK 20 0 0 0 0
ZI 1 18 0 0 1
ZO 0 0 20 0 0
CO 1 0 0 19 0
OC 1 0 0 0 19

OK ZI ZO CO OC

OK 100% 0 0 0 0
ZI 5% 90% 0 0 5%
ZO 0 0 100% 0 0
CO 5% 0 0 95% 0
OC 5% 0 0 0 95%

Table 4.1: Test 1, Confusion matrix: User 1 (expert)

OK ZI ZO CO OC

OK 20 0 0 0 0
ZI 0 20 0 0 0
ZO 0 3 16 0 1
CO 1 0 0 19 0
OC 0 0 0 1 19

OK ZI ZO CO OC

OK 100% 0 0 0 0
ZI 0 100% 0 0 0
ZO 0 15% 80% 0 5%
CO 5% 0 0 95% 0
OC 0 0 0 5% 95%

Table 4.2: Test 1, Confusion matrix: User 2 (intermediate)

OK ZI ZO CO OC

OK 16 0 0 2 2
ZI 0 17 0 1 2
ZO 0 1 19 0 0
CO 0 0 0 19 1
OC 2 1 0 0 17

OK ZI ZO CO OC

OK 80% 0 0 10% 10%
ZI 0 85% 0 5% 10%
ZO 0 5% 95% 0 0
CO 0 0 0 95% 5%
OC 10% 5% 0 0 85%

Table 4.3: Test 1, Confusion matrix: User 3 (beginner)

Results It can be stated from tables that the algorithm classi�es well the 5
gestures in an ideal con�guration, and so no upper limits on the performances
should be taken in consideration.

4.3 Session independence

7 instances of each gesture are given for the training of the algorithm, since real-
time constraints are present and hence the training of the algorithm ought to be
fast (with 5 gestures it takes ∼ 30sec + the time to perform the training set).

As before, after the calibration, 20 instances of each gesture are performed,
changing type every 2 of the same kind, in order to not let the user to adapt to the
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movement and simulate a prostheses application. For every subject, a confusion
matrix is built.

The algorithm is trained in one session, and tested in other 2 sessions, spaced
between each other more than 1 day, turning o�/on the system.

OK ZI ZO CO OC

OK 20 0 0 0 0
ZI 1 19 0 0 0
ZO 0 1 19 0 0
CO 0 0 0 20 0
OC 1 1 0 0 18

OK ZI ZO CO OC

OK 100% 0 0 0 0
ZI 5% 95% 0 0 0
ZO 0 5% 95% 0 0
CO 0 0 0 100% 0
OC 5% 5% 0 0 90%

Table 4.4: Test 2, Confusion matrix: User 1 (expert), session 1

OK ZI ZO CO OC

OK 17 2 0 0 1
ZI 0 20 0 0 0
ZO 1 0 18 1 0
CO 0 0 1 19 0
OC 0 0 0 0 20

OK ZI ZO CO OC

OK 85% 10% 0 0 5%
ZI 0 100% 0 0 0
ZO 5% 0 90% 5% 0
CO 0 0 5% 95% 0
OC 0 0 0 0 100%

Table 4.5: Test 2, Confusion matrix: User 1 (expert), session 2

OK ZI ZO CO OC

OK 18 2 0 0 0
ZI 0 18 0 0 2
ZO 0 2 18 0 0
CO 1 0 1 18 0
OC 0 0 0 0 20

OK ZI ZO CO OC

OK 90% 10% 0 0 0
ZI 0 90% 0 0 10%
ZO 0 10% 90% 0 0
CO 5% 0 5% 90% 0
OC 0 0 0 0 100%

Table 4.6: Test 2, Confusion matrix: User 1 (expert), session 3
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OK ZI ZO CO OC

OK 20 0 0 0 0
ZI 0 20 0 0 0
ZO 0 3 16 0 1
CO 1 0 0 19 0
OC 0 0 0 1 19

OK ZI ZO CO OC

OK 100% 0 0 0 0
ZI 0 100% 0 0 0
ZO 0 15% 80% 0 5%
CO 5% 0 0 95% 0
OC 0 0 0 5% 95%

Table 4.7: Test 2, Confusion matrix: User 2 (intermediate), session 1

OK ZI ZO CO OC

OK 16 0 0 4 0
ZI 0 20 0 0 0
ZO 0 1 19 0 0
CO 0 0 0 20 0
OC 0 0 0 0 20

OK ZI ZO CO OC

OK 80% 0 0 20% 0
ZI 0 100% 0 0 0
ZO 0 5% 95% 0 0
CO 0 0 0 100% 0
OC 0 0 0 0 100%

Table 4.8: Test 2, Confusion matrix: User 2 (intermediate), session 2

OK ZI ZO CO OC

OK 19 0 0 0 1
ZI 0 19 0 0 1
ZO 2 1 17 0 0
CO 0 0 0 20 0
OC 0 0 0 0 20

OK ZI ZO CO OC

OK 95% 0 0 0 5%
ZI 0 95% 0 0 5%
ZO 10% 5% 85% 0 0
CO 0 0 0 100% 0
OC 0 0 0 0 100%

Table 4.9: Test 2, Confusion matrix: User 2 (intermediate), session 3
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OK ZI ZO CO OC

OK 16 0 0 2 2
ZI 0 17 0 1 2
ZO 0 1 19 0 0
CO 0 0 0 19 1
OC 2 1 0 0 17

OK ZI ZO CO OC

OK 80% 0 0 10% 10%
ZI 0 85% 0 5% 10%
ZO 0 5% 95% 0 0
CO 0 0 0 95% 5%
OC 10% 5% 0 0 85%

Table 4.10: Test 3, Confusion matrix: User 3 (beginner), session 1

OK ZI ZO CO OC

OK 19 0 0 0 1
ZI 0 17 2 1 0
ZO 0 1 19 0 0
CO 0 0 0 20 0
OC 2 0 0 1 17

OK ZI ZO CO OC

OK 95% 0 0 0 5%
ZI 0 85% 10% 5% 0
ZO 0 5% 95% 0 0
CO 0 0 0 100% 0
OC 10% 0 0 5% 85%

Table 4.11: Test 3, Confusion matrix: User 3 (beginner), session 2

OK ZI ZO CO OC

OK 18 0 0 0 2
ZI 0 20 0 0 0
ZO 0 1 18 1 0
CO 0 0 0 20 0
OC 4 0 0 0 16

OK ZI ZO CO OC

OK 90% 0 0 0 10%
ZI 0 100% 0 0 0
ZO 0 5% 90% 5% 0
CO 0 0 0 100% 0
OC 20% 0 0 0 80%

Table 4.12: Test 3, Confusion matrix: User 3 (beginner), session 3

Results Comparing these results with the ones from the previous test, it can be
said that the session independence is a property of this classi�cation system. The
results indeed do not change signi�cantly, even if the algorithm was trained a day
before the utilization. The system could then be used without training the SVM
at every usage; when the classi�cation does not work well anyway, a recalibration
is suggested.
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Chapter 5

Conclusions and future

developments

In this chapter conclusions about the developed work are evaluated. We assessed if
the classi�cation system gives satisfying results in terms of gestures detection and
session independence. After that, some possible future developments are initially
given, which could increase the capabilities, reliability, utility and comfort of the
system as a general purpose application.

5.1 Conclusions

To di�erentiate su�ciently the 5 needed gestures ("OK", "Zoom-in", "Zoom-out",
"Close-Open" and "Open-Close") between each other, a high-dimensional feature
space was adopted, where every gesture was described by 66 subsequently mean
values; the used classi�er was then the support vector machine.

The main question that was asked in this speci�c design was indeed if the
system could achieve su�cient results in terms of classi�cation reliability and real-
time constraints; from the tests carried out in the previous chapter we can say
that this goal was reached.

The 5 gestures were in fact classi�ed correctly with high percentage (overall
>= 94%) in the Test 1 either for User 1 (expert) and User 2 (intermediate); for
User 3 (beginner) the percentage is ∼ 88% due to the inexperience of beginner
user (results are better with session independence).

The real-time constraints were as well respected since the above satisfying
results were obtained with a small training set and feature space dimensions, which
brought to a reasonable processing time for calibration (<1 min) and a fast system
response to a gesture performing (∼ 1s, comprehensive of the gesture length,
calculated with a Timer).
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In addition to that, the classi�er (Support vector machine) did not need to be
calibrated at every usage, since Test 2 demonstrated the session independence of
the design.

The System locking instead assured a total disturbances rejection, indeed 0% of
the other limb movements were classi�ed as a "Lock" gesture, maintaining so the
system locked. Moreover, the addition of the 6th gesture (called "Lock") did not
a�ect signi�cantly the normal performances of the classi�cation, since the others
5 gestures are never classi�ed wrongly as "Lock" since the "Lock" gesture must
be performed touching the sensor.

If we add too many gestures the classify is not able to recognize so well every
gestures, this is a limitation for this system.

5.2 Future developments

Although reached results are satisfying, some important improvements can be
carried out on the classi�cation system:

� The dimension of the sensor could be bigger. This to allow to use both
hands at same time or just covered a larger surface, with a bigger sensor the
introduction of the centre of mass is necessary, since the numbers of values
increas the system should acquire just around the hand, so acquiring just a
predi�nied number of sensors close to the centre of mass.

� All the connections should be shielded to avoid interferences with the arm
or other objects or body parts.

� Since the di�erences between touch and approach are noticeable, theoreti-
cally the system is able to recorgnize in�nite gestures combination of touch
and approach.

� With some improvement one could think of using in di�erent ways such as
to translate sign language, playing videogames or �x a bigger sensor over a
wall to recognize human-body gestures.

68



Appendix A

Feature extraction code

1

2 us ing System ;
3 us ing System . Collections . Generic ;
4 us ing System . ComponentModel ;
5 us ing System . Data ;
6 us ing System . Drawing ;
7 us ing System . Linq ;
8 us ing System . Text ;
9 us ing System . Threading . Tasks ;

10 us ing System . Windows . Forms ;
11 us ing System . IO ;
12

13

14

15 namespace CaptureBaseProgram

16 {
17 pub l i c partial c l a s s Form1 : Form

18 {
19 pub l i c const i n t samegesture = 250 ;
20 pub l i c const i n t window = 100 ;
21 pub l i c const i n t gesti = 5 ;
22 const i n t p = 3 ;
23 const i n t pred = 2 ;
24 i n t [ , ] closetrain = new in t [ samegesture , sensor * pred ] ;
25

26 f l o a t [ ] closemean = new f l o a t [ sensor ] ;
27 pub l i c const i n t SIZE_X = 23 ;
28 pub l i c const i n t SIZE_Y = 10 ;
29 pub l i c const i n t sensor = 33 ;
30 pub l i c const i n t n_to_sum = 1 ;
31

32 pub l i c SerialPortClass Serial = new SerialPortClass ( ) ;
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33 i n t window_acq = 0 ;
34 pub l i c byte [ ] packet = new byte [ 5 0 0 ] ;
35 f l o a t [ ] data = new f l o a t [ sensor ] ;
36 i n t [ ] scan = new in t [ sensor ] ;
37 f l o a t [ , ] close = new f l o a t [ window+1, sensor ] ;
38 f l o a t [ ] snap = new f l o a t [ 2 * sensor ] ;
39 i n t [ ] cnt_sample_vec = new in t [ window+1] ;
40 i n t j_min_left = 0 , j_min_right = 0 ;
41 i n t cnt_sample = 0 ;
42 i n t flag = 0 , i = 1 , data_ready = 0 ;
43 i n t acquire = 0 ;
44 f l o a t mean = 0 ;
45 f l o a t sum = 0 ;
46 i n t gestures = 0 , train = 5 ;
47 i n t prova = 0 , numgest = 0 , trained = 0 ;
48 i n t data_acquaried = 0 ;
49

50 f l o a t [ ] CenterMass = new f l o a t [ 2 ] , CenterMassacq = new f l o a t [ 2 ] ;
51 f l o a t [ ] sum_sensor_deltas = new f l o a t [ sensor ] ;
52 i n t locked = 0 ;
53 string str = "" ;
54 string line = "" ;
55 pr i va t e f l o a t [ ] array1 = { 0f , 0 . 9f , 1 . 8f , 2 . 7f , 3 . 6f , 4 . 5f , 5 . 4f , ←↩

6 .3f , 7 . 2f , 8 . 1 f } ;
56 pr i va t e f l o a t [ ] array2 = { 0f , 0 . 7f , 1 . 4f , 2 . 1f , 2 . 8f , 3 . 5f , 4 . 2f , ←↩

4 .9f , 5 . 6f , 6 . 3f , 7 . 0f , 7 . 7f , 8 . 4f , 9 . 1f , 9 . 8f , 10 .5f , 11 .2f , ←↩
11 .9f , 12 .6f , 13 .3f , 14f , 14 .7f , 15 .4 f } ;

57 pub l i c const i n t X_Dim = 10 , Y_Dim = 23 ;
58 i n t [ ] i_gest_snap = new in t [ 2 ] ;
59

60 pub l i c Form1 ( )
61 {
62 InitializeComponent ( ) ;
63 }
64

65 pr i va t e void Form1_Load ( object sender , EventArgs e )
66 {
67 // pictureBox1 . Image = new Bitmap (SIZE_X, SIZE_Y) ;
68 t ry
69 {
70 Serial . Open ( serialPort1 ) ;
71 }
72 catch
73 {
74 string msg = " S e r i a l port " + serialPort1 . PortName + " f a i l to open←↩

\ r \n Please check s e t t i n g s / dongle " ;
75 MessageBox . Show ( msg ) ;
76 }
77
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78 }
79

80 pr i va t e void button1_Click ( object sender , EventArgs e )
81 {
82 serialPort1 . PortName = textBox1 . Text ;
83 t ry
84 {
85 Serial . Open ( serialPort1 ) ;
86 string msg = " S e r i a l port " + serialPort1 . PortName + " suce s s " ;
87 MessageBox . Show ( msg ) ;
88 }
89 catch
90 {
91 string msg = " S e r i a l port " + serialPort1 . PortName + " f a i l to open←↩

\ r \n Please check s e t t i n g s / dongle " ;
92 MessageBox . Show ( msg ) ;
93 }
94 }
95

96 pr i va t e void timer1_Tick ( object sender , EventArgs e )
97 {
98 i f ( mean > 40 && acquire == 0)
99 {

100 timer2 . Enabled = true ;
101 }
102 e l s e i f ( mean < 40 && acquire == 1)
103 {
104 timer2 . Enabled = f a l s e ;
105 f o r ( i n t k = 0 ; k < sensor ; k++)
106 {
107 close [ i , k ] = 0 ;
108 }
109 cnt_sample_vec [ i ] = cnt_sample + 1 ;
110 window_acq = i + 1 ;
111 i = 1 ;
112 acquire = 2 ;
113 }
114

115 i f ( acquire == 2)
116 {
117 writetxt ( ) ;
118 index_snap ( ) ;
119 }
120

121 i f ( data_acquaried==1)
122 {
123 str = "" ;
124 line = "" ;
125 f o r ( i n t k = 0 ; k < sensor ; k++)
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126 {
127 line = line + (k + 1) . ToString ( ) + " : " + ( ( close [ i_gest_snap [ 0 ] , k ]←↩

+ close [ i_gest_snap [ 0 ] + 1 , k ] + close [ i_gest_snap [ 0 ] + 2 , k ] ) ←↩
/ 3) . ToString ( ) + " " ;

128 }
129 f o r ( i n t k = 0 ; k < sensor ; k++)
130 {
131 line = line + ( sensor + k + 1) . ToString ( ) + " : " + ( ( close [←↩

i_gest_snap [ 1 ] , k ] + close [ i_gest_snap [ 1 ] − 1 , k ] + close [←↩
i_gest_snap [ 1 ] − 2 , k ] ) / 3) . ToString ( ) + " " ;

132 }
133 str = str + ( gestures ) . ToString ( ) + " " + line + "\ r \n" ;
134 line = "" ;
135 }
136

137 i f ( train == 0 && trained == 0 && data_acquaried == 1)
138 {
139 textBox39 . Text = "ACQUIRING TRAIN . . . " ;
140 i f ( numgest < samegesture )
141 {
142 data_acquaried = 0 ;
143 saveFileDialog3 . FileName = "C:\\ Users \\Matteo\\Dropbox\\Matteo\\←↩

AAAmeccatronica\\TESI−SVM\\CaptureBaseProgram\\ record \\←↩
CaptureBaseProgram\\ bin \\Debug\\ snap_train . txt " ;

144 FileStream rec_snap = new FileStream ( saveFileDialog3 . FileName , ←↩
FileMode . Append ) ;

145 StreamWriter sw_rec = new StreamWriter ( rec_snap ) ;
146 sw_rec . Write ( str ) ;
147 sw_rec . Close ( ) ;
148 rec_snap . Close ( ) ;
149 numgest++;
150 textBox40 . Text = numgest . ToString ( ) ;
151 i f ( numgest == samegesture )
152 {
153 i f ( gestures == gesti )
154 {
155 gestures = 1 ;
156 }
157 e l s e
158 {
159 gestures++;
160 }
161 pictureBox1 . Refresh ( ) ;
162 }
163 }
164 }
165 e l s e i f ( train == 1 && data_acquaried == 1)
166 {
167 textBox39 . Text = "ACQUIRING TEST . . . " ;
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168 i f ( numgest < samegesture )
169 {
170 data_acquaried = 0 ;
171 saveFileDialog3 . FileName = "C:\\ Users \\Matteo\\Dropbox\\Matteo\\←↩

AAAmeccatronica\\TESI−SVM\\CaptureBaseProgram\\ record \\←↩
CaptureBaseProgram\\ bin \\Debug\\ snap_test . txt " ;

172 FileStream rec_snap = new FileStream ( saveFileDialog3 . FileName , ←↩
FileMode . Append ) ;

173 StreamWriter sw_rec = new StreamWriter ( rec_snap ) ;
174 sw_rec . Write ( str ) ;
175 sw_rec . Close ( ) ;
176 rec_snap . Close ( ) ;
177 numgest++;
178 textBox40 . Text = numgest . ToString ( ) ;
179 i f ( numgest == samegesture )
180 {
181 i f ( gestures == gesti )
182 {
183 gestures = 1 ;
184 }
185 e l s e
186 {
187 gestures++;
188 }
189 pictureBox1 . Refresh ( ) ;
190 }
191 }
192 }
193 e l s e i f ( train == 2 && trained == 0)
194 {
195 textBox39 . Text = "TRAINING . . . " ;
196 data_acquaried = 0 ;
197 var process = System . Diagnostics . Process . Start ( "CMD. exe" , "/C easy .←↩

py snap_train . txt " ) ;
198 trained = 1 ;
199 }
200

201 e l s e i f ( locked == 0 && trained == 1 && train == 3 && ←↩
data_acquaried == 1)

202 {
203 textBox39 . Text = "WAITING GESTURE . . . " ;
204 data_acquaried = 0 ;
205 saveFileDialog3 . FileName = "C:\\ Users \\Matteo\\Dropbox\\Matteo\\←↩

AAAmeccatronica\\TESI−SVM\\CaptureBaseProgram\\ record \\←↩
CaptureBaseProgram\\ bin \\Debug\\ snap_gesture . txt " ;

206 FileStream rec_snap = new FileStream ( saveFileDialog3 . FileName , ←↩
FileMode . Create ) ;

207 StreamWriter sw_rec = new StreamWriter ( rec_snap ) ;
208 sw_rec . Write ( str ) ;
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209 sw_rec . Close ( ) ;
210 rec_snap . Close ( ) ;
211 var process = System . Diagnostics . Process . Start ( "CMD. exe" , "/C ←↩

easyprova . py snap_train . txt snap_gesture . txt " ) ;
212 process . WaitForExit ( ) ;
213 us ing ( TextReader reader = File . OpenText ( " snap_gesture . txt . txt " ) )
214 {
215 i n t x = in t . Parse ( reader . ReadLine ( ) ) ;
216 print_image (x ) ;
217 i f (x == 0)
218 {
219 locked = 1 ;
220 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩

\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \ l ock . png" ) ;

221 }
222 }
223 }
224 e l s e i f ( train == 4)
225 {
226 i f ( trained == 1)
227 {
228 var process = System . Diagnostics . Process . Start ( "CMD. exe" , "/K ←↩

easyprova . py snap_train . txt snap_test . txt " ) ;
229 train = 3 ;
230 }
231 e l s e i f ( trained == 0)
232 {
233 var process = System . Diagnostics . Process . Start ( "CMD. exe" , "/K easy .←↩

py snap_train . txt snap_test . txt " ) ;
234 trained = 1 ;
235 train = 3 ;
236 }
237 }
238 e l s e i f ( locked == 1 && data_acquaried == 1)
239 {
240 textBox39 . Text = "SYSTEM LOCKED. . . " ;
241 data_acquaried = 0 ;
242 saveFileDialog3 . FileName = "C:\\ Users \\Matteo\\Dropbox\\Matteo\\←↩

AAAmeccatronica\\TESI−SVM\\CaptureBaseProgram\\ record \\←↩
CaptureBaseProgram\\ bin \\Debug\\ snap_gesture . txt " ;

243 FileStream rec_snap = new FileStream ( saveFileDialog3 . FileName , ←↩
FileMode . Create ) ;

244 StreamWriter sw_rec = new StreamWriter ( rec_snap ) ;
245 sw_rec . Write ( str ) ;
246 sw_rec . Close ( ) ;
247 rec_snap . Close ( ) ;
248 var process = System . Diagnostics . Process . Start ( "CMD. exe" , "/C ←↩

easyprova . py snap_train . txt snap_gesture . txt " ) ;
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249 process . WaitForExit ( ) ;
250 us ing ( TextReader reader = File . OpenText ( " snap_gesture . txt . txt " ) )
251 {
252 i n t x = in t . Parse ( reader . ReadLine ( ) ) ;
253 i f (x == 0)
254 {
255 locked = 0 ;
256 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩

\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \ unlock . png" ) ;

257 }
258 }
259 }
260 i f ( train < 2 && trained == 0)
261 {
262 guessgesture ( gestures ) ;
263 }
264 CalculateCenterOfMass ( ) ;
265 pictureBox1 . Refresh ( ) ;
266 pictureBox2 . Refresh ( ) ;
267 writeonscreen ( data ) ;
268 textBox62 . Text = cnt_sample . ToString ( ) ;
269 }
270

271 pr i va t e void timer2_Tick ( object sender , EventArgs e )
272 {
273 i f ( data_ready == 1 && i < window )
274 {
275 acquire = 1 ;
276 data_ready = 0 ;
277 i f (i == 1)
278 {
279 f o r ( i n t k = 0 ; k < sensor ; k++)
280 {
281 close [ 0 , k ] = 0 ;
282 cnt_sample_vec [ 0 ] = cnt_sample − 1 ;
283 }
284 }
285 f o r ( i n t k = 0 ; k < sensor ; k++)
286 {
287 close [ i , k ] = data [ k ] ;
288 cnt_sample_vec [ i ] = cnt_sample ;
289 }
290 i++;
291 }
292 e l s e i f (i == window )
293 {
294 f o r ( i n t k = 0 ; k < sensor ; k++)
295 {
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296 close [ i , k ] = 0 ;
297 }
298 cnt_sample_vec [ i ] = cnt_sample + 1 ;
299 window_acq = i + 1 ;
300 i = 1 ;
301 acquire = 2 ;
302 timer2 . Enabled = f a l s e ;
303 }
304 }
305

306 pr i va t e void serialPort1_DataReceived ( object sender , System . IO .←↩
Ports . SerialDataReceivedEventArgs e )

307 {
308 packet = Serial . ReadFromSerial ( ) ;
309 i f ( packet != null )
310 {
311 i n t box ;
312 cnt_sample = packet [ 1 ] ;
313 cnt_sample = cnt_sample << 8 ;
314 cnt_sample = cnt_sample + packet [ 0 ] ;
315 f o r ( i n t i = 0 ; i < sensor ; i++)
316 {
317 box = packet [ 2 * i +1+2];
318 box = box << 8 ;
319 box = box + packet [ 2 * i + 2 ] ;
320

321 i f ( flag < 5)
322 {
323 scan [ i ] = box ;
324 i f (i == sensor − 1)
325 {
326 flag++;
327 }
328 }
329 e l s e
330 {
331 i f ( box − scan [ i ] < 0)
332 {
333 data [ i ] = box − scan [ i ] ;
334 }
335 e l s e
336 {
337 data [ i ] = box − scan [ i ] ;
338 }
339

340 i f (i == 0)
341 {
342 sum = 0 ;
343 }

76



APPENDIX A. FEATURE EXTRACTION CODE

344 sum += data [ i ] ;
345 mean = sum / sensor ;
346 }
347 }
348 Serial . datapoints . Clear ( ) ;
349 Serial . state_machine = 0 ;
350 data_ready=1;
351 }
352 }
353

354

355

356 pr i va t e void index_snap ( )
357 {
358

359 f l o a t [ , ] meanvector = new f l o a t [ window_acq / n_to_sum , sensor ] ;
360 f l o a t [ , ] delta = new f l o a t [ window_acq / n_to_sum , sensor ] ;
361 f o r ( i n t h = 0 ; h < sensor ; h++)
362 {
363 i n t count = 0 , j = 0 ;
364

365 whi le (j < window_acq / n_to_sum )
366 {
367 i f ( count < window_acq )
368 {
369 f o r ( i n t n = 0 ; n < n_to_sum ; n++)
370 {
371 meanvector [ j , h ] += close [ count , h ] ;
372 count++;
373 }
374 }
375 meanvector [ j , h ] = meanvector [ j , h ] / n_to_sum ;
376 j++;
377 }
378

379 f o r ( i n t l = 1 ; l < window_acq / n_to_sum ; l++)
380 {
381 delta [ l , h ] = Math . Abs ( meanvector [ l , h ] − meanvector [ l − 1 , h ] ) ;
382 }
383 }
384 f l o a t [ ] sum_deltas = new f l o a t [ window_acq / n_to_sum ] ;
385 f o r ( i n t j = 0 ; j < window_acq / n_to_sum ; j++)
386 {
387 f o r ( i n t h = 0 ; h < sensor ; h++)
388 {
389 sum_deltas [ j ] += delta [ j , h ] ;
390

391 }
392 }
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393 f l o a t [ ] sum_sensor = new f l o a t [ window_acq / n_to_sum ] ;
394 f o r ( i n t j = 0 ; j < window_acq / n_to_sum ; j++)
395 {
396 f o r ( i n t h = 0 ; h < sensor ; h++)
397 {
398 sum_sensor [ j ] += meanvector [ j , h ] ;
399

400 }
401 }
402 i n t first = 0 ;
403 f o r ( i n t j = 0 ; j < window_acq / n_to_sum ; j++)
404 {
405 i f ( sum_sensor [ j ] > 2000 && first==0)
406 {
407 j_min_left = j ;
408 first = 1 ;
409 }
410 i f ( sum_sensor [ j ]<2000 && first==1)
411 {
412 j_min_right = j − 1 ;
413 first = 0 ;
414 }
415 }
416

417

418

419

420 i_gest_snap [ 0 ] = j_min_left * n_to_sum ;
421 i_gest_snap [ 1 ] = j_min_right * n_to_sum ;
422

423

424

425 data_acquaried = 1 ;
426 acquire = 0 ;
427

428 }
429

430 pr i va t e void writetxt ( )
431 {
432 string str = "" ;
433 string line = "" ;
434

435 f o r ( i n t m = 0 ; m < window_acq ; m++)
436 {
437 f o r ( i n t k = 0 ; k < sensor ; k++)
438 {
439

440 line = line + close [ m , k ] . ToString ( ) + " " ;
441
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442 }
443 str = str + cnt_sample_vec [ m ] . ToString ( ) + " " + line + "\ r \n" ;
444 line = "" ;
445 }
446

447 saveFileDialog3 . FileName = "C:\\ Users \\Matteo\\Dropbox\\Matteo\\←↩
AAAmeccatronica\\TESI−SVM\\CaptureBaseProgram\\ record \\←↩
CaptureBaseProgram\\ bin \\Debug\\ c l o s e e x c e l l . tx t " ;

448 FileStream rec_file = new FileStream ( saveFileDialog3 . FileName , ←↩
FileMode . Append ) ;

449

450 StreamWriter sw_record = new StreamWriter ( rec_file ) ;
451

452

453 sw_record . Write ( str ) ;
454

455 sw_record . Close ( ) ;
456 rec_file . Close ( ) ;
457 }
458

459 pr i va t e void print_image ( i n t x )
460 {
461

462

463 i f (x == 1 && locked == 0)
464 {
465 textBox42 . Text = "WELL DONE" ;
466 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩

\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \wel ldone . jpg " ) ;

467 }
468 e l s e i f (x == 2 && locked == 0)
469 {
470 textBox42 . Text = "ZOOM IN" ;
471 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩

\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \zoom−in . jpg " ) ;

472 }
473 e l s e i f (x == 3 && locked == 0)
474 {
475 textBox42 . Text = "ZOOM OUT" ;
476 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩

\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \zoom−out . jpg " ) ;

477 }
478 e l s e i f (x == 8 && locked == 0)
479 {
480 textBox42 . Text = "SWIPE LEFT −> RIGHT" ;

79



481 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩
\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \ swipe−r i g h t . jpg " ) ;

482 }
483 e l s e i f (x == 7 && locked == 0)
484 {
485 textBox42 . Text = "SWIPE RIGHT −> LEFT" ;
486 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩

\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \ swipe2 . jpg " ) ;

487 }
488 e l s e i f (x == 5 && locked == 0)
489 {
490 textBox42 . Text = "CLOSE −> OPEN" ;
491 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩

\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \ c l o s e−open . jpg " ) ;

492 }
493 e l s e i f (x == 4 && locked == 0)
494 {
495 textBox42 . Text = "OPEN −> CLOSE" ;
496 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩

\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \open−c l o s e . jpg " ) ;

497 }
498

499 e l s e i f (x == 0)
500 {
501 textBox42 . Text = "SYSTEM LOCK" ;
502

503 pictureBox1 . Image = Image . FromFile (@"C:\ Users \Matteo\Dropbox\Matteo←↩
\AAAmeccatronica\TESI−SVM\CaptureBaseProgram\ record \←↩
CaptureBaseProgram\bin \Debug\ immagini \howlock . jpeg " ) ;

504

505 }
506

507 pictureBox1 . Refresh ( ) ;
508 }
509

510 }
511 }
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