Multi-Architecture Binary
Rewriter to Prevent ROP
Arbitrary Code Execution

MATTEO PIANO

Master of science in Software Engineering
Date: January 18, 2018

KTH Supervisor: Roberto Guanciale

KTH Examiner: Mads Dam

PoliTo Supervisor: Maurizio Rebaudengo

KTH - School of Computer Science and Communication
Politecnico di Torino - Dipartimento di Automatica e Informatica

Abstract

Despite the increasing attention to the topic of computer security, the
amount of vulnerable software services is still high. The exploitation
of a common vulnerability like memory management bugs brought to
the development of an attack known as Return Oriented Programming
(ROP). Such technique employs malicious memory injections to hijack
the control flow of the targeted application and execute an arbitrary
series of instructions.

This thesis explores the design and implementation of a static binary
rewriting tool able to instrument applications compiled for the Linux
operating system in order to offer protection against ROP exploitation
on x86 and ARM platforms. The instrumentation is achieved by extract-
ing re-compilable assembler code from executable binary files which
is then processed and modified. The effectiveness of such solution is
tested with a selection of benchmarking utilities in order to evaluate
the cost in terms of performance caused by its employment. The re-
sults obtained from these experiments show that on average the added
overheads are acceptably low and, consequently, the proposed tool is a
valid solution to improve the security of vulnerable applications when
the original source code is not available.

Sammanfattning

Trots den 6kande uppmairksamheten pa @&mnet datasdkerhet &r mang-
den sarbara mjukvarutjanster fortfarande stor. Utnyttjandet av en van-
lig sarbarhet som minneshanteringsfel har lett till utvecklingen av en
attack som kallas Return Oriented Programming (ROP). Denna teknik
utnyttjar skadliga minnesinjektioner for att &ndra kontrollflodet for den
riktade applikationen och utfora en godtycklig serie instruktioner.
Detta exjobb undersoker utformningen och genomforandet av ett
verktyg for statisk bindr omskrivning som kan anvédndas for att in-
strumentera applikationer for Linux-operativsystemet for att erbjuda
skydd mot ROP-exploatering pa x86- och ARM-plattformar. Instrumen-
tering uppnds genom att extrahera dterkompilerbar assemblerkod fran
exekverbara bindra filer som sedan behandlas och modifieras. Effektivi-
teten av sddan 16sning testas med ett urval av benchmarkingverktyg
for att utvardera kostnaden nar det géller prestanda som orsakas av
dess anvdndning. Resultaten frdn dessa experiment visar att de extra
kostnaderna i genomsnitt dr acceptabelt 1dga och, foljaktligen, dr det
foreslagna verktyget en giltig 16sning for att forbattra sdkerheten for
sdrbara applikationer ndr den ursprungliga killkoden inte &r tillgdng-

lig.

Acknowledgments

I sincerely want to thank professor Roberto Guanciale for providing the
indications which led to the definition of this project and for actively
supervising my work during the whole development process.

A great thank goes my family which supported me throughout my
studies and gave me the opportunity to experience university life also
beyond the borders of my home country.

Finally, I feel the need to also thank the StackOverflow community
for helping me solve many programming issues during the years.

Contents

1 Introduction

1.1 Projectarea.,
12 Problemstatement
13 Outline
2 Background

2.1 Technicaldetails
211 x86
2111 Registers

2.1.1.2 Procedure calling conventions

212 ARM
2.1.2.1 Instructionsets

2122 Registers

2.1.2.3 Procedure calling conventions

2.2 Return oriented programming

2.2.1 Buffer overflow
2.2.2 Return-to-lib(c)

2.2.3 Return oriented programming onx86
2.24 Return oriented programming on RISC
2.3 Binary instrumentation 00
24 Relatedwork. 00 L.
241 Monitoring o000
242 Stackprotection L.
2.4.3 Address Space Layout Randomization
3 Methods
3.1 Executable reconstruction
311 x86
312 ARM

Vil

viii CONTENTS
3.1.21 PCrelativeload
3122 Jumptables.
3123 Doublemove
3.2 Instrumentation
3.2.1 Aligned execution enforcement
3211 x86.
3212 ARM.
3.2.2 Return address protection
3.2.3 Indirect branch protection
3.2.4 Further adjustments for ARM executables
4 Results
41 Performanceanalysis
411 Benchmarks
4.1.2 Reconstruction
413 Instrumentation.
42 Filesizes
43 Closed source application
44 Attacksimulationo oo
5 Discussion
51 Limitations
52 Futurework Lo L.
53 Ethics
54 Conclusiono oo
Bibliography
A Code snippets
Al Examples o oo
A1l Stackoverflow
A.12 Return Address Poisoning
A2 Keygeneration
A3 Framecookie.
A31 x8664bit.
A32 x8632bit. o
A33 ARM

A4 Attacksimulation

CONTENTS iX

B Large tables 64
B.1 BenchmarkResults 64
B.1.1 x86 64 bitexecutables 64

B.1.2 x8632bitexecutables 65

B.1.3 ARMexecutables 66

B.2 Filesizes 67
B.2.1 x86 64 bitexecutables 67

B.2.2 x8632bitexecutables 67

B.23 ARMexecutables 68

Chapter 1

Introduction

1.1 Project area

It is an undeniable fact that in recent years it has been possible to
observe a rising awareness in both the private and the public sector
around the subject of computer security. However, this did not really
change the fact that the amount of vulnerable services is still very high
and, considering the immense growth currently experienced by the
software industry, probably increasing.

A common category of vulnerability often found in applications is
the incorrect implementation of memory management. The exploita-
tion of such defects can allow a malicious user to inject arbitrary data
in the program’s memory space, effectively manipulating its behavior
during runtime. In order to achieve this result, the injected payload
may contain either the machine encoding of an additional code section
to be inserted within the original one or plain numeric values designed
to hijack the executable’s control flow. The first kind has already been
addressed and solved with the adoption of memory protection mecha-
nisms. These are supported by all the major modern operating systems,
e.g. Data Execution Prevention (DEP) in Microsoft Windows and the NX
flag in the Linux kernel, and implement the Write XOR Execute policy
(W @ X) which consists in preventing executable segments from being
overwritten and writable segments from being executed. Nevertheless,
these strategies are ineffective in contrasting the second type of injec-
tion since the exploited machine code is already part of the legitimate
binary file.

A particular flavor of this family of attacks is denominated Return

2 CHAPTER 1. INTRODUCTION

Oriented Programming (ROP) [1]. Such technique consists in modifying
the control flow of a program by “poisoning” the memory locations con-
taining the target address of indirect branches (returns from procedures,
jumps/calls using pointers). This modification allows the attacker to
chain a series of code fragments (gadgets) in order to perform a desired
operation.

This thesis project investigates a static solution able to solve this
type of issue by modifying the machine code of existing executable
binary files compiled for different computing architectures.

1.2 Problem statement

The subject of the project is the development a tool able to statically
analyze and rewrite executable binary files in order to make these secure
against ROP attacks and evaluate the performance penalty caused
by such instrumentation. The work is mainly based on the research
performed by Onarlioglu et al. [2] and wants to extend it by eliminating
the need for original source code and by designing similar solutions for
architectures different from the already analyzed Intel’s x86-32, most
importantly its 64 bit variant (x§6-64) and the Advanced RISC Machine
(ARM) 32 bit Thumb instruction set.

The mentioned ROP countermeasure G-Free [2] was originally de-
signed to act as preprocessor to the GNU Assembler to sanitize pro-
grams at compile time from any exploitable gadget. It is tailored for the
x86-32 architecture and is shown to deliver good results regarding both
security and performance. Its more evident limitations are the need of
the program'’s original source code, since this means requiring software
distributors themselves to use a patched compatible compiler in order
to benefit from the tool, and the applicability to only one system archi-
tecture. The extension of this concept as a binary rewriting tool able to
act on different instruction sets allows a greater flexibility and, at the
same time, maintains the positive aspects of the original prototype.

The implementation of the project is aimed to work on the Linux
operating system [3] and, consequently, the rewriting task is performed
on Executable and Linkable Format (ELF) binary files [4].

The empirical evaluation of the obtained results is conducted by ap-
plying the developed tool to a suite of benchmarking software in order
to measure the average performance penalty introduced by such pro-

CHAPTER 1. INTRODUCTION 3

cess. The effectiveness of the approach is also shown by demonstrating
how a simple program containing memory management vulnerabili-
ties is instrumented and protected against possible attempts of ROP
exploitation.

1.3 Outline

This document presents in Chapter 2 a complete background to the
subject matter with details about the targeted processor architectures,
an historical overview of the research performed on Return Oriented
Programming attacks and the state of the art in the fields of binary
instrumentation and ROP protection mechanisms. Chapter 3 then
discusses the design decisions and implementation strategies employed
in the development of the presented tool. Chapter 4 and Chapter 5
contain a description of the quantitative results obtained and final
considerations about the effectiveness and relevance of the research
work which was carried out.

Chapter 2

Background

The chapter provides an overview of the various subjects relevant in
the scope of the project, from architectural aspects to a lineup of ROP
attack and defense mechanisms.

2.1 Technical details

2.1.1 x86

The term x86 refers to a family of instruction set architectures (ISAs)
based on 8086 CPU produced by Intel in 1978. It was developed with
a complex instruction set computer (CISC) design and was originally
intended to work with 16 bit long registers. Over the years, with the ad-
vancements in the areas of microprocessor research and manufacturing,
several extensions were made for it by Intel and other manufactures
(e.g. AMD) in order to accommodate the introduction of new 32 and 64
bit processors, yet maintaining backwards compatibility.

The design of x86 uses instruction encodings with variable length
(from 1 to 15 bytes), hence privileging code density over regularity. It
supports single byte memory addressing and employs the little-endian
(the least significant byte at the lowest address) convention in managing
multi-byte values.

2.1.1.1 Registers

The modern x86 architecture presents 8 general purpose registers (GPRs).
These still carry the 8086 naming scheme in 16 bits operations and use

CHAPTER 2. BACKGROUND 5

the prefixes “E-” and “R-” when addressing respectively 32 and 64 bits.
They are:

e an accumulator register (AX) and a data register (DX) for arith-
metic operations;

e a base register (BX) to be employed as data pointer;

e a counter register (CX) to perform shift operations and manage
loops;

e a stack pointer register (SP) which stores the address to the top of
the stack;

e a stack base pointer register (BP) used to browse values on the
stack;

e asource index register (SI) and a destination index register (DI)
for stream operations.

If considering a 64 bit CPU, other 8 registers need to be added to this
list with names from R8 to R15 and no particular usage convention.
Moreover, when dealing with floating operations, current x86 floating
point units (FPUs) have a stack with 8 more dedicated registers (named
from STO to ST7) and, if Streaming SIMD Extensions (SSE) is supported,
another 8 “large” 128 bit registers (named from XMMO0 to XMM?). In
addition to the GPRs, there are 6 segment registers which store the
addresses of the various memory sections (e.g. stack, code, data) of the
current process, though modern operating systems tend to disable their
use in favor of a paging methodology. Finally, the two special registers
IP and FLAGS respectively contain the address of the next instruction
to be executed and a collection of bits representing the resulting state
of the previous operation.

2.1.1.2 Procedure calling conventions

Procedures (or subroutines, functions) are computational units execut-
ing a certain task. These are invoked by means of the call instruction
which stores the current IP value on the stack and performs a jump to
the target address, which can be either a constant value or a variable
saved in a register or in memory. Subroutines ends with ret instruc-
tion which pops the return address from the stack copying it back to IP.

6 CHAPTER 2. BACKGROUND

The x86 architecture presents different conventions when handling the
invocation of subroutines.

For 32 bit systems, the one employed most commonly by modern
compilers is the so called cdecl convention. In it, subroutine arguments
are passed on the stack and the return value is stored either in EAX if
integer or in STO if floating point. The task of preserving the original
value of the registers is left to the callee (the procedure itself), with the
exception of EAX, ECX and EDX. The preamble of a function usually
contains the code necessary to create a new stack frame and allocate
space for local variables while its epilogue performs the opposite ac-
tions, releasing stack allocation and restoring the old frame.

func:

push EBP ; store previous frame pointer

mov EBP, ESP ; copy new frame pointer

sub ESP, var_size ; allocate space for local variables
; retrieve arguments from stack

; and do calculations

mov EAX, result ; copy return value

mov ESP, EBP ; free stack allocation

pop EBP ; restore EBP wvalue

ret ; jump back to caller

Listing 2.1: x86 32 bit function convention

The main difference introduced in the calling convention for 64 bit
systems [5] is that parameter passing is done using registers. RDI, RSI,
RDX, RCX, R8 and R9 are employed for the first six integer arguments
while the XMM registers are used for floating point operands. However,
the stack is still used when a greater number of values is required to be
passed.

21.2 ARM

The Advanced RISC Machine (previously Acorn RISC Machine) (ARM) is
a family of reduced instruction set computer (RISC) architectures primarily
developed towards the use in mobile systems and embedded devices.
Similarly to the x86 architecture, also ARM chips exist in 32 and 64
bit flavours and, as many other RISC architectures, they are designed
with fixed length instructions (more on this in Section 2.1.2.1) and a
large number of general purpose registers. These operate following
a load-store paradigm which means that operands are always loaded

CHAPTER 2. BACKGROUND 7

from memory to registers before executing operations.

2.1.2.1 Instruction sets

The standard instruction set for 32 bit ARM microprocessor is ARM32
which encodes every instruction in 4 bytes and can make use of all
the available features of the underlying CPU. Since this design choice
suffers from the fact of having a quite low code density, most processors
also have support (and in some particular cases only have support)
for another instruction set denominated Thumb. The latest version of
Thumb (Thumb2) uses a mixture of 16 and 32 bit instructions which
form a subset of the regular ARM32 instruction set and achieve a quite
large increase in code density though loosing some features (e.g. con-
ditional execution [6]). The 64 bit versions of the ARM architecture
abandoned this concept with the AArch64 instruction set which prefers
the regularity and capabilities of fixed length 32 bit instructions.

2.1.2.2 Registers

The 32 bit version of the ARM ISA is designed with 16 GPRs named
from RO to R15. The three registers with the highest numberings (R13,
R14 and R15) respectively also cover the roles of stack pointer (SP),
link register (LR) and program counter (PC). Furthermore, there also
exists the current program status register (CPSR) which, like FLAGS in
the x86 architecture, is a bit collection reflecting the current state of
execution. It also contains the so called T field which indicate whether
the processor is currently interpreting instructions as Thumb. In order
to handle floating point operations, 16 double precision registers (from
DO to D15) are present and can also be treated as 32 single precision
registers (from SO to S31).

The systems supporting the AArch64 ISA have a significantly in-
creased quantity of registers with 31 GPRs (from X0 to X30) and a
separate dedicated register for the program counter. Also, the number
of floating point registers is doubled compared to the 32 bit version.

2.1.2.3 Procedure calling conventions

In the ARM architecture subroutines are invoked using the branch and
link (b1) operator which stores the current value of the program counter
in LR and executes a jump to the indicated target. The arguments are

8 CHAPTER 2. BACKGROUND

passed using the first 4 GPRs and return values are store in RO and R1.
The stack is employed in case more than 4 parameters are necessary.
The function prologue usually contains the code to store the return
address on the stack and create a new stack frame (R11 and R7 are
used as frame pointer respectively in ARM32 and Thumb mode) while
the epilogue presents the inverse operations. Since none of the 32 bit
instruction sets contains a return instruction, the same result is achieved
directly copying the value of LR in PC.

func:
push {r7, 1Ir} ; save frame pointer and return address
sub sp, var_size ; allocate space for local wvariables

add r7, sp, offs ; set frame pointer
; do calculations

mov 10, result ; copy return value

adds r7, offs

mov sp, 17 ; free stack allocation

pop {r7, pc}) ; restore frame pointer and return

Listing 2.2: ARM32 function convention

The calling convention for AArch64 is slightly dissimilar given the
different composition of registers. The arguments are passed with
the first 8 registers (from X0 to X7), X30 is the link register holding
the return address and X29 is used as the frame pointer. Yet another
difference can be found in the fact that a proper return instruction to
copy X30 to the program counter exists.

func:
stp x29, x30, [sp#—offs]! ; store frame pointer and
; return address while
; allocating local space
mov x29, sp ; set frame pointer
; do calculations
mov w0, result ; copy return value

ldp x29, x30, [sp], #offs ,; restore frame pointer and
; return address while
; freing stack allocation
ret ; return

Listing 2.3: AArch64 function convention

CHAPTER 2. BACKGROUND 9

2.2 Return oriented programming

This section provides an overview of the evolution over time of the
exploitation techniques which led to the development of the attack
category named Return Oriented Programming.

2.2.1 Buffer overflow

Citing the words of the notorious computer scientist Edsger Dijkstra,
“testing can only reveal the presence of errors, never their absence”.
Recent times have seen an increase in sensibility towards software
security and, consequently, a growth in the investments in software
validation. Nevertheless, applications designed employing lower level
programming languages, which leave to the programmer himself or
herself the final decision on memory management, are often prone to
present defects in this area. The issue of badly administered memory
buffers has almost always been among the most frequently reported
software vulnerabilities and with the highest severity scores [7].

In simple words, buffer overflows mostly occur when a section of
code reads some kind of input and copies it into memory without per-
forming the necessary boundary checks. If the size of the input data
is greater than the one of the destination buffer, the copying process
exceeds the buffer boundaries and the contiguous memory locations are
overwritten. Accordingly to how the buffer was created, this memory
violation may happen either in the heap (section used for dynamic mem-
ory allocation) or in the stack (section used for static allocation, local
variables, return addresses). For the subject matter, the latter case is the
one of greater interest since it allows an attacker to modify the values of
local variables and return addresses hence hijacking the control flow of
the running process. Appendix A.1.1 and Appendix A.1.2 show simple
examples of stack overflow exploitations in C programs.

2.2.2 Return-to-lib(c)

Once a buffer overflow attack is performed and the control flow has
been hijacked, the execution can be directed to different sections of the
process. The so called Return-to-lib(c) attacks have been one of the first
milestones towards modern ROP exploits.

10 CHAPTER 2. BACKGROUND

The first known proof of this concept was rendered publicly avail-
able by Designer in 1997 [8]. The technique consists in inserting on the
stack the address of a library function in the place of a return address
and modelling the values in the other positions nearby to be the desired
arguments for such routine. In this way, when reaching the next return
instruction the program would jump to and execute the function in
the way chosen by the attacker. A common choice as target function is
the system () system call which creates a child process that executes
a shell command by means of which the attacker can operate further
violations.

2.2.3 Return oriented programming on x86

Despite their power, return-to-libc exploits are often quite complicated
to execute given the difficulty in locating memory addresses of library
procedures and the variations in parameter passing. This last detail be-
came particularly relevant with the introduction of 64 bit architectures
together with new procedure calling conventions where most of the
parameters are passed using registers [5].

Further research led to the work published in 2007 by Shacham [9]
which overcame these limitations by removing the need of invoking
library functions. He presents the idea of Return Oriented Programming
(ROP) and the concept of gadget, a portion of machine code with an
indirect branch, for example a return instruction, at its end. Moreover,
taking advantage of the variable size of the x86 instruction set, he
demonstrates how gadgets can not only be found in function prologues
but also be constructed by means of unaligned execution as shown in
Figure 2.1. He asserts the result of chaining a reasonably sized series
of gadgets, as before by corrupting the values of addresses stored on
the stack, to compose a Turing-complete system hence able in principle
to perform any allowed operation on the underlying architecture and
solve any computational problem a Turing machine could tackle.

|/

mov EAX,0xffb8cdOc S aaa ECX,EAX IS bswap EBX 7

b8 Oc cd b8 f£ff 01 cl1 0f cb
leor AL,Oxcd%l Pmov EAX,OxfclOlff%l Iéretf%l

Figure 2.1: Aligned and misaligned interpretation of x86 machine code

CHAPTER 2. BACKGROUND 11

2.2.4 Return oriented programming on RISC

As a follow up to Shacham’s publication, new groundwork was made
to apply his conception to system architectures different from x86, in
particular to reduced instruction set computer (RISC) architectures (e.g.
ARM, SPARC, MIPS). A characteristic shared by most of the exponents
of this category is the use of fixed length instruction encodings with en-
forcement for aligned execution, in contrast to the natural code density
of Intel’s binaries. Furthermore, these often present procedure calling
and return conventions different from the ones of the x86 architecture.

In 2008 Buchanan et al. presented an adaptation of ROP to the
SPARC architecture [10]. They describe the different challenges im-
posed by the structure of such instruction set and design a gadget cat-
alog for memory-to-memory operations from the Solaris standard C
library composing a Turing-complete system.

Likewise, in 2010 Kornau introduced in his thesis [11] the applica-
bility of ROP on the ARM architecture, also describing an algorithm
to determine whether a code library contains the necessary amount of
gadgets in order to craft any arbitrary program.

2.3 Binary instrumentation

Binary instrumentation is the process used to insert new instructions in
an existing executable file in order monitor its operations or introduce
changes in its behavior. There exist two different approaches to this
technique: it can be performed dynamically at runtime by directly
processing the program code when loaded into memory or statically by
operating the desired modifications on the binary file.

The first method benefits from having available those pieces of
information which can be obtained only after an executable is loaded
and dynamically linked, though often leading to a quite important
performance degradation and a high memory usage. Some examples
of dynamic instrumentation frameworks are DynamoRIO [12], Dyninst
[13], Pin [14] and Valgrind [15].

The latter has on average a much smaller impact on resource usage
during execution (it depends on the type of instrumentation applied),
but it is sometimes limited in its applicability due to the non-trivial
effort of retrieving and interpreting all the necessary data from the
binary file. This kind of instrumentation is usually achieved either

12 CHAPTER 2. BACKGROUND

by altering function entry points to jump to a different code section
where the function code is copied and modified or by translating the
binary to an intermediate representation (it may also be assembler lan-
guage), applying the desired revisions and finally recompiling it to an
executable format. Some known frameworks are Dyninst [16] (different
API of the same tool mentioned above), PEBIL [17], SecondWrite [18]
and Uroboros [19].

2.4 Related work

Different solutions to address the issue of Return Oriented Programming
have been proposed over the years.

2.4.1 Monitoring

A naive observative solution specifically designed to detect ROP attacks
is accomplished by dynamically performing at runtime a frequency
analysis of the executed instructions, searching for those commonly
present when going through a chain of gadgets (e.g. ret) [20, 21]. This
approach has its field of applicability but can be defeated when varia-
tions to the attack methodology [22] are employed and the frequency
analysis fails to recognize them.

Other specific ROP solutions utilize a Control Flow Graph (CFG) to
verify the control flow of the program [23, 24]. A CFG is a preventively
computed graph of all the possible execution patterns of the applica-
tion at issue where nodes are the various code sections and the edges
indicate control flow transfers. After its evaluation, the CFG is then
used to instrument the program in such way that the integrity of return
addresses and jump pointers is controlled and a failure occurs in case
its control flow does not follow the allowed directions described in
the graph. These techniques tend to cause on average a fairly high
performance overhead for the resulting binary and usually to require
a long analysis time. In a similar manner, other solutions employ the
calculated flow graph to dynamically check the validity of the current
state of the program, making them applicable for remote attestation of
embedded systems [25, 26].

CHAPTER 2. BACKGROUND 13

2.4.2 Stack protection

More generic tools make an attempt to solve the problem by trying to
detect memory violations (e.g. buffer overflows) and avoid any sort of
data injection, hence eliminating the starting cause of the vulnerability.

A possible approach to stack protection is the creation of a so called
shadow stack in a different memory segment. This is used to store a
copy of the return addresses and serves as a reference to prove their
correctness when needed. An example of this type of mechanisms is
ROPdefender [27] which accomplishes it by means of dynamic binary
instrumentation. Despite its good suitability against basic ROP attacks,
the large number of runtime checks causes it to suffer a quite large
negative impact on performance.

Another strategy designed to the purpose of stack protection, like
for example in the compiler extension StackGuard [28], is the use of
canary values. These are known data words which are pushed onto the
stack preceding control flow related values and act as a proof of their
integrity since a buffer overflow attack, in order to reach the targeted
location, would modify the value of the canary as well. The main defect
of such approach is that it relies on the assumption that the canary is
always verified before the execution of an indirect branch, which may
not be the case if an adversary manages to make the program start
executing instructions in a misaligned manner.

In this regard, G-Free [2] is another compiler based solution which
improves stack protection effectiveness by systematically modifying
the assembler source code of the program in order to eliminate the
instructions which could be interpreted as indirect branches by an un-
aligned execution. These instructions are denominated free branches and
include returns from procedures and indirect jumps and function calls
which use addresses stored in memory. As previously mentioned, the
next chapters discuss how the concept introduced in this last methodol-
ogy is used as starting point to create a static binary rewriter to protect
x86 and ARM applications from ROP attacks and other free branch
exploitations.

2.4.3 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) [29] is a security feature
introduced in most modern operating systems which randomizes the
position of the different memory segments (stack, heap, code, etc.)

14 CHAPTER 2. BACKGROUND

inside the address space of a process. This makes it difficult for attackers
to design the right shell-code to successfully mount an attack since
memory offsets need to be guessed. This mechanism would offer a
quite high level of security but often its implementation is excessively
naive and uses permutations with too low entropy, which leaves it
vulnerable to brute force attacks and other kinds of offensives [30].

Chapter 3
Methods

This chapter provides a description of the techniques employed in the
development of the project. It firstly presents the underlying concept of
the framework used to make binary instrumentation possible, then it
discusses the modifications which are applied to the targeted binaries
in order to protect them against Return Oriented Programming attacks.

3.1 Executable reconstruction

As previously discussed in Section 2.3, there exist different approaches
when addressing the problem of the modification of existing executable
files. The technique which was chosen in the context of this work
tackles the concern by de-constructing the original binary to the corre-
sponding processor instructions and, performing an analysis in search
of some common compilation patterns, extracting an assembler source
file which can then be processed by the GNU C compiler.

The original concept for this technique was presented in the pro-
totype designed by Wang et al. named Uroboros [19]. Such tool was
developed exploiting powerful type system offered by the OCaml lan-
guage in conjunction with standard Unix command line utilities like
readelf and objdump. Their design undertakes the reconstruction
of x86 executables (targeting both 32 bit and 64 bit architectures) and,
to pursue the intent of this project, it consequently had to be extended
to also support the processing of ARM 32 bit Thumb binaries. In order
to smoothen the aforementioned operation, the entire prototype has
been rebuilt employing a more flexible and familiar language such as
Python with the aid of some reverse engineering libraries (e.g. Cap-

15

16 CHAPTER 3. METHODS

stone [31]) and, at the same time, a trimming of some functionalities
unnecessary for the subject matter has been operated allowing slightly
faster performances.

The main steps which are adopted in order to perform the recon-
struction of assembly source code are the following;:

1. the various sections of the ELF binary file (e.g. . text, .rodata,
.got,...) are separated and the section containing the executable
code (. text) is processed by a disassembler which recovers ma-
chine code in readable ASCII text format;

2. the code is parsed and transcoded to a small internal symbol
system in order to facilitate subsequent operations;

3. the intermediate representation is scanned searching for constant
values which may represent pointers to data or other positions of
the code, replacing these with labels;

4. a similar process is applied to the data sections using a word-
sized (4 bytes for 32 bit executables, 8 bytes for 64 bit executables)
scanning window;

5. the newly generated labels are added in the locations of the disas-
sembled code and data sections corresponding to their original
addresses;

6. information about external functions (from dynamically linked
libraries) and global variables (e.g. standard IO file handles) are
extracted from the ELF header and the corresponding symbols
inserted in the code;

7. the code and data are dumped back to a source text file which can
be compiled again to an executable.

The next subsections describe some architecture-dependent trans-
formations which are carried out by the tool in order to correctly handle
some particular constructions introduced by compilers in binary files.

3.1.1 x86

The most important aspect to address when processing x86 binaries is
the transformation of position independent code (PIC). Are included in

CHAPTER 3. METHODS 17

this category all those instructions which make use of relative offsets
from the current location (the value of the program counter) to access
other addresses of the executable’s memory space. This characteris-
tic makes the code agnostic of the virtual address is loaded at and,
consequently, suitable for libraries and for other scenarios where code
positions may be varied, like ASLR [29].

The 64 bit version of x86 manages this mechanism in a simple and
straightforward manner. The compiler uses the program counter (RIP),
which contains the address of the next instruction to be executed, as
base register for “register plus offset” indirect addressing expressions,
like shown in Listing 3.1.

4005C9: mov RAX, [RIP + 0x200858] ; 4005D0 + 200858 = 600E28
4005D0:

666E28: .quad some_value
Listing 3.1: x86 64 bit PC relative addressing

In order to preserve the correct references, after the decompilation
phase, the tool searches for instructions containing this pattern and
substitutes the relative offset with the correct absolute address. This
allows such constants to be recognised as addresses during the analysis
phase and substituted by labels, from which the compiler is then able
to re-evaluate the appropriate offsets for the reassembled executable.
The assembler syntax for this operation may result misleading, since
the destination label is directly summed to the instruction pointer, but
this kind of indirect memory addressing is recognised by compilers
which substitute to the label its offset from the current position instead
of its absolute value.

mov RAX, [RIP + S_0x600E28]

S_0x600e28: .quad some_value
Listing 3.2: x86 64 bit PC relative addressing after processing

On the other hand, the 32 bit version of the instruction set does
not support direct use of the instruction pointer register in PC relative
addressing. Listing 3.3 shows how the value of the program counter
is retrieved by exploiting the operations performed by the call in-
struction: a stub thunk procedure is invoked and the return address

18 CHAPTER 3. METHODS

is extracted from the stack and stored in a register. Moreover, offsets
are calculated not from the current position but from the address of
the _GLOBAL_OFFSET_TABLE_ (a symbol in the .got .plt section),
which increases the difficulty in correctly recovering the memory refer-
ences.

get_pc_thunk.bx:
8049210: mov EBX, [ESP] ; store return address from stack
8049213: ret

806D697: call get_pc_thunk.bx
806D69C: add EBX, 0x26964 ; 806D69C + 26964 = 8094000

806D6C0: mov EAX, [EBX + 0x12300] ; 8094000 + 12300
; = 80A6300
8094000: _GLOBAL_OFFSET_TABLE_

é6A6300: .word some_value
Listing 3.3: x86 32 bit PC relative addressing

The solution adopted to correctly interpret this construction scans
the disassembled code looking for thunk function invocations and
subsequent indirect addressing expressions where the register in which
the instruction pointer was loaded is used as a base, then substituting
them with the absolute value of the pointed address. The assumption
which is made by this approach is that such base register is only valid
within the boundaries of the function where the t hunk routine is called.
Even though indirect addressing is substituted by absolute values, the
invocation to the thunk function and the calculation of the address
of the _GLOBAL_OFFSET_TABLE_ are maintained in the tentative of
not breaking indirect references which eventually were not recognised
during the scanning process.

call get_pc_thunk.bx
add EBX, OFFSET _GLOBAL_OFFSET_TABLE_

mov EAX, [S_0x80A6300]

S _0x80A6300: .word some_value
Listing 3.4: x86 32 bit PC relative addressing after processing

CHAPTER 3. METHODS 19

3.1.2 ARM

The stricter constraints imposed by the RISC design of the ARM archi-
tecture require compilers to adopt particular strategies in the compo-
sition of executable programs. As a consequence, in order to correctly
recover re-compilable assembler source code, such patterns must be
recognised and transformed.

3.1.2.1 PC relative load

One of the biggest limiting factors of the Thumb instruction set is the
limited bit length (usually no more than 8/12 bits) usable to repre-
sent constant values. This has an important impact on the use of both
absolute and relative addressing since it becomes difficult to handle
addresses in large executable files. One of the most employed solu-
tions to this issue is the use of “in-line data” embedded in the . text
section in-between executable instructions and accessed by means of
PC relative loads without the need of large offsets (must be smaller
than 4096 bytes). It must be noted that also in Thumb mode the pro-
gram counter is always incremented by 4 and, consequently, like in
Listing 3.5, the value to be used for calculating the source address is
the 4-byte aligned virtual address of the instruction increased by 4
(pc = CurrAddr — (CurrAddr mod 4) + 4).

10556: ldr r6, [pc, #0x2C] ; 10558 + 2C = 10584

10584: .word some_value

Listing 3.5: ARM PC relative load

Since these data values are found in the code section, they must
be handled and transformed during the disassembling phase in order
not to erroneously interpret them as instructions. This is achieved by
simply collecting the targets of PC relative load instructions, skipping
their targets and substituting the “PC plus offset” expression with
a constant value of the source address which is then translated to a
label. The byte-size of the skipped binary data is inferred analyzing the
utilized variant of the 1dr operator.

20 CHAPTER 3. METHODS

Idr r6, S_0x10584

S _0x10584: .word some_value

Listing 3.6: ARM PC relative load after processing

There also exist a variant of 1dr operation which can be used to load
from memory a double word (64 bit) value over two registers. In such
cases the usable value range for offset is even smaller hence causing
compilers to prefer to apply the offset with a separate add instruction
with a 12 bit immediate value (this operation is also aliased as adr).

27FD6: add rl, pc, #0x640 ; 27FD8 + 640 = 28618
27FDA: 1drd r0, rl1, [rl]

28618: .word some_value
2861C: .word some_other_value

Listing 3.7: ARM large offset PC relative load

Similarly to the previous case, these instructions are handled dur-
ing the decompilation phase by calculating the targeted address and
performing appropriate substitutions.

adr rl1, S_0x28618
ldrd O, r1, [rl1]

S _0x28618: .word some_value
.word some_other_value

Listing 3.8: ARM large offset PC relative load after processing

When even this approach is not sufficient, mainly in cases where the
data cannot be located in the . text section (e.g. when writable) and
as a consequence very large offsets are required in order to reach such
memory locations with PC relative operations, compilers may choose
to store the offset itself as “in-line data” and then loading it in a register
which is added to the program counter. It must be noted that, when the
program counter register appears as second source operand in addition
in Thumb mode, its value is calculated as the address of the current
instruction increases by 4.

CHAPTER 3. METHODS 21

18128: 1dr r7, [pc, #0x284] ; 18128 + 284 = 183AC

iéi4C: add r7, pc ; r7 = 1814C + 4 + A338 = 22488
iéi54: Idr r1, [r7]

iééAC: .word 0xA338

22488: .word some_value

Listing 3.9: ARM very large offset PC relative load

The biggest issue in handling this kind of situation is that, as un-
derlined in Listing 3.9, the involved instructions are often not grouped
together, probably for optimization reasons, which causes this pattern
to be hard to recognise. If successfully individuated, such procedure is
transformed like show in Listing 3.10.

Idr r7, S_0x183AC

add 17, #0

id; rl, [r7]

é;dx183A(I: .word S_0x22488

S_0x22488: .word some_value

Listing 3.10: ARM very large offset PC relative load after processing

3.1.2.2 Jump tables

The strategy employed by compilers to build jump tables is another
example of data values embedded in the code section of the executable
hence requiring special care during the disassembling phase. The
Thumb instruction set supports two different flavours of such structure:
absolute address tables and offset tables.

The first kind is built using the 1dr operator to copy a new value
in the program counter register thus triggering a branch. As shown
in Listing 3.11, the employed instructions simply evaluate an address
corresponding to a table entry from an index and then load its value.

22 CHAPTER 3. METHODS

; evaluate index

217BE: cmp r3, #0x5A ; compare index with table size
217C0: bhi 0x2198C ; jump to default if higher
217C4: add r2, pc, #0x4 ; r2 = 217C8 + 4 = 217CC
217C6: ldr pc, [r2, 13, 1sl #2] ; load table[r3]
217CA: nop ; to program counter
217CC: .word 0x2197F

217D0: .word 0x2198D

21938: other instructions

Listing 3.11: ARM absolute jump table

The loading procedure is the same which was previously introduced
when dealing with PC relative loads with large offset. In this case the
separate addition operation used to calculate the table address is due
to the fact that the program counter register cannot appear in both
operands of the 1dr instruction. The other difference is that in this
context the size of the data “gap” cannot be inferred from the load
instruction itself but must evaluated from the comparison operation
performed on the index register, whose immediate operand represents
the number of table entries (the byte size is equal to the table length
multiplied by 4). Keeping in consideration these details, that applied
transformation are the same used for normal “in-line data” and the
resulting from such processing is shown in Listing 3.12.

cmp r3, #0x5A

bhi S_0x2198C

adr r2, S_0x217CC

1dr pc, [r2, r3, 1sl #2]

nop

S_0x217CC: .word S_0X2197F
.word S_0X2198D

S_0x21938: other instructions
Listing 3.12: ARM absolute jump table after processing

The second type of jump table makes use of either the t bb or the tbh
operator. These accept as argument an indirect memory addressing
pointing to an entry in the offset table and perform a relative jump
whose length is the double of the read offset. The only difference
between these instructions is the size of the loaded offset, a single byte
and two bytes respectively.

CHAPTER 3. METHODS 23

; evaluate index

11EDE: cmp r3, #0x6 ; compare index with table size
11EEO: bhi 0x121B6 ; jump to default if higher
11EE4: tbh [pc, r3, 1sl #1] ; jump to PC + 2 x table[r3]
11EE8: .short 0x0160

11EEA: .short 0x0090

11EF6: other instructions

Listing 3.13: ARM offset jump table

In order to correctly preserve offset values, these have to be trans-
formed in label expressions, as shown in Listing 3.14, by calculating
the absolute branch destination, subtracting the base address of the
jump table and dividing the result by 2. The amount of data to retain
from disassembling is evaluated like in the previous case by looking
for comparison instructions on the index register.

cmp r3, #0x6

bhi S_0x121B6

tbh [pc, 13, 1sl #1]

S_Ox11EE8: .short (S_0x121A8 — S_Ox11EES8)

/ 2
.short (S_0x12008 — S_Ox11EE8) / 2

S_0x11EF6: other instructions
Listing 3.14: ARM offset jump table after processing

3.1.2.3 Double move

Another technique exploited by compilers to load large values into
registers is splitting these in two 16 bit parts a loading them using two
mov operations (the movt operand can load values in the upper 16 bits
of a register). In the process of binary disassembly and reconstruction
this is of particular importance when such value represents a pointer
and, consequently, has to be replaced by a label in order to maintain
correct memory references. Listings 3.15 and 3.16 show an example
of such pattern and how it is transformed using special assembler
directives after the analysis process.

24 CHAPTER 3. METHODS

14124: movw r0, #0x102C
14128: movt r0, #0x2

éiéZC: something
Listing 3.15: ARM double mov

movw r0, #:lowerl16:S_0x2102C
movt r0, #:upperl6:S_0x2102C

é;belOZC : something
Listing 3.16: ARM double mov after processing

A particular which had to be considered very carefully in such
analysis is that the pair of mov operations is often not contiguous and,
in some cases, the register in which the lower 16 bits are stored can be
copied to another register (or even on the stack) on which the upper 16
bits are then moved.

3.2 Instrumentation

This section discusses the instrumentation process applied to the dis-
assembled code in order to offer protection against Return Oriented
Programming attacks. The concepts here introduced were originally
designed by Onarlioglu et al. for the 32 bit x86 architecture in their
G-Free prototype [2] and were adapted for the other architectures of
interest in this project. The basic idea is to modify the code of an ap-
plication in order to eliminate the possibility of performing indirect
branches exploiting unaligned code interpretation and at the same time
protecting legal free branch instructions from being misused.

3.2.1 Aligned execution enforcement

As previously enunciated in Section 2.2.3, one of the most powerful
teatures of ROP is the use of unaligned execution to construct a Turing
complete set of gadgets. One of the purposes of the proposed instru-
mentation strategy is to try to force aligned execution by means of code
transformation and insertions.

CHAPTER 3. METHODS 25

3.2.1.1 x86

The variable length and density of the x86 instruction set cause this
architecture to be particularly sensible to unaligned code execution.
The main purpose of this portion of the instrumentation is to ensure
that, when bytes which encode indirect branches (e.g. 0xc2, 0xc3,
Oxca, Oxcb for the ret instruction) are present in other instructions,
these cannot be exploited for control flow hijacking.

The main solution adopted towards solving this problem is the
insertion of alignment sleds before the instructions containing such crit-
ical bytes. A sled is a long enough sequence of instructions without
effects which forces the program execution to preserve its alignment.
The easiest way to implement such structure is to employ a series of
nop instructions which, being encoded in a single byte (0x90), allows
to easily manage the length of the sled. Also, a jump instruction is
prepended to the sled so that when execution is correctly aligned the
impact on performance is minimal. Figure 3.1 shows how a possible
misaligned gadget is sanitized using this technique. When undesired
bytes are found in the least significant bits of a jump offset, a shorter
sled (just 1 or 2 bytes) can be employed before or after such instruction
in order to modify the code layout and cause a change of the offset such
that it will not contain free branch encodings anymore.

~J
rol RAX,0x3 /I I\ mov EBX,EAX |

48 Cl CO 03 89 C3
[E—— [RBX],OxBQ%I keret—

Y

N ke ~J
rol RAX,0x3 nop,...,nop ||~ mov EBX,EAX |

48 Cl CO 03 90 90 89 C3
P [RBX],OxQO%I ., nop%l le—mov EBX,EAX—S]

Figure 3.1: Example of alignment sled application in x86 code

\l

Another solution to avoid undesired byte encodings is the replace-
ment or transformation of certain instructions. A simple example is
movnti (0x0f Oxc3)which copies a value from memory minimizing
cache pollution and can be safely replaced by a normal mov instruc-
tion. Other code transformations include the modification of immediate
operands containing free branch opcodes. In most cases these can be

26 CHAPTER 3. METHODS

split in multiple instructions performing the same operation like shown
in Listing 3.17.

sub RAX, 0xC3 —> sub RAX, 0xC4
inc RAX

Listing 3.17: Immediate value transformation

The original G-Free prototype, being integrated in the compiler tool-
chain, also performed modifications in register allocation in order to
avoid undesired bytes in the ModR/M and SIB fields x86 instruction.
This is obviously very difficult to achieve in the context of direct binary
modification and such cases are handled using alignment sleds instead
at the price of some loss in performance.

3.2.1.2 ARM

The issue of unaligned interpretation is not as relevant when taking in
consideration the execution of Thumb code since the architecture itself
enforces a 2 byte alignment. It is however possible that, in presence of
a code block containing multiple consecutive 32 bit long instructions, a
branch could be directed to such block with 16 bits of offset thus making
the processor execute the last 2 byte of an instruction together with the
tirst 2 of the successive one (of course, only in the case those first 2 byte
encode the beginning of a 32 bit instruction). This can be avoided by
inserting a short ineffective 2 byte instructions (e.g. nop ormov r0, r0)
in order to “break” the block of 32 bit instructions (Figure 3.2) and en-
sure that, even though a misaligned branch is performed, the execution
will return to normal after at most one unintended instruction.

I/)

gadd R8, R1, RO /II\ strb R11, [R11, #0xD10] |

BOFA 81F8 8BF8 10BD
[E— PC, [R1, #OxaaB]ﬁl Iépop {R4, PC}9|

, U V

) e N e
[~ gadd R8, R1, RO “II° movRo,RO “|[> strb R11, [R11, #0xD10]! |

SO0FA 81F38 0046 8BF3 10BD
l%strb R4, [R1, #OXGOO]%I l&strb R11, [R11, #0xD1 0]!%]

Figure 3.2: Example of alignment enforcement in Thumb code

CHAPTER 3. METHODS 27

3.2.2 Return address protection

The successive step after constraining the execution of the program
to only follow intended aligned code is to protect legitimate return
instructions in order to prevent adversaries from using them for gadget
chaining. This is achieved by implementing XOR canaries at the entry
and exit point of each function. In other words, this kind of instrumen-
tation adds at the beginning of functions a small header which uses
a previously generated key to encrypt the value of the return address
present on the stack. Likewise, another short piece of code is added
before the return statement which uses the same key to decrypt the
return address to its original form. In such manner, if an attacker tries
to modify the control flow in a way which does not respect the correct
function entry points, the decryption will generate a non-controllable
incorrect address, which will most likely result in a crash for the ap-
plication. The XOR operator is chosen as the preferred cryptographic
tool because of its high computational efficiency and its quality of pre-
serving the probability distribution of the pseudo-random encryption
key in the encrypted data. The encryption key is generated by a rou-
tine invoked at the beginning of the program’s execution and stored
in memory (example code in Appendix A.2). Listings 3.18 and 3.19
provide an overview of instrumentation code employed for the targeted
architectures (for x86 the 32 and 64 bit instrumentations are merged in
a single listing given the fact that only register prefixes vary).

func: ; function entry
push (EIR)AX ; save AX
mov (EIR)AX, [xorkey] ; load key
xor [(EIR)SP + 0x(418)], (EIR)AX ; encrypt return address
pop (EIR)AX ; restore AX
; function body
push (EIR)AX ; save AX
mov (EIR)AX, [xorkey] ; load key
xor [(EIR)SP + 0x(418)], (EIR)AX ; decrypt return address
pop (EIR)AX ; restore AX
ret ; return

Listing 3.18: x86 (32 | 64) bit XOR canary

As mentioned in Section 2.1.1.2, the ARM instruction set does not
have a built-in stack-based procedure calling and it is the compiler’s
duty to generate instructions which move the link register (LR) on and

28 CHAPTER 3. METHODS

off the stack in order to create call frames. This particularity facilitates
the encryption process since the return address is already loaded on
a register and can be easily managed. More attention must instead be
paid when modifying exit points since the return address is usually
directly moved from the stack to the program counter register. In
order to allow the decryption operation, the pop operation is modified
to move the encrypted value back to the link register which is then
decrypted and used to branch back to the caller.

func: ; function entry
push {r0} ; save r0
movw r0, #:lowerl6:xorkey ; load key address
movt r0, #:upperl6:xorkey
Idr 0, [r0] ; load key
eor Ir, 10 ; encrypt return address
pop {rO} , restore r0
push {..., 1r} ; save return address to stack
; function body
pop (..., pc —> Ir} ; (original exit point)
; get return address from stack
push {r0} ; save 10
movw 10, #:lowerl6:xorkey ; load key address
movt r0, #:upperl6:xorkey
Idr 0, [r0] ; load key
eor Ir, r0 ; decrypt return address
pop ({10} ; restore r0
bx Ir ; return

Listing 3.19: ARM XOR canary

3.2.3 Indirect branch protection

The other employed defense mechanism serves the purpose of pro-
tecting jumps or procedure calls which have a variable value (from
a register or a memory location) as destination. To this end, in the
functions which contain such instructions, additional header and footer
are added in order to ensure that the program execution is respecting
the function’s entry and exit points. This is achieved by using a frame
cookie generated at the beginning of the function and checked before
every indirect branch.

The original G-Free implementation stores such cookie on the pro-
gram’s stack, thus modifying its layout, and then performs an in depth

CHAPTER 3. METHODS 29

code analysis in order to correct any stack reference which is rendered
invalid by the presence of this additional memory block. This solution,
though also acting as an indicator of stack integrity, resulted of difficult
application, especially when compiler optimizations have been utilized
and make stack management hard to track. For this reason, the pre-
sented frame cookie implementation makes use of a separate dedicated
stack created in the Thread Local Storage (TLS) memory area.

The value of the cookie is generated by applying the XOR operation
on a random key (different from the one employed in return address
encryption) and a unique identifier assigned to the function at issue
and is then combined with the counter representing the current size
of the cookie stack in order to make it different for multiple invocations
of the same function. Before any indirect jump or call, the cookie is
retrieved and this operation is reversed in order to check its validity
and, if not present or not valid, the application is terminated with an
error. Of course, at the end of the instrumented functions the cookie is
removed from the stack.

Moreover, in the case of ARM binaries, the instrumentation also
introduces a check on the register holding the destination address of
the indirect branch to make sure that this is not employed to change
the running mode from Thumb to standard ARM32 (ARM processors
utilize the least significant bit of branch addresses to determine the
running mode to be employed after the jump, 0 for ARM32 and 1 for
Thumb). Since such interworking is necessary when branching to the
ARMS32 encoded entries in the . plt section used in the invocation of
linked library functions, first the register value is checked to represent
an address inside the . text section and then, if the check succeeds, an
OR operation is used to forcefully set the last bit of the address to 1.

Due to their length, code snippets of the assembler implementations
of the presented techniques are moved in Appendix A.3.

3.2.4 Further adjustments for ARM executables

Some of the characteristics of the ARM architecture impose quite strict
constraints in the structure of source code. The machine code produced
by compilers for mid /high level programming often barely fits in such
constraints and, consequently, the introduction of supplementary in-
strumentation instructions causes some code structures to break. The
following list presents the cases which had to be addressed in order to

30 CHAPTER 3. METHODS

be able to produce compilable programs after the previously described
processing.

e The instructions cbz and cbnz are employed to perform short
jumps when the value of the register operand is respectively zero
and non-zero. These are limited only to branches with positive
offsets lying between 4 and 130 bytes. These limits are very re-
strictive and can be easily violated when inserting new code. In
such cases, these instructions are transformed in a standard zero
comparison and a conditional jump.

cbz r0, dest —> cmp 10, #0
beq dest

dest: ... dest :
Listing 3.20: ARM cbz transformation

e A similar issue of out of range offset presents itself with the PC
relative v1dr. This instruction is used to load a floating point
value located with an offset from -1020 to +1020 bytes from the
current code location (this is usually a data value embedded in the
code section). For the same reasons stated in the previous point,
this has to be transformed in a series of instructions employing a
temporary register to hold the data address.

vldr sO, wval —> push {r0}
movw r0, #:lowerl6:val
movt r0, #:upperl6:val
vldr sO0, [r0]
pop ({rO}

val: .word ... val: .word

Listing 3.21: ARM vldr transformation

It theoretically also exists the corresponding store instruction
vstr but, in practice, this is never found in executables since
writable memory section are always too far away from the code
section.

e Another adjustment made necessary by the increased code size re-
gards jump tables using byte-long offsets with the tbb instruction.

CHAPTER 3. METHODS 31

When the displacement values cannot be contained in a single
byte, these require to be transformed using the tbh operator.

tbb [pc, rl] —> tbh [pc, rl, 1sl #1]
tab: tab:
.byte (dest—tab)/2 .short (dest—tab)/2
dest: ... dest:

Listing 3.22: ARM tbb transformation

e A particular feature of the ARM architecture is the possibility
of conditional execution of instructions different from branches.
This is achieved with the use of it blocks, which mark the condi-
tional code portion, and operator suffixes, which indicate the type
of condition. These code blocks represent a problem when align-
ment sleds need to be inserted between their components and,
consequently, are translated using normal conditional branches
when the instrumentation is applied.

ite eq —> beq it_true

addeq r0, #1 sub r0, #1

subne r0, #1 b it_cont
it_true: add r0, #1
it_cont:

Listing 3.23: ARM it block transformation

Chapter 4

Resulis

The following sections show how the instrumentation process impacts
the performance of the targeted executable and provide an assessment
of enhanced security of a processed binary.

4.1 Performance analysis

4.1.1 Benchmarks

The performance evaluation was operated by applying the instrumen-
tation process on a small selection of benchmarks from the open source
Phoronix Test Suite [32]. The following list describes which tests were
employed and how they were configured. All the experiments were
performed on the latest available version of the softwares at the time of
testing (October 2017).

e blake2s: BLAKE?2 [33] is a cryptographic hash function. The
benchmark based on it (provided by the authors themselves in
the BLAKE? repository) consists in multiple runs of the function
on different message sizes. The test was build on the reference
sequential version of the function in order to allow compilation for
multiple architectures (there exist versions employing specialized
instructions to improve performance).

e gzip-compress: GNU zip is a file compression utility based on
the DEFLATE algorithm [34, 35]. The benchmark consists in
compressing a 2GB randomly generated file.

32

CHAPTER 4. RESULTS 33

dcraw: dcraw is a command line utility able to decode various
formats of RAW digital photographs. The benchmark consists
in converting two images, of 10Mp and 12Mp resolution, from
Nikon’s RAW file format (NEF) to Portable PixMap format (PPM).

encode-flac: Free Lossless Audio Codec (FLAC) is, as its name says,
a lossless audio format. The benchmark consists in converting a
16 bit PCM 44100Hz WAV file of 7 minutes and 44 seconds (the
10th track from the CCA licensed album The Slip by Nine Inch
Nuils) with the best quality.

himeno: Himeno Benchmark is a test developed by Ryutaro Hi-
meno. Since the benchmark is designed to always run in about
60 seconds, the reported results are normalized values which
represent the time necessary to complete 1000 iterations (the test
reports the total number of internal iterations performed).

bzip2-decompress: bzip? is a file compression utility based on
the Burrows—-Wheeler algorithm [36]. The benchmark consists in
decompressing an archive containing the version 3.7 of the Linux
kernel.

dolfyn: dolfyn is an open source Computational Fluid Dynamics
(CFD) utility developed in Fortran. The benchmark consists in
running the tool on the demo dataset distributed together with its
source code.

encode-opus: Opus [37] is an open source lossy audio codec. The
benchmark has the exact same structure of encode-flac.

The testing machine employed for x86 benchmarks is a HP Pavilion
G6 notebook [38] with a third generation Intel Core i5 3230m processor,
8GB of DDR3-1600 system memory and a 480GB SanDisk Ultra II solid
state drive [39] running Linux Mint 18.2 Sonya on the version 4.11.0-14-
generic of the Linux kernel. ARM testing was instead performed on a
dedicated server with a Marvell Armada XP quad-core SoC at 1.33GHz
[40], 2GB of system memory and 50GB of SSD storage running Ubuntu
16.04 on the version 4.4.95-mainline of the Linux kernel. The compi-
lation of the executables was handled by the version 5.4 of the GNU
compiler tool-chain (both for C and Fortran) with level 2 optimizations.
Execution times were recorded using the real output of Bourne Again

34 CHAPTER 4. RESULTS

SHell (Bash) built-in t ime function with millisecond precision. The
shown results are calculated as the average of three best executions
cycles sampled from sets of 10 or more in the attempt of smoothen the
influence of other running processes and system interrupts. All the
benchmarking results are available in Appendix B.1.

4.1.2 Reconstruction

Figures 4.1 to 4.3 show the relative overhead introduced by the recon-
struction process alone, calculated as

T
RelativeOverhead = (Reassembled mme 1) -100 .

OriginalTime

x86 64bit Benchmarks — Reassembled Binaries Overhead

2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0 =

Difference [%)]
[

|

blake2s
gzip—compress
dcraw
encode-flac
himeno

dolfyn
encode—-opus

bzip2-decompress

Figure 4.1: Benchmark overheads (average) for reassembled x86 64 bit
executables

CHAPTER 4. RESULTS 35

x86 32bit Benchmarks — Reassembled Binaries Overhead
1.2 —

1.1 4

1.0

0.9

0.8

0.7

0.6

Difference [%)]

0.5

0.4

0.3

0.2

0.1

0.0 -

blake2s
gzip—compress
dcraw
encode-flac
himeno

dolfyn
encode—opus

bzip2-decompress

Figure 4.2: Benchmark overheads (average) for reassembled x86 32 bit
executables

It can be seen that the disassembly and reassembly routine has a
really low (lower than 1%) impact on the performance of the targeted
binaries. These results are in line with what has already been discussed
in the paper about the original Uroboros implementation [19]. The
cause for the slight changes in execution speed can most probably be
found in differences in memory accesses and instruction fetching. The
reconstruction procedure, as explained in the previous chapter, must
apply some modification to memory addressing in order to maintain
correct references and, furthermore, it also has the tendency to generate
executables with small differences in code and data alignment.

Given its slightly higher overhead on the x86 64 bit architecture,
further investigations were done on the dcraw benchmark using Linux
perf tool [41] which, although only producing approximate results, can

36 CHAPTER 4. RESULTS

ARM Benchmarks — Reassembled Binaries Overhead
1.1 7

1.0

0.9

0.8

0.7

0.6

0.5

Difference [%)]

0.4

0.3

0.2 —

0.1

|
]

0.0 -

blake2s
gzip—compress
dcraw
encode-flac
himeno

dolfyn
encode—-opus

bzip2-decompress

Figure 4.3: Benchmark overheads (average) for reassembled ARM exe-
cutables

provide good process profiling. The tool highlighted a 10% increase in
branch mis-prediction during the execution of the reassembled binary
which can be labelled as the most probable cause for speed penalty.

4.1.3 Instrumentation

Figures 4.4 to 4.6 show the relative overhead recorded on the execution
of the binaries processed by the instrumentation tool, calculated with
the same formula shown in the previous section.

The performance penalty for x86 binaries in almost all cases hovers
below 10%/12%. Small executables like blake2s and himeno, having
a much lower number of functions and function invocations, tend
to present an even lower impact on speed. The Linux perf tool was

CHAPTER 4. RESULTS 37

x86 64bit Benchmarks - Instrumented Binaries Overhead
24 —

22

20

18 —

16 —

14 —

12

Difference [%)]

10

blake2s
gzip—compress
dcraw
encode-flac
himeno

dolfyn
encode—opus

bzip2-decompress

Figure 4.4: Benchmark overheads (average) for instrumented x86 64 bit
executables

again used to have a better understanding of the anomalous-looking
results. In the 64 bit benchmarks, dolfyn suffers a 21% greater amount
of cache misses which, given the very short overall execution time
of the program, results in a quite significant relative speed overhead.
The instrumented 32 bit version of dcraw presents 32% more branch
mis-predictions and an increase of 49% in the number of stalled CPU
cycles caused by memory accesses. This could be traced back to the
significantly large number of indirect jmp/call instructions present
in the program which cause several accesses (for some reason more
expensive in 32 bit mode) to the thread local storage to manage frame
cookies. Also, probably due to the bottleneck introduced by disk read
throughput, it can be noted that the performance difference for the 32
bit gzip benchmark is very low. This same situation does not repeat

38 CHAPTER 4. RESULTS

x86 32bit Benchmarks - Instrumented Binaries Overhead

30

26
24
22
20
18
16
14
12

Difference [%)]

8 -
6 -
4 -
°] ,—I
0 -
) » 1) o » c 17
N 1] (% © c 73 = =
Q 9] o = 9] o = a
X 5 3] | £ 5 <] 9
© B o £ o]
e IS ° = IS)
o Q e} °
o o o Q
I c @ o
2 o by S
N
o~
@ o3
N
Q

Figure 4.5: Benchmark overheads (average) for instrumented x86 32 bit
executables

for the 64 bit version probably because of the 80% higher branch mis-
prediction recorded by pert.

Taking in consideration the results from benchmarking instrumented
ARM binaries, some of the recorded values appear to be anomalous.
The majority of tests present very low overhead or, in cases like dol-
fyn and bzip2, even a speed improvement. The fact of this outcome
being highly unlikely due to the increased number of instructions to
be executed led to further investigations. These indicated that the per-
formance bias was caused by different execution efficiency between
the instruction blocks “pop {pc}” and “pop {1lr}; bx 1r”. As
explained in Section 3.2.2, this transformation is applied during the
instrumentation process in order to allow return address decryption
and from standalone testing a speed difference between 48% and 51%

CHAPTER 4. RESULTS 39

ARM Benchmarks - Instrumented Binaries Overhead

9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5 —
4.0 H
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
_05 -

Difference [%)]

|
|

I
I

blake2s
gzip—compress
dcraw
encode-flac
himeno

dolfyn
encode—opus

bzip2-decompress

Figure 4.6: Benchmark overheads (average) for instrumented ARM
executables

emerged in favour of the latter form. The testing was also repeated
on a BBC micro:bit [42] board running an ARMv6 Cortex-M0 processor
[43] and, since no significant variation between the code fragments was
evidenced on such system, the drawn conclusion was to attribute the
performance abnormality to the ARMv7 implementation of the testing
system.

Nevertheless, dcraw, gzip and blake2s present marginally higher
overheads and the perf analysis reported an increase of more than
50% in branch mis-prediction for the first two and a 4 times higher
number of cache misses for the latter.

40 CHAPTER 4. RESULTS

4.2 File sizes

x86 64bit Benchmarks — Executable Size Difference

48 -

45 - B Reassembled
_ O Instrumented
42 —
39 —
36 —
33
30]
X 27
S 24
g
@ 21 — -
a 18+
15 —
12
9 —
6 —
3 —
0 — PR | P -_ PR |
_3 -
& ¢ 3 & g 8 & 38
) 2 5 T e £ 5 &
© o B [£ =3 ° ?
re) € © = £ (]
o Q o o
[S] [&] [&] Q
I c Q [&]
2 ® T 5
5 fa
N
Ke)

Figure 4.7: Benchmark executable file size difference for x86 64 bit
binaries

Figures 4.7 to 4.9 show the relative file size variation caused by the
reassembly and instrumentation processes. The measurements were
operated on executables with all symbol information removed in order
to take into account only the size increase produced by the added
code and data pieces. The charts show very low differences for the
reassembled binaries and an added size between 15% and 45% for the
instrumented binaries, approximately in proportion to the number of
functions of the executable. Instrumented ARM binaries present on
average a lower size overhead than the x86 ones due to the less frequent
adoption of alignment sleds.

The negative size variations recorded for most of the reassembled

CHAPTER 4. RESULTS 41

x86 32bit Benchmarks — Executable Size Difference

48 —
45 — B Reassembled
] O Instrumented
42
39 —
36 —
33
30 —
S 27 _
3 24
]
E 21
a 18 +] _
15
12
9 —
6 —
3 —
0 e -
_3 -
[] ; (o] [o] c
N © ®© c ‘2-
g 5 T 2 S
© ° [0} £ °
o § <
C
(0]

gzip—compress
encode—opus

bzip2-decompress

Figure 4.8: Benchmark executable file size difference for x86 32 bit
binaries

x86 binaries are due to padding instruction (e.g. lea ESI, [ESI +
EIZ = 1 + 0x0]), which can be generated with extended length by
higher level compilers, to be recompiled using standard encoding hence
resulting in shorter byte sequences.

The very high relative values displayed for the x86 32 bit versions of
blake2s and himeno are caused by the fact that the code sections of the
original binaries are small enough to be contained in a single 4KB page
while the applied processing makes the addition of another memory
page required.

42 CHAPTER 4. RESULTS

ARM Benchmarks — Executable Size Difference

36 —
B Reassembled
33 — O Instrumented
30
27
24
X 21 A
[0}
o
@ 18 I
L _
a 15 — _
12 -]
9 —
6 —
o J:|
0 ==l] mm | B =]

blake2s
gzip—compress
dcraw
encode-flac
himeno

dolfyn
encode—opus

bzip2-decompress

Figure 4.9: Benchmark executable file size difference for ARM binaries

4.3 Closed source application

The main advantage of being able to directly apply code modifications
to executable files is the possibility of instrumenting programs where
the original source code is not publicly available. As a proof of such
concept, the instrumentation process was also performed on the pro-
prietary satisfiability modulo theories (SMT) solver SatEEn [44], which is
only distributed as a 32 bit x86 ELF binary.

The performance measurements for the program were obtained by
running it against a subset of 62 compatible (the solver only supports
input files employing up to version 1.2 of the SMT definition language
while currently available benchmarks are written in the newer 2.x
standard; compatibility was dictated by the possibility of performing
such backwards translation) tests selected from the mathsat category

CHAPTER 4. RESULTS 43

of the QF_LIA SMT benchmarking suite. These tests showed a 0.52%
overhead caused just by the reassembling procedure and a 11.61%
overhead for the instrumented version of the application, similar values
to the ones obtained with the other benchmarking utilities.

It should be anyway noted that each of the 62 tests requires a sepa-
rate invocation of the solver, which means that it must be factored in
such performance penalty value the fact that the initial key generation
routine had to be executed multiple times and, consequently, the ef-
fective instrumentation overhead is slightly lower (the running time
for a single SMT problem is in the order of milliseconds thus making
not possible to have precise measurements without performing a batch
execution). On the subject of executable file size, the reassembled ver-
sion presents a size decrease of 3.17% (for the same reasons explained
in the previous section) while an increase of 15.18% is recorded for the
instrumented version.

4.4 Attack simulation

This section describes a simple simulation (on x86 64 bit architecture)
of how the presented instrumentation counteracts a buffer overflow
attack aimed at modifying the program’s behavior by means of code
chaining.

The proposed example (sample code in Appendix A.4) is a small
program in which the attack target is represented by a global flag st ate
which is set to 1 by default. Such flag can be accessed by the function
set_state which uses the value passed in the EDI register to modify
it. The code also contains another function which uses the completely
insecure gets routine to read a character string from the standard
input. The attack’s objective is the exploit the unchecked input pipe in
order to change the value of the state flag to 0.

Fundamental in order to successfully mount the described attack
is to locate suitable gadgets to set desired register values. In this in-
stance, such action is performed by the instruction block “cmp EAX,
0x488DFF31; mov EBX, EAX” (this was voluntarily added to the
code in order to facilitate this demonstration but similar blocks are not
unlikely to be found in real executables) which, if interpreted in a un-
aligned manner with a byte of offset, is translated as “xor EDI, EDI;
lea ECX, [RAX - 0x77]; ret”, effectively providing a gadget to

44 CHAPTER 4. RESULTS

set the value of EDI to 0.

The attack can then be performed by passing the correctly formatted
input to the standard input of the program. The string is composed
by: a certain number of non-significant characters used to overflow the
gets buffer and reach the first return address, the address of the gadget
zeroing EDI, the address of the set_state function to store the value
of EDI to the flag and, finally, the original return address of the routine
containing gets to proceed with the rest of the execution. By doing
so, the program’s execution follows the “address chain” and modifies
state as desired.

Considering now an instrumented version of the executable, the
previously described violation is no longer effective. The attack fails
at the first return statement encountered after the buffer overflow: the
return address decryption mechanism in place at such exit point tries
to decrypt an already valid address resulting in corrupted data which
causes a memory access violation (segmentation fault) when employed
by the ret instruction.

Supposing an attacker is however able to circumvent this first line
of defense, the gadget employed above is no more usable since it has
been transformed using an alignment sled as shown in Listing 4.1.

cmp EAX, 0x488DFF31
jmp . +11
nop
nop
mov EBX, EAX
Listing 4.1: Gadget code block with sled

xor EDI, EDI

lea ECX, [RAX — 0X15]

or [RAX — 0X6F6F6F70], EDX
nop

nop
mov EBX, EAX
Listing 4.2: Gadget misaligned code block with sled

As a consequence, also the misaligned interpretation of the block
(Listing 4.2) changes and the execution is forced back to the correct

CHAPTER 4. RESULTS 45

alignment and is going to be stopped at the next address decryption
before the successive return statement (or, in this particular case, a
memory violation would already happen when executing the indirect
addressing of the or instruction).

Chapter 5

Discussion

5.1 Limitations

The most significant limitation of the proposed approach is introduced
by the heuristic nature of the recompilation/instrumentation frame-
work. The reconstruction of symbolic information necessitates the
formulation of assumptions on the meaning of the constant values lo-
cated in the code and data sections of executables and non-functioning
programs are easily obtained when these does not hold. Such situations
were encountered multiple times (especially for values in the . rodata
and .data sections) while performing tests on benchmarking binaries,
which required a significant time investment in debugging and man-
ual analysis in order to gather more information on the structure of
targeted executables and use it in the symbol recognition process to
correct errors.

Such procedure may also suffer from code containing unusual man-
ually crafted constructions or code obfuscations. An example could be
the process of loading an address into a register split among multiple
instructions: the operation “mov RAX, 0x400400” could also be writ-
ten as “mov RAX, 0x200000; shl RAX, 1; add RAX, 0x400”
and, while the constant in the first case would be recognized as an
address and substituted with a label, the latter case would not match
any recognition pattern hence resulting in a corrupted memory pointer
if any relocation happens in the recompilation process.

Moreover, further complications arise when the targeted binaries
are produced from high level languages and/or special compilers em-
ploying more sections of the executable to store meta-information. For

46

CHAPTER 5. DISCUSSION 47

example, executables generated starting from the C++ language contain
specific sectors used for the management of object constructors and
destructors and the propagation of exceptions.

Some limitations also apply to the effectiveness of the employed
instrumentation techniques. The procedure does not eliminates free
branches from the instrumented binaries but prepends to these protec-
tion blocks. This means that an attacker could manage to jump over
such checks and still be able to exploit the short gadgets still present in
the binary, although the range and capabilities of the practicable attacks
would be very limited.

5.2 Future work

One of the purposes of the described project has been to test the feasi-
bility of extending instrumentation frameworks and techniques over
different system architectures. Given the encouraging results, the adap-
tation to other different architectural types can be investigated and
implemented in order to produce a more complete and generic plat-
form.

Moreover, on the subject of the problems in symbol reconstruction
pointed out in the previous section, an interesting approach which
could be used to tackle the issue is the employment of machine learning
algorithms. The current implementation relies on strict patterns which
identify constant values as addresses just by performing checks on
whether these are contained in the virtual address space of the analyzed
binary. If a more sophisticated classifier could be trained in order take
into account more information other than such checks (e.g. the position
of the pointer in the file, its distance to other pointers, etc.), it could
produce more a flexible evaluation and possibly a lower number of
false positives, hence improving the robustness of the recompilation
procedure.

Another improvement could be achieved by implementing the frame
cookie protection mechanism (Section 3.2.3) to be located on the pro-
gram’s stack, as in the original G-Free design [2]. The choice of using a
separate thread-local stack was dictated by the complexity and critical-
ity of the analysis of stack references which would have been required
to compensate the layout change in the program’s stack caused by
the insertion of the cookie. Such analysis must be very accurate, es-

48 CHAPTER 5. DISCUSSION

pecially for optimized executables, and small mistakes can easily lead
to non-functioning applications. As a consequence, the proposed im-
plementation trades some of the protection capabilities of the defense
technique with an improved stability and reliability of the instrumenta-
tion process.

Furthermore, to take into consideration other possible applications,
the assembler code recovery engine employed as the foundation to
apply the described instrumentation technique is suitable for different
utilizations. An example could be the implementation of a layout
randomizer to modify the functions’” positions in the code section for
executable binaries not compiled with native support for ASLR [29].
Another case, especially applicable for architectures like ARM where
data values can be found embedded among instructions in the . text
section, is the production of executables with encrypted code targeted
to processors supporting live decryption in the instruction fetching
stage [45]. Yet another possible use of the binary rewriting capabilities
of the tool is the implementation of Software Fault Isolation (SFI) models,
where code modification are required to guard potentially dangerous
operations.

5.3 Ethics

When it comes to research ethics, the subject of reverse engineering (RE)
represents a sort of gray area. Disassembling and modifying a software
product on the development of which an individual or a company in-
vested time and/or capital may be sometimes deemed as a violation of
intellectual property. In the case of the proposed project, the RE work is
aimed to the improvement of the targeted application by providing pro-
tection against the exploitment of possible design flaws. In this regard,
such activity should be considered ethical and source of innovative
value.

5.4 Conclusion

This thesis project has discussed the design and implementation of a
static binary rewriting tool capable of instrumenting executables com-
piled in a Linux environment for x86 and ARM processors against
Return Oriented Programming attacks. The results obtained from the

CHAPTER 5. DISCUSSION 49

developed prototype tool show that such process is in fact feasible and
the overhead introduced on targeted applications by such procedure
is on average acceptably low. Although strict testing and source code
analysis remain the best practices for the development of secure ap-
plications, the described methodology can be a valid alternative when
such proceedings are not applicable. Furthermore, the flexibility of the
employed instrumentation framework can make it applicable to more
software analysis and security fields other than ROP defense.

Source code of the described tool is publicly available at the GitHub
repository https://github.com/piax93/uroborosontheallpy
branch.

https://github.com/piax93/uroboros

Bibliography

8]

Marco Prandini and Marco Ramilli. “Return-Oriented Program-
ming”. In: IEEE Security Privacy 10.6 (November 2012), pp. 84-87.
ISSN: 1540-7993. DOI: 10.1109/MSP.2012.152.

Kaan Onarlioglu et al. “G-Free: Defeating Return-oriented Pro-
gramming Through Gadget-less Binaries”. In: Proceedings of the
26th Annual Computer Security Applications Conference. ACSAC
"10. Austin, Texas, USA: ACM, 2010, pp. 49-58. 1SBN: 978-1-
4503-0133-6. DOI: 10.1145/1920261.1920269. URL: http:
//doi.acm.orqg/10.1145/1920261.1920269.

S. N. Bokhari. “The Linux operating system”. In: Computer 28.8
(August 1995), pp. 74-79. 1SSN: 0018-9162. DOI: 10.1109/2.
402081.

Hongjiu Lu. Elf: From the programmer’s perspective. Tech. rep.
500 Westchester Avenue White Plains, NY 10604, USA: NYNEX
Science and Technology, May 1995.

Michael Matz et al. “System V Application Binary Interface”. In:
AMD64 Architecture Processor Supplement, Draft v0 99 (2013).

ARM Limited. ARM Information Center: Conditional execution.
URL: http://infocenter.arm.com/help/index. jsp?
topic=%2Fcom.arm.doc.duil0068b%2FChdehgih . html
(visited on 10/08/2017).

Yves Younan. 25 Years of Vulnerabilities: 1988-2012. Tech. rep.
Sourcefire Vulnerability Research Team, 2013.

Solar Designer. Getting around non-executable stack (and fix). Tech.
rep. 1997.

50

http://dx.doi.org/10.1109/MSP.2012.152
http://dx.doi.org/10.1145/1920261.1920269
http://doi.acm.org/10.1145/1920261.1920269
http://doi.acm.org/10.1145/1920261.1920269
http://dx.doi.org/10.1109/2.402081
http://dx.doi.org/10.1109/2.402081
http://infocenter.arm.com/help/index.jsp?topic=%2Fcom.arm.doc.dui0068b%2FChdehgih.html
http://infocenter.arm.com/help/index.jsp?topic=%2Fcom.arm.doc.dui0068b%2FChdehgih.html

[10]

BIBLIOGRAPHY 51

Hovav Shacham. “The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86)”. In: Pro-
ceedings of the 14th ACM Conference on Computer and Communica-
tions Security. CCS '07. Alexandria, Virginia, USA: ACM, 2007,
pp- 552-561. ISBN: 978-1-59593-703-2. DOI1: 10.1145/1315245.
1315313. URL: http://doi.acm.org/10.1145/1315245.
1315313.

Erik Buchanan et al. “When Good Instructions Go Bad: General-
izing Return-oriented Programming to RISC”. In: Proceedings of
the 15th ACM Conference on Computer and Communications Security.
CCS’08. Alexandria, Virginia, USA: ACM, 2008, pp. 27-38. ISBN:
978-1-59593-810-7. DOI: 10.1145/1455770.1455776. URL:
http://doi.acm.org/10.1145/1455770.1455776.

Tim Kornau. “Return oriented programming for the ARM archi-
tecture”. PhD thesis. Master’s thesis, Ruhr-Universitiat Bochum,
2010.

Derek Bruening and Saman Amarasinghe. “Efficient, transparent,
and comprehensive runtime code manipulation”. PhD thesis.
Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, 2004.

Bryan Buck and Jeffrey K Hollingsworth. “An API for runtime
code patching”. In: The International Journal of High Performance
Computing Applications 14.4 (2000), pp. 317-329.

Chi-Keung Luk et al. “Pin: Building Customized Program Analy-
sis Tools with Dynamic Instrumentation”. In: Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI '05. Chicago, IL, USA: ACM, 2005,
pp- 190-200. 1SBN: 1-59593-056-6. DOI: 10 .1145/1065010 .
1065034. URL: http://doi.acm.org/10.1145/1065010.
1065034.

Nicholas Nethercote and Julian Seward. “Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation”. In:
Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI "07. San Diego, Califor-
nia, USA: ACM, 2007, pp. 89-100. ISBN: 978-1-59593-633-2. DOI:
10.1145/1250734.1250746. URL: http://doi.acm.org/
10.1145/1250734.1250746.

http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1315245.1315313
http://dx.doi.org/10.1145/1455770.1455776
http://doi.acm.org/10.1145/1455770.1455776
http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://dx.doi.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/1250734.1250746

52

[16]

[17]

[20]

[21]

[22]

BIBLIOGRAPHY

Andrew R. Bernat and Barton P. Miller. “Anywhere, Any-time Bi-
nary Instrumentation”. In: Proceedings of the 10th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools. PASTE
"11. Szeged, Hungary: ACM, 2011, pp. 9-16. 1SBN: 978-1-4503-
0849-6. DO1: 10.1145/2024569.2024572. URL: http://doi.
acm.org/10.1145/2024569.2024572.

M. A. Laurenzano et al. “PEBIL: Efficient static binary instru-
mentation for Linux”. In: 2010 IEEE International Symposium on
Performance Analysis of Systems Software (ISPASS). March 2010,
pp. 175-183. DOI: 10.1109/ISPASS.2010.5452024.

Kapil Anand et al. “Decompilation to compiler high IR in a binary
rewriter”. In: University of Maryland, Tech. Rep (2010).

Shuai Wang, Pei Wang, and Dinghao Wu. “Reassembleable Disas-
sembling”. In: 24th USENIX Security Symposium (USENIX Security
15). Washington, D.C.: USENIX Association, 2015, pp. 627-642.
ISBN: 978-1-931971-232. URL: https://www.usenix.orqg/
conference/usenixsecurityl5/technical-sessions/
presentation/wang-shuai.

Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. “Dy-
namic Integrity Measurement and Attestation: Towards Defense
Against Return-oriented Programming Attacks”. In: Proceedings
of the 2009 ACM Workshop on Scalable Trusted Computing. STC
'09. Chicago, Illinois, USA: ACM, 2009, pp. 49-54. 1SBN: 978-1-
60558-788-2. DOI: 10.1145/1655108.1655117. URL: http:
//doi.acm.org/10.1145/1655108.1655117.

Ping Chen et al. “DROP: Detecting Return-Oriented Program-
ming Malicious Code”. In: Information Systems Security: 5th Inter-
national Conference, ICISS 2009 Kolkata, India, December 14-18, 2009
Proceedings. Ed. by Atul Prakash and Indranil Sen Gupta. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 163-177. 1SBN:
978-3-642-10772-6. DOI: 10.1007/978-3-642-10772-6_13.
URL: https://doi.org/10.1007/978-3-642-10772-
6_13.

Stephen Checkoway et al. “Return-oriented Programming With-
out Returns”. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security. CCS "10. Chicago, Illinois,
USA: ACM, 2010, pp. 559-572. 1SBN: 978-1-4503-0245-6. DOI:

http://dx.doi.org/10.1145/2024569.2024572
http://doi.acm.org/10.1145/2024569.2024572
http://doi.acm.org/10.1145/2024569.2024572
http://dx.doi.org/10.1109/ISPASS.2010.5452024
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
http://dx.doi.org/10.1145/1655108.1655117
http://doi.acm.org/10.1145/1655108.1655117
http://doi.acm.org/10.1145/1655108.1655117
http://dx.doi.org/10.1007/978-3-642-10772-6_13
https://doi.org/10.1007/978-3-642-10772-6_13
https://doi.org/10.1007/978-3-642-10772-6_13

[23]

BIBLIOGRAPHY 53

10.1145/1866307.1866370. URL: http://doi.acm.org/
10.1145/1866307.1866370.

Martin Abadi et al. “Control-flow Integrity”. In: Proceedings of
the 12th ACM Conference on Computer and Communications Security.
CCS’05. Alexandria, VA, USA: ACM, 2005, pp. 340-353. ISBN:
1-59593-226-7. DOI1: 10.1145/1102120.1102165. URL: http:
//doi.acm.org/10.1145/1102120.1102165.

Chao Zhang et al. “Practical Control Flow Integrity and Ran-
domization for Binary Executables”. In: Proceedings of the 2013
IEEE Symposium on Security and Privacy. SP "13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 559-573. ISBN:
978-0-7695-4977-4. DOI: 10.1109/SP.2013.44. URL: http:
//dx.doi.org/10.1109/SP.2013.44.

Tigist Abera et al. “C-FLAT: Control-FLow ATtestation for Em-
bedded Systems Software”. In: CoRR abs/1605.07763 (2016). URL:
http://arxiv.org/abs/1605.07763.

Ghada Dessouky et al. “LO-FAT: Low-Overhead Control Flow
ATtestation in Hardware”. In: CoRR abs/1706.03754 (2017). URL:
http://arxiv.org/abs/1706.03754.

Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. “ROPde-
fender: A Detection Tool to Defend Against Return-oriented Pro-
gramming Attacks”. In: Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security. ASIACCS
"11. Hong Kong, China: ACM, 2011, pp. 40-51. I1SBN: 978-1-
4503-0564-8. DOI: 10.1145/1966913.1966920. URL: http:
//doi.acm.org/10.1145/1966913.1966920.

Crispin Cowan et al. “StackGuard: Automatic Adaptive Detec-
tion and Prevention of Buffer-overflow Attacks”. In: Proceedings
of the 7th Conference on USENIX Security Symposium - Volume 7.
SSYM’98. San Antonio, Texas: USENIX Association, 1998, pp. 5-5.
URL: http://dl.acm.org/citation.cfm?id=1267549.
1267554.

PaX Team. PaX address space layout randomization (ASLR). 2003.
URL: https://pax.grsecurity.net /docs/aslr.txt
(visited on 12/14/2017).

http://dx.doi.org/10.1145/1866307.1866370
http://doi.acm.org/10.1145/1866307.1866370
http://doi.acm.org/10.1145/1866307.1866370
http://dx.doi.org/10.1145/1102120.1102165
http://doi.acm.org/10.1145/1102120.1102165
http://doi.acm.org/10.1145/1102120.1102165
http://dx.doi.org/10.1109/SP.2013.44
http://dx.doi.org/10.1109/SP.2013.44
http://dx.doi.org/10.1109/SP.2013.44
http://arxiv.org/abs/1605.07763
http://arxiv.org/abs/1706.03754
http://dx.doi.org/10.1145/1966913.1966920
http://doi.acm.org/10.1145/1966913.1966920
http://doi.acm.org/10.1145/1966913.1966920
http://dl.acm.org/citation.cfm?id=1267549.1267554
http://dl.acm.org/citation.cfm?id=1267549.1267554
https://pax.grsecurity.net/docs/aslr.txt

54 BIBLIOGRAPHY

[30] Hovav Shacham et al. “On the Effectiveness of Address-space
Randomization”. In: Proceedings of the 11th ACM Conference on
Computer and Communications Security. CCS '04. Washington
DC, USA: ACM, 2004, pp. 298-307. ISBN: 1-58113-961-6. DOLI:
10.1145/1030083.1030124. URL: http://doi.acm.org/
10.1145/1030083.1030124.

[31] Nguyen Anh Quynh. “Capstone: Next-gen disassembly frame-
work”. In: Black Hat USA (2014).

[32] Michael Larabel and Matthew Tippett. Phoronix test suite. 2011.
URL: https://www.phoronix-test-suite.com (visited on
10/08/2017).

[33] Markku Juhani Saarinen and Jean-Philippe Aumasson. The BLAKE?
Cryptographic Hash and Message Authentication Code (MAC). REC
7693. Internet Engineering Task Force, November 2015. URL:
https://tools.ietf.org/html/rfc7693.

[34] Antaeus Feldspar. An explanation of the deflate algorithm. 2011.
URL: http://www.gzip.org/deflate.html (visited on
10/08/2017).

[35] Peter Deutsch. DEFLATE Compressed Data Format Specification
version 1.3. RFC 1951. Internet Engineering Task Force, May 1996.
URL: https://tools.ietf.org/html/rfcl951.

[36] M. Burrows and D.]J. Wheeler. A block-sorting lossless data com-
pression algorithm. Tech. rep. Digital Equipment Corporation,
1994.

[37] Jean-Marc Valin, Koen Vos, and Timothy Terriberry. Definition of
the Opus Audio Codec. RFC 6716. Internet Engineering Task Force,
September 2012. URL: https://tools.ietf.org/html/
rfco71l6.

[38] HP Pavilion g6-2338sl Notebook PC Product Specifications. URL:
https://support.hp.com/hk-en/document/c03723312
(visited on 11/02/2017).

[39] SanDisk Ultra II SSD. URL: https://www . sandisk .com/
home/ssd/ultra—-ii-ssd (visited on 11/02/2017).

http://dx.doi.org/10.1145/1030083.1030124
http://doi.acm.org/10.1145/1030083.1030124
http://doi.acm.org/10.1145/1030083.1030124
https://www.phoronix-test-suite.com
https://tools.ietf.org/html/rfc7693
http://www.gzip.org/deflate.html
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc6716
https://tools.ietf.org/html/rfc6716
https://support.hp.com/hk-en/document/c03723312
https://www.sandisk.com/home/ssd/ultra-ii-ssd
https://www.sandisk.com/home/ssd/ultra-ii-ssd

BIBLIOGRAPHY 55

Marvell. MV78460 ARMADA® XP Highly Integrated Multi-Core
ARMv7 Based System-on-Chip Processors. URL: https://www.
marvell . com/ docs / embedded - processors / assets/
marvell -embedded-processors—armada-xp-mv7/8460—

hardware — specifications - 2014 - 07 . pdf (visited on
11/02/2017).

Linux Kernel Organization. perf: Linux profiling with performance
counters. URL: https://perf.wiki.kernel.org (visited on
11/06/2017).

Micro:bit Educational Foundation. micro:bit. URL: http: //
microbit.org (visited on 11/07/2017).

ARM Limited. Cortex-M0. URL: https://developer.arm.
com/products/processors/cortex-m/cortex-m0 (vis-

ited on 11/07/2017).

Hyondeuk Kim et al. SatEEn: SMT solver. URL: http://vlsi.
colorado.edu/~hhkim/sateen (visited on 11/16/2017).

Gaurav SKc, Angelos D Keromytis, and Vassilis Prevelakis. “Coun-
tering code-injection attacks with instruction-set randomization”.
In: Proceedings of the 10th ACM conference on Computer and commu-
nications security. ACM. 2003, pp. 272-280.

https://www.marvell.com/docs/embedded-processors/assets/marvell-embedded-processors-armada-xp-mv78460-hardware-specifications-2014-07.pdf
https://www.marvell.com/docs/embedded-processors/assets/marvell-embedded-processors-armada-xp-mv78460-hardware-specifications-2014-07.pdf
https://www.marvell.com/docs/embedded-processors/assets/marvell-embedded-processors-armada-xp-mv78460-hardware-specifications-2014-07.pdf
https://www.marvell.com/docs/embedded-processors/assets/marvell-embedded-processors-armada-xp-mv78460-hardware-specifications-2014-07.pdf
https://perf.wiki.kernel.org
http://microbit.org
http://microbit.org
https://developer.arm.com/products/processors/cortex-m/cortex-m0
https://developer.arm.com/products/processors/cortex-m/cortex-m0
http://vlsi.colorado.edu/~hhkim/sateen
http://vlsi.colorado.edu/~hhkim/sateen

Appendix A

Code snippets

A.1 Examples

All the following examples were compiled using the GNU Compiler
Collection (GCC) version 5.4 on a x86 64 bit system with all optimizations
and optional features disabled. Behaviour and characteristics (e.g.
stack allocation) of the resulting binaries may vary when created with
different compilers.

A.1.1 Stack overflow

This code reads a character string from the standard input and then
prints the value of another string variable. The input is read with-
out checking buffer boundaries and, consequently, the stack can be
corrupted using long enough input values.

#include <stdio.h>

int main () {
char stringl[6];
char string2[6] = "hello";
scanf ("%s", stringl);
puts (string?2);
return 0O;

Listing A.1: Program vulnerable to stack overflow

56

APPENDIX A. CODE SNIPPETS 57

The memory addresses of the two string variables are 16 bytes away
from each other so after the insertion of 16 characters it is possible to
edit the contents of stringl.

Normal execution: Stack overwriting:
$> ./a.out $> ./a.out
world 1234567812345678world
hello world

A.1.2 Return Address Poisoning

Using the same methodology shown in the previous section, this is a
simple example of how the control flow of a program can be hijacked by
overwriting return addresses. The code has two functions normal (),
which contains a vulnerable buffer operation, and secret (), which is
supposed to never be called during a normal execution.

#include <stdio.h>

void secret () {
printf ("All security is now disabled\n");

void normal () {
char buffer[6];
printf ("Tell me something...\n");
scanf ("%$s", buffer);

int main () {
normal () ;
return 0O;

}
Listing A.2: Program vulnerable to control flow hijacking

When normal () is invoked the stack contains: 16 bytes allocated
for local variables, 8 bytes for the pushed base pointer and another 8

58 APPENDIX A. CODE SNIPPETS

byte for the return address pointing to the middle of the main function.
In order to redirect the execution to the secret () function, it is nec-
essary to input 24 bytes followed by the little endian representation of
the virtual address of that routine.

Normal execution:

$> ./a.out
Tell me something...
Hello

Overwriting return address:

$> echo —-ne "123456781234567812345678\x86\x05\x40
" | ./a.out

Tell me something...

All security is now disabled

A.2 Key generation

Below is the C code of the simple key generation procedure which
is used at the beginning of program execution in order to create the
keys then employed in return address encryption and indirect branch
protection. The function simply reads two word-size unsigned integers
from the Linux pseudo-random generator device and saves these in
global memory. The instrumentation process selects the assembler
translation of this procedure for the architecture at issue and prepends
it to the main function of the targeted application.

#include <fcntl.h>
#include <unistd.h>

static unsigned long xorkey;
static unsigned long cookiekey;

void keygen () {

APPENDIX A. CODE SNIPPETS 59

size_t len = sizeof (long);
int fd = open("/dev/urandom", O_RDONLY) ;
if(£fd < 0
| | read(fd, &xorkey, len) != len
| | read(fd, &cookiekey, len) != len) {
fail ("Failed to generate keys");
}

close (fd);

Listing A.3: C code of key generation routine

A.3 Frame cookie

Below are the assembler implementations of the frame cookie technique
employed to guard indirect branches.

A.3.1 x86 64 bit

func:
push
push
add
mov
mov
xor
Xor
mov
pop
pop

push
mov
xor
Xor
cmp
pop
jne
call

; function entry
;, return address encryption

RAX ; save RAX

RBX ; save RBX

fs:[cstack@tpof], 1 , increment stack size
RBX, fs:[cstack@tpof] ; mov stack size to RBX
RAX, [cookiekey] ; load key

RAX, $funcID ; generate cookie and
RAX, RBX ; save it on cookie stack
fs :[cstack@tpof + 8 x RBX], RAX

RBX ; restore RBX

RAX ; restore RAX

RAX ; save RAX

RAX, fs:[cstack@tpof] ; load stack size
RAX, fs:[cstack@tpof + 8 x RAX]

RAX, $funcID ; extract key from cookie
RAX, [cookiekey] ; compare with correct key
RAX ; restore RAX

fail ; jump to fail if not ok

; indirect branch

60 APPENDIX A. CODE SNIPPETS

sub fs:[cstack@tpof], 1

ret

7
7

7

decrement stack size
return address decryption
return

Listing A.4: x86 64 bit frame cookie

A.3.2 x86 32 bit

func: ; function entry
; return address encryption
push EAX ; save EAX
push EBX ; save EBX
add gs:[cstack@ntpof], 1 ; increment stack size
mov EBX, gs:[cstack@ntpof] ; mov stack size to EBX
mov EAX, [cookiekey] ; load key
xor EAX, $funcID ; generate cookie and
xor EAX, EBX ; save it on cookie stack
mov gs:[cstack@tpof + 8 x EBX], EAX
pop EBX ; restore EBX
pop EAX ; restore EAX
push EAX ; save EAX
mov EAX, gs:[cstack@ntpof] ; load stack size
xor EAX, gs:[cstack@ntpof + 8 x EAX]
xor EAX, $funcID ; extract key from cookie
cnp EAX, [cookiekey] ; compare with correct key
pop EAX ; restore EAX
jne fail ; jump to fail if not ok
call *EBX ; indirect branch

sub gs:[cstack@ntpof], 1

ret

7

7

7

decrement stack size
return address decryption
return

Listing A.5: x86 32 bit frame cookie

A3.3 ARM

func:

push {r0, rl1, r2}

; function entry
; return address encryption
; save r0, rl1, r2

mrc
movw
movt
add
movw
movt
1dr
movw
movt
eor
1dr
add
str
eor
str

pop

push
mrc
movw
movt
add
1dr
1dr
eor
movw
movt
eor
movw
movt
1dr
cmp
bne
movw
movt
cmp
pop
blo
orr
blx

push
mrc

movw
movt

APPENDIX A. CODE SNIPPETS

pl5, 0, r2, c13, <0, 3
rl,

7

load TLS address

#:lowerl6: cstack (tpoff)

rl, #:upperl6:cstack(tpoff)

r2, rl

r0, #:lowerl6:cookiekey
r0, #:upperl6:cookiekey
r0, [r0]

rl, #:lowerl6:funclID
rl, #:upperl6:funclD
r0, rl

rl, [r2]

rl, #1

rl, [r2]

r0, rl

r0, [r2, rl,
{rO, rl1, r2}

1s1 #2]

{r0, rl1}
pl5, 0, r0, c13, c0, 3

7

7

7

load key

load function ID

generate cookie
load stack size
increment stack size
store stack size
combine with cookie
store cookie

restore r0, r1, r2

save r0 and rl
load TLS address

rl, #:lowerl6:cstack (tpoff)
rl, #:upperl6:cstack(tpoff)

r0, rl

rl, [r0]

r0, [r0, rl, 1sl #2]
r0, rl

rl, #:lowerl6:funclID
rl, #:upperl6:funclD
r0, rl

rl, #:lowerl6:cookiekey
rl, #:upperl6:cookiekey
rl, [rl1]

r0, rl

fail

r0, #:lowerl6: .text

r0, #:upperl6:.text
r3, r0

{rO0, rl}

.+6

r3, #1

r3

{rO0, rl}
pl5, 0, r0, c13, c0, 3

7

7

7

7

load stack size
load cookie
extract key from cookie

load correct key

compare value
jump to fail if not ok
load code section addr

check branch address
restore r0 and rl

force Thumb if in .text

indirect branch

save r0 and rl
load TLS address

rl, #:lowerl6:cstack(tpoff)
rl, #:upperl6:cstack(tpoff)

61

62

add
1dr
sub
str

pop

bx

A4

APPENDIX A. CODE SNIPPETS

r0, rl
rl, [r0] ; load stack size
rl, #1 ; decrement size
rl, [r0] , store stack size
{rO0, rl} ; restore r0 and rl
; return address decryption
Ir ; return

Listing A.6: ARM stack cookie

Attack simulation

Simple program employed in the demonstration in Chapter 4 of how
instrumentation prevents gadget chaining attacks.

#include <stdio.h>
int state = 1; // 1 = locked, 0 = unlocked

void set_state (int wval) {
state = val;

int somerandomcode () {
int a = 5, b = 7;
int ¢ = a *x b;
printf ("Hello: %d\n", c);

asm___ volatile (

"cmp $0x488dff31, \%eax\n"

"mov \%eax, \%ecbx\n"

)

return 2 * c;

void verybad () {
// gets does not perform any check and
// reads input until newline of EOF
char buffer([6];
gets (buffer);

APPENDIX A. CODE SNIPPETS 63

int main () {
int a = 5, b = 10;
verybad() ;
printf ("State: %d\n", state);
return 0;

}
Listing A.7: C code of the program used for attack demonstration

Appendix B

Large tables

B.1 Benchmark Results

The following tables list all the numeric results of the performed bench-
marks. Every test was run multiple times (10 or more) and the three
best times were recorded in order to produce as fair scores as possible.

B.1.1 x86 64 bit executables

Program Execution Time [s]
Original | Reassembled | Instrumented
0.541 0.545 0.551
blake2s 0.544 0.546 0.551
0.540 0.543 0.553
14.308 14.245 15.836
gzip-compress 14.173 14.241 15.868
14.246 14.277 15.859
5.242 5.318 5.894
dcraw 5.253 5.296 5.848
5.243 5.404 5.852
3.024 3.073 3.348
encode-flac 3.040 3.066 3.344
3.043 3.059 3.352
11.542 11.581 11.603
himeno 11.522 11.585 11.589
11.558 11.604 11.613

64

APPENDIX B. LARGE TABLES 65

13.895 13.744 14.577
bzip2-decompress | 13.612 13.968 14.709
13.684 13.874 14.627
0.523 0.525 0.641
dolfyn 0.526 0.531 0.637
0.527 0.527 0.645
7.507 7.632 8.436
encode-opus 7.548 7.552 8.377
7.551 7.527 8.468

B.1.2 x86 32 bit executables

Program Execution Time [s]
Original | Reassembled | Instrumented
0.544 0.546 0.559
blake2s 0.541 0.545 0.554
0.543 0.548 0.548
14.026 14.143 14.189
gzip-compress 14.001 14.085 14.193
14.040 14.125 14.200
5.632 5.670 7.134
dcraw 5.591 5.663 7.190
5.609 5.671 7.130
3.565 3.592 3.734
encode-flac 3.597 3.609 3.729
3.600 3.675 3.762
11.029 11.076 11.160
himeno 11.005 11.114 11.112
11.044 11.138 11.118
16.420 16.392 16.899
bzip2-decompress | 16.311 16.482 16.931
16.342 16.296 16.809
0.731 0.737 0.788
dolfyn 0.737 0.733 0.789
0.739 0.741 0.794

APPENDIX B. LARGE TABLES

10.464 10.566 11.659
encode-opus 10.520 10.479 11.603
10.511 10.486 11.650
0.960 0.977 1.081
SatEEn 0.974 0.957 1.069
0.968 0.983 1.089
B.1.3 ARM executables
Program Execution Time [s]
Original | Reassembled | Instrumented
4.537 4.549 4.636
blake2s 4.526 4.550 4.639
4.536 4.548 4.631
73.559 74.156 76.947
gzip-compress 73.430 74.283 76.822
73.486 74.209 77.006
44.709 45.124 48.567
dcraw 44.781 45.143 48.518
44.732 45.206 48.548
91.063 91.097 92.193
encode-flac 90.934 91.105 92.206
90.945 91.099 92.186
252.438 252.563 252.158
himeno 252.253 252.638 254.055
251.224 252.278 252.058
62.396 62.515 62.179
bzip2-decompress | 62.416 62.505 62.210
62.417 62.509 62.196
6.920 6.921 6.890
dolfyn 6.926 6.920 6.900
6.920 6.629 6.896
63.607 63.654 63.633
encode-opus 63.611 63.617 63.735
63.591 63.633 63.761

APPENDIX B. LARGE TABLES 67

B.2 File sizes

The following tables list the file sizes of the employed benchmark. All
binaries were stripped of all symbol information.

B.2.1 x86 64 bit executables

Program Filesize [bytes]
Original | Reassembled | Instrumented

blake2s 14552 14568 14688
gzip-compress 118672 118688 155624
dcraw 416888 412808 584928
encode-flac 534752 526480 637160
himeno 14576 14600 14704
bzip2-decompress | 87600 87600 99976
dolfyn 852208 848112 1216872
encode-opus 295312 291216 336376

B.2.2 x86 32 bit executables

Program Filesize [bytes]
Original | Reassembled | Instrumented

blake2s 9708 13944 14008
gzip-compress 117416 118684 135116
dcraw 440408 434160 520232
encode-flac 572952 565396 671948
himeno 9720 9844 14000
bzip2-decompress | 90808 91412 99656
dolfyn 925016 918484 1164308
encode-opus 290168 288832 338040
SatEEn 513708 497424 591688

68 APPENDIX B. LARGE TABLES

B.2.3 ARM executables

Program Filesize [bytes]
Original | Reassembled | Instrumented

blake2s 13836 13900 13964
gzip-compress 55844 56192 64432
dcraw 276536 276920 367088
encode-flac 327188 331656 384960
himeno 9748 9820 9880
bzip2-decompress | 66216 66408 74652
dolfyn 527560 531900 548352
encode-opus 200016 200288 229016

	Introduction
	Project area
	Problem statement
	Outline

	Background
	Technical details
	x86
	Registers
	Procedure calling conventions

	ARM
	Instruction sets
	Registers
	Procedure calling conventions

	Return oriented programming
	Buffer overflow
	Return-to-lib(c)
	Return oriented programming on x86
	Return oriented programming on RISC

	Binary instrumentation
	Related work
	Monitoring
	Stack protection
	Address Space Layout Randomization

	Methods
	Executable reconstruction
	x86
	ARM
	PC relative load
	Jump tables
	Double move

	Instrumentation
	Aligned execution enforcement
	x86
	ARM

	Return address protection
	Indirect branch protection
	Further adjustments for ARM executables

	Results
	Performance analysis
	Benchmarks
	Reconstruction
	Instrumentation

	File sizes
	Closed source application
	Attack simulation

	Discussion
	Limitations
	Future work
	Ethics
	Conclusion

	Bibliography
	Code snippets
	Examples
	Stack overflow
	Return Address Poisoning

	Key generation
	Frame cookie
	x86 64 bit
	x86 32 bit
	ARM

	Attack simulation

	Large tables
	Benchmark Results
	x86 64 bit executables
	x86 32 bit executables
	ARM executables

	File sizes
	x86 64 bit executables
	x86 32 bit executables
	ARM executables

		Politecnico di Torino
	2018-02-12T13:53:45+0000
	Politecnico di Torino
	Maurizio Rebaudengo
	S

