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Summary

Coded caching is a communication technique that exploits cached content at the receivers
to achieve much larger throughput gains with respect to conventional uncoded caching
strategies. In the simplest scenario, there exists a library with N files of unitary length
stored in a single-antenna base station and K users, each with a cache of size M units of
file. The base station and users are connected via a shared broadcast link of normalized
capacity 1 file per unit of time. The system operates in two different phases: placement
phase and delivery phase. During the off-peak hours, when the network is under-loaded,
the placement phase takes place and users store in their caches content from the library.
During the peak hours, say the day, each user requests a different file (worst-case sce-
nario) from the library. The base station sends a multicast message of normalized length
R units of time, which satisfies all users’ requests. Coded caching allows a single coded
multicast transmission to be useful to many users at the same time. The delay R achieved
by the coded caching technique proposed in [5] is information theoretical optimal.

It is also of particular interest the Device-to-Device (D2D) setting, where users are
connected each other via a shared link and thus can directly communicate each other. In
such a setting, during the delivery phase, users are not served by the base station storing
the library but they exchange messages until all requests are satisfied. In the D2D setting
studied in this work, we assume that each user is equipped with L antennas. We extend
the state-of-art scheme (for the single-antenna case) to this multi-antennas case which
experiences a multiplicative gain of L. However, for the coded caching gains to appear,
each file has to be split into a huge number of subfiles, which increases exponentially
with the number of users K. For practical file sizes, there exists a maximum number of
subfiles each file can be split into. Such a constraint leads to an effective achievable delay
much higher than the theoretical one. A users cooperation based scheme is proposed to
tackle this problem. Such a scheme turns out to outperform the state-of-art algorithm in
the subpacketization constrained regime.

During the recent years, the pioneers of coded caching have found a way to use
the coded caching techniques to reduce the inter-servers communication in distributed
computing. In particular, they considered a task that requires to process a big dataset
to finally get Q output results. It is assumed that this task can be modelled according
to the MapReduce model. The latter is a framework that allows to execute a task in a
distributed manner among K servers in order to reduce the overall execution time. In
this framework, the execution of the task happens in three different phases:
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1. the assignment and mapping phase, where the dataset is distributed among the
servers and a pre-processing operation is performed by each of them to the received
portion of the dataset in order to obtain some intermediate results,

2. the shuffling phase, where the servers exchange intermediate results in a D2D set-
ting, and

3. the reduce phase, where each server processes a subset of all the intermediate results
to get Q

K output results.

A major performance bottleneck of this distributed computing model is the time the sys-
tem spend in the shuffling phase. It turns out that, by adapting the D2D cache placement
and delivery scheme to distributed computing, it is possible to substantially reduce the
shuffling time. This technique is known as Coded MapReduce. In this work, we iden-
tify the subpacketization constraint as a major problem that limits the theoretical gains
promised by Coded MapReduce. We adapted the cooperation based scheme proposed
for D2D coded caching to the context of distributed computing. The achieved gain of
the cooperation based scheme is the same as the one achieved in D2D coded caching.
Despite the scheme has been thought for a wireless setting, it can be potentially applied
to a wired setting as soon as the computing nodes are connected via a wired network of
nodes, e.g. switches, that can perform network coding operations.

In the context of coded caching, another interesting setting is the one of a network
where the K users do not have memory for caching content but each of them can connect
to one of Λ < K helper nodes spread over the network, each with a cache of size M .
During the placement phase, the helper nodes store content from the library. In the
delivery phase, each user requests a different file from the library and fetches with no
cost a portion of the desired file from the helper node it is connected to. The base station
storing the whole library, sends a message of delay R to satisfy all users’ requests. This
setting has been studied in the literature for the single-antenna base station case and
assuming that the same number of users is connected to each helper node, i.e. assuming
there are K

Λ users connected to each helper node. In this work, we consider the setting
where the base station storing the entire library is equipped with N0 antennas and where
there can be an unequal number of users connected to each helper node. Let me define
user profile the vector whose each element represents the number of users connected to a
given helper node. To the best of our knowledge, this problem has never been addressed
before. For this setting, we developed two delivery strategies for the single-antenna and
multiple-antennas base station case, respectively. While the former can be employed for
any user profile, the latter can be used for a wide-but-limited feasible set of user profiles
(dependent on N0). The major contribution for this setting is the development of an
information theoretical lower bound on the delay R required by the base station to serve
all users which matches the one achieved by the schemes. Hence, the proposed schemes,
and respective achieved delays, turn out to be optimal.
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Notation
• N denotes the set of natural numbers

• [A] denotes the set of numbers from 1 to A as [A] , {1,2, · · · , A} : A ∈ N

• π denotes a permutation of A elements π : {1, ..., A} → {1, ..., A}

• |B| denotes the cardinality of the set B

• vT denotes the transpose of the vector v

• ⊕ denotes a XOR operation

•
(n

k

)
is the binomial coefficient, i.e.

(n
k

)
= n!

k!(n−k)!

• || · ||2 denotes the norm 2 operator

• log(·) denotes the natural logarithm

• Pπ denotes the permutation matrix defined as Pπ , [eπ(1) ... eπ(A)]T where
eπ(i), a standard basis vector, denotes a row vector of length A with 1 in the π(i)-th
position and 0 in every other position.

• 2[A] is the power set of the set [A]

• P (n, k) is defined as P (n, k) = n!
(n−k)!

• Conv(f(i)) denotes the lower convex envelope of the points {(i, f(i))|i ∈ [A] ∪ {0}}
where f(i) is a function defined in the set [A] ∪ {0}.

• 1B(x) denotes the indicator function on a set X defined as 1B(x) ,
{

1, if x ∈ B

0, if x /∈ B
where x ∈ X and B ⊆ X
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Chapter 1

Fundamental Limits of Caching

1.1 Caching Overview

1.1.1 Introduction

During the course of recent years, mobile data traffic has been growing exponentially due
to smartphones, tablets and high bandwidth-consuming applications. In the near future,
the growth of the data traffic will become even more alarming for the network operators
because of the explosion of the Internet of Things and new data-intensive applications
relying on machine learning and big data. According to Cisco forecast (Figure 1.1), the
overall mobile data traffic is expected to grow by 47% per year up to 49 exabytes (EB)
per month in 2021 (11 EB per month in 2017). Despite many new promising technolo-
gies, such as multi-cell cooperation, network densification, massive Multiple-Input and
Multiple-Output (MIMO) systems and millimiter wave communication, have been envi-
sioned and are currently studied to be part of the 5-th (5G) generation mobile network,
they do not successfully scale with the number of users.

Figure 1.1. Global mobile data traffic forecast, adopted from "Cisco Visual Networking
Index: Global Mobile Data Traffic Forecast Update, 2016-2021 White Paper" [1].

In the last few years, there has been a clear enormous growth of mobile video traffic
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1 – Fundamental Limits of Caching

which, requiring much higher bit rates than other mobile content types, is predicted to
account for more than 75% of the whole global traffic. In 2021, 38 exabytes of traffic out
of the total 49 exabytes are expected to be due to video content (see Figure 1.2). In other
words, video-on-demand traffic is driving global traffic growth. A peculiar characteristic
of video traffic is the high temporal variability which makes the network overprovisioned
during off-peak hours. Caching is a technique that can help to smooth the traffic and it
is going to play a key role in the future wireless networks.

Figure 1.2. Global mobile data traffic forecast per traffic type, adopted from [1].

The high predictability of this type of traffic and the aforementioned high temporal
variability rise the possibility to bring the most popular content closer to the end users
during the off-peak times in order to reduce the network utilization during the peak hours.
This is what, for instance, Netflix has been doing since 2011 with their own content de-
livery network. ISPs can operate a Netflix-operated cache in their network. As a result,
nowadays almost all Netflix content is served from the local ISP’s caches rather than
upstream from the internet. In doing so, Netflix is making ISP’s life easier since they are
experiencing a core network’s utilization almost undisturbed by Netflix traffic. Another
important example of caching system is Facebook. The most popular social network uses
a delivery network with a three level cache system: origin cache, edge cache and browser
cache. The origin cache reduces backend server load, the edge cache reduces the traffic
to the origin cache and browser cache reduces delay. There are many more other caching
systems already deployed and well working such as Akamay, DNS, computer memory
hierarchy and so on.

Broadly speaking, caching is used for three main purposes: network load reduction,
load balancing and delay reduction. Motivated by the future need of delivering data,
particularly video content, with high data rate (for high quality video) and low latency
(for real-time video), the concept of wireless edge-caching have been studied a lot as a
key-enabling technique for the 5G network. Edge-caching simply consists in bringing the
content closer to end users via distributed storages throughout the network, included the
edge, e.g. by placing caches co-located with the base stations. This caching approach,
as well as the ones used in the aforementioned examples of caching systems, all it does
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1.1 – Caching Overview

is basically turning memory into bandwidth in a linear way and thus providing what we
refers to as local caching gain.

1.1.2 Single Cache Systems

The aforementioned caching systems are commonly referred as single cache systems. A
single cache system is composed of a main server containing N files and a cache that can
store up to only M files. User requests a sequence of files, one at a time. If each requested
file is in the cache we talk about cache hit and the user fetches the file from the cache,
otherwise we talk about cache miss and the file is fetched from the server followed by a
cache update for a future use. Clearly the cache is usually closer to the user than the
main server, thus a cache hit would reduce the delay to acquire the file and the network
load in the core network. Hence, the objective is to find an optimal algorithm to update
the cache so that the number of cache misses is minimized. Let’s now list briefly which
are the best algorithms known in literature based on different assumptions:

• Non-causally known requests: Assuming the sequence of requested files is
known a priori the best known algorithm is the Belady’s Algorithm [3] which works
as follows: whenever there is a miss, fetch the file from the server and update the
cache by evicting the file requested farthest into the future and replacing the latter
with the new requested file.

• I.I.D requests with known distribution: Assuming the sequence of requested
files is independent and identically distributed (i.i.d.) and the file popularity distri-
bution is known, e.g. Zipf distribution, then the Highest Popularity First algorithm
is optimal and consists in caching the M most popular files. This algorithm does
not need any cache update, unless the popularity distribution changes.

• I.I.D requests with unknown distribution: Let’s now assume that the sequence
of requests is i.i.d but the popularity distribution is not known. Then, the Least-
Frequently Used algorithm [4] is the best one to be used and asymptotically optimal.
This algorithm is based on the estimation of the popularity distribution from the
entire request history:

– keep track of the number of times each file has been requested;
– whenever a cache miss occurs, evict the least-frequently used file and replace

it with the new requested one.

• Correlated sequence of requests and time varying popularity distribu-
tion: In a real world system, requests are correlated in time and the file popularity
is slowly time varying. Hence, no probabilistic model is available. To the best of
the current knowledge, the best algorithm working under the above assumptions
is the Least-Recently Used which update caches based only on the recent history
(and not the entire history as LFU). LRU works as follow: each time a cache miss
occurs, evict the least-recently-used file and replace it with the new requested one.

9
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Despite the cache miss is commonly considered the best metric to be used in order
to optimize a single cache system, there are other metrics that could be considered.
For instance, assume we are interested in minimizing the worst-case delivery time, to
satisfy the user request. For this analysis, we have to consider the worst-case sequence
of requested files. Such a sequence is the one containing all the files of the server. It
is intuitive that, the worst-case delivery time is minimized if we store in the cache a
fraction M

N of each file of the library. The worst-case delivery time is the metric used in
multi-cache systems or better called cache networks.

1.1.3 Cache Networks

In its most general meaning, a cache network is a system comprised of a server storing
a library with N files and a given number of caches that can store a certain fraction of
the library. The users can get their requested files from a cache they can connect to or
directly from the main server. In this system it is commonly assumed that we can fill
the caches only once, i.e. there is no cache updating. Hence, the system operates in two
different phases:

• Placement phase: This phase consists in populating the caches with the content
in the library during the off-peak hours. In this phase, the demands are not known
yet by the server;

• Delivery phase: In this phase, each user requests a file from the library. Users
will get part of the requested content from the cache they can connect to and they
will download the rest from the main server.

In the last years, there has been lots of research on cache networks whose information
theoretical studies have revealed some fundamental insights that have debunked the con-
ventional beliefs about caching.

Conventional Beliefs:

• Caches are useful to deliver content locally to the user.

• If the users are statistically independent, then the content stored in the several
caches should be identical.

• Miss rate (percentage of time a cache miss occurs) is the most important perfor-
mance metric.

Insights from Information Theory:

• Cache networks are useful to deliver content globally: the main gain is global

• If the users are statistically. independent, than the content stored in the several
caches should be different.

• The most appropriate performance metric is not the miss rate but the worst-case
delivery time.

10



1.2 – Coded Caching in Noiseless Broadcast Channel

These statements will become clear later on in this document.

1.2 Coded Caching in Noiseless Broadcast Channel

Consider a system with one server connected through a shared, error-free link to K ∈ N
users. The server has access to a library of N ∈ N, with N ≥ K, files W 1, ..., W N each
of normalized unitary size. The link capacity is normalized such that it is 1 file per unit
of time. Each user k ∈ N has an isolated cache memory of size M ∈ [N ]. We denote by
γ the cache size normalized by the library size M

N , thus γ , M
N .

During the placement phase the server broadcasts the entire database of files letting
the users fill their caches with a fraction γ of the library. We denote by Zk the content
stored by user k in its isolated cache. In the delivery phase, each user k requests a file
W dk , where dk ∈ [N ], from the database. The server is informed of the requests and
transmits a signal of length R units of time over the shared link, which signal, along with
the users’ caches, will allow the users to retrieve entirely their desired file1. A memory-
rate pair (M, R) is said to be achievable if every user k is able to recover its desired file
for every possible demand vector d = (d1, ..., dK). The term R∗(M) will be used here
to refer to the smallest rate R such that (M, R) is achievable. The aim is to design a
caching and delivery strategy that achieves R∗(M).

Uncoded Delivery: The simplest strategy is for each user to cache the same γ fraction
of each file during the placement phase. In the delivery phase, once the server becomes
aware of the requested files from the users, it transmits sequentially and unicastly the
1 − γ remaining part of each file that the requesting user does not have in its cache. If
the files requested from the K users are all different, then the delivery rate is given by

RU (M) = K(1 − γ) (1.1)

The factor 1 − γ is commonly referred to as local caching gain since it arises from having
a fraction γ of the requested file available locally in the cache.
If a subset Ke ⊆ [K] of the K users requests the same file, then the multicast property of
the shared link can be exploited. In fact, it is enough to transmit only once the fraction
1−γ of the file desired by the Ke users. Hence, whenever some users request the same file,
some multicasting opportunities arise which help to reduce the rate R(M). Multicasting
opportunities can actually be forced to arise even when the users’ demands are different
as long as the caches are filled with different content in a proper structured manner. This
idea came up for the first time in [5] where the authors study the fundamental limits of
the caching networks described in this section.

1Throughout this document we will refer to R as delay and/or rate interchangeably, as it is common
to do in the coded caching community.
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Maddah-Ali and Niesen proposed in [5] a caching placement and delivery strategy
that, under the condition of uncoded cache placement, have been proven recently in [6]
to be optimal. The optimality has been proven by converting the caching problem into
an index coding problem and leveraging the index coding bounds presented in [9].

Before describing the general scheme, an example can help the reader to understand
the main idea.

Example Consider a system with K = 4 users and N = 4 files. Each user has a cache
of size M = 2. In the placement phase, the files W n, ∀n ∈ [4] are split in 6 subfiles as
follow: W n = {W n

12, W n
13, W n

14, W n
23, W n

24, W n
34}. Then, the server transmits all the subfiles

of each file and the users fill their caches with the following subfiles:

Z1 = {W n
12, W n

13, W n
14 ∀n ∈ [4]}

Z2 = {W n
12, W n

23, W n
24 ∀n ∈ [4]}

Z3 = {W n
13, W n

23, W n
34 ∀n ∈ [4]}

Z4 = {W n
14, W n

24, W n
34 ∀n ∈ [4]}

Each of the above messages/signals is a bitwise XOR of three subfiles.

Let’s now assume that each user requests a different file so that users 1,2,3,4 request
files W 1, W 2, W 3, W 4, respectively. Then, the best delivery strategy will create and
sequentially transmit the following messages:

X123 = W 1
23 ⊕ W 2

13 ⊕ W 3
12

X124 = W 1
24 ⊕ W 2

14 ⊕ W 4
12

X134 = W 1
34 ⊕ W 3

14 ⊕ W 4
13

X234 = W 2
34 ⊕ W 3

24 ⊕ W 4
23

Let us now focus on user 1 receiving the transmitted signal X123, whose index 123 in-
dicates that the transmission is intended for users 1,2,3. By using the content stored in
its cache it can get its desired subfile W 1

23. In fact, user 1 knows W 2
13 and W 3

12 which
can remove from X123 to get W 1

23 free of interference of the subfiles intended for users 2
and 3. From the received messages X124, X134 user 1 can successfully decode W 1

24 and
W 1

34. Similarly the other users can successfully decode their desired subfiles. It is left to
the reader to check that after the above 4 transmissions, all users, with the help of their
caches, will have obtained their requested files.

The total time needed to deliver successfully all the subfiles to the 4 users is R(2) =
number of transmissions × size of one subfile = 4 × 1

6 = 2
3 . If we transmitted the

subfiles with the uncoded strategy it would take RU (2) = 4(1 − 1
2) = 2. Hence, coded

caching allows to gain an enormous multiplicative factor of RU (2)
R(2) = 3.

12
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Figure 1.3. Pictorial representation of a coded caching system with K = 4 users, N = 4
files and caches of size M = 2. Each requested file is represented by a different color. The
content stored by the users during the placement phase is depicted below the laptops. The
chunks in which each file is divided are named with a set of Kγ = 2 numbers.

A pictorial representation of the discussed example can be found in Figure 1.3.

In the following two paragraphs there are described the optimal general placement
and delivery strategies for the considered caching problem.

Cache Placement Algorithm Each file W n of the library is split into S =
( K

Kγ

)
disjoint equally-sized subfiles as follows:

W n = (W n
τ : τ ⊆ [K] : |τ | = Kγ) (1.2)

For each n ∈ [N ], subfile W n
τ is placed in the cache of user k if k ∈ τ . Hence, each

user stores in its cache a total of N
( K−1

Kγ−1
)

subfiles each of size 1
( K

Kγ) which fill the whole
user’s local cache since

N

(
K − 1

Kγ − 1

)
1( K

Kγ

) = Nγ = M (1.3)

The pseudo-code of the placement strategy can be found in algorithm 1.
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1 procedure PLACEMENT(W 1, ..., W N )
2 for all n ∈ [N ] do
3 Partition W n into

( K
Kγ

)
disjoint subfiles :

4 W n = (W n
τ : τ ⊆ [K] : |τ | = Kγ)

5 end
6 Zk = (W n

τ : k ∈ τ, ∀n ∈ [N ]), ∀k ∈ [K]
7 end procedure

Algorithm 1: MAN Placement Strategy

Delivery Algorithm Thanks to the placement strategy described in Algorithm 1,
the Maddah-Ali and Niesen (MAN) delivery algorithm can satisfy all the user requests
(d1, ..., dK) with a total delay given by:

R(M) ≤ K(1 − γ)
Kγ + 1 (1.4)

where the equality holds for the worst-case, i.e. when all users request a different file. In
the following it is described the delivery strategy for the worst-case.

Consider a subset Q ∈ [K] of Kγ + 1 users and all the subsets U ⊂ Q such that
|U | = Kγ. All the users in any subset U share one subfile stored in their caches which
is needed by the remaining user in Q. In the delivery phase, for each of the

( K
Kγ+1

)
sets

Q, the server creates a message denoted by XQ and transmits it to the Kγ + 1 users in
the set Q. XQ is a XOR of Kγ + 1 subfiles. Each subfile in the XOR is desired by one
of the Kγ + 1 users the message is intended for and it is available in the local caches of
the other Kγ users. To be precise, the signal XQ is constructed as follows:

XQ =
⨁
k∈Q

W dk

Q\{k}. (1.5)

Hence, the total number of transmissions is
( K

Kγ+1
)

and the total delay can be written as

R(M) =
( K

Kγ+1
)( K

Kγ

) = K(1 − γ)
Kγ + 1 . (1.6)

The pseudo-code of the scheme can be found in algorithm 2.

1 procedure DELIVERY(W 1, ..., W N , d1, ..., dK)
2 for Q ⊂ [K] : |Q| = Kγ + 1 do

3 Transmits XQ =
⨁
k∈Q

W dk

Q\{k}

4 end
5 end procedure

Algorithm 2: MAN Delivery Strategy
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Discussion Let us now analyse carefully the expression of the rate given in equation
(1.6). The factor K is simply the delay we would have if users had no memory to dedicate
to caching. It has been already mentioned that the factor 1−γ is usually referred as local
caching gain and it arises from the availability of a fraction γ of the requested files at the
users’ caches. Such a gain indicates a reduction in the rate which is relevant only when
the local cache size M is of the order of the number of files N . Clearly, in a real system
the value of γ would be very low, hence the local caching gain would be of negligible
interest to improve the system performance. The last term 1

Kγ+1 is referred to as global
caching gain and it contributes as a multiplicative reduction of the rate. This gain arises
from jointly optimizing both the placement and the delivery phases, ensuring that in the
delivery phase several different demands can be satisfied with a single coded multicast
transmission. The global caching gain depends on the normalized cumulative cache size
Kγ and, in contrast to the local caching gain, is relevant whenever the cumulative cache
size KM is in the order of the number of files N . Figure 1.4 shows the rate required in the
delivery phase to serve K = 30 users requesting different files from a library of N = 30
files as a function of the local cache size. The picture shows the huge gap between the rate
needed with uncoded and coded delivery. The enormous gains promised by coded caching
arise from the fact that the placement and delivery strategy are optimized to exploit the
multicast property of the channel between the server and the users. Such a property is
more clear in a wireless environment where the medium is naturally broadcast. All the
known state-of-art techniques used today to serve users in a wireless environment try to
break this property to avoid inter-user interference. Coded caching is the first technique
(apart from the trivial multicasting used when users request the same content) that truly
exploits the broadcast property of the wireless medium.

1.3 Coded Caching in D2D Noiseless Networks

Maddah-Ali and Niesen have provided a real breakthrough in the research in caching
networks and more generally in the research of new communication paradigms that could
handle the enormous amount of traffic that will be generated by killer applications such
as on-demand video streaming. Researchers begun to study coded multicasting in several
settings of relevant interest. Infrastructureless communication has been considered for
a while as a promising way of increasing the network capacity. Device-to-Device (D2D)
communication can, in fact, easily, leverage on the spatial reuse to increase the network
capacity. The authors in [7] considered the caching problem in a D2D network in order to
see if any further gain can be obtained by combining spatial reuse and coded multicasting.

System Model A D2D network can be modeled as a grid network formed by K users
placed on a regular grid on the unit square, with minimum distance 1√

K
. Users can

communicate each other via D2D communication without any infrastructure. If a user
i transmits a packet to user j, then the transmission is successful if: 1) the distance
between user i and j is smaller than the transmission range r (function of the transmitting
power); 2) any other user k transmitting simultaneously, is at a distance d(k, j) > r from
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Figure 1.4. Plot of the rate-memory trade-off for a caching system with N=30
files and K=30 users.

the receiver j. In the following, interference limited area will be used to refer to a portion
of the network where only one user at a time, among the ones in that area, can transmit
free of interference. First, let us choose the transmission range r ≥

√
2 so that only one

user at a time can transmit in the whole network.

Problem Formulation As in the broadcast channel, we consider a server having access
to a library with N files. All the users in the network have an isolated cache of memory
size M . In the placement phase the users will store a fraction γ = M

N of the library in
their caches, while in the delivery phase they will "collaborate" to obtain the requested
files. Recalling that there is no infrastructure, user k will receive the missing part of the
requested file, not available in its cache, from the other users in the network. An example
of how coded caching works in a D2D network is described below.

Example Consider a network with K = 4 users each with a cache of size M . The
library contains N = 4 files. In the placement phase, the files W n, ∀n ∈ [4] are split in
12 subfiles W n

τ,p as follows:

W n = {W n
12,p, W n

13,p, W n
14,p, W n

23,p, W n
24,p, W n

34,p ∀p ∈ τ} (1.7)

Then, the server transmits all the subfiles of each file and the users fill their caches
Zk, k ∈ [4] with the following subfiles:

Z1 = {W n
12,p, W n

13,p, W n
14,p ∀p ∈ τ ∀n ∈ [4]}
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Z2 = {W n
12,p, W n

23,p, W n
24,p ∀p ∈ τ ∀n ∈ [4]}

Z3 = {W n
13,p, W n

23,p, W n
34,p ∀p ∈ τ ∀n ∈ [4]}

Z4 = {W n
14,p, W n

24,p, W n
34,p ∀p ∈ τ ∀n ∈ [4]}

Let us now assume that each user requests a different file, e.g. user 1 requests file W 1,
user 2 requests file W 2, user 3 requests file W 3 and user 4 requests file W 4. Then, the
best delivery strategy will operate as follows.

Consider all subsets of Kγ + 1 = 3 users, e.g. Q = {1,2,3}. For the considered set Q,
let each user transmits consecutively the following messages:

X1,23 = W 2
13,1 ⊕ W 3

12,1

X2,13 = W 1
23,2 ⊕ W 3

12,2

X3,12 = W 1
23,3 ⊕ W 2

13,3

where Xi,Q\{i} denotes the transmission from user i intended for users in the set Q \
{i}. For the other 3 subsets {1,2,4}, {1,3,4}, {2,3,4} of size Kγ + 1 = 3 the following
transmissions will happen:

Q = {1,2,4} Q = {1,3,4} Q = {2,3,4}
X1,24 = W 2

14,1 ⊕ W 4
12,1 X1,34 = W 3

14,1 ⊕ W 4
13,1 X2,34 = W 3

24,2 ⊕ W 4
23,2

X2,14 = W 1
24,2 ⊕ W 4

12,2 X3,14 = W 1
34,3 ⊕ W 4

13,3 X3,24 = W 2
34,3 ⊕ W 4

23,3
X4,12 = W 1

24,4 ⊕ W 2
14,4 X4,13 = W 1

34,4 ⊕ W 3
14,4 X4,23 = W 2

34,4 ⊕ W 3
24,4

Let us focus on user 1 receiving the signal X2,13 transmitted by user 2 and intended for
users 1 and 3. By using the content stored in its cache, user 1 can get its desired subfile
W 1

23,2. In fact, user 1 knows W 3
12,2 which can remove from X2,13 to get W 1

23,2 free of inter-
ference of the messages intended for user 3. Analogously, user 1 can do the same with the
other received messages intended for him. With the same approach, the other users can
decode their desired subfiles. It is left to the reader to check that after the above 3

(4
3
)

= 12
transmissions, all users, with the help of their caches, will have obtained their desired files.

The total time needed by the 4 users to exchange messages to finally obtain their
desired files is R(2) = 12

12 = 1.

Placement and Delivery Strategy As we can see from the above example, the
placement strategy is almost the same as in the broadcast channel. In fact, each file W n

is split into S = Kγ
( K

Kγ

)
subfiles W n

τ,p, ∀τ ⊆ [K] : |τ | = Kγ, ∀p ∈ τ and each user k stores
subfiles whose index τ is such that k ∈ τ .
Also the delivery strategy is similar to the one proposed by Maddah-Ali and Niesen for
the broadcast channel. The main difference is that now, given a subset of Kγ + 1 users,
we have to "sacrifice" one to be the transmitter because there is no infrastructure that can
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deliver the content. Given a set Q of Kγ +1 users, every subset U ⊂ Q of Kγ users share
Kγ subfiles that are desired by the remaining user in the set Q. Building on the above
reasonings, The authors of [7] proposed the delivery strategy given in the pseudo-code of
algorithm 3.

1 procedure DELIVERY(W 1, ..., W N , d1, ..., dK)
2 for Q ⊂ [K] : |Q| = Kγ + 1 do
3 for all i ∈ Q do

4 Transmit Xi,Q\{i} =
⨁

k∈Q\{i}
W dk

Q\{k},i

5 end
6 end
7 end procedure

Algorithm 3: Delivery Strategy for D2D coded Caching

The described strategy requires (Kγ + 1)
( K

Kγ+1
)

multicast transmissions to serve suc-
cessfully all K users. Therefore, the worst-case (when all users request a different file)
transmission rate achieved by the algorithm is

R(M) =
(Kγ + 1)

( K
Kγ+1

)
(Kγ)

( K
Kγ

) = K(1 − γ)
Kγ

(1.8)

which has been proven to be order-optimal in [7]2.

Comparing the rate achieved by coded caching in D2D networks and the one achieved
in the broadcast channel, we notice how the lack of infrastructure lead to a mere loss of 1
in the multiplicative gain due to coded caching which becomes negligible for high values
of Kγ.

Coded Multicasting and Spatial Reuse Let us now focus on the case in which the
transmission range is r ≤

√
2. In this case, the transmission range can be chosen in order

to have localized D2D communication and therefore allow for some spatial reuse. The
network is divided in clusters of equal size, each containing K

K′ users, where K ′ denotes
the number of clusters. Users can communicate only with the other nodes within the
same cluster. It is assumed here that the total cache capacity of each cluster is sufficient
to store the whole library, i.e. K

K′ · M ≥ N . Each cluster can be considered a separate
network. The simplest transmission policy consists in partitioning the set of clusters
into K reuse sets, such that the clusters within the same reuse set do not interfere each
other and can be active simultaneously. Clearly, by using the above delivery strategy the

2An achievable rate R(M) is said to be order-optimal if there exists a finite value c ∈ R such that
R(M) ≤ c · R∗(M) for any value of the system parameters M, N, K, where R∗(M) is the optimal rate.
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following transmission rate is achievable:

R(M) = K
K
K′ (1 − γ)

K
K′ γ

= KK(1 − γ)
Kγ

(1.9)

If we allow for full spatial reuse (K = 1), then the achieved rate coincides with the one
given by pure coded caching regardless of K ′. This suggests that there is no fundamental
cumulative gain by using both spatial reuse and coded caching. However, a look at
the two extremes reveals a more subtle trade-off. Without any spatial reuse, coded
multicasting requires a subpacketization (number of subfiles in which each file is split
into) of S = Kγ

( K
Kγ

)
which may be very high for high values of K and M . This is

actually a very well-known problem in coded caching that is deeply investigated in this
work. At the other extreme, we can allow for the maximum spatial reuse, i.e. letting the
cluster size be the minimum possible to store the whole library. In this case, we can store
M whole different files into each node and in the delivery phase we can transmit whole
files without any coding as in [8]. In this case, the achieved rate is 1

γ which is almost as
good as the coded scheme.

1.4 Practical Coded Caching: the Main Challenges to Make
it Feasible

In the previous sections, we have shown the potentials of coded caching both for the
common broadcast channel and for a D2D network. However, there are many challenges
that have to be addressed to make it practical. In the following, we briefly describe
the main directions that the research in this area is following with a major focus on the
so-called subpacketization constraint which will be highly investigated in this work.

Online Caching

The caching problem described in the previous sections has two distinct phases: cache
placement phase and delivery phase. The cache is updated only in the placement phase
and not anymore during the delivery phase. Nowadays, many caching systems use online
cache updates. Such algorithms update the caches during the delivery phase based on
some "local" variation of the file popularity. The most common and effective algorithm
is the LRU which has been mentioned already in the introduction. In [10] the authors
proposes an algorithm that updates the caches online.

1.4.1 Nonuniform File Popularities

In [5] and [7] it is assumed that all files in the library have the same popularity. In real
systems, files have different popularities. In this case, the cache placement and delivery
strategy described above may not be optimal. It is of strong interest to find optimal, or
sub-optimal, schemes for any popularity distribution. Some work towards this direction
has been done in [11] and [12].
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1.4.2 More General Networks

The two networks considered above, broadcast channel and D2D, are the simplest and
most studied. However, many other network topologies could be considered. It is of
particular interest to consider the network where the caches are separated from the user
terminals and spread throughout the network. Such a network will be addressed in the
last chapter of this thesis. A tree topology with caches at several levels is also another
interesting direction. Moreover, till now the studied strategies consider equally sized
caches. Studying the impact of different caches’ size is another interesting topic.

1.4.3 Decentralized Caching

The massive gains promised by coded caching rely on a meticulous content placement in
the user’s caches. Crucially for the described schemes, both the number and the identity
of the users which will be present in the delivery phase have to be known a priori for
the placement. Recalling that the placement phase happens during the off-peak hours,
say during the night, and the delivery phase during the peak-hours, say during the day,
then assuming to know the users that will show up and request files from the library the
day after is not very realistic. Moreover, the delivery scheme assumes the requests to be
synchronized. In practice, users join and leave the system over a period of several hours,
resulting in a time-varying number of users. In order to handle these issues, the placement
place needs to be decentralized, i.e. not orchestrated by a central server. Maddah Ali
and Niesen have developed in [13] a random caching placement that can deal with all the
mentioned issues.

1.4.4 The Subpacketization Problem

The massive theoretical gains promised by coded caching remain – under some realistic
assumptions – hard-bounded by small values in the finite file-size regime. Before analysing
in details such a problem let us introduce another measure of performance which will be
useful to investigate the problem. Equivalently to the rate R(M), in the literature it is
highly used the sum Degree of Freedom (DoF ) of the system which is defined as:

DoF (γ) , K(1 − γ)
R(M) (1.10)

which captures the effect of caching and represents the number of users that are served
in one unit of time. The degree of freedom represents the number of users that can be
served at the same time by using the same time-frequency resource. We can now define
the gain given by caching in terms of achieved DoF as follows:

G , DoF (γ) − DoF (0) (1.11)

where DoF (0) represents the DoF of the system when users cannot cache any content.
The gain G represents the number of extra users that can be served at a time as a con-
sequence of introducing caching.
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In the following we will present the subpacketization problem for the broadcast chan-
nel studied in [18].

The MAN algorithm for the broadcast channel achieves the sum DOF

DoF (γ) = Kγ + 1 (1.12)

which leads to a coded caching gain of

G = Kγ (1.13)

since in the broadcast channel DoF (0) = 1.

The algorithm proposed in [5] for the broadcast channel requires the splitting of files
into

( K
Kγ

)
subfiles which increases exponentially with K. This becomes clear by bounding

the aforementioned binomial coefficient as follows:(1
γ

)Kγ

≤
(

K

Kγ

)
≤
(

e

γ

)Kγ

. (1.14)

However, the finite file size limits the number of subfiles each file can be split into and
consequently limits also the number of users over which it is possible to encode.

Nowadays, the atomic unit of storage in hard drives is of size 512 bytes and the disk
drive industry is willing to move this soon to 4096 bytes. Consequently, the maximum
number of chunks that a file can be split into is much smaller than itself size. It should
be also recalled that each subfile will be encapsulated into some packet with an header
size which becomes more and more dominant as the subfile size decreases.

Defining by Smax the maximum number of subfiles each file can be split into, the
maximum number of users K̄ that an instance of MAN algorithm can treat is given by

K̄ = argmax
K

{K :
(

K

Kγ

)
≤ Smax} (1.15)

and gives an effective gain of

logSmax

1 + log 1
γ

≤ Ḡ ≤ logSmax

log 1
γ

. (1.16)

Hence, assuming for the sake of analysis that K = αK̄, with α ∈ N, we would need to
repeat the MAN scheme α = K

K̄
. THe achieved rate would be R(M) = K

K̄

K̄(1−γ)
K̄γ+1 which

leads to the effective achievable sum DoF of DoF (γ) = K̄γ + 1 ≪ Kγ + 1.

For example, consider a system with K = 60 users and γ = 0.2. MAN scheme would
require splitting each file into S =

(60
12
)

≈ 1012 subfiles. Thus, the gain G = Kγ = 12 (cor-
responding to a delay R(M) = 3.69) promised by MAN scheme can be actually achieved
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only if the file size is higher than 1 Terabit. Being realist, let us suppose that each file is 1
Gigabit sized and that we can allow for a minimum subfile size of 1 Kilobit which results
in a subpacketization constraint of Smax ≈ 106. Under such a constraint we could for
example treat 30 users at a time leading to a gain of Ḡ = 6 which is half of the theoretical
promised gain.

A first attempt in reducing the subpacketization was done in the work in [14] where
the coded caching problem was reformulated into a placement-delivery (PD) array combi-
natorial design problem to design an algorithm achieving a theoretical gain of G = Kγ−1
with a reduced subpacketization of S =

(
1
γ

)Kγ−1
. Under the subpacketization constraint

Smax the PD algorithm achieves a gain GP D = logSmax

log 1
γ

which concides with the max-
imum gain that MAN scheme could achieve (see equation (1.16)). The authors of [14]
show that the PD scheme can decrease, with respect to MAN scheme, the required file
size of a factor that increases exponentially with K for a gain loss of only 1. Another
important result came out in [16] where constructions that tradeoff performance and sub-
packetization are provided requiring though that K > 4

γ2 in order to have gains bigger
than 1. The recent work in [15] employs Ruzsa-Szeméredi graphs to build an algorithm
achieving (for very large unrealistic K) a gain that scales with K, with a subpacketization
that scales with K1+δ for some arbitraly small positive δ. For realistic values of Smax

and γ, all the aforementioned algorithms improve MAN effective gain by a factor that
remains hard bounded and small.

It is worth to recall that the subpacketization problem becomes even more severe
when coded caching is applied in other network topologies such us D2D and multi-server,
or equivalenty Multi-Input Single-Output (MISO) broadcast channel, setting (see [7] and
[17]). Thus, a deep study of the subpacketization problem is necessary to make coded-
caching practical and scalable with the system parameters.

A truly breakthrough has been done by Lampiris and Elia in [18] where they show
how adding transmitters (antennas for a wireless setting) can drammatically boost the
effective coded-caching gain under the subpacketization constraint Smax. The scheme
developed in [18] allows in a system with L transmitters to achieve an effective coded-
caching gain that is L times higher than any other known algorithm. Such a scheme
leverages 2 main principles: 1) group users in groups of L users so that users within the
same group cache the same content and 2) use zero-forcing precoding to null-out intra-
group interference which cannot be nulled by caching. The same principle is behind the
low subpacketization schemes that will be proposed in the next chapter for D2D networks.
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Chapter 2

D2D Caching Networks: Boosting
the Performance via Multiple
Antennas and Users’ Cooperation

2.1 Introduction

In this chapter we study the single-hop D2D network where cache-enabled nodes operate
within the coded caching framework to satisfy their requests. It was shown in [7] that
coded caching can achieve the information theoretical lower bound within a constant
multiplicative factor. The gains arising from coded multicasting, in reality are highly
constrained by the required extremely high number of subfile in which the files of the
library have to be split. We recall that the rate achieved by the centralized algorithm in
[7] is R(M) = K(1−γ)

Kγ , where γ is the user’s cache size M normalized by the library size
N . The aforementioned rate results in a theoretical achievable sum degree of freedom of
DoF (γ) = Kγ. Analogously to the broadcast channel, the subpacketization constraint
Smax limits the maximum number of nodes K̄ over which it is possible to encode and it
can be formulated as follows

K̄ = argmax
K

{K : Kγ

(
K

Kγ

)
≤ Smax}. (2.1)

Because of the above subpacketization constraint, the set of K users has to be divided in
subsets of K̄ users so that the coded caching placement and delivery strategy is consec-
utively applied to each of this smaller sets.1 As a result, because of the constraint Smax,
the achieved rate is R̄(M) = K

K̄

K̄(1−γ)
K̄γ

corresponding to an effective maximum achievable
sum degree of freedom of DoF (γ) = K̄γ. Inspired by by the work of Lampiris and Elia in
[18] for the MISO broadcast channel, where multiple antennas at the base station (colo-
cated with the library) and users grouping are leveraged to reduce the subpacketization

1For ease of analysis, we assume that K̄ divides K.

23



2 – D2D Caching Networks: Boosting the Performance via Multiple Antennas and Users’ Cooperation

and consequently get higher effective DoF , we wonder if the grouping approach and the
addition of more antennas at the user terminals can help in increasing the theoretical
and/or effective achievable DoF .

2.2 Problem Statement

Consider a D2D network with K users 1, ..., K equipped with L antennas each. Each user
has a cache where it can store content corresponding to M equally-sized files of normal-
ized size 1. Users request a file from a library containing N files W 1, W 2, ..., W N . For
practical reasons, we assume that each file cannot be split into more than Smax subfiles.
We will refer to it as the subpacketization constraint.

Regarding the communication medium, we will focus on the wireless fully-connected
setting where, in each time slot, only one user at a time can transmit through the wireless
shared medium. At each point there will be a set of active receivers and active transmit-
ters. Assuming a set of Lc active users, denoted by G ⊂ [K] jointly transmitting vector
X ∈ CLcL×1, then the received signal at a receiving user k takes the form

yk = HT
k,GX + wk, k ∈ [K] (2.2)

where X satisfies a power constraint E(||X||) < P , where Hk,G ∈ CLcL×L is the (po-
tentially random) fading channel matrix between the transmitting set of users G, each
equipped with L antennas, and the receiving user k, i.e. Hk,G ∈ CLcL×L =
[Hk,G(1) · · · Hk,G(Lc)] with Hk,G(j) being the L × L channel matrix between user k and
user G(j) ( which represents the j-th user of the set G). Each element of Hk,G(j) is a
coefficient representing the propagation channel between one antenna of user k and one
antenna of user G(j). Finally, wk denotes the i.i.d vector of unit-power Additive-White-
Gaussian-Noise (AWGN) noise at receiver k. We assume the system to operate in the
high Signal-to-Noise-Ratio (SNR) regime (high P ), and we assume perfect channel state
information (CSI) at the active receivers and transmitters, i.e. they have a perfect knowl-
edge of the state of the propagation channels. More precisely, we will always assume that
a given user k has full knowledge of the channels Hk,j for j ∈ [K]\{k} but not of the
channel matrices between other users, i.e. Hj,i, i, j ∈ [K]\{k}2. We will refer to it as
local CSI, while we will talk about global CSI when each user knows the channel matrices
between other users.

The system operates under the coded caching framework considered in this thesis
where during the off-peak hours the caching placement takes place and during the peak-
hours each user requests a file from the library that will be served with a proper delivery
algorithm from the other users. As usual, we denote by R(M) the rate achieved by a
given caching-delivery scheme for the worst-case scenario, i.e. when all users request a

2We assume that the system works in Frequency Division Duplex (FDD) mode so that the channel
state between two antennas is the same regardless of the direction of the transmission.
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different file. We will also denote by DoF the achievable degree of freedom and by DoF
the achievable degree of freedom under the subpacketization constraint Smax.

The rest of this chapter is organized as follows. We first describe a generalized content
placement strategy followed by the description of three different delivery strategies. In
the section subsequent the third strategy we provide a set of examples to better help
the reader to understand the delivery schemes. Then, a summary of results is presented,
followed by a final discussion and conclusions.

2.3 A Generalized Content Placement Strategy
In this section, we present a generic content placement strategy preceding all our pro-
posed delivery schemes that will be presented in the next sections. Before proceeding to
the description of the scheme we define cooperation factor, denoted by Lc ∈ N, Lc ≪ K
and Lc dividing K, the number of users which we will let to cooperate in the delivery
phase. The meaning and the way this parameter is used will become clear throught the
description of both the cache placement and delivery phase. Once the designer chooses
the value of the cooperative factor Lc, which we can anticipate will have a strong impact
on the subpacketization, the cache placement is designed as if there were only K ′ , K

Lc

isolated caches.

We now proceed to the detailed description of the caching algorithm which is inspired
by the Maddah-Ali et al. placement scheme in [5].

We first partition the set of K users k = 1,2, ..., K into K ′ disjoint groups

Gi = {lK ′ + i, l = 0,1, ..., Lc − 1}, for i = 1,2, ..., K ′ (2.3)

of |Gi| = Lc users per group. In doing so, we aim to serve K ′γ groups at a time. To
this end, each file W n of the library is split into SLc = LK ′γ

( K′

K′γ

)
disjoint equally-sized

subfiles labelled with three indices as follows:

W n = (W n
τ,p,l : τ ⊆ [K ′] : |τ | = K ′γ, p ∈ τ, l ∈ [L])

.
For each n ∈ [N ], subfile W n

τ,p,l is placed in the cache of user k if (i ∈ τ) ∧ (k ∈ Gi).
Hence, each user stores in its cache a total of NLK ′γ

( K′−1
K′γ−1

)
subfiles each of size 1

LK′γ( K′
K′γ)

which fill the whole user’s local cache since

NLK ′γ

(
K ′ − 1

K ′γ − 1

)
1

LK ′γ
( K′

K′γ

) = Nγ = M

Remark: In case of single antenna users (L = 1) and no cooperation among users
(Lc = 1), the placement scheme and the subpacketization are the same as the ones in [7].
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Notice that, by using the described cache placement strategy, the higher is the value
of the chosen Lc the lower is the subpacketization.

A pictorial illustration of the caching placement for a system with 6 single-antenna
users requesting files from a library with 6 files, having caches of size 4 and using a co-
operation factor of Lc = 2 is given in Figure 2.1. Each small colored square represents
a different subfile, whose color correspond to a different files. Thus, for example the red
square with label 23,2 is cached at users in groups G2 and G3. Each big square labelled
by Ui, i ∈ [6] represents a different user and its color corresponds to the file that the user
requests. Thus for example, user U1 requests the file corresponding to the red color.

Figure 2.1. Cache placement for K = 6, N = 6, M = 4, L = 1 and Lc = 2
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2.4 XOR Based Delivery Strategy
In this section, we present a delivery scheme achieving the rate

R(M) = K(1 − γ)
LKγ

. (2.4)

The scheme we are going to describe is an extension of the one presented in [7] to the
case of multiple-antennas users. The L per user antennas allow to reach an L-fold gain
over the well known scheme for single-antenna users. The subpacketization required by
the scheme is S1 = LKγ

( K
Kγ

)
. Hence, during the off-peak hours, the placement algorithm

is run with the cooperation factor set to 1, i.e. Lc = 1, which means that the groups, as
defined in equation (2.3), are actually comprised of only 1 user. In other words, the set
of users is not partitioned in groups.

2.4.1 Description of the Scheme

Consider a subset Q ∈ [K] of |Q| = Kγ + 1 users and all the subsets U ⊂ Q such that
|U | = Kγ. Any subset U of users share Kγ bunches of L subfiles stored in their caches
which are needed by the remaining user in Q. Moreover, there are

( Kγ
Kγ−1

)
= Kγ subsets

U containing a given user k. Hence, every user k has Kγ bunches of L subfiles, each of
which bunches needed by one of the other Kγ users in Q and known by the remaining
Kγ − 1 users in Q.

In the delivery phase, for each of the
( K

Kγ+1
)

sets Q, each user i ∈ Q creates the L × 1
vector

Xi,Q\{i} =

⎡⎢⎢⎢⎢⎢⎢⎣

⨁
k∈Q\{i}

W dk

Q\{k},i,1

...⨁
k∈Q\{i}

W dk

Q\{k},i,L

⎤⎥⎥⎥⎥⎥⎥⎦ (2.5)

and transmits it to the Kγ users in Q\{i}. Each user k ∈ Q\{i} receives the signal
yk = Hk,iXi,Q\{i}

3 which is decoded using the Zero-Forcing (ZF) receiver H−1
k,i thanks to

which the vector Xi,Q\{i} is decoded with no errors. Next, user k constructs the vector
Xi,Q\{i,k} with the help of its cache and subtracts it from Xi,Q\{i} to obtain

[W dk

Q\{k},i,1 · · · W dk

Q\{k},i,L]T (2.6)

free of inter-users interference.

In algorithm 4 a pseudo-code of the delivery algorithm is sketched to give a compact
view of it.

3Here the noise is neglected because we are interested in characterizing the DoF region.
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1 procedure DELIVERY(W 1, ..., W N , d1, ..., dK)
2 for Q ⊂ [K] : |Q| = Kγ + 1 do
3 for all i ∈ Q do

4 Transmit Xi,Q\{i} =

⎡⎢⎢⎢⎢⎢⎢⎣

⨁
k∈Q\{i}

W dk

Q\{k},i,1

...⨁
k∈Q\{i}

W dk

Q\{k},i,L

⎤⎥⎥⎥⎥⎥⎥⎦
5 end
6 end
7 end procedure

Algorithm 4: XOR based strategy

2.4.2 Performance Evaluation

The algorithm uses (Kγ + 1)
( K

Kγ+1
)

transmissions (Kγ + 1 transmissions for each set Q)
of XORs to serve all the users and each XOR is of size 1

S1
, where we remind that S1

denotes the subpacketization required by the scheme, i.e. S1 = LKγ
( K

Kγ

)
. Hence, the

rate achieved by the proposed scheme is

R(M) =
(Kγ + 1)

( K
Kγ+1

)
LKγ

( K
Kγ+1

) = K(1 − γ)
LKγ

. (2.7)

Under the subpacketization constraint Smax, we can encode over only a limited number
of nodes K̄ whose value is given below

K̄ = argmax
K

{K : LKγ

(
K

Kγ

)
≤ Smax}. (2.8)

Consequently, we can treat only K̄ users at a time leading to a lower rate of

R̄(M) = K

K̄

K̄(1 − γ)
LK̄γ

(2.9)

which correspond to an effective DoF of

DoF (γ) = K(1 − γ)
R̄(M)

= LK̄γ (2.10)
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2.5 Cooperation Based Strategy

The scheme presented in the previous section achieves the theoretical DoF of LKγ with
a huge subpacketization, precisely with required subpacketization S1 = LKγ

( K
Kγ

)
. In

this section, we present a novel scheme that, thanks to cooperation among users, achieves
the same theoretical performance of the aforementioned delivery strategy (Algorithm 4)
with an unbounded low subpacketization. Users in the system are placed in groups of Lc

users so that all the ones being part of the same group store the same content in their
local caches. For the placement phase, the caching strategy presented in section 2.3 with
parameter Lc is used. The grouping approach along with a global CSI knowledge will
allow us to build an achievable scheme working with subpacketization SLc = LK ′γ

( K′

K′γ

)4
and achieving the theoretical DoF of LKγ. As we will see later on in this section, the
reduced subpacketization leads to an effective DoF Lc which is Lc times higher than the
one achieved by the XOR based strategy. The details of the algorithm and the analysis
of the performance is given in the following subsections.

2.5.1 Description of the Scheme

As a first step, all possible subsets Q ⊂ [K ′] of size |Q| = K ′γ + 1 are constructed. Let
us now focus on a given subset Q. With a similar reasoning as in the XOR based strat-
egy, each user in group Gi such that i ∈ Q has K ′γ bunches of L subfiles that are not
stored in the caches of users belonging to one of the other K ′γ groups, say users in group
Gj , j ∈ Q\{i}, and known by all the users in the remaining K ′γ − 1 groups, i.e. groups
Gk, ∀k ∈ Q\{i, j}. Since each group contains Lc users and assuming that all users request
a different file from the library, group Gi has LcK

′γL = KγL subfiles to transmit which
are desired by the other K ′γ groups and which can be decoded without interference. All
these subfiles are transmitted in one channel use and each bunch of L subfiles is intended
for one of the receiving Kγ users. All users in the transmitting group participate in the
transmission and all together act as a unique distributed transmitter.

Before proceeding to the detailed description of the algorithm, let us define HGiGj to
be the channel matrix between the transmitting group Gi and receiving group Gj , i.e.

HGiGj ,

⎡⎢⎢⎢⎣
Hij · · · H(i+K− K

Lc
)j

... . . . ...
Hi(j+K− K

Lc
) · · · H(i+K− K

Lc
)(j+K− K

Lc
)

⎤⎥⎥⎥⎦ (2.11)

where we remind that Hi,j represents the L × L channel matrix between user i and user
j.

4We assume that K is a multiple integer of the chosen cooperation factor Lc
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Transmitting Phase

In the delivery phase, for each of the
( K′

K′γ+1
)

sets Q of size |Q| = K ′γ + 1, let us denote
the set of active users in a given time slot by UQ = ∪i∈QGi. Consider sequentially now all
the groups Gi such that i ∈ Q, all the Lc users within this group will act as a distributed
MIMO transmitter to create an LcL × 1 vector XGi,UQ\{Gi} which will multicast to the
Kγ users in the set UQ\{Gi}.

XGi,UQ\{Gi} is constructed as the sum of K ′γ precoded vectors VGiGk′ of size LcL × 1.
Each vector is intended for a different group Gk′ , k′ ∈ Q\{i} and it is precoded by a
matrix which is the inverse of the channel matrix between the transmitting group Gi and
the group of users Gk′ for which that vector is intended. This precoding matrix is more
commonly known as Zero Forcing (ZF) precoder. The constructed vector, transmitted
by group Gi, takes the form

XGi,UQ\{Gi} =
∑

Gk′ ⊂UQ\{Gi}
H−1

Gk′ Gi
VGiGk′ (2.12)

Each vector VGiGk′ is the concatenation of Lc vectors of size L × 1, each intended for
a different user of the intended group Gk′ . Precisely, VGiGk′ is constructed as follows:

VGiGk′ =
[
W

dGk′ (1)

Q\{k′},i,1 · · · W
dGk′ (1)

Q\{k′},i,L · · · W
dGk′ (Lc)

Q\{k′},i,1 · · · W
dGk′ (Lc)

Q\{k′},i,L

]T
(2.13)

where the symbol Gi(l) denote the l-th user in group Gi. After the construction of
XGi,UQ\{Gi}, each user j = Gi(l) in transmitting group Gi transmits:

Xj,UQ\{Gi} = Ej

∑
Gk′ ∈UQ\{Gi}

H−1
Gk′ Gi

VGiGk′ (2.14)

where Ej , [0 · · · 0IL0 · · · 0] is an L × LLc matrix selecting the l-th L × 1 vector from
an LcL × 1 vector and IL is an L × L identity matrix placed in the l-th L × L block
(sub-matrix) of Ej .

A compact description of the transmission scheme is provided in the form of pseudo-
code in Algorithm 5.

Decoding phase

A user k belonging to a receiving group Gr : r ∈ Q\{i}, with Gi being the transmitting
group, receives:

yk = EkVGiGr + EkHGrGi

∑
Gk′ ∈UQ\{Gi,Gr}

H−1
Gk′ Gi

VGiGk′  
interference term Ik

(2.15)

where the first addend in equation (2.15) is an L × 1 vector of subfiles desired by user
k and the term Ik is an interference term containing subfiles desired by users in the other
intended receiving groups, i.e. groups Gk′ ∈ UQ\{Gi, Gr}.
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1 procedure DELIVERY(W 1, ..., W N , d1, ..., dK)
2 for Q ⊂ [K ′] : |Q| = K ′γ + 1 do
3 UQ = ⋃

i∈Q
Gi

4 for i ∈ Q do

5 Transmit XGi,UQ\{Gi} = ∑
Gk′ ⊂UQ\{Gi}

H−1
Gk′ Gi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
dGk′ (1)

Q\{k′},i,1
...

W
dGk′ (1)

Q\{k′},i,L
...

W
dGk′ (Lc)

Q\{k′},i,1
...

W
dGk′ (Lc)

Q\{k′},i,L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
6 end
7 end
8 end procedure

Algorithm 5: Cooperation Based Delivery Algorithm

For this algorithm, we assume that each user has global perfect CSI knowledge, thus
user k knows all the channel matrices HGk′ Gi , k′ ∈ Q\{i}. Moreover, all the VGiGk′ in Ik

contain elements of the form W
dGk′ (l)

Q\{k′},i,l : k′ /= r, which are known by user k since it has
them in its cache. Thus, user k can reconstruct the interference term Ik and subtract it
from the received signal yk. At the end of the decoding phase, user k gets free of inter
and intra group interference the following L desired subfiles:

EkVGiGr =
[
W dk

Q\{r},i,1 · · · W dk

Q\{r},i,L

]T
. (2.16)

2.5.2 Performance Evaluation

The algorithm creates
( K′

K′γ+1
)

sets Q and for each of them K ′γ + 1 transmissions occur.
Hence, the scheme takes

( K′

K′γ+1
)
(K ′γ + 1) transmissions to serve all K users. Since each

transmitted precoded vector needs 1
( K′

K′γ)LK′γ
units of time to be transmitted, the overall

delay is

RLc(M) =
(K ′γ + 1)

( K′

K′γ+1
)

LK ′γ
( K′

K′γ

) = K(1 − γ)
LKγ

(2.17)

and it is achieved with subpacketization SLc = LK ′γ
( K′

K′γ

)
. As a consequence, under

the subpacketization constraint Smax, the maximum number of users over which we can
encode becomes

K̄Lc = argmax
K

{K : L
K

Lc
γ

(
K
Lc

K
Lc

γ

)
≤ Smax} (2.18)
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Thus, the effective achievable rate is

R̄Lc(M) = K

K̄Lc

K̄Lc(1 − γ)
LK̄Lcγ

(2.19)

We can now notice that K̄Lc = LcK̄, where K̄ is the maximum number of nodes
over which is possible to encode is the XOR based strategy is used (which uses Lc = 1).
Hence, the achieved effective sum DoF is

DoF Lc(γ) = LLcK̄γ (2.20)

which is Lc times higher than the one achieved by the XOR based algorithm under the
subpacketization constraint.
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Figure 2.2. The picture shows the achieved rate as a function of the per user normalized
cache size. The rates are the ones for a system with N = K = 40, L = 1 and K̄ = 10.
Runc(γ) refers to the uncoded scheme, R∗(γ) to the theoretical optimal rate, R̄(γ) to
the rate achieved by the XOR based scheme under the subpacketization constraint and
RLc(γ), Lc = 2,3,4 to the rates achieved by the coopearation based scheme.

Figure 2.2 helps us to understand the benefits of coding and users’ cooperation. The
plot shows the achievable rates for a system with N = K = 40, L = 1 and K̄ = 10
(due to a given subpacketization Smax). First, we notice that even if the maximum
allowable subpacketiation limits the maximum number of users over which it is possible
to encode to only the 25% of the total number of users, the rate achieved by the coded
scheme (XOR based algorithm) is significantly smaller than the one achieved by the
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uncoded scheme, pink and black dashed lines respectively. Secondly, we see how by
allowing some cooperation among users we can further bring down the delay. Finally,
a cooperation factor of Lc = 4 would allow to achieve the theoretical maximum degree
of freedom, whose corresponding rate is the one given by the red line, even under the
subpacketization constraint. The multiplicative gains arising from cooperation are evident
from the plot.However, we recall that the increased gains come at the expenses of increased
CSI knowledge.

2.6 A Low Subpacketization Strategy with only Local CSI
Knowledge

In this section we present a novel scheme that can be useful when global CSI is not
available at users and there is a subpacketization constraint Smax. Nevertheless, this
algorithm achieves a lower theoretical performance than the other two already discussed.

The following discussion is kept on purpose informal in order to give an idea of the
proposed scheme and its achieved performance. Without caching, a degree of freedom
of L within the same interference limited area can be easily achieved thanks to the L
per user antennas. With caching, thanks to the generalized content placement strategy
with cooperation factor Lc, the side information (cached content) available at each user
allows easily to serve, via D2D communication, K

Lc
γ users with only one transmission.

Hence, from the two above observations we can easily infer that a total number of LK ′γ
subfiles can be successfully delivered with one (multicast) transmission. This DoF of
LK ′γ is easily achievable by repeating Lc times the described XOR based scheme. At
each time the scheme would serve K ′ = K

Lc
users, each belonging to a different group.

However, if Lc > 1, the cached content makes possible an additional out of interference
unicast transmission in parallel to the aforementioned multicast one. As a result, taking
advantage of the grouping approach used in the scheme presented in the previous sec-
tion, this novel scheme achieves a theoretical sum DoF of DoF (γ) = L(K ′γ + 1) with
reduced subpacketizaticon SLc . There is clearly a tradeoff between the achieved degree
of freedom and the subpacketization. Given the subpacketization constraint Smax, there
exist a minimum value of Lc that satisfies the constraint. We remind that in practice
the smaller is the payload (a subfile to transmit) the higher will be the performance loss
due to header which is of fixed size. As a consequence, one may want to use an higher
value of Lc to further reduce the subpacketization. On the other hand, by reducing the
subpacketization, i.e. by increasing Lc, we also reduce the achievable DoF (unless users
have global CSI knowledge so that the cooperation based scheme of the previous section
can be used). In the next section we present and discuss in details the proposed delivery
scheme.

2.6.1 Description of the Scheme

Being the scheme inspired again by [7] and using a cooperation factor Lc bigger than 1,
we can focus on a subset Q ⊂ [K ′] of size K ′γ+1. Before proceeding with the description,
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let us define the following useful subsets

IQ,lc = (Gi(lc) : ∀i ∈ Q), ∀lc ∈ [Lc] (2.21)

which contain the lc-th user of all groups Gi, ∀i ∈ Q.

Transmission Algorithm

Having in mind how the XOR based scheme of the previous section works, let us fix a
given subset Q and let us select one element from Q, say j. Next, we sequentially select
all groups Gi such that i ∈ Q\{j}. For each of these groups, say Gi, the algorithm works
as described below.

Sequentially, pick user Gi(lc) and let him multicast a L × 1 vector to the lc-th user of
the other groups in the subset Q, i.e. to groups Gp such that p ∈ Q\{i}. The transmitted
vector from Gi(lc) takes the form

XGi(lc),IQ,lc \{Gi(lc)} =

⎡⎢⎢⎢⎢⎢⎢⎣

⨁
k∈IQ,lc \{Gi(lc)}

W dk

Q\{G−1(k)},i,1

...⨁
k∈IQ,lc \{Gi(lc)}

W dk

Q\{G−1(k)},i,L

⎤⎥⎥⎥⎥⎥⎥⎦ (2.22)

where G−1(k) is a function f : [K] → [K ′] obtaining the index of the group user k belongs
to. In parallel to the transmission in equation (2.22) a unicast message is transmitted
from a user of group Gj , which we denote by t, to one user of group Gi. User t is
selected (potentially even randomly) from the group Gj among the users not beneficing
from transmission (2.22). The intended user for the unicast transmission is selected to
be the subsequent user, in group Gi, to the user transmitting the multicast vector, i.e.
the user beneficing of the unicast transmission is Gi(1 + lc mod Lc). The transmitted
unicast vector is the following:

Xt,Gi(1+lc mod Lc) =

⎡⎢⎢⎢⎣
W

dGi(1+lc mod Lc)
Q\{i},j,1

...
W

dGi(1+lc mod Lc)
Q\{i},j,L

⎤⎥⎥⎥⎦ (2.23)

A pseudo-code of the transmission scheme is given in algorithm 6.
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1 procedure DELIVERY(W 1, ..., W N , d1, ..., dK)
2 for Q ⊂ [K ′] : |Q| = K ′γ + 1 do
3 IQ,lc = (Gi(lc) : ∀i ∈ Q), ∀lc ∈ [Lc]
4 Select any j ∈ Q

5 for i ∈ Q\{j} do
6 for lc ∈ [Lc] do
7 Transmit

8 XGi(lc),IQ,lc \{Gi(lc)} =

⎡⎢⎢⎢⎢⎢⎢⎣

⨁
k∈IQ,lc \{Gi(lc)}

W dk

Q\{G−1(k)},i,1

...⨁
k∈IQ,lc \{Gi(lc)}

W dk

Q\{G−1(k)},i,L

⎤⎥⎥⎥⎥⎥⎥⎦
9 In parallel:

10 Select any t ∈ Gj\{Gj ∩ IQ,lc}
11 Transmit

12 Xt,Gi(1+lc mod Lc) =

⎡⎢⎢⎢⎣
W

dGi(1+lc mod Lc)
Q\{i},j,1

...
W

dGi(1+lc mod Lc)
Q\{i},j,L

⎤⎥⎥⎥⎦
13 end
14 end
15 end
16 end procedure

Algorithm 6: Low subpacketization delivery strategy with local CSI

Decoding phase

In this paragraph we describe the decoding process performed at a given receiving user.
Let us denote by r a user belonging to the set IQ,lc\{Gi(lc)} for which the transmission
XGi(lc),IQ,lc \{Gi(lc)} is intended. User r receives the signal

yr = Hr,Gi(lc) · XGi(lc),IQ,lc \{Gi(lc)} + Hr,t · Xt,Gi(1+lc mod Lc)
5. (2.24)

Step 1 In the first step of the decoding phase, user r creates the signal
Hr,t ·Xt,Gi(1+lc mod Lc). This is possible thanks to the knowledge of local CSI and because
Xt,Gi(1+lc mod Lc) is a vector of subfiles with index τ = Q\{i} which user r has stored in
its cache since r ∈ Gp, p ∈ Q\{i}. User r proceed to subtract the created signal from the
received one:

ȳr = yr − Hr,t · Xt,Gi(1+lc mod Lc) = Hr,Gi(lc) · XGi(lc),IQ,lc \{Gi(lc)} (2.25)

5We recall that the noise is omitted because our analysis is done in the high SNR regime.
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Step 2 At this point user r applies a ZF decoder to null out the effect of the channel
Hr,Gi(lc):

H−1
r,Gi(lc)ȳr = XGi(lc),IQ,lc \{Gi(lc)} (2.26)

Step 3 In the next step, user r constructs from its cache the vector⎡⎢⎢⎢⎢⎢⎢⎣

⨁
k∈IQ,lc \{Gi(lc),r}

W dk

Q\{G−1(k)},i,1

...⨁
k∈IQ,lc \{Gi(lc),r}

W dk

Q\{G−1(k)},i,L

⎤⎥⎥⎥⎥⎥⎥⎦ (2.27)

which it subtracts from XGi(lc),IQ,lc \{Gi(lc)} to finally get with no error its desired subfiles
{W dr

Q\G−1(r),i,1 · · · W dr

Q\G−1(r),i,L}.

Let us now briefly describe the decoding process of the user Gi(1 + lc mod Lc) which
receives the signal

yGi(1+lc mod Lc) =
HGi(1+lc mod Lc),Gi(lc) · XGi(lc),IQ,lc \{Gi(lc)} + HGi(1+lc mod Lc),t · Xt,Gi(1+lc mod Lc).

(2.28)

User Gi(1+lc mod Lc) creates the signal HGi(1+lc mod Lc),Gi(lc) ·XGi(lc),IQ,lc \{Gi(lc)} thanks
to its cache and local CSI. Next, it subtracts the latter from the received signal and finally
it applies the ZF decoder H−1

Gi(1+lc mod Lc),t to get its desired subfiles.

2.6.2 Performance Evaluation

The algorithm operates in
( K′

K′γ+1
)

rounds, one for each set Q of size |Q| = K ′γ +1. Fixed
the set Q, Lc sets of 2 parallel transmissions occur for each of the K ′γ elements of the
set Q\{j}, j ∈ Q. Thus, the total number of (2 parallel) transmissions is(

K ′

K ′γ + 1

)
K ′γLc. (2.29)

Since each transmission is of duration 1
LK′γ( K′

K′γ) , the rate achieved by the scheme is

Rlow CSI
Lc

(M) =
( K′

K′γ+1
)
K ′γLc

LK ′γ
( K′

K′γ

) (2.30)

which after some elementary math boils down to

Rlow CSI
Lc

(M) = K(1 − γ)
L(K ′γ + 1) (2.31)
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The analysis under the subpacketization constraint Smax is the same as in the subsection
2.5.2 since the subpacketization required by the scheme is the same as the one required
by the cooperation based algorithm. Hence, the maximum number of user over which is
possible to encode is K̄Lc = LcK̄ and leads to a delay of

R̄low CSI
Lc

(M) = K

K̄Lc

K̄Lc(1 − γ)
L( K̄Lc

Lc
γ + 1)

= K(1 − γ)
L( K̄Lc

Lc
γ + 1)

= K(1 − γ)
L(K̄γ + 1)

(2.32)

The effective degree of freedom achieved by the scheme is

DoF (γ) = L(K̄γ + 1). (2.33)

2.7 Examples

In order to provide a better understanding of the cache placement and the three proposed
delivery schemes, we illustrate a different example for each the proposed schemes and we
compare the performance of the schemes in all the three cases. For the sake of brevity, the
examples presented below are meant to give the reader only an idea of how the schemes
work and thus they are not complete. It is left to the reader to complete them in order
to check the correctness.

Example using the XOR based scheme

Consider a network with K = 8 users, each equipped with L = 2 antennas. Each user has
got enough memory so that the normalized cache size is γ = 1

2 . Without loss of generality,
we assume that the requested demand vector is d = (1,2,3,4,5,6,7,8), i.e. user 1 requests
file W 1, user 2 requests file W 2, etc. In the delivery phase we are going to use the XOR
based scheme which does not require users’ cooperation at the expenses of an extremely
high subpacketization. Thus, since Lc = 1, the subpacketization is S1 = 2 · 4

(8
4
)

= 560,
while the respective cached content at each user is respectively:

Z1 = {W n
1234,1,l, ..., W n

1234,4,l, W n
1235,1,l, ..., W n

1678,8,l ∀l ∈ [2], ∀n ∈ [8]}
Z2 = {W n

1234,1,l, ..., W n
1234,4,l, W n

1235,1,l, ..., W n
2678,8,l ∀l ∈ [2], ∀n ∈ [8]}

...
Z8 = {W n

1238,1,l, ..., W n
1238,8,l, W n

1248,1,l, ..., W n
5678,8,l ∀l ∈ [2], ∀n ∈ [8]}

(2.34)

In the delivery phase, let us focus on the subset Q = {12345} of size |Q| = Kγ+1 = 5.
The 5 transmissions associated to this subset are:

X1,2345 =
[
W 2

1345,1,1 ⊕ W 3
1245,1,1 ⊕ W 4

1235,1,1 ⊕ W 5
1234,1,1

W 2
1345,1,2 ⊕ W 3

1245,1,2 ⊕ W 4
1235,1,1 ⊕ W 5

1234,1,1

]
(2.35)
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X2,1345 =
[
W 1

2345,2,1 ⊕ W 3
1245,2,1 ⊕ W 4

1235,2,1 ⊕ W 5
1234,2,1

W 1
2345,2,2 ⊕ W 3

1245,2,2 ⊕ W 4
1235,2,1 ⊕ W 5

1234,2,1

]
(2.36)

X3,1245 =
[
W 1

2345,3,1 ⊕ W 2
1345,3,1 ⊕ W 4

1235,3,1 ⊕ W 5
1234,3,1

W 1
2345,3,2 ⊕ W 2

1345,3,2 ⊕ W 4
1235,3,1 ⊕ W 5

1234,3,1

]
(2.37)

X4,1235 =
[
W 1

2345,4,1 ⊕ W 2
1345,4,1 ⊕ W 3

1245,4,1 ⊕ W 5
1234,4,1

W 1
2345,4,1 ⊕ W 2

1345,4,2 ⊕ W 3
1245,4,2 ⊕ W 5

1234,4,1

]
(2.38)

X5,1234 =
[
W 1

2345,5,1 ⊕ W 2
1345,5,1 ⊕ W 3

1245,5,1 ⊕ W 4
1235,5,1

W 1
2345,5,1 ⊕ W 2

1345,5,2 ⊕ W 3
1245,5,2 ⊕ W 4

1235,5,1

]
(2.39)

Let us have a look at equation (2.35) which illustrates the 2 × 1 vector transmitted
by user 1 and intended for users 2,3,4,5 which will receive and decode the vector using a
Zero-Forcing receiver thanks to the knowledge of the channel matrix Hj,1, j ∈ {2,3,4,5}.
After decoding, each of the intended users can get their desired subfiles thanks to the
cached content. For instance, user 2 constructs from its cache the vector[

W 3
1245,1,1 ⊕ W 4

1235,1,1 ⊕ W 5
1234,1,1

W 3
1245,1,2 ⊕ W 4

1235,1,1 ⊕ W 5
1234,1,1

]
(2.40)

which can subtract from the decoded vector in (2.35) to get the desired subfiles W 2
1345,1,1

and W 2
1345,1,2. We remind the reader that the subfiles in (2.40) are placed in the cache of

user 4 since their indices τ contain the element 4 (see the content placement strategy).
With the same process, users 3,4,5 get their desired subfiles from the decoded vector
X1,2345. We leave to the reader to check that after the transmissions associated to the
other subsets Q, each user will have obtained all subfiles of the requested file. Since
each transmission has normalized duration 1

560 and the total number of transmissions is
(Kγ + 1)

( K
Kγ+1

)
= 5

(8
5
)

= 280, the total delivery time is merely R(M) = 280
560 = 1

2 .

Example using the Cooperation based scheme

Consider the same network of the previous example but we now group users in groups of
Lc = 2 users. A possible grouping can be the following:

G1 = {1 5}, G2 = {2 6}, G3 = {3 7}, G4 = {4 8} (2.41)

In the placement phase, all users within the same group cache the same content, thus
the subpacketization reduces to S2 = 2 · 2

(4
2
)

= 24 which is 560
24 ≈ 23 times smaller than

the subpacketization needed by the XOR based scheme. We now use the generalized
placement strategy with Lc = 2 to store content at the users’ caches which are illustrated
below:

Z1 = Z5 = {W n
12,1,l, W n

12,2,l, W n
13,1,l, W n

13,3,l, W n
14,1,l, W n

14,4,l, ∀l ∈ [2], ∀n ∈ [8]},

Z2 = Z6 = {W n
12,1,l, W n

12,2,l, W n
23,2,l, W n

23,3,l, W n
24,2,l, W n

24,4,l, ∀l ∈ [2], ∀n ∈ [8]},

Z3 = Z7 = {W n
13,1,l, W n

13,3,l, W n
23,2,l, W n

23,3,l, W n
34,3,l, W n

34,4,l, ∀l ∈ [2], ∀n ∈ [8]},

Z4 = Z8 = {W n
14,1,l, W n

14,4,l, W n
24,2,l, W n

24,4,l, W n
34,3,l, W n

34,4,l, ∀l ∈ [2], ∀n ∈ [8]}.

(2.42)
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In the delivery phase, we assume again that the demand vector is d = (1,2,3,4,5,6,7,8).
Let us focus on the subset Q = {1,2,3}. The first transmission associated to this subset
is from group G1 and it is intended for groups G2 and G3. Thus, users 1 and 5, which
share the same cached content, will act as a distributed transmitter to partially serve
users 2,6,3,7. Assuming both users 1 and 5 know the channel matrices HG2G1 and HG3G1 ,
the signal they transmit is

XG1,G2G3 = H−1
G2G1

⎡⎢⎢⎢⎣
W 2

13,1,1
W 2

13,1,2
W 6

13,1,1
W 6

13,1,2

⎤⎥⎥⎥⎦+ H−1
G3G1

⎡⎢⎢⎢⎣
W 3

12,1,1
W 3

12,1,2
W 7

12,1,1
W 7

12,1,2

⎤⎥⎥⎥⎦ (2.43)

The transmission of users 1 ad 5 is received by all users, particularly the ones in
group G2 and G3 for which the signal in equation (2.43) is intended. Let us focus on user
2 which, thanks to precoding, receives (neglecting noise):

y2 =
[
W 2

13,1,1
W 2

13,1,2

]
+ E2HG2G1H−1

G3G1

⎡⎢⎢⎢⎣
W 3

12,1,1
W 3

12,1,2
W 7

12,1,1
W 7

12,1,2

⎤⎥⎥⎥⎦
  

interference term

(2.44)

where E2 =
[
1 0 0 0
0 1 0 0

]
.

We now notice that the index τ of the subfiles in the interference term contain element
2. Consequently, thanks to the design of the cache placement, all the subfiles in the inter-
ference term are stored into the cache of user 2. Moreover, we remind that perfect global
CSI is available at each node. As a result, user 2 can reconstruct the interference term
and subtract it from y2. After this deconding phase, user 2 obtains his desired subfiles
{W 2

13,1,l}2
l=1. Similarly, users 6,3 and 7 get their desired subfiles from the transmitted

vector XG1,G2G3 .

Analogously, the other 2 transmissions associated to the above subset Q = {1,2,3}
are:

XG2,G1G3 = H−1
G1G2

⎡⎢⎢⎢⎣
W 1

23,2,1
W 1

23,2,2
W 5

23,2,1
W 5

23,2,2

⎤⎥⎥⎥⎦+ H−1
G3G2

⎡⎢⎢⎢⎣
W 3

12,2,1
W 3

12,2,2
W 7

12,2,1
W 7

12,2,2

⎤⎥⎥⎥⎦ (2.45)

XG3,G1G2 = H−1
G1G3

⎡⎢⎢⎢⎣
W 1

23,3,1
W 1

23,3,2
W 5

23,3,1
W 5

23,3,2

⎤⎥⎥⎥⎦+ H−1
G2G3

⎡⎢⎢⎢⎣
W 2

13,3,1
W 2

13,3,2
W 6

13,3,1
W 6

13,3,2

⎤⎥⎥⎥⎦ (2.46)

Again, users can retrieve their desired subfiles with no interference thanks to their
caches, the precoding matrix used and knowledge of CSI. We leave to the reader to create
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the transmitted vectors for the other subsets Q and to check the complete reception of
all subfiles by each user after all transmissions are performed.

The total number of transmissions is 3 ·
(4

3
)

= 12. Thus, the total delivery time is
R(M) = 12

24 = 1
2 . The delivery time turns out to be the same as the one given by the

XOR based scheme. However, if there was a subpacketization constraint (for example the
maximum number of user over which we could encode was K̄ = 4 and not 8) this scheme
would achieve a better performance than the XOR based scheme.

Example for the low subpacketization scheme with local CSI

Consider a network with K = 12 users with normalized cache size γ = 1
2 . Each user is

equipped with L = 2 antennas. We assume that users have only local CSI. For instance,
considering users 1,2,3, user 1 knows channel matrices H1,2 and H1,3 but he doesn’t know
H2,3. Let us put the 12 users in groups of size Lc = 3, so that users within the same
group cache the same content. The 4 groups are:

G1 = {1,5, 9}, G2 = {2,6,10}, G3 = {3,7,11}, G4 = {4,8,12} (2.47)

For the sake of brevity, the placement phase is skipped since it is analogous to the
one presented in the previous example. In the delivery phase, let us focus as usual on the
subset Q = {1, 2,3} and let us select one element j from Q, for instance j = 2. For this
set Q, the algorithm operates in K ′γ = 2 rounds of Lc = 3 double transmissions (one
unicast in parallel to one multicast). In the first round, the 3 parallel transmissions are:

1) X1,23 =
[
W 2

13,1,1 ⊕ W 3
12,1,1

W 2
13,1,2 ⊕ W 3

12,1,2

]
X6,5 =

[
W 5

23,2,1
W 5

23,2,2

]
(2.48)

2) X5,67 =
[
W 6

13,1,1 ⊕ W 7
12,1,1

W 6
13,1,2 ⊕ W 7

12,1,2

]
X10,9 =

[
W 9

23,2,1
W 9

23,2,2

]
(2.49)

3) X9,10 11 =
[
W 10

13,1,1 ⊕ W 11
12,1,1

W 10
13,1,2 ⊕ W 11

12,1,2

]
X2,1 =

[
W 1

23,2,1
W 1

23,2,2

]
(2.50)

Let us analyse the first set of 2 parallel signals X1,23 and X6,5 transmitted by user 1
and 6 respectively.

User 2 receives the signal y2 = H2,1 ·X1,23 +H2,6 ·X6,5. Since the subfiles W 5
23,2,1 and

W 5
23,2,2 are both stored at the user 2’s cache and thanks to the knowledge of the channel

matrix H2,6, user 2 can reconstruct the signal H2,6X6,5 and subtract it from y2.

ȳ2 = y2 − H2,6X6,5 = H2,1X1,23 (2.51)

Next, the Zero Forcing decoder H−1
2,1 is applied to the signal ȳ2. At this point user 2

has got cleanly the vector X1,23. It can now subtract from the vector X1,23 the subfiles
W 3

12,1,1 and W 3
12,1,2 which it has in its cache. At the end of the decoding phase, user 2
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gets its desired subfiles W 2
13,1,1 and W 2

13,1,2. The decoding procedure is the same for user 3.

Let’s now see how user 5 decodes its desired files. It receives the signal y5 = H5,1 ·
X1,23 + H5,6 · X6,5 from which it subtracts H5,1 · X1,23.

ȳ5 = y5 − H5,1 · X1,23 = H5,6 · X6,5 (2.52)

After that, the ZF receiver H−1
5,6 is applied to ȳ5. The desired subfiles W 5

23,2,1 and W 5
23,2,2

are then obtained.

The decoding process is the same also for the transmissions in equations 2.49 and
2.50.

In the second round we have:

4) X3,12 =
[
W 1

23,3,1 ⊕ W 2
13,3,1

W 1
13,3,2 ⊕ W 2

12,3,2

]
, X6,7 =

[
W 7

12,2,1
W 7

12,2,2

]
(2.53)

5) X7,56 =
[
W 5

23,3,1 ⊕ W 6
13,3,1

W 5
13,3,2 ⊕ W 6

12,3,2

]
, X10,11 =

[
W 11

12,2,1
W 11

12,2,2

]
(2.54)

6) X11,9 10 =
[
W 9

23,3,1 ⊕ W 10
13,3,1

W 9
13,3,2 ⊕ W 10

12,3,2

]
, X2,3 =

[
W 3

12,2,1
W 3

12,2,2

]
(2.55)

The decoding for the above transmissions is similar as the previous set of transmis-
sions. The delay for this first 6 sets of parallel transmissions associated to set Q = {1,2,3}
is 6

24 . Overall, there are
( K′

K′γ+1
)

=
(4

3
)

= 4 sets Q. Hence, the total delivery time needed
for all users to be served is R(M) = 4 · 6

24 = 1.
It is important to notice that if we had global CSI knowledge, by using the cooperation
based algorithm we would achieve a delay of only R(M) = 12

24 = 1
2 .

2.8 Summary of Results
In this section we summarize the results obtained for the multi-antennas D2D coded
caching problem.

Theorem 1. In the D2D coded caching framework, where each of the K nodes, equipped
with L antennas and having a cache of size M , request a different file from a library of
N files (γ , M

N ), the following theoretical degree of freedom is achievable:

DoF (γ) = LKγ. (2.56)

The DoF given in (2.56) is achieved with the caching and delivery scheme described
in section 2.4 which are generalizations of the schemes given in [7]. The availability of L
antennas at each user leads to an L-fold gain in the maximum achievable DoF compared
to the single-antenna case. For the sake of comparison, we recall that in the broadcast
channel, adding more antennas at the base station leads to a gain that is only additive.
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In fact, for the MISO broadcast channel the order-optimal degree of freedom is L + Kγ,
where L is the number of antennas at the base station [17]. For the XOR based scheme to
work, it is enough that each receiving user has local CSI knowledge, i.e. knowledge of the
channel between the transmitting user and itself. However, the required subpacketization
S1 is huge and in the finite file size regime it affects the effective achievable DoF . In fact,
under the subpacketization constraint Smax, which limits the maximum number of users
over which it is possible to encode to the value K̄ < K, the DoF reduces to

DoF (γ) = LK̄γ. (2.57)

The above DoF can be much smaller than the theoretical one depending on how severe
is the subpacketization constraint.

It turns out that by letting users cooperate the effective DoF under the constraint
Smax can be boosted by a multiplicative factor at the expenses of global channel state
knowledge. We give in the following theorem the main result of this chapter which is
obtained by using the placement and delivery scheme described in section 2.3 and 2.5,
respectively.

Theorem 2. For a D2D coded caching problem where the finite size of the files stored
at the library constraints the files to be split in no more than Smax subfiles, the following
effective maximum degree of freedom is achievable:

DoF (γ) = LLcK̄γ (2.58)

where Lc ∈ [K
2 ] is the cooperation factor and it is a parameter of choice6.

The above DoF is achieved thanks to the fact that the achievable scheme, the coop-
eration based scheme described in section 2.5, requires the subpacketization to be

SLc = L
K

Lc
γ

(
K
Lc

K
Lc

γ

)
(2.59)

which, as already discussed, increases the maximum number of users over which it is
possible to encode to K̄Lc = LcK̄.

It is of relevant interest to evaluate the ratio between the subpacketization required by
the cooperation based scheme SLc and the one S1 required by the XOR based algorithm.
This will give us an idea of how much bigger the subfiles will be if the new scheme is
used. In fact, from a practical point of view, we recall that the smaller is the size of the
subfiles, the higher will be the loss due to the headers of the transmitted packets.

6We assume here that LcK̄ ≤ K.
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Theorem 3. The subpacketization required by the novel cooperation-based scheme is ex-
ponentially lower with the number of users K than the one required by the legacy scheme,
at the cost of increased CSI knowledge. The ratio SLc

S1
takes the form

SLc

S1
≈ γγ Lc−1

Lc
K

Lc
(2.60)

where the approximation is obtained using
(n

k

)
≈ (n

k )k.

The cooperation based algorithm achieving the effective DoF given in Theorem 2
requires each user to have global CSI knowledge. In fact, fixing in the algorithm the set
Q and assuming that group Gi transmits to the other K ′γ groups Gj , ∀j ∈ Q\{i}, then
the users in group Gi has to know the channel matrices between their group and all the
others. A receiving group Gr, r ∈ Q\{i} has to know the channel matrices between the
transmitting group Gi and the other groups Gj , j ∈ Q\{i, r}. However, this could be quite
difficult to obtain especially when the channel state changes fast. Thus, we developed a
low subpacketization scheme which does not require global CSI knowledge (see section
2.6). This lead us to the next theorem.

Theorem 4. In the multi-antennas D2D coded caching framework, where a low subpack-
etization scheme is required and no global CSI is available to the users, the following
effective DoF is achievable:

DoF (γ) = L(K̄γ + 1) (2.61)

with subpacketization SLc = L K
Lc

( K
Lc
K
Lc

γ

)
and where K̄ is the maximum number of users

over which it is possible to encode given by the subpacketization constraint in equation
(2.8).

The effective degree of freedom achieved with the scheme described in section 2.6 is
higher than the one achieved by the XOR based scheme of only an additive factor of L.
In fact, we recall that the XOR based scheme achieves DoF = LK̄γ. For the regime of
interest, i.e. when Kγ is high, this extra DoF of L might be negligible. Hence, given
the complexity of the low subpakcetization scheme, the XOR based scheme would be
preferred when Kγ is high.

All the above discussion leads us to think that there is a strong fundamental connec-
tion between achievable DoF, subpacketization and CSI knowledge.
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2.9 Conclusions
In this chapter we have studied the multiple-antennas D2D coded caching problem under
the subpacketization constraint. To the best of my knowledge, this is the first time that
this problem is investigated. Research has been done for the subpacketization problem for
the broadcast channel but not for the D2D setting. Moreover, it is also the first time that
multiple antennas at users are considered in the coded caching framework. The enormous
gains promised by coded caching are theoretically achievable for infinite file size. In the
finite file size regime, the maximum number of subfiles into which we can split the files
drastically limits the gains promised by coded caching to much lower values. Given the
recent results of Lampiris and Elia [18] for the MISO broadcast channel with cache-
enabled users, the objective in this chapter was to explore multiple antennas and users’
cooperation to boost the performance under the subpacketization constraint. To this
end, we have built a generic cache placement algorithm and 3 different delivery schemes.
As a results of the aforementioned schemes, it turns out that having L antennas at each
user can boost the theoretical sum degree of freedom of the system by a multiplicative
factor of L. However, we have not found any interesting relation between number of
antennas at the user terminals and subpacketization. In better words, we have not found
any way to exploit the multiple antennas at users to reduce the subpacketization. On the
other hand, we can conclude that users cooperation plays a crucial role in reducing the
subpacketization and hence in increasing the effective achievable degree of freedom. The
gain arising from users cooperation is directly proportional to the number of users which
cooperate together (Lc) and there exist a cooperation factor which allows to achieve the
theoretical gain promised by coded caching even in the finite file size regime. However,
users cooperation strongly rely on a perfect knowledge of all the channels between each
pair of users involved in a multicast session. In fact, in a cooperation based algorithm
users are grouped in groups of Lc users in order that each group can act as a distributed
transmitter and/or receiver. This cooperation is possible only thanks to global CSI
knowledge. Finally, this work suggests a fundamental relation between effective achievable
degree of freedom, channel state information knowledge and subpacketization.
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Chapter 3

D2D Coded Multicasting for
Distributed Computing

3.1 Introduction

Emerging applications in fields such us computer vision, augmented reality and recom-
mendation systems are becoming more and more computationally expensive and data-
hungry. Nowadays, it is already common to run machine learning and data analysis
algorithms in very large distributed systems comprising of relatively small and unreliable
computing nodes. This is very common in the Cloud where large clusters of servers are
used to execute data-intensive jobs. It is common to refer to a set of nodes coordinating
and exchanging messages to execute a given task as distributed computing system. The
use of a set of low computationally powerful nodes in place of a single super powerful
computing node is motivated by economical reasons (cheaper), feasibility (the aggregated
computational power of a big set of nodes may be much higher than the most powerful
supercomputer we might be able to build) and flexibility in terms of allocation of re-
sources. Generally speaking, distributed computing exploits the presence of more than
one available computing node, in order to allow for faster execution of a computational
task.

In this age, distributed computing is only used in clusters of servers interconnected
each other via a wired network of switches and routers. However, recent progress in radio
technology have provided flexibility and enhanced capabilities in terms of power efficiency
and guaranteed rates so that wireless distributed computing (WDC) has been envisioned
to be feasible. The goal of wireless distributed computing is to reduce per-node and
network resource requirements and enable computational intensive applications at wire-
less nodes not otherwise possible. The main enabling technologies for WDC are software
defined radio, cognitive radio and fault tolerant distributed computing algorithms.

The general distributed computing problem considers the job of processing a large
dataset and aims to generate Q output results in a distributed fashion across a set of K
computing nodes, each being in charge of generating one or more of the Q output results.
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The execution of a job in a cluster of computing nodes requires the job to be modelled
so that it can be executed in parallel in the available nodes. This effort usually involves
dividing the original computational task into different subtasks, and then assigning these
subtasks to different nodes which, after some intermediate steps, compute the final task
in parallel. While some rare tasks are by nature already parallel and so they can be
immediately executed in parallel in a distributed system, most computational problems
need to be parallelized, and this usually involves an intermediate preprocessing step and
a subsequent information exchange between the nodes. The most well-known distributed
models are Dryad [19], CIEL [20] and MapReduce [21]. Our focus will be on the MapRe-
duce model, which is a parallel processing tool that simplifies the parallel execution of
tasks, by abstracting the original problem into the following four phases:

1. the assignment phase, where a central controller node distribute the dataset, with
a given redundant factor for fault tolerance, to many computing nodes. In this
phase, the controller decides also which of the Q output results each node will be
responsible to compute at the end of the process.

2. the mapping phase, where the nodes perform an intermediate computation aiming
to “prepare” for parallelization.

3. the shuffling phase (or communication phase), where nodes communicate between
each other the preprocessed data that is needed to make the process parallel.

4. the reduce phase, where nodes work in parallel to provide the final output that each
is responsible for.

Some type of tasks that can be parallelized under a MapReduce framework include Sorting
[22], Data Analysis [23], Word Counting, and Genome Sequencing [25].

3.1.1 Communication Bottleneck of Distributed Computing

While though MapReduce allows for a simple parallelization of the jobs, it comes with
a fundamental bottleneck: the communication bottleneck. The latter bounds the perfor-
mance of MapReduce, especially as the dataset size becomes larger and larger. Specif-
ically, while having more nodes can speed up computational time, the aforementioned
information exchange often yields unchanged or even increased communication load and
delays, leading to a serious bottleneck in the performance of distributed computing al-
gorithms. For example, 50% − 60% of the overall execution time for some basic tasks
including the aforementioned terasort and word counting is spent in the shuffling phase
[24].

Delays of each of the MapReduce Phases In particular, consider a setting where
there are K computing nodes, operating on a dataset of F elements. The time spent
in the assignment phase is usually note considered as part of the overall execution time
of a job. In fact, it is also common that the dataset needed for a certain job is already
distributed among the nodes according to the underlying file system. In terms of the map
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phase, let Tmap(F ) represent the time required for one node to map the entire dataset.
Assuming that each node has to map a fraction γ ≥ 1

K of the dataset (which implies that
each element of the dataset appear in t = Kγ different computing nodes), then the map
phase has a duration approximately Tmap(γF ) = Tmap(t F

K ) which generally reduces with
K. The reason why the dataset may be replicated more than once is due to the fact that
there might be some failures, due to unavailability of resources. Hence, the replication
of the dataset is used for fault tolerance at the expenses of storage. Similarly, the final
reduce phase enjoys the same decreased delay Tred(F/K), where Tred(F ) denotes the time
required for a single node to reduce the entire mapped dataset1.

The problem lies with the communication delay Tcom(F ). Let Tc denote the time
required to transmit the entire mapped dataset, from one node to another without any
interference from the other nodes2. Since each node already has a fraction γ of the
dataset, the delay of the shuffling phase takes the form Tcom(F ) = Tc · (1−γ), which does
not decrease with K.

Hence for the basic MapReduce (MR) algorithm — under the traditional assumption
that the three phases are performed sequentially — the overall execution time becomes

T MR
tot (F, K) = Tmap(t F

K
) + Tc · (1 − t

K
) + Tred( F

K
) (3.1)

which shows that, while the joint computational cost Tmap(γF )+Tred( F
K ) of the map and

reduce phases can decrease by adding more nodes, the communication time Tc · (1 − γ)
is not reduced and actually increases with the number of nodes. Thus the cost of the
shuffling phase emerges as the actual major bottleneck of the entire process.

It is also important to point out that, since Tc accounts for the capacity of the com-
munication link between the nodes, the time spent in the shuffling phase is a critical point
of failure which is even more severe in wireless distributed computing.

In order to tackle this problem and make distributed computing scaling with the num-
ber of nodes, several optimization methods, acting on different aspects of MapReduce,
have been proposed to reduce the communication time. Among others, a method em-
ploying distributed cache memories has been proposed in [27], an optimal flow scheduling
across network paths has been proposed in [26] and a method combining intermediate
results before shuffling can be found in [21]. A new line of research was opened up by
Li et al. in [28] wherein the coded multicasting technique used in single-antenna D2D
coded caching (see section 1.3) has been proposed to reduce the communication load of
distributed computing.

1We here assume for simplicity of exposition, uniformity in the amount of mapped data that each node
uses in the final reduce phase. We also assume a uniformity in the computational capabilities of each
node.

2Tc essentially accounts for the ratio between the capacity of the communication link and the dataset
size F .
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3.1.2 Emergence of Coded MapReduce: exploiting structured redun-
dancy to reduce the communication load

Coded MapReduce [28] is a communication-efficient variation of MapReduce, which mod-
ifies the mapping phase, in order to allow for the shuffling phase to employ coded com-
munication. The main idea of the method is to assign and then force each node to map a
fraction γ > 1/K of the whole dataset (such that each element of the dataset is mapped
in t , Kγ computing nodes) and then — based on the fact that such a mapping would
allow for common mapped information at the different nodes — to eventually perform
coded communication in the shuffling phase. The packets to be transmitted are not sent
one after the other, but are rather combined together into XORs and sent as one. The
reason this speedup would work is because the recipients of these packets could use part
of their (redundant) mapped packets in order to remove the interfering packets from the
received XOR, and acquire their own requested packet. This allowed for communicating
(during the shuffling phase) to t = Kγ nodes at a time, thus reducing the shuffling phase
duration, from Tc · (1 − γ) to 1

t Tc · (1 − γ) = 1
Kγ Tc · (1 − γ). Hence, the overall execution

time given by Coded MapReduce is

T CMR
tot (F, K) = Tmap(γF ) + Tc · 1 − γ

Kγ
+ Tred( F

K
) (3.2)

Looking at the above equation, it is evident that there is a fundamental trade-off be-
tween communication and computation. In fact, equation (3.2) shows that it is possible
to reduce the communication load by a multiplicative factor Kγ at the expense of some
extra computation (γ times more) in the map phase. The optimal value of γ required to
minimize the overall execution time depends on the communication link capacity and the
job itself. This trade-off has been proven to be information theoretical optimal in [29].
Moreover, we notice that if we fix γ the shuffling time and the reduce time decrease with
the number of nodes. This behaviour is not experienced by the conventional MapReduce.

The technique we are talking about (Coded MapReduce) is nothing but the same
technique used in the coded caching framework for the D2D setting which we have al-
ready described in section 1.3. Thus, there exist a one-to-one connection between the
communication phase of MapReduce and D2D coded caching. Since Coded MapReduce
uses exactly the same communication technique of D2D coded caching, we will omit here
its detailed description. However, in the next section we try to make a clear connection
between these two only apparently different worlds.

On the Connection Between Coded MapReduce and D2D Coded Caching

The general distributed computing problem considers a job of processing a large dataset
to generate Q outputs. The job will be carried out distributively across K computing
nodes. For simplicity and to make the parallelism more clear we assume Q = K and thus
each of the K nodes will be in charge of computing one of the Q outputs. In the more
general case, each node has to compute Q

K outputs. Under the above assumption, this
corresponds to say that in the caching problem each of the K users requests a different
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file from the library. Thus, as in distributed computing a node needs all the mapped data
necessary to compute a given output, in the same way a coded caching user requests a
certain file.

In the assignment phase of Coded MapReduce, the dataset is split into S subsets,
each of which is assigned to a given subset of nodes. Analogously, in a D2D network with
K users, in the placement phase each file is split into S subfiles, each of which is cached
in the memory of a given subset of users. However, while in distributed computing there
is only a single input file (the dataset), in caching there are many of them. In Coded
MapReduce, the way the subsets of the dataset are assigned to the computing nodes is
exactly the same as the way subfiles are stored in the users’ caches.

In the mapping phase, each computing node processes each of the assigned subsets to
generate for each of them Q intermediate results. This phase is not present in caching
where the stored subfiles at each user are not processed. Despite some computation
is performed on each subset, the structured redundancy introduced in the assignment
phase is preserved and multicasting opportunities arise. These multicasting opportunities
are the same as the ones that arise in the equivalent caching problem thanks to the
cache placement. At this point, the communication phase starts using the coding scheme
presented in Coded MapReduce, which is actually equivalent to the scheme presented
in [7]. Finally, after the communication phase, the reduce phase starts and all nodes
compute in parallel the output results they are in charge of. This last phase is not present
in D2D coded caching which is only a communication technique. We here provide a toy
example to better understand how Coded MapReduce works and its connection with
coded caching.

Example Consider K = 3 servers that are assigned a dataset of F numbers in the range
[1 − 3000] to perform a sorting algorithm on. In order to make the sorting algorithm par-
allel we make server 1 in charge of sorting all numbers in the range C1 = [1 − 1000],
server 2 will sort all the numbers in the range C2 = [1001 − 2000] and server 3 will
be in charge of range C3 = [2001 − 3000]. In the map phase each server puts the num-
bers that it has received during the assignment phase in one of the three ranges C1, C2, C3.

Assuming that we want to reach a gain of t = 2, in the assignment phase the dataset
is divided into t

(K
t

)
= 6 non-overlapping subsets

W1, W2, W3, W4, W5, W6

each of size F
6 elements. After that, server 1 is assigned subsets W1, W2, W3, W4, server

2 subsets W3, W4, W5, W6 and server 3 is assigned subsets W1, W2, W5, W6. Then, each
server maps each of its own subsets into the 3 ranges. Thus, for example the number
2145 ∈ Wi would be placed in the range C3 = [2001 − 3000]. After the server has placed
all the numbers of the subset Wi in the correct range, the subset Wi remains divided in
three sets of numbers

W C1
i , W C2

i , W C3
i
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where W C1
i is the set of numbers from Wi which are in the range C1, W C2

i is the set of
numbers from Wi which are in the range C2 and W C3

i is the set of numbers in the range C3.

For example, after the mapping phase, server 1 will have the following mapped data

W C1
1 , W C2

1 , W C3
1 , W C1

2 , W C2
2 , W C3

2 , W C1
3 , W C2

3 , W C3
3 , W C1

4 , W C2
4 , W C3

4 .

We can now notice that, since server 1 is in charge of range C1, it needs to get the mapped
data W C1

i , i ∈ {1,2,3,4,5,6} so that it can sort, in the reduce phase, all the numbers in
the range [1 − 1000]. Thus, it needs W C1

5 and W C1
6 which have been computed by servers

2 and 3. A similar discussion can be done for server 2 and 3.

In the shuffling phase, the 3 servers transmit respectively3

server 1 → x1 = W C2
1 ⊕ W C3

3 (3.3)
server 2 → x2 = W C3

4 ⊕ W C1
5 (3.4)

server 3 → x3 = W C2
2 ⊕ W C1

6 (3.5)

Each receiving server, thanks to the mapped data that it already has, can successfully
decode its desired message by subtracting the interfering one that he has in its memory.
At the end of the shuffling phase, all the servers will have all the numbers falling in the
range they are in charge of and thus they can proceed, in parallel, to sort them in order
to get the final sorted dataset.

3.1.3 Identifying the Subpacketization Bottleneck of Coded Distributed
Computing

Despite the fact that the aforementioned coded method promises, in theory, big delay
reductions by a factor of t = Kγ compared to conventional uncoded schemes, these gains
are heavily compromised by the fact that the method requires that the dataset be split
into an unduly large number of subpackets which grows exponentially in K. This problem
is intrinsic in these coded multicasting techniques and it has been already highlighted and
investigated in the first chapter of this work in the context of coded caching. However,
we restate and analyse the problem in the context of distributed computing.

Specifically the fact that the finite-sized dataset can only be divided into a finite
number of subpackets, limits the values of parameter t that can be achieved, because the
corresponding subpacketization, which need be as high as

S = t

(
K

t

)

3Here it is assumed that all W
Cj

i are equally-sized. However, if this is not the case, zero-padding is
applied.
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must be kept below some maximum allowable subpacketization Smax, which, also, must
be much less than the number of elements F in the dataset4. If this number S = t

(K
t

)
exceeds the maximum allowable subpacketization Smax, then coded communication is
limited to include coding that spans only

K̄ = arg max
K

{
t

(
K

t

)
≤ Smax

}
(3.6)

nodes at a time, forcing us to repeat coded communication K/K̄ times, thus resulting in
a smaller, actual gain

t̄ = K̄γ < Kγ

which can be far below the theoretical communication gain from coding.

This high subpacketization requirement of the state-of-art Coded MapReduce algo-
rithm, creates the following three problems:

• limited communication gain. As already highlighted right above, under the sub-
packetization constraint Smax, the maximum gain is limited to t̄ = K̄γ since it is
possible to encoded only over a maximum number of users K̄.
Moreover, Coded MapReduce assumes that the communication link between the
computing node is a shared channel. In fact, it is only when the link connecting the
nodes has the multicast property that all the gains promised by coding can be fully
achieved. In practice, in a wired setting such us a cluster of nodes in a data center,
the computing nodes are connected via a network of switches with a given physical
topology (tree topology for example). As a consequence, the cost of multicasting
a packet is higher than the cost of unicasting one. In [31] the authors measured
that the multicasting time increases logarithmically with the number of nodes in a
multicast group, which in Coded MapReduce corresponds to t (t nodes at a time
are served in the shuffling phase). Moreover, since the medium is not multicast
by itself, a multicast topology (usually a tree topology) has to be built at network
layer every time that a multicast message has to be transmitted. This comes with
a non negligible cost. Keeping in mind the above discussion, we recall that the
higher is the subpacketization the higher is the number of transmissions (t+1)

( K
t+1
)

required to conclude the shuffling phase. Hence, the more are the transmissions
the more are the multicast sessions that has to be created at network layer, each
of which session will be used only for a small multicast message. Thus, the higher
is the subpacketization the higher is the loss due to the non-broadcast property of
the channel. In [30] the authors have implemented Coded MapReduce for a sorting
problem which, despite outperforms the conventional MapReduce, achieves gains
that are lower than the theoretical ones because of the aforementioned problems.
The above discussed problem is not present in wireless distributed computing where
the medium is by itself broadcast.

4Recall that in D2D coded caching we have the same subpakcetization S = Kγ
(

K
Kγ

)
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• high packet overheads. The second problem caused by the huge subpacketization
relates to the fact that as the number of subsets which the dataset is split into
increases, the mapped subsets themselves become smaller and smaller. This means
that the header that must accompany each XOR transmission of mapped subsets
will occupy a significant portion of the transmitted signal. Simply put, the higher
the subpacketization, the more the communication load is dominated by header
overheads.

• inefficient XOR creation due to unevenness in the mapped data. The third problem
from high subpacketization is that the resulting small sized subsets and conse-
quently mapped subsets, cause high variations between the sizes of the mapped
subsets. This unevenness — which is naturally much more accentuated in smaller
packets — can cause substantial additional delays because it forces zero padding
(we can only coombine equal-sized bit streams) which wastes communication re-
sources.

This can be better understood by using the sorting example presented before. In-
stead of assuming that each mapped subset (intermediate value) has equal amount
of elements, i.e., instead of assuming that |W C1

i | = |W C2
i | = |W C3

i | = 1
3 |Wi| =

F
18 , i = 1,2, ...,6, (recall that each of the 6 subfiles has size |Wi| = F/6) we will
assume the following:

– any intermediate value W C3
1 , W C3

2 , W C3
3 , W C3

4 , W C3
5 , W C3

6 with upper index 3
will each occupy a fraction 1/2 of the elements of the respective subset, i.e.
|W C3

i | = 1/2|Wi| = F/12, i = 1,2, ...,6;
– intermediate values with upper index 1 or 2 W C1

1 , W C1
2 , W C1

3 , W C1
4 , W C1

5 , W C1
6

and W C2
1 , W C2

2 , W C2
3 , W C2

4 , W C2
5 , W C2

6 , will only have 1/4 of the elements of
their respective subsets, i.e. |W C1

i | = 1/4|Wi| = F/24 and |W C2
i | = 1/4|Wi| =

F/24, i = 1,2, ...,6.

In the case of uncoded MapReduce, the corresponding delay would remain (1 −
γ)Tc = (1 − 2/3)Tc = 1/3Tc because there are no XORs, and because despite the
unevenness, the total amount of information that must be communicated, remains
the same. On the other hand, in the case of coded communication, having |W C1

i | =
|W C2

i | = F/24 /= |W C3
i | = F/12, in turn means that for every aforementioned

XOR that includes some of the W C3
i elements inside, we would have to perform

zero padding. For example, in the case of W C3
4 ⊕ W C1

5 , we would have to zero pad
W C1

5 to double its size, thus wasting resources. Now the three introduced XORs
will have sizes |x1| = |x2| = F/12, |x3| = F/24, and thus sending all three would
require a total delay of Tc/12 + Tc/12 + Tc/24 = 5Tc/24.

Comparing the above to the delay 1
3Tc of the uncoded case, we can see that the

multiplicative gain in the communication phase due to coded communication is
limited to Gain = (1/3)/(5/24) = 8/5 = 1.6, instead of the theoretical gain of
t = 2.
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In what follows, we will solve the above problems with a novel group-based method
of distributing the dataset across the computing nodes, and a novel method of cooper-
ation/coordination between nodes in the transmission, which will jointly yield a much
reduced subpacketization, allowing for a wider range of t values to be feasible. As a
result, our proposed scheme will eventually allow substantial reductions in the overall
execution time for a large class of distributed computing algorithms. This new method is
actually the same as the one proposed for the single-antenna D2D coded caching problem
in section 2.5. However, for the sake of completeness and in order to better show how to
use coded caching techniques in the context of distributed computing, we will present in
details the scheme in the next section.

Before describing our solution and its performance, let us first elaborate on the exact
channel model.

3.1.4 Channel Model: Distributed Computing in a D2D Setting

In terms of the communication medium, we will focus on the wireless fully-connected
setting where the nature of multicasting and the impact of link bottlenecks are clearer.
As we will discuss later on though, the ideas here apply directly to the wired case as well.

We assume that the K computing nodes are all fully connected via a wireless shared
channel as in the classical fully-connected D2D wireless network. At each point there
will be a set of active receivers, and active transmitters. Assuming a set of L active
transmitters jointly transmitting vector x ∈ CL×1, then the received signal at a receiving
node k takes the form

yk = hT
k x + wk, k = 1, · · · , K (3.7)

where as always x satisfies a power constraint E(||x||2) < P , where hk ∈ CL×1 is the (po-
tentially random) fading channel between the transmitting set of nodes and the receiving
node k, and where wk denotes the unit-power AWGN noise at receiver k. We assume the
system to operate in the high SNR regime (high P ), and we assume perfect channel state
information (CSI) (and as we will see later for the wired case, perfect network coding
coefficients) at the active receivers and transmitters.

3.2 Description of the Proposed Cooperation Based Scheme

In this section we proceed to describe in details the proposed algorithm, which we will
refer to as the Group-based Coded MapReduce (GCMR) algorithm.

We consider a dataset Φ consisting of F elements, and a computational task that asks
for Q ≥ K output values uq = φq(Φ), q = 1, · · · , Q. The general aim is to distribute
this task across the K nodes, hence the dataset is split into S disjoint parts Ws, s =
1, · · · , S (∪S

s=1Ws = Φ). We recall that, as is common in MapReduce, each function φq

is decomposable as
φq(Φ) = rq(mq(W1), · · · , mq(WS)) (3.8)
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where the map functions {mq, q ∈ [Q]} map file Ws into Q intermediate values W q
s =

mq(Ws), q ∈ [Q], which are used by the reduce function rq to calculate the desired output
value uq = rq(W q

1 , · · · , W q
S).

We now give the description of the assignment, mapping, shuffling and reduce phases.

3.2.1 Dataset Assignment Phase

We split the K nodes in [K], into K ′ , K
L groups

Gi = {i, i + K ′, ..., i + (L − 1)K ′}, i ∈ [K ′] (3.9)

of L nodes per group, and we split the dataset into

S = K ′γ

(
K ′

K ′γ

)
(3.10)

parts, where γ ∈ { 1
K′ ,

2
K′ , · · · ,1} is a parameter of choice defining the redundancy factor

of the mapping phase later on. At this point, each s = 1,2, · · · , S is associated to a unique
double index τ, σ so that the dataset can be seen as being segmented in {Wτ,σ, τ ⊆ [K ′] :
|τ | = K ′γ, σ ∈ τ}. Each node in group Gi is then assigned the set of subsets

MGi = {Wτ,σ : τ ∋ i, ∀σ ∈ τ} (3.11)

and each of the Q reduce functions rq is assigned to a given node. For simplicity we
assume that Q = K5.

3.2.2 Map Phase

This phase consists of each node k computing the map functions mq of all files in MGi , Gi ∋
k for all q ∈ [Q]. At the end of the phase, node k ∈ Gi has computed the intermediate
results W q

τ,σ = mq(Wτ,σ) for all Wτ,σ ∈ MGi .

3.2.3 Shuffle Phase

Each node Gi(j) (j-th node of group Gi) must retrieve from the other nodes (except from
those in Gi), the intermediate values {W

Gi(j)
τ,σ : Wτ,σ /∈ MGi} that it has not computed

locally. Each node Gi(j) will thus create a set of symbols {xGi(j),P\{i}}, intended for all
the nodes in groups Gj , j ∈ P \ {i} for some P ⊂ [K ′] of size |P| = K ′γ + 1, where of
course each symbol xGi(j),P\{i} is a function of the intermediate values computed in the
map phase. We use

xi,P\{i} , [x1,Q\{i}, · · · , x|MGi
|,P\{i}]T

5When Q is an integer multiple of the number of nodes, the coded multicasting technique used in the
shuffling phase is repeated Q

K
times.
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to denote the vector of symbols that are jointly created by the nodes in Gi and which are
intended for the nodes in Gj , j ∈ P \ {i}. Each symbol is communicated (multicasted) by
the corresponding node Gi(j) to all the other nodes. We proceed to provide the details
for transmission and decoding.

Transmission For each subset P ⊂ [K ′] of size |P| = K ′γ + 1, we sequentially pick all
its elements i ∈ P so that the nodes in group Gi act as a single distributed transmitter.
These users in Gi construct the following vector of symbols

xi,P\{i} =
∑

k′∈P\{i}
H−1

i,k′

[
W

Gk′ (1)
P\{k′},i, · · · , W

Gk′ (L)
P\{k′},i

]T
(3.12)

where H−1
i,k′ is the ZF precoding matrix for the channel Hi,k′ ∈ CL×L between transmitting

group Gi and receiving group Gk′ , and where {W
Gk′ (j)
P\{k′},i}

L
j=1 is a set of intermediate results

desired by the nodes in Gk′ . Each user Gi(j) now transmits the j-th element of the
constructed vector xi,P\{i}.

Decoding Node Gp(j), p ∈ P \ {i} receives the signal

yGp(j) = hT
Gp(j)xi,P\{i} + wGp(j) (3.13)

and removes out-of-group interference by employing the intermediate values it has com-
puted locally in the map phase. Specifically each node Gp(j), and all the nodes in
Gp, p ∈ P \ {i}, remove from their yGp(j) the signal

hT
Gp(j)

∑
k′∈P\{i,p}

H−1
i,k′

[
W

Gk′ (1)
P\{k′},i, · · · , W

Gk′ (L)
P\{k′},i

]T
(3.14)

to stay with a residual signal

hT
Gp(j)H

−1
GiGp

[
W

Gp(1)
P\{p},i, · · · , W

Gp(L)
P\{p},i

]T
+ wGp(j). (3.15)

By choosing H−1
GiGp

to be a ZF precoder, removes intra-group interference, thus allowing
each node Gp(j) to receive its desired intermediate value W

Gp(j)
P\{p},i. The shuffling phase is

concluded by going over all the aforementioned sets P ⊂ [K ′].

3.2.4 Reduce Phase

At this point, each node uses the symbols received during the shuffling phase, together
with the intermediate mapped results computed locally, in order to construct the inputs
W q

1 , ..., W q
S that are required by the reduce function rq to calculate the desired output

value uq = rq(W q
1 , · · · , W q

S).
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3.2.5 Extension to the Wired Setting

As a last step, we quickly note that the same vector precoding used to separate the users
of the same group can be directly applied in the wired setting where the intermediate
nodes (routers, switches, etc.) in the links, can perform pseudo-random network coding
operations on the received data. This would then automatically yield a linear invertible
relationship between the input vectors and the received signals, thus allowing for the
design of the precoders that cancel intra-group interference. Figure 3.1 illustrates a wired
network of 5 computing nodes connected each other via 2 switches. The switches can
perform network coding operations on the incoming signals so that the ”channel” between
two sets of nodes can be characterized by a matrix H of network coding coefficients. The
interested reader is encouraged to read [17] to have a better idea of these kind of linear
(wired) networks.

× ××

×

× ×
× ×

××

Figure 3.1. Illustration of the wired setting. × denotes a network coding operation.

3.2.6 Calculation of Shuffling Delay

We now evaluate the performance of the scheme which will be clearly the same as the
one achieved by the analogous scheme for D2D coded caching. However, we evaluate it
with a different approach. We first see that the subpacketization is equal to

S = K ′γ

(
K ′

K ′γ

)
= Kγ

L

(
K/L

Kγ/L

)
. (3.16)

Let us assume that Smax ≥ S in which case the subpacketization constraint is not a
problem. In this case, the proposed Group-based Coded MapReduce achieves the same
delay as Coded MapReduce, i.e. T GCMR

com = 1−γ
Kγ Tc. To verify the term Kγ, which cor-

responds to the DoF , we just need to note that during the shuffling phase no subfile is
ever sent more than once, and then simply note that the scheme serves a total of K ′γ
groups at a time, thus a total of K ′γL = Kγ nodes at a time. Finally, to justify the term
1 − γ, we just need to recall that, due to the placement redundancy, a fraction γ of all
the shuffled data is already at their intended destination.
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Lastly when Smax ≤ S, we simply have to recall that we are allowed to encode over
K̄L = arg maxK{Kγ

L

( K/L
Kγ/L

)
≤ Smax} nodes at a time, which yields the desired t̄L = K̄Lγ

which is L times higher than the one achieved by Coded MapReduce. Hence, under the
subpacketization constraint, the duration of the shuffling delay, if the Group-based Coded
MapReduce is used, is

T GCMR
com = 1 − γ

K̄Lγ
Tc. (3.17)

3.2.7 Example of the Scheme

We here present quickly an example of the scheme. The details will be skipped since we
remind that transmission and decoding schemes of the shuffling phase are identical to the
cooperation based scheme proposed for the single-antenna D2D coded caching whose a
detailed example has been already presented in the second chapter.

Let us consider a setting with K = 32 computing nodes, a chosen redundancy of
Kγ = 16, and a cooperation parameter L = 8. The nodes are split into K/L = 4 groups

G1 ={1, 5, 9, 13, 17, 21, 25, 29},

G2 ={2, 6, 10, 14, 18, 22, 26, 30},

G3 ={3, 7, 11, 15, 19, 23, 27, 31},

G4 ={4, 8, 12, 16, 20, 24, 28, 32}

and the dataset is split into 12 parts as {W12,1, W12,2, W13,1, W13,3, W14,1, W14,4, W23,2,
W23,3, W24,2, W24,4, W34,3, W34,4}, which are distributed to the nodes of group Gi as fol-
lows:

MG1 ={W12,1, W12,2, W13,1, W13,3, W14,1, W14,4}
MG2 ={W12,1, W12,2, W23,2, W23,3, W24,2, W24,4}
MG3 ={W13,1, W13,3, W23,2, W23,3, W34,3, W34,4}
MG4 ={W14,1, W14,4, W24,2, W24,4, W34,3, W34,4}.

In the map phase, each file Wτ,σ is mapped into {W q
τ,σ}K

q=1 such that, for example, W 1
τ,σ

is the output of the first mapping function after acting on Wτ,σ. Finally the transmissions
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3 – D2D Coded Multicasting for Distributed Computing

take the form:

x1,23 =H−1
1,2WG2

13,1 + H−1
1,3WG3

12,1

x1,24 =H−1
1,2WG2

14,1 + H−1
1,4WG4

12,1

x1,34 =H−1
1,3WG3

14,1 + H−1
1,4WG4

13,1

x2,13 =H−1
2,1WG1

23,2 + H−1
2,3WG3

12,2

x2,14 =H−1
2,1WG1

24,2 + H−1
2,4WG4

12,2

x2,34 =H−1
2,3WG3

24,2 + H−1
2,4WG4

23,2

x3,12 =H−1
3,1WG1

13,3 + H−1
3,2WG2

13,3

x3,14 =H−1
3,1WG1

34,3 + H−1
3,4WG4

13,3

x3,24 =H−1
3,2WG2

34,3 + H−1
3,4WG4

23,3

x4,12 =H−1
4,1WG1

24,4 + H−1
4,2WG2

14,4

x4,13 =H−1
4,1WG1

34,4 + H−1
4,3WG3

14,4

x4,23 =H−1
4,2WG2

34,4 + H−1
4,3WG3

24,4,

where WGg

i,τ denotes a vector of L = 8 elements consisting of the intermediate results
intended for nodes in group Gg.

Observing for example the first transmission, we see that the nodes in group G2 can
remove any interference caused by the intermediate results intended for group G3 since
these intermediate results have been calculated by each node in G2 during the map phase.
After noting that the precoding matrix H−1

1,2 removes intra-group interference, we can
conclude that each transmission serves each of the 16 users with one of their desired
intermediate results, which in turn implies a 16-fold speedup over the uncoded case.

3.3 Main Results

For the sake of comparing the proposed Group-based Coded MapReduce with Coded
MapReduce, let us first recall that under the subpacketization constraint Smax, the orig-
inal Coded MapReduce approach achieves communication delay

T CMR
com = 1 − γ

t̄
Tc (3.18)

where

t̄ = γ · arg max
K

{Kγ

(
K

Kγ

)
≤ Smax}

is the maximum achievable effective speedup (due to coding) in the shuffling phase. As-
suming for simplicity that Q = K such that each node has one final task, we proceed
with the main result.

58



3.4 – Conclusions

Theorem 5. In the K-node distributed computing setting where the dataset can only be
split into at most Smax identically sized parts, the proposed Group-based Coded MapReduce
algorithm with groups of L users, can achieve communication delay

T GCMR
com = 1 − γ

t̄L
Tc

for

t̄L = γ · arg max
K

{Kγ

L

(
K/L

Kγ/L

)
≤ Smax}.

The proof follows directly from the description of the scheme and it is given in sub-
section 3.2.6.

The above implies the following corollary, which reveals that in the presence of sub-
packetization constraints, simple node grouping can further speedup the shuffling phase
by a factor of up to L.

Corollary 1. In the subpacketization-constrained regime where Smax ≤ Kγ
L

( K/L
Kγ/L

)
, the

new algorithm here allows for shuffling delay

T GCMR
com = 1 − γ

t̄L
Tc = T CMR

com

L

which is L times smaller than the delay without grouping.

Finally the following also holds.

Corollary 2. When Smax ≥ Kγ
L

( K/L
Kγ/L

)
, the new algorithm allows for the unconstrained

theoretical execution time

T GCMR
tot = Tmap(γF ) + (1 − γ)

Kγ
Tc + Tred

(
F

K

)
. (3.19)

3.4 Conclusions
In this chapter we highlighted the effects of the acute subpacketization required by the
optimal Coded MapReduce, thus identifying the subpacketization as the main bottleneck
of coded distributed computing. We proposed a way to quantify analytically the perfor-
mance loss of CMR due to the subpacketization constraint and we provided a novel algo-
rithm that employs node-grouping in the mapping and shuffling phases, to substantially
reduce the shuffling-phase delays that had remained large due to the high subpacketiza-
tion bottleneck of distributed computing. Using node cooperation one, for the first time,
can almost infinitely reduce the execution of these types of algorithms as long as there are
enough computing nodes, something that previously wasn’t possible in uncoded methods
and while in coded methods it would reach a performance ceiling due to subpacketization
constraints.
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Minimal overhead for group-based node cooperation It is interesting to note that
the described node cooperation does not require any additional overhead communication
of data (dataset entries) between the nodes. The only additional communication-overhead
is that of having to exchange CSI between active receiving and transmitting nodes from
Kγ/L + 1 groups. In static settings, where computing nodes are not moving fast, and in
particular in wired settings where the network coding coefficients are fixed and known, the
CSI overhead can be very small compared to the volumes of the communicated datasets.

3.4.1 Impact of Reduced Subpacketization on Coded Distributed Com-
puting

The reduced subpacketization comes with a variety of positive ramifications.

Boost of the speedup factor t in the shuffling phase As we have discussed, the
much reduced subpacketization allows for a substantial increase in the number of nodes
we can encode over, thus potentially yielding an L-fold decrease in the shuffling-phase
delay compared to Coded MapReduce.

Reduced packet overheads The second ramification from having fewer subpackets,
comes in the form of reduced header overheads that accompany each transmission. Simply
put, the fewer the subpackets, the bigger they are, hence the less the communication load
is dominated by header overheads which can further slow down the shuffling phase.

Efficient Coded Message Creation by Reducing Unevennes Another positive
ramification from our algorithm is that it can reduce the unevenness between the sizes
of the mapped data that each subset is mapped into. We have already seen how uneven-
ness can cause substantial additional delays because it forces zero padding which wastes
communication resources. Having fewer and thus larger subpackets, averages out these
size variations, thus reducing wasteful zero padding. By decreasing subpacketization, we
automatically increase the size of these subpackets, thus decreasing with high probability,
due to the law of large numbers, the relative unevenness, which in turn allows for higher
speedup gains.
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Chapter 4

Coded Caching for Networks with
Helper Nodes

4.1 Introduction

In the first chapter we provided a brief overview of caching with a special focus on the
emerging coded caching with its benefits and open challenging problems. After the first
appearance of coded caching in the literature, many lines of research were opened in order
to employ this novel multicasting technique in different settings such us D2D, combinato-
rial networks and hierarchical networks. Future wireless networks will be a combination
of a dense deployment of small cells with small coverage and relatively high data rates
along with macro cellular base stations with large coverage and smaller data rates. This
emerging networks are commonly referred as heterogeneous wireless networks (HetNets)
and can be clearly used to provide an architecture for wireless content distribution.

In [32] the authors study the coded caching problem based on an architecture where
a library is stored at a main base station and the content of the library is cached at
multiple helper nodes. Users, unlike the ones of the usual broadcast channel [5] and D2D
setting [7], do not have an isolated cache in their terminal but they can get the content
both from the helper nodes and the macro base station. More precisely, they consider
the case when users can be at the same time associated to the single-antenna base station
and a certain small number of helper nodes. The cost of fetching content from the helper
nodes is assumed to be zero. This assumption is motivated by the fact that the data
rates provided by small cells can be much higher than the ones provided by macro cells.
Moreover, they assume that the same number of users are associated to each helper node
and that the file popularity distribution is not uniform but there exists a fixed number of
popularity levels, i.e. files are grouped such that all files in the same group have the same
popularity. Under the above assumptions, the authors are interested in characterizing the
trade-off between the normalized delivery time R required by the macro base station to
serve all users and the cache memory M of each helper node for any possible combination
of user requests. They propose an order-optimal caching and delivery strategy such that
a broadcast message of rate at most R satisfies all said requests. However, they have
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4 – Coded Caching for Networks with Helper Nodes

a gap from optimality of 9909 which suggests that their proposed scheme is suboptimal
and there might be still room for improvement in their setting.

In this paper, we study a similar caching problem to the one studied in [32]. We
consider an heterogeneous networks with a main multi-antennas base station, Λ helper
nodes and K users, each being exclusively connected to a single helper node. However,
unlike the setting in [32], we allow different number of users to be associated to the same
helper node. We will also assume that all the files of the library stored at the base station
have the same probability of being requested. For this problem we will characterize the
minimum worst-case delivery time R required by the base station to serve all users. In
particular, we develop a lower bound for this delay and a matching algorithm which we
will not describe in this document for confidentiality reasons1. We discuss the effect of
the user profile, namely how the users are distributed among caches, on the performance
of the system.

We now describe in details the system model and we formally define the problem of
interest. Next, before presenting the main results of this chapter, we will provide some
preliminary tool which will be essential to develop the lower bound. The latter and a
small discussion about the scheme will be given at the end of this chapter, followed by a
conclusion section.

4.2 System Model and Problem Definition

4.2.1 System Model

Consider a base station equipped with a library containing N files W 1, ..., W N of equal
popularity with a sum file size constraint 1

N

∑
n∈[N ] |W i| = 1 where 1 is one unit of file.

The base station is connected to K ∈ N users through a broadcast link and to Λ ∈ N
helper nodes (caches), where N ≥ K.

The server is equipped with N0 ∈ N antennas. Each helper node λ ∈ [Λ] has a memory
of size M ∈ N units of file. Each user k ∈ [K] connects to only one of the helper nodes
λ2. We denote the number of users connected to cache λ by Lλ where the sum of the
users connected to each cache yields the total number of users as∑

λ∈[Λ]
Lλ = K. (4.1)

We define user profile the vector representing the number of users connected to each
helper node and we denote such a vector as L = (L1, ..., LΛ). Such a system is depicted
in Figure 4.1 and an example of a real network is drawn in Figure 4.2.

1The reader interested in the details of the achievable scheme is encouraged to contact directly the
author of this thesis.

2The system model is given for a wireless setting. However, the results are also valid for wired linear
networks where users, in groups, have shared caches [17].
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4.2 – System Model and Problem Definition

Figure 4.1. Pictorial representation of the addressed problem

Figure 4.2. System example with N0 = 2, K = 6, Λ = 3

Let us now elaborate on the channel model between the base station and the users in
the following paragraph.

Channel model The received signal at a receiving user k takes the form

yk = hT
k x + wk, k = 1, · · · , K (4.2)

where x is the N0 × 1 vector of symbols transmitted by the base station that satisfies
a power constraint E(||x||2) < P , where hk ∈ CN0×1 is the (potentially random) fading
channel between the N0 antennas of the base station and the receiving node k, and where
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wk denotes the unit-power AWGN noise at receiver k. We assume the system to operate
in the high SNR regime (high P ), and we assume perfect channel state information (CSI)
at the receiving nodes and base station.

4.2.2 Problem Definition

The system operates in two distinct phases: placement phase and delivery phase. In the
placement phase during the off-peak hours, helper nodes store content from the library.
No coding is applied to the content stored at the helper nodes. This case is commonly
referred as the uncoded cache placement. Over the course of peak hours in the delivery
phase, each user k requests a file W dk independently, where dk ∈ [N ].

The files that are requested by K users are given by the following vector d =
(d1, · · · , dΛ). For a given user profile, d(L) △= (dU1 , · · · , dUΛ) denotes the users’ de-
mands where Uλ and dUλ

are the set of users connected to cache λ and the indices of
the files requested by those Lλ users, respectively. Each user can download content from
its associated helper node at zero cost (and hence no channel model between the helper
nodes and users is required). Once the base station becomes aware of the users requests,
it transmits a signal of length T through the broadcast link to the K users with a given
caching-delivery strategy χ. Then, every user extracts its desired files based on the signal
received from the base station and the cached content at its associated helper node. The
objective of this work is to characterize the average broadcast rate (delay) T , over all
possible user profiles, for the worst-case scenario, i.e. when each user asks a different file.
More formally, we define the optimal average broadcast rate as

T ∗ = min
χ

EL

[
max

d
T (L, d, χ)

]
(4.3)

where T (L, d, χ) is the delivery time required by the base station to serve, by using
strategy χ, the request d for a given user profile L and EL [·] denotes the expectation
over all possible user profiles L. It is important to notice that, from the mathematical
formulation of the optimal delay T ∗, the base station is aware of the user profile already
in the cache placement phase.

Let us now define profile type denoted by L a sorted array in descending order as
L = (L1, · · · , LΛ), such that Lλ represents the number of users connected to the λ-th
most populated cache (helper node). Clearly, the constraint in (4.1) also applies to the
profile type. A given user profile is obtained from the profile type via a Λ×Λ permutation
matrix Pπ, i.e. LT = PπLT . There exists Λ! user profiles for a given profile type and
the set of such profiles is denoted by SL. For example the profile type L = (3,2,1) means
that there are 3 users associated to an helper node, 2 associated to another and 1 user
connected to the last helper node. For the aforementioned profile type there exist 6
possible different user profiles. For example the user profiles L = (2,1,3) and L = (3,1,2)
are two possible profiles in the set S(3,2,1). The optimal average broadcast rate can be
rewritten as

T ∗ = min
χ

EL

[
EL∈SL

[
max

d
T (L, d, χ)

]]
(4.4)
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where, assuming that each profile L in the set SL has the same probability of realization,
we have

T (L, χ) = EL∈SL

[
max

d
T (L, d, χ)

]
= 1

|SL|
∑

L∈SL

(max
d

T (L, d, χ)). (4.5)

4.3 Preliminaries on Index Coding

Before presenting our results, we remind the reader some elements of index coding (IC)
[33] which will be fundamental for the derivation of the lower bound on the optimal rate
T ∗.

Consider a K-receiver MIMO broadcast channel (BC), where the transmitter is equipped
with N0 antennas, and receiver rj ∈ [K] is equipped with Nj antennas. Receiver rj de-
sires message Mj , uniformly distributed over [2T ·Rj ], which is known by the transmitter.
The channel matrices are known to the transmitter and all receivers. Receiver rj has
as side information an ordered set of messages that are desired by other receivers. The
transmitter sends a broadcast message XT to satisfy all users requests, where T is the
length of the message. Such a problem can be translated into an index coding prob-
lem. An index coding problem can be represented by a directed graph, where the nodes
represent the K messages desired by the users and where the side information for each
user can be represented by an edge in the directed graph G = (VG , AG), with VG and AG
being the set of vertices of the graph and being the set of edges, respectively. In a side
information graph, there is a directed edge from node i to j if receiver rj (the receiver
that wants message Mj) knows message Mi desired by receiver ri. In general, for an IC
problem receivers and their desired messages coincide, i.e. i ≡ ri ≡ Mi. We denote any
vertex-induced subgraph of G and the degree of freedom of receiver rj by J and DoFj ,
respectively.

For example, Figure 4.3 represents an index coding problem with 3 nodes, where
receiver r1 knows message M2, receiver r3 has both messages M1 and M2 has side infor-
mation and receiver r2 does not have any message.

Figure 4.3. Example of an index coding problem with 3 messages

In [34] was recently introduced an upper bound on the DoF region of an IC prob-
lem. The following inequality holds for the K-receiver MIMO BC if (DoF1, ..., DoFK) is
achievable [34, Lemma 1]: ∑

k∈VJ

DoFk ≤ min{N0,
∑

k∈VJ

Nk} (4.6)

65
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for every acyclic induced subgraph J of the side information graph G 3.

Then, the following corollary holds.

Corollary 3. For an achievable rate tuple (R1, ..., RK) of an IC problem with the asso-
ciated side information graph G, the sum rate is bounded as

∑
k∈VJ

|Mk|
T

=
∑

k∈VJ

Rk ≤ min{N0,
∑

k∈VJ

Nk} (4.7)

for every acyclic induced subgraph J of G where |Mk| and T are the size of the message
desired by receiver rk and the units of time needed to serve all users, respectively.

Proof. The proof of the corollary follows directly from equation (4.3) by simply recalling
that T is the high-SNR normalized delay. Consequently, in the high SNR setting of
interest, we can directly go from the DoF region to the rate region. The clean connection
between DoF and rate has been presented in the context of coded caching in [35],[36]
and [37].

In the caching problem addressed in this chapter, all users are equipped with a single
antenna. Hence, Corollary 3 reduces to

∑
k∈VJ

|Mk|
T

=
∑

k∈VJ

Rk ≤ N0 (4.8)

for every acyclic induced subgraph J of the side information graph G4.

4.4 Main Results

In this section we are going to present and comment the main results developed in this
chapter whose details and proofs will be given in the subsequent section.

The main contribution for the adressed caching problem is the development of a
lower bound on the optimal delay T ∗. Inspired by the work in [6] where it was proved the
optimality of the MAN scheme for the single-stream broadcast channel already discussed
in the first chapter, this bound has been developed by first converting the caching problem
into an index coding problem. Then, the index coding bound in equation (4.8) will be
heavily used along with some basic graph theory and combinatorial math. The lower
bound is given in the following theorem.

3[34, Lemma 1] is presented for the 3-receiver case only, however its proof remains valid for a system
with more users as long as the corresponding subgraph is acyclic.

4Here, we are assuming that the number of users K is higher than the number of antennas N0 at the
transmitter, which is the regime of interest.
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Theorem 6. For the adressed caching problem with a library of N files, Λ different caches
each of size M and N0 antennas at the transmitter, the optimal delay for the worst-case
demands T ∗ is lower bounded by

T ∗ ≥ EL

[
Conv

(
1

N0

∑Λ−i
r=1 Lr

(Λ−r
i

)(Λ
i

) )]
(4.9)

where Conv(f(i)) is the lower convex envelope defined for the points {(i, f(i))|i ∈ {0,1, ..., K}}.

The proof of Theorem 6 is given in section 4.5.

Fixed the profile type L, the optimal delay is defined as

T ∗(L) = min
χ

EL∈SL

[
max

d
T (L, d, χ)

]
(4.10)

The following corollary comes directly from Theorem 6.

Corollary 4. For the addressed caching problem, given the profile type L, the optimal
worst-case delay is lower bounded by

T ∗(L) ≥ Conv

(
1

N0

∑Λ−i
r=1 Lr

(Λ−r
i

)(Λ
i

) )
(4.11)

It is worth recalling that, by the definition of the optimal achievable delay, the base
station is aware of the user profile already in the cache placement phase.

Let us now present the results obtained from the developed achievable schemes.

Definition 1. A profile type L = (L1, ..., LΛ) is said to be N0-admissible if the following
condition is satisfied:

Lλ =
P∑

j=1
nλ,j · Aj nλ,j ∈ N, Aj ∈ N, N0 ≤ Aj < 2N0 and ∀λ ∈ [Λ], P ∈ N. (4.12)

Remark 1. If a profile type L is N0-admissible, then all user profiles L ∈ SL are said
to be N0-admissible.

Remark 2. Note that all user profiles are 1-admissible.

For the single-antenna case, i.e. N0 = 1, a scheme has been developed for any user
profile L. Such a scheme is a variation of the MAN scheme in [5]. On the other hand, for
the multiple-antennas case, extensions of the scheme presented in [18] are developed for
the N0-admissible user profiles. The schemes achieve the same performance for all the
user profiles L of a given profile type L. The description of the schemes is omitted on
purpose in this document. However, the achieved performance is given in the following
theorems.
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Theorem 7. For the addressed caching problem, where a single-antenna base station
has a library of N files, K users request different files from the library, each user having
access at zero cost to one of Λ different caching helper nodes with memory M according
to user profile L, the following delay is achievable:

T (L) =
∑Λ−Λγ

r=1 Lr
(Λ−r

Λγ

)
( Λ

Λγ

) (4.13)

where γ is the helper nodes’ cache size normalized by the size of the library γ , M
N and

L = (L1, ..., LΛ) is the profile type of the considered user profile L, i.e. L ∈ SL .

Proof. The proof follows directly from the here-omitted achievable scheme.

Corollary 5. For the addressed problem in the single-antenna case, the following delay
is achievable and information theoretical optimal:

T ∗ = EL

⎡⎣∑Λ−Λγ
r=1 Lr

(Λ−r
Λγ

)
( Λ

Λγ

)
⎤⎦ (4.14)

Proof. The proof follows straight from Theorem 6 and the average over all profile types
of the rate achieved in Theorem 7. The achievable delay and the lower bound match.

From the above Theorems and Corollaries, it is clear how the achieved delay is af-
fected by the way the users distribute among the caches. In particular, the more skewed
is the profile type of a given user profile the higher is time needed by the base station
to satisfy all requests. This behaviour is expected since the more skewed is the profile
the less are the multicasting opportunities that arise from the cache placement. In fact,
it is easy to check that if all users show up in the coverage area of the same helper
node and hence they all associate to it, then they cannot benefit of any multicast oppor-
tunity because they would have access to the same cached content. As a consequence,
only the local caching gain would be obtained. This last statement is easily proved below.

The optimal delay for the user profiles L such that Li = K for a certain i ∈ [Λ] and
Lj = 0 for all j ∈ [Λ]\{i} is

T ∗(L) =
K
(Λ−1

Λγ

)
( Λ

Λγ

) = K(1 − γ) (4.15)

Figure 4.4 shows the rates achieved for a system with N0 = 1 antennas at the base

station, K = 30 users, N = 30 files and Λ = 6 helper nodes for the profile types
L1 = (30,0,0,0,0,0),L2 = (13,8,4,2,2,1),L3 = (8,6,4,4,4,4) and L4 = (5,5,5,5,5). The
impact of the profile is evident and the lowest delay is obtained when users distributes
uniformly across the caches, i.e. when the profile type is L4.

The next theorem states the achievable delay by the developed algorithms for the
multi-antennas setting.
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Figure 4.4. Plot of the optimal achievable memory-rate trade-off for different user profiles

Theorem 8. For the addressed caching problem, for the case when the base station is
equipped with N0 antennas, the following delay is achievable and information theoretical
optimal:

T ∗(L) = 1
N0

∑Λ−Λγ
r=1 Lr

(Λ−r
Λγ

)
( Λ

Λγ

) (4.16)

where L is N0-admissible.

Proof. The proof follows directly from the here-omitted achievable schemes and from the
matching lower bound in Corollary 4.

It is important to highlight that the rate/delay given in Theorem 7 and 8 are achieved
without the need from the base station to know the user profile already in the cache place-
ment phase. Thus, since the schemes turn out to be optimal then the knowledge of the
user profile in the placement phase is not really useful and even with such a knowledge
the base station could not do better.

We now state a corollary from Theorem 8 which allows us to make a very important
observation.

Corollary 6. For the adressed caching problem with a library of N files, Λ different
caches each of size M , a symmetric user profile, i.e. Lλ = K

Λ , ∀λ ∈ [Λ] and N0 ≤ K
Λ , the
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optimal worst-case delay is obtained as

T ∗(L) = K(1 − γ)
N0(Λγ + 1) (4.17)

.

Proof. Given that Lλ = K
Λ , ∀λ ∈ [Λ] we have

T ∗(L) = 1
N0

∑Λ−Λγ
r=1

K
Λ
(Λ−r

Λγ

)
( Λ

Λγ

) = K

N0 · Λ

( Λ
Λγ+1

)
( Λ

Λγ

) = K(1 − γ)
N0(Λγ + 1) (4.18)

The result in Corollary 6 is of relevant interest. We recall that in the MISO broadcast
channel where the base station has N0 antennas and each user has an isolated cache
the order-optimal achieved rate is T = K(1−γ)

Kγ+N0
[17]. Thus, whenever there are exactly

K caches as the number of users the multiplexing gain of the multiple antennas at the
transmitter is additive to the caching gain Kγ. This result is consistent with the optimal
rate achieved in the case of single antenna T ∗ = K(1−γ)

Kγ+1 . Corollary 6 tells us that when the
number of caches is smaller than the number of users Λ < K and the number of antennas
N0 is smaller than the number of users associated to a given cache, i.e. N0 ≤ K

Λ , then
the multiplexing gain N0 is multiplicative to the caching gain Λγ + 1.

4.5 Proof of the Lower Bound
Before proceeding with the proof of the lower bound given in Theorem 6 we provide an
example to highlight the key ideas behind this proof.

4.5.1 Explanatory Example

Assume that in the addressed problem the library has N = 6 files and it is stored at a
base station with N0 = 2 antennas. The number of users in the system is K = 6, there
are three caches (helper nodes) Λ = 3 and users are distributed according to one of the
user profiles with profile type L = (4,1,1). Our goal is to find a lower bound for the
optimal delay

T ∗(L) = min
χ

T (L, χ) = min
χ

EL∈SL

[
max

d
T (L, d, χ)

]
(4.19)

which can be lower bounded as

min
χ

EL∈SL

[
max

d
T (L, d, χ)

]
≥ min

χ
max

d
EL∈SL [T (L, d, χ)] (4.20)

= min
χ

max
d

T (L, d, χ) (4.21)

where
T (L, d, χ) = 1

Λ!
∑

L∈SL

T (L, d, χ) (4.22)
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Since we are interested in the worst-case delay max
d

T (L, d, χ) we will only consider
those demand vectors in which all users request different files. We denote the set of such
demands by Sd. Then, we have

max
d

T (L, d, χ) = 1
|Sd|

∑
d∈Sd

T (L, d, χ). (4.23)

For example, assume users request files whose index are in the demand vector d =
(1,2,3,4,5,6), which can be rewritten as d = (dL1 , dL2 , dL3) for the case of three caches,
with the corresponding demands dL1 = (1,2,3,4), dL2 = (5) and dL3 = (6). Here dLi

denotes the demands of the users connected to the helper node associated to Li users. For
a fixed user profile L, the demand vector yields d(L)T = PπdT = Pπ(dL1 , ..., dLλ

)T ,
(dU1 , ..., dUΛ)T , where Pπ is a Λ × Λ permutation matrix. Thus, in our example, the
permutation π = (3,1,2) yields LT = PπLT = (1,4,1) and the demand vector d =
(1,2,3,4,5,6) has to be read as d(L)T = Pπ(dL1 , dL2 , dL3)T = (dU1 , dU2 , dU3)T with
dU1 = (6), dU2 = (1,2,3,4), dU3 = (5). Hence, having the demand d = (1,2,3,4,5,6) and
the user profile L = (1,4,1) means that the user connected to cache 1 requests file W 6,
the four users connected to cache 2 request files W 1, W 2, W 3, W 4 and user connected to
helper node 3 requests file W 5.

Each file W i is divided into 2Λ = 23 = 8 disjoint subfiles, denoted as W i
τ , τ ∈ 2[3]

where τ indicates the helper node the subfile W i
τ is cached in and the power set of [3] is

2[3] = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}. For instance, W i
13 is a subfile of file

W i stored in caches 1 and 3.

Imagine a demand vector d and a user profile obtained from L via all Λ × Λ per-
mutation matrices Pπ . Similarly to [6], this problem is translated into an index coding
problem with a side information graph having K2Λ−1 = 6 · 22 nodes. In fact, a user k
requesting file W dk is actually requesting only 2Λ−1 = 4 subfiles out of the 8 subfiles
into which is file is split. This is because, user k has access to the subfiles cached in the
helper node it is connected to. In order to draw the side information graph associated
to this problem, for each requested file W dUλ(j) , we draw the 4 subfiles requested by user
Uλ(j) that are not stored in its associated helper node. Hence, a given user of the caching
problem requiring 4 subfiles from the base station, is replaced in the IC problem by 4
different new users, each requesting a different subfile and being connected to the same
helper node λ as the original user. This will become more clear with the following example.

Consider the usual demand d = (1,2,3,4,5,6) and user profile L = (1,4,1), then we
recall that we have dU1 = (6), dU2 = (1,2,3,4), dU3 = (5). For the chosen demand vector
and user profile, the nodes of the corresponding side information graph are depicted in
Figure 4.5. In each row the subfiles requested from a given coded caching user are drawn.
It has to be noticed that all the (drawn) subfiles requested from users connected to the
same helper node has the same indices τ . Next, we recall from the preliminaries that in
the side information graph there exist a directed edge from a node i to a node j if the
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4 – Coded Caching for Networks with Helper Nodes

user corresponding to node j has the message corresponding to node i. In the index cod-
ing problem obtained from the here-considered caching problem, all nodes/messages/new
users in a given row have the same side information because they arise from the same
coded caching user that is connected to a given cache, thus all the nodes in a row have the
same incoming edges. In our considered example, there is an edge from W 1

1 to all nodes
W 6

0 , W 6
2 , W 6

3 , W 6
23 since the caching user requesting file W 6 has access to the subfile W 1

1
that is stored in its associated helper node 1. In Figure 4.5 all the edges are not drawn
to avoid that the image becomes not readable since the number of edges is quite large.

Given the side information graph, we can now proceed to develop a lower bound by
using equation (4.8).

W 1
∅ W 1

1 W 1
3 W 1

13

W 2
∅ W 2

1 W 2
3 W 2

13

W 3
∅ W 3

1 W 3
3 W 3

13

W 4
∅ W 4

1 W 4
3 W 4

13

W 6
∅ W 6

2 W 6
3 W 6

23

W 5
∅ W 5

1 W 5
2 W 5

12

Figure 4.5. Nodes of the side information graph for the demand vector
dU1 = (6), dU2 = (1,2,3,4), dU3 = (5)

For each permutation vector σ , (σ1, σ2, σ3) of {1,2,3}, a set of nodes inducing an
acyclic subgraph is

{W
dUσ1

(j)
τ1 }Lσ1

j=1 for all τ1 ⊆ [3] \ {σ1} (4.24)

{W
dUσ2

(j)
τ2 }Lσ2

j=1 for all τ2 ⊆ [3] \ {σ1, σ2} (4.25)

{W
dUσ3

(j)
τ3 }Lσ3

j=1 for all τ3 ⊆ [3] \ {σ1, σ2, σ3} = ∅. (4.26)

where dUλ
(j) denotes the index of the j-th file requested from helper node λ.

The proof that such a choice of nodes gives an acyclic graph is given in the general
proof.

Among all possible permutation vectors σ, we choose the one with the biggest acyclic
subgraph. The choice of the biggest acyclic subgraph provide a tighter lower bound. A
different choice of an acyclic subgraph would make the bound looser (see [33, Theorem
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3]). It can be easily verified that in this example the permutation vectors (2,1,3) and
(2,3,1) both give a maximum acyclic subgraph. We choose the permutation σ = (2,1,3).
The motivation of this choice is again given in the general proof. The nodes of the acyclic
subgraph induced by such a permutation are

{W
dU2 (j)
τ1 }4

j=1 = {W 1
τ1 , W 2

τ1 , W 3
τ1 , W 4

τ1} for all τ1 ⊆ [3] \ {2} (4.27)

{W
dU1 (j)
τ2 }1

j=1 = {W 6
τ2} for all τ2 ⊆ [3] \ {2,1} (4.28)

{W
dU3 (j)
τ3 }1

j=1 = {W 5
τ3} for all τ3 ⊆ [3] \ {2,1,3} = ∅. (4.29)

and they are coloured in red in Figure 4.5. For this choice of the acyclic induced subgraph,
(4.8) results in the following bound on the delay

T (L, d, χ) ≥ 1
2
(
|W 1

∅ | + |W 1
1 | + |W 1

3 | + |W 1
13| + |W 2

∅ |

+ |W 2
1 | + |W 2

3 | + |W 2
13| + |W 3

∅ | + |W 3
1 | + |W 3

3 |
+ |W 3

13| + |W 4
∅ | + |W 4

1 | + |W 4
3 | + |W 4

13| + |W 5
∅ |

+|W 6
∅ | + |W 6

3 |
)

(4.30)

A similar lower bound can be built for each of the remaining 5 different user profiles
L ∈ SL. The sum of all gives the lower bound on T (L, d, χ). Subsequently, the procedure
is repeated for all other demand vectors d ∈ Sd at which point we obtain a lower bound
on max

d
T (L, d, χ). Overall, we obtain

∑
d∈Sd

∑
L∈SL

T (L, d, χ) ≥ 1
2
∑

d∈Sd

∑
L∈SL

3∑
λ=1

Lσλ∑
j=1

∑
τλ⊆[3]\{σ1,...,σλ}

|W
dUσλ

(j)
τλ | (4.31)

By dividing by the total number of sums 6!3! we get

1
|Sd|

1
Λ!

∑
d∈Sd

∑
L∈SL

T (L, d, χ) ≥ 1
6!3!

1
2
∑

d∈Sd

∑
L∈SL

3∑
λ=1

Lσλ∑
j=1

∑
τλ⊆[3]\{σ1,...,σλ}

|W
dUσλ

(j)
τλ | (4.32)

and hence from equations (4.22) and (4.23)

max
d

T (L, d, χ) ≥ 1
6!3!

1
2
∑

d∈Sd

∑
L∈SL

3∑
λ=1

Lσλ∑
j=1

∑
τλ⊆[3]\{σ1,...,σλ}

|W
dUσλ

(j)
τλ | (4.33)

From equations (4.19),(4.20), (4.21) and (4.33) we obtain

min
χ

T (L, χ) ≥ min
χ

1
2

3∑
i=0

∑3−i
r=1 Lr

(3−r
i

)
6
(3

i

) xi (4.34)

(a)= min
χ

1
2Conv

(∑3−i
r=1 Lr

(3−r
i

)(3
i

) )
(4.35)

= 1
2Conv

(∑3−i
r=1 Lr

(3−r
i

)(3
i

) )
. (4.36)
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where xi = ∑
n∈[N ]

∑
τ⊆[Λ]:|τ |=i |W n

τ |, i ∈ [Λ] ∪ {0} is the total size of the subfiles cached

at exactly i helper nodes. The coefficient
∑3−i

r=1 Lr(3−r
i )

6(3
i)

and (a) are proved in the general
proof.

4.5.2 General Proof of the Lower Bound

Our goal here is to provide a tight lower bound for the optimal average broadcast rate

T ∗ = min
χ

EL

[
EL∈SL

[
max

d
T (L, d, χ)

]]
(4.37)

which, as a first step, we can lower bound as

T ∗ ≥ EL

[
min

χ
EL∈SL

[
max

d
T (L, d, χ)

]]
= EL [T ∗(L)] (4.38)

≥ EL

[
min

χ
max

d
EL∈SL [ T (L, d, χ)]

]
(4.39)

= EL

⎡⎣min
χ

1
|Sd|

1
|SL|

∑
d∈Sd

∑
L∈SL

T (L, d, χ)

⎤⎦ (4.40)

≥ EL

⎡⎣min
χ

1
|Sd|

1
|SL|

∑
d∈Sd

∑
L∈SL

T LB(L, d, χ)

⎤⎦ (4.41)

where T LB(L, d, χ) is a certain lower bound for the delay T (L, d, χ).

Theorem 6 is proved through the translation of the caching problem into an IC prob-
lem. Consider the uncoded cache placement, a given profile type L and a demand
vector d. For a Λ × Λ permutation matrix Pπ applied to the demand vector, we get
d(L)T = PπdT . In total, there are Λ! demand vectors d(L). Given d(L), we can con-
struct the associated side information graph which will denote by G.
.

In the corresponding side information graph of d(L), each requested file W dUλ
(j) for

λ ∈ [Λ], j ∈ [Lλ] is divided into 2Λ subfiles (W dUλ
(j)

τ , τ ∈ 2[Λ]) and each of them is
requested by a new user that is connected to the same helper node λ as the original user.
Note that the new users have the same side information of the original ones. The subfiles
W

dUλ
(j)

τ , λ ∈ τ are not requested by the original user because they can be obtained from
the helper node λ. In other words, all users connected to the same cache have access
to all files stored in this cache. The total number of IC users connected to a particular
helper node λ is 2Λ−1Lλ. The side information graph associated to this problem G has
K · 2Λ−1 nodes.

The bound given by (4.8) is valid for the acyclic induced subgraphs of G. The following
lemma states how to find the sets of nodes that induce acyclic subgraphs as an adaptation
of [6, Lemma 1].
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Lemma 1. An induced acyclic subgraph J ⊆ G of the addressed IC problem contains
subfiles W

dUσλ
(j)

τλ , j ∈ [Lσλ
], ∀λ ∈ [Λ] for all τλ ⊆ [Λ]\{σ1, ..., σλ} where σ = (σ1, ..., σΛ)

is a permutation of [Λ].

Proof. It is enough to say that Lemma 1 is an adaptation of [6, Lemma 1] to our setting,
where users associated to same helper nodes have access to the same subfiles. Since [6,
Lemma 1] gives an acyclic graph, then also our construction results in a graph that is
acyclic.

Lemma 2. Lemma 1 used with the permutation vector σ where Lσ1 ≥ Lσ2 ≥ ... ≥ LσΛ

results in an acyclic subgraph that is the maximum in terms of number of nodes among
all the ones that can be created with Lemma 1.

Proof. Given a permutation vector σ, the number of subfiles W
dUσλ

(j)
τλ in the acyclic

subgraph such that the index size is |τλ| = i, i ∈ [Λ] ∪ {0} is ∑Λ−i
r=1 Lσr

(Λ−r
i

)
. The total

number of subfiles in the acyclic subgraph is ∑Λ
i=0

∑Λ−i
r=1 Lσr

(Λ−r
i

)
. This number is maxi-

mized when the vector (Lσ1 , ..., LσΛ) is sorted in a descending order which coincides with
the profile type L.

Note: If several caches have the same number of users connected to them, then
there exists more than one permutation vector σ through Lemma 1, that results in the
maximum acyclic subgraph. Let Σ be the set of permutations σ yielding a maximum
acyclic subgraph defined as Σ , {σ : Lσ1 ≥ Lσ2 ≥ ... ≥ LσΛ} and let ∆ be the set
of σλ, λ ∈ [Λ] for which the permutations σ ∈ Σ differ for the order. Then, among all
possible σ ∈ Σ the permutation that is chosen is the one where the set ∆ appears in
ascending order in σ.

By using Lemma 1 and Lemma 2 the lower bound T LB(L, d, χ) is obtained by (4.8)
and is given below.

T LB(L, d, χ) = 1
N0

·
Lσ1∑
j=1

∑
τ1⊆[Λ]\{σ1}

|W
dUσ1

(j)
τ1 | + · · · + 1

N0
·

LσΛ∑
j=1

∑
τΛ⊆[Λ]\{σ1,...,σΛ}

|W
dUσΛ

(j)
τΛ |

(4.42)
where for clarity we recall that σ = (σ1, ..., σΛ) is the one chosen via Lemma 2.

Taking the average of (4.42) over all Λ! user profiles L ∈ SL, we get a lower bound on
T (L, d, χ). Then, we repeat the same procedure for all P (N, K) demand vectors d ∈ Sd.
Overall, we obtain the following lower bound:

1
P (N, K)

1
Λ!

∑
d∈Sd

∑
L∈SL

T (L, d, χ)

≥ 1
N0

1
P (N, K)

1
Λ!

∑
d∈Sd

∑
L∈SL

∑
λ∈[Λ]

Lσλ∑
j=1

∑
τλ⊆[Λ]\{σ1,...,σλ}

|W
dUσλ

(j)
τλ | (4.43)
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Equation (4.43) is rewritten as follows

1
P (N, K)

1
Λ!

∑
d∈Sd

∑
L∈SL

T (L, d, χ)

≥ 1
N0

1
P (N, K)

1
Λ!

Λ∑
i=0

∑
n∈[N ]

∑
τ⊆[Λ]:|τ |=i

∑
d∈Sd

∑
L∈SL

1Ωd,L(W n
τ )|W n

τ | (4.44)

where Ωd,L is the set of subfiles of the induced maximum acyclic subgraph for the demand
vector d(L) chosen using Lemma 1 and Lemma 2. The indicator function 1Ωd,L(W n

τ ) is 1
if the subfile W n

τ is chosen as part of the maximum acyclic graph for the demand vector
d(L) and is 0 otherwise. In equation (4.44) we used the fact that the sum of all files in
the library can be written in the form

N =
Λ∑

i=0

∑
n∈[N ]

∑
τ⊆[Λ]:|τ |=i

|W n
τ | (4.45)

In (4.44), we redefine Qi(W n
τ ) ,∑

d∈Sd

∑
L∈SL

1Ωd,L(W n
τ ) which is given by the following

Lemma.

Lemma 3. Subfile W n
τ , |τ | = i appears in all P (N, K)Λ! constructed lower bounds

through Lemma 1 and Lemma 2 Qi(W n
τ ) number of times where

Qi(W n
τ ) =

(
N − 1
K − 1

) Λ∑
r=1

P (Λ − i − 1, r − 1)

× (Λ − r)!LrP (K − 1, Lr − 1)(K − Lr)!(Λ − i) (4.46)

Proof. There are
(N−1

K−1
)

subsets Υm, m ∈ [
(N−1

K−1
)
] out of

(N
K

)
unordered subsets of K

files from the set {W j , j ∈ [N ]} that contains a certain file W n and for each Υm there
exists K! different demand vectors d′. Over all possible demand vectors d′(L) a subfile
W n

τ : |τ | = i appears in the side information graph for each Υm the same number of
times. For a fixed Υm, file W n is requested by a user connected to any helper node with
a certain cardinality Lr. Qi(W n

τ ) can be rewritten as

Qi(W n
τ ) =

(
N − 1
K − 1

) Λ∑
r=1

∑
d′

r

∑
L∈SL

1Ωd′
r,L

(W n
τ ) (4.47)

where d′
r denotes the subset of all K! demand vectors arising from Υm such that the index

n ∈ dUλ
: |dUλ

| = Lr. The number of chosen maximum acyclic subgraphs containing W n
τ

that arise from all the demand vectors d′
r(L) is evaluated as follows.

For the demands such that n ∈ dLr , W n
τ appears in the side information graph G only

if it is requested by a user connected to helper node λ such that λ /∈ τ which corresponds
to (Λ − i) different available positions in the demand vector d′

r for dLλ
, since |τ | = i.

Fixed one of the (Λ − i) positions occupied by dLr , subfile W n
τ will be picked depending

on the position of the other dLj , ∀j ∈ [Λ] \ {r} into d. For these remaining demands
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dLj , ∀j ∈ [Λ] \ {r} there are P (Λ − i − 1, r − 1)(Λ − r)! possible ways to be placed into d.
Fixed the order of dLr in d and n ∈ dUλ

: LUλ
= Lr, there are Lr different positions in

dUλ
in which we can place n. Then, it remains to fill Lr − 1 positions of dUλ

with K − 1
different numbers from the considered set Υm\{n} and the remaining K − Lr positions
in d′

r are filled with the remaining K − Lr numbers.

Therefore, there exist LrP (K − 1, Lr − 1)(K − Lr)! different demand vectors where
the subfile W n

τ will appear in the associated maximum acyclic subgraphs. Overall, we
have

Qi(W n
τ ) =

(
N − 1
K − 1

) Λ∑
r=1

P (Λ − i − 1, r − 1)

× (Λ − r)!LrP (K − 1, Lr − 1)(K − Lr)!(Λ − i). (4.48)

which completes the proof.

Since the value of Qi(W n
τ ) does not depend on W n

τ , we can change notation Qi
△=

Qi(W n
τ ) and with Lemma 3, equation (4.44) becomes

max
d

EL∈SL [ T (L, d, χ)] ≥ 1
N0

Λ∑
i=0

∑
n∈[N ]

∑
τ⊆[Λ]:|τ |=i

Qi

P (N, K)Λ! |W
n
τ | (4.49)

≥ 1
N0

Λ∑
i=0

Qi

P (N, K)Λ!xi (4.50)

where xi = ∑
n∈[N ]

∑
τ⊆[Λ]:|τ |=i |W n

τ |, i ∈ [Λ] ∪ {0} is the total size of the subfiles cached
at exactly i helper nodes.

The coefficient of xi in (4.50) is further simplified as in the following

Qi

Λ!P (N, K) = 1
N

Λ∑
r=1

Lr

(Λ−r
i

)(Λ
i

) (4.51)
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Proof.

Qi

Λ!P (N, K)

= (N − 1)!(N − K)!
(K − 1)!(N − K)!Λ!N !

Λ∑
r=1

LrP (K − 1, Lr − 1)

(K − Lr)!(Λ − i)P (Λ − i − 1, r − 1)(Λ − r)!

= 1
(K − 1)!Λ!N

Λ∑
r=1

LrP (K − 1, Lr − 1)

(K − Lr)!(Λ − i)P (Λ − i − 1, r − 1)(Λ − r)!

= 1
(K − 1)!Λ!N

Λ∑
r=1

Lr

(K − 1)!(K − Lr)!(Λ − i)(Λ − i − 1)!(Λ − r)!
(K − Lr)!(Λ − i − r)!

= 1
Λ!N

Λ∑
r=1

Lr
(K − 1)!(Λ − i)!(Λ − r)!

(K − 1)!(Λ − i − r)!

= 1
N

Λ∑
r=1

Lr
(Λ − i)!(Λ − r)!i!
Λ!(Λ − i − r)!i!

= 1
N

Λ∑
r=1

Lr

(Λ−r
i

)(Λ
i

)
(4.52)

Combining (4.50) and (4.51), we get

T (L, χ) ≥ 1
N0

Λ∑
i=0

∑Λ−i
r=1 Lr

(Λ−r
i

)
N
(Λ

i

) xi = 1
N0

Λ∑
i=0

xi

N
ci (4.53)

where ci ,
∑Λ−i

r=1 Lr(Λ−r
i )

(Λ
i)

is a decreasing sequence whose lower convex envelope, Conv(ci),
is decreasing and convex.

Due to the file size and cache size constraint, the following equalities hold for any
caching starategy χ.

Λ∑
i=0

xi = N (4.54)

Λ∑
i=0

ixi ≤ Nt, t ∈ {0,1, ..., Λ} (4.55)
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In a similar fashion to [38, Proof of Lemma 2], combined (4.53) with (4.54) and (4.55)
using Jensen’s inequality and the monotonic decreasing property of Conv(ct), we obtain

T (L, χ) ≥ 1
N0

Conv

(∑Λ−t
r=1 Lr

(Λ−r
t

)(Λ
t

) )
. (4.56)

Consequently,

T ∗(L) = min
χ

T (L, χ) ≥ min
χ

1
N0

Conv

(∑Λ−t
r=1 Lr

(Λ−r
t

)(Λ
t

) )
(4.57)

= 1
N0

Conv

(∑Λ−t
r=1 Lr

(Λ−r
t

)(Λ
t

) )
(4.58)

Finally, from equation (4.38) and (4.58) we have

T ∗ ≥ EL [T ∗(L)] (4.59)

≥ EL

[
1

N0
Conv

(∑Λ−t
r=1 Lr

(Λ−r
t

)(Λ
t

) )]
(4.60)

This concludes the proof.
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4 – Coded Caching for Networks with Helper Nodes

4.6 Conclusions
In this chapter we have studied the coded caching problem for a network comprised of a
multi-antennas base station storing the library of files and K users, each one connected
to one of Λ < K cache-enabled helper nodes. Unlike other works, we did not put any
constraint on the number of users connected to each helper node. We assumed that each
user can fetch content from the associated helper node at zero cost. Assuming that the
system operates in two phases (placement and delivery), our goal was to characterize the
normalized delivery time required by the base station to serve all users, each requesting
a different file from the library. To this end, we have developed a lower bound on the
optimal delay and two different schemes for the single-antenna base station case and the
multiple-antennas case, respectively. While the scheme for the single-antenna case can
handle any user profile (vector whose elements represent the number of users connected to
each helper node), the algorithm proposed for the multiple-antennas case can handle only
a wide-but-limited set of user profiles. The performance achieved by the schemes clearly
show how the delivery time is strongly affected by the way the users distribute among
the helper nodes. It turns out, as expected, that the more "symmetric" is the user profile
the lower is the required delay to serve all users. In fact, the lowest delay is experienced
when the same number of users is connected to each helper node. Such a symmetric
distribution of the users among the caches maximizes the multicast opportunities arising
from coded caching. Moreover, for the symmetric user profile, it turns out that (at least
for the user profiles handled by the algorithm), the multiplexing gain and the coded
caching gain show in a multiplicative way. This result is of relevant interest because
when there exist exactly Λ = K caches, one for each user, the multiplexing gain is only
additive to the coded caching gain. Finally, the delay achieved by the schemes matches
with the developed lower bound. As a consequence, the proposed schemes are information
theoretical optimal.
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