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Chapter 1

Introduction

Multiple-input and multiple-output (MIMO) is a mature technology currently imple-
mented in many modern broadband wireless communication standards, like in the fourth
generation (4G) systems. By virtue of multiple antennas at the transmitters and re-
ceivers, such systems can achieve significant gains in terms of data rate and link re-
liability. These gains are typically quantified by the so called multiplexing gain and
diversity gain, that in ideal conditions scale, respectively, as a function of the signal-
to-noise ratio (SNR) according to min(N,M) log(1 + SNR) and SNRNM , where N and
M denote the number of transmitting and receiving antennas. These benefits extends
also to multi-user (MU) systems, where the MIMO theory enables advanced techniques
for interference management, multiplexing and multiple access by adding a third spatial
dimension to the classical time and frequency division techniques [1].

Motivated by the increased demand in data traffic envisioned for the fifth generation
(5G) and beyond-5G wireless networks, in recent years a lot attention has been given by
both the academic and industrial world to systems with antenna arrays equipped with
a very large number of antennas, also called massive MIMO systems [2].

On top of the evident benefits in terms of multiplexing and diversity gains, the adoption
of large-scale antenna arrays introduces additional properties that are deeply rooted
in the law of large numbers and in the asymptotics of random matrix theory. Among
them, a particularly interesting effect for MU-MIMO systems is that the channel vectors
describing the propagation between single-antenna terminals and the base station (BTS)
becomes asymptotically orthogonal as the number of antennas at the base station grows
large. This fact has several advantages in terms of system performance, as it allows for
multiple users to be jointly treated as if they belong to separated, non-interfering, single-
user (SU) links, and thus classical linear techniques for SU-MIMO (e.g. maximum-ratio-
transmission precoding) become optimal. Furthermore, another interesting effect of such
large-scale systems is that the singular values distribution of the channel matrix grouping
the users channel vectors becomes a deterministic function. Moreover, especially for the
uplink (UL) transmission, the signal degradation due to thermal noise can be better
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6 CHAPTER 1. INTRODUCTION

averaged out. In general, the benefits of massive MIMO can be summarized by observing
that the performance of such systems depends less on the instantaneous realizations of
statistical quantities and more on aggregated properties of the propagation.

Not surprisingly, all these advantages come with a price. For example, an immediate
practical issue of large-scale arrays is the increased hardware complexity given by the
large number of radio-frequency (RF) chains to be deployed. Furthermore, the more
complex signal processing implies additional power consumption and need for higher
computational capabilities at both ends. Moreover, as for the vast majority of MIMO
system, the benefits promised by the massive MIMO technology rely on coherent trans-
mission, which means that the system must acquire a sufficiently reliable estimate of the
channel state (CSI). However, the acquisition of the CSI in the large-scale array regime
is far from trivial, especially for the downlink (DL) channel, and it is one of the main
limiting factors of Massive MIMO systems performance [3, 4].

This thesis focuses on the DL CSI acquisition problem in massive MIMO systems. In
the following sections of this chapter we present a brief outline of the problem and of
the main contributions given by this thesis.

1.1 Problem Overview

In massive MIMO systems conventional DL channel estimation techniques (e.g., those
currently implement in 4G systems) require prohibitively large pilot sequences. In ex-
treme cases, the training time can easily exceed the channel coherence time, making
CSI acquisition practically impossible [2]. The main reason is that pilot sequences are
typically designed to have a length comparable to the number of antennas of the BTS.

This pilot design choice is one of the main reasons why existing solutions for massive
MIMO systems are typically based on the time division duplexing (TDD) mode. In the
TDD mode, the small number of antennas at the terminals enables the acquisition of
a reliable estimate of the UL channel within the channel coherence time, and the DL
channel becomes immediately available to the BTS because of the phenomenon of channel
reciprocity. However, for frequency division duplexing (FDD) systems, this reciprocity is
not available. In this case, the available solutions for CSI acquisition typically rely on the
existence of a lower dimensional representation of the channel vector in the large-scale
array regime.

Current approaches for DL CSI acquisition in FDD systems can be divided into two main
categories: methods based on compressed sensing (CS) and methods based on second-
order statistics. Although promising, CS techniques (e.g. [5]) do not take into account
the space-time correlation of the channel, which is often modeled by the well-known wide
sense stationary (WSS) assumption. This correlation is exploited by approaches based
on second order statistics, and they have been shown to reduce effectively the effort for
DL CSI acquisition [6–8]. In this study we focus on this last category of algorithms.



1.2. MAIN CONTRIBUTIONS 7

1.2 Main Contributions

In this thesis we analyze the problem of DL CSI acquisition for massive MIMO systems
operating in the frequency division duplexing (FDD) mode. We highlight the limitations
of the classical pilot based channel estimation designs, currently implemented in the
modern communication standards, when scaled-up to the large-scale array regime. We
also point out how it is possible to effectively improve the performance of such systems
by taking into account more advanced channel estimation techniques based on channel
correlation properties. We finally propose, as a main contribution of this work, a novel
technique for estimating the downlink (DL) channel spatial covariance matrix Rd from
the uplink (UL) channel spatial covariance matrix Ru, as a key enabling technology for
a wide category of modern CSI acquisition algorithms that exploit channel correlation.

The main contributions given by this thesis can be summarized as follows:

• We start with Chapter 2 by presenting many approaches to channel modeling,
with particular emphasis on the characterization of the spatial covariance matrix,
which we show to be crucial for the development of the CSI acquisition algorithms
proposed later in the thesis. A particularly interesting expression for the spatial
covariance matrix is derived by taking into account also polarization effects of the
propagation environment. Such an expression is not available in the literature.

• In Chapter 3 we review conventional CSI acquisition techniques, by giving in-
sights on their fundamental performance limits and potentials. In particular, we
highlight the advantages of covariance-aware systems when the channel fading is
correlated, and how the knowledge of the spatial channel covariance matrix at the
BTS can help in reducing the training overhead. Furthermore, we briefly outline
possible connections between CS based channel estimation techniques and channel
correlation. Finally, we review and partially extend popular Information Theory
arguments that show that the channel coherence time is one of the main per-
formance bottlenecks of massive MIMO systems, especially in case of independent
fading. Overall, Chapter 3 aims at giving insights on the key role played by channel
correlation in addressing the FDD massive MIMO DL CSI acquisition problem.

• Chapter 4 proposes novel algorithms for DL covariance estimation based on only
UL measurements. The benefits of this approach are discussed. We show both the-
oretically and numerically how the proposed algorithms can be applied to realistic
communication systems. In particular, unlike most current work in the literature,
the proposed solutions take into account real-world 3D propagation environments
and dual polarized antenna arrays. Furthermore, we show via simulations that our
algorithms outperform current state-of-the art solutions in terms of accuracy and
complexity, under different performance metrics.
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1.3 Notation and Abbreviations

This list gives a brief overview of the main mathematical notation and abbreviations
adopted in the text. Due to the large number of quantities occurring, some parts of the
text may present a local notation not presented in this general list. In those cases, the
reader should refer to the local explanation given in the specific section.

Notation:

• We adopt lower case boldface letters (a) for vectors, with ith element denoted as
ai.

• We adopt upper case, boldface letters (A) for matrices, with ijth entry denoted
as aij .

• (·)∗, (·)T , (·)H and (·)† denote respectively the conjugate, the transpose, the Her-
mitian transpose, and the Moore–Penrose pseudo inverse operations.

• ‖ · ‖p and ‖ · ‖F denote respectively the p-norm over a generic Lp space and the
Frobenius norm.

• <[·] and =[·] denote respectively the real and the imaginary parts.

• tr{·} denotes the trace operator.

• rank{·}, span{·}, Ker{·} denote respectively the rank, the column space, and the
kernel of a given matrix.

• diag(a) denotes a diagonal matrix which diagonal elements are the elements of a.

• vec(A) denotes a column vector obtained by stacking the columns of the matrix
A.

• L2[I] denotes the set of all square Lebesgue integrable functions over the domain
I ⊂ Rn.

• Given a Hilbert space, we denote by x(i) ⇀ x a sequence (x(i))i∈N weakly conver-
gent to a point x.

• Superscripts (·)u and (·)d indicate respectively UL and DL matrices, vectors, or
functions when we need to emphasize the dependency on the carrier frequency.

• E[·] denotes the expectation operation over a random quantity.



1.3. NOTATION AND ABBREVIATIONS 9

Acronyms:

3GPP Third Generation Partnership Project.
4G Fourth Generation.
5G Fifth Generation.
APS Angular Power Spectrum.
BTS Base Transceiver Station.
CDF Cumulative Density Function.
CS Compressed Sensing.
CSI Channel State Information.
DL Downlink.
DoA Direction of Arrival.
DoD Direction of Departure.
DoF Degrees of Freedom.
EAPM Extrapolated Alternating Projection Method.
FDD Frequency Division Duplexing mode.
GCS Global Coordinate System.
GCSM Geometric-based Stochastic Channel Model.
H-APS APS for the Horizontal polarization.
LCS Local Coordinate System.
LMMSE Linear Minimum MSE estimator.
LS Least Square estimator.
LOS Line Of Sight path.
MIMO Multiple Input Multiple Output system.
ML Maximum Likelihood.
MRC Maximum Ratio Combining.
MSE Mean Square Error.
MU-MIMO Multi-User MIMO.
NLOS Non-LOS path.
NN Neural Network.
OFDM Orthogonal Frequency Division Multiplexing.
PDF Probability Density Function.
PSD Positive Semi-Definite matrix.
SE Square Error.
SNR Signal to Noise Ratio.
SU-MIMO Single-User MIMO.
TDD Time Division Duplexing mode.
UE User Equipment.
UL Uplink.
ULA Uniform Linear Array.
UPA Uniform Planar Array.
V-APS APS for the Vertical polarization.
WSS Wide-Sense Stationary process.
XPR Cross Polarization Ratio
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Chapter 2

Channel Models

The goal of this chapter is to give a comprehensive analysis of the channel models adopted
for the design of the algorithms presented throughout this study. Particular emphasis
is put into the description of the second order statistics of the channel, in the form of
spatial covariance matrix, because of its crucial role played in the invention presented
in this study, and, more generally, in the problem of massive MIMO channel estimation.
To widen as much as possible the domain of application of the proposed algorithms, we
devote the core part of this chapter to the derivation of the expression of the spatial
channel covariance matrix for several popular directional channel models. These models
are presented in a bottom-up fashion, by treating in a constructive way different aspects
with increasing complexity. The results are then merged to provide a unified description
of the spatial channel covariance matrix, compliant with the design requirements of
modern 4G and 5G systems. This hierarchical approach allows to highlight better specific
characteristics of different system design choices and modeling philosophies. In brief, this
chapter is structured as follows:

• In the introductory part, we outline the general system model, and we give a
high-level overview of the main assumptions.

• As a first example, we analyze a simple narrow-band system in a 2D environment
by using two different popular channel modeling philosophies, denoted here as
”discrete scattering” and ”continuous scattering” models.

• Secondly, we consider a wide-band OFDM system in a 2D environment, showing
an interesting parallelism of the results derived for narrow-band systems.

• Thirdly, these models are extended to consider also 3D environments, polarization
effects, non-isotropic antennas, and multi-antenna user equipment.

• Finally, the complete covariance models are summarized and discussed.

A rigorous proof of part of the propositions in this chapter requires results from measure
theory. However, the main focus of this study is on the algorithms for channel estimation

11



12 CHAPTER 2. CHANNEL MODELS

and not on the channel models, so, for the sake of simplicity, we keep the proofs informal
by making extensive use of the heuristic characterization of the generalized Dirac delta
function δ, defined such that the following property holds:∫ +∞

−∞
δ(x− x0)f(x) dx = f(x0)

where f : R→ C is a continuous function and x0 ∈ R. We point out that δ must not be
understood as a function, but as a shorthand that only acquires meaning when evaluated
inside an integral operation.

2.1 General System Model

Let us consider a multi-user (MU) MIMO channel between a base station (BTS) with
N antennas and K single-antenna user equipments (UE). Most of the work of this study
is based on this scenario.

Assuming a flat-fading channel model, a typical discrete input-output relation describing
the UL communication between the BTS and a UE is given by [1]

y[m] = hu[m]x[m] + H̄u[m]x̄[m] + w[m], (2.1)

where m ∈ Z is the discrete time index, hu[m] ∈ CN×1 is the UL time-variant channel
vector between the UE and the BTS, x[m] ∈ C is the UE transmitted sequence, H̄u[m] ∈
CN×K−1 is the UL time-variant matrix collecting the channel vectors between the BTS
and the interfering UEs, x̄[m] ∈ CK−1×1 is the vector collecting the sequences from the
interfering UEs, y[m] ∈ CN×1 is the received signal, and w[m] ∼ CN (0, σ2

W IN ) is a
sample of the received white noise process. Similarly, a typical discrete input-output
relation describing the DL communication between the UE and the BTS is given by

y[m] =
(
hd[m]

)T
x[m] + w[m], (2.2)

where hd[m] ∈ CN×1 is the DL time-variant channel vector between the BTS and the
UE, x[m] ∈ CN×1 is the BTS transmitted sequence, y[m] ∈ C is the received signal, and
w[m] ∼ CN (0, σ2

W ) is a sample of the received white noise process.

Although introduced for narrow-band communication systems, the flat-fading model can
also be applied to describe the communication over a time-frequency slot in multi-carrier
systems; e.g., orthogonal frequency division multiplexing (OFDM) based systems [1,
Chapter 3.4].

2.1.1 Second-order Statistics

A classical channel model (e.g, see [9]) assumes the channel vector h[m] to be a zero-
mean WSS process that is correlated both in time and in the spatial domain; i.e., with
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spatio-temporal covariance matrix

Rh[m,n] = E
[
h[m]h[n]H

]
= Rh[m− n]. (2.3)

An interesting condensed parameter that can be extracted from the spatio-temporal
covariance matrix is the coherence interval Mc, which is defined as the time interval
m−n needed so that two channel vectors h[m] and h[n] can be considered uncorrelated.
In many practical applications (for example, in the design of OFDM systems) the time
correlation of the channel is often simplified by using the “block-fading” assumption,
which assume the channel to be constant for an entire time frame of duration Mc [1]. In
narrow-band systems, Mc is usually set equal to the channel coherence time Tc, expressed
in discrete time. In wide-band OFDM systems instead, it is usually given by the product
Mc = TcBc, where Bc denotes the coherence bandwidth.

The core part of this work is based on the properties of the spatial channel covariance
matrix R := Rh[0]. To exploit spatial diversity, MIMO systems are typically designed
with an inter-antenna spacing sufficiently large so that the antennas can be considered
uncorrelated [9]. The minimum spacing is often assumed to be equal to the coherence
length d := λ/2, where λ denotes the carrier wavelength. However, the coherence length
is derived by assuming the “one-ring” model [9], which often does not correspond to real
scenarios. Therefore, as in 3GPP models, in this work we take into account the spatial
correlation given by real scattering environments.

According to the WSS assumption, Rh (and thus R) is invariant over time. In practice,
it is a slowly-varying quantity: channels can be safely assumed to be WSS just over
a certain window of time TWSS, which in usual scenarios is several order of magnitude
larger than the channel coherence time Tc [8, 10]. In this work we assume TWSS to be
large enough for the time scale requirements of the proposed algorithms.

2.1.2 Channel Reciprocity

In general, the channel vector h[m] depends on the carrier frequency. In time division
duplexing (TDD) systems, since the UL and the DL channels share the same carrier
frequency, it is typically assumed that hu[m] ≡ hd[m]. In contrast, in frequency division
duplexing (FDD) systems, where the UL and the DL channels are typically separated
by 10-100 MHz, this assumption cannot be made.

However, by representing the channel with directional channel models, a weaker form of
channel reciprocity in the angular domain exists. For example, by considering a simple
2D model (more general models are described later), we can relate the UL and DL
channel covariance matrices by

Ru =

∫ π

−π
ρ(θ)au(θ)au(θ)Hdθ, (2.4)
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Rd =

∫ π

−π
ρ(θ)ad(θ)ad(θ)Hdθ, (2.5)

where Ru and Rd are given in terms of an angular power spectrum (APS) ρ : [−π, π]→
R+ describing the received or transmitted power in a given physical direction θ, and
the antenna array responses au : [−π, π] → CN×1, ad : [−π, π] → CN×1. (Hereafter,
integrals involving matrix-valued functions should be understood coordinate-wise.) The
angular reciprocity is modeled by assuming that the APS, unlike the array response, is
frequency invariant. On top of the formal derivation from the channel models in the
next sections, this assumption is further motivated by several measurement campaigns
(see for example [9, 11]), where, for typical duplex gaps, the APS is shown to exhibit
strong frequency correlation properties.

2.2 Narrow-band Systems

2.2.1 Discrete Scattering Model

Let us consider a narrow-band system in a 2D (azimuth-only) scenario. A classical
expression for a realization of the channel vector h := h[m0] at an arbitrary time m0 is
given by [8]:

hd =

√
α

Np

Np∑
i=1

ejϕ
d
i ad(θi)

hu =

√
α

Np

Np∑
i=1

ejϕ
u
i au(θi)

(2.6)

where the DL and UL channel vectors hd,hu ∈ CN×1 are expressed in term of their
multipath components according to the following model:

• Np is the total number of paths, and it is generally assumed to be very large.

• θi is the direction of arrival (DoA) or the direction of departure (DoD) of path
i respectively for the UL and for the DL. It is notably assumed to be frequency
invariant, according to the angular reciprocity assumption. θi is independently
drawn from a generic probability density function f : [−π, π] −→ R.

• α > 0 is the path loss, and it is again assumed to be equal for UL and DL.

• ad,au : [−π, π] −→ CN×1 are the BTS array responses. In FDD systems, they are
different from DL and UL.

• ϕdi , ϕui are the phase shift terms of each path. They are generally assumed to be
i.i.d and uniformly distributed in [−π, π]. In FDD systems UL and DL coefficients
are assumed to be uncorrelated.
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To reflect the considerations given in Section 2.1.1, the time evolution of the channel is
modeled as follows:

• Fast-varying parameters ϕdi , ϕ
u
i and θi are drawn independently and kept fixed at

intervals corresponding to the coherence time Tc (block-fading assumption).

• Slowly-varying parameters α and f are assumed constant over a WSS window
TWSS , with TWSS � Tc. Moreover, adjacent WSS windows must experience simi-
lar parameters.

d Base	  Sta)on	  
N	  Antennas

User	  Equipment
	  1	  Antenna

Cell-‐specific	  
cluster	  of	  
sca1erers

Cell-‐specific	  
cluster	  of	  
sca1erers

User-‐loca3on	  
dependant	  
sca1erers

θic
φc

Δ	  =	  angular	  spread
DoA	  /	  DoD

lunedì 8 gennaio 18

Figure 2.1: Massive MIMO channel in presence of a GSCM-like scattering environment.

The Geometry-based Stochastic Channel Model: In many applications a very ef-
fective model for a typical cellular environment is the so called “geometry-based stochas-
tic channel model” (GSCM, Figure 2.1) [9], an extension of (2.6) where the paths are
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clustered together as in the following expressions:

hd =
1√
Np

Nc∑
c=1

Np∑
i=1

√
αce

jϕdicad(θic)

hu =
1√
Np

Nc∑
c=1

Np∑
i=1

√
αce

jϕuicau(θic)

(2.7)

• Nc denotes the number of clusters and Np the associated number of subpaths.

• θic is the DoA/DoD of subpath i belonging to cluster c. It is randomly drawn from
the continuous pdf fc(θ) characterized by a main DoA/DoD φc and an angular
spread ∆c. Formal definition of these parameters will be clarified in the following.

• αc > 0 is the average power of all the subpaths of cluster c, and it assumed to be
equal for UL and DL. The overall path loss is α :=

∑Nc
c=1 αc.

• ad,au : [−π, π] −→ CN×1 are the BTS array responses as in (2.6).

• ϕic are again assumed i.i.d uniformly distributed as in (2.6).

Reasonable models for fc(θ) [12] in a typical cellular environment are:

• Uniform distribution

fc(θ) ∼ U
[
φc −

∆c

2
, φc +

∆c

2

]
• Gaussian distribution

fc(θ) ∼ N
(
φc,∆

2
c

)
• Laplacian distribution

fc(θ) =
1

∆c

√
2
e−
√

2
∆c
|x−φc|

In [12] it is suggested that the Uniform distribution may be safely assumed for the line-
of-sight (LOS) cluster (user position dependent cluster), while for the others a Gaussian
or Laplacian distribution may better fit.

GSCM is particularly suitable for outdoor environments, where the clusters have the
physical meaning of macro-objects (like buildings) responsible for the main reflections
in the cell. For this reason, a model very similar to (2.7) is implemented in many
simulators; e.g. the ones compliant with the 3GPP technical document [13]. The main
difference between (2.7) and the model proposed by 3GPP is that, in the latter, only the
main DoA/DoD of the clusters are drawn statistically, while the correspondent subpaths
are computed deterministically with tabular values. This is done mainly to reduce the
complexity of the simulation. In this work, instead, the proposed model is kept more
general to not confine subpaths angles into a pre-defined grid, which is likely to be
unrealistic.
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The next proposition is the first result justifying that a continuous model for the angular
power spectrum should be considered in channel estimation algorithms and simulations.
Although Proposition 2.1 is based on arguably simple channel models, we show later
that similar results hold for more advanced channel models considering 3D arrays with
cross-polarization. This observation will play a key role in the algorithms for channel
estimation considered in the next chapters.
Proposition 2.1. For both models (2.6) and (2.7), the spatial covariance matrices Ru =
E[hu(hu)H ] and Rd = E[hd(hd)H ] can be expressed as follows:

Ru =

∫ π

−π
ρ(θ)au(θ)au(θ)Hdθ, (2.8)

Rd =

∫ π

−π
ρ(θ)ad(θ)ad(θ)Hdθ, (2.9)

where the function ρ : [−π, π] −→ R+, here denominated as “angular power spectrum”
(APS), is defined as

ρ(θ) := αf(θ)

for model (2.6), and

ρ(θ) :=

Nc∑
c=1

fc(θ)αc

for model (2.7). 1

Proof. Let us drop for simplicity the UL/DL superscripts. By recalling channel model
(2.6) and computing the conditional average over all the i.i.d random phases ϕ|θ, with
ϕ = [ϕ1 . . . ϕNp ], and θ = [θ1 . . . θNp ], we obtain:

R′ : = Eϕ|θ[hhH ]

=
α

P

Np∑
i=1

Np∑
l=1

Eϕi,ϕl|θ
[
ejϕie−jϕl

]
a(θi)a

H(θl)

=
1

P

Np∑
i

a(θi)a
H(θi),

where the last equality comes from

Eϕi,ϕl|θ
[
ejϕie−jϕl

]
= δil,

1The name “angular power spectrum” comes from its physical interpretation as a power density:∫ π

−π
ρ(θ)dθ = α. (2.10)
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because, for i 6= l,

Eϕi,ϕl|θ
[
ejϕie−jϕl

]
= Eϕi|θ

[
ejϕi

]
Eϕl|θ

[
e−jϕl

]
=

(
1

2π

∫ π

−π
ejϕdϕ

)(
1

2π

∫ π

−π
e−jϕ

′
dϕ′
)

= 0

By averaging now over all the i.i.d. random DoA/DoD θ:

R = Eθ[R′]

=
α

Np

Np∑
i

Eθi [a(θi)a
H(θi)]

= α

∫ π

−π
f(θ)a(θ)aH(θ)dθ

=

∫ π

−π
ρ(θ)a(θ)aH(θ)dθ.

The expression for model (2.6) is now proved.

Let us now consider the GSCM channel model (2.7). By introducing the notation

h =

Nc∑
c=1

hc, hc =

√
αc
Np

Np∑
i=1

ejϕica(θic), (2.11)

it is possible to decompose the overall covariance matrix as

R =

Nc∑
c=1

Rc +

Nc∑
c=1

∑
c′ 6=c

Rcc′

where Rc := E[hc(hc)
H ] denote the intra-cluster covariance matrix of cluster c, and

Rcc′ := E[hc(hc′)
H ] denotes the inter-cluster covariance matrix between clusters c and

c′, c 6= c′. By observing that hc has the same expression as the channel model (2.6),
and by proceeding on the same lines of the derivation of its covariance matrix, it is
immediately possible to write

Rc = αc

∫ π

−π
fc(θ)a(θ)aH(θ)dθ,

Rcc′ = 0,

where the last equation comes from

Eϕic,ϕlc′ |θ
[
ejϕice−jϕlc′

]
= Eϕic|θ

[
ejϕic

]
Eϕlc′ |θ

[
e−jϕlc′

]
= 0, ∀i, l.
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Finally, R is given by

R =

Nc∑
c=1

Rc =

∫ π

−π

(
Nc∑
c=1

αcfc(θ)

)
a(θ)aH(θ)dθ

=

∫ π

−π
ρ(θ)a(θ)aH(θ)dθ.

The expression in (2.7) is proved, and the proof is complete.

2.2.2 Continuous Scattering Model

Most of the simulators and the algorithms available in literature for massive MIMO chan-
nel estimation and also those for problems related to, for example, DoA estimation (e.g.
MUSIC [14]) rely on the discrete scattering model considered in Section 2.2.1. However
more recently some authors (see, for example, [10]) started considering generalizations
of the discrete scattering model described in Section 2.2.1, by assuming the channel vec-
tor to be formed by a superposition of a continuum of array responses, weighted by a
continuous function ρ. More precisely, in these generalizations, the downlink and uplink
channels are given by, respectively,

hd =

∫ π

−π

√
ρ(θ)zd(θ)ad(θ)dθ and

hu =

∫ π

−π

√
ρ(θ)zu(θ)au(θ)dθ,

(2.12)

where:

• ρ : [−π, π] −→ R+ describes the received or transmitted power per unit angle.
Because of its equivalent physical meaning of the APS defined in Section 2.2.1, it
is here denoted with the same name. Angular reciprocity is here modeled assuming
equal APS for UL and DL.

• ad,au : [−π, π] −→ CN×1 are the BTS array responses as in (2.6).

• zd(θ), zu(θ) are the white unitary power complex random processes in the angular
domain modeling the small scale fading. In FDD systems, UL and DL processes
are uncorrelated. They are generally assumed to be circularly symmetric Gaussian.

The underlying assumption of this continuous scattering model is that the scattering
environment might be continuous in nature, so developing algorithms relying on the
most generic model possible (as in [10]) ensures their resilience to model mismatches.

To reflect the considerations given in Section 2.1.1, we model the time evolution of the
channel as follows:
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• The realizations of the random processes zd(θ) and zu(θ) are drawn independently,
and they are kept fixed at intervals corresponding to the coherence time Tc (block-
fading assumption).

• A realization of the random process ρ(θ) is kept fixed for a WSS window TWSS ,
with TWSS � Tc. Moreover, adjacent WSS windows must experience correlated
realizations.

We now sketch a proof that the expressions for the covariance matrices for the channel
model in this subsection are similar to those considering the discrete scattering model
in Section 2.2.1.
Proposition 2.2. The covariance matrices Ru and Rd for the channel model in 2.12
are given by

Ru =

∫ π

−π
ρ(θ)au(θ)au(θ)Hdθ, (2.13)

Rd =

∫ π

−π
ρ(θ)ad(θ)ad(θ)Hdθ. (2.14)

Proof. (Informal) Let us drop for simplicity the UL/DL superscripts. By recalling the
channel model in (2.12), we obtain

R = E
[
hhH

]
=

∫ π

−π

∫ π

−π

√
ρ(θ)

√
ρ(θ′)E

[
z(θ)z∗(θ′)

]
a(θ)a(θ′)Hdθdθ′

=

∫ π

−π
ρ(θ)a(θ)aH(θ)dθ,

where the last equality comes from E[z(θ)z∗(θ′)] = δ(θ − θ′), by definition, and the
heuristic interpretation of the Dirac function. The proof is now complete.

2.3 Wide-band OFDM Systems

2.3.1 Discrete Scattering Model

Let us consider a wide-band channel in an under-spread environment; i.e. with delay
spread Ts � Tc, an assumption that is typically done while designing an OFDM system
[1, Chapter 3.4]. Let us extend the narrow-band GSCM discrete scattering model (2.7)
by using the same approach proposed in [9, Chapter 6] and in the 3GPP technical
document [13], denoted as “tapped delay line.” After sampling, and by denoting with
l ∈ N the discrete time index of the lth tap, the sampled impulse response in the delay
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domain is given by:

hd[l] =

Nc∑
c=1

hdcδ[l − lc],

hu[l] =

Nc∑
c=1

huc δ[l − lc],

(2.15)

where

hdc :=

√
αc
Np

Np∑
i=1

ejϕ
d
icad(θic),

huc :=

√
αc
Np

Np∑
i=1

ejϕ
u
icau(θic).

• Nc denotes the number of clusters and Np the associated number of subpaths.

• lc ∈ N denotes the discrete time delay of all the subpaths belonging to cluster c,
which are assumed to be unresolvable in the delay domain after sampling. Finally,
lc is assumed to be equal for UL and DL.

• θic is the DoA/DoD of subpath i belonging to cluster c. It is randomly drawn from
the continuous pdf fc(θ) with parameters φc and ∆c as defined for the model in
(2.7).

• αc > 0 is the average power of all the subpaths of cluster c, and it assumed to be
equal for UL and DL. The total impulse response power is defined as α :=

∑Nc
c=1 αc.

• ad,au : [−π, π] −→ CN×1 are the BTS array responses as in (2.6).

• ϕic are again assumed i.i.d uniformly distributed as in (2.6).

To reflect the considerations given in Section 2.1.1, we model the time evolution of the
channel as follows:

• The fast-varying parameters ϕdic, ϕ
u
ic, and θic are drawn independently, and they

are kept fixed at intervals corresponding to the coherence time Tc (block-fading
assumption).

• The slowly time-varying parameters αc, lc, and fc are assumed constant over a
WSS window TWSS , with TWSS � Tc. Moreover, adjacent WSS windows must
experience similar parameters.
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The channel vector in the sub-carrier domain is then given by [1, Chapter 3.4]:

h̃d[k] =
L−1∑
l=0

hd[l]e
−j

2πkl

Ns ,

h̃u[k] =
L−1∑
l=0

hu[l]e
−j

2πkl

Ns ,

(2.16)

where L is the impulse response length, Ns is the chosen OFDM block length, and
k = 0 . . . (Ns − 1) is the sub-carrier index.
Proposition 2.3. By assuming the discrete multi-path model (2.15), the space-frequency
correlation matrices depend just on the sub-carrier indexes distance and not on the ab-
solute sub-carrier indexes:

E
[
h̃d[k]

(
h̃d[k′]

)H]
= R̃d[k − k′],

E
[
h̃u[k]

(
h̃u[k′]

)H]
= R̃u[k − k′].

(2.17)

Furthermore, the spatial covariance matrices in the sub-carrier domain have the following
expression, for every sub-carrier k:

R̃d := R̃d[0] =

∫ π

−π
ρ(θ)ad(θ)ad(θ)Hdθ,

R̃u := R̃u[0] =

∫ π

−π
ρ(θ)au(θ)au(θ)Hdθ,

(2.18)

where the function ρ : [−π, π] −→ R+, here denominated again as “angular power spec-
trum” (APS), is defined as

ρ(θ) :=

Nc∑
c=1

fc(θ)αc.

Proof. Let us drop for simplicity the UL/DL superscripts. By recalling the channel
model in (2.12), we obtain

R[l, l′] : = E
[
h[l]hH [l′]

]
=

Nc∑
c=1

Nc∑
c′=1

E
[
hch

H
c′
]
δ[l − lc]δ[l′ − lc′ ]

This expression can be further simplified by observing that hc has the same expression
(and notation) of the quantity defined in (2.11) for the clustered model (2.7). Following
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the same lines of the derivation in Section 2.2.1, it can be shown that

R[l, l′] =

Nc∑
c=1

E
[
hch

H
c

]
δ[l − lc]δ[l′ − lc]

=

Nc∑
c=1

E
[
hch

H
c

]
δ[l − lc]δ[l − l′]

=

(∫ π

−π
αcfc(θ)a(θ)aH(θ)dθ

)
δ[l − lc]δ[l − l′].

By considering now the channel in the sub-carrier domain defined in 2.15, it is possible
to write the space-frequency correlation as

E
[
h̃[k]h̃[k′]H

]
=

L−1∑
l=0

L−1∑
l′=0

R[l, l′]e
−j

2π

Ns
(kl−k′l′)

=

L−1∑
l=0

R[l, l]e
−j

2πl

Ns
(k−k′)

=: R̃[k − k′]

By considering now the spatial only covariance matrix in the sub-carrier domain we
obtain

R̃[0] =
L−1∑
l=0

R[l, l]

=

L−1∑
l=0

(∫ π

−π
αcfc(θ)a(θ)aH(θ)dθ

)
δ[l − lc]

=

∫ π

−π

(
Nc∑
c=1

αcfc(θ)

)
a(θ)aH(θ)dθ

The expressions (2.17) and (2.18) are then proved.

2.3.2 Continuous Scattering Model

Let us now generalize the channel model described in Section 2.3.1 obtained by applying
the continuous channel modeling philosophy as discussed in Section 2.2.2. A possible
expression for the channel vector in the delay domain is given by

hd(τ) =

∫ π

−π

√
γ(θ, τ)zd(θ, τ)ad(θ)dθ,

hu(τ) =

∫ π

−π

√
γ(θ, τ)zu(θ, τ)au(θ)dθ,

(2.19)

where
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• γ : [−π, π]×R+ → R+ describes the received or transmitted power per unit angle
and unit delay. Angular reciprocity is here modeled by assuming equal γ for UL
and DL.

• ad,au : [−π, π] −→ CN×1 are the BTS array responses as in (2.6).

• zd(θ, τ), zu(θ, τ) are the unitary power complex random processes in the angular
and delay, satisfying

E
[
zd(θ, τ)(zd(θ′, τ ′))∗

]
= E

[
zd(θ, τ)(zd(θ′, τ ′))∗

]
= δ(θ − θ′)δτ,τ ′ ,

which models the small scale fading. In FDD systems, the UL and DL processes
are uncorrelated. They are generally assumed to be circularly symmetric Gaussian.
Note: δ(·) denotes the Dirac delta, and δ·,· the Kronecker delta.

To reflect the considerations given in Section 2.1.1, we model the time evolution of the
channel as follows:

• The realizations of the random processes zd(θ, τ), zu(θ, τ) are drawn independently,
and they are kept fixed at intervals corresponding to the coherence time Tc (block-
fading assumption).

• A realization of the random process γ(θ, τ) is kept fixed for a WSS window TWSS ,
with TWSS � Tc. Moreover, adjacent WSS windows must experience correlated
realizations.

This model is very similar to the one proposed in [10], but it is here generalized so that γ
is not assumed to be constant over the delays τ . This is justified intuitively by assuming
that components with different delays (and, in particular, when the delay difference is
large) are originated by different cluster of scatterers, and thus they may experience
different average attenuation.

Let us now assume an OFDM system with bandwidth W and define the impulse response
in the sub-carrier domain as follows:

h̃d[k] =

L−1∑
l=0

hd[l]e
−j

2πkl

Ns , hd[l] := hd
(
l

W

)
,

h̃u[k] =

L−1∑
l=0

hu[l]e
−j

2πkl

Ns , hu[l] := hu
(
l

W

)
,

(2.20)

where L is the impulse response length (assumed finite), Ns is the chosen OFDM block
length, and k = 0 . . . (Ns − 1) is the sub-carrier index.
Proposition 2.4. By assuming the continuous scattering model in (2.19), the space-
frequency correlation matrices depend just on the sub-carrier indexes distance and not
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on the absolute sub-carrier indexes:

E
[
h̃d[k]

(
h̃d[k′]

)H]
= R̃d[k − k′],

E
[
h̃u[k]

(
h̃u[k′]

)H]
= R̃u[k − k′].

(2.21)

Furthermore, the spatial covariance matrices in the sub-carrier domain have the following
expression for every sub-carrier k:

R̃d := R̃d[0] =

∫ π

−π
ρ(θ)ad(θ)ad(θ)Hdθ,

R̃u := R̃u[0] =

∫ π

−π
ρ(θ)au(θ)au(θ)Hdθ,

(2.22)

where the function ρ : [−π, π] −→ R+, here denominated again as APS, is defined as

ρ(θ) :=
L−1∑
l=0

γ

(
θ,

l

W

)
,

which represent the total angular power density over all taps of the sampled impulse
response.

Proof. (Informal) The proof is based on the heuristic characterization of the Dirac func-
tion. Let us drop for simplicity the UL/DL superscripts. Recalling the channel model
in (2.19), we obtain

R(τ, τ ′) : = E[h(τ)h(τ ′)H ]

=

∫ π

−π

∫ π

−π

√
γ(θ, τ)

√
γ(θ′, τ ′)E[z(θ, τ)z(θ′, τ ′)∗]a(θ)a(θ′)Hdθdθ′

=

(∫ π

−π

√
γ(θ, τ)

√
γ(θ, τ ′)a(θ)a(θ)Hdθ

)
δτ,τ ′ .

By considering now the channel in the sub-carrier domain, it is possible to write the
space-frequency correlation as

E
[
h̃[k]h̃[k′]H

]
=

L−1∑
l=0

L−1∑
l′=0

R

(
l

W
,
l′

W

)
e
−j

2π

Ns
(kl−k′l′)

=

L−1∑
l=0

R

(
l

W
,
l

W

)
e
−j

2πl

Ns
(k−k′)

:= R̃[k − k′].
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The spatial only covariance matrix in the sub-carrier domain is

R̃[0] =

L−1∑
l=0

R

(
l

W
,
l

W

)

=
L−1∑
l=0

∫ π

−π
γ

(
θ,

l

W

)
a(θ)aH(θ)dθ

=

∫ π

−π

L−1∑
l=0

γ

(
θ,

l

W

)
a(θ)aH(θ)dθ.

The expressions (2.21) and (2.22) are then proved.

2.4 Realistic Propagation and Antennas

Although the channel models presented in Section 2.2 and Section 2.3, owing to their
simplicity, are still very popular in the scientific literature (see for example [8, 10]), the
increasing complexity of modern wireless communication systems (e.g., the 4G and 5G
architectures) has demanded channel models able to describe real propagation phenom-
ena more accurately (see, for example, the relatively recent 3GPP technical report [15]).
In particular, this section focuses on the following aspects:

• In the models in Section 2.2 and Section 2.3, the UE antenna is assumed to be
omni-directional, thus its angular response is ignored. In practice, omni-directional
antennas do not exist, so a description of the UE antenna radiation pattern is
needed.

• Polarization diversity, achieved for example by co-located cross-polarized antennas,
has been shown to be a promising technique to increase the degrees of freedom
(DoF) of MIMO channels at a relatively low cost for the operators [9]. For this
reason, models for the propagation of dual-polarized radiation are required.

• For a better description of a real 3D environment, directional channel models
should include a description of the multipath propagation in spherical coordinates;
i.e., in both azimuth and zenith.

By considering the aspects outlined above, and by focusing, for simplicity, on a discrete
narrow-band GSCM scattering model similar to the the one proposed in Section 2.2.1,
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the channel vector h := h[m0] at an arbitrary time m0 is given by

hd =

Nc∑
c=1

hdc , hu =

Nc∑
c=1

huc ,

hdc :=

√
αc
Np

Np∑
i=1

Ad(θic)

 ejϕ
d
V V,ic

1√
Kic

ejϕ
d
V H,ic

1√
Kic

ejϕ
d
HV,ic ejϕ

d
HH,ic

B(φic)
H ,

huc :=

√
αc
Np

Np∑
i=1

Au(θic)

 ejϕ
u
V V,ic

1√
Kic

ejϕ
u
VH,ic

1√
Kic

ejϕ
u
HV,ic ejϕ

u
HH,ic

B(φic)
H ,

(2.23)

where

• Nc denotes the number of clusters and Np the associated number of subpaths.

• θic and φic are either the DoD and DoA of subpath i for the DL case, or the DoA
and DoD of subpath i for the UL case. The directions θic and φic are defined as
tuples taking values in the set Ω := [−π, π]× [0, π], representing the azimuth and
the zenith of a spherical coordinate system. They are drawn independently from
the joint distributions fc(θ,φ), and they are assumed to be equal for UL and DL.

• Ad,Au : Ω → CN×2 are the dual polarized antenna array responses of the BTS.
In FDD systems, they are different from DL and UL. The columns of Ad,Au are
denoted with [adV ,a

d
H ], [auV ,a

u
H ], and they describe respectively the array responses

for the vertical and for the horizontal polarization.

• αc > 0 is the average power of all the subpaths of cluster c, and it assumed to be
equal for UL and DL.

• B : Ω → R1×2 is the dual polarized antenna radiation pattern of the UE. It
is assumed to be frequency independent. The columns of B are denoted with
[bV , bH ], and they describe respectively the radiation patterns for the vertical and
for the horizontal polarization.

• The random matrices

Md
ic :=

 ejϕ
d
V V,ic

1√
Ki
ejϕ

d
V H,ic

1√
Ki
ejϕ

d
HV,ic ejϕ

d
HH,ic

 ,

Mu
ic :=

 ejϕ
u
V V,ic

1√
Kic

ejϕ
u
VH,ic

1√
Kic

ejϕ
u
HV,ic ejϕ

u
HH,ic

 ,
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model the fading of the vertical and horizontal polarization as well as of the cross-
polarization terms originated by the polarization changes that the electromagnetic
waves undergo during the propagation. The random phases

{ϕdV V,ic, ϕdV H,ic, ϕdHV,ic, ϕdHH,ic},
{ϕuV V,ic, ϕuV H,ic, ϕuHV,ic, ϕuHH,ic},

are assumed i.i.d. uniformly distributed in [−π, π]. The parameters Kic are the
cross polarization power ratios (XPRs), and they are assumed to be i.i.d. random
variables and to be equal for UL and DL. This polarization model is identical to
the one suggested by the 3GPP technical document [15] and by [9, Chapter 7],
where the two polarizations are assumed to experience independent fading.

To reflect the considerations given in section 2.1.1, we model the time evolution of the
channel as follows:

• The fast time-varying parameters

{ϕdV V,ic, ϕdV H,ic, ϕdHV,ic, ϕdHH,ic},
{ϕuV V,ic, ϕuV H,ic, ϕuHV,ic, ϕuHH,ic},

θic, φic, and Kic are drawn independently and kept fixed at intervals corresponding
to the coherence time Tc (block-fading assumption).

• The slow time-varying parameters αc and fc are assumed constant over a WSS win-
dow TWSS , with TWSS � Tc. Moreover, adjacent WSS windows must experience
similar parameters.

Proposition 2.5. With the model in (2.23), the spatial covariance matrices have the
following expressions:

Rd =

∫
Ω
ρV (θ)adV (θ)adV (θ)Hd2θ +

∫
Ω
ρH(θ)adH(θ)adH(θ)Hd2θ,

Ru =

∫
Ω
ρV (θ)auV (θ)auV (θ)Hd2θ +

∫
Ω
ρH(θ)auH(θ)auH(θ)Hd2θ,

(2.24)

where the functions ρV , ρH : Ω → R+, here denominated respectively as “vertical polar-
ization angular power spectrum” (V-APS) and “horizontal polarization angular power
spectrum” (H-APS) are defined as

ρV (θ) :=

Nc∑
c=1

αc

∫
Ω
fc(θ,φ)

(
b2V (φ) +

1

K
b2H(φ)

)
d2φ,

ρH(θ) :=

Nc∑
c=1

αc

∫
Ω
fc(θ,φ)

(
b2H(φ) +

1

K
b2V (φ)

)
d2φ,

where 1/K := E[1/Kic] describes the average effect of the XPRs Kic.
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Proof. Let us drop for simplicity the UL/DL superscripts. By recalling the channel
model in (2.23), and by computing the inter-cluster and intra-cluster expectations over
the random phases ϕ := {ϕV V,ic, ϕV H,ic, ϕHV,ic, ϕHH,ic} conditioned on the random an-
gles θ := {θic}, φ := {φic}, and on the random XPRs K := {Kic}, we obtain

R′cc′ := Eϕ|θ,φ,K[hch
H
c′ ] =

√
αcαc′

Np

Np∑
i=1

Np∑
l=1

A(θic)Xic,lc′A(θlc′)
H ,

where

Xic,lc′ : = Eϕ|θ,φ,K
[
MicB(φic)

HB(φlc′)M
H
lc′
]

=



bV (φic)
2 +

bH(φic)
2

Kic
0

0 bH(φic)
2 +

bV (φic)
2

Kic

 , if i = l ∩ c = c′

0, otherwise

,

The expression for Xic,lc′ is due to the uncorrelated phases of different multi-path compo-
nents, and its derivation is similar to that in Section 2.2.1. Since there is no inter-cluster
correlation, it is possible to focus just on the intra-cluster correlation R′cc. By comput-
ing now the expectation of Xic,ic over the XPRs K conditioned on the random angles θ,
φ, we obtain

EK|θ,φ[Xic,ic] =

bV (φic)
2 +

bH(φic)
2

K
0

0 bH(φic)
2 +

bV (φic)
2

K

 ,
where we define 1/K := E[1/Kic]. With this in hand, we obtain

R′′c :=Eϕ,K|θ,φ
[
hch

H
c

]
= EK|θ,φ[R′cc]

=
αc
Np

Np∑
i=1

A(θic)EK|θ,φ[Xic,ic]A(θic)
H

=
αc
Np

Np∑
i=1

(
bV (φic)

2 +
bH(φic)

2

K

)
aV (θic)aV (θic)

H

+
αc
Np

Np∑
i=1

(
bH(φic)

2 +
bV (φic)

2

K

)
aH(θic)aH(θic)

H .

By computing now the complete intra-cluster correlation we obtain

Rc :=E
[
hch

H
c

]
= Eθ,φ[R′′cc]

=

∫
Ω

∫
Ω
αcfc(θ,φ)

(
bV (φ)2 +

bH(φ)2

K

)
aV (θ)aV (θ)Hd2θd2φ

+

∫
Ω

∫
Ω
αcfc(θ,φ)

(
bH(φ)2 +

bV (φ)2

K

)
aH(θ)aH(θ)Hd2θd2φ.
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Finally, we obtain the overall spatial covariance matrix as

R :=E
[
hhH

]
=

Nc∑
c=1

Rc

=

∫
Ω

[
Nc∑
c=1

αc

∫
Ω
fc(θ,φ)

(
bV (φ)2 +

bH(φ)2

K

)
d2φ

]
aV (θ)aV (θ)Hd2θ

+

∫
Ω

[
Nc∑
c=1

αc

∫
Ω
fc(θ,φ)

(
bH(φ)2 +

bV (φ)2

K

)
d2φ

]
aH(θ)aH(θ)Hd2θ,

and the expression (2.24) is proved.

Remark 2.1. (Non-independent polarization fading) In general, if the two polarizations
cannot be assumed to fade independently, the resulting covariance model would have the
form

R =

∫
Ω
ρV V (θ)aV (θ)aV (θ)Hd2θ +

∫
Ω
ρHH(θ)aH(θ)aH(θ)Hd2θ

+

∫
Ω
ρV H(θ)aV (θ)aH(θ)Hd2θ +

∫
Ω
ρHV (θ)aH(θ)aV (θ)Hd2θ.

(2.25)

2.5 Multi-antenna UE

We now generalize the system model presented in section 2.1 by considering a BTS with
N antennas and a UE with M antennas. By assuming a flat-fading channel model,
a typical discrete input-output relation describing the UL communication between the
BTS and the UE is given by

y[m] = Hu[m]x[m] + ȳ[m] + w[m], (2.26)

where m ∈ Z is the discrete time index, Hu[m] ∈ CN×M is the UL time-variant channel
matrix between the UE and the BTS, x[m] ∈ CM is the UE transmitted sequence,
y[m] ∈ CN×1 is the received signal at the BTS, ȳ[m] ∈ CN×1 is the MU interference,
and w[m] ∼ CN (0, σ2

W IN ) is the received white noise process. Similarly, a typical
discrete input-output relation describing the DL communication between the UE and
the BTS is given by

y[m] =
(
Hd[m]

)T
x[m] + w[m], (2.27)

Hd[m] ∈ CN×M is the DL time-variant channel matrix, x[m] ∈ CN×1 is the transmitted
sequence, y[m] ∈ CM×1 is the received signal, and w[m] ∼ CN (0, σ2

W IM ) is the received
white noise process.
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Similarly to what described in Section 2.1.1, a classic statistical channel model assume
the coefficients of H (dropping UL and DL for simplicity) to be a zero-mean WSS process;
i.e., with spatio-temporal covariance matrix given by [9]

E
[
vec(H[m])vec(H[n])H

]
= R[m− n], (2.28)

from where it is again possible to extract the channel coherence interval Mc and the
spatial covariance matrix R := R[0].

In many applications the second order statistics of the channel is often described (not
completely) by using the “receive covariance matrix” RRX and the “transmit covariance
matrix” RTX , which are given by [9]

Ru
RX = E

[
Hu[m]Hu[m]H

]
, Ru

TX = E
[
Hu[m]HHu[m]

]
,

Rd
RX = E

[
Hd[m]HHd[m]

]
, Rd

TX = E
[
Hd[m]Hd[m]H

]
.

(2.29)

For example, under certain assumptions (e.g. independent statistics of DoAs and DoDs
[9], which are not always realistic), the complete spatial covariance matrix can be ex-
pressed by using the following “Kronecker model:”

Ru = Ru
RX ⊗Ru

TX , Rd = Rd
TX ⊗Rd

RX , (2.30)

where ⊗ denotes the Kronecker product.

Let us consider the directional channel model (2.23), and let us extend it to the multi-
antenna UE case as follows:

Hd =

Nc∑
c=1

Hd
c , Hu =

Nc∑
c=1

Hu
c ,

Hd
c :=

√
αc
Np

Np∑
i=1

Ad(θic)

 ejϕ
d
V V,ic

1√
Kic

ejϕ
d
V H,ic

1√
Kic

ejϕ
d
HV,ic ejϕ

d
HH,ic

Bd(φic)
H ,

Hu
c :=

√
αc
Np

Np∑
i=1

Au(θic)

 ejϕ
u
V V,ic

1√
Kic

ejϕ
u
VH,ic

1√
Kic

ejϕ
u
HV,ic ejϕ

u
HH,ic

Bu(φic)
H ,

(2.31)

where all the quantities are identical to (2.23), except for the effect of the UE that is
now modeled by using the frequency dependent dual polarized antenna array responses
Bd,Bu : Ω → CM×2. The columns of Bd,Bu are denoted with [bdV ,b

d
H ], [buV ,b

u
H ], and

they describe respectively the array responses for the vertical and for the horizontal
polarization.
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Proposition 2.6. By assuming model in (2.31), the receive and transmit covariance
matrices have the following expressions:

Ru
RX =

∫
Ω
ρV (θ)auV (θ)auV (θ)Hd2θ +

∫
Ω
ρH(θ)auH(θ)auH(θ)Hd2θ,

Ru
TX =

∫
Ω
γV (φ)buV (φ)buV (φ)Hd2φ+

∫
Ω
γH(φ)buH(φ)buH(φ)Hd2φ,

Rd
RX =

∫
Ω
γV (φ)bdV (φ)bdV (φ)Hd2φ+

∫
Ω
γH(φ)bdH(φ)bdH(φ)Hd2φ,

Rd
TX =

∫
Ω
ρV (θ)adV (θ)adV (θ)Hd2θ +

∫
Ω
ρH(θ)adH(θ)adH(θ)Hd2θ,

(2.32)

where the functions ρV , ρH , γV , γH : Ω→ R+ are defined as

ρV (θ) :=

Nc∑
c=1

αc

∫
Ω
fc(θ,φ)

(
‖bV (φ)‖2 +

1

K
‖bH(φ)‖2

)
d2φ,

ρH(θ) :=

Nc∑
c=1

αc

∫
Ω
fc(θ,φ)

(
‖bH(φ)‖2 +

1

K
‖bV (φ)‖2

)
d2φ,

γV (φ) :=

Nc∑
c=1

αc

∫
Ω
fc(θ,φ)

(
‖aV (θ)‖2 +

1

K
‖aH(θ)‖2

)
d2θ,

γH(φ) :=

Nc∑
c=1

αc

∫
Ω
fc(θ,φ)

(
‖aH(θ)‖2 +

1

K
‖aV (θ)‖2

)
d2θ,

and where 1/K := E[1/Kic] describes the average effect of the XPRs Kic, and we also
define the following functions:

‖bV (φ)‖2 := ‖buV (φ)‖2 = ‖bdV (φ)‖2,
‖bH(φ)‖2 := ‖buH(φ)‖2 = ‖bdH(φ)‖2,
‖aV (φ)‖2 := ‖auV (φ)‖2 = ‖adV (φ)‖2,
‖aH(φ)‖2 := ‖auH(φ)‖2 = ‖adH(φ)‖2,

which are assumed to be frequency invariant because they do not depend on the phase
response of the array, but just on its magnitude (i.e. the radiation pattern), which is
generally assumed to be frequency independent.

Proof. (Sketch) Let us drop the UL and DL superscripts for simplicity. By focusing on
the expression for the matrix E[HHH ], the proof is identical to the one presented in
Section 2.4, except we substitute bV (·)2 and bH(·)2 respectively with ‖bV (φ)‖2 and
‖bH(φ)‖2. Similarly, the expression for the matrix E[HHH] is obtained by simply
flipping the role of the UE and BTS array responses. By applying the definitions in
(2.29), the expressions (2.32) are finally proved.
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2.6 Summary of Spatial Covariance Matrix Expressions

This chapter showed that, for many different channel models, the spatial covariance
matrix R can be decomposed into the following two terms, combined via integration:

• A term that is frequency invariant and slowly time-varying, and it is denoted
in general as APS, which describes the distribution of the average power in the
angular domain.

• A term that is frequency dependent and constant in time, which describes the BTS
antenna array response in the angular domain (both radiation pattern and phase
response).

The frequency invariance property of the APS defines the angular reciprocity assumption
outlined in Section 2.1.2. The slow time variance of the APS instead falls into the WSS
assumption described in Section 2.1.1.

In Section 2.2 and 2.3 we showed that this decomposition is possible either by assuming
a discrete or a continuous scattering modeling philosophy, and that it is not influenced
by whether the flat-fading model comes from a narrow-band system or from a wide-
band OFDM system. Furthermore, in Section 2.4 we showed that, with respect to
a simplified 2D channel model, the extension to 3D environments is simply done by
considering the double integration of bivariate (azimuth and zenith) functions instead of
the single integration of azimuth-only dependent functions. Section 2.4 also shows that
this decomposition is also possible with realistic antenna radiation patterns. Finally, the
use of dual-polarized antennas is shown in Section 2.4 to introduce a finer decomposition
in terms of the different antenna radiation patterns for the two orthogonal polarizations.

The expressions for Rd and Ru, focusing on 3D modeling, are summarized in Table 2.1,
and they hold for both narrow-band and wide-band OFDM systems as well as for both
discrete and continuous scattering models. Table 2.1 also includes the matrices Rd

TX

and Ru
RX defined in Section 2.5 for the multi-antenna UE scenario.

Table 2.1: Summary of covariance matrix expressions

Unpolarized Dual-polarized

Rd, Rd
TX

∫
Ω
ρ(θ)ad(θ)ad(θ)Hd2θ

∫
Ω ρV (θ)adV (θ)adV (θ)Hd2θ

+
∫

Ω ρH(θ)adH(θ)adH(θ)Hd2θ

Ru, Ru
RX

∫
Ω
ρ(θ)au(θ)au(θ)Hd2θ

∫
Ω ρV (θ)auV (θ)auV (θ)Hd2θ

+
∫

Ω ρH(θ)auH(θ)auH(θ)Hd2θ

Although the definitions of the APS (or V-APS, H-APS) varies according to the choice
of the channel model, its physical and mathematical properties are shared (e.g., it is a
power density, so it is positive and real valued).
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Chapter 3

Channel Estimation: The
Large-scale Array Regime

In conventional systems (e.g. 4G systems), the BTS acquires the channel state infor-
mation (CSI) by using part of the available DL resources to transmit known reference
signals (also called “pilots”) to the UEs. These pilots are used by the UEs to estimate
their channels, which are then fed back to the BTS on the reverse links. To reduce the
feedback overhead, transceivers use a pre-defined codebook for CSI quantization [16].
The main assumption of these systems is that the channel remains constant for a time
interval large enough to allow CSI acquisition and data transmission in the same coher-
ence block (block-fading assumption, see Section 2.1.1). In practice, this assumption is
crude, and the BTS receives an outdated version of the CSI. However, many techniques
able to deal with this problem have been proposed, and the idea is to exploit prior
information that is carried by the delayed CSI [17,18].

In this chapter, we study the impact of the DL training overhead by ignoring the per-
formance degradation caused by quantized and delayed CSIT. In particular, we show
that, even under such ideal assumptions, the main problem of techniques used in cur-
rent commercial systems is the use of pilot sequences with length T at least equal to the
number of BTS antennas N . Briefly, as shown in the example below, in the large-scale
system array regime (i.e., when N is comparable to the coherence block length Mc), the
training overhead becomes so large that data transmission becomes unfeasible.

Example: Consider a typical 2 GHz LTE system with coherence bandwidth Bc = 100
kHz and coherence time Tc = 1 ms (UE speed of roughly 60 km/h). The corresponding
coherence block length is Mc = BcTc = 100 time slots. Thus, a typical massive MIMO
array equipped with N = 64 antennas would spend 64% of the coherence block just for
channel estimation.

The goal of this chapter is to show how it is possible to exploit correlation properties of
the channel to reduce the channel estimation effort.

35
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This chapter is organized as follows:

• In Section 3.1 we start the analysis with a review of conventional channel estimation
techniques

• In Section 3.2 we show that the main reason for using pilot sequences with length
T ≥ N is justified by the i.i.d. fading assumption.

• However, in Sections 3.3 and 3.4 we show that, with correlated fading, and if the
DL channel covariance matrix is ill-conditioned or rank deficient, the knowledge of
this matrix at the BTS side can greatly reduce the overhead for CSI acquisition.
We also briefly discuss how channel correlation plays a fundamental role when
applying compressed sensing based channel estimation algorithms.

• Finally, in Section 3.5 we look at the problem from an Information Theory per-
spective. In particular, by using the concept of Degrees of Freedom (DoF), we
provide another confirmation that the choice of using T ≥ N is deeply rooted in
the i.i.d. fading assumption, and we give a preliminary outline of the potential
benefits of releasing this assumption.

3.1 Review of Conventional Channel Estimation Techniques

3.1.1 Downlink Channel Estimation

Let us consider the DL MU-MIMO model in (2.2), and let us further focus on the part
of the coherence block m = 0, . . . , T < Mc, which is devoted to channel estimation. The
received signal at a given UE for the entire estimation block, denoted by y ∈ CT×1, can
be rewritten in matrix form as

y = Xhd + w, (3.1)

where hd ∈ CN×1 is the UE channel vector, X ∈ CT×N is the transmitted pilot sequence
at the BTS, and w ∈ CT×1 is the noise. For simplicity, in the following we drop the DL
superscript.

With a conventional linear estimator, the channel estimate is given by

ĥ = Fy, (3.2)

where F ∈ CN×T is the linear estimator to be designed. The most popular linear
estimators are the least square (LS) estimator and the minimum mean square error
(LMMSE) estimator, and they are given by the well known expressions

FLS = X†,

FLMMSE = RhyRyy
−1,

(3.3)
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where R is the channel spatial covariance matrix as defined in section 2.1, (·)† denotes
the Moore–Penrose pseudo-inverse, and where

Rhy := E[hyH ] = RXH = Ryh
H ,

Ryy := E[yyH ] = XRXH + σ2
wI.

(3.4)

Throughout the remaing parts of this chapter the noise variance σ2
w will be given in

terms of a per antenna average SNR, defined as follows:

SNR :=
PhPx
σ2
w

, (3.5)

where Px :=
‖X‖F
NT

is the per antenna average transmit power, and Ph :=
tr{R}
N

is the

per antenna average channel power.

3.1.2 Uplink Channel Estimation

Let us consider the UL MU-MIMO model in (2.1), and let us further focus on the part
of the coherence block m = 0, . . . , T < Mc, which is devoted to channel estimation. The
received signal at the BTS for the entire estimation block, denoted by Y ∈ CN×T , can
be rewritten in matrix form as

Y = HX + W, (3.6)

where H :=
[
hu1 . . . huK

]
∈ CN×K is the equivalent MIMO channel that groups all

the UEs channels huk ∈ CN×1, X :=
[
x1 . . . xK

]T ∈ CK×T collects all the UEs pilot
sequences xk ∈ CT×1, and W ∈ CN×T is the noise.

To deal with multiple users, in the following we assume a typical solution based on
orthogonal pilot sequences, with the assumption that the UEs are perfectly synchronized.

Let us define a set of K pilot sequences {xk, k = 1 . . .K} such that the following orthog-
onality property is satisfied:

xHl xk =

{
‖xk‖2, if k = l

0, otherwise
.

With this pilot design, the optimal channel estimator in terms of MSE and SNR (defined
in the following) is the matched filter:

ĥuk = Y
x∗k
‖xk‖2

, (3.7)
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which results in a mean square error of

MSEk := E
[
‖huk − ĥuk‖2

]
=

xTk
‖xk‖2

E
[
WHW

] x∗k
‖xk‖2

=
σ2
w

‖xk‖2
=

σ2
w

PkT
=:

1

SNRk

(3.8)

where we denote by Pk the average transmit power per time slot available at the kth
UE.

Minimum Pilot Sequence Length By assuming a synchronous system with orthog-
onal pilots as described above, the pilot sequence length must satisfy T ≥ K. The proof
follows immediately from the definition of orthogonal vectors: a necessary condition for
K vectors to be orthogonal is that they must be is a space of dimension of at least K.

3.2 Conventional Estimation of i.i.d Channels

3.2.1 Minimum Pilot Sequence Length for i.i.d. Channels

Conventional DL pilot based channel estimators are usually designed by imposing T ≥
N , which can be intuitively explained by the common wisdom that, in order to mean-
ingfully estimate N independent parameters, we need at least N observations. A more
precise motivation for this design choice is given in the following two propositions:
Proposition 3.1. In case of i.i.d. fading, i.e. with R = σ2

hI, and given a pilot sequence

X of length T , the mean square error MSE := E[‖h − ĥ‖2] of the LS estimator defined
in section 3.1.1 is lower bounded by

MSE ≥ σ2
h max(N − T, 0) +

∑
λi 6=0

σ2
w

λ2
i

, (3.9)

where λ2
i , i = 1, . . . N , are the eigenvalues of the matrix Q = XHX. Furthermore, the

equality in 3.9 is achieved if and only if rank{X} = min(N,T ).

Proof. Let us consider the MSE expressed as E[‖h−ĥ‖2] = tr{Rh̃h̃}, where Rh̃h̃ denotes
the covariance matrix of the estimation error, given by

Rh̃h̃ : = E[(h− ĥ)(h− ĥ)H ]

= (X†X− I)R(X†X− I)H + σ2
wX†(X†)H

= (X†X− I)σ2
h(X†X− I) + σ2

w(XHX)†,

(3.10)
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where we applied the well-known identities X†X = (X†X)H and X†(X†)H = (XHX)†.
By defining the N × N PSD matrix Q := XHX and its eigenvalues decomposition
Q = UΛUH , Λ = diag{λ2

1, . . . , λ
2
N}, the MSE for the LS estimator can be expressed as

MSE = tr
{

(X†X− I)σ2
h(X†X− I) + σ2

w(XHX)†
}

= σ2
htr
{

X†XX†X− 2X†X + I
}

+ tr
{
σ2
wQ†

}
= σ2

htr
{

X†X− 2X†X + I
}

+ tr
{
σ2
w(UΛUH)†

}
= σ2

h (tr {I} − tr {PXH}) + σ2
wtr
{

UΛ†UH
}

= σ2
h (N − rank{PXH}) + σ2

wtr
{

UHUΛ†
}

= σ2
h (N − rank{PXH}) +

∑
λi 6=0

σ2
w

λ2
i

,

where we applied the well-known identities X†XX†X = X†X, X†X = PXH , with PXH

denoting the projection matrix on the column space of XH , and where Λ† is a diagonal
matrix with diagonal elements

λ̃2
i =


1

λ2
i

if λ2
i > 0

0 otherwise
, i = 1, . . . , N.

Since rank{PXH} = rank{XH} ≤ min(N,T ), the MSE can be lower bounded as

MSE ≥ σ2
h (N −min(N,T )) +

∑
λi 6=0

σ2
w

λ2
i

= σ2
h max(N − T, 0) +

∑
λi 6=0

σ2
w

λ2
i

Proposition 3.2. In case of i.i.d. fading, i.e. with R = σ2
hI, and given a pilot sequence

X of length T , the mean square error MSE := E[‖h − ĥ‖2] of the LMMSE estimator
defined in section 3.1.1 is lower bounded by

MSE ≥ σ2
h max(N − T, 0) +

∑
λi 6=0

1

σ−2
h +

λ2
i

σ2
w

, (3.11)

where λ2
i , i = 1, . . . N , are the eigenvalues of the matrix Q = XHX. Furthermore, the

equality in 3.11 is achieved if and only if rank{X} = min(N,T ).
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Proof. Let us consider the MSE expressed as E[‖h−ĥ‖2] = tr{Rh̃h̃}, where Rh̃h̃ denotes
the covariance matrix of the estimation error, given by

Rh̃h̃ : = E[(h− ĥ)(h− ĥ)H ]

= R−RhyRyy
−1Ryh

= R−RXH
(
XRXH + σ2

wI
)−1

XR

=
(
R−1 + σ−2

w XHX
)−1

,

where for the last equality we used the matrix inversion lemma. In case of i.i.d. fading,
R is a scaled identity. By defining the N×N PSD matrix Q := XHX and its eigenvalues
decomposition Q = UΛUH , Λ = diag{λ2

1, . . . , λ
2
N}, the MSE for the LMMSE estimator

can be expressed as

MSE = tr
{(
σ−2
h I + σ−2

w Q
)−1
}

= tr
{(

U(σ−2
h I + σ−2

w Λ)UH
)−1
}

= tr
{
U(σ−2

h I + σ−2
w Λ)−1UH

}
= tr

{
UHU(σ−2

h I + σ−2
w Λ)−1

}
=

N∑
i=1

1

σ−2
h +

λ2
i

σ2
w

,

(3.12)

By definition, Q has N ′ zero eigenvalues, with N ′ = N − rank{X} ≥ N −min(N,T ) =
max(N − T, 0), thus the MSE can be further expressed as

MSE = σ2
hN
′ +

∑
λi 6=0

1

σ−2
h +

λ2
i

σ2
w

≥ σ2
h max(N − T, 0) +

∑
λi 6=0

1

σ−2
h +

λ2
i

σ2
w

.

Remark 3.1. In the high SNR regime, the LMMSE estimator reduces to a projector
onto the row space of X of dimension dim(X) ≤ min(N − T,N). More precisely, by
letting σ2

w →∞, we have

ĥ = FLMMSEy

= RhyRyy
−1Xh

= XH
(
XXH

)−1
Xh

= PXHh

(3.13)

where PXH denotes the projection matrix onto the column space of XH .

As an immediate consequence of 3.1 and 3.2, we have the following result:
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Corollary 3.1. A necessary and sufficient condition for the MSE of both the LS and
LMMSE estimator to vanish as the SNR increases is to let X to be a full-rank pilot
sequence of length at least N . More precisely:

lim
σ2
w→0

MSE = 0 ⇐⇒ rank{X} = N.

3.2.2 Pilot Sequence Design for i.i.d. Channels

In this section we derive the optimal structure of the pilot sequences in case of i.i.d.
channels. Interestingly, the optimal pilot design is shown in practice to satisfy the mini-
mum pilot sequence criteria derived in section 3.2.1 (given an additional mild condition
on the SNR level for the LS estimator only).

Let us constrain the overall energy of the training sequence as

‖X‖2F ≤ NT, (3.14)

so that the average power per antenna and per time slot is at most unitary. We adopt the
definition of SNR (3.5) by setting Px = 1. We further define the parameter ν := T/N ,
and the matrix Q := XHX as well as its eigenvalues decomposition Q = UΛUH ,
Λ = diag{λ2

1, . . . , λ
2
N}. Let us optimize the training sequence for both LMMSE and LS

estimators by considering the MSE as cost function.
Proposition 3.3. In case of i.i.d. fading, i.e. with R = σ2

hI, the optimal training
sequence in terms of MSE for LMMSE channel estimation is any sequence satisfying

λ2
i = T, ∀i = 1 . . . N,

resulting in

MSE =
σ2
h

1

N
+ νSNR

.

Proof. (sketch) The proof follows by applying standard Lagrangian minimization to the
convex cost function (3.12) of variables ci := λ2

i , under the convex constraint (3.14)
expressed as 0 ≤

∑N
i=1 ci ≤ NT . The existence of the minimum is guaranteed by the

Weierstrass theorem.

Proposition 3.4. In case of i.i.d. fading, i.e. with R = σ2
hI, and by assuming SNR ≥

2
T , the optimal training sequence in terms of MSE for the LS channel estimator is any
sequence satisfying

λ2
i = T, ∀i = 1 . . . N

resulting in

MSE =
σ2
h

νSNR
.
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Proof. (sketch) Let us focus on the term∑
λi 6=0

σ2
w

λ2
i

of the bound (3.9), which is a convex cost function of the r := rank(X) variables
{ci = λ2

i : λ2
i ≥ ε > 0}, with ε arbitrarily small. By applying standard Lagrangian

minimization to this convex cost function, under the convex constraint (3.14) expressed
as rε ≤

∑
i:λi 6=0 ci ≤ NT , we obtain the optimal MSE

MSE = σ2
h (N − r) +

∑
λi 6=0

σ2
wr

NT

= σ2
h (N − r) +

σ2
wr

2

NT

= tr{R}
[
1− r

N
+

σ2
wr

2

tr{R}NT

]
= tr{R}

[
1− r

N
+

r2

SNRN2T

]
.

The existence of the minimum is guaranteed by the Weierstrass theorem, and it is

attained by setting ci (i.e. the non-zero eigenvalues λ2
i ) to

NT

r
.

Let us now analyze the behaviour of the MSE as the rank r of the training sequence
varies. The function

f(t) = 1− t

N
+

t2

SNRN2T
, t ∈ R,

is a parabola, monotonically decreasing only for t ∈ [−∞, t0], where t0 is the unique
critical point computed as

d

dt
f(t0) = 0 ⇐⇒ t0 =

NTSNR

2
.

Therefore, by considering the maximum possible rank rmax = N , and by assuming the
following condition on the SNR level

N ≤ NTSNR

2
=⇒ SNR ≥ 2

T
,

the MSE always decreases as the rank r increases. Hence, under this assumption on
the SNR, the MSE is minimized by letting X to be a full rank pilot sequence of length
T ≥ N , with eigenvalues λi such that λ2

i = T , ∀i = 1, . . . , N .

Remark 3.2. The additional assumption on the SNR level required by proposition 3.4
with respect to proposition 3.3 can be explained by the well-known fact that the LS esti-
mator, as opposed to the LMMSE estimator, is not designed to take into account noise.
We further point out that this assumption on the SNR level is typically met in practical
applications.
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3.3 Conventional Estimation of Correlated Channels

In this section, we extend the analysis of the conventional channel estimation techniques
described in Section 3.1.1 to the case of correlated MIMO channels.

3.3.1 Minimum Pilot Sequence Length (SU-MIMO)

In the following, we show that, for a channel with covariance matrix R, it is possible to
reduce the channel estimation overhead down to T = rank{R} ≤ N while guaranteeing
the estimation error to vanish as the SNR increases. More precisely, we have the following
propositions:
Proposition 3.5. Given the model in (3.1), a channel with spatial covariance matrix
R, and the eigen-decomposition R = VΣVH , Σ = diag{σ2

1, . . . , σ
2
N}, the mean square

error MSE := E[‖h− ĥ‖2] of a LS channel estimate ĥ defined in Section 3.1.1 is given
by

MSE =
c1

SNR
+ c2, (3.15)

where SNR := PhPx/σ
2
w as defined in (3.5), and where the constants c1 and f2 are

defined as follows:

c1 :=
∑
λi 6=0

PhPx
λ2
i

≥ 0, (3.16)

where λ2
1 ≥ . . . ≥ λ2

N are the eigenvalues of Q := XHX, and

c2 :=
∥∥∥P⊥XHVΣ

1
2

∥∥∥2

F
≥ 0, (3.17)

where P⊥
XH denotes the projection matrix onto the subspace orthogonal to the column

space of XH . Furthermore, we have that

c2 = 0 ⇐⇒ span{XH} ⊇ span{VΣ}.

(We use the convention that span{·} denotes the column span of a matrix.) Thus, a
necessary condition for having c2 = 0 is rank{XH} ≥ rank{R}, which implies T ≥
rank{R}.

Proof. By (3.10), we obtain

Rh̃h̃ : = E[(h− ĥ)(h− ĥ)H ]

= (X†X− I)R(X†X− I) + σ2
w(XHX)†

= X†XRX†X−X†XR−RX†X + R + σ2
w(XHX)†,
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thus, by following the same lines as in Section 3.1.1, the MSE can be expressed as

MSE = tr
{
Rh̃h̃

}
= tr{R} − tr

{
X†XR

}
+ σ2

wtr
{

UΛ†UH
}

= tr
{

(I−X†X)R
}

+
∑
λi 6=0

σ2
w

λ2
i

= tr
{

P⊥XHR
}

+
∑
λi 6=0

σ2
w

λ2
i

= tr
{

P⊥XHVΣ
1
2 Σ

1
2 VHP⊥XH

}
+
∑
λi 6=0

σ2
w

λ2
i

=
∥∥∥P⊥XHVΣ

1
2

∥∥∥2

F
+
∑
λi 6=0

σ2
w

λ2
i

,

(3.18)

where P⊥
XH denotes the projection matrix1 onto the subspace orthogonal to the column

space space of XH , and where we defined the eigenvalue decomposition XHX = UΛUH ,
Λ = diag{λ2

1, . . . , λ
2
N}. By defining SNR := PhPx/σ

2
w as in (3.5) and

c1 :=
∑
λi 6=0

PhPx
λ2
i

,

and

c2 :=
∥∥∥P⊥XHVΣ

1
2

∥∥∥2

F
,

the expression in 3.15 is proved.

We further have that

c2 =
∥∥∥P⊥XHVΣ

1
2

∥∥∥2

F
= 0 ⇐⇒ P⊥XHVΣ

1
2 = 0

⇐⇒ (I−PXH)VΣ
1
2 = 0

⇐⇒ PXHVΣ
1
2 = VΣ

1
2

⇐⇒ span{XH} ⊇ span{VΣ},

(3.19)

which proves the second part of the proposition.

Proposition 3.6. Given the model (3.1), a channel with spatial covariance matrix R,
and the eigen-decomposition R = VΣVH , Σ = diag{σ2

1, . . . , σ
2
N}, σ2

1 ≥ . . . ≥ σ2
N , the

mean square error MSE := E[‖h − ĥ‖2] of a LMMSE channel estimate ĥ defined in
Section 3.1.1 is given by

MSE =
∑
ci 6=0

fi

1 +
ci

SNR

+
∑
ci=0

fi. (3.20)

1We recall that every projection matrix P is idempotent, i.e. it satisfies P = PP
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where SNR := PhPx/σ
2
w as defined in (3.5), and where the constants ci and fi are defined

as follows:

ci :=
l2i

PhPx
≥ 0,

where l21 ≥ . . . ≥ l2N are the eigenvalues of Ξ :=
(
XR

1
2

)H
XR

1
2 , R

1
2 := VΣ

1
2 VH , and

fi := f(ũi) ≥ 0,

where f(x) = xHRx is the quadratic form associated to R, and ũi denotes the eigen-
vector of Ξ associated to l2i . Furthermore, we have that∑

ci=0

fi = 0 ⇐⇒ span{XH} ⊇ span{VΣ},

thus a necessary condition for having
∑

ci=0 fi = 0 is rank{XH} ≥ rank{R}, which
implies T ≥ rank{R}.

Proof. Let us consider the MSE expressed as E[‖h−ĥ‖2] = tr{Rh̃h̃}, where Rh̃h̃ denotes
the covariance matrix of the estimation error, given by

Rh̃h̃ : = E[(h− ĥ)(h− ĥ)H ]

= R−RhyRyy
−1Ryh

= R−RXH
(
XRXH + σ2

wI
)−1

XR.

By defining the square root matrix decomposition R = R
1
2 R

H
2 ,2 with R

1
2 := VΣ

1
2 VH ,

we can express the MSE as follows:

MSE = tr{Rh̃h̃}

= tr
{

R
1
2

[
I−R

H
2 XH

(
XRXH + σ2

wI
)−1

XR
1
2

]
R

H
2

}
= tr

{
R

H
2 R

1
2

[
I−R

H
2 XH

(
XR

1
2 R

H
2 XH + σ2

wI
)−1

XR
1
2

]}
= tr

{
R
(
I + σ−2

w R
H
2 XHXR

1
2

)−1
}
,

where the last equality comes from the matrix inversion lemma. Let us now consider the

eigenvalues l21 ≥ . . . ≥ l2N of the matrix Ξ := R
H
2 XHXR

1
2 . Since Ker{Ξ} ⊇ Ker{R

1
2 } =

Ker{R}, we have that l2i = 0, ∀i > p := rank{R}. By denoting the eigenvalues de-
composition of Ξ with Ξ = ŨΓŨH , Γ := diag(l21, . . . , l

2
N ), Ũ :=

[
ũ1 . . . ũN

]
, we can

2R
H
2 is a shorthand for

(
R

1
2

)H
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further express the MSE as

MSE = tr

{
R
(
I + σ−2

w R
H
2 XHXR

1
2

)−1
}

= tr

{
R
(
I + σ−2

w ŨΓŨH
)−1

}
= tr

{
RŨ

(
I + σ−2

w Γ
)−1

ŨH
}

= tr
{

ŨHRŨ
(
I + σ−2

w Γ
)−1
}

=

p∑
i=1

1

1 +
l2i
σ2
w

ũHi Rũi

=
∑
li 6=0

1

1 +
l2i
σ2
w

ũHi Rũi +
∑
li=0

ũHi Rũi.

Let us define fi := ũHi Rũi. By recalling that the positive semi-definite quadratic form
f(x) = xHRx satisfies f(x) = 0 ⇐⇒ x ∈ Ker{R}, we can conclude that ci > 0 ∀i ≤ p,
because by construction we have that ũi 6∈ Ker{R} ∀i ≤ p. Hence, we have that∑

li=0

fi = 0

⇐⇒ l2i 6= 0 ∀i ≤ p
(a)⇐⇒ Ker{Ξ} = Ker{R}
⇐⇒ span{ΞH} = span{RH}

⇐⇒ span{R
H
2 XH} = span{RH}

⇐⇒ span{VΣ
1
2 VHXH} = span{VΣ}

⇐⇒ span{XH} ⊇ span{VΣ},

where for condition (a) we recall that Ker{Ξ} ⊇ Ker{R}.

Corollary 3.2. A corollary of proposition 3.6 is that, when the condition span{XH} ⊇
span{VΣ} is satisfied, the expression for the MSE boils down to

MSE =

p∑
i=1

1

1

σ2
i

+
λ2
i

SNR

,

where λ2
1 ≥ . . . ≥ λ2

N are the eigenvalues of Q := XHX.

Proof. By assuming span{XH} ⊇ span{VΣ}, we can write the eigenvalue decomposition
Q = Vdiag(λ1, . . . , λN )VH , with λ1 ≥ . . . ≥ λN , λi 6= 0 ∀i ≤ rank(R), and V =
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[
v1 . . . vN

]
. Thus, we have that

Ξ = VΣ
1
2 VHQVΣ

1
2 VH

= VΣ
1
2 VHVdiag(λ2

1, . . . , λ
2
N )VHVΣ

1
2 VH

= VΣ
1
2 diag(λ2

1, . . . , λ
2
N )Σ

1
2 VH ,

which means that l2i = σiλ
2
iσi = σ2

i λ
2
i . Furthermore, we have that ũi = vi, which implies

fi = vHi Rvi = vHi VΣVHvi = σ2
i .

Remark 3.3. The analysis in proposition 3.6 is similar to the analysis of [19, Theorem
1], where the MSE given by a random pilot sequence is taken into account. However,
here the focus is on the MSE given by a deterministic pilot sequence (or, equivalently,
the conditional MSE given by a random pilot sequence, where the conditioning is on an
arbitrary pilot realization).

As an immediate consequence of 3.5 and 3.6, we have the following result:
Corollary 3.3. By considering the the MSE of both the LS and LMMSE estimator, the
following property holds:

lim
σ2
w→0

MSE = 0 ⇐⇒ span{XH} ⊇ span{VΣ}.

Remark 3.4. The meaning of the minimum pilot sequence length given by the propo-
sitions in this section must be intended only as a necessary condition for the MSE to
vanish as the SNR increase.

3.3.2 Pilot Sequence Design for Correlated Channels (SU-MIMO)

In section 3.2.2 we have seen as the optimal pilot sequence satisfies the minimum pilot
length criteria described in section 3.2.1 (given an additional mild condition on the SNR
level for the LS estimator). In this section we repeat the analysis for generic correlated
channels, highlighting the differences from the i.i.d. case. In particular, in contrast with
the i.i.d. fading case, we show that the optimal pilot sequence design does not necessarily
satisfies the minimum pilot sequence length criteria described in section 3.3.1. In fact, the
optimal design is shown to be related to the joint effect of the eigenvalue distribution of
the channel covariance matrix, and of the SNR level. The intuition is that, for sufficiently
small SNR, the signal in the subspace corresponding to the smallest eigenvalues of R
contains mostly noise, so signals lying in this subspace should be filtered out.

Similarly to section 3.2.2, we constrain the overall energy of the training sequence with
(3.14), so that the average power per antenna and per time slot is at most unitary.
We adopt the definition of SNR (3.5) by setting Px = 1, and we define the the matrix
Q := XHX as well as its eigenvalues decomposition Q = UΛUH , Λ = diag{λ2

1, . . . , λ
2
N}.

In the following, we focus on the LS estimator only. A similar analysis for the LMMSE
estimator is left as future work. We approach the design of the optimal (in terms of
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MSE) pilot sequence by firstly analyzing in a disjoint way the two terms c1 and c2

defined in lemma 3.5 and in its proof. Then, we discuss the joint optimization of these
two parameters.
Proposition 3.7. Among all the pilot sequences X of length T and rank r, the term c1

defined in proposition 3.5 is minimized by letting

λ2
i =


NT

r
ifi ∈ Ir

0 otherwise
,

where Ir is a generic r-combination of the set of indexes I := 1, . . . , N , resulting in

c1 =
tr{R}
N2T

r2.

Proof. Let us consider the expression for c1 given by 3.16. The proof is identical to the
first part of the proof of proposition 3.4, and it is here omitted.

Proposition 3.8. Among all the pilot sequences X of length T and rank r, the term c2

defined in proposition 3.5 is minimized by letting

span{XH} = span{Vr}, (3.21)

where Vr is the matrix which columns are the eigenvectors of R corresponding to the r
strongest eigenvalues.

Proof. From equations 3.18 and 3.17, let us rewrite c2 as

c2 = tr
{

P⊥XHR
}

= tr {R} − tr {PXHR} .

Let σ2
1 ≥ . . . ≥ σ2

N be the eigenvalues of the covariance matrix R, VΣVH = R, Σ =
diag(σ2

1, . . . , σ
2
N ), be its eigenvalue decomposition, and Vn be the tall matrix constructed

with the first n ≤ N columns of V. By focusing on the term tr {PXHR} we further
obtain:

tr {PXHR} = tr
{

X†XVΣVH
}

= tr
{

VHX†XVΣ
}

= tr
{

V†X†XVΣ
}

(a)
= tr

{
(XV)†XVΣ

}
= tr

{
P(XV)HΣ

}
=

N∑
i=1

σ2
i pi,
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where equality (a) holds because V has orthogonal columns, and pi denotes the ith diag-
onal element of the projection matrix P(XV)H . By recalling that the diagonal elements
of a generic projection matrix are bounded in the compact interval [0, 1], and by noticing
that

N∑
i=1

pi = tr{P(XV)H} = tr{VHX†XVH} = tr{X†XVVH} = tr{PXH} = r,

we can minimize c2 by solving the following convex (LP) optimization problem:

minimize
x

− bTx

subject to 0 � x � 1

1Tx = r

,

where bT := [σ2
1, . . . , σ

2
N ], x := [p1, . . . , pN ]T , and 1 denotes the all-ones column vector.

The optimal solution, obtained by solving the KKT conditions3, is given by

pi =

{
1 if i = 1, . . . , r

0 otherwise
.

The interpretation of this solution is immediate by looking at the optimal c2:

c2 = tr {R} −
r∑
i=1

σ2
i =

N∑
i=r+1

σ2
i , (3.22)

which corresponds to a residual channel estimation error that includes just the N − r
weaker dimensions of the subspace on which h lies.

Let us now analyze the impact of this optimality condition on the structure of the pilot
sequence X. Firstly we notice that, under the given optimal diagonal elements pi of
P(XV)H , and by recalling that the eigenvalues of a generic projection matrix assume
values only in {0, 1}, we have that P(XV)H must be already in diagonal form (it is
diagonalized by the standard basis). Thus, we can write

P(XV)H = (XV)†(XV) =

[
Ir 0
0 0

]
.

By pre-multiplying all members by (XV), and by applying the definition of the pseudo-
inverse, we obtain

(XV)(XV)†(XV) = (XV)

[
Ir 0
0 0

]
(XV) = (XV)

[
Ir 0
0 0

]
[
XVr XV̄r

]
=
[
XVr 0

]
,

3One can check that this solution satisfies the KKT conditions given that σ2
i ≥ σ2

j for i < j, which is
always true by construction.
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where V̄r denote the matrix which columns are the N − r eigenvectors not included in
Vr. From the last equality we observe that

XV̄r = 0 ⇐⇒ span{XH} ⊥ span{V̄r},

which by construction4 of XH and V̄r implies

XV̄r = 0 ⇐⇒ span{XH} = span{Vr}.

We can now state the following corollary:
Corollary 3.4. Among all the pilot sequences X of length T and rank r, the mean
square error MSE := E[‖h− ĥ‖2] of a LS channel estimate ĥ defined in Section 3.1.1 is
minimized by letting

span{XH} = span{Vr},

where Vr is the matrix which columns are the eigenvectors of R corresponding to the r
strongest eigenvalues, and

λ2
i =


NT

r
ifi ∈ I∗r

0 otherwise
,

where I∗r is the set of indexes corresponding to the r eigenvectors Ur such that span{Ur} =
span{Vr}. The resulting MSE is given by

MSE =
N∑

i=r+1

σ2
i +

tr{R}r2

N2T

1

SNR
,

where σ2
1 ≥ . . . ≥ σ2

N are the eigenvalues of R.

Proof. The proof follows directly by jointly imposing the optimality conditions on the
terms c1 and c2 as described in proposition 3.7 and proposition 3.8.

An example of a training sequence satisfying the optimal pilot design given by proposition
3.4 is given in section 3.4.2.
Remark 3.5. Corollary 3.4 gives the optimal pilot design, in terms of MSE, by fixing
the pilot length T and its rank r. An important open question is how to design T and
r. In general, we should look at a more complicated optimization problem, for example
in terms of achievable rate, over the tuple (r, T ), which takes into account the joint
effect of the channel estimation error and the penalty due to the resources allocated for
pilot transmission (T slots), similarly to the analysis in section 4.8.3. However, for
simplicity, in the following we focus on the optimization of the MSE by assuming a

4XH has rank r, and V̄r spans a subspace of dimension N − r
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system that allows a maximum pilot length of T = Tmax �Mc, where we recall that Mc

is the coherence block length. We introduce the following notation

η(r) :=

∑r
i=1 σ

2
i∑N

i=1 σ
2
i

, η̄(r) := 1− η(r), (3.23)

where σ2
1 ≥ . . . ≥ σ2

N are the eigenvalues of R. We can then optimize the MSE, expressed
as

MSE = tr{R}
[
η̄(r) +

r2

N2T

1

SNR

]
,

by letting T = Tmax and r = r∗, where r∗ is the solution of

minimize
r

η̄(r) +
r2

N2TmaxSNR

subject to r ≤ min(N,Tmax)

,

which shows a clear dependence of the optimal value on the SNR level and on the
distribution η(r) of the eigenvalues of R.

3.4 Training Overhead Reduction in Correlated Channels

3.4.1 Gains of Correlation-aware LS Channel Estimation (SU-MIMO)

In this section we compare the performance of the correlation-aware LS pilot design
with the performance of the optimal LS pilot design for i.i.d. fading channels. We show
that, if the channel covariance matrix is low rank, the training overhead can be reduced
significantly. More precisely, we have the following proposition:
Proposition 3.9. Let us consider a channel hcorr with covariance matrix R, with p :=
rank{R}, and a LS channel estimate ĥcorr given by 3.1.1 and obtained with an optimal
pilot sequence of length Tcorr ≥ p satisfying proposition 3.5 and corollary 3.4. Let us
further consider another channel hiid with covariance matrix σ2

hI, and a LS estimate

ĥiid obtained with an optimal pilot sequence of length Tiid ≥ N satisfying proposition
3.4. By defining MSEcorr := E[‖hcorr − ĥcorr‖2] and MSEiid := E[‖hiid − ĥiid‖2], and by
using for fairness the same SNR and channel power Nσ2

h = tr{R}, we have that

MSEcorr ≤ MSEiid ⇐⇒ Tcorr ≥ max

[
p,
( p
N

)2
Tiid

]
.

Proof. By recalling the expressions for the MSEs given by corollary 3.4 and proposition
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3.4, and that proposition 3.5 is satisfied iff r ≥ p, we have

MSEcorr ≤ MSEiid

⇐⇒ tr{R}r2

N2TcorrSNR
≤

Nσ2
g

TiidSNR

⇐⇒ Tcorr ≥
r2

N2
Tiid

⇐⇒ Tcorr ≥
p2

N2
Tiid

The proof is completed by recalling that Tcorr ≥ p.

Remark 3.6. In Massive MIMO systems, because of the high impact of the training
overhead, we typically have Tiid = N . Thus, proposition 3.9 reduces to

MSEcorr ≤ MSEiid ⇐⇒ Tcorr ≥ max
[
p, p

( p
N

)]
= p.

3.4.2 Example: Subspace-based SU-MIMO DL Channel Estimation

Let us focus on the SU-MIMO channel estimation problem. A popular approach for
this channel estimation task in the case of correlated fading is based on the following
Karhuen-Loeve transform:

h = VrΣ
1
2
r β, (3.24)

where β ∈ Cr×1 is an equivalent channel vector with covariance matrix E[ββH ] = I,

and where VrΣ
1
2
r ∈ CN×r corresponds to the r = rank{R} non-zero eigenvalues and

associated eigenvectors of the eigen-decomposition R = VΣVH , Σ = diag{σ2
1, . . . , σ

2
N}.

This representation shows how the knowledge of R can be exploited to improve channel
estimation, as it gives important information about the subspace where most of the
energy of h lies. In particular, if the covariance matrix has low rank, and if it is known at
the BTS, this representation can be effectively exploited to reduce the training overhead.
To make this statement concrete, let us rewrite 3.1 as

y = Xh + w = XVrΣ
1
2
r β + w, (3.25)

By setting for example a training sequence X =
√
PVH

r of length T = r ≤ N and with
a per-slot power constraint P , we obtain

y =
√
PVH

r VrΣ
1
2
r β + w =

√
PΣ

1
2
r β + w.

An estimate of h can be obtained by computing

ĥ =
1√
P

Vry = h +
1√
P

Vrw. (3.26)

We point out that this estimation scheme corresponds to an LS channel estimation
scheme as described in section 3.1.1, with pilot sequence satisfying the conditions of
proposition 3.5 and corollary 3.4, and by setting P = N .
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Channel Estimation based on Principal Subspaces

In many applications, the covariance matrix R is not necessarily low-rank, but it expe-
riences a low-rank behavior, in the sense that only few eigen-modes carry most of the
signal energy. In this case, a significant reduction in training overhead can be obtained
with a variant of the subspace estimation scheme analyzed previously.

In more detail, let σ2
1 ≥ . . . ≥ σ2

N be the eigenvalues of the covariance matrix R. Denote
by Vdiag(σ2

1, . . . , σ
2
N )VH = R the eigenvalue decomposition of the covariance matrix

R, and by Vn the tall matrix constructed with the first n ≤ N columns of V. For a
given design parameter η ∈ [0, 1], let p be the smallest integer satisfying∑p

i=1 σ
2
i∑N

i=1 σ
2
i

≥ η.

The principal subspace scheme for channel estimation is obtained by using the pilot
sequence X =

√
PVH

p and the LS estimator defined in Section 3.1.1; i.e., fLS = X† =
1√
P

Vp.

This scheme satisfies the optimal LS pilot sequence design described in section 3.3.2, by
letting r = T ≤ N . According to the analysis in section 3.3.2, the signal in the subspace
corresponding to the smallest eigenvalues of the covariance matrix contains mostly noise,
so we should filter out signals in this subspace, especially when the SNR is the main
bottleneck. As outlined in remark 3.5, a proper performance evaluation of this channel
estimation scheme should include the the penalty due to the training overhead T . In
Massive MIMO systems, and when T is high, the training overhead penalty may weight
more than the penalty due to the estimation error. Hence, intuitively, in the large-scale
array regime and for relatively low SNR, this estimation scheme may greatly improve
the system performance. This intuition is experimentally confirmed by the simulation
in section 4.8.3, which uses the realistic channel model in section 2.4, the proposed
estimation scheme for different choices of η, and a transmission scheme based on the
conventional MRC precoder.

3.4.3 A Link with Compressed Sensing Based Channel Estimation

In the traditional compressed sensing framework a high N-dimensional signal, e.g hCN ,
is said to be sparsely representable if there exist an orthonormal basis B ∈ CN×N such
that

h = Bβ, ‖β‖0 � N

where ‖β‖0 indicates the number of non-zero entries of β.

In recent years lots of attention has been given also to an extension of the traditional
compressed sensing framework: it has been shown that instead of an orthonormal basis
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it is possible to use as a sparsifying matrix also an overcomplete dictionary D ∈ CN×K
(with K > N) that allows for even sparser representations [20]. However, even though
this will limit the validity of our analysis, in the following we focus for simplicity on the
traditional framework.

Compressed Sensing (CS) theory suggests that it is possible to measure a signal that is
sparse in some basis just focusing on the few non-zero elements, saving a lot of estima-
tion effort, by solving the sparse signal recovery problem [20]. This approach has been
successfully applied to reduce training overhead in massive MIMO channel estimation,
for example in [5].

In the following we show that, in case of i.i.d. fading, it is not possible to reduce the
channel estimation effort by means of CS based algorithms, at least for the traditional
framework. It turns out that a necessary condition for a channel vector to be sparsely
representable is that it is correlated. This results strengthen the analysis given by this
chapter, which shows that channel correlation is a fundamental requirement for reducing
the channel estimation overhead.

More precisely, we have the following proposition:
Proposition 3.10. Let us consider a random vector h ∈ CN and let us assume that it
is sparsely representable as h = Bβ, ‖β‖0 � N for a given matrix B ∈ CN×N . Then,

@k ∈ R s.t. R := E[hhH ] = kI.

Proof. By definition

R = E[hhH ] = BE[ββH ]BH = kI

⇐⇒ E[ββH ] = BHkB = kI

which means that the vector β must be uncorrelated. However this is in not possible,
because the assumption L0 := ‖β‖0 < N implies that β is indeed correlated. In fact,
by denoting by βL0 ∈ CL0 an arbitrary subset of the elements of β of length L0, the
random vector β̄L0 ∈ CN−L0 collecting all the other elements of β 5 satisfies

β̄L0 |(βL0 6= 0) = 0,

which clearly shows that the entries of β are statistically dependent.

5By assumption β̄L0 has at least one element
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3.5 Fundamental Limits of Massive MIMO: A DoF Per-
spective

3.5.1 A DoF Bound based on Non-coherent Capacity

Let us consider the DL MU-MIMO model (2.2), and let us further focus on a transmission
block m = 0, . . . ,Mc−1 such that all the UEs channel vectors can be assumed constant.
The received signal to all UEs for the entire transmission block, denoted as Y ∈ CK×Mc ,
can be rewritten in matrix form as

Y = HX + W, (3.27)

where H :=
[
hd1 . . . hdK

]T ∈ CK×N is the equivalent MIMO channel obtained by
grouping all the UEs channel vectors hdk, X ∈ CN×Mc is the transmitted sequence at
the BTS, and W ∈ CK×Mc is the noise. We further normalize X to that the average
transmit power at each transmit antenna in one time slot is unitary, i.e. we impose the
following power constraint:

E
[
‖X‖2F

]
= NMc. (3.28)

Under this normalization, we define the average SNR per receive antenna as SNR :=
N/σ2

w.

A popular performance metric for coherent block fading channels is the notion of ergodic
capacity [1], defined in this case as

C := E [I(H)] (3.29)

where I(H) is a random variable that denotes the maximum mutual information per
time slot between the input sequence X and the output sequence Y conditioned on a
given channel realization H0, i.e.

I(H = H0) :=
1

Mc
max
fX(·)

I(X; Y|H = H0),

where the optimization is carried over all input sequence distributions fX satisfying the
power constraint (3.28). Theoretically, the notion of ergodic capacity (from now on
denoted simply as capacity) describes the maximum rate (in bits per channel use) that
can be achieved via channel coding over infinite coherence blocks. This implies that its
operational meaning is justified for applications that have delay constraints sufficiently
loose to allow coding over multiple coherence intervals (fast-fading assumption).

By assuming perfect CSI at the transmitter and at the receivers, and with full cooper-
ation among UEs, the ergodic capacity of the considered DL MU-MIMO system boils
down to the well-known Gaussian parallel channels expression given by [1, Chapter 7]:

Ccoh = E

min(N,K)∑
i=1

log2

(
1 +

P ∗i λ
2
i

σ2
w

) , (3.30)
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where P ∗i ≥ 0,
∑min(N,K)

i=1 P ∗i = N are the power allocations obtained with the water-
filling algorithm, and λi are the random eigenvalues of H. In the high SNR regime, and
assuming i.i.d. Rayleigh fading (i.e. elements of H are CN (0, 1)), the capacity is given
by

Ccoh = N∗ log2(SNR) + o(1), (3.31)

where N∗ = min(N,K). The quantity N∗ is often referred to as the multiplexing gain, or
the number of degrees of freedom (DoF) of the channel, and it describes the maximum
number of independent streams per channel use that can be multiplexed in a MIMO
channel, compared to an AWGN channel with the same (high) quality. Formally, we
define the DoF as

DoF := lim
SNR→∞

C(SNR)

log2(SNR)
.

In the low SNR regime C is proportional to the capacity of the AWGN channel, and the
main bottleneck is given by the power constraint rather than the spatial DoF offered by
multiple antennas. Thus, in the following, the focus is on the high SNR regime only.

The main limitation of using (3.31) as a performance metric for MU-MIMO systems is
that it does not takes into account the resource consumed by real systems to become
coherent, i.e. to acquire the CSI. Indeed, real systems are not coherent, thus a more
theoretically appropriate capacity expression is the one derived in [21] for non-coherent
i.i.d. Rayleigh block fading point-to-point MIMO capacity:

C = N∗
(

1− N∗

Mc

)
log2(SNR) + o(1), SNR→∞, (3.32)

where

N∗ = min

(
N,K,

⌊
Mc

2

⌋)
describes the optimal number of transmit antennas to be used at the BTS in the high
SNR regime, among the N available, which saturates at

⌊
Mc
2

⌋
. It is important to un-

derline that this result represents a very optimistic performance bound, since it assume
perfect cooperation among the UE. Nevertheless, even in this extremely ideal case, it is
evident how for a massive MIMO system, i.e. when both N and K are large, in case of
i.i.d. Rayleigh fading, the limited coherence block length represents a major performance
bottleneck: the available (optimistic) number of DoF saturate to Mc

4 .

Example: Consider again the example given in the introduction of this chapter, which
is a typical 2 GHz LTE system with coherence bandwidth Bc = 100 KHz and coherence
time Tc = 1 ms (UE speed of roughly 60 Km/h). The corresponding coherence block
length is Mc = BcTc = 100 time slots. Thus, the maximum DoF is Mc/4 = 25, no
matter how large the system is (i.e no matter how large N and K are).

An interesting insight that links the CSI acquisition overhead to the non-coherent capac-
ity formula (3.32) is given in [21, Section V], where a scheme based on pilot based channel
estimation is shown to achieve the envisioned DoF. We point out that the adopted DoF
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achieving channel estimation scheme assumes a training sequence length at least equal
to the number of transmit antennas. This important assumption gives an operational
meaning to the choice of the optimal number of transmit antennas N∗: there is no point
in using more transmit antennas than

⌊
Mc
2

⌋
, as the system will spend more time for

channel estimation than for data transmission.

3.5.2 Impact of Training Overhead Reduction on the DoF Bound

Let us consider the block fading DL MU-MIMO model (3.27), with coherence block
length Mc. As discussed in [21, Section V], by using pilot based channel estimation
schemes that require a training sequence of length N , massive MIMO achievable DoF
are upper bounded by Mc/4.

However, let us know assume that is is possible to reduce the training overhead by a
factor G := N/T , where T is the training sequence length. Under this assumption, by
following the same lines as in [21, Section V], the analysis in [22] proposes a new upper
bound on the DoF, given by

DoF = N∗
(

1− N∗

GMc

)
, (3.33)

where

N∗ = min

(
N,K,

⌊
GMc

2

⌋)
.

As a consequence, because of the resources released by the reduction of the training
overhead, Massive MIMO systems DoF are now upper bounded by GMc/4, i.e. with a
gain G with respect to the bound given by (3.32). The main challenge is to understand
how and in which scenario it is possible to achieve this bound.

The main intuition provided by [22] is that, since the bound given by (3.32) is derived by
assuming i.i.d. fading, it is possible to break this performance bottleneck, and possibly
achieve the new bound (3.33), by considering instead correlated channels.

As we have seen in Section 3.4, for a SU-MIMO system, if the channel is correlated,
it is possible to obtain the same CSI estimation performance of an equivalent channel
estimation scheme for i.i.d. fading but with a training overhead gain of G = N/p ≥ 1.
A similar analysis for MU-MIMO system has not been given in this work. Nevertheless
advanced MU-MIMO channel estimation techniques (e.g. [7]) are available in the liter-
ature, and they show that by exploiting correlation such a training overhead reduction
is possible also for MU-MIMO. However, a rigorous analysis of the achievable DoF of
correlated channels and its connection with channel estimation is still an ongoing line of
research.
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3.5.3 Reducing the Training in i.i.d. Rayleigh Channels

Clearly, for G > 1, the bound (3.33) cannot be achieved in the case of i.i.d. Rayleigh
channels, as it violates the capacity formula (3.32). This directly implies that the reduc-
tion of the training overhead in i.i.d. Rayleigh channels does not give any improvement
in terms of DoF upper bound. Of course this does not imply that a reduction in channel
estimation overhead cannot help in how fast the system can reach the high SNR regime.
However, at least for conventional channel estimation techniques, it is possible to show
that reducing the training overhead is actually detrimental, in the high SNR regime.

Let us consider, for example, the following conventional pilot-based scheme:

• The coherence block Mc of model (3.27) is split into a training phase of length T
and into a data transmission phase of length Mc − T .

• In the training phase, the received signal can be written as

YT = HXT + WT ,

where XT is a full rank pilot sequence such that ‖XT ‖2F = NT . Every user esti-
mates is channel vector using the LMMSE estimator described in section 3.1.1. We
assume that that the entire system instantaneously acquire the complete channel
estimate Ĥ. We denote further define H̃ := H − Ĥ. Because of the properties of
the LMMSE estimator, H̃ and Ĥ are uncorrelated. Moreover, since H is zero mean
complex Gaussian distributed, also Ĥ and H̃ are zero mean Gaussian distributed.

• In the data transmission part, the transmitted signal in one given time slot can be
written as

y = Hx + w = Ĥx + H̃x + w.

The signal x is assumed i.i.d. and satisfying the power constraint E[‖x‖2] = N .
One can check that the overall power of the scheme satisfies (3.28). We use the
same definition SNR := N/σ2

w as in section 3.5. For reasons that will be clarified
later, we further assume E

[
log2 ‖x‖2P

]
to exist and to be finite for every projection

matrix P with at least one non-zero eigenvalue. This assumption holds for typical
communication signals (e.g. QAM or Gaussian signals).

This scheme is suboptimal, but still interesting to understand the performance limits
of typical communication systems, which are often designed with a similar separation
of channel estimation and data transmission phases. Interestingly, assuming T = N ,
this scheme is shown in [21] to achieve full non-coherent DoF. This happens under the
assumption that the channel estimation error vanishes for high SNR. However, in section
3.1.1 we have seen that this condition is not met for T < N . The intuition is that in
this case the term H̃x acts as an equivalent noise due to channel estimation that limits
the system performance, as it do not vanishes for high SNR. More formally, we have the
following proposition:
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Proposition 3.11. Let us consider the MU-MIMO block-fading i.i.d. Rayleigh channel
model (3.27). By applying the communication strategy with pilot-based channel estima-
tion described above, with training length 1 ≤ T < N , the mutual information of this
system has the following asymptotic behaviour:

DoFLMMSE,G>1 := lim
SNR→∞

I(x; y|Ĥ)

log2(SNR)
= 0 (3.34)

Proof. Let us define the shorthand I(x; y|Ĥ = Ĥ0) := I(x; y|Ĥ0) By following similar
arguments as in [23], we have

I(x; y|Ĥ0) =h(y|Ĥ0)− h(y|x, Ĥ0)

=h(y|Ĥ0)− E
[
log2

∣∣∣πe(RH̃x|x + σ2
wI
)∣∣∣]

≤ log2

∣∣∣πe(Ĥ0QĤH
0 + RH̃x + σ2

wI
)∣∣∣

− E
[
log2

∣∣∣πe(RH̃x|x + σ2
wI
)∣∣∣]

where Q := E[xxH ] is the signal covariance matrix, satisfying tr{Q} = N . The second
equality comes form the fact that (y|x, Ĥ) is complex Gaussian distributed with mean
Ĥx and covariance matrix RH̃x|x + σ2

wI, and the last inequality is obtained by bound-

ing (y|Ĥ) with the differential entropy of a complex Gaussian vector with the same
covariance matrix Ry|Ĥ = ĤQĤH + RH̃x + σ2

wI. We further have

RH̃x := E
[
H̃xxHH̃H

]
= E

[
xHR̃x

]
I = E

[
‖x‖2

R̃

]
I,

RH̃x|x := E
[
H̃xxHH̃H |x

]
= ‖x‖2

R̃
I,

where R̃ is a shorthand for the estimation error covariance matrix Rh̃h̃ defined in section
3.1.1, and the uncorrelation property results from the assumption that the users channel
vectors are independent. Thus we can further develop the mutual information as

I(x; y|Ĥ0) ≤ log2

∣∣∣∣∣∣ Ĥ0QĤH
0

E
[
‖x‖2

R̃

]
+ σ2

w

+ I

∣∣∣∣∣∣
+K log2

(
E
[
‖x‖2

R̃

]
+ σ2

w

)
−KE

[
log2

(
‖x‖2

R̃
+ σ2

w

)]
.

Let us now analyze the behaviour of these terms for SNR→∞, i.e. for σ2
w → 0. In the

high SNR regime, the LMMSE filter is just a projector PXT
on the column space of XT
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(note that, with respect to section 3.1.1, XT is here defined transposed), hence

lim
σ2
w→0

R̃ = E
[
(h−PXT

h)(h−PXT
h)H

]
= I−PXT

=: P⊥XT
,

lim
σ2
w→0
‖x‖2

R̃
= ‖x‖2

P⊥XT
,

lim
σ2
w→0

E
[
‖x‖2

R̃

]
= E

[
‖x‖2

P⊥XT

]
= tr

{
P⊥XT

E[xxH ]P⊥XT

}
= tr

{
P⊥XT

}
=: σ2

e ,

which leads to

lim
σ2
w→0

I(x; y|Ĥ0) ≤ log2

∣∣∣∣∣Ĥ0QĤH
0

σ2
e

+ I

∣∣∣∣∣+K log2 σ
2
e −KE

[
log2 ‖x‖2P⊥XT

]

= log2

∣∣∣∣∣Ĥ0QĤH
0

σ2
e

+ I

∣∣∣∣∣+ c,

where c is a non-negative finite constant that does not depend on the channel realization
(it depends on K, and on the signal and pilot design). The constant c is non-negative
because, by applying the Jensen’s inequality:

E

[
log2 ‖x‖2P⊥XT

]
≤ log2 E

[
‖x‖2

P⊥XT

]
= log2 σ

2
e .

Moreover, it is finite because of the assumption on the distribution of x.

By considering now

lim
SNR→∞

I(x; y|Ĥ) ≤ E

[
log2

∣∣∣∣∣ĤQĤH

σ2
e

+ I

∣∣∣∣∣
]

+ c,

the theorem follows immediately.

It is interesting to underline that

σ2
e = tr

{
P⊥XT

}
= rank

{
P⊥XT

}
= N − T > 0,

thus, it is evident that the system is bottle necked by a non-vanishing residual noise
that corresponds exactly to the number of channel dimensions that are not correctly
estimated.



Chapter 4

Spatial Covariance Matrix
Conversion via Projection
Methods

4.1 Overview

4.1.1 Problem Description

Knowledge of second-order statistics of channels, in particular in the form of spatial
covariance matrices, is crucial for many algorithms for Massive MIMO systems operating
in the FDD mode, as it provides useful long-term information that can be exploited for
beamforming and for CSI acquisition.

Current MIMO systems usually obtain DL covariance information via feedback of the
estimated covariance matrix from the UE, but in the massive MIMO regime operating
in FDD mode this approach can be problematic because of the large overhead. More
precisely, the high overhead of this scheme applied to FDD massive MIMO systems is
mainly due the following two problems:

• Direct estimation of Rd from DL channel realizations obtained via conventional
pilot-based DL channel estimation schemes suffers from unacceptably high training
overhead, as described in Chapter 3.

• The large dimensionality of Rd imposes a high covariance feedback overhead. The
estimation of the covariance matrix is done at the UE because, if available, the
CSIT at the BTS is usually heavily quantized to reduce the overhead.

Although in chapter 2 we have seen that it is actually possible to reduce the impact
of the training overhead, the conventional scheme based on DL covariance estimation

61
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cannot avoid the feedback overhead.

Against this background, in this chapter we propose a novel technique to infer Rd from
the observed UL covariance Ru. This approach has many benefits compared to tradi-
tional mechanisms for covariance estimation. Among them, the most relevant are:

• Continuous covariance feedback from the UE is eliminated, thus the proposed
scheme is an efficient enabling technique for channel estimation algorithms based
on the Rd, such as those described in Section 3.3.

• If long-term beamforming techniques based on Rd are used (e.g., for mm-Waves
systems [24]), then the DL training could in principle be completely eliminated
from the system.

• Operators can immediately apply the proposed scheme to boost the already imple-
mented beamforming and CSI acquisition algorithms in perfect compliance with
current standards, because the proposed mechanism for DL covariance estimation
is completely transparent to the UEs.

4.1.2 State-of-the-art Solutions

Related state-of-the-art solutions in literature include:

• [25] Resampling of Ru for a uniform linear array (ULA) at a different wavelength
by using cubic splines.

• [26] (and the follow-up study [27]) Interpolation of Rd from Ru and a dictionary
of stored (Rd,Ru) pairs measured at different UE locations.

• [28] Definition of a frequency calibration matrix obtained via a truncated Fourier
series representation of the so called angular power spectrum (APS).

The main underlying assumption of the state-of-the-art techniques and of this work is
the channel reciprocity in the angular domain, which is here modeled with the frequency
invariance property of the APS (see Sect. 2.1). Because of its importance in building the
connection between Rd and Ru, the core part of this work is devoted to the development
of an accurate technique for APS estimation given Ru. Unlike related studies, we for-
malize the problem as a convex feasibility problem, so that we can apply very effective
solutions based on projection methods on an infinite-dimensional Hilbert space. The
resulting scheme is shown to outperform existing solutions under multiple point of views
(see Sect. 4.5.2). In fact, it achieves estimation accuracy and flexibility comparable
to [26] (the most accurate and robust algorithm considered here) but with complexity
comparable to [25] and [28] (simple dictionary-less approaches).
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4.1.3 Proposed Technique: Overview and Main Assumptions

Let us recall the channel spatial covariance models introduced in Chapter 2. As described
in Section 4.1.1, the goal of the proposed algorithm is to estimate Rd from the observed
UL covariance Ru. By focusing for simplicity on the unpolarized antennas case, the
main idea can be summarized into two steps as follows:

1. We obtain an estimate ρ̂ of the APS ρ based on the knowledge of Ru (see its
expression in Table 2.1) and known properties of ρ.

2. We compute an estimate of Rd by using its expression given in Table 2.1, and by
substituting ρ with its estimate ρ̂.

In particular, the APS estimation problem in the first step is addressed by formalizing
it as a convex feasibility problem. We propose two versions of a set-theoretic approach
differing in the definition of the solution space, leading to two variants of the proposed
algorithm with different accuracy-complexity trade-offs.

In this work, analytic or experimental knowledge of the array responses au and ad is
assumed; this knowledge is cell-independent and it holds for the entire lifetime of the
antenna array. In Section 4.2, to simplify the description of the proposed solutions, we
focus on a simple 2D channel model. This part follows closely our preliminary study [29].
Later, in Section 4.6, we extend these results to 3D environments with dual-polarized
antennas, by using the approach given by our follow-up study [30].

4.2 Two Algorithms for Covariance Conversion

4.2.1 Algorithm 1: APS Estimation via Projection onto a Linear Va-
riety

Let us consider for simplicity a 2D scenario with unpolarized antennas, so that the spatial
covariance matrix expressions are given in the one-variable integral form (azimuth only)
as in equation (2.8) and (2.9). Let us further rewrite expression (2.8) as a system of
equations of the form

rum =

∫ π

−π
ρ(θ)gum(θ)dθ m = 1 . . .M, M = 2N2, (4.1)

where rum ∈ R is the mth element of ru := vec
([
<{Ru} ={Ru}

])
, and gum : [−π, π] −→

R is the mth coordinate function of the corresponding vectorization of the matrix
au(θ)au(θ)H . In general, since covariance matrices are Hermitian, the number of dif-
ferent (real) equations is at most N(N − 1). For complexity reasons, it is possible to
modify the definition of the vec(·) operator such that all the duplicated equations of (4.1)
are removed, but for notation simplicity in this section this trivial operation is omitted.
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Now let H be the Hilbert space of real functions in L2[−π, π] equipped with the inner
product

〈f, g〉 :=

∫ π

−π
f(θ)g(θ)dθ.

By assumption ρ and gum are members of H, thus (4.1) can can be written as

rum = 〈ρ, gum〉 m = 1 . . .M. (4.2)

The inverse problem of finding ρ given gum and rum, m = 1 . . .M , is obviously ill-posed.
Nevertheless, we can use a set-theoretic paradigm [31–34] to obtain an estimate of ρ
based on the available information. More precisely, in this paradigm, we estimate ρ by
solving

find ρ∗ ∈ V := ∩Mm=1Vm 6= ∅, (4.3)

where Vm := {ρ ∈ H : 〈ρ, gum〉 = rum} for m = 1 . . .M .

The above problem is a feasibility problem involving simple hyperplanes Vm, m =
1, . . . ,M , so we can easily restrict the candidate solution to keep the resulting algo-
rithm simple and to avoid solutions corresponding to high-energy signals, which are
unlikely to be sent in practical systems. In particular, among all the possible solutions
of (4.3) (all equivalent based on only the information given by (2.8)), we choose the
minimum norm solution

ρ̂ = arg min
ρ∗∈V

‖ρ∗‖,

which corresponds to the orthogonal projection PV (0) of the zero vector onto the linear
variety V . This projection has the following well-known closed-form expression [35,
Chapter 3]:

ρ̂(θ) =

M∑
m=1

αmg
u
m(θ), (4.4)

where α := [α1 . . . αM ] is a solution to the linear system

ru = Guα, (4.5)

Gu =


〈gu1 , gu1 〉 〈gu1 , gu2 〉 . . . 〈gu1 , guM 〉
〈gu2 , gu1 〉 〈gu2 , gu2 〉 . . . 〈gu2 , guM 〉

...
...

. . .
...

〈guM , gu1 〉 〈guM , gu2 〉 . . . 〈guM , guM 〉

 ,
which is guaranteed to have at least one solution. Moreover, from the projection theorem,
all solutions give the unique projection ρ̂.

We obtain an estimate of Rd by replacing ρ in the DL equivalent of (4.2) with its estimate
ρ̂ obtained in (4.4):

r̂dm = 〈ρ̂, gdm〉 =

M∑
l=1

αl〈gul , gdm〉 m = 1 . . .M, (4.6)
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which can be rewritten in matrix form as

r̂d = Qα,

where r̂d is an estimate of the vector rd := vec(
[
<{Rd} ={Rd}

]
), α is a solution to the

linear system (4.5) given the UL measurements ru = Guα as mentioned above, and

Q =


〈gd1 , gu1 〉 〈gd1 , gu2 〉 . . . 〈gd1 , guM 〉
〈gd2 , gu1 〉 〈gd2 , gu2 〉 . . . 〈gd2 , guM 〉

...
...

. . .
...

〈gdM , gu1 〉 〈gdM , gu2 〉 . . . 〈gdM , guM 〉

 .
It is important to underline that both Gu and Q depend only on the array geometry,
and they can thus be computed or measured only once for the entire system lifetime.

V

W

Wꓕ

PW(ρ*)

PWꓕ(ρ*) = PV(0)

Figure 4.1: Geometrical representation of the solution to (4.3)

Geometrical Representation

A geometrical representation of the solution to (4.3) is given in Figure 4.1, and it can
be be explained by noticing that1

V = ρ+ span(gu1 , . . . , g
u
M )⊥,

since V is a linear variety defined by the intersection of M infinite-dimensional hyper-
planes Vm = ρ+span(gum)⊥, and thus it can be expressed as a translation of the subspace

W = ∩Mm=1span(gum)⊥ = span(gu1 , . . . , g
u
M )⊥.

1Here the notation span(x1, . . . , xk) must be intended as the subspace ofH spanned by x1, . . . , xk ∈ H
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4.2.2 Algorithm 2: Exploiting Further Properties of the APS

In many applications, additional knowledge about the APS ρ is available (for example,
support information). Given that this prior knowledge can be expressed in terms of
closed convex sets, it is then possible to narrow the set of candidate solutions of (4.3)
to obtain more accurate APS estimates. By separating the real and imaginary part of
(2.8), and by working in the space of real functions, the previous algorithm in Sect.
4.2.1 already implicitly takes into account the knowledge that ρ is real valued. In the
following, we propose an extension of the previous algorithm by considering that, being
a power spectrum, ρ is always non-negative. More precisely, we look at the problem

find ρ∗ ∈ C := V ∩ Z, (4.7)

where V is the linear variety defined in (4.3) and Z = {ρ ∈ H : (∀θ ∈ [−π, π]) ρ(θ) ≥ 0}
is the closed convex set of non-negative functions in H. A solution to (4.7) can be found
by applying one of the many existing iterative projection methods for convex feasibility
problems available in literature. These methods typically produce a sequence (ρ(i))i∈N ⊂
H such that ρ(i) ⇀ ρ∗ ∈ C. In particular, we use the following fast iterative method
called extrapolated alternating projection method (EAPM) (which can also be interpreted
as a particular case of an adaptive projected subgradient method [33, Example 5]), which
is given by [36]

ρ(i+1) = ρ(i) + νKi

[
PV (PZ(ρ(i)))− ρ(i)

]
(∀i ∈ N), (4.8)

where ν ∈ (0, 2) is a step size, and Ki is the extrapolation parameter defined as

Ki =


‖PZ(ρ(i))− ρ(i)‖2

‖PV (PZ(ρ(i)))− ρ(i)‖2
, if ρ(i) 6∈ Z

1, if ρ(i) ∈ Z
.

The initial condition ρ(0) ∈ V can be arbitrary, but here it is set to ρ(0) = PV (0), the
solution proposed in section 4.2.1. The projection PV : H → H onto the set V is given
by [35, Chapter 3]

PV (x) = x−
M∑
m=1

βmg
u
m + PV (0),

with β := [β1 . . . βM ] being a solution to the linear system b = Guβ where the mth
element of b is given by bm = 〈x, gum〉 and gum, Gu are defined in section (4.2.1). The
projection PZ : H → H is given by [32, p. 284]

PZ(x) =

{
x(θ), if x(θ) ≥ 0

0, otherwise
.

Now, by proceeding along the same lines as in section 4.2.1, an estimate of Rd can be
obtained by

r̂dm = 〈ρ̂, gdm〉 m = 1 . . .M.
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which has the same form as (4.6), except that ρ̂ results from (4.8).

4.3 Imperfect UL Covariance Knowledge

The algorithms presented in Section 4.2 are designed by assuming perfect knowledge of
Ru. In this section instead we consider a practical scenario in which the BTS has access
only to the UL sample covariance

C̄u :=
1

Ns

Ns∑
n=1

ĥu[n](ĥu[n])H

computed from a limited number Ns of channel estimates defined as

ĥu[n] = hu[nMs] + z[n], z[n] ∼ CN (0, σ2
zI),

obtained by using the UL estimator described in Section 3.1.2. It is important to un-
derline that the samples are taken with a spacing equal to the coherence time Mc, so
that they can be considered independent. This imperfect knowledge leads to a perfor-
mance degradation of the proposed algorithms. However, in the following, we discuss a
correction procedure that can be applied to C̄u in order to mitigate these effects.

Let HM be the Hilbert space of all N×N Hermitian matrices whose inner product is de-
fined by 〈A,B〉 = trace(BHA), and let C,T be the subsets of HM composed respectively
by positive semi-definite (PSD) and Toeplitz matrices.

In case of Gaussian channels, the matrix C̄u is a sufficient statistic for

Cu := E[ĥu[n](ĥu[n])H ] = Ru + σ2
zI,

and in [37] the matrix
R̄u := C̄u − σ2

zI

is used to obtain the maximum-likelihood (ML)-PSD estimate of Ru by projecting it
onto C as follows:

PC(R̄
u) = U∆+UH ,

with U and ∆+ obtained form the eigen-decomposition R̄u = U∆UH , and by defining
∆+ := max(∆,0), which is a short-hand for an element-wise standard max(·, ·) operator
over real numbers.

In this work, this operation is applied also in the case of non-Gaussian channels (e.g.
the channel models presented in Chapter 2) as a correction algorithm able to extract a
PSD estimate of Ru from the noisy sample covariance matrix C̄u, even tough it does
not necessarily correspond to the ML-PSD estimate of Ru.

Moreover, according to the specific array geometry, the covariance matrix often shows
an additional structure on top of the positive semi-definiteness. Thus, it is reasonable
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to further process PC(R̄
u) to restore the envisioned structure. The description of this

procedure is left for the following sections, where the specific implementation of the
algorithms for ULA and UPA are discussed.

4.4 Implementation for Uniform Linear Array

In this section we discuss an implementation of the proposed schemes to a uniform linear
array (ULA) with N antennas at the BTS. Recall that the array response of a ULA is
given by

a(θ) =
1√
N

[
1 ej2π

d
λ

sin θ . . . ej2π
d
λ

(N−1) sin θ
]T
,

where d ∈ R and λ ∈ R denote, respectively, the inter-antenna spacing and the carrier
wavelength.

4.4.1 Analytical expressions for Gu and Q

ULAs are not able to distinguish among a DoA/DoD θ and its reciprocal θ + π, so
we assume that the multipath components are confined to the interval [−π/2, π/2],
and we modify the definition of the of the scalar product for H accordingly, such that

〈f, g〉 =
∫ π/2
−π/2 f(θ)g(θ)dθ. This assumption is supported by the fact that real systems

often work with a similar or even narrower cell sectorization.

For ULAs, the covariance matrices are Hermitian Toeplitz, so they can be completely
represented by their first columns.
Proposition 4.1. By redefining vec(A) := a1, where a1 indicates the first column of
A, we can prove that the matrices Gu and Q defined in Sect. 4.2.1 have the following
analytical form expressed in terms of the Bessel function of the first kind, zero order
J0 : R→ R:

Gu =
π

2N2

[
G< 0
0 G=

]
Q =

π

2N2

[
Q< 0
0 Q=

]
,

where the elements corresponding to the (n,m)-entries of G<, G=, Q<,Q= ∈ RN×N are
given by

G<,nm = J0(xnm) + J0(ynm), Q<,nm = J0(pnm) + J0(qnm),

G=,nm = J0(xnm)− J0(ynm), Q=,nm = J0(pnm)− J0(qnm),

and where

xnm = 2π
d

λu
(n−m), pnm = 2πd

(
n− 1

λd
− m− 1

λu

)
,

ynm = 2π
d

λu
(n+m− 2), qnm = 2πd

(
n− 1

λd
+
m− 1

λu

)
.
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Proof. (sketch) By dropping UL/DL superscripts for simplicity, the chosen vectorization
operation gives:

gm(θ) = <[vm(θ)] m = 1 . . . N,

gm(θ) = =[vm−N (θ)] m = N + 1 . . . 2N,

where

vn(θ) := [a(θ)a(θ)H ]n,1 =
1

N
ej2π

d
λ

(n−1) sin θ,

with n = 1 . . . N . To compute Gu, we evaluate the following four inner products:

〈<[vn],<[vm]〉 =
π

2N2
[J0(x) + J0(y)] ,

〈=[vn],=[vm]〉 =
π

2N2
[J0(x)− J0(y)] ,

〈<[vn],=[vm]〉 = 0,

〈=[vn],<[vm]〉 = 0,

evaluated at

xnm = 2π
d

λ
(n−m),

ynm = 2π
d

λ
(n+m− 2),

with n,m = 1 . . . N .

The expression for Q is obtained similarly.

4.4.2 Improving the Estimation of the UL Covariance Matrix

The direct feeding of either R̄u or the ML-PSD estimate defined in Section 4.3 as input to
the proposed algorithms may result in poor performance because the Toeplitz assumption
imposed by the ULA is not satisfied.

To overcome this problem, we propose to feed as input the projection of R̄u onto the set
T+ := C ∩ T . More precisely, we choose as input a solution of

R̂u = arg min
X∈T+

‖X− R̄u‖F .

Since the projections on C and T are known [38] and easy to compute, it is possible
to compute R̂u by applying standard methods such as the Dykstra’s or Haugazeau’s
algorithm [39, Chapter 20]. In this work, we use the approach described in [38], which
solves

find X∗ ∈ T+ ∩ C3, C3 = {X ∈ HM : ‖X− R̄u‖F ≤ δ},

where δ is a tunable error tolerance, by using an alternating projection method producing
a sequence convergent to a point in T+ ∩ C3.



70 CHAPTER 4. SPATIAL COVARIANCE MATRIX CONVERSION

4.5 Comparison with State-of-the-art Techniques

4.5.1 Simulated Scenario

This section presents numerical results of the proposed algorithms. For simplicity, in this
first numerical evaluation, we assume the following correlated Rayleigh channel model:

hu[k] ∼ CN (0,Ru), hd[k] ∼ CN (0,Rd),

with spatial covariance matrices Ru and Rd given by (2.8) and (2.9). We simulate
a typical model for the APS in cellular environments inspired by the GSCM channel
model described in Section 2.2.1, where ρ is assumed to be composed by a weighted
superposition of probability density functions as follows:

ρ(θ) =

Q∑
q=1

fq(θ)αq.

As an example, in the following we assume Gaussian distributions fq ∼ N
(
φq,∆

2
q

)
with

φq uniformly drawn from [−π/3, π/3] and standard deviation (also called angular spread)
∆q uniformly drawn from [3◦, 8◦], weights αq uniformly drawn from [0, 1] and further

normalized such that
∑Q

q=1 αq = 1, and Q uniformly drawn from {1, 2, 3, 4, 5}. These
statistical quantities are introduced to emulate the effect of different scattering patterns
corresponding to random user locations.

A ULA is assumed for the BTS operating at UL/DL carrier wavelengths of λ = 3 ·108/f
with f = 1.8 Ghz and 1.9 Ghz respectively. The antenna spacing d is set to half UL
wavelength.

Channel realizations are given by h = R
1
2 w, with w ∼ CN (0, I). The BTS is assumed

to have access only to a UL sample covariance matrix computed from Ns = 1000 noisy
channel estimates as described in Sections 4.3, with estimation noise power computed

from a given per-antenna SNRest := E[|hn|2]
σ2
z

= 1
Nσ2

z
.

4.5.2 Numerical Results

The performance of the two algorithms defined in Sect. 4.2.1 and 4.2.2 are compared
with the algorithms proposed in [25], [27], and [28], referred, respectively, to splines-
based, dictionary-based, and Fourier -based. The DL sample covariance, obtained with
the same number of samples and SNR as for the UL, is used as a baseline. For fairness,
all the sample covariances used in this comparison are corrected with the Toeplitzation
procedure outlined in Sect. 4.4.2.

The accuracy of an estimate R̂ of R is evaluated in terms of the mean square error
MSE := E[e2(R, R̂)], where e(·, ·) is a given error metric. In particular, we consider:
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• The normalized Euclidean distance

e(R, R̂) :=
‖R− R̂‖F
‖R‖F

.

• [26, 40] The affine invariant distance in the Riemannian space of PSD matrices

e(R, R̂) := ‖ log(R
1
2 R̂−1R

1
2 )‖F .

• [40] The Grassmanian distance between the principal subspaces Vp,V̂p defined

from R,R̂ by considering their eigenvectors corresponding to the minimum number
p of largest eigenvalues λn satisfying∑p

n=1 λn∑N
n=1 λn

≥ 95%.

The metric is then

e(R, R̂) :=

√√√√ p∑
n=1

γ2
n,

where cos(γn) are the eigenvalues of VH
p V̂p. This metric is particularly meaningful

for the massive MIMO channel estimation problem, where a reliable signal subspace
knowledge plays a crucial role.

The statistical mean is then obtained by Monte-Carlo simulations. For every Monte-
Carlo run, a new APS and SNRest level ∈ [10, 30] (dB) are drawn.

Figure 4.2 compares the algorithms for different numbers of BTS antennas N . The
performance of both proposed algorithms approach that of the DL sample covariance
estimator as the number of constraints in the convex feasibility problem grows with N .
The performance of both algorithms are comparable or better (depending on the metric
and on the number of antennas) than the dictionary-based method, which in principle
can achieve extremely high accuracy given that the dictionary is sufficiently large (here
we used 1000 training samples). However, the proposed algorithms are dictionary-less,
thus not requiting any overhead for dictionary acquisition. Algorithm 1 has the same
very low complexity as the Fourier -based method, but it achieves a much better accuracy.
Compared to Algorithm 1, Algorithm 2 shows better performance, especially in the lowN
region, where the prior information about the positivity of the APS becomes important.
However, the performance gains are achieved at a cost of a higher complexity, which is
due to the fact that the algorithm requires the numerical evaluation of integrals of the
form

∫ π
−π x(θ)dθ.
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(b) Affine invariant distance.

Figure 4.2: Comparison of different DL covariance estimators vs number of BTS antennas
N.
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(c) Principal subspaces distance.

Figure 4.2: Comparison of different DL covariance estimators vs number of BTS antennas
N. (cont.)
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4.6 Extension to 3D Environments and Dual-Polarized An-
tennas

In this section we show that the proposed algorithms can be naturally extended to
channel models and antenna arrays more complex than those described above by simply
selecting an appropriate inner product. The analysis in chapter 2 will play a key role in
the derivation of the extensions.

4.6.1 3D Environment, Unpolarized Antennas

Let us consider the expressions for the channel covariance matrices given in Table 2.1,
by first focusing on the case of unpolarized antennas. Similarly to (4.1), let us further
rewrite the expression of Ru as a system of equations of the form

rum =

∫
Ω
ρ(θ)gum(θ)d2θ m = 1 . . .M, M = 2N2, (4.9)

where rum ∈ R is the mth element of ru := vec(
[
<{Ru} ={Ru}

]
), gum : Ω −→ R is the

mth coordinate function of the corresponding vectorization of the matrix au(θ)au(θ)H ,
and where we recall that Ω := [−π, π]× [0, π].

Let us now consider the Hilbert space H′ of bivariate real functions in L2[Ω] equipped
with the inner product

〈f, g〉 :=

∫
Ω
f(θ)g(θ)d2θ.

By assumption, ρ and gum are members of H′, thus (4.9) can can be written as

rum = 〈ρ, gum〉 m = 1 . . .M,

which is the analog of the expression in (4.2) to 3D environments with unpolarized
antennas. A similar expression obviously holds for the DL. Hence, the proposed algo-
rithms can be directly applied to 3D scenarios, by just changing the evaluation of the
inner products, which now involves a double integral instead of an integral involving
univariate functions.

4.6.2 3D Environment, Dual-Polarized Antennas

To consider the case of dual-polarized antennas, similarly to (4.1), we rewrite the ex-
pression of Ru as a system of equations of the form

rum =

∫
Ω
ρV (θ)guV,m(θ)d2θ +

∫
Ω
ρH(θ)guH,m(θ)d2θ, m = 1 . . .M, M = 2N2, (4.10)
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where rum ∈ R is the mth element of ru := vec(
[
<{Ru} ={Ru}

]
), gu(·),m : Ω −→ R is the

mth coordinate function of the corresponding vectorization of the matrix au(·)(θ)au(·)(θ)H ,

and where we recall that Ω := [−π, π]× [0, π].

Let us consider now the Hilbert space H′′ := L2[Ω] × L2[Ω] of tuples of bivariate real
functions equipped with the inner product

〈(fV , fH), (gV , gH)〉 :=

∫
Ω
fV (θ)gV (θ)d2θ +

∫
Ω
fH(θ)gH(θ)d2θ.

By assumption (ρV , ρH) and (guV,m, g
u
H,m) are members of H′′, thus (4.10) can can be

written as
rum = 〈(ρV , ρH), (guV,m, g

u
H,m)〉 m = 1 . . .M,

which is once again equivalent to the expression (4.2). As a result, by simply redefining
the inner products as shown above, we can also apply the proposed algorithms in 3D
scenarios with dual-polarized antennas.

Example: Figure 4.3 shows 2 examples of APS estimation in a 3D environment with
a dual polarized antenna array. The plots are obtained by applying the algorithm in
Section 4.2.1 to a simplified version of the simulation scenario detailed in Section 4.8.

• Example 4.3a shows that the developed algorithm is able to reconstruct the given
vertical and horizontal APS from the covariance matrix Ru.

• Example 4.3b illustrates that the reconstruction may show artifacts because the
true APS is just one of the possible solutions of the convex feasibility problem
(recall that the inverse problem is ill-posed). Nevertheless, in our simulations,
the APSs reconstructed with the proposed algorithms have typically been accu-
rate enough so that the error of the covariance conversion is small by considering
different metrics. More importantly, we will show soon that the conversion error
has had little influence on the achievable rate of the communication links in the
simulated scenarios.
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(a) Good APS estimation.

Figure 4.3: Examples of V-APS and H-APS estimation
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(b) APS estimation with artifacts.

Figure 4.3: Examples of V-APS and H-APS estimation. (cont.)
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4.7 Implementation for Uniform Planar Array with Pairs
of Cross-Polarized Antennas

A popular BTS array structure adopted in practical massive MIMO applications is the
uniform planar array (UPA) with cross-polarized antennas, defined as a rectangular grid
of identical and equispaced antenna elements, each of them composed of a pair of two
vertically polarized antennas with a polarization slant of ±45◦.

d

d

(1,1) (1,NH)(1,2)

(2,1)

(NV,1) (NV, NH)

(2,2) (2, NH)

Figure 4.4: Array structure of UPA with pairs of X-pol. antennas.

The antenna array structure can be visualized in Figure 4.4, where NV and NH denotes
respectively the number of vertical and horizontal elements, and where d denotes the
horizontal and vertical inter-antenna spacing. Let us denote by x(u, v, 1) the antenna in
position (u, v), u = 1, . . . , NV and v = 1, . . . , NH , with +45◦ polarization slant, and with
u(u, v, 2) the co-located antenna with −45◦ polarization slant. Let us further denote with
aV,1(θ) and aH,1(θ) the vertical and horizontal radiation pattern of the +45◦ polarized
antennas, and with aV,2(θ), aH,2(θ) the vertical and horizontal radiation patters for the
−45◦ polarized antennas.

4.7.1 Structure of the Array Response

By omitting for simplicity the time index and the UL/DL superscripts, let us define the
channel vector h ∈ C2NV NH×1 as follows:

h :=
[
hT1 hT2

]T
,
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where the channel coefficient for antenna x(u, v, k) corresponds to the nth element of
the vector hk ∈ CNV NH×1, with n = (u − 1)NH + v. Under this definition, the array
responses for the vertical and horizontal polarization, including the effect of the radiation
patterns, are given by

aV (θ) :=
[
aTV,1(θ) aTV,2(θ)

]T ∈ C2NV NH×1,

aH(θ) :=
[
aTH,1(θ) aTH,2(θ)

]T ∈ C2NV NH×1,
(4.11)

aV,1(θ) := aV,1(θ)ejΨ(θ) ∈ CNV NH×1,

aV,2(θ) := aV,2(θ)ejΨ(θ) ∈ CNV NH×1,

aH,2(θ) := aH,2(θ)ejΨ(θ) ∈ CNV NH×1,

aH,1(θ) := aH,1(θ)ejΨ(θ) ∈ CNV NH×1,

where we used the shorthand

ejΨ(θ) :=
[
ejΨ1(θ) ejΨ2(θ) . . . ejΨNV NH (θ)

]
,

and where Ψn(θ) = Ψn(θ1, θ2) is the geometry-only dependent phase term of an antenna
in position (u, v), given by:

Ψ(u−1)NH+v(θ) = 2π
d

λ
[(u− 1) cos(θ1) + (v − 1) sin(θ1) sin(θ2)] .

4.7.2 Structure of the Covariance Matrix

With the structure of the array response defined in Section 4.7.1, by considering the
expressions given in Table 2.1, and by assuming without loss of generality that NV ≥ NH ,
the dual-polarized covariance matrix has the following structure:

R =

[
B1 BH

2

B2 B3

]
∈ C2NV NH×2NV NH , (4.12)

where every macro-block Bl ∈ CNV NH×NV NH , l = 1, 2, 3, is Hermitian and it has the
following block structure:

Bl =


Bl,1

Bl,2 Bl,1

Bl,3 Bl,2 Bl,1
...

...
...

. . .

Bl,NV . . . Bl,3 Bl,2 Bl,1

 , (4.13)

where every block Bl,i ∈ CNH×NH , i = 1, . . . NV has identical diagonal entries bli, and
every block Bl,1 is Hermitian Toeplitz.
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4.7.3 Efficient Covariance Vectorization

Because of its particular structure described in Section 4.7.2, it is possible to describe
completely the covariance matrix R by using the blocks Bl,i ∈ CNH×NH , i = 1, . . . NV ,
l = 1, 2, 3. Furthermore, the blocks Bl,1 can be represented by only NH complex num-
bers because of the Hermitian Toeplitz structure, while the blocks Bl,i, i 6= 1, can be
represented by N2

H − (NH − 1) complex numbers because only one diagonal entry is
sufficient. Overall, this means that it is possible to completely represent R with

M ′ = 3(NH + (NV − 1)(N2
H −NH + 1)

complex numbers, or equivalently with

M = 2M ′ = 6(NH + (NV − 1)(N2
H −NH + 1))

real numbers.

By using an appropriate vectorization operation using only the minimum number of
reals that are sufficient to reconstruct the full matrix R, we can reduce the size of the
vectorized covariance r from M = O(N2

VN
2
H) down to M = O(NVN

2
H). As a result, the

algorithm using only the vectorization with minimum dimension has substantially lower
complexity compared to the structure-unaware algorithm presented in Section 4.2.1. We
note that the above representation holds for NV ≥ NH . If NV ≤ NH , it is possible
to find a similar representation that requires M = O(NHN

2
V ) real numbers by simply

exchanging the role of NH and NV in Section 4.7.2.

4.7.4 Improving the Estimation of the UL Covariance Matrix

Similarly to Section 4.4.2, the estimation R̂u of the covariance matrix Ru obtained from
the sample covariance as described in Section 4.3 can be further improved by exploiting
its particular structure. In particular, in this work, we propose to substitute an element
(i, j) of the matrix R̂u with the arithmetic average of all its elements that are assumed to
be identical according to the structure of Ru described in Section 4.7.2. It can be shown
that this operation can be seen as a projection of R̂u onto the subspace of matrices with
the structure described above.

4.8 Simulations with Realistic Channel Model

In this section we evaluate the proposed algorithms by simulating a realistic commu-
nication scenario between a BTS equipped with an 8x4 cross-polarized antenna array
and single antenna UEs in a typical macro-cell environment. We adopt the multipath
channel model described in Section 2.23, thus considering propagation in 3D environ-
ments and the effects of polarized antennas. The results shown here are valid for both
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narrow-band systems and for wide-band OFDM systems. The content of this section
can be summarized as follows:

• First, we describe the simulation scenario, highlighting the connections between the
proposed simulation environment and the standard for MIMO simulations in [15].

• Second, we evaluate the UL/DL spatial covariance conversion error of the proposed
algorithms by considering two common metrics.

• Third, we evaluate the algorithms in terms of the achievable rate when applied
to a simple pilot-based communication scheme with MRC beamforming in the
data transmission phase and subspace-based DL channel estimation in the CSI
acquisition phase. The adopted rate metric takes into account the joint effect of
channel estimation error and DL training overhead. Our results show that the
proposed algorithms can greatly reduce the overheard in the DL.

• Finally, we compare the set-theoretic methods with machine learning approaches
based on neural networks.

4.8.1 Simulated Scenario

To verify the performance of the algorithms, we consider the following simulation sce-
nario, which follows closely the procedure outlined in [15, Section 7.3]:

1. General parameters:
Carrier frequency (fc) 1.8 GHz for UL, 1.9 GHz for DL

System type Narrow-band or wide-band OFDM
BTS 8x4 cross-polarized UPA

dV = dH = λu/2
UEs Single antenna, vertically polarized

Antennas radiation pattern 3GPP [15, Section 7.1], 3D-UMa

2. Channel coefficients are given by the narrow-band multipath model (2.23). This
multipath model corresponds exactly to the 3GPP model given by [15, Eq. 7.3-22]
computed at time t = 0, and by considering the first sub-carrier of an OFDM mod-
ulation. We recall that every sub-carrier experience the same spatial covariance
matrix (Section 2.15), thus, for the purposes of this simulation, considering just
the first sub-carrier is sufficient.

3. Cluster powers αc are drawn uniformly from [0, 1] and further normalized such
that

∑Nc
c=1 αc = 1.

4. The XPRs values Kic are drawn from a log-Normal distribution with parameters
(µXPR, σXPR) = (7, 3)[dB]. This is identical to the 3GPP model [15, Sect. 7.3,
Step 9], with parameters for 3D-UMa, NLOS propagation.
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5. The angles θic ∈ [−π, π] × [0, π], φic ∈ [−π, π] × [0, π] are generated from the
following jointly Gaussian distribution:

fc(θ,φ) = fBTS,c(θ)fUE,c(φ),

fBTS,c(θ) ∼ N (µBTS,σ
2
BTSI),

fUE,c(θ) ∼ N (µUE,σ
2
UEI),

where the clusters means and angular spreads

µBTS := [µBTS,a µBTS,z],

σ2
BTS := [σ2

BTS,a σ2
BTS,z],

µUE := [µUE,a µUE,z],

σ2
UE := [σ2

UE,a σ2
UE,z],

are drawn as follows:

µBTS,a ∼ U
[
−2

3
π,

2

3
π

]
, µUE,a ∼ U

[
−2

3
π,

2

3
π

]
,

µBTS,z ∼ U
[
π

4
,
3

4
π

]
, µUE,z ∼ U

[
π

4
,
3

4
π

]
,

σBTS,a ∼ U [3◦, 5◦] , σUE,a ∼ U [5◦, 10◦] ,

σBTS,z ∼ U [1◦, 3◦] , σUE,z ∼ U [3◦, 5◦] .

Note: the subscripts (·)a and (·)z denote the quantities referring to, respectively,
the azimuth and the zenith of the chosen spherical coordinate system. The quan-
tities defined in degrees (.)◦ should be converted into radians.

We highlight that the proposed algorithms do not require any specific choice of
the distribution fc, given that it is continuous. For this simulation, the above
distributions have been motivated by the following considerations:

• Gaussian or Laplacian distributions are often suggested in the literature [12,
15] to model the angular distribution of NLOS clusters. A possible variation
of the simulated environment would be to include a LOS cluster (with higher
power) with uniform angular distribution.

• The distribution of the cluster spread is chosen to reflect the fact that the
zenith spread is typically smaller than the azimuth spread, and that the BTS
spread is typically smaller than the UE spread. See, for example, the 3GPP
document [15] and the study in [12].

• The independence of θic from φic is introduced with the sole purpose of
simplifying the analytic evaluation of the true covariance matrix.
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• The cluster means are bounded to avoid dealing with the problem of angular
wrapping in case the distributions have a significant tail outside the range
[−π, π] × [0, π], which makes the analytic evaluation of the true covariance
matrix more difficult.

The adopted procedure has some differences with that suggested by the 3GPP
document [15, Sect. 7.3, Step 8]. In particular, here all angles are independently
drawn, so we do not use the 3GPP simplification in which only the cluster mean is
random, while the subpaths angles are defined from a predefined table (which has
been possibly suggested in [15, Sect. 7.3, Step 8] to decrease the computational
complexity of simulations).

6. The angles θ and φ are given in the global coordinate system (GCS). The BTS
array response is given assuming that its local coordinate system (LCS) is aligned
with the GCS. To simulate different UE antenna orientation, the UE antenna
array response is given by assuming that its LCS is a 3D rotation of the GCS
parametrized by (α, β, γ) as described in 3GPP [15, Sect. 5.1.3], where α, β, γ ∼
U
[
0, π6

]
.

7. For the time evolution of the channel we refer to the statistical model outlined in
section 2.1.1, which is further detailed specifically for the adopted channel model
in section 2.4. This is different from that suggested by the 3GPP document [15],
where the time evolution is modeled deterministically as a phase term depending
on the user trajectory and speed. Note: we further assume the random UE antenna
orientation to be a slowly-varying parameter.

8. The pathloss is indirectly modeled by assuming a given system SNR level.

4.8.2 Performance of the Proposed Covariance Conversion Algorithms

The BTS is assumed to have access to estimated UL covariance matrices R̂u obtained
as described in Section 4.3 from Ns = 1000 channel estimates, with a noise level defined

by setting an average per-antenna SNRest to SNRest :=
tr{Ru}
Nσ2

z

= 10 [dB], where N =

2NVNH denotes the number of BTS antennas.

The proposed algorithms are implemented in their variant for 3D environments with
dual-polarized antennas as described in section 4.6.2, and by exploiting the efficient
implementation for UPA described in section 4.7.

The accuracy of an estimate R̂d of Rd is evaluated in terms of the square error SE :=
e2(Rd, R̂d), where e(·, ·) is a given error metric. In particular, we consider as error
metrics the normalized Frobenius norm and the 90% principal subspace distance defined
in section 4.5.2. The true value of Rd is computed from the parameters defined in section
4.8.1 by using 2.24.
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(a) Normalized Frobenius norm

Figure 4.5: Empirical CDF of the covariance conversion error.

We compare the proposed algorithms with an approach that directly estimates the DL
covariance matrix based on downlink pilots. More specifically, in this last approach we
used the same procedure that is used for the estimation of R̂u, including the correction
steps that take into account the structure of the covariance matrix for UPA. The results
are shown in Figure 4.5, which shows the empirical cumulative distribution function
(CDF) of the SE for the two chosen metrics, obtained by drawing independent realiza-
tions of the quantities that are assumed to stay fixed for a WSS window (i.e. by drawing
a new V-APS and H-APS). The simulation confirms that the proposed algorithms are
able to provide an accurate DL estimate by using only UL training, thus it can be used
as an effective solution to the DL channel covariance acquisition problem. Furthermore,
as already shown for the preliminary results for 2D systems given in Section 4.5.2, when
the number of BTS antennas is large, the performance gap between Algorithm 1 and
Algorithm 2 is small.

4.8.3 Application to SU-MIMO pilot-based systems with MRC beam-
forming

In this section we evaluate the performance of the proposed algorithms in terms of the
achievable rate when they are used in following DL SU-MIMO transmission scheme:
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(b) 90% subspace distance

Figure 4.5: Empirical CDF of the covariance conversion error. (cont.)

• The first T < Mc slots of the coherence block length Mc are devoted to CSI
acquisition by applying the conventional LS estimation scheme described in Section
3.1.1, with pilot sequence X =

√
NVH

T , where VT is the matrix of the T strongest

eigenvectors of the estimated DL covariance R̂d, and N = 2NVNH is the number
of BTS antennas.

• The remaining Mc − T slots are then used for data transmission by using a max-

imum ratio combining (MRC) precoder fMRC :=
ĥH

‖ĥ‖
based on the estimated DL

channel ĥ, assumed for simplicity to be fed back from the UE instantaneously and
without quantization. The received signal y ∈ C for a given time slot in the data
transmission scheme can be expressed as follows:

y = (fMRCd)h + w =
ĥH

‖ĥ‖
hd+ w,

where d ∈ C is the input symbol with zero mean and variance σ2
d = N , x := fMRCd

is the transmitted signal with power E[xHx] = N , and w ∼ CN (0, σ2
w) is the

receiver noise.
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It can be verified that this system satisfies a unitary power constraint per transmitted
antenna. More precisely, it satisfies

E[‖X‖2F ] = NMc,

where X ∈ CT×Mc denotes the overall transmitted signal in the entire coherence block.

To evaluate the performance of the above transmission scheme, we consider the concept
of ergodic achievable rate (similar to the notion of channel ergodic capacity [1], but where
the mutual information is constrained by the specific transmission scheme) defined as

R′ := E

[
log2

(
1 +

N

σ2
w

ĥHhhH ĥ

‖ĥ‖2

)]
= E

[
log2

(
1 +

N

σ2
w

‖h‖2 cos2(ξ)

)]
,

where the term cos(ξ) =
|ĥHh|
‖ĥ‖‖h‖

takes into account the channel estimation error. To

include the reduction in rate owing to training, we multiply R′ by the fraction of Mc

that is used for data transmission, obtaining the following rate metric (in [bit/s/Hz]):

R :=

(
Mc − T
Mc

)
E
[
log2

(
1 +

N

σ2
w

‖h‖2 cos2(ξ)

)]
. (4.14)

In the following, we simulate realizations of the V-APS and H-APS as described in
Section 4.8.2. For every realization of the V-APS and H-APS, we estimate the ergodic
achievable rate 4.14 by considering Montecarlo averages of 1,000 samples of channels
and their corresponding estimates. We further average the results over the multiple
realizations of the V-APSs and H-APSs. The noise level is defined by setting an average

per-antenna SNR to SNR :=
tr{Rd}
Nσ2

w

= 10 [dB]. Since the performance of Algorithm 1

and 2 are similar owing to the large number of antennas, and the former algorithm has
much lower complexity, we omit the performance of the latter.

The results are shown in Figure 4.6, where the rate metric 4.14 is computed for a
coherence block length of Mc = 100, 500, 1000 resource blocks, and by letting the training
length T to vary in the interval [1, N ]. We clearly see that it is crucial to decrease the
training overhead by exploiting the information obtained from the estimation of the DL
covariance matrix, especially if the coherence time becomes comparable to the number
of BTS antennas (we recall that for this simulation we have N = 64). In particular,
the results show that the proposed method for UL/DL covariance conversion have no
or negligible performance loss with respect to the use of the DL sample covariance if
applied with the practical transmission scheme analyzed in this section, but without the
additional covariance feedback overhead.
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Figure 4.6: Ergodic achievable rate vs training sequence length.
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Figure 4.6: Ergodic achievable rate vs training sequence length. (cont.)

4.8.4 Comparison with Machine Learning Solutions

In this section we repeat the experiments in Section 4.8.2 and Section 4.8.3 to compare
the performance of the proposed covariance conversion scheme with solutions that rely
on a pre-stored dictionary of covariance matrices (R̂u, R̂d), similar to the approach
proposed in [26,27], already analyzed with the preliminary results in Section 4.5.2.

In particular, we consider two approaches that used L = 300 samples of uplink and
downlink covariance matrices:

• A neural network with one dense hidden layer containing 181 neurons and one
dense output layer containing 8,192 neurons. The standard rectified linear unit
(ReLU) functions are used as the activation functions of the hidden layer, and
linear activation functions are used in the output layer. The network is trained by
concatenating the real and imaginary parts of vectorized versions of the uplink and
downlink covariance matrices. The mean square error is used as the cost function,
and the network is trained with the Adam algorithm in batches of size 100 in 1,000
passes (epochs). In our experiments, changing the depth of the network or the
number of layers have either reduced the performance of the network or resulted
in negligible performance gains.
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• A Wiener filter approach. More precisely, denote the training set by {(xi =
vec(R̂u

i ),ydi = R̂d
i )}i=1,...,L. Given x = vec(R̂u), we use y = vec(R̂d) = Mvec(R̂u)

as the estimate of the DL covariance, where M is a square matrix solving the
following optimization problem:

M ∈ arg min
L∑
i=1

‖Mxi − yi‖22.

For fairness, the covariance matrices obtained with both approaches have been corrected
by projecting those matrices onto the subspace of matrices with the structure induced
by the array geometry (see Section 4.7.4, and note that the the uplink and downlink
covariance matrices have the same structure).

The results for the covariance conversion error are shown in Figure 4.7. The results for
the ergodic achievable rate in case of the SU-MIMO transmission scheme described in
Section 4.8.3 are shown in Figure 4.8, and note that we focus on the interval around
the optimal achievable rate. As we can see from the figures, the set-theoretic method
outperforms the traditional learning schemes without requiring any training sets, which
can be difficult to obtain in real systems.
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Figure 4.7: Empirical CDF of the covariance conversion error.
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Figure 4.7: Empirical CDF of the covariance conversion error. (cont.)
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Figure 4.8: Ergodic achievable rate vs training sequence length.
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Chapter 5

Conclusion

5.1 Discussion of the Results

This thesis gives an in-dept overview of the role of channel correlation in FDD mas-
sive MIMO systems, particularly in relation to the DL CSI acquisition problem, and it
proposes practical techniques for its exploitation.

The analysis in Chapter 3 provides a comprehensive analysis of lest-square (LS) and
minimum mean square error (MMSE) estimation performance in case of correlated chan-
nels, and derives optimal conditions on the pilot sequence design for SU-MIMO systems.
In particular, the importance of the knowledge of the DL spatial covariance matrix is
stressed, as it provides information about the subspace on which the channel vector lies,
which is fundamental for effectively reducing the channel estimation overhead.

Because of its fundamental importance, the structure of the spatial covariance matrix
is analyzed in Chapter 2. Interesting expressions linking the UL and DL covariance
matrices by means of a frequency independent function called angular power spectrum
(APS) are derived, by considering several different channel models that cover narrow-
band and wide-band OFDM systems, realistic propagation with polarization effects,
and different modeling philosophies considering either discrete or continuous scattering
environments. We point out that the expression derived for polarized antenna arrays does
not appear in the literature. Related expressions are instead available for the unpolarized
antennas case, which is however an unrealistic assumption for many practical systems.

In Chapter 4, as an enabling technique for correlation-based CSI estimation techniques,
a novel DL spatial covariance matrix estimation scheme is proposed, and its advantages
with respect to competing schemes is discussed. We believe that the proposed invention
makes a relevant contribution to the general optimization effort that massive MIMO
systems are currently undergoing, in the process towards commercialization.

The concept of Degrees of Freedom (DoF) is also adopted in Chapter 3, to justify from

93
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an Information Theoretical (IT) point of view the benefits of channel correlation in
massive MIMO systems. However, the analysis is incomplete, as it provides an overview
of the fundamental limits of conventional massive MIMO systems just for channels with
independent fading. The performance bound for correlated channels are just briefly
outlined, but a discussion about their achievability from an IT point of view is completely
missing. An interesting future line of research would be to link the effect of channel
estimation to the notion of non-coherent capacity also in case of correlated channels.

A complete performance analysis of the training overhead reduction has been given
just for the LS estimator. An equivalent analysis for the MMSE estimator is missing.
Another important point that has not be considered in this work is the extension of the
results for SU-MIMO to MU-MIMO systems. However, we believe that the methodology
proposed for SU-MIMO in Chapter 3 represents a useful starting point in that direction.

Finally, another interesting research line, that here has just been briefly introduced,
is to further explore the connection between compressed sensing based CSI acquisition
techniques and the spatial correlation of the channel.

5.2 Achievements

The work for this thesis lead to the following achievements:

• A first conference paper [29], accepted at IEEE ICASSP, April 2018.

• A patent, currently undergoing the application process, requested by Huawei China.

• A second conference paper [30], submitted.
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