
POLITECNICO DI TORINO
Master Degree Course in Computer Engineering

Master Degree Thesis

Deep Convolutional Neural
Networks for Document

Classification

Supervisor
prof. Bartolomeo Montrucchio

Candidate
Fabio Ellena
student ID: 231614

Internship Tutor
Docapost BPO

Fabien Aïli

April 2018

Abstract

In the last decades the demand for always faster and more optimized business pro-
cessing management solutions has continuously increased, boosting the growth of
completely digital solutions. This, together with the standardization of documents
and procedures, allowed to reach excellent throughputs. However, in the document
processing system field new challenges are coming regarding the automation of
whole procedures. Standardization allowed to split complex procedures into simple
and repetitive tasks, while digitalization allowed to collect huge quantities of doc-
uments. Many companies are driving the effort to hit the autonomous document
processing in upcoming years, that roughly means to build a system which is able
to mimic the human operator in all the operations that involve the processing of a
document.

In this report, we present LEIA, a software solution that aims to reduce the
document processing time. Our approach is to automate the simple and repetitive
processes. LEIA uses the ultimate findings in the Artificial Intelligence field and
applies them to the whole business process solution. We will describe automatic
annotation and classification study on documents, the LEIA classifier design, and
test on real applications, where we reach almost human performance in real time.

ii

Acknowledgements

At the end of my internship experience, I really would like to thank my manager Fa-
bien Aïli for giving me, in cooperation with EURECOM and Politecnico di Torino,
this amazing opportunity. I would like to thank my tutor Marius Mézerette for all
the patience, the time and the experience he put to guide me in my work.
I would like to thank the supervisors from Politecnico di Torino, Bartolomeo Mon-
trucchio for his supervision and very helpful tips.
It was a pleasure to work with the Innovation team at Docapost: Emmanuel,
Sébastien, Cyril, Amélie. Thanks for all your support and the work done together.

iii

Contents

1 Introduction 1
1.1 Docapost and Innovation Team . 1
1.2 Contents of the thesis . 2

2 Document processing systems 5
2.1 Overview . 5

2.1.1 LEIA . 6
2.2 State of the art . 7

2.2.1 Image classification . 7
2.2.2 Text classification . 10

2.3 Problem analysis and solution proposal 10

3 Hardware environment 13
3.1 Hardware and software environment 13

3.1.1 The machine . 13
3.1.2 Software environment . 14
3.1.3 Scientific stack . 14
3.1.4 Deep learning stack . 15

3.2 Experimental methodology . 15
3.2.1 Experiment reproducibility 16
3.2.2 Resources management . 16
3.2.3 Hyperparameter optimization 17
3.2.4 Measurement methodologies 17

4 Datasets 19
4.1 Dataset biases . 19

4.1.1 Selection bias . 19
4.1.2 Temporal bias . 20
4.1.3 Capture bias . 20
4.1.4 Label bias . 21
4.1.5 Negative set bias . 22

4.2 Test datasets . 22

iv

4.2.1 CIFAR-10 . 22
4.2.2 Tobacco-3482 . 22
4.2.3 ADMINISTRATIVE . 24
4.2.4 ENTERPRISE . 25

4.3 Evaluation . 26

5 Dataset annotation 27
5.1 Problem definition . 27

5.1.1 Time estimation . 28
5.1.2 Solutions . 29

5.2 Annotation by clustering . 30
5.2.1 Feature extraction . 31
5.2.2 Dimensionality reduction . 33
5.2.3 Clustering . 35

5.3 Fine annotation . 37

6 Image preprocessing and data augmentation 43
6.1 Preprocessing . 43

6.1.1 Colors . 43
6.1.2 Resizing . 44
6.1.3 Value scaling . 47

6.2 Data augmentation . 48
6.2.1 Data augmentation and image preprocessing 48
6.2.2 Online data augmentation 49
6.2.3 Image transformations . 49

7 Neural Network Introduction 57
7.1 Feedforward networks . 57

7.1.1 Activations . 57
7.1.2 Loss function . 58

7.2 Training . 59
7.2.1 Back-propagation . 59
7.2.2 Transfer learning . 60

8 Image classification 61
8.1 Convolutional Neural Networks . 61

8.1.1 Convolutions . 61
8.1.2 Pooling . 62

8.2 MobileNet . 63
8.2.1 Architecture . 63
8.2.2 Training . 63

8.3 DenseNet . 64
8.3.1 Architecture . 64

v

8.3.2 Training . 67
8.4 Results . 67

8.4.1 Tobacco . 67
8.4.2 ADMINISTRATIVE . 68
8.4.3 ENTERPRISE . 70

9 Text classification 71
9.0.1 OCR . 71

9.1 FastText . 72
9.1.1 Architecture . 72
9.1.2 Embedding . 72
9.1.3 N-gram features . 72

9.2 Results . 73
9.2.1 ADMINISTRATIVE . 73
9.2.2 ENTERPRISE . 73

10 Ensemble model 75
10.1 Classic ensembles . 75
10.2 Stacked ensembles . 76

10.2.1 Weighted average . 77
10.2.2 Classic classifiers . 77

10.3 Results . 77
10.3.1 Cifar-10 . 78
10.3.2 ADMINISTRATIVE . 78

11 The black box issue 81
11.1 Opening the black box . 81

11.1.1 Interpretability as explaination 81
11.1.2 Grad-CAM . 82
11.1.3 Grad-CAM experiments . 83

12 Deployment 87
12.1 Scenarios . 87
12.2 Mobile deployment . 88

12.2.1 Model conversion . 88
12.2.2 Mobile Application . 89

13 Conclusions and future work 93
13.1 Objectives and findings . 93
13.2 Future work . 94

Bibliography 97

vi

Abbreviations

API Application Programming Interface
CNN Convolutional Neural Network
CPU Central Processing Unit
GPU Graphics Processing Unit
HDD Hard Disk Drive
LSA Latent Semantic Analysis
OCR Optical Character Recognition
OS Operating System
PCA Principal Component Analysis
RAM Random Access Memory
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
SSD Solid State Drive
SVD Singular Value Ddecomposition
SVM Support Vector Machine

vii

Chapter 1

Introduction

This report was written during a six-month internship in the Innovation Team team
of Docapost. All the presented material and results are the outcome of the work
done by Fabio Ellena (the writer) during the internship, in collaboration with the
other team members. All the work presented in this report was made by Fabio
Ellena, except chapter 9. The theoretical chapter 7 uses as references [Goodfellow
et al., 2016][Li et al.,][Lecun et al., 1998].

1.1 Docapost and Innovation Team
Docapost is the digital branch of the group “La Poste”, providing IT services from
2007. Docapost provides its main services in the following areas:

• Business process management

• Document management

• Mobile services

• Digital transformation

At Docapost the Innovation Team is composed of about ten people. Its role is
to enrich the existing offers by proposing technological innovations and uses. The
diversity of the profiles and an agile mode of operation allow the group to be able
to take charge of projects from their creations (Design and graphic charter, the
establishment of the specifications), to the deployment in production. I joined the
Innovation Team for a 6 month internship as a Machine Learning Engineer and I
worked mainly on the development of the classifier module of LEIA.

1

1 – Introduction

1.2 Contents of the thesis
In Chapter 2 we start presenting an overview of the problems related to the doc-
ument processing domain. We continue with a detailled description of the current
state of the art concerning the document classification. We describe the LEIA pro-
gram of Docapost and more in detail the LEIA Classifier, the main topic of this
report. Ultimately the goals of the project are listed.

Chapter 3 describes the hardware and software supplies used for this work. We
continue with the description of the experimental protocols used during this work
and the methodologies to analyze and optimize the results.

In chapter 4 we present in a detailed way all the datasets that we used in this
work, with the objective to make clear to the reader the kind of data involved and
their peculiarities. We describe each dataset briefly, and we show their unique pe-
culiarities. Along with the dataset description, the chapter also treats the common
problems that occur in the definition of a dataset and describes the possible effects
on the classification.

Chapter 5 describes the annotation process for the unlabeled datasets that we
use in this work. We first analyze the main manual solution to the annotation
problem. Then we present a solution that automatically annotates the dataset
with a minor human effort. We show the results of the annotation both regarding
accuracy and required time.

In chapter 6 we firstly show the preprocessing operations that we apply to the
documents before the classification. Then we treat the topic of data augmentation,
with an in-depth analysis of the type of augmentation that fits better the document
datasets.

Chapter 7 covers the theory behind modern Neural Networks. We start with a
logical and mathematical description of what a Neural Network and we show the
role of activation and loss functions. Then we describe the training process and the
idea behind the gradient-based learning and the back-propagation. We conclude
with the description of the transfer learning.

In chapter 8 we start with a description of the characterizing blocks of CNNs,
which are used for all the image classification tasks of this work. We continue
with the description of the MobileNet and DenseNet architectures and the training
protocol we use. To conclude we show the classification results with internal and
external datasets.

Chapter 9 shows the whole pipeline required to classify a document using the
text it contains. We briefly describe the technologies to extract the text and then
we present the building blocks of the text classifier we used. In conclusion, we
present the results on our datasets.

In chapter 10 we explore the techniques that allow creating a model ensemble,
or in other words, a model composed of many models. We conclude presenting the
results achieved by the ensemble on our datasets.

2

1.2 – Contents of the thesis

Chapter 11 presents the problem of the interpretability of deep learning models
for image classification. We continue with an example, where we apply an inter-
pretation technique to our model, and we show the insights that it can provide to
optimize various aspects of the training pipeline.

In chapter 12 we explore the different deployment scenarios, tools, and libraries.
Then we show a real demonstration of the steps needed to deploy a model in a
mobile application. We conclude showing the performances of different models and
with an analysis of the insights that a mobile demonstration can provide to the
model definition.

We conclude our thesis with chapter 13, where we compare our initial objectives
with the obtained results. We reached almost human performances in both accuracy
and time, as demonstrated in chapters 8 and 9. In this chapter we also discuss
the improvement that we plan for the future of LEIA classifier, explaining our
perspectives after our study, implementation, and testing of the system.

3

4

Chapter 2

Document processing
systems

This chapter presents an overview of the problems related to the document process-
ing domain. Then, we will focus on describing the current state of the art, with the
work already done related to this problem. We will try to highlight the similarities
and dissimilarities of our approach respect to the ones used in current document
processing applications. In conclusion, we describe the LEIA program of Docapost
and more in detail the LEIA Classifier, the main topic of this report. Ultimately
the goals of the project are listed.

2.1 Overview
Document processing involves all the operations of a business process that can
be performed on paper-based and electronic documents (e.g., scanned image of a
document). These operations include tasks that go from the acquisition to the con-
version, classification, and information extraction of the document. Such systems
are often part of more complex business processes. Today, many companies decide
to outsource their business process to specific companies to gain flexibility, cost
reduction, performance boost.

In the last decades, two patterns changed the business process management and
his subfields such as document processing: standardization and digitization. Busi-
ness process standardization is the procedure of establishing a “best-practice” of
how to complete a process and making sure that the entire group follows it. Stan-
dardization is often a part of a more significant initiative, such as Business Process
Management. The main benefit of standardizing processes is higher productivity
respect to non-standardized processes.

Standardization involves finding the best way of carrying out a process and then
making sure that the entire organization is aware of the best practice and follows

5

2 – Document processing systems

it. In the domain of document processing, standardization is often applied directly
at the source. For example, when a company has control over the documents, the
most simple and effective solution is to unify the documents’ layout, leading to
simplified processing. This simplification is what happens in some cases with the
public administration, where most documents share a standard layout. At the same
time, the public administration is a negative example in all the situations where
standardization is not implemented.

In a more general case, where the company has no control over documents, it
is still possible to standardize the acquisition methodologies by imposing different
constraints (e.g., only scanned documents).

Digitization is the process that allows for the conversion of physical data like a
document into a digital format. Digitization is of vital importance for all the fol-
lowing operations that involve documents like data processing, storage, and trans-
mission.

Standardization and digitization are the starting point of RPA (Robotic Process
Automation). Many companies are driving the effort to hit the autonomous doc-
ument processing in upcoming years, that roughly means to build a system which
can replicate the actions of a human operator interacting with a user interface.
RPA solutions start from the execution of data entry to the implementation of a
full end-to-end business process. In a first step, autonomous document processing
systems will play the role of virtual assistants for human operators. The idea is to
ease and boost the job of the operator by providing him suggestions.

2.1.1 LEIA
LEIA is an enterprise program of Docapost that aims to automate the document
processing operations of current business processes. The LEIA project builds on
the idea to automate the simple and repetitive processes by using the latest findings
of Artifical Intelligence. The LEIA program is arranged into the following modules:

• CAPTURE: Nowadays people start using their smartphones to take a picture
of a requested document and then send it. This operation creates a new range
of problems, explained in 4.1.3. To alleviate these problems, LEIA delivers to
the clients a mobile application that can be used to take an optimized picture.
Taking a better picture is an incentive for the user because he will be sure
that the document processing system will correctly process his request thanks
to the high-grade picture quality.

• ICR: Almost the entirety of documents is composed of words. The capabil-
ity of extracting text correctly in complicated documents (e.g., handwritten
documents) can unlock a whole new range of services. The first use of the
extracted text is classification, in fact, it is possible to classify a document

6

2.2 – State of the art

exclusively from the text that it contains. More complex uses of the extracted
text involve the EXTRACT and ROBOT modules.

• CLASSIF: Once image and text of a document are available, it is possible to
perform classification. The principal applications of a document classifier are
the automatic distribution and archiving of documents, image indexing, and
document retrieval.

• EXTRACT: Once the text of a document is extracted, it is possible to associate
the text with some fields of interest. We only need to define the fields of
interest, create a dataset of annotated documents, and train a NER (Named
Entity Recognition) engine.

• ROBOT: Document processing systems often generate new documents follow-
ing precise business rules that can be specified programmatically. Once the
rules are defined, and the data are available, this phase can be automated too.

Each module of LEIA is independent and can operate without the other modules.
Interoperation of all the modules is required when a whole document processing
pipeline is required. For example, the CLASSIF module can work without the
two preceding modules because it only needs the image of the document to work.
Nonetheless, to achieve better results, the two preceding modules are needed: the
CAPTURE module improves the image classification because it improves the image
acquisition, while the text extracted with the OCR module can be used to perform
a text classification. The two classifier combined to offer more accurate prediction
respect to the single output of the image classifier.

2.2 State of the art
Here we describe the state of the art respect to document classification, Robotic
process automation tools will not be analyzed since they are not part of this report.
Document classification can be performed using directly the image or the text
extracted from the document. Image-based methods base the prediction on the
local and global features of the document, while text-based techniques rely on the
semantics of the text.

2.2.1 Image classification
Image classification is the task of taking an input image and outputting a cate-
gory or a probability of categories that best describes the image. For humans, this
task of recognition is one of the first skills we learn from the moment we are born
and is one that comes naturally and effortlessly. When we see an image or just
when we look at the world around us, most of the time we are able to immediately

7

2 – Document processing systems

characterize the scene and give each object a label, all without even consciously
noticing. These ability of being able to quickly recognize patterns and adapt to dif-
ferent image environments is not present with machines. In document classification
this approach is preferred because it works directly on digital images, thus avoid-
ing long procedures like the extraction of text. It is important to remember that
not all documents can be classified using the text exclusively and that nowadays
the extraction of text from handwritten documents is not ready for a real-world
deployment.

What we want the classifier to do is to be able to differentiate between all the
images it is given and figure out the unique features that make an ID card an ID
card or that make a RIB a RIB. This is the process that goes on in our minds
subconsciously as well. When we look at a picture of a document, we can classify
it as such if the picture has identifiable features, without the need of reading the
document. Similarly, the computer can perform image classification by extracting
these features from the image and then combining them to make a correct classi-
fication. The principal methods for image-based classification can be grouped into
three categories:

• Template similarity

• Image Descriptors

• Convolutional Neural Networks

Template similarity

This class of methods exploit the layout/structural similarity of the document im-
ages to perform the classification. A first example is the work of [Kochi and Saitoh,
1999], where a person defines a template for each form, and then the identification
is made by template matching. In general, the principal difficulties with template
image matching methodologies arise from the complicated process of choosing tem-
plates, writing rules and validating the system.

Such systems perform well when the document format and the acquisition pro-
cedure are well specified and constrained. On the other hand, this system does not
work anymore when classes become more complex, presenting multiple templates,
and the definition of category becomes more uncertain. Nowadays, image descrip-
tors based systems that do not need a person to specify a feature for each class
substituted layout based systems.

Image Descriptors

To solve the problems of template matching techniques, image descriptors based
methods have been developed. The document structure is not anymore specified
by a person but learned from a model.

8

2.2 – State of the art

A large part of the modern approaches follow the BOW (Bag Of Word) approach,
composed of a 4 step pipeline [Kumar and Doermann, 2013b]:

1. Extraction of local image features: Local feature points, such as SIFT [Lowe,
1999], are widely used due to their description capabilities.

2. Encoding of local image descriptors: BOW was originally used to encode the
feature point’s distribution in a global image representation. Fisher vectors
and VLAD later showed improvement over the BOW [Jégou et al., 2012] [Per-
ronnin et al., 2010].

3. Pooling of encoded descriptors into a global image representation: Spatial
and feature space pooling techniques have shown to provide improvements
[Lazebnik et al., 2006].

4. Training and classification of global image descriptors: Classifiers such as linear
SVM (Support Vector Machines) are widely accepted as the reference regarding
classification performance.

In 2014, [Kumar et al., 2014] proposed a method for document classification that
relies on a codebook of SURF descriptors of the document images, and then it uses
the codebook for the classification. Algorithms based on image descriptors have
shown great result and robustness respect to little variations in images. Nonethe-
less, they show some difficulties when the documents present a high intra-class
variance and a low inter-class variance. To sum up, it is difficult to come up with
handcrafted feature extractors that are specific to document image classification.

Convolutional Neural Networks

Even though image descriptors have shown great potential, they are still based on
handcrafted feature extractors that do not adapt to the data. This defect is the
direct consequence of the fact thatthe algorithm that extracts the features is always
the same, regardless of the data provided.

CNN (Convolutional Neural Networks) have been some of the most influential
innovations in the field of computer vision. 2012 was the first year that neural
networks grew to prominence as Alex Krizhevsky used them to win that year’s
ImageNet competition, dropping the classification error record from 26 to 15, an
astounding improvement at the time [Krizhevsky et al., 2012].

This work builds from recent works regarding CNN usage for document classifi-
cation [Kang et al., 2014], [Harley et al., 2015], [Afzal et al., 2017]. The first work
where CNNs have been used in the document classification task is [Kang et al.,
2014]. In this work, the author motivates the use of CNN for classifying uncon-
strained documents with the fact that CNNs automatically learn the hierarchical

9

2 – Document processing systems

layout features of a class. This approach managed to outperform methods based
on structural similarity of documents images from the Tobacco-3482 dataset4.2.2.

One year later, [Harley et al., 2015] introduced the RVL-CDIP dataset which pro-
vides a large-scale dataset for document classification and allows for training deep
CNNs from scratch, obtaining better results than hand-crafted alternatives. Ex-
periments also showed that given sufficient training data, enforcing region-specific
feature-learning is unnecessary.

More recently [Afzal et al., 2017] showed a great improvement in the accuracy
by applying deeper models and transfer learning from the domain of real-world
images to the domain of document images, thus making it possible to use deep
CNN architectures even with limited training data.

To conclude, CNN generates highly effective compact description, largely outper-
forming earlier SIFT-based encoding schemes from the classification performance
and run-time point of view [Sicre et al., 2017]. The greatest disadvantage of CNN
is that the training process is time-consuming, even using last generation GPUs.
Nonetheless, the improvement justifies this additional expenses. Another disad-
vantage of CNN is that they are difficult to inspect, thus making difficult for the
developers to debug them and for persons to trust them. This aspect is treated in
chapter 11.

2.2.2 Text classification
Text classification is a fundamental task in the domain of Natural Language Pro-
cessing, with applications in domains like recommender systems, information re-
trieval, ranking and document classification [Pang and Lee, 2008].

Efficient and straightforward models like linear classifiers are often used as solid
baselines for sentence classification problems [Joachims, 1998]. Despite their sim-
plicity, they often obtain state of the art performances if the right features are used,
like a BOW representation of the document. Recently, models based on convolu-
tional or recurrent neural networks have become increasingly popular in this field
[Kim, 2014] [Zhang et al., 2015] [Conneau et al., 2016]. All these models have shown
great performances, often sacrificing prediction time in favor of slight improvements
in accuracy.

Another work, FastText [Joulin et al., 2016], has shown that linear models based
on efficient word representation learning [Mikolov et al., 2013a] [Levy et al., 2015]
can train on large datasets in a short time while achieving performance similar to
state of the art models that takes much more time for training.

2.3 Problem analysis and solution proposal
The LEIA system, being a solution thought to be delivered to multiple clients and
use cases, has to take care of the many different possible scenarios.

10

2.3 – Problem analysis and solution proposal

Nowadays we live in the era of big data, but the reality is that most of the data
is collected in such a way that its exploitation is difficult. In a machine learning
scenario, high quality data is characterized by the presence of fine grained labels.
Unfortunately, the majority of data is collected without associated labels, or with
too general ones to be useful. In this optic, one of our missions is to collaborate
actively with clients and propose solutions that makes the big data lakes useful
again. Therefore, the first part of the project is the definition of an annotation
pipeline that accelarates the annotation of large datasets. The annotation process is
composed of different steps that exploits the characterizing properties of documents
to first cluster them and then annotate them.

Once an annotated dataset is available, we can proceed with the document clas-
sification, which uses both the image and the text of the documents. Image classifi-
cation allows classifying documents analyzing their layout, while text classification
operates on the semantic level.

We will not study any image classification method based on image descriptors,
whereas we intend to use more modern approaches based on CNN. As we saw in
the scientific literature, CNN are capable of modeling complex documents with an
unconstrained structure without requiring a manual tuning of the model for making
it work with different datasets.

For what concerns the image classification, the main problems to be solved
are related to the lack of documents due to privacy issues and the capture bias
4.1.3 present in our training datasets. Our solution will be based on a model
able to learn complex datasets with a limited number of documents and will learn
robust representation that will be able to transfer well on documents captured with
different taking conditions.

Regarding text classification, we will use recent techniques such as FastText
that have shown good performances both in prediction accuracy and time. The
text will be extracted using Tesseract [Smith, 2007], which is a common tool for
OCR and is used every day in a multitude of applications. After the definition of
the classification model, we define an ensemble model that increases the prediction
accuracy by combining the two base models.

A third part will be the deploy of the model in a mobile application for demon-
stration purposes of the capability of the system in a constrained environment.

Summing up, our solution proposal point to have those five main features:

• Fast annotation pipeline: For customers with non annotated datasets and
without the expertise of this domain, it is essential to provide a solution that
accelerates the annotation of the dataset to then start in a short time the
definition of the model.

• Minimum human involvement: Once a model architecture is defined, it should
be easy to adapt it to different datasets. This means that the model should
adapt to the data, instead of relying on hand-engineered features, which are

11

2 – Document processing systems

not directly transferable to new types of documents.

• Reach human performances: We want to create a system that is ideally able to
substitute a human operator in classifying documents. A client is not willing
to invest money, time and persons in changing a working system if the gain is
not significant. In this optic, a system that is subject to failure is not ready
to be used in a production scenario.

• Non-intrusive approach: The classifier should be able to work with the current
documents submitted to a document processing system, without depending
on specific format or constraints that are not currently in place. This also
facilitates the integration of the system in already existing applications, with
reduced costs of integration for the client.

• Real-time prediction: The model should be able to reach human performances
not only regarding the accuracy but also the time. This requirement is even
more important in the first phase, where models are meant to assist the human
operator.

As we will present in this thesis, we reached all the points. Having seen an
overview of the actual state of the art on document classification, next chapter will
describe in a detailed way the datasets used for the training.

12

Chapter 3

Hardware environment

This chapter contains a detailed description of all hardware and software supplies
we used during the internship. In particular, we describe the machine that we
used for development, evaluation, and testing. Moreover, in this chapter, we the
experimental protocols used during this work and the methodologies to analyze and
optimize the results.

3.1 Hardware and software environment
What follows is a description of the machine we used, from both the hardware and
software point of view.

3.1.1 The machine
All our work has been done on a machine of the Innovation Team at Docapost,
called YODA. This machine is comparable to a high-end machine for video render-
ing/gaming applications. The machine is composed of:

1. HDD: 12TB

2. SSD: 512 GB

3. RAM: 64 GB

4. CPU: Intel® Xeon® E5-1620 v4 3.50 GHz

5. GPU: NVIDIA GTX 1080 Ti: 11.3 TFLOPs, 11GB VRAM

Another machine we used is the iPad Air, iPhone 5 and iPhone 6 for testing the
mobile applications.

13

3 – Hardware environment

3.1.2 Software environment

During the internship, YODA has been the only suitable machine for the develop-
ment of deep learning models and has been used by three members of the Innovation
Team. Apart from the physical access, the machine can be accessed via ssh or using
the Jupyter Hub interface. While the ssh connection is suitable for maintenance
tasks, the whole development is performed using the Jupyter Hub Interface because
it provides a more comfortable interface.

3.1.3 Scientific stack

The OS is Ubuntu, the Linux Operating System. The major components of the
project are Python and Jupyter. Python is a general-purpose programming lan-
guage, while Jupyter is a server-client application that allows editing and running
notebook documents via a web browser. Jupyter Notebooks are documents that
contain both code (e.g., python) and rich text elements (paragraph, equations,
figures, links). Notebook documents are powerful because they are bot human-
readable documents that contain descriptions and results, as well as executable
documents which can be run to perform computations.

All the work is based on Python 3.5.2, which has been chosen because it is
the language of choice of the deep learning community and because it has solid
scientific libraries. This allows us to experiment solutions and iterate extremely
fast. It is to be noted that almost all Deep Learning and scientific libraries use
python exclusively as an interface, in fact, the majority of the code is written in C,
C++, and Fortran for speed. The main Python libraries used in this work are:

1. SciPy [McKinney, 2010]: A Python-based ecosystem of open-source software
for mathematics, science, and engineering.

2. NumPy [van der Walt et al., 2011]: The fundamental computing library of
Python. It adds support for large, multi-dimensional arrays and matrices,
along with a large collection of high-level mathematical routines.

3. Scikit-learn [Pedregosa et al., 2011]: A machine learning library. It contains
various classification, regression, and clustering algorithms and is designed to
interoperate with NumPy and SciPy.

4. Pandas [McKinney, 2010]: A data manipulation and analysis library. In par-
ticular, it offers an interface to organize and manipulate table and time series.

5. Matplotlib [Hunter, 2007]: A library to plot 2D graphics.

14

3.2 – Experimental methodology

3.1.4 Deep learning stack
Deep learning libraries are particular and merit their section. Even though most
of them allows to perform the same set of operations, each library has its strong
points. We use Keras and TensorFlow for the research part, while we use MXNet
for deploying the models on the servers. For what concerns the mobile scenario, we
use CoreML for iOS and Tensorflow for Android.

Tensorflow

TensorFlow is an open source software library for numerical computation that uses
data flow graphs. Nodes in the graph represent mathematical operations, while the
graph edges represent the (tensors) transferred between them. Tensorflow allows
deploying computation to one or more CPUs or GPUs in a desktop, server, or
mobile device with a single API.

Keras

Keras is a high-level neural networks interface compatible with the TensorFlow and
CNTK backends. It was developed with a focus on facilitating fast experimentation.
Keras was chosen because it is the “lingua franca” of deep learning, meaning that
we can define a model with keras and then convert it to different frameworks that
may work better in production.

MXNet

MXNet is a modern open-source deep learning framework. The strong points of
MXNet are performances and scalability. MXNet is supported by principal public
cloud providers, and it is the deep learning framework of choice at AWS. For us
MXNet is the best framework for production because networks are fast and consume
fewer resources.

CoreML

CoreML is the machine learning framework that allows iOS 11 applications to run
machine learning models locally. Core ML is optimized for on-device performance,
minimum memory footprint and limited power consumption.

3.2 Experimental methodology
In this section, we will explain the experimental methodology we followed to make
sure that the state, setup and experimental conditions were the same on all models

15

3 – Hardware environment

Figure 3.1: Keras software and hardware stack, adopted from [Chollet, 2017]

used. Moreover, we will present the strategy and mathematical means we used for
all measures performed in our study.

3.2.1 Experiment reproducibility
Experiment reproducibility is essential because it allows tracking and replicating
results, enabling more detailled analysis on the reasons of success and failure of a
model, while guaranteeing a proof of work for the client. In a machine learning
scenario characterized from its iterativeness, full reproducibility is achieved only if
all the steps are constantly tracked. To be more precise, it is necessary “tracking
the steps, dependencies between the steps, dependencies between the code and data
files and all code running arguments”[Shridhar, 2017].

On the contrary, in the exploratory phase such a protocol is not necessary and
it would eventually slows the whole process without clear advantages. Nonetheless,
during the definition of the model we may need reproducibility for a limited time.
These moments includes the situations where we have to run experiments to find
good hyperparameter values for our pipeline. In such situations all things but the
target hyperparameter should be fixed, therefore it is not necessary to keep track
of anything.

A parameter that we should always take care in a deep learning model is the
seed, which controls all the random components of the model. To fix the seed we
have to set a seed for the deep learning framework, Numpy, and Python. In this
way, we can be sure that all operations that use a random state will be executed
under the same conditions.

3.2.2 Resources management
In deep learning experiments, we often use all the available resources, meaning
that all CPU cores and the full power of the GPU should be dedicated to a single
experiment. When this is not possible, we have seen that the training time does not
increase when the CPU is used for other tasks that are not particularly intensive.

16

3.2 – Experimental methodology

An important thing to note is that when the data augmentation is done on the fly,
it is important to dedicate all the cores for this tasks because there is the risk to
starve the GPU.

For what concerns the GPU, it should be used only by a process at a time. We
tried to run multiple models at the same time, and we have seen that the GPU
scheduling is not predictable, and it is possible that a model starves the other
one. Moreover, we have noted that when multiple models run at the same time
the performances decrease severely for both of them, making it faster to train the
models sequentially.

3.2.3 Hyperparameter optimization
After the network is defined we proceed with the definition of the hyperparameters
of the neural network and the data augmentation transformations.

For what concerns the data augmentation, the transformations are checked man-
ually. The verification is achieved by generating a batch of augmented images before
the training phase and modifying the hyperparameters accordingly with the aug-
mentation desired. To do this a complete knowledge of the augmentation procedure
is required.

Regarding the network hyperparameters, we usually start with the default ones.
After some experiments, we can choose manually reasonable ranges for the hy-
perparameters. It is important to note that we can make this manual adjustment
because we start with good models that usually have built-in mechanisms to prevent
overfitting.

3.2.4 Measurement methodologies
During our internship, we faced many different use cases, for which was impossible
to apply always the same experimental protocol, especially regarding the number
of measures. This was because the datasets were very dynamic, the training of
a network required much time, and in some cases having many measures was not
important. For what concerns the used metric, we always used the accuracy mea-
sure, knowing that it is ill-defined for imbalanced datasets. We decided to use only
the accuracy because after an initial phase we have noted that our models were
performing well on all classes, also the less frequent ones, making the use of more
complex evaluation protocols not essential for our work.

Regarding the dataset split, we always used a 70-20-10 split for training, evalu-
ation, and testing. The split has been performed with the Stratified Oversampling,
which enforce some guarantees over the distribution of classes in each split. This
was particularly important because of the imbalanced datasets.

To conclude this section, we want to note that this work has been mainly ex-
ploratory, with the intention of creating a more refined evaluation pipeline later.

17

18

Chapter 4

Datasets

The objective of this chapter is to presents in a detailed way all the datasets that are
used in this work, with the objective to make clear to the reader the kind of data
involved and their peculiarities. We describe each dataset briefly, and we show
their unique peculiarities. Along with the dataset description, the chapter also
treats the common problems that occur in the definition of a dataset and describes
the possible effects on the classification.

4.1 Dataset biases
The visual world is so complex that any finite set of samples ends up describing only
some of its aspects. Moreover, in the case the samples are collected for a particular
task, they will unavoidably cover just some specific visual region. Consequently, it
is not surprising that pre-defined image collections, like existing computer vision
datasets, present such specific bias to be easily recognizable [Torralba and Efros,
2011]. The main causes have been named in [Torralba and Efros, 2011][Søgaard
et al., 2014].

4.1.1 Selection bias
Selection bias can be defined as the bias introduced by the selection of datapoints.
Whenever proper randomization is not achieved, we can state that the subset se-
lected is not representative of the real distribution.

The selection bias is usually the result of a manual selection of the datapoints.
In the case of images, a human operator will always generate a bias if not forced to
do otherwise because he will choose the images that best represent each class, thus
excluding specific images. The primary solution to selection bias is to sample the
datapoints automatically, possibly from multiple sources. This operation forces the
annotator to label images that may represent corner cases of the data distribution
that otherwise would be ignored.

19

4 – Datasets

4.1.2 Temporal bias
The temporal bias is related to changes in the datapoint distribution due to the
temporal difference between the training dataset and the deploy conditions. In our
case, such differences can be at the level of class frequencies, at the document level,
or at the capture level. In the case of class frequencies, the problem is related
to the portion of documents that are part of specific classes. When exposed to
class imbalance, models learn to predict better frequent classes, and when they are
uncertain, the most common class often wins. Class distribution can be useful when
it represents the real document distribution, but when it changes it contributes to
increasing the portion of misclassified documents. A possible solution would be to
balance the dataset, but this is not always possible.

Regarding the temporal bias at the level of documents, it is the consequence of
modifications of formats of documents. Whenever a new format is introduced, it is
possible that the model, trained with older documents, misclassifies it. The problem
stands again in the distribution of documents, but now we should consider the
format, related to the emission period, of a document. The majority of documents
used in a dataset are old, while only a minor part is recent. This is in complete
contrast with the deploy conditions, where most documents are recent, and only a
portion have an old format. Again, the solution is to rebalance the dataset, which
requires a considerable effort.

After documents, also capturing conditions change over time. In this case, the
solution would be to rebalance the dataset with images captured in the new condi-
tions.

(a) Old Italian ID card (b) New Italian ID card

Figure 4.1: Temporal bias due to a change of format

4.1.3 Capture bias
The capture bias is related to how an image is acquired both regarding the used
device and the capturing conditions, which includes the point of view and the

20

4.1 – Dataset biases

lighting conditions. Photographs appear to suffer considerably from the capture
bias. The most well-known bias is that the object is almost always in the center of
the images.

When we analyze capture bias in the document domain, we can describe the
phenomenon even more precisely. Historically, copies of documents have been cre-
ated with a copy machine. Copy machines produces exact copies of the documents,
thanks to uniform lightning and the flattening of the original document. The main
biases were respect to the position of the documents. A4 documents showed slight
rotation and translations, while smaller documents like ID cards and passports
were located in random positions of an A4 paper. Document processing systems
were often designed to deal exclusively with these type of documents, where the
capturing conditions were consistent.

Nowadays, with the evolution of technology and the digitization of administra-
tive services, people start to send electronically all the documents. Dealing with
digital images have brought different problems. The first one is that documents are
not anymore constrained to the A4 format, this means that it is possible to receive
an image entirely filled by a document like a passport. The second problem is that
images are not anymore grayscale, but colored.

If the digitization of the document is performed with a scanner, there are no
problems regarding the quality of the image. Nonetheless, nowadays smartphones
are pervasive, and persons start to send pictures of documents. This creates a
new range of problems, related to the capturing device and capturing conditions.
Regarding the capturing conditions, usually, the document is put on a plain surface,
like a table. This means that the image is often surrounded by a colored background,
the lightning is not uniform, and shadows are present. For what concerns the
capturing device, the quality is always worse than that of a scanner, and may
present imbalanced colors, blurring, and noise.

Current datasets contain mostly old documents, meaning that they are composed
mostly of grayscale and color documents digitized with a scanner. This distribution
is in contrast with the current documents that are submitted, which leads to a
worsening in classification performances.

4.1.4 Label bias
The category or label bias is the consequence of the fact that visual semantic cat-
egories are often poorly defined: similar images may be annotated with different
class while, due to the in-class variability, the same class can be assigned to visually
different images. Label bias is particularly evident when the annotation process is
performed by a single person because the annotator uses its criteria to label ambigu-
ous images and these annotation defects have repercussions on the whole dataset.
A possible way to reduce this bias constitutes in aggregating the annotation per-
formed by different persons, thus obtaining a more robust model. Even though

21

4 – Datasets

majority voting reduces the label bias, there are some cases where the bias is not
personal and affects large groups of persons. To correct these biases, guidelines are
often created and establish some ground truth. For this reasons guidelines should
be clear and undebatable, otherwise, they could introduce even more substantial
biases.

4.1.5 Negative set bias
Datasets that only includes the categories they are interested in might not work
in a deployment scenario because they are not modeling the rest of the visual
world. One remedy is to add negatives from other datasets. Adding negatives is
fundamental especially from a deployment point of view because it allows discarding
all the documents that are not part of the target categories. Without a negative
category, the model would be forced to randomly pick a category as the prediction,
with possibly undesired consequences.

4.2 Test datasets

4.2.1 CIFAR-10
CIFAR-10 [Krizhevsky et al.,] is a public dataset that consists of 60,000 32 × 32
color images in 10 classes, with 6,000 images per class. There are 50,000 training
images and 10,000 test images. The dataset categories are airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck.

The quality of the dataset is very high: the classes are mutually exclusive, they
are balanced, and the images are not ambiguous. Other relevant characteristics
of the dataset are the number of images, which is big enough to run meaningful
experiments, and the size of the images is little, meaning that experiments do not
require expensive resources. For these reasons we use this dataset as a benchmark
for the ensemble models.

4.2.2 Tobacco-3482
The Tobacco-3482 dataset [Kumar and Doermann, 2013a] is a sample of 3,482
images from the IIT CDIP Test Collection [Lewis et al., 2006], also known as the
Tobacco litigation dataset. The original collection contains over seven million high-
resolution images of scanned documents, collected from public records of lawsuits
against American tobacco companies.

The Tobacco-3482 dataset was used in a number of related papers [Kumar and
Doermann, 2013a] [Kumar et al., 2014] [Kang et al., 2014] [Harley et al., 2015]
[Afzal et al., 2017]. Each image has one of ten labels. The categories are highly
imbalanced, with the same distribution present in the full dataset.

22

4.2 – Test datasets

The label classes in the dataset are advertisement, email, form, letter, memo,
news, note, report, resume, scientific.

Figure 4.2: Class imbalance of the Tobacco-3482 dataset

Figure 4.3: Samples of the Tobacco-3482 dataset

In this work, we use the Tobacco-3482 dataset to compare different methods
for document classification. Images in categories such as Advertisement, Resume,

23

4 – Datasets

Report, News exhibit high variance in structure, while images of different categories
such as Report and Scientific may have a similar structure. Another important
characteristic is its limited size, especially in the testing scenario, where only 100
images per category are used during the training phase. All these characteristics
make the Tobacco-3482 an excellent dataset to evaluate image classifiers that can
generalize well with small and complex datasets.

Regarding the experiment setting, we follow the evaluation scheme that was
also used in [Afzal et al., 2017] to have comparable results. We randomly create
the dataset partitions with the constraints that 100 images per class are used for
training while the rest are for testing. The training dataset is again split with
an 80/20 ratio so that 20% of the training data are used for validation. Each
experiment is repeated ten times with different dataset partitions, and the results
are averaged. This is done to have a robust estimate because the dataset is small
and good performances may be due to chance.

4.2.3 ADMINISTRATIVE
ADMINISTRATIVE is an internal dataset that contains the documents from a
large public administration that processes a multitude of personal documents. The
document categories are very extensive and vary from ID cards to pay slips, elec-
tricity factures, marriage certificates and so on. The dataset can be seen as public
knowledge of administration documents. As expected from such a comprehensive
dataset, some classes contain documents that vary a lot in structure. This is mostly
due to the absence of standards in the public administration. At the same time,
some classes are very similar.

A more serious problem is due to the class imbalance, which is way more pro-
nounced than in the other datasets we use. In the dataset there are classes with
more than 10,000 documents, while other classes have less than 10 documents.
Such a high ratio is critical for the training of a model because it will tend to learn
features useful to classify the more frequent classes.

AVIS D’IMPOT

The “Avis d’impot” is a document for attesting the income declared by a person
This category corresponds to a set of specific documents, but due to a lack of
standardization, there are different formats, which have been released from different
offices at different times. Splitting the “Avis d’impot” category is useful for two
main reasons. The first one is related to the business, in fact having a more fine-
grained division of categories can empower the product, providing more powerful
features to the client.

The second one is related to the development of the model, in fact during the
training, the model focuses on large classes because they are the largest contributor

24

4.2 – Test datasets

Figure 4.4: Class distribution of the Administrative dataset

to the loss. Dividing large classes allows the model to focus on all classes. Moreover,
large classes are usually composed of a multitude of different documents, which the
model can learn easier if divided into specific classes.

RIB

RIB (Relevé d’Identité Bancaire) is a document that describes a French bank ac-
count. It is one of the most requested documents by administration offices. Thus
it is one of the largest categories of the ADMINISTRATIVE dataset. The category
is essentially composed of the documents released by the banks, which are different
from bank to bank. To facilitate the classification operation and for future ini-
tiatives, the RIB class has been divided into subclasses associated to the different
banks.

4.2.4 ENTERPRISE
ENTERPRISE is an internal dataset that contains the documents necessary for
the opening of a French activity. The documents are printed forms with a fixed
structure.

The peculiarity of this dataset is the extremely low intraclass variance, given
from the fact that the forms have a static structure. Given a class, the form is
always the same, and the only differences are the information written in the fields.
The second peculiarity is the low interclass variance. This is given from the fact

25

4 – Datasets

that the forms share a common template, with few elements differenciating the
different classes.

As a result, this is an exceptional dataset because once the model learns how to
differentiate the classes, then it is easy to verify if an item is part of a class or not.

Figure 4.5: Class imbalance of the ENTERPRISE dataset

4.3 Evaluation
A major consequence of the biases in datasets is that the evaluation of a model
should be reconsidered. If our data was selected in a biased way, does significance
over data points make much sense? In practice, no.

If it is possible to evaluate Capture bias by performing different transforma-
tions on the evaluation images, it is impossible to correct the other biases once
the dataset is defined. Thus the most practical and straightforward way is to cor-
rect the problem at the source, creating an unbiased dataset, which resembles the
deployment scenario.

26

Chapter 5

Dataset annotation

This chapter describes the annotation process for the unlabeled datasets that we
use in this work. We first analyze the main manual solution to the annotation
problem. Then we present a solution that automatically annotates the dataset
with a minor human effort. We show the results of the annotation both regarding
accuracy and required time.

5.1 Problem definition
It is well known that in all machine learning projects, the single most time-consuming
operation is represented by the annotation of the dataset. The annotation process
is time-consuming because a person needs to go through every document and label
it manually. The annotation is one of the processes that can not be delegated to a
machine because it consists in the definition of an oracle.

The main difficulties related to the annotation are the same that makes a prob-
lem difficult for a model:

• Number of features: A large number of features is indeed a problem for both
a human annotator and a machine. If a person is simply not able to look at
the same time to tens of features, a model has no problem in finding relations
between them. At the same time models do not work well with too many
features, and the problem is often addressed as the curse of dimensionality.
When the data is an image, features have to be extracted and persons have
shown to be extremely good at this task. On the other side, the feature
extraction is one of the most complex tasks in computer vision. It is interesting
to note that when the right features are extracted, also a linear model is
sufficient for a correct classification.

• Number of classes: Similarly with the number of features, a human finds very
difficult to label a dataset with too many classes. One problem linked to the

27

5 – Dataset annotation

number of labels is the creation of an annotation interface, which becomes
more complex and slow with the increase of classes.

• Inter-class variance: A low inter-class variance means that different categories
show similar documents. To perform a correct annotation, a human person
has to spend some extra time to identify the distinguishing feature.

• Intra-class variance: A high intra-class variance means that entirely different
documents are part of the same category. For both a human annotator and
a model, it becomes more difficult to associate many different features to the
same category. Humans, in this case, have an advantage because often the
categories are defined semantically, and often the annotator can grasp the
semantic features that link many different documents to the same category.

5.1.1 Time estimation

As mentioned above, the main problem of the annotation process is that it requires
much time. This represents an important problem from both the economic and
managerial point of view. Economically, a lengthy process requires more money,
while from the project management point of view the annotation process represents
a bottleneck because, without an annotated dataset, the development of the model
cannot proceed.

This makes essential to be able to estimate the time required for an annotation
because in this way the resources can be allocated more efficiently and the cost can
be estimated correctly. As an example, we used the ADMINISTRATIVE dataset,
which consists of 60,000 images and it is considered difficult to annotate because it
shows most of the characteristics described in 5.1. The definition of the difficulty
is essential because it has a multiplicative impact on the annotation time.

Some documents are easy to annotate, while others are more complex. We cal-
culated that most of the document can be annotated on average in 5 seconds. At
this moment we can calculate the time required for the annotation of the ADMIN-
ISTRATIVE dataset:

60,000× 5
3,600 = 83 person hours

If a person spends 7 hours a day annotating the dataset, it will take 12 working
days to annotate the dataset. This simply means that if a client wants a solution
and the dataset is not annotated, it may take weeks for the annotation if only one
person is employed for the annotation. This effort should be made for each new
dataset, which means large costs and working hours spent on a trivial task.

28

5.1 – Problem definition

5.1.2 Solutions
Reducing annotation time is essential for both industry and research communities,
and large effort has been made to reduce the required time.To lower costs and time
there are different techniques.

Crowdsourcing

The whole annotation process can be delegated to crowdsourcing internet market-
places like Amazon Mechanical Turk. These services are enabling individuals and
businesses to coordinate the use of human persons to perform tasks that computers
are currently unable to do.

The main advantages of these solutions are the following ones:

• Time: The time to annotate the whole dataset can be reduced simply using
more annotators.

• Cost: Crowdsourcing marketplaces offer costs per annotation that are way
lower than the average salary of a developer.

• Bias: This is linked to the fact that many annotators are used for the anno-
tation. This allows to reduce the label bias 4.1.4 of the dataset because many
persons with different biases are used for the annotation task. This is exactly
like using an ensemble of models for the classification.

Among the disadvantages we have:

1. Sensible data: When the dataset contains sensible data that the client is not
willing to share, the crowdsourcing approach is not possible because we have
no control over the annotators.

2. Quality: Whenever we outsource the annotation we take the risk that some
annotations may be wrong. With crowdsource annotation services, persons
are paid per annotation, which means that quality is often traded for quantity.
Performing checks on the annotations is possible but it is a slow process with.

3. No Insights: Most of the times the annotation process is necessary to make
the team learn useful insights about the data that later can be used to define
the model. If the annotation process is delegated, this learning process is lost.

Ad hoc interface

Creating an optimized annotation interface can speed up the whole annotation
time. The main techniques used to improve the annotation speed are:

29

5 – Dataset annotation

• Automatic queueing: this is the minimum requirement of an annotation in-
terface. Passing instantly from an image to the next one saves a considerable
amount of time respect to opening each image one at a time.

• Shortcuts: they allow to speed up the annotation, but they can be used only
when the number of classes is limited.

• Autocompletion: this is necessary in cases where the number of classes is
high, or when the categories names are long. A good autocompletion can save
seconds for each annotation.

Automation

Not all documents are difficult to annotate, in fact, most of them are very similar.
In an annotation system without any automation mechanism, the annotator would
lose time annotating very similar images and in cases where the intra-class variance
is low, this results in a huge waste of time. All the systems that involve some
automation may result in a small number of the wrong annotation, but this is often
a trade-off that persons are willing to make because automation allows cutting the
annotation time heavily. Automated annotation systems are usually composed of
multiple phases. In the first phase, the human annotator annotates a fraction of
the dataset. This small dataset is used to train a model that then performs the
predictions for the remaining documents. At this point, it is possible to use the
predictions as suggestions for the human annotator, in this way an interface can give
the annotator the possibility to use the suggested label or to modify the annotation.
This system can be seen as a smart interface that allows cutting annotation costs
by showing suggestions to the annotator.

Another more powerful approach is to accept the predictions above a given
confidence threshold automatically. These techniques allow reducing by a big factor
the dataset to be annotated manually. We follow this second approach because our
primary interest is the reduction of the annotation time.

5.2 Annotation by clustering
As seen in 5.1, automating the annotation task is difficult because the labels are not
available. Our approach to speed up the annotation process is to reduce the number
of documents to be annotated. We achieve this by clustering the documents of the
same class together, thus avoiding to annotate the documents singularly. For the
ADMINISTRATIVE dataset the final goal is to reduce the number of documents
to annotate from 60,000 to 68, where 68 is the number of categories of the dataset.

30

5.2 – Annotation by clustering

5.2.1 Feature extraction
With both text and images we cannot use the raw features for the clustering phase
because they do not summarize the content of the documents. With images, we
have millions of pixels that taken singularly do not show any meaningful pattern.
With text we have a the raw features that are the character, but they need to be
organized and cleaned to communicate any useful information.

For this reason it is necessary to extract meaningful features from the documents,
with which we can perform the clustering.

Images

A color image has a number of features equal to 3×number of pixels. For reference,
an A4 paper scanned with a 300 DPI resolution generates an image of 2480 ×
3508 pixels, which corresponds to 26 millions of features. In the Deep learning
community, two standard sizes for images are 224 × 224 and 299 × 299. With the
goal of reducing the image size, while preserving the image details, we choose the
larger size. At this point an image counts

3× 299× 299 = 268,203 features

At this points, it is clear that it is impossible to use the raw features of an image
because of their dimensionality.

The second reason for which we cannot use the raw features is the fact that
the majority of clustering algorithms are built on the hypothesis that features are
statistically independent. With images, this condition is not met because nearly
located pixels show high correlation. This represents an even bigger problem that
the mere large number of features. To facilitate the clustering operation, it is
necessary to extract higher level features from the images, which will be used later
as the input of the clustering algorithm.nThe ideal features should be high level
and rotation, scale, and position invariant, in this way images which are an affine
transformation of each other would have almost identical descriptors.

In the computer vision domain, there exists many hands engineered feature
extraction methods (e.g., SIFT, HOG, SURF). The main problem of these feature
extractors is that the extracted features are complex to use for clustering.

An alternative approach makes use of CNN for extracting features. Recent works
demonstrated that the activation vectors near the top of a deep CNN could be used
as feature vectors in a variety of tasks [Razavian et al., 2014]. Even more interesting,
it has been shown that features learned on the ImageNet dataset transfer well on
document images [Harley et al., 2015], meaning that we can use a pretrained model
as a feature extractor. Strong of these previous evidence, we use a Xception model
[Chollet, 2016] pretrained on ImageNet. The choice of the Xception network was
driven by its great performance on ImageNet and its use of a larger input image,
which could be beneficial with documents that shows an high density of information.

31

5 – Dataset annotation

To use the model as a feature extractor, we remove the last fully connected
layer, in this way the output of the neural network is the penultimate feature
vector. Before doing the feature extraction, we resize our images to 299 × 299
pixels, and then we preprocess them using the same preprocessing operations used
originally for the Xception model. The preprocessing operation includes average
channel subtraction and normalization.

Figure 5.1: Xception Architecture, adopted from [Chollet, 2016]

At this point, we compute the feed forward phase of the model, using as input
our preprocessed images. The output of the model is the 2,048 dimensional feature
vector associated to each image.

Text

When documents of the same category have a completely different image, it is not
possible to use image-specific features for the clustering phase. Nonetheless, it is
plausible that documents within the same semantic category contain similar words.
Our goal is to find a representation of the documents’ text that allows to cluster
similar documents.

32

5.2 – Annotation by clustering

The first step is the extraction of the text from the documents. We do this using
the OCR module described in 9.0.1.

The second step is the tokenization and normalization of the words. Here we
remove all non-alphabetical characters; then we remove all the accents and we
lowercase the letters. We do not perform stemming operations.

After these operations, we proceed to the construction of the BOW (Bag of
words) features. The BOW representation constitutes a term-document matrix
where each row is a single document, and each column is a single word. Each cell
of the matrix contains the number of repetitions of a token in a document.

The conventional approach is to construct a dictionary representation of the
vocabulary of the training set, and then use it to map words to indices. The main
problem with this approach is that the dictionary ends up having a huge number of
words when large datasets are used[Ganchev and Dredze, 2008]. On the contrary,
if the vocabulary is kept fixed and not increased with a growing training set, the
model may miss some words that are useful. Instead of maintaining a dictionary,
a feature vectorizer that uses the hashing trick can build a vector of with a fixed
dimension by applying a hash function H to the features. The resulting hash modulo
the dimension of the vector gives us the index in the vector that should be updated.
In [Ganchev and Dredze, 2008] it has been shown that text classifiers performances
do not decrease when the hashing trick is used with tens of thousands of columns in
the output vectors. In our application we start by using 10,000 columns, knowing
that later will be reduced with the dimensionality reduction.

Once the term-document matrix is constructed, we apply the tf-idf (term fre-
quency–inverse document frequency) transformation, which reflects how important
a word is to a document in a collection. The tf-idf value is proportional to the
frequency of the word in the document and is normalized by the frequency of the
word in the collection. This helps to adjust for the fact that some words appear
more frequently in general. For example, in our dataset of RIB documents, the
word RIB is present in all the documents, meaning that it adds no information
about a document class.

5.2.2 Dimensionality reduction
The feature extraction procedures applied until now have the characteristic of gen-
erating high dimensional feature vectors. High dimensional vectors represent a
problem for many machine learning algorithms, especially clustering.

It has been shown in [Beyer et al., 1999][Aggarwal et al., 2001] that when the
number of dimensions increases, the nearest and the farthest neighbors to a given
point have a similar distance. In this case, the nearest neighbor algorithm becomes
ill-defined because it is not possible to define criteria for which a point is near or
far. This phenomenon affects all clustering algorithms based on a similarity metric,
like the Euclidean distance.

33

5 – Dataset annotation

The solution to this phenomenon is the reduction of the number of dimensions
under consideration by obtaining a set of principal dimensions.

Image

Even though we managed to reduce the original dimensionality with the feature
extraction, 2,048 dimensions are still too many for the clustering phase, especially
when we consider that we have 60,000 images.

To further reduce the dimensionality of the feature vectors we use the PCA
(Principal Component Analysis), already used in [Babenko et al., 2014] for a similar
application.

PCA aims to find a linear mapping of the data to a lower-dimensional space,
maximizing the variability of the data in the low-dimensional representation. One
method to apply PCA is to compute the covariance matrix of the data and then
compute the eigenvectors on this matrix. Among the new dimensions, the principal
components are the eigenvectors that correspond to the largest eigenvalues. These
components can be used to reconstruct a large fraction of the variance of the original
data. In our case, we simply drop the eigenvectors that contributes the least to the
variance.

We decide to use only the first two components, which preserve 42% of the
variance of the ADMINISTRATIVE dataset and 55% of the variance of the AVIS
D’IMPOT subclass. The last step is the whitening of the data, which centers and
scale the features. We have seen that haveing normalized components is essential
for the following clustering phase.

Text

Similarly with the image case, the raw features extracted until now have 10,000
dimensions, which are too many for the clustering phase.

In this case, we mimic the approach of several works in the natural language
processing domain, performing LSA (Latent Semantic Analysis)[Deerwester et al.,
1990]. LSA is a technique to find relationships between a set of documents and
the terms they contain by producing a set of related concepts. LSA assumes that
words that are close in meaning will occur in similar documents. Once the term-
document matrix is created, SVD (Singular Value Decomposition) is used to reduce
the number of rows while preserving the similarity structure among columns.

In our work we apply LSA with a few differences, the first one being the dimen-
sionality reduction technique, where we use the Truncated SVD for performance
reasons. The second one is the normalization of the new vectors. Since clustering
algorithms are susceptible to feature scaling, the low-rank components are normal-
ized to have l2-norm equal to 1.

In our application with the RIB dataset, we reduced the dimensions from 10000
to 10, preserving 14% of the original variance.

34

5.2 – Annotation by clustering

5.2.3 Clustering
Once the images are mapped to a low dimensional space, we can cluster them.
Hypothetically, we would expect a number of clusters equal to the number of classes.
In practice, we should define the number of clusters higher than the number of
categories. This operation is necessary because of the high intraclass variance: most
categories are composed of images that could eventually be grouped in subclusters.
As an example, the RIB category is likely to present different clusters associated
with the different banks’ formats.

Looking at the datapoint distribution in the low dimensional space we can syn-
thesize the main characteristics that we would like the clustering algorithm to have:

• Unknown number of clusters: If it is true that we expect a number of clus-
ters higher of the number of categories, we do not know precisely the exact
number. Most of the clustering algorithms require the number of clusters as
a hyperparameter, meaning that we should run and evaluate the clustering
result several times.

• Density aware: We believe that our dataset shows different densities in the
low-dimensional encoding because of the nature of the dataset: there are some
classes where the documents show a series of differences, while there are classes
where the variance is more limited. We expect this visual characteristic to exist
also in the feature space. Clustering algorithms are usually unaware of density,
and this may result in inaccuracies of the clusters.

• Noise detection: The whole point of the clustering phase is to find good clusters
that can be annotated instantly by a human operator. Clustering perfectly all
the points may be unfeasible, but clustering perfectly a subset of them should
be easier. An algorithm with the ability to recognize and ignore difficult
datapoints would meet our expectations.

These properties bring us to choose a density-based clustering algorithm such
as the DBSCAN [Ester et al., 1996]. The DBSCAN is perfect for our scenario
because it does not need the number of clusters as input, it is density based, and
it detects noise datapoints. One of the problems of the DBSCAN is the tuning of
the hyperparameters and the fact that it is necessary to specify a specific density.
There are rules to find good values for the hyperparameters, but at the end, they
are problem specific.

Moreover, our main problem is the fact that we have many clusters with different
densities. Thus we should run multiple times the DBSCAN with different hyper-
parameters values and then aggregate the results. Our solution to the different
density problem is to use a more complex version of the algorithm: the HDBSCAN
[Campello et al., 2013], which uses a heuristic to cluster efficiently datasets with
different densities in a single run. With HDBSCAN we only have to specify the

35

5 – Dataset annotation

minimum number of points to define a cluster. The minimum number of points
is a hyperparameter that can be chosen with simple criteria. A lower minimum
number of points allows defining tiny clusters, while a higher minimum threshold
favors large clusters. Ideally, our objective is to have good little clusters, while not
having too many clusters, because then the annotation of the clusters would take
too long.

The second parameter that influences the clustering result is the number of
features selected after the dimensionality reduction step. This parameter is inde-
pendent of the clustering algorithm used, but as a general rule the DBSCAN does
not work well with high dimensional features. Thus we simply do a grid search
over dimensions from 1 to ten. We found that for images, 4 dimensions are enough,
while for text ten dimensions are good.

Evaluation

There exist different techniques to evaluate a clustering result, the majority of them
based on the true labels associated with the datapoints. Unfortunately, we do not
have the labels and we can rely exclusively on metrics based on the datapoints and
the clusters.

A popular measure regarding clustering is the silhouette [Rousseeuw, 1987],
which coefficients measures how close each point is to his cluster and how far is
to the others. The silhouette measure has a [-1,+1] range, and a value of 1 means
that the datapoint is in a cluster well separated from the others, while a value
of -1 means that point is probably in the wrong cluster. The main drawback of
the silhouette is that its value is higher for convex clusters than other concepts
of clusters, such as those that characterize density-based clusters, exactly those
that we are interested in. Unfortunately, this drawback makes the silhouette score
unreliable for our application.

To evaluate the clustering results, we define some metrics:

1. Number of Clusters: Few clusters are bad because they are too generic, while
too many clusters make the annotation time-consuming. In this optic, the
annotator should define an ideal number of clusters and choose hyperparameter
values accordingly.

2. Ratio of Noise Points: Ideally, we do not want noise points, because we know
that in reality all points are part of a category.

Empirically we have seen that when the minimum number of points is low, the
ratio of outliers is higher. To fix this problem, we run the HDBSCAN two times:
the first time we run it on the full dataset, while the second time we run it on
the outliers. In this way we obtain the first set of clusters that are well behaved,
meaning that they contain almost equal documents. The second set of clusters

36

5.3 – Fine annotation

contains the documents targeted the first time as outliers. Theoretically, they
should contain more diverse documents, and they do in practice.

An additional tool to evaluate the clustering result is the visualization of the
clustered datapoints on the two principal components.

Clustering results

In our experiments, we have seen that the percentage of clustered documents is
often equal to 50% of the dataset.

For what concerns the RIB dataset we used ten dimensions and 11 min points.
We did the clustering only one time, resulting in 74% of the datapoints clustered
and 68 clusters. For this dataset, we decided to stop here and eventually annotate
the remaining part manually. We have seen an interesting phenomenon with the
RIB dataset: a portion of documents had an empty text field. These documents
were pictures with bad lightning conditions and we think that the binarization
phase of the text extraction damaged the document, making the text extraction
impossible.

Regarding the AVIS d’IMPOT subclass, we use four dimensions and 4 min
points. We did two runs of the clustering, obtaining the first time 66 clusters
and 32% of the documents clustered. Also for this category, we decided to stop at
this point and do a manual annotation.

With the ADMINISTRATIVE dataset we use four dimensions and 4 min points.
After the first run of the clustering, we obtain 52% of the datapoints in 402 clusters
and the remaining document tagged as noise. A second run shows a percentage of
clustered documents of 47% and 74 clusters. This brings the total of clusters to
476 and the percentage of clustered points to 74%.

At this point, we can reformulate the time required to annotate the ADMINIS-
TRATIVE dataset as a function of the number of clusters. Given N clusters and a
cluster annotation time of 120 seconds (annotating a cluster may take more than
a single image), we have

time = N × 120 seconds

In our case we had 476 clusters, with an estimated annotation time of

476× 120
3,600 = 16 hours

5.3 Fine annotation
This phase has been performed exclusively on the ADMINISTRATIVE dataset
because it is the largest and most important dataset for this work.

After the clustering, the majority of the documents are associated with a provi-
sory label, but there are two problems: some documents are not annotated because

37

5 – Dataset annotation

they represent noise in the second iteration of the clustering, and some documents
are annotated wrongly.

To solve all these problems we build a model that has the objective to correct
the annotations. Then in a second phase, we perform the manual annotation of
the remaining documents. The whole approach is an adaptation of [Yu et al.,
2015], where a system with human in the loop is used to annotate a huge dataset.
The main difference between our system and theirs is the fact that the first set
of annotated images is the result of clustering. We were able to do the clustering
because many categories have subgroups of similar images.

The system consists of a process that is composed in the following phases:

1. A network is trained from the annotated images

2. The trained network is used to classify all the images

3. The classification results are used to correct wrongly annotated images and to
add the newly annotated images to the annotated dataset

Our images are initially divided into two groups: annotated images and not
annotated images. These two groups are the results of the clustering mentioned
in the preceding section. At this point, the annotated images are used to train a
classification model. The model is a Xception network pre-trained on ImageNet, it
is the same network used to perform the feature extraction. This part is based on
the fact that neural networks are robust to massive noise in the dataset [Rolnick
et al., 2017]. This observation leads us to train a classifier on possibly noisy labels,
with the guarantee that the result will be acceptable.

Once the model is trained, it is used to classify all the documents, both the an-
notated ones (74%) and the not annotated ones (26%). At this point, the classified
documents can be divided into different groups:

1. Cluster documents correctly classified: 72% of the images are part of this
category.

2. Cluster documents wrongly classified: These are documents that may have
been put in the wrong cluster. 2% of the images are part of this group.

3. Noise documents classified with high confidence (>80%): These are images
that can be added to the set of the annotated images. 16% of the images are
part of this group.

4. Noise documents classified with low confidence: These are images that the
model is not sure about. We manually annotate them, and then we add them
to the set of annotated images. 10% of the images are part of this group.

The final result is that only 12% of the images had to be annotated manually.

38

5.3 – Fine annotation

Fine annotation results

As we said, we had to annotate manually 12% of the dataset. Considering 5 seconds
per annotation, the operation took

7200× 5
3600 = 10 hours

Summing up, the annotation of the whole dataset took 26 hours instead of 83
hours. In all this, we estimate that the number of wrongly annotated documents
is less than 2%. These documents are part of the of the documents initially clus-
tered that were correctly classified with low confidence values. Since we point to a
classification accuracy of 95%, this is acceptable.

39

5 – Dataset annotation

Figure 5.2: Clustering the RIB class

40

5.3 – Fine annotation

Figure 5.3: Clustering the AVIS D’IMPOT class: the subclasses are clearly visible

41

42

Chapter 6

Image preprocessing and
data augmentation

In this chapter we firstly show the preprocessing operations that we apply to the
documents before the classification to improve model accuracy and training time.
Then we treat the topic of data augmentation, with an in-depth analysis of the
type of augmentation that fits better the document datasets.

6.1 Preprocessing
Every image can be represented as a set of matrices (tensor) of pixel values. Each
matrix corresponds to a channel, the conventional term used to refer to a color
component of an image. An image from a standard digital camera has three chan-
nels: red, green and blue. Each channel is a 2d matrix having pixel values in the
range [0,255]. In order to feed the image to the classifier it is necessary to perform
different operations that can include the grayscale conversion, the resizing and the
value scaling

6.1.1 Colors
In the more general image classification, colors represent important features that
can help the model to discern specific classes. For example, a model trained with
landscapes will learn that grass is associated to green tonalities and that a different
color is enough to exclude certain classes. With documents, this observation still
holds true in those cases where documents have very specific colors, like some forms
from the public administration. In our datasets we have exactly a case like this in
the 4.2.4 dataset, where forms show different colors. In such a case, colors have
been used to facilitate the classification operation of human operators. Humans, like
machine learning models, use the color of the image as the first feature to perform

43

6 – Image preprocessing and data augmentation

a classification because it is directly available from the image and no processing
required.

Until now it seems that colors are a useful feature and we should use them when
available. On the other hand, colors may trick a model for the same reason they are
so useful: whenever a classifier associates a color with a class, if not forced it does
not learn any other feature about that specific class because color is enough. The
consequence of this phenomenon is that if a test time we feed an image where colors
are different from the usual ones, the classifier makes a completely wrong prediction.
In our case we are aware that the testing conditions are different from the training
ones, especially regarding the lightning conditions that can vary considerably the
perceived color of a document.

In order to solve this color problem we can convert our images to grayscale. In
this way the model is forced to learn the structure of the documents and it is not
anymore fooled from different colors. In order to perform the grayscale conversion
we can simply average the three channels and then stack three copies of the new 2d
matrix, in this way we can still use pretrained models that processes RGB images.

The main drawback of using only grayscale images is that we lose some infor-
mation from the images that could help the model. If we think about our image
classification capability, we can note that even though we can still classify grayscale
images, the whole process is slower because we have to concentrate on more complex
features of the image.

To conclude, deciding wether using color or grayscale images depends from the
dataset. In this work we decided to build a more powerful model by using colors,
but we managed to solve the robustness problem augmenting the dataset with
grayscale images and with images with slight color variations.

6.1.2 Resizing
Resizing is fundamental for a neural network for many reasons, the most important
one being performance. Classic image classifier are based on features that are
extracted from normal images that are quite large. These methods do not work well
when the image resolutions starts decreasing, meaning that only high-res images
can be used with the consequence that the feature extraction requires a lot of time.

On the other hand, neural networks are able to work on much smaller images
because they look for much deeper features than classical methods. A benefit
linked with this is that the inference time of neural networks is really low compared
with the classical methods. At the same time, neural networks are also forced to
work with low-res images because otherwise the training phase takes too many re-
sources. To understand this phenomenon, we should think that neural networks
can be described as a sequence of matrix multiplications and non-linearities. Ma-
trix multiplications are O(n3), which makes the dimensioning of the input image
fundamental. Experimentally it has been shown that convolutional neural networks

44

6.1 – Preprocessing

perform well with images larger than 224×224, with diminishing returns for bigger
images. In our case we resized the image to 224× 224 or to 256× 256 to perform
different tests with different models that were constrained to a specific dimension.

The core of the resizing of an image is the resampling method, which influ-
ences the final quality and the time required for the operation. The most common
resampling methods ordered by increasing complexity and quality are:

1. Nearest

2. Bilinear

3. Bicubic

4. Lanczos

If it is true that for common image classification the nearest resampling is enough
and that the more complex techniques have diminishing returns, for document
classification it is not the case. For example, an image of a car is recognizable
even when the image quality is low because it has strong characterizing features
that are preserved when resized. The same is not true for a document, because the
characterizing features are much more subtle and interleaved, meaning that a bad
resampling has destructive consequences. In our datasets we have seen that the
Nearest resampling can not be used because it completely deteriorates the image.
Regarding the other filters, they perform well on our datasets and produce similar
images with only minor differences that do not alter the contents. In our work
we decided to use the Bicubic resampling, but also Bilinear and Lanczos are valid
alternatives. An idea that we did not investigated is feeding to the model images
resized with different techniques, with the hope of generating a more robust model.

Apart from the resampling methods, the other parameter that define a risizing is
the final aspect ratio. This problem arises because the original image is an a4 paper,
while the final image is a square. In order to perform a resize between different
aspect ratio there are different techniques. In this case we name the methods like
iOS does [UIKit, 2017]:

• ScaleToFill: Scale the content to fit the size of the view by changing the aspect
ratio of the content if necessary.

• ScaleAspectFit: Scales the content to fit the size of the view by maintaining
the aspect ratio. Any remaining area of the view’s bounds is filled by a given
color.

• ScaleAspectFill: Scales the content to fill the size of the view. Some portion
of the content may be clipped to fill the view’s bounds.

45

6 – Image preprocessing and data augmentation

In our work we use the ScaleToFill method, which may change the aspect ratio of
the image if it does not match the target dimensions. Like the resampling methods,
a model would probably benefit from seeing images resized with different methods.

When we deploy the application, if we do not use different scaling options we
have to make sure that the deployment methods match those used for training the
model. This is absolutely important because they change considerably the image
and we do not expect the model to be automatically invariant to different scaling
methods.

Efficient preprocessing pipeline

When we train our model we have to decide if the preprocessing operations should
be made online or offline. The offline method is optimal when the preprocessing
operations are well defined and do not change over time, while the online method
is necessary when transformations are applied to images on the fly. Between the
two methods the online one is for sure the most flexible, even though it repeats
the same operations every time. For this reason, the online preprocessing may slow
down the training of the model if not well optimized.

Another observations to be made is that most of the preprocessing operation
can be performed online because they are relatively lightweight; they do not have
any impact on the training time because it is possible to apply them while the gpu
is processing a batch.

Unfortunately the resizing operation is quite onerous, and for this reason we per-
form it before the training phase. An interesting thing is that even though we apply
the resizing only once, it remains a time-consuming operation. The majority of li-
braries and applications that can resize images using the CPU are single threaded,
and they are not optimized to use the special routines of modern processors (SSE4
and AVX2).

In this section, we solve the problem by parallelizing it and by using high-
performance libraries. Regarding the high-performance library, we choose Pillow-
SIMD. Pillow is the common Python Image Library, and Pillow-SIMD is a fork
specialized in doing common operations faster by using SIMD instructions. Even
though Pillow-SIMD is fast, it is still single threaded. For this reason, we parallelize
the operations. A main thread fill a queue of the filenames to process and then
multiple processes consumes the queue. Each process read the image, convert it and
store it in the new directory. As expected, the parallelization increase performances
in a linear way with the number of cores.

It is important to state that the Pillow-SIMD library has the same interface of
Pillow, meaning that no change in the code are made. For now the performances
are good enough: we are able to resize the whole TOBACCO-3482 dataset in 30
seconds. The original images have different dimensions, but the most common ones
are 2560× 3296 and 1728× 2292; the images are resized to 256× 256 with bicubic

46

6.1 – Preprocessing

Figure 6.1: Resizing time for different resampling vs number of workers

interpolation and saved in jpg with 100 compression quality.
In future, when the dataset dimensions will grow we will move toward a resizing

phase performed on GPU using either OpenCL or CUDA.

6.1.3 Value scaling
The last preprocessing operation to perform on the images is the pixel value scaling.
Pixel values of an RGB image range from 0 to 255, but the majority of machine
learning systems behave better when values ranges have zero mean and unit vari-
ance.

We scale the input values in the range [-1,+1], in this way we are sure that the
first layers of the neural network will behave well. We do not use more complex
scaling solutions, such as variance normalization because it would introduce pa-
rameters different for each dataset and it would complicate the deployment of the
model. We should also consider the fact that most neural network architectures use
normalization layers that adjust the data distribution during the training, reducing
the need for a hand-made scaling. We can define the scaling operations in two
ways:

• Mean-Variance: in this definition we first subtract the image mean per channel
and then we divide for the variance.

scaled image = (image−mean)
variance

47

6 – Image preprocessing and data augmentation

• Scale-Bias: in this definition we multiply the image for the scale value and
then we add the bias for each channel.

scaled image = (image× scale) + bias

The two definitions are interchangeable, but it is important to calculate values
for both because in the deployment phase we could be forced to use a specific
definition.

6.2 Data augmentation
Deep neural networks need millions of images to be trained. Unfortunately, this
is rarely the case because collecting and annotating a large number of images is
expensive. This problem is usually solved by generating new images through simple
transformations that do not change the semantic class of the image. This approach
is called data augmentation.

6.2.1 Data augmentation and image preprocessing

Most of the times the training dataset is coherent with the real distribution, the
deployment scenario. With documents, this is not always true, and the main source
of difference is the capture bias.

Almost all document preprocessing pipelines try to make a picture of a document
similar to a scanned copy of it. Common phases are binarization, deskewing and
contouring, which allow to obtain a clear image of the document, similar to the
image obtained with a scanner. All these phases are difficult to apply when the
original picture shows backgrounds, heavy noise, and brightness effects. If we think
that in the future the majority of the documents will be sent as pictures, we can
not rely on an image preprocessing pipeline which may degrade the picture.

Instead, we would like to have a model that can take care of all the possible
effects that contribute to capturing bias. This makes our work simpler because we
do not have a hand engineered pipeline that may require further optimization for
each new dataset. A basic fact about capture bias is that if we feed the model with
images that are different from those that will be used in the real conditions, the
model will not work when deployed.

The approach that the augmentation process proposes is an entirely different
solution: when there is a problem with the data we do not fix it, but we teach the
network to take care of it. To do this, we have to generate new training images
similar to those in the real world.

48

6.2 – Data augmentation

6.2.2 Online data augmentation

The augmentation process is not done offline because it inherently grows the dataset
size. For example, if we have a dataset of 60,000 RGB images with a resolution of
256× 256 and 100 epochs of augmentation, we have:

memory = 256× 256× 3× 60,000× 100
230 = 1,098GB

This solution, even though the best one from the simplicity and performance
point of view, does not scale with the limited systems at our disposal. A better
solution is to do the data augmentation online during the training process.

Our Data training pipeline constitutes a set of processes each one having a
copy of the dataset. When the training starts, each process shuffles the dataset
and generates the batches of filenames that will be used for the training. Each
batch is processed sequentially: the process reads the images and then apply the
augmentation pipeline. The augmented batch is then put into a global queue that
is fed to the GPU. When the list of batches of a process ends, the process restarts
the process shuffling the dataset and generating the new batches. This solution is
at the same time simple and efficient and allows us maximum flexibility.

6.2.3 Image transformations

For what concerns the data augmentation process, it is a rather old technique that
tries to make a model more robust by generating new samples. Samples are gener-
ated from existing ones with procedures that are domain dependent (image, text,
speech), but in general, the augmented data needs to be part of the distribution
that we want the model. From a probabilistic point of view, the model is trying to
approximate a distribution, and the lack of samples limits us from achieving this.
By augmenting the data, we can extract new samples from the distribution, with
the hope that they can ease our work. The most important thing that should al-
ways be considered is that the generated samples should be part of the distribution
that we want to model. If we generate data different from the real distribution,
we end up approximating a different distribution, different from our target and the
model will not work in deployment.

Each of these transformations can also be seen differently: we are adding invari-
ance. For example, if we think of a model that is trained with images perfectly
centered, we can not expect that it also works in other conditions. Instead, when
we train the model with images that are translated, it is likely that the model learns
translation invariant features. More generally, each property that is augmented add
invariance respect that property.

49

6 – Image preprocessing and data augmentation

Rotation

Out of the box, CNNs are invariant to small rotation invariant because of the Max
Pooling layer; if the rotation is small enough that the maximum activation of a
pooling region does not change, the result is the same. Unfortunately we need a
model that is invariant to large rotations. Especially in the document domain, this
is a big problem, because people may send pictures of documents that are rotated.
To classify rotated images we either use an architecture that is rotation invariant,
or we augment the dataset. Previous work have shown that it is possible to create
rotation invariant CNN [Gonzalez et al., 2016], but these approaches have the
disadvantage of modifying an architecture, with the impossibility to use standard
pretrained models. The second and most straightforward approach consists in
rotating the training images.

Regarding the implementation of the orientation augmentation, we do not per-
form the augmentation over 360 degrees. Instead, we first orientate the image of
multiples of 90 degrees, and then we rotate it by 10 degrees at maximum. We
use this technique to facilitate the training, in fact, we have seen that the when
the documents are rotated with all the possible orientations the model has some
difficulties in the learning process. Nonetheless, the optimization we did should not
have repercussion because usually documents images show little orientations.

As a note, images in the dataset may not be completely aligned, thus leading to
the generation of severely rotated images (e.g., 45 degrees). In order to solve this
problem we may use rectification techniques for the training images, thus starting
from completely straight images for the augmentation.

Scale

Convolutions do not learn scale invariance. The problem of scale is more evident
when the document size is small respect to an a4 paper. If we think to an ID card,
we can find scanned images where the document occupies a limited portion of the
image, while in pictures it occupies the whole image. With neural networks there
are two techniques to take care of scale: one is creating a scale invariant model,
the other one is to augment the dataset with different scales of the training images.
Scale invariant models like [Xu et al., 2014] and [Kanazawa et al., 2014] apply
convolutions on different scales of the image, incorporating in this way the scale
prior in the model. The second techniques achieves the scaling invariance not at
the architecture level, but in the dataset. Showing scaled images to the network is
enough to teach the network to detect features at different scales. This technique
require more manual tuning of the scaling parameter, but has the advantage of
being model invariant: we can use any model, without changing the architecture.
This means that we can iterate faster and use pretrained models. Regarding the
implementation of the scaling, the scaled image will have a scale between 80% and
120% of the original image. Whenever the scale is less than 100% we have to add a

50

6.2 – Data augmentation

border to the image and in our case we use a scale of gray with an intensity between
0 and 255. This operation should teach to the model to classify documents with a
visible background like a table. On the other side, when scale is greater than 100%
there is the risk that the training image is cropped, and in this case the model will
learn to classify a documents considering only the content. One drawback of the
scaling is that it can generate training images hard to classify even for a human;
for example if an ID card that occupies a small portion of a paper is scale down, it
will be even smaller and more difficult to classify.

A possible improvement of the scaling operation would be finding the contour
of the image and than scaling only the area of the document. In this way we could
achieve even better transformations because we would start from a document that
occupies the whole image.

Translation

Translation invariance is the ablitity to perform well on inputs that show a transla-
tion respect to the training images. CNN are partially translation invariant because
they are composed of convolutions and pooling layers. The convolution operator is
by definition equivariant respect to translation. This means that if we translate by
one pixel right an image, the convolved features will be shifted one pixel right. At
the same time, Max pooling achieves partial invariance because the max of a region
depends only on the largest element of the region. If a small translation doesn’t
bring in a new largest element int the pooling region and also doesn’t remove the
largest element, then the max doesn’t change [Goodfellow et al., 2016].

Unfortunately the small invariance provided by CNN is not enough to encounter
the large translations that documents can have. Again, the most difficult images
are the small documents. For example, an ID card can fill the central part of
an image, but also the top or the bottom. In order to add invariance to large
translations we can only augment the dataset with translated copies of the original
images. This is enough for teaching the model to recognize the same document in
different locations.

Regarding the implementation of the translation, we should decide how much we
want to translate the images. Small translations do not cover all the cases that the
model may face, while large translations may alter completely the semantic class
of an image. For example, we can imagine a small ID card that is on the top right
corner. If we perform large translation (e.g, 30%) we may put the document outside
the image border, generating a white image that for sure we should not classify as
a document. At the same time, large translations are not good for documents that
cover the entire image because we may cut large portions of the document.

Like the scaling issue, a more refined approach would be starting from a docu-
ment that cover the whole image. In this way we would have certainties about the

51

6 – Image preprocessing and data augmentation

translated image. In this fashion, it is important to relate the scaling and transla-
tion transformations because the results strongly depends from the two transforma-
tions combined together. For example, when we zoom an image we discard always
its borders, thus in these cases the maximum translation permitted should be low.
On the other side, when we zoom out an image we should allow large translations
to cover all possible positionings of the documents.

Perspective

Whenever the capturing device is not parallel with the document, parallel lines
becomes intersecting. This phenomenon can not be reproduced with the transfor-
mation that we have seen until now: Rotation, Scale, Translation. This means that
a new transformation is needed: the perspective transformation. This transforma-
tion is particularly useful to transform scanned images into images taken with a
camera because it can convert parallel lines into intersecting lines. Such a transfor-
mation can generate completely unrealistic results, thus we use it with parsimony.

Lightning

Shadows and lights are not a problem when an image is scanned; they simply do not
exist because the light is uniform. When taking pictures with a camera, instead,
they are very common, especially if the pictures are taken in a closed environment
with an artificial source of light. Correcting lightning effects is extremely hard,
and a simple proof of this is the fact that binarization algorithms do not hand well
images with strong lights and shadows

Our solution is to add shadows and lights to an image so that the model will
learn to model also this phenomenon.

Histogram manipulation

Histograms show the value distribution of the pixels. They are extremely useful
in image processing because most operations on the contrast and brightness can
be performed as manipulations of the histogram. In our work we apply mainly
contrast normalization and a brightness shift, which allow to generate a large num-
ber of images not available in the training set. This group of transformations is
probably the one that can benefit the most from further tests because the possible
transformations are very numerous.

Color shift

As we described in 6.1.1, colors can be extremely helpful for classifying a document,
but they can also harm it if there is a large color shift at test time. Our solution to
have the advantages brought by colors and the robustness of grayscale images, we

52

6.2 – Data augmentation

augment the dataset with images with shifted colors and with grayscale images. We
apply the color shifting during the contrast normalization phase, simply doing the
operation channel wise with random values. Regarding the grayscale augmentation,
we average the values of the channels and then we average the grayscale image and
the color image with random weights. These transformations are enough to generate
a large number of combinations of colors.

Blur, Noise

Recent works have shown how much the image quality can degrade model accuracy
on prediction [Dodge and Karam, 2016]. These findings should be taken seriously in
our work because it is likely that because of the capture bias 4.1.3 the test images
contains artifacts different from those in the training images. Such artifacts are
mainly the presence of blurring, caused by out of focus pictures, and the presence
of noise, caused by the capturing conditions and devices.

Random occlusion

Occlusion is a critical factor for the generalization ability of CNNs. When some
parts of an image are occluded, a robust model should be able to recognize the cat-
egory from the visible document structure. However, the collected training samples
usually exhibit limited variance in occlusion, meaning that the model will behave
well only when the whole object of interest is visible. A possible solution might
to manually add occluded images, but as we have seen in 4.1.1 we would probably
miss something, adding a bias to our model. Another problem would be related
to the time needed to add the occluded images to the dataset. A more efficient
solution is to augment the images with random patches of noise.

At first analysis, occlusions invariance does not seem relevant with documents,
because when people send them, they make sure that the whole document is visi-
ble. On the other hand, experimental tests from [?] shows robust improvements on
a variety of dataset when the random occlusion augmentation is included. These
datasets do not contain occluded images on the test set, meaning that the models
learn a more robust representation of the dataset. The random occlusion augmenta-
tion can also be seen as a stronger version of the shadow and light transformations.
For this reason in our tests we used mainly the random occlusion augmentation.

In 8 we trained the same model using or not the random occlusion augmentation
and we found alternating results. We believe that this could be the result of the
interaction of the random patches with the other transformations, which could lead
to incorrect training images in those cases where fundamental parts of the document
are covered.

53

6 – Image preprocessing and data augmentation

Code
Augmentation is performed using a python library designed exactly with that pur-
pose: imgAug [Jung et al., 17].
1

2 from imgaug import augmenters as iaa
3

4 seq = iaa. Sequential ([
5 iaa. Sometimes (1.0 , Rotator90 ()),
6 iaa. Sometimes (1.0 , iaa. Affine (
7 scale ={"x": (0.8 , 1.2) , "y": (0.8 , 1.2)} ,
8 translate_percent ={"x": (-0.20 , 0.20) , "y": (-0.20 , 0.20)} ,
9 rotate =(-10, +10) ,

10 cval =(0, 255) ,)
11),
12 iaa. Sometimes (
13 0.5, Eraser (pixel_level =True)
14),
15 iaa. Sometimes (
16 0.5, iaa. AdditiveGaussianNoise (scale =(0.*255 ,0.15*255))
17),
18 iaa. Sometimes (
19 0.5, iaa. Sharpen (alpha =(0. ,1.0) , lightness =(0.5 ,2.0))
20),
21 iaa. Sometimes (
22 0.5, iaa. ContrastNormalization ((0.5 , 1.0) , per_channel =0.5)
23),
24 iaa. Sometimes (0.5 , iaa. GaussianBlur ((0, 2.0))) ,
25 iaa. Sometimes (
26 0.5, iaa. Grayscale (alpha =(0. ,1.0) , from_colorspace =’RGB ’)
27),
28 iaa. Sometimes (
29 0.5, iaa.Add ((-10, 10))
30),
31 iaa. Sometimes (0.5 , iaa. PerspectiveTransform (scale =(0. , 0.03)))
32])

In the portion of code, we show how imgaug allows defining an augmentation
pipeline as a simple sequence of transformations. One of the exciting things is the
fact that it is possible to specify the percentage of times that an operation is per-
formed and the fact that the library provides a large number of transformations.
This was very useful in our experiments because we have noted that if all the oper-
ations are performed together the final result is not realistic and affects negatively
the trained model.

54

6.2 – Data augmentation

Figure 6.2: Augmentation examples from the Tobacco dataset.
First row: Rotation, Scaling, Translation, Perspective.

Second row: Contrast, Blur, Noise, Sharpen.
Third: Random erasing

55

56

Chapter 7

Neural Network
Introduction

This chapter covers the building blocks of modern Neural Networks. We start with
a logical and mathematical description of what a Neural Network and we show the
role of activation and loss functions. Then we describe the training process and the
idea behind the gradient-based learning and the back-propagation. We conclude
with the description of the transfer learning, which is a practical technique used to
improve generalization of models trained with small datasets.

7.1 Feedforward networks
Feedforward networks represent the simplest and most common deep learning mod-
els. The goal of a feedforward network is to approximate a function F ∗, which in
the case of a classifier associate an input X to a class y. A feedforward network
defines a mapping y = F (X, W) and learns the value of the parameters W that
result in the best function approximation. These models are called feedforward
because information flows only one way, from the input X to the output y, through
the computations defined by F . The model is often defined as a directed acyclic
graph describing how the functions are composed together. When the output is the
result of multiple intermediate functions we have a deep feedforward network.

7.1.1 Activations
To understand feedforward networks, we start with a linear model and then we
build on top of it until we have a Neural Network. Linear models are fascinating
because they fit efficiently and reliably, either in closed form or with convex op-
timization. Linear models also have the drawback that their capacity is limited

57

7 – Neural Network Introduction

to linear functions, with the consequence that the model cannot model the inter-
action between multiple input variables. We can define a linear model like this:
y = W T x + c where W is the weight matrix, x the input vector and c the bias
vector.

At this point, we may start stacking different layers to obtain a model with
higher capacity. Unfortunately, this does not work because a linear combination of
a linear combination, is still a linear combination respect the input.

To allow the Neural Network to model a target variable that varies non-linearly
with its explanatory variables it is necessary to use non-linear activation functions.
Most neural networks do this using an affine transformation controlled by learned
parameters, followed by a fixed, non-linear function called an activation function.
We use that strategy here, by defining y = Fn(W T x + c), where F is the activation
function.

In modern neural networks, the default recommendation is to use the Rectified
Linear Unit (ReLU) function [Hahnloser et al., 2000], defined by the activation
function f(x) = max{0, x} .

7.1.2 Loss function

The majority of modern neural networks are trained using maximum likelihood.
This means that the loss function is simply the negative log-likelihood, equiva-
lently described as the cross-entropy between the true distribution p and the model
distribution q:

H(p, q) = −
Ø

x

p(x) log q(x)

.
In a classification scenario, the true distribution has all the probability mass on

the correct class (i.e. p=[0,. . . 1,. . . ,0]. When we want to represent a probability
distribution over a discrete variable with N possible values, we can use for the last
layer the softmax function, defined by

fi(x) = exiq
j exj

.
The softmax function takes a vector of real-valued scores and squashes it to a

vector of values in the range [0, 1] that sum to 1, generating a proper probability
distribution. Probability distributions based on exponentiation and normalization
are common in the statistical modeling literature because the log operation in the
loss function undoes the exponentiation of the softmax.

58

7.2 – Training

7.2 Training
Neural networks learn through Gradient-based learning, which builds on the fact
that the loss function can be minimized by estimating the impact of small pertur-
bations of the parameter values on the loss function.

In a Neural Network the set of parameters W is a vector of real numbers that are
initialized randomly, with respect to which the loss function E(W) is continuous
and differentiable almost everywhere. In such a scenario, the training aims to
minimize the loss in an iterative procedure where W is updated at every step in
the following way:

Wk = Wk−1 − Ô
∂E(W)

∂W
(7.1)

In the most simple version, the Ô parameter is a scalar constant known as learning
rate, but there are more elaborated optimizers that use variable learning rates. In
general, with a high learning rate longer steps are taken in the weight updates, and
thus, it may take less time for the model to converge. Nonetheless, a learning rate
that is too high could result in jumps that are too large and not precise enough to
reach the optimal minimum.

We can apply the above equation either on the whole dataset (Batch Gradient
Descent) or on a portion of it (Stochastic Gradient Descent). A good minibatch
size is small enough to avoid some of the poor local minima but large enough that
it does not avoid better minima. One benefit of SGD is that it is computationally
faster and it is possible to use large datasets that often do not fit in RAM.

7.2.1 Back-propagation
“The basic idea of back-propagation is that gradients can be computed efficiently
by propagation from the output to the input”[Lecun et al., 1998].

Deep Neural Networks are built as a stack of layers, each implementing a generic
function Xn = Fn(Wn, Xn−1). Xn is a vector representing the output of the layer,
Wn is the vector of trainable parameters of the layer, and Xn−1 is the input of
the layer, as well as the output of the preceding layer. We refer to Ep as the loss
associated to the input pattern Zp.

The main statement of back-propagation is that if the partial derivative of Ep

respect to Xn is known, then the partial derivatives of Ep respect to Wn and Xn−1
can be computed using the backward recurrence

∂Ep

∂Wn

= ∂F

∂W
(Wn, Xn−1)

∂Ep

∂Xn

∂Ep

∂Xn−1
= ∂F

∂X
(Wn, Xn−1)

∂Ep

∂Xn

59

7 – Neural Network Introduction

where ∂F
∂W

(Wn, Xn−1) is the Jacobian of F with respect to W evaluated at the
point (Wn, Xn−1), and ∂F

∂X
(Wn, Xn−1) is the Jacobian of F with respect to X. The

first equation is responsible for calculating the gradient respect to the model pa-
rameters, while the second equation is responsible for the back-propagation.

7.2.2 Transfer learning
“Transfer learning and domain adaptation refer to the situation where what has
been learned in one setting is exploited to improve generalization in another set-
ting”[Goodfellow et al., 2016].

The main reason for the success of transfer learning is that models trained on
huge dataset learn general features that facilitate the training process with small
datasets, often obtaining better performances respect to models trained from ran-
dom weights.

A first application of transfer learning uses Deep Neural Networks as fixed feature
extractor. The last fully-connected layer is removed, and the network is used as a
feature extractor. Once the features are extracted, it is possible to train a classifier
for the new dataset.

The second strategy is to replace the top classifier and fine-tune the weights of
the whole network by continuing the back-propagation. It is possible to fine-tune
all the layers, or it’s possible to keep the first layers frozen and only tune the higher-
level layers. The observation motivates this is that the first layers contain more
generic features, whereas the higher-level layers are more specific to the details of
the classes of the original dataset[Li et al.,].

60

Chapter 8

Image classification

This chapter starts with an introduction of the characterizing blocks of CNNs,
which are used for all the image classification tasks of this work. We continue
with the description of the MobileNet and DenseNet architectures and the training
protocol we use. To conclude we show the classification results with internal and
external datasets.

8.1 Convolutional Neural Networks
CNNs take a biological inspiration from the visual cortex. The visual cortex has
small regions of cells that are sensitive to specific regions of the visual field. This
idea was expanded upon by a fascinating experiment by Hubel and Wiesel in 1962
[Hubel and Wiesel, 1962] where they showed that some individual neuronal cells
in the brain responded only in the presence of edges of a certain orientation. For
example, some neurons fired when exposed to vertical edges and some when shown
horizontal or diagonal edges. Hubel and Wiesel found out that all of these neurons
were organized in a columnar architecture and that together, they were able to
produce visual perception. This idea of specialized components inside of a system
having specific tasks is one that machines use as well, and is the basis behind CNNs.
Modern CNN were proposed by Yann LeCun et al in 1998 [Lecun et al., 1998] and
the building blocks have remained unchanged.

CNN share the building blocks of a common Neural Network, with the innovation
of using two new operations: convolutions and pooling. As explained in 2.2.1, CNN
have shown to be the best tool for document classification.

8.1.1 Convolutions
CNN derive their name from the convolution operator. The primary purpose of
convolutions in case of a CNN is to extract features from the input image. Convo-
lutions preserve the spatial relationship between pixels by learning image features

61

8 – Image classification

Figure 8.1: LeNet-5 architecture, with convolution and pooling operators shown,
adopted from [Lecun et al., 1998]

using small squares of input data.
As we discussed above, every image can be considered as a matrix of pixel

values. With a convolution, we slide the sliding matrix over the original image
by the stride value; for every position we compute the element wise multiplication
between the two matrices and then we add the multiplication outputs to get the
final value which forms a single element of the output matrix. In CNN terminology,
the sliding matrix is called filter or kernel and the resulting matrix is called the
Activation Map or the Feature Map. In practice, a CNN learns the values of these
filters on its own during the training process.

The size of the Feature Map is controlled by three parameters that we decide
before the convolution step is performed:

• Depth: Corresponds to the number of filters we use for the convolution oper-
ation. Each filter produces a feature map of the resulting tensor.

• Stride: This is the number of pixels by which we slide our filter matrix over
the input matrix. When the stride is 1 then we move the filters one pixel at a
time. When the stride is 2, then the filters jump 2 pixels at a time. Having a
larger stride will produce smaller feature maps, while a smaller stride will use
all the information available from the input features.

• Zero-padding: Sometimes, it is convenient to pad the input matrix with zeros
around the border, so that we can apply the filter to bordering elements of
our input image matrix and preserve the image size.

8.1.2 Pooling
Spatial Pooling has the job of reducing the dimensionality of each feature map
while retaining the most important information. Spatial Pooling can be of different
types: Max, Average, Sum, etc. Pooling makes the feature dimension smaller and
more manageable, reducing the number of parameters and computations in the

62

8.2 – MobileNet

network, therefore, controlling overfitting. It also makes the network invariant to
small transformations, distortions and translations in the input image.

In case of Max Pooling, we define a spatial neighborhood (for example, a 2× 2
window) and take the largest element from the feature map within that window. In-
stead of taking the largest element we could also take the average (Average Pooling)
or sum of all elements in that window.

8.2 MobileNet
The MobileNet architecture [Howard et al., 2017] is an efficient model optimized
for mobile and embedded vision applications. MobileNets are a response to the
trend that recently made neural networks always deeper and more complicated to
achieve higher accuracies.

8.2.1 Architecture
MobileNets are different from other architectures in their use of depth-wise separa-
ble convolutions, which allow building small and fast deep neural networks without
sacrificing accuracy.

MobileNets builds up from the observation that the common convolution op-
eration has the effect of filtering features based on the convolutional kernels and
combining features to produce a new representation. These two steps can be split
into two separate operations. The first operation consists in using depthwise convo-
lutions, which apply a single filter per each input channel with the effect of filtering
the input features. The second one is the application of a 1× 1 convolution, with
the result of creating a linear combination of the intermediate feature maps.

This results in a reduction of computation of 8 to 9 times respect to a standard
convolution. Together with the reduction of computation, the model is also lighter:
the model we trained weights only 26 MB.

8.2.2 Training
We trained the MobileNet networks using Stochastic Gradient Descent (SGD) with
Nesterov momentum [Sutskever et al., 2013] of 0.9 without dampening. When not
pretrained, weights are initialized using the weight initialization introduced by [He
et al., 2015], also known as “he normal”. The learning rate schedule uses a step
decay procedure, with a different initial learning rate for the pretrained case and
the random initialized case. For the pretrained case, we start with lr=1e-2, and we
halve the learning rate every 20 epoch for 60 epochs. For the not pretrained case,
we start with lr=1e-1, and we halve the learning rate every 20 epoch for 60 epochs.
The batch size is 40.

63

8 – Image classification

Figure 8.2: MobileNet Architecture, adopted from [Howard et al., 2017]

8.3 DenseNet
The DenseNet architecture [Huang et al., 2016] builds on top of the ResNet architec-
ture [He et al., 2015]. More precisely, the dense connectivity pattern is an extension
of the skip connection mechanism introduced with the ResNet architecture.

DenseNet explicitly differentiates between information that is added to the
network and information that is preserved. This improves the information flow
throughout the network, which makes them easy to train. Further, dense connec-
tions have a regularizing effect, which reduces overfitting on tasks with smaller
training set sizes.

8.3.1 Architecture
To understand the DenseNet contribution to the neural networks architectures it is
necessary to analyze the preceding architectures. A traditional CNN can be defined
as a sequence of layers, each implementing a non linear transformation Fn(·), where

64

8.3 – DenseNet

n indexes the layer. We denote the output of the nth layer as Xn and the input
image as X0. In a sequential neural network the output of the nth layer is the input
to the following (n + 1)th layer [Krizhevsky et al., 2012], which gives rise to the
following layer transition:

Xn = Fn(Xn−1) (8.1)

ResNets add a skip-connection that bypasses the non-linear transformations with
an identity function:

Xn = Fn(Xn−1) + Xn−1 (8.2)

Figure 8.3: DenseNet Architectures, adopted from [Huang et al., 2016]

This so-called skip-connection allowed ResNets to cut consistently the training
time and to reach higher accuracies. To improve the information flow between
layers, in the DenseNet architecture all the layer with matching feature map sizes
are connected. As a consequence, the nth layer receives the feature maps of all
preceding layers, X0, ..., Xn−1, as input:

Xn = Fn([X0, ..., Xn−1]) (8.3)

where [X0, ..., Xn−1] refers to the concatenation of the feature maps produced in
layers [0, ..., n− 1].

Motivated by [He et al., 2016], DenseNet define Fn(·) as a composite function
of three consecutive operations: batch normalization [Ioffe and Szegedy, 2015],
followed by a ReLU [Glorot et al., 2011] and a 3× 3 convolution.

65

8 – Image classification

Pooling layers

As in the preceding works, pooling layers are added to reduce the size of the feature
maps. In DenseNet each pooling layer delimits a region of the network that can be
concatenated with the preceding layers. These regions are called dense blocks and
they are limited by transition layers, which do convolution and pooling.

Growth rate

If each function Fn produces k feature maps, it follows that the nth layer has k0 +
k×(n−1) input feature maps, where k0 is the number of channels in the input layer.
An important difference between DenseNet and existing network architectures is
that DenseNet can have very narrow layers, (e.g., k = 12). One explanation for
this is that each layer has access to all the preceding feature maps in its block and,
therefore, to the network’s collective knowledge.

Bottleneck layers

Even though each convolution adds only k new feature to the collective knowledge,
each convolutional layer processes has to process all its input features, which ulti-
mately grows to a large number. It has been noted in [He et al., 2015] [Szegedy
et al., 2015] that a 1× 1 convolution can be introduced as bottleneck layer before
each 3×3 convolution to reduce the number of input feature maps, and thus to im-
prove computational efficiency. In our experiments, each bottleneck layer produces
4k feature maps.

Compression

In the Densenet architecture, the global state continues to grow layer after layer.
This eventually brings to an exploding number of features.

From the growth rate equation, if we use 121 layers, an initial number of features
of 64 and a growth rate of 12, we end up with

64 + 12× (121− 1) = 1504 feature maps

With a more complex model we may have 161 layers, an initial number of features
of 96 and a growth rate of 48, we would end up with

96 + 48× (161− 1) = 7776 feature maps

Those are too many, especially if we consider that at the end there is usually
a fully connected layer. There is more, having a global state that large has reper-
cussions on the speed of the network because it ends up doing huge convolutions.
To improve model compactness without sacrificing network depth, it is possible to
reduce the number of feature maps at transition layers. In the original work, this

66

8.4 – Results

the number of feature maps is multiplied by a factor θ in the range [0,1] and often
set to 0.5.

8.3.2 Training
All the networks are trained using stochastic gradient descent (SGD) with Nes-
terov momentum [Sutskever et al., 2013] of 0.9 without dampening. When not
pretrained, weights are initialized using the “he normal” initialization. The learn-
ing rate schedule uses a step decay procedure, with a different initial learning rate
for the pretrained case and the random initialized case. For the pretrained case, we
start with lr=1e-3, and we halve the learning rate every ten epoch for 30 epochs.
For the not pretrained case, we start with lr=1e-2, and we halve the learning rate
every ten epoch for 80 epochs. The batch size is 8, mainly because of GPU memory
constraints.

8.4 Results
CNN have shown good results with all the datasets used for testing. Part of this is
the consequence of the fact that in the document domain the intra-class variance
is low, so test documents are very similar to the training ones.

An important thing to consider is the dimension of the images: experiments
have shown that images smaller than 224×224 are too little, and performances are
not acceptable also for the training data. This was already verified in precedent
works and other domains (e.g., ImageNet).

The greatest problem is that the test set and the training set have the same
capture bias, this means that the accuracy of the model may decrease in a real
scenario where documents have a different capture bias.

8.4.1 Tobacco
As a first and baseline experiment, we train a Densenet-121 model, on the Tobacco-
3482 dataset following the evaluation scheme described in 4.2.2. All the scores
except those of the DenseNet-121 are taken from [Afzal et al., 2017].

In this case, we obtain better results respect to the other models without pre-
training: the densenet model achieves 77.28% median accuracy, against the 70.28%
of the GoogleNet, the best performing not pretrained model. Nonetheless, the
Densenet performance is comparable with the best performing pretrained model:
VGG-16, which achieves 77.52% accuracy. This experiment shows the generalizing
abilities of the densenet models when trained with little datasets.

In the second experiment, we train a DenseNet-121 model pretrained on Ima-
genet, on the Tobacco-3482 dataset. We follow the same procedure described above.
The results show improvement respect the other pretrained model, meaning that

67

8 – Image classification

the good properties of densenet also apply in a transfer learning scenario. As a
note, we pass from 77.52% of the VGG-16 model to 83.20% of the DenseNet model.

The architectures in table 8.1 are in chronological order, and show an increasing
accuracy from AlexNet to VGG-16, until the ResNet drop. It is to be noted that
ResNets achieved way better results than the previous networks on the ImageNet
dataset. A possible explanation is that the Tobacco dataset is limited in size, which
brings the network to overfit the training set, with the consequence that results on
the test set are bad.

DenseNet inverts the trend, and even though it is a more complex architecture,
it can generalize better, even with few training samples. This in part confirms the
claims of the original papers about a regularization due to the dense connectionism.
Unfortunately, we did not have the resources to pretrain a DenseNet on the Big
Tobacco dataset and then perform the transfer learning, but we can expect better
results than the current networks.

For practical uses, we might still prefer a model trained on ImageNet for his
higher generality, our reasoning is that the accuracy given from the Document
pretraining is misleading because the RVL-CDIP dataset [Harley et al., 2015] and
the Tobacco-3482 dataset have a similar generating distribution. Thus it is quite
obvious that a model pretrained on the larger dataset transfers well on the little
one. We have doubts that this approach is general since the original work does
not provide tests on other datasets. As a proof of the similarity of the datasets,
a ResNet-50 achieves 90.40% accuracy on the RVL-CDIP, while the same network
pretrained on RVL-CDIP achieves 91.13 % accuracy on the Tobacco-3482 dataset.

Method Document Pretraining ImageNet Pretraining No Pretraining
AlexNet 90.04% 75.73% 62.49%
GoogleNet 88.40% 72.98% 70.28%
VGG-16 91.01% 77.52% 69.50%
ResNet-50 91.13% 67.93% 59.55%
DenseNet-121 83.20% 77.28%

Table 8.1: Test accuracy for each architecture: bold scores are the current SoA, while the blue
ones are our new SoA

8.4.2 ADMINISTRATIVE
As a first experiment, we train a MobileNet-1.0-224 model with the classic augmen-
tation transformations, excluding the more invasive random occlusion. The results
are positive, considering the small architecture: we obtain on the training and test
set respectively 97.66% and 95.61% of accuracy. The fact that the accuracy on the
training data is 2% higher is an index that the model slightly overfit. The obvious
solution is to add the random occlusion augmentation. The accuracy of the new

68

8.4 – Results

model is 96.10% on the training set and 95.89% on the test set. These results
confirm the fact that the random occlusion augmentation improves the robustness
of the model.

At this point, we perform the same test with a DenseNet-121, with the hope that
a more powerful model achieves better performances. The DenseNet model achieves
98.06% of accuracy on the test set without the random occlusion augmentation
and achieves 97.75% when the random occlusion is included. From these results,
it seems that the random occlusion is not effective when more powerful and robust
models are used. A possible explanation of the decrease of accuracy may be given
by a sample of the generated images, where the random patch can cover the whole
significative part of a document, generating a wrong training sample.

Figure 8.4: Random occlusion on ADMINISTRATVE dataset

69

8 – Image classification

Method Augmentation Augmentation + Occlusion
MobileNet-1.0-224 95.61% 95.89%
DenseNet-121 98.06% 97.75%

Table 8.2: Test accuracy for each architecture: bold scores are the best results

8.4.3 ENTERPRISE
The Enterprise dataset is for sure the one that suffers the most of the capture bias.
Thus all our results on the test set have almost no statistical value. We managed to
achieve 100% accuracy on the test set with a MobileNet-1.0-224 and a DenseNet-
121, which is still impressive because the dataset is heavily imbalanced and the
inter-class variance is low in some cases. As a test, we tested our model on a real
picture of a document for each class of the model. The results are good, probably
because we managed to take a good picture. Looking at the confidence values of the
predictions, we have seen that the model can classify correctly real pictures taken
in bad condition only if they are part of the classes with more samples. When we
try to classify a picture of a document of a little class, it is likely that the prediction
will be wrong.

70

Chapter 9

Text classification

This chapter presents the whole pipeline required to classify a document using the
text it contains. We briefly describe the technologies to extract the text and then
we present the building blocks of the text classifier we used. In conclusion, we
present the results on our datasets.

9.0.1 OCR
OCR (Optical Character Recognition) technology allows the conversion of printed
text into digital text that can be edited with a computer. Nowadays OCR is an
essential step for all the document classifier based on the text of the documents.

The first part of an OCR engine is a complex preprocessing pipeline of the doc-
ument with the objective to improve the chances of successful recognition [Optical
character recognition, 2017]:

• De-skew

• Despeckle

• Binarization

• Line Removal

• Line and word detection

• Character segmentation

• Normalize aspect ratio and scale

Among the preprocessing steps, the most critical in our domain is the binariza-
tion. Binarization is the process of converting an image from color or greyscale to
black-and-white. Binarization of scanned document is often successful because the
resulting document shows a bimodal histogram. With pictures of a document, the

71

9 – Text classification

histogram is not anymore bimodal, and it is possible that the binarization process
deletes some portions of text.

The second phase performs the character recognition, where pattern matching
algorithms or classification algorithms are used. As an example, we use the 4.00.00
alpha version of Tesseract, which uses a Long Short-Term Memory (LSTM) engine.

9.1 FastText
FastText [Joulin et al., 2016] is a deep learning model based on the recent work
in efficient word representation learning[Mikolov et al., 2013a] [Levy et al., 2015].
FastText shows that linear models with a rank constraint and a fast loss function
can train on large datasets in a short time while achieving performance on par with
state of the art models that takes much more time for training.

9.1.1 Architecture
The FastText classifier can be seen as a simple linear model with rank constraint.
The first weight matrix A is a look-up table over the words.

The word representations are then averaged into a text representation, which is
then fed to a linear classifier. Ultimately, the softmax function f is used to compute
the probability distribution over the predefined classes. At this points it remains
only to minimize the negative log-likelihood over the classes:

− 1
N

NØ
n=1

ynlog(f(BAxn))

where xn is the normalized bag of features of the nth document, yn the label, A
and B the weight matrices. This model is trained using stochastic gradient descent
and a linearly decaying learning rate.

9.1.2 Embedding
Recent works show that it is possible to learn a dense representation of words
[Mikolov et al., 2013b]. This approach differs a lot from a classical representation
of words, such as One hot encoding, where the distance between each word is the
same, meaning that words are independent features not related to them.

9.1.3 N-gram features
As we saw, BOW is invariant to word order. While many state of the art classifier
take order into account, it requires much computation to do it. A simple alternative
is to use a bag of n-grams, which allows feeding the model with local word order

72

9.2 – Results

information. FastText uses a fast and memory efficient mapping of the n-grams by
using the hashing trick [Weinberger et al., 2009].

Code

1 def fasttext_model (max_words , embedding_dims , maxlen):
2 model = Sequential ()
3

4 # Embed the vocabulary index into a low - dimensional matrix
5 model.add(Embedding (max_words ,
6 embedding_dims ,
7 input_length = maxlen))
8

9 # Average the features of all words in the document
10 model.add(GlobalAveragePooling1D ())
11 # Use a linear model for prediction
12 model.add(Dense (1, activation =’softmax ’))

9.2 Results
FastText has shown impressive results on different datasets. As expected the text
classifier achieves high accuracy scores because words can express the semantic
category of a document.

9.2.1 ADMINISTRATIVE
Here FastText achieves 93.52% of accuracy. The main problems are hand-written
documents and noisy images. There is also another problem: it fails to classify
a portion of images, about 1%, because of an error in image binarization that
produces blank images. We think that another 2% error is due to partial errors in
binarization.

9.2.2 ENTERPRISE
The ENTERPRISE dataset contains forms, which by definitions contains the same
words. FastText achieves 100% of accuracy and it is able to differentiate the words
that are inserted by the user from the words of the forms, which are fundamental
for the identification of the class.

73

74

Chapter 10

Ensemble model

In this chapter, we explore the techniques that allow creating a model ensemble,
or in other words, a model composed of many models. We conclude presenting the
results achieved by the ensemble on our datasets.

A common practice in machine learning is to use cross-validation to give an
objective evaluation of each model and then select the best model. This is known
as the discrete Super Learner selector [Laan and Dudoit, 2003], which performs as
well as the best base model available. The idea to use exclusively one model is
a constraint that we impose on ourselves, but this constraint has no practical or
theoretical basis. Ensemble learning methods train several models and use some
rules to combine them to make predictions. The ensemble learning methods have
gained popularity because of their superior prediction performance in practice.

10.1 Classic ensembles
Classic Ensembles includes those ensemble techniques that can be expressed as a
sequence of operations that do not depend on the data. The independence from the
data makes this methods straightforward to apply, while maintaining good perfor-
mances. In the following sections, we analyze the most popular classic ensembles.

Max

When a model gives a prediction, it usually outputs a probability distribution over
all the output classes. Being a discrete probability distribution, the confidence
for each class is constrained between 0 and 1, and the sum of the confidences is
constrained to sum up to 1. The Maximum ensemble builds on the idea that the
model which is more confident about its prediction wins. Despite being simple
to implement, this technique has several weak points. The first one is that each
final prediction does not consider the models together. Once the most confident
model is identified, the prediction is made exclusively by the winner; this means

75

10 – Ensemble model

that it is not possible to eventually combine multiple predictions. The other weak
point is the automatic reliance on the maximum confidence. This automatically
advantages models that are overconfident, in other words, models that are sure on
all their predictions, also the bad ones. Deep neural networks are known to be often
overconfident over their predictions. This has been investigated in [Ju et al., 2017],
and it has been shown that some network architectures are more overconfident than
others. The results of this are that everytime that we use the Max ensemble, we
have to check that one model is not too overconfident respect the others.

Majority voting

Majority voting tries to solve some of the disadvantages of the Max ensemble,
such as the reliance on overconfident models and the exclusive reliance on the best
model. The Majority voting favors not the most confident models, but the class
that has more votes. This makes possible to output a class which is agreed by the
majority of models, even though the models are not confident about it. The main
disadvantages are the fact that the confidences of the models are less important
than before because they are collapsed. This, together with the unweighted average
favors scenarios where less accurate models that make the same prediction wins
because they are more numerous.

Unweighted average

Unweighted averaging, or soft voting, takes the average of the output probabilities
for all the base models and reports it as the predicted probability distribution.
Naive averaging, which is largely used, is not data-adaptive and thus vulnerable to
a bad selection of base models. On the other hand, this technique is often used
when the base models share the same architecture and have comparable perfor-
mances [Simonyan and Zisserman, 2014]. In machine learning competitions, the
same network is trained multiple times, and because of the stochasticity of the
training procedure, a different local minimum is obtained at every run. Doing the
average of the predictions allows achieving better performances, that exploit the
little differences in the neural networks. Since neural networks are similar, it makes
sense to use an unweighted average, or a uniform prior, on all of them. As a note,
Krizhevsky [Krizhevsky et al., 2012] won the first place in the image classification
challenge of ILSVRC 2012, by averaging 7 CNNs with the same structure.

10.2 Stacked ensembles
Stacking, also called Super Learning [Van der Laan et al., 2007] or Stacked Regres-
sion [Breiman, 1996], is a class of algorithms that involves training a second-level

76

10.3 – Results

“meta-learner” to find the optimal combination of the base learners. Unlike bag-
ging and boosting, the goal in stacking is to ensemble strong, diverse sets of learners
together. Due to their high capacity, deep neural networks suit well for a stacked
model. In the following sections, we analyze the most popular stacking techniques.

10.2.1 Weighted average

Weighted averaging can be seen as the generalization of the Unweighted average,
where the Unweighted average is simply a weighted average where the weights are all
equal. The concept of a metamodel that learns the optimal weights was introduced
in [Ju et al., 2017] with the name of Super Learner. The Super Learner computes
the ensemble weights based on the validation set because the confidence values
of neural networks on the training set may be highly biased. Weighted averaging
allows telling which models are more influent and which ones are less important.
An advantage of the weighted ensemble is that it can mitigate the overconfident
phenomenon by multiplying the output probabilities of the overconfident model by
a value that scales them. Moreover, the learned weights solve the problem where
there are many weak learners: the weights for the weaker models will be lower, thus
meaning that they influence marginally the final prediction.

The best weights can be found either with a grid search or minimizing the
negative loglikelihood of the weighted output probabilities. This can be done either
by backpropagation, learning a 1x1xM kernel, or by directly solving the convex
optimization problem. The convex problem can be solved easily using the SLSQP
method, which allows to specify constraints on the weight, like being between 0,1
and having sum 1.

10.2.2 Classic classifiers

Stacking can be done using a common model. In our experiments, we used a
Logistic Regression, SVM, and Random Forests. All the models have been used
with the standard hyperparameters of scikit-learn [Pedregosa et al., 2011], except
for the Random Forest Classifier where we used 100 estimators.

10.3 Results

Ensemble models have shown impressive results on different datasets. As expected
the ensemble of classifiers is better of the base models, regardless of ensemble
technique used.

77

10 – Ensemble model

10.3.1 Cifar-10
On the cifar dataset, we fine-tuned three different models pretrained on imagenet.
The models are Inceptionv3, Xception, and ResNet50.

Method Accuracy

Base Models
Xception 96.31%
Inception v3 95.93%
ResNet 50 95.00%

Classic Ensembles
Max 97.16%
Avg 97.11%
Voting 97.02%

Stacked Ensembles

Weighted Avg 97.19%
Logistic Regression 97.16%
SVM 97.26%
Random Forest 97.30%

Table 10.1: Test accuracy for base models, classic ensembles and stacked ensembles. Bold scores
are the best of each category.

Starting from the base learners, we see that the Xception model achieves the
highest score with 96.31% of accuracy. This was expected because of the more
advanced architecture of the model. Moving to the classic ensembles that do not
need any training because defined as a simple rule, the Max ensemble performs
the best, with 97.16% of accuracy. In this case, the Average and Voting ensembles
perform slightly worse but still better than the base models. This is probably
because in this last two cases the less performing models influences more the final
result. When we move to more complex ensemble models that require a training
phase, we see how results improve. In this case, the Weighted Average and the
Logistic Regression shows his limits respect more complex models that can exploit
relations among the predictions of the single models. In this category, the best
performing model is the Random Forest with 97.30% of accuracy, followed by SVM.
It is important to remember that these ensemble models should be learned on the
evaluation set because the base classifiers are highly biased towards the training
data. At the same time, a learned ensemble model amplifies the dataset bias,
meaning that it could perform worse in a real testing scenario.

10.3.2 ADMINISTRATIVE
On ADMINISTRATIVE we trained two models, a DenseNet-121 and a FastText
model. In cases where the base classifiers are different and rely on different features,
ensemble methods should improve even more the accuracy score.

As we have seen, the image classifier performs better than the text classifier.
One might think that in this case, an ensemble would not be useful because of

78

10.3 – Results

Method Accuracy

Base Models DenseNet 97.75%
FastText 93.52%

Classic Ensembles Max 99.16%
Avg 99.15%

Table 10.2: Test accuracy on baseline and ensemble models on ADMINISTRATIVE

the performance of the text classifier is way worse than the image classifier. We
have found instead that even in such cases an ensemble can improve the prediction
power of the model. With the Max ensemble, the accuracy increases to 99.16%,
which is 1.4% higher than the image classifier. This result is given from the fact
that the two models excel in predicting different categories and by combining them
the improvement is more consistent than combining similar classifiers.

79

80

Chapter 11

The black box issue

This chapter presents the problem of the interpretability of deep learning models
for image classification. We continue with an example, where we apply an inter-
pretation technique to our model, and we show the insights that it can provide to
optimize various aspects of the training pipeline.

11.1 Opening the black box
Deep neural networks enable superior performance, but at the same time, their
lack of decomposability into intuitive and understandable components makes them
hard to interpret [Selvaraju et al., 2016]. To build trust in intelligent systems that
integrate into our everyday lives, it is necessary that they are transparent, in the
fashion where they explain their predictions. Transparency is particularly useful
from the research point of view because allows to developers to understand the
failure modes of a model[Hoiem et al., 2012].

11.1.1 Interpretability as explaination
The majority of the persons would say that humans are interpretable because they
can explain their actions. This may seem completely acceptable, even though no
one is aware of the exact functioning of the brain[Lipton, 2016]. One advantage of
this concept of interpretability is that we can interpret black-box models after the
fact, without sacrificing predictive performance creating simpler but interpretable
models. These interpretations might explain predictions without showing the mech-
anisms by which models work, but still giving useful insights about a model for end
users of machine learning. Since deep neural networks learn rich representations
that can be visualized, verbalized, or used for clustering, it seems a good idea to
investigate the latest findings on this topic.

Some common approaches to post-hoc interpretations include natural language
explanations [Park et al., 2016], and explanations by example. Other techniques

81

11 – The black box issue

focus on the learned representation of a model, with the hope that by understanding
the building blocks, we can grasp the reasoning behind a prediction. Visualizing
the convolution filters revealed the role of the first convolutional layers and the
intermediate abstraction achieved in the last layers. These techniques allowed to
understand the patterns that the neural network learns, but they also revealed that
the deepest convolutional level looks for structures that we do not fully understand
[Olah et al., 2017]. Other techniques, like the deconvnet [Zeiler and Fergus, 2013]
and the guided backpropagation [Springenberg et al., 2014] focus on showing the
part of the input image that influences the most the activation of the neuron relative
to the class. Recently, a solution called Grad-CAM [Selvaraju et al., 2016] allowed
to show the area of the input image that activates the most an output neuron.

To understand how an image interacts with a trained model, we use this last
technique.

11.1.2 Grad-CAM

Previous works have shown that the deeper layers in a CNN capture higher-level
structures [Bengio et al., 2012]. Furthermore, convolutional features naturally re-
tain spatial information which is lost in fully-connected layers. For this reasons, the
last convolutional layers can be seen as the best tradeoff between high-level seman-
tics and detailed spatial information. The neurons in these layers look for semantic
class-specific information in the image (e.g., parts of an object). The Grad-CAM
implementation can be described in two subsequent steps. At first, the weights
relative to a feature map Ak and a class c are computed using the gradient of the
class c respect the feature map Ak. Logically, this operation allows understanding
the importance of each neuron for a given prediction.

αc
k =

Ø
i

Ø
j

∂yc

∂Ak
ij

(11.1)

Then, we perform the weighted combination of forwarding activation maps, fol-
lowed by a ReLU.

Lc
Grad−CAM = ReLU(

Ø
k

αc
kAk) (11.2)

The weighted average of forwarding activation maps shows the areas of the image
that respond positively to the class c.

Grad-CAM results as a useful tool to explore what a model has learned, and it
is extremely useful in scenarios where training data contains tricky cases, or when
the model is good on train data but does not work on test data.

82

11.1 – Opening the black box

11.1.3 Grad-CAM experiments

We use the Grad-CAM method to explore the learned representations of our model
on the ENTERPRISE dataset 4.2.4. We choose this dataset because it shows
extremely low intra-class variance and inter-class variance. In the case where the
distinguishing features are not explained, humans find very difficult to identify the
categories because different classes look the same.

As a test, we use two DenseNet-121 pretrained on Imagenet. Both models have
been trained with minor data augmentation, while only the second model has been
trained adding the random occlusion augmentation. This test is intended to show
the learned representation of the models on the training images, then how this
representation interacts with test images, and to conclude we want to see how the
random occlusion modify the model.

Referring to figure 12.1, the first column contains the input images, the second
column contains the Grad-CAM images of the model trained without random oc-
clusion, and the third column contains the Grad-CAM images of the model trained
without random occlusion, and the third column contains the images. Regarding
the rows, each pair contains the input image the training set and the picture of the
same document taken with a mobile phone. The first two pairs show documents
that have the same exact structure, except the center of the image. The third pair
shows a document from a completely different class.

A first analysis we can do is about the differences between the training images
and the respective test images. The pictures show a lower contrast, they are darker,
and it is possible to see shadows and lights. Regarding the layout of the documents,
all the pictures show translations and scale differences respect the training images.
Moreover, all the pictures are not aligned, showing slight skewing and an inclination
of the plane respect the taking device.

A second analysis we can do is about the learned representation of the two models
of the training images. In all three cases it we can appreciate that the model trained
with the random occlusion augmentation learns a distributed representation of the
image. This was exactly our hope, and we can justify this finding with the fact that
during training some parts of the images are occluded, meaning that the model has
to learn all the distinguishing parts of the documents.

A third analysis is a comparison between the representation of the training
images and the test images. Focusing on the first model, we can see that there
are only slight changes between train and test images. On the other side, we see
that when we apply the random occlusion, the representations are entirely different
between training and test. This phenomenon is not easy to explain because models
have shown to react in mysterious ways to slight changes on the input. One possible
explanation might be that the second model did not have enough time to train.
Both models have been trained for two epochs because after that they reached
100% of accuracy, but it is possible that the second model could benefit from

83

11 – The black box issue

Figure 11.1: Test for no data augmented model

84

11.1 – Opening the black box

further training.
Ultimately, we can state that from what we have seen the random occlusion

learns a distributed representation of the documents that seem not to be robust
to changes in the image. On the other side, the model trained with the classic
augmentation learns a simpler representation of the documents that seems more
robust to changes in the documents.

85

86

Chapter 12

Deployment

In this chapter, we explore the different deployment scenarios, tools, and libraries.
Then we show a real demonstration of the steps needed to deploy a model in a
mobile application. We conclude showing the performances of different models and
with an analysis of the insights that a mobile demonstration can provide to the
model definition.

12.1 Scenarios

While for the training of a deep learning model is necessary the use of GPUs for
time constraints, the inference can happen in way more diverse conditions that
include servers, mobile applications, and embedded devices.

• Server: In this scenario, the server often has a REST API that provides in-
ference. The inference can be performed either using the CPU or the GPU.
It is to be noted that for inference the CPU is an excellent candidate in that
situation where the CPU capacity is not completely used.

• Mobile: Mobile phones specifics continue to evolve, and every year perfor-
mances of CPU and GPU increases. In this context, it is possible to run some
small models in real time using the GPU of the mobile phone. Depending on
the operating system, it may be better to use a framework than another; in
our case we use CoreML on iOS and TensorFlow on Android.

• Embedded: In this case, special inference chips like the Intel® Movidius™ are
used. These chips are optimized for power consumption, meaning that the
inferring performances are low and only small models can be used.

87

12 – Deployment

12.2 Mobile deployment
The mobile application is intended to be used as a demo, showing the potential of
the trained model without requiring the setup of a demonstration server and client.

12.2.1 Model conversion
Since we use different libraries for training and deploying the model, it is necessary
to perform a conversion of the trained model from Keras to CoreML. Model con-
version between different libraries is not always straightforward because different
libraries may have some implementation differences, or some operations may not
be implemented in the deployment framework. Regarding this aspect, it should be
investigated since the conception of the model. A model that is not deployable has
no practical utility, thus meaning that all the time spent in his development would
be wasted. In our case, we used well established models that are composed of basic
components that are implemented in the majority of the frameworks, thus making
the conversion straightforward.

From the practical point of view, the model conversion is done using coremltools,
a python library developed from Apple for converting and testing CoreML models.
1

2 coreml_model = coremltools . converters .keras. convert (model ,
3 input_names = ’image ’,
4 image_input_names = ’image ’,
5 image_scale = 2./255 ,
6 red_bias = -1.0,
7 green_bias = -1.0,
8 blue_bias = -1.0,
9 class_labels = class_labels ,

10 output_names = ’classLabelProbs ’)
11

12 coreml_model .save(’DenseNet_ {}. mlmodel ’. format (image_size))

Listing 12.1: conversion of a model from Keras to CoreML

The conversion is straightforward, and from 12.1 we can see that the CoreML
model packages not only the model but also the class labels and the preprocessing
operations that are expressed as scale and bias. The conversion starts with the pre-
processing operations, which in the original model are performed offline respect to
the inference. From the deployment point of view, packaging the the preprocessing
operations in the model allows to deploy the model easier, since in this way it can
operate directly on the input image. Another consideration to be done is respect to
the fact that a separation between model and preprocessing is not optimal because
the model can not work without the associated preprocessing, which is specific to
the model itself. For this reasons, we decide to use an option of coreml that allows

88

12.2 – Mobile deployment

to insert a preprocessing phase in front of the model. In our case we set the im-
age_scale parameter to 2./255 and the bias channels to -1.0. In this way we match
perfectly the preprocessing operations described in 6.1.3.

Once the preprocessing phase is converted, the converter converts the model
layer after layer. In order to interact with the model, it is necessary to specify a
name to associated with the input layer and the output layer. Ultimately, the class
labels can be packaged with the model. Like with the preprocessing phase, it makes
sense to put the labels in the model and simplify the design of the application.

12.2.2 Mobile Application
The mobile application has the objective to provide an easy to use demonstration
of the classification capability of the trained model. For such a simple task, an
application that takes a picture and then classifies it would be enough. Actually,
since another goal of the project is to provide real time classification, we think
that demonstrating it on a computationally limited device would be perfect. To do
this, we develop an application that classifies in real time the video output of the
camera.

The application can be described as a single view application that shows the
video feed from the front camera with the label of the predicted class for the current
frame. The application shares the same structure of [yulingtianxia, 2017], with the
only difference being the model used for the inference. The core of the application is
the model, which is either the DenseNet-121 trained on the ENTERPRISE dataset
without doing the random occlusion augmentation or the MobileNet-1.0-224.

Once a frame is isolated, it is resized accordingly and then the classification
is handled exclusively by the CoreML API. The CoreML model exposes a class
that allows to perform inference requests. The CoreML model performs all the
preprocessing operations that we specified during the model conversion: scaling
and bias subtraction. At this point the model performs the classification using the
GPU of the device, and finally the most probable class label is shown with the
associated confidence.

Results

The main metrics we can use to describe the application performances are the
accuracy and the inference time. Regarding the accuracy, we have seen that the
DenseNet-121 model performs slightly better than the MobileNet-1.0-224 model.
This was expected, but we do not have any metric available to make a direct
comparison since this is the result of a demo.

Linked with accuracy, we can perform an analysis on the consequences of capture
bias on the classification. Generally, we can state that the augmentations allows
the model to work on the field, where light is not uniform, color balance is different

89

12 – Deployment

Figure 12.1: View of iOS demo: the predicted class for the current frame is showed
at the bottom

and the quality of the image is generally worse. The model showed to perform
well also when the image did not match the entire picture, which is particularly
important. At the same time, the model performed better when the image was
centered and more similar to the training conditions.

The main problem we have noted is with respect of the imbalance of the classes.
If it is true that the model is able to classify perfectly also the training images of the
infrequent classes, this does not holds true for the real images. More specifically, we
have seen that with the frequent classes the model is able to sustain a strong capture
bias, while with the infrequent classes the model is more fragile. We believe that
this is due to the fact that the model sees many more augmentations of the frequent
classes respect those of the not frequent ones. In this optic, a simple rebalance of

90

12.2 – Mobile deployment

the dataset or a longer training may be enough to correct the phenomenon.
During our tests we have seen that the capturing resolution is crucial. With

a resolution of 1080p we obtain an image that then is resized and often correctly
classified. On the other hand, when we use the 720p resolution the accuracy falls.
From this it is clear that the the noise introduced with the 720p video has a negative
effect on the model. This is extremely interesting because it shows that even if
resized, the original image quality is a fundamental component of the classification
model. To fix this phenomenon a more detailled analysis on image quality and
noise should be performed.

With respect to the inference time, we measured that the DenseNet model is
able to perform 4 fps, while the MobileNet performs 12 fps on an iPad Air 2.

In conclusion, the demo application shows that the model can handle documents
that present a severe capture bias. At the same time, we have seen that also complex
models can infer in a short time and that the image quality is fundamental.

91

92

Chapter 13

Conclusions and future work

In this final chapter we compare our initial objectives with the obtained results.
We also discuss the improvement that we plan for the future of LEIA classifier,
explaining our perspectives after our study, implementation, and testing of the
system.

13.1 Objectives and findings
We started this thesis by taking into account the problem of the document classifica-
tion on the everyday business process. We designed the LEIA Document Classifier,
a system that can classify documents using the latest findings of machine learning.
Starting with the annotation pipeline, we managed to build an annotation process
that can cut consistently annotation times of datasets that shows visible clusters,
like the case of document datasets.

Moving to the classification models, using a deep learning approach and a solid
augmentation pipeline we managed to define a model that does not need any change
in his definition when data change. Moreover, we reach almost human performances
regardless of the difficulties of the dataset and the models are small enough to run
seamlessly on smartphones. Regarding the deployment, the image classifier can
work directly with the image of a document, without requiring dependencies like
OpenCV.

Speaking of our findings, we have seen that it is not necessary to use large
models for the document classification task, mainly because of the low intra-class
variance. On the other hand, the collection of documents has proven to be the most
important phase, mainly because of capture bias and temporal bias.

Data augmentation has proven to be fundamental, especially in cases where
the capture bias was important, like the ENTERPRISE dataset. Neural Network
architectures proved to be more important in cases where the training samples
were limited and complex, like the Tobacco-3482 dataset. Even more importantly,

93

13 – Conclusions and future work

a good input image has proven to be the key for a good classification. This refers
to the image quality and the image size.

Regarding the different classification models, we have seen surprisingly that the
image classifier performs better than a text classifier. We think that a major cause
of this phenomenon is related to the failures of the text extraction phase.

13.2 Future work
This work has shown the process that in 6 months allowed to annotate a dataset,
and design, train and deploy a document classifier. Regardless of the work done
there are many areas of improvement.

The first area of improvement is the annotation pipeline, and the first step to
do it is the definition of an evaluation procedure. Because of time requirements we
have not performed a proper evaluation of the annotation pipeline that we created.
In order to improve the whole annotation pipeline it is necessary to define a set
of benchmarks composed of different annotated dataset in the document domain.
Once the dataset are defined, it would be possible to perform proper evaluations
of different components of the pipeline thanks to the available labels. Once it is
possible to evaluate the annotation phase, we could test all the components of the
annotation pipeline:

• Analysis of CNN feature extractors on documents: We used the penultimate
layer of a Xception network as a feature extractor for images, but we have not
performed any test using different layers and architectures. In this optic,

• Combination of image and text features: In this work we have shown that
depending on the document types, image or text based features can be used
for the clustering. What we have not explored is the use of both kind of
features, which has the possibility of leading to even butter clusters.

• Analysis of clustering algorithms: After an analysis of the problem we decided
to use the HDBSCAN algorithm and it showed good results. Nontheless we
did not perform any test regarding different clustering algorithms and we could
find better results.

• Fine Annotation improvement: The fine annotation phase allowed us to cor-
rect some wrong annotation and minimize the documents to annotate manu-
ally. Nonetheless the whole procedure could be refined with a more complex
decision function. For example, the annotated documents below a given con-
fidence threshold should be annotated manually, and the thresholds should be
evaluated.

94

13.2 – Future work

A second area of improvement regards the data augmentation of documents.
As we said, documents have many characteristics that we could exploit more thor-
oughly to generate new images and achieve better performances. In each aug-
mentation we specified possible improvements, but we can create more complex
augmentation techniques with the use of 3d computer vision techniques.

To conclude, the future research directions in document classification have a lot
in common with the more general research in image classification and deep learning.

• Deep learning presumes a stable world: Common systems do not generalize
to novel samples and this makes the deployment of deep learning based solu-
tions difficult in ever-changing scenarios. This problem can partially be solved
through continuous training, but One-shot learning will be essential to solving
this problem.

• Deep learning is resources expensive: In the document domain, we have noted
that the quality and size of the image is the key for a correct prediction.
The consequence of this is that in order to improve the classification accuracy
without increasing the training time, more powerful GPUs are needed.

• OCR for hand-written documents: OCR solutions have shown to be slow and
unable to work with handwritten documents. Better solutions would allow us
to integrate image and text classifiers also in real times systems.

95

96

Bibliography

[Afzal et al., 2017] Afzal, M. Z., Kölsch, A., Ahmed, S., and Liwicki, M. (2017).
Cutting the error by half: Investigation of very deep CNN and advanced training
strategies for document image classification. CoRR, abs/1704.03557.

[Aggarwal et al., 2001] Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001).
On the surprising behavior of distance metrics in high dimensional spaces. In
Proceedings of the 8th International Conference on Database Theory, ICDT ’01,
pages 420–434, London, UK, UK. Springer-Verlag.

[Babenko et al., 2014] Babenko, A., Slesarev, A., Chigorin, A., and Lempitsky, V.
(2014). Neural Codes for Image Retrieval, pages 584–599. Springer International
Publishing, Cham.

[Bengio et al., 2012] Bengio, Y., Courville, A. C., and Vincent, P. (2012). Unsuper-
vised feature learning and deep learning: A review and new perspectives. CoRR,
abs/1206.5538.

[Beyer et al., 1999] Beyer, K. S., Goldstein, J., Ramakrishnan, R., and Shaft, U.
(1999). When is ”nearest neighbor” meaningful? In Proceedings of the 7th
International Conference on Database Theory, ICDT ’99, pages 217–235, London,
UK, UK. Springer-Verlag.

[Breiman, 1996] Breiman, L. (1996). Stacked regressions. Mach. Learn., 24(1):49–
64.

[Campello et al., 2013] Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013).
Density-based clustering based on hierarchical density estimates. In Pei, J.,
Tseng, V. S., Cao, L., Motoda, H., and Xu, G., editors, Advances in Knowl-
edge Discovery and Data Mining, pages 160–172, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Chollet, 2016] Chollet, F. (2016). Xception: Deep learning with depthwise sepa-
rable convolutions. CoRR, abs/1610.02357.

[Chollet, 2017] Chollet, F. (2017). Deep Learning with Python. Manning Publica-
tions Company.

97

BIBLIOGRAPHY

[Conneau et al., 2016] Conneau, A., Schwenk, H., Barrault, L., and LeCun, Y.
(2016). Very deep convolutional networks for natural language processing. CoRR,
abs/1606.01781.

[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W., Lan-
dauer, T. K., and Harshman, R. (1990). Indexing by latent semantic analysis.
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE,
41(6):391–407.

[Dodge and Karam, 2016] Dodge, S. F. and Karam, L. J. (2016). Understanding
how image quality affects deep neural networks. CoRR, abs/1604.04004.

[Ester et al., 1996] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A
density-based algorithm for discovering clusters a density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining,
KDD’96, pages 226–231. AAAI Press.

[Ganchev and Dredze, 2008] Ganchev, K. and Dredze, M. (2008). Small statistical
models by random feature mixing.

[Glorot et al., 2011] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse
rectifier neural networks. In Gordon, G., Dunson, D., and Dudík, M., editors,
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Research, pages
315–323, Fort Lauderdale, FL, USA. PMLR.

[Gonzalez et al., 2016] Gonzalez, D. M., Volpi, M., and Tuia, D. (2016). Learn-
ing rotation invariant convolutional filters for texture classification. CoRR,
abs/1604.06720.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.org.

[Hahnloser et al., 2000] Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M., Dou-
glas, R. J., and Seung, H. S. (2000). Digital selection and analogue amplification
coexist in a cortex-inspired silicon circuit. Nature, 405 6789:947–51.

[Harley et al., 2015] Harley, A. W., Ufkes, A., and Derpanis, K. G. (2015). Evalu-
ation of deep convolutional nets for document image classification and retrieval.
CoRR, abs/1502.07058.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual
learning for image recognition. CoRR, abs/1512.03385.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings
in deep residual networks. CoRR, abs/1603.05027.

98

http://www.deeplearningbook.org

BIBLIOGRAPHY

[Hoiem et al., 2012] Hoiem, D., Chodpathumwan, Y., and Dai, Q. (2012). Diag-
nosing error in object detectors. In Proceedings of the 12th European Conference
on Computer Vision - Volume Part III, ECCV’12, pages 340–353, Berlin, Hei-
delberg. Springer-Verlag.

[Howard et al., 2017] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. CoRR, abs/1704.04861.

[Huang et al., 2016] Huang, G., Liu, Z., and Weinberger, K. Q. (2016). Densely
connected convolutional networks. CoRR, abs/1608.06993.

[Hubel and Wiesel, 1962] Hubel, D. and Wiesel, T. (1962). Receptive fields, binoc-
ular interaction, and functional architecture in the cat’s visual cortex. Journal
of Physiology, 160:106–154.

[Hunter, 2007] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Com-
puting In Science & Engineering, 9(3):90–95.

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing internal covariate shift. CoRR,
abs/1502.03167.

[Jégou et al., 2012] Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P.,
and Schmid, C. (2012). Aggregating local image descriptors into compact codes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9):1704–
1716.

[Joachims, 1998] Joachims, T. (1998). Text categorization with suport vector ma-
chines: Learning with many relevant features. In Proceedings of the 10th European
Conference on Machine Learning, ECML ’98, pages 137–142, London, UK, UK.
Springer-Verlag.

[Joulin et al., 2016] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016).
Bag of tricks for efficient text classification. CoRR, abs/1607.01759.

[Ju et al., 2017] Ju, C., Bibaut, A., and van der Laan, M. J. (2017). The relative
performance of ensemble methods with deep convolutional neural networks for
image classification. CoRR, abs/1704.01664.

[Jung et al., 17] Jung, A. et al. (2017–). Imgaug: Image augmentation for machine
learning experiments. [Online; accessed <today>].

[Kanazawa et al., 2014] Kanazawa, A., Sharma, A., and Jacobs, D. W. (2014). Lo-
cally scale-invariant convolutional neural networks. CoRR, abs/1412.5104.

99

BIBLIOGRAPHY

[Kang et al., 2014] Kang, L., Kumar, J., Ye, P., Li, Y., and Doermann, D. (2014).
Convolutional neural networks for document image classification. In 2014 22nd
International Conference on Pattern Recognition, pages 3168–3172.

[Kim, 2014] Kim, Y. (2014). Convolutional neural networks for sentence classifica-
tion. CoRR, abs/1408.5882.

[Kochi and Saitoh, 1999] Kochi, T. and Saitoh, T. (1999). User-defined template
for identifying document type and extracting information from documents. In
Document Analysis and Recognition, 1999. ICDAR ’99. Proceedings of the Fifth
International Conference on, pages 127–130.

[Krizhevsky et al.,] Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian
institute for advanced research).

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural networks. In Proceedings
of the 25th International Conference on Neural Information Processing Systems
- Volume 1, NIPS’12, pages 1097–1105, USA. Curran Associates Inc.

[Kumar and Doermann, 2013a] Kumar, J. and Doermann, D. (2013a). Unsuper-
vised classification of structurally similar document images. In 2013 12th Inter-
national Conference on Document Analysis and Recognition, pages 1225–1229.

[Kumar and Doermann, 2013b] Kumar, J. and Doermann, D. S. (2013b). Unsu-
pervised classification of structurally similar document images. 2013 12th Inter-
national Conference on Document Analysis and Recognition, pages 1225–1229.

[Kumar et al., 2014] Kumar, J., Ye, P., and Doermann, D. (2014). Structural sim-
ilarity for document image classification and retrieval. Pattern Recognition Let-
ters, 43(Complete):119–126.

[Laan and Dudoit, 2003] Laan, M. J. V. D. and Dudoit, S. (2003). Unified cross-
validation methodology for selection among estimators and a general cross-
validated adaptive epsilon-net estimator: Finite sample oracle inequalities and
examples.

[Lazebnik et al., 2006] Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags
of features: Spatial pyramid matching for recognizing natural scene categories. In
Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition - Volume 2, CVPR ’06, pages 2169–2178, Washington,
DC, USA. IEEE Computer Society.

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition. In Proceedings of the
IEEE, pages 2278–2324.

100

BIBLIOGRAPHY

[Levy et al., 2015] Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving distri-
butional similarity with lessons learned from word embeddings. Transactions of
the Association for Computational Linguistics, 3:211–225.

[Lewis et al., 2006] Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D.,
and Heard, J. (2006). Building a test collection for complex document information
processing, volume 2006, pages 665–666.

[Li et al.,] Li, F.-F., Karpathy, A., and Johnson, J. Cs231n: Convolutional neural
networks for visual recognition 2016.

[Lipton, 2016] Lipton, Z. C. (2016). The mythos of model interpretability. CoRR,
abs/1606.03490.

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant
features. In Proceedings of the International Conference on Computer Vision-
Volume 2 - Volume 2, ICCV ’99, pages 1150–, Washington, DC, USA. IEEE
Computer Society.

[McKinney, 2010] McKinney, W. (2010). Data structures for statistical computing
in python. In van der Walt, S. and Millman, J., editors, Proceedings of the 9th
Python in Science Conference, pages 51 – 56.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J.
(2013a). Efficient estimation of word representations in vector space. CoRR,
abs/1301.3781.

[Mikolov et al., 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and
Dean, J. (2013b). Distributed representations of words and phrases and their
compositionality. CoRR, abs/1310.4546.

[Olah et al., 2017] Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature
visualization. Distill. https://distill.pub/2017/feature-visualization.

[Optical character recognition, 2017] Optical character recognition (2017). Optical
character recognition — Wikipedia, the free encyclopedia. [Online; accessed 26-
February-2017].

[Pang and Lee, 2008] Pang, B. and Lee, L. (2008). Opinion mining and sentiment
analysis. Found. Trends Inf. Retr., 2(1-2):1–135.

[Park et al., 2016] Park, D. H., Hendricks, L. A., Akata, Z., Schiele, B., Darrell,
T., and Rohrbach, M. (2016). Attentive explanations: Justifying decisions and
pointing to the evidence. CoRR, abs/1612.04757.

101

BIBLIOGRAPHY

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

[Perronnin et al., 2010] Perronnin, F., Sánchez, J., and Mensink, T. (2010). Im-
proving the fisher kernel for large-scale image classification. In Proceedings of
the 11th European Conference on Computer Vision: Part IV, ECCV’10, pages
143–156, Berlin, Heidelberg. Springer-Verlag.

[Razavian et al., 2014] Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson,
S. (2014). CNN features off-the-shelf: an astounding baseline for recognition.
CoRR, abs/1403.6382.

[Rolnick et al., 2017] Rolnick, D., Veit, A., Belongie, S. J., and Shavit, N. (2017).
Deep learning is robust to massive label noise. CoRR, abs/1705.10694.

[Rousseeuw, 1987] Rousseeuw, P. (1987). Silhouettes: A graphical aid to the inter-
pretation and validation of cluster analysis. J. Comput. Appl. Math., 20(1):53–65.

[Selvaraju et al., 2016] Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,
Parikh, D., and Batra, D. (2016). Grad-cam: Why did you say that? vi-
sual explanations from deep networks via gradient-based localization. CoRR,
abs/1610.02391.

[Shridhar, 2017] Shridhar, K. (2017). How to version control your machine learning
task. [Online; posted 20-July-2017].

[Sicre et al., 2017] Sicre, R., Montaser Awal, A., and Furon, T. (2017). Identity
documents classification as an image classification problem. In ICIAP 2017 -
19th International Conference on Image Analysis and Processing, ICIAP 2017:
Image Analysis and Processing - ICIAP 2017, pages 602–613, Catania, Italy.
Springer.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very
deep convolutional networks for large-scale image recognition. CoRR,
abs/1409.1556.

[Smith, 2007] Smith, R. (2007). An overview of the tesseract ocr engine. In Pro-
ceedings of the Ninth International Conference on Document Analysis and Recog-
nition - Volume 02, ICDAR ’07, pages 629–633, Washington, DC, USA. IEEE
Computer Society.

[Springenberg et al., 2014] Springenberg, J. T., Dosovitskiy, A., Brox, T., and
Riedmiller, M. A. (2014). Striving for simplicity: The all convolutional net.
CoRR, abs/1412.6806.

102

BIBLIOGRAPHY

[Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013).
On the importance of initialization and momentum in deep learning. In Pro-
ceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, pages III–1139–III–1147. JMLR.org.

[Szegedy et al., 2015] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2015). Rethinking the inception architecture for computer vision. CoRR,
abs/1512.00567.

[Søgaard et al., 2014] Søgaard, A., Plank, B., and Hovy, D. (2014). Selection bias,
label bias, and bias in ground truth, pages 11–13. Association for Computational
Linguistics.

[Torralba and Efros, 2011] Torralba, A. and Efros, A. A. (2011). Unbiased look at
dataset bias. In CVPR 2011, pages 1521–1528.

[UIKit, 2017] UIKit (2017). Ui view content mode. https://developer.apple.
com/documentation/uikit/uiviewcontentmode. Accessed: 2018-03-12.

[Van der Laan et al., 2007] Van der Laan, M. J., Polley, E. C., and Hubbard, A. E.
(2007). Super learner. Statistical applications in genetics and molecular biology,
6(1).

[van der Walt et al., 2011] van der Walt, S., Colbert, S. C., and Varoquaux, G.
(2011). The numpy array: A structure for efficient numerical computation. Com-
puting in Science & Engineering, 13(2):22–30.

[Weinberger et al., 2009] Weinberger, K., Dasgupta, A., Langford, J., Smola, A.,
and Attenberg, J. (2009). Feature hashing for large scale multitask learning. In
Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, pages 1113–1120, New York, NY, USA. ACM.

[Xu et al., 2014] Xu, Y., Xiao, T., Zhang, J., Yang, K., and Zhang, Z. (2014).
Scale-invariant convolutional neural networks. CoRR, abs/1411.6369.

[Yu et al., 2015] Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. (2015). LSUN:
construction of a large-scale image dataset using deep learning with humans in
the loop. CoRR, abs/1506.03365.

[yulingtianxia, 2017] yulingtianxia (2017). Core-ml-sample. https://github.com/
yulingtianxia/Core-ML-Sample. Accessed: 2018-02-12.

[Zeiler and Fergus, 2013] Zeiler, M. D. and Fergus, R. (2013). Visualizing and un-
derstanding convolutional networks. CoRR, abs/1311.2901.

[Zhang et al., 2015] Zhang, X., Zhao, J. J., and LeCun, Y. (2015). Character-level
convolutional networks for text classification. CoRR, abs/1509.01626.

103

https://developer.apple.com/documentation/uikit/uiviewcontentmode
https://developer.apple.com/documentation/uikit/uiviewcontentmode
https://github.com/yulingtianxia/Core-ML-Sample
https://github.com/yulingtianxia/Core-ML-Sample

	Introduction
	Docapost and Innovation Team
	Contents of the thesis

	Document processing systems
	Overview
	LEIA

	State of the art
	Image classification
	Text classification

	Problem analysis and solution proposal

	Hardware environment
	Hardware and software environment
	The machine
	Software environment
	Scientific stack
	Deep learning stack

	Experimental methodology
	Experiment reproducibility
	Resources management
	Hyperparameter optimization
	Measurement methodologies

	Datasets
	Dataset biases
	Selection bias
	Temporal bias
	Capture bias
	Label bias
	Negative set bias

	Test datasets
	CIFAR-10
	Tobacco-3482
	ADMINISTRATIVE
	ENTERPRISE

	Evaluation

	Dataset annotation
	Problem definition
	Time estimation
	Solutions

	Annotation by clustering
	Feature extraction
	Dimensionality reduction
	Clustering

	Fine annotation

	Image preprocessing and data augmentation
	Preprocessing
	Colors
	Resizing
	Value scaling

	Data augmentation
	Data augmentation and image preprocessing
	Online data augmentation
	Image transformations

	Neural Network Introduction
	Feedforward networks
	Activations
	Loss function

	Training
	Back-propagation
	Transfer learning

	Image classification
	Convolutional Neural Networks
	Convolutions
	Pooling

	MobileNet
	Architecture
	Training

	DenseNet
	Architecture
	Training

	Results
	Tobacco
	ADMINISTRATIVE
	ENTERPRISE

	Text classification
	OCR
	FastText
	Architecture
	Embedding
	N-gram features

	Results
	ADMINISTRATIVE
	ENTERPRISE

	Ensemble model
	Classic ensembles
	Stacked ensembles
	Weighted average
	Classic classifiers

	Results
	Cifar-10
	ADMINISTRATIVE

	The black box issue
	Opening the black box
	Interpretability as explaination
	Grad-CAM
	Grad-CAM experiments

	Deployment
	Scenarios
	Mobile deployment
	Model conversion
	Mobile Application

	Conclusions and future work
	Objectives and findings
	Future work

	Bibliography

		Politecnico di Torino
	2018-04-06T15:16:18+0000
	Politecnico di Torino
	Bartolomeo Montrucchio
	S

