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Summary

The following graduation thesis “NERD for NexGenTV” documents the contribu-
tion I gave to the NexGenTV project during my internship at Graduate school and
research centre EURECOM.

In particular, the thesis focuses on two NexGenTV subtasks: Named Entity
Recognition (NER) and Named Entity Disambiguation (NED). It presents two
multilingual ensemble methods that combines the responses of web services NER
and NED in order to improve the quality of the predicted entities. Both repre-
sent the information got by the extractor responses as real-valued vector (features
engineering) and use Deep Neural Networks to produce the final output.

In order to evaluate the proposed methods, I created a gold standard which
consists in a corpus of subtitles transcripts of French political debates. About the
matter, I described the ground truth creation phase, explaining the annotation
criteria.

I finally tested the quality of my ensemble methods defining standard metrics
and my own defined ones.
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Chapter 1

Introduction

Information Retrieval has been a crucial research topic in scientific community and,
in particular, in the Data Science department of EURECOM. One of the related
research projects to which the department contributed is calledNexGenTV 1. The
project aims to enrich the experience of the television viewer on a support device.
In fact, facing the revolution concerning the progressive abandon of television single
screen in favor of multiple ones, NexGenTV was thought to offer new possibilities
about media consumption:

1. the automatic detection of highlights for a program;

2. the (semi)-automatic enrichment of it with complementary information;

3. the optimization of the user experience via a new interaction in line with
viewer’s expectations.

These services are offered delayed or live. In the fist case the most important
aspect is the quality of the information presented to the user in addition to the
program, while the main challenge in the live scenario is the ability of producing
real-time contents. Examples of this scenario could be a political debate, in which,
additional information related to the debate topic could be useful to help the
understanding and to stimulate viewers’ interest.

The contribution presented in this master thesis improve a part of the pipeline
used to enrich information, with the aim of specializing it for political debates.

1http://www.nexgentv.fr/about-us/about-nexgentv
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1 – Introduction

1.1 Motivation and context
Considering the context of a political debate, the first issue to solve is how to
represent it. Moving the attention from the political debates to the news in gen-
eral, in [24], [25] and [9] the authors developed a pipeline that aimed to offer this
representation. In particular they introduced the concept of News Semantic
Snapshot (NSS) and they defined the way to built it starting from a specific
news:

• using the newscast broadcasters offered metadata about the items they pub-
lish, they build the query q = [h, t], where h is the video heading, and t is the
publication date. They use this query as input for Google Custom Search
Engine (CSE),2 collecting event-related documents as result of the query;

• they perform a named entity recognition analysis on the set of documents
retrieved by the query q and on the original news transcript extracting a bag
of entities. Each entity is a triplet (surface form3, type, link).

• named entities are then clustered applying a centroid-based clustering oper-
ation based on strict string similarity over the link, and in case of mismatch,
the Jaro-Winkler string distance over the surface form, filtering out clusters
according to their entity centroids

• at the end the entities are filtered according to their type, keeping only PER-
SON, LOCATION, and ORGANIZATION, removing the ones with low con-
fidence score keeping only the ones with capitalized surface form.

• NSS can now be modeled following a schema of concentric entity layers. In
particular they define two entity layers that can annotate a news item:

– Core: it is composed of a small number of key entities which are es-
sential to identify an event; those entities have the highest degree of
representativeness, are frequently mentioned in related documents and
are therefore spottable via frequency-based functions;

– Crust: it is composed of a larger number of entities that describe par-
ticular details of news.

2https://developers.google.com/custom-search/

3 In a textual document, the surface forms are linear sequences of characters. The surface
form related to an entity is the sequence of characters representing this entity in the analyzed
text. For instance, in the sentence François Hollande condamne avec la plus grande fermeté les
allégations François Hollande is the surface form related to the entity referred to the French
politician François Hollande

2
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1.1 – Motivation and context

One of the most important step presented in this pipeline is the identification
of entities in the documents set. In fact the precision of retrieved entities clearly
affects the semantic snapshot generation.

The term “named entities” identifies information units like names, including
person, organization and location names, and numeric expressions including time,
date, money and percent expressions.

Identifying references to these entities in text was recognized as one of the
important sub-tasks of Information Extraction and was called Named Entity
Recognition and Classification (NERC) or more simplyNER. In this context
a type (a tag) is assigned to each named entity. Early work formulates the NERC
problem as recognizing “proper names” in general. Overall, the most studied types
are three specializations of “proper names”: names of “persons”, “locations” and
“organizations”. These types are collectively known as ENAMEX. Each of these
types can in turn be divided into multiple subtypes. The type “miscellaneous”
includes proper names falling outside the classic ENAMEX. The class is also some-
times augmented with the type “product”, the TIMEX types (“date” and “time”)
and the NUMEX types (“money” and “percent”). Depending on the context of
the extraction, these types can be further augmented.

Let’s consider that the types here discussed are the most common, but the list
of types depends on the extraction purposes. For this reason, each NER extractor
specifies the list of types tags that it uses. In most cases it happens that two
different extractors uses different tags but related to the same concepts; for example
let’s suppose that, to identify a geographical region, the extractor e1 uses the tag
PLACE and the extractor e2 uses the tag LOCATION.

In these cases, it is necessary to align the different type lists (taxonomies)
by mapping the tags retrieved by the first extractor to the ones retrieved by the
second, or vice versa. This process is called type alignment or type mapping.

In the first applications that tried to compare different extractors, this step was
done manually. However using a manual type mapping is an iterative and time
consuming task because, as the type taxonomies evolve over time, mappings may
need to be updated. For this reason, an automatically learned type alignment is
usually preferred.

Named entity linking (NEL) or Named entity disambiguation (NED)
is instead the task of determining the identity of entities mentioned in text. This
is done by linking the entities to a knowledge base4 containing them. Each en-
tity in Knowledge Base is idntified by an Uniform Resource Identifier (URI),
a string of characters used to identify a resource We take as example the exam-
ple: Il va y avoir une dynamique avec Benoît Hamon. The surface form Benoît

4A knowledge base is a centralized repository for information: a public library, a database of
related information about a particular subject.

3



1 – Introduction

Hamon corresponds to an entity and it is linkable with the Wikipedia resource
corresponding to it (https://it.wikipedia.org/wiki/Beno%C3%AEt_Hamon).

The term Named entity recognition and disambiguation (NERD) iden-
tifies both task NERC and NED.

The core of this report is focused on NERD task applied to the debates tran-
scripts of TV programs.

1.2 Research problems
Different web services are available for performing NER and NED tasks. Is it pos-
sible to combine their responses in order to create a new more powerful extractor?
Which response data are useful for NER purposes? Which ones for NED purposes?
Considering that extractors return list of named entities – together with the type
and the identifier of each of them –, how this data can be numerically represented?
In particular, how a node in a knowledge base can be embedded as a features
vector? Which ensemble method should be adopted to exploit all the collected
information? Are there other data sources – different from the extractor responses
– that are useful for the ensemble method?

In terms of NER, considering that each extractor associates each NE to a type
depending on its ontology, is it possible to define an ensemble method that avoids
a type alignment step or that computes it automatically, without the human in-
tervention?

In terms of NED, considering that each entity should be disambiguate with a
proper entity in knowledge base, which knowledge base should be used?

1.3 Approach and methodology
The NER approaches can be subdivided into three main categories: dictionary-
based, rule-based and machine learning approaches.

The dictionary-based approaches are based on a list of named entities that they
try to identify in the text; for example, in [1] the authors build a complete lexicon
containing all the words found in general newspaper text. They intended to provide
the reader with an understanding of the inherent limitations of existing vocabulary
collection methods and the need for greater attention to multi-word phrases as the
building blocks of text. In particular, dictionary-based approaches show problems
in recognizing proper names.

Rule-based approaches rely on hand-crafted rules. For example, [5] proposes a
natural language processing (NLP) system, FUMES, which makes use of the inter-
nal structure of names and the descriptive information that regularly accompanies
them to produce lexical and knowledge base entries for unknown proper names.

4
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1.3 – Approach and methodology

Nowadays, hand-crafted rules for recognizing NEs are usually implemented when
no training examples are available for the domain or language to process.

When training examples are available, the methods of choice are borrowed from
supervised machine learning approaches. [39] proposes a Hidden Markov Model
(HMM) and an HMM-based chunk tagger for NER. Other approaches, as Entropy
Models and Conditional Random Fields were presented respectively in [6] and [8].
More recently deep learning models started to be used for NER. For example, the
Python library spaCy 5 uses BiLSTM with residual connections, layer normaliza-
tion and maxout non-linearity.

Also for NED purposes, there is a big variety of approaches. In the seminal
approach of Milne and Witten, supervised learning is employed using the anchor
texts of Wikipedia entities as training data [17]. Other approaches [38] collect
training data based on unambiguous synonyms. [31] describes in detail many other
approaches used for NED.

A deep learning approach that was recently proposed and that seems interest-
ing to be explored is described in [13]. Here the authors propose a type-guided
semantic embedding approach to boost collective entity linking. They used bidirec-
tional Long Short-Term Memory (BiLSTM) to model the context, and use dynamic
convolutional neural network (DCNN) to model the categories, in order to obtain
respectively a mention embedding and an entity embedding. Their resulting vec-
tor representations xm and xe are used to compute a mention-entity similarity
score through a similarity matrix M . Then, a join layer concatenates xm, xe and
the similarity score into a single vector, which is then passed through three fully
connected hidden layers. Finally, the output of the hidden layers is further fed
to the softmax classification layer, which generates a initial mention-entity linking
probability.

Since the 90’s, an increasing number of services have been developed for NER
and NED. Recently, those tools have been transformed into web services, opening
their APIs for public research or commercial use and contributing to the develop-
ment of a new set of semantic applications.

In this report I will not focus on the creation on a new tool to directly do NER
and NED, but I want to combine the outputs of the existing ones in an ensemble
method. For this reason, I will not focus in detail on NER and NED models, but
I will pay more attention on ensemble methods in literature.

5https://spacy.io/

5
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1 – Introduction

1.4 Contributions
In this report, I present a new ensemble approach to combine the output of the
NER and NED extractors available on the Web to improve the F1 scores of the
single extractors. It allows to treat the extractors as “black boxes”, ignoring how
they work and being able to easily add new extractors to further improve the scores.
The definition of these ensemble models will be strictly based on deep learning and
neural networks.

To reach this purpose, I define a way to numerically represent the types and the
entities retrieved by each extractor. At this scope, I analyse different techniques
to embed the Wikidata knowledge graph.

In order to evaluate my approach on the political debates transcripts, I annotate
part of these files creating a gold standard by this corpus. For this purpose, I define
algorithms to help in speeding up the annotation phase.

I test the ensemble approach using the ground truth created by myself and other
gold standards commonly used in literature, to be able to compare my results with
previous works.

In conclusion, I analyze the reasons why the single extractors responses scores
are outperformed by my ensemble methods.

1.5 Report structure
The report is divided into 5 chapter.

Chapter 2 describes the extractors combined in the ensemble methods and
analyze related works that experiment an ensemble approach.

Chapter 3 describes the NexGenTV political debates dataset, the ground truth
creation, the annotations guidelines and the methods used to speed up this phase,
together with its final result.

Chapter 4 analyze some methodologies to embed the Wikidata graph in order
to offer a numerical representation of each entity presented in it.

Chapter 5 is focused on the way I built the features from the extractors outputs.
These features are useful to form the input samples for the neural networks at the
base of my ensemble method.

Chapter 6 describes these neural networks and it focuses on the core of the
ensemble methods I adopt for NER and NED purposes. In addition, I evaluate the
described method for different gold standards.

6



Chapter 2

State of the art and related
work

2.1 Named entity recognition and disambiguation
extractors

As the interest for Named Entity Recognition and Disambiguation grow up, a
number of services have been developed to extract structured information from
resources published on the Web. Those tools have been transformed into web
services, opening their APIs for public research or commercial use and contributing
to the development of a new set of semantic applications. These tools generally
provide an output composed of a set of extracted named entities, their type and
potentially a URI disambiguating each named entities (o = (NE, type, URI)). In
this section, I focus on describing the ones I used as part of my ensemble method.

To have an idea about the output of each extractor, I query each of them for
the same sentence z:

A. Juppé : Vous me posez la question de savoir qui je suis, vous voyez
qu je ne suis pas... Je pense que cette outrance est mauvais signe, il y
a de la panique à bord. La seule chance de Nicolas Sarkozy de gagner,
c’est de capter les voix de l’extrême droite, c’est ce que disait une étude
récente. Je ne veux pas m’engager dans cette bataille, je veux parler de
mon projet.

Each extractor returns the output in its own specific format. The output tables
in the following shows it after a parsing step, in order to represent all extractors
output in the same way.

7



2 – State of the art and related work

2.1.1 ADEL

ADEL1 [22] is a robust and efficient entity recognition and linking framework
that is adaptive to text genres and language. Receiving in input a text or an
URL pointing to a document (from which it extract text), it analyzes it, extracts
named entities and links them to the their disambiguation KB node. The text
can be in French or English; however, linking task is not implemented for French
language. Because I am working on a French corpus, I only consider the Named
Entity Recognition part of ADEL.

ADEL models are trained on many datasets and a query parameter allows
to specify which one to use to get the predicted entities. The types vocabulary
depends on the used dataset; so, the types associated to the returned named enti-
ties differ by changing the dataset. By default, the returned types are PERSON,
ORGANIZATION and LOCATION.

The framework architecture is composed of multiple modules spread into two
main parts: Entity Extraction and Entity Linking.

For Entity Extraction, the authors used three kinds of extractors: (i) Dictionary,
(ii) POS Tagger and (iii) NER. Each of these extractors run in parallel. The
entity dictionary reinforces the extraction by bringing a robust spotting for well-
known proper nouns or mentions that are too difficult to be extracted for the other
extractors (e.g. Role-type mentions). The two other extractors use an external
NLP system based on Stanford CoreNLP [14] and particularly the POS [36] and
NER taggers.

For Entity Linking, they create an index over a targeted knowledge base (e.g.
the April 2015 DBpedia snapshot) using the Indexing Module. This index is used to
select possible candidates with the Candidate Generation Module. If no candidates
are provided, this entity is passed to the NIL Clustering Module, while if candidates
are retrieved, they are given to the Linkers Module.

The approach is interesting because shows the benefit of combining different
CRF models2 to improve the entity recognition, and to use them as a filter for
improving the linking.

Table 2.1 shows the Adel output for the sentence z.

1http://adel.eurecom.fr/api/

2Conditional random fields (CRFs) are a class of statistical modeling method often applied in
pattern recognition and machine learning and used for structured prediction.
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Table 2.1: Adel output example

text start end type uri
A. JUPPÉ 0 7 PERSON NaN

NICOLAS SARKOZY 30 44 PERSON NaN

2.1.2 Alchemy
AlchemyAPI3 has been launched in 2009. Today it is also known as Natural
Language Understanding, because the original API was acquired by IBM in
2015 and is now part of IBM’s Watson Developer Cloud. AlchemyAPI is com-
posed by three principal modules: (i) AlchemyLanguage or Watson Natural Lan-
guage Understanding, (ii) Watson Discovery News, (iii) AlchemyVision or Watson
Visual Recognition. AlchemyLanguage performs Named Entity Recognition, but
not Named Entity Linking. Given a text or a URL as input, it founds named
entities and assigns types to them. Figure 2.1 contains the complete list of entity
types. AlchemyAPI uses deep learning in order to detect entities and assign types.
However the model and architecture details are not public, making impossible to
provide here a better insight.

AlchemyAPI supports these languages: Arabic, English, French, German, Ital-
ian, Portuguese, Russian, Spanish, and Swedish.

Table 2.2 shows the Alchemy output for the sentence z.

Table 2.2: Alchemy output example

text start end type uri relevance
NICOLAS SARKOZY 30 44 Person NaN 0.978347

2.1.3 Babelfy
Babelfy4 is a unified, multilingual, graph-based approach to Word Sense Disam-
biguation and Entity Linking based on a loose identification of candidate meanings
coupled with a densest subgraph heuristic which selects high-coherence semantic
interpretations. The Babelfy approach is explained in [18].

At first the authors create a widecoverage semantic network which encodes
structural and lexical information both of encyclopedic and lexicographic kind.

3https://www.ibm.com/watson/alchemy-api.html

4http://babelfy.org/login
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Figure 2.1: Alchemy Types

The network name is BabelNet and it is obtained from the automatic seamless
integration of Wikipedia and WordNet. The network is built not considering rela-
tion types, but only the end points – i.e. vertices – connected by these relations. In
addition, the authors provide a structural weighting of the network’s edges and for
each vertex they create a set of related vertices (semantic signature) using random
walks with restart.

Given a text, the frameworks extracts all the linkable fragments from this
text and, for each of them, lists the possible meanings according to the semantic

10
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network. This output is obtained thanks to the loose candidate identification
routine, based on superstring matching instead of exact matching.

To finally predict the right candidate, the framework creates a graph-based
semantic interpretation of the whole text by linking the candidate meanings of
the extracted fragments using the previously-computed semantic signatures. Then
it extracts a dense subgraph of this representation and select the best candidate
meaning for each fragment. Through this step, Babelfy fulfills Named Entity Link-
ing purposes, supporting the majority of languages. On the other hand, it does
not support type recognition.

Table 2.3 shows the Babelfy output for the sentence z.

Table 2.3: Babelfy output example

text start end type uri relevance
CHANCE 20 25 NaN Q7632586 0.0

NICOLAS SARKOZY 30 44 NaN Q329 1.0
VOIX 77 80 NaN Q7390 0.0

EXTRÊME DROITE 87 100 NaN Q204481 1.0
ÉTUDE 127 131 NaN Q207841 0.0

2.1.4 Dandelion
Dandelion5 is a framework composed by a set of APIs, that involve also Entity
Linking [21]. The linking goal is reached by using a knowledge graph of places,
events, organizations, people and other information. The data forming the graph
are collected among numerous proprietary and open data sources. Those data
pass by a data normalisation process of data normalisation that includes several
steps, among which data cleaning and data harmonisation. Then the entities are
deduplicated using Silk Framework [3]. Dandelion API supports the majority of
languages.

Table 2.4 shows the Dandelion output for the sentence z. Dandelion doesn’t
return types for the named entities.

2.1.5 DBpedia Spotlight
DBpedia Spotlight 6 is an open source project responsible for the developing
a system for automatic annotation of DBpedia entities in natural language text.

5https://dandelion.eu/

6http://demo.dbpedia-spotlight.org/
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Table 2.4: Dandelion output example

text start end type uri confidence
CHANCE 20 25 NaN Q1970348 0.0328

NICOLAS SARKOZY 30 44 NaN Q329 0.9185
VOIX 77 80 NaN Q189760 0.5889
ÉTUDE 127 131 NaN Q30612 0.0578

It provides programmatic interfaces for phrase spotting (recognition of phrases
to be annotated) and disambiguation (entity linking) as well as various output
formats (XML, JSON, RDF, etc.) in a REST-based web service. The standard
disambiguation algorithm is based upon cosine similarities and a modification of
TF-IDF weights (using Apache Lucene7). The main phrase spotting algorithm is
exact string matching, which uses Aho-Corasick implementation of LingPipe8. The
detailed description of DBpedia Spotlight is reported by the authors in [7] and [15].

Table 2.5 shows the Dbspotlight output for the sentence z.

Table 2.5: Dbspotlight output example

text start end type uri relevance
JUPPÉ 3 7 NaN Q215569 0.999550
LA 11 12 NaN Q263478 0.950094

SEULE 14 18 NaN Q310890 0.999989
CHANCE 20 25 NaN Q1970348 0.979174

DE 27 28 NaN Q188 0.306102
NICOLAS SARKOZY 30 44 NaN Q329 1.000000

DE 46 47 NaN Q188 0.306102
DE 63 64 NaN Q188 0.306102
DE 82 83 NaN Q188 0.306121

EXTRÊME 87 93 NaN Q465978 0.697596
UNE 123 125 NaN Q630790 0.999775

ÉTUDE 127 131 NaN Q12483 0.804187
RÉCENTE 133 139 NaN Q11084414 0.999640

7http://lucene.apache.org/

8http://alias-i.com/lingpipe

12

http://lucene.apache.org/
http://alias-i.com/lingpipe


2.1 – Named entity recognition and disambiguation extractors

2.1.6 Meaning Cloud

MeaningCloud9 is a Software-as-a-Service product that enables users to embed
text analytics and semantic processing in any application or system. It supports
Entity Recognition, but not Entity Linking. It finds named entities in a specified
input text and assigns types to them. The used types derive from a specific ontology
(Figure 2.2). In addition, it supports many languages: English, Spanish, French,
Italian, Portuguese, Catalan.

Table 2.6 shows the MeaningCloud output for the sentence z.

Table 2.6: MeaningCloud output example

text start end type uri relevance
A. JUPPÉ 0 7 FullName NaN 1.0

NICOLAS SARKOZY 30 44 FullName NaN 1.0

2.1.7 Opencalais

Opencalais10 is a sophisticated Thomson Reuters web service that attaches in-
telligent metadata-tags to unstructured content, enabling powerful text analyt-
ics. OpenCalais identifies and tags mentions (text strings) in a text based on
a list of predefined metadata types: Anniversary, City, Company, Continent,
Country, Editor, EmailAddress, EntertainmentAwardEvent, Facility, FaxNumber,
Holiday, IndustryTerm, Journalist, MarketIndex, MedicalCondition, MedicalTreat-
ment,Movie,MusicAlbum,MusicGroup, NaturalFeature, OperatingSystem, Organi-
zation, Person, PersonCarrer, PersonEducation, PharmaceuticalDrug, PhoneNum-
ber, PoliticalEvent, Position, Product, ProgrammingLanguage, ProvinceOrState,
PublishedMedium, RadioProgram, RadioStation, Region, SportsEvent, SportsGame,
SportsLeague, TVShow, TVStation, Technology, URL .

OpenCalais does not perform Named Entity Linking.
For the sentence z, Opencalais do not retrieve NE.

9https://www.meaningcloud.com/demos/text-analytics-demo

10http://www.opencalais.com/opencalais-api/
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Figure 2.2: Meaning cloud ontology
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2.1.8 TextRazor
TextRazor11 uses state-of-the-art Natural Language Processing and Artificial In-
telligence techniques to parse, analyze and extract semantic metadata from a tex-
tual content. TextRazor is the only tool between the ones mentioned that performs
both Named Entity Recognition and Disambiguation. For a specific named entity,
it returns:

1. the types associated to the DBpedia ontology;

2. the list of DBpedia types;

3. the list of Freebase types;

4. the disambiguated Freebase ID;

5. the disambiguated Wikidata ID;

6. the link to Wikipedia page.

For the ensemble method that I will describe in the following chapters, I use only
the DBpedia types for type recognition purposes and the Wikidata ID for disam-
biguation purposes. The DBpedia ontology (from which the types are derived) is
represented at http://mappings.dbpedia.org/server/ontology/classes/.

Table 2.7 shows the TextRazor output for the sentence z.

Table 2.7: TextRazor output example

text start end type uri confidence relevance
NICOLAS SARKOZY 30 44 Politician Q329 15.870 0.26610

A. JUPPÉ 0 7 OfficeHolder Q215569 1.385 0.28010
EXTRÊME DROITE 87 100 NaN Q204481 4.618 0.07472

2.2 Ensemble Approaches
2.2.1 NERD
NERD12, enable human beings to evaluate the most popular Linked Data named
entity extractors [27]. It allows users to analyze any textual resource published on

11https://www.textrazor.com/

12http://nerd.eurecom.fr/
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the web and accessible through a URI, and to extract from the text the named
entities that are detected, typed and disambiguated by various NE extractor APIs.
It provides a user interface for assessing the performance of each of those tools
according to the pattern (NE, type, URI).

Each service provides its own taxonomy of named entity types it can recog-
nize. The authors therefore designed the NERD ontology which provides a set of
mappings between these various classifications. Mapping the original types to the
NERD ontology makes possible an evaluation of the quality of each extractor.

The type alignment step was originally designed as static: the authors manually
mapped the taxonomies of 12 of these systems to a single ontology, namely the
NERD ontology. However in [29], they proposed a more sophisticated and robust
approach called Inductive Entity Typing Alignment that avoids to manually
map types; considering a specific text, let’s denote with E the entity list, with
T the entity type list, with S the source extractor types, and with GS the types
observed in the gold standard. (E, T )S indicates the ordered list of entities and
types given by the source extractor, while OS is the schema used by the source
extractor to type the entities. Let’s define A : TS −→ TGS as the set of alignments
given to which they apply a transformation from the TS to the TGS .

The authors adopted a machine learning induction approach, that aim to learn
which entity types as assigned by the extractor outputs correspond to which entity
classes in the gold standard. The considered algorithms are k-Nearest Neighbour
(k-NN) and Naive Bayes (NB).

In [28] and [26], NERD-ML tool is described. It is a related tool that allows to
combine the extractors applying three different machine learning algorithms: Naive
Bayes (NB), k-Nearest Neighbor (k-NN) and Support Vector Machines (SVM).

2.2.2 FOX
FOX13 is a framework that integrates the Linked Data Cloud and makes use of
the diversity of NLP algorithms to extract RDF triples of high accuracy out of
NL. In its current version, it integrates and merges the results of Named Entity
Recognition tools, relying on ensemble learning [32,34]. California

At the moment, FOX integrates four NER tools: the Stanford Named En-
tity Recognizer (Stanford) [8], the Illinois Named Entity Tagger (Illinois)
[23], the Ottawa Baseline Information Extraction (Balie) and the Apache
OpenNLP Name Finder (OpenNLP). It only considers the performance of these
tools on the classes LOCATION, ORGANIZATION and PERSON. For achieving
this goal, the authors mapped the entity types of each of the NER tools to these

13https://github.com/dice-group/FOX
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three classes. In the literature, it is not clearly mentioned how the type alignment
step has been performed.

Given any input text t, FOX forwards t to each of the n tools it integrates.
The result of each tool Ti is a piece of annotated text ti, in which each token is
assigned either a particular class or a zero class (not part of the label of a named
entity). Each token in t is then represented as a vector of length n which contains
the classification assigned to it by each tool.

Once these vectors are formed, in [32] the authors tried 15 ensemble learning
algorithms in order to get the final type. They showed as Multilayer Perceptron
approach gave the best results. So in [34] the focused on this ensemble learning
method. The token vectors previously discussed are forwarded to the multilayer
perceptron (MLP), whose input layer contains one neuron for each possible com-
bination of tool and class. The output layer of the network in the MLP contains
exactly as many classes as recognized by FOX. The trained neural network returns
a classification for each token of t, which is the final classification assigned by FOX
for the token under consideration. In a final step, sequences of token which belong
to the same class are merged to a single entity.

The FOX MLP approach is similar for many aspects to the one that I imple-
mented and I will discuss in Chapter 6.1.
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Chapter 3

Ground truth generation

3.1 NextGenTV dataset analysis

NexGenTV offers a dataset formed by 33 subtitles transcripts related to politician
television debates (French presidential election, 2017). My goal was to annotate
the ground truth in order to evaluate the quality of the ensemble method that I
designed (Chapter 6).

I analyzed the debates duration, discovering that the average duration is 107
min and the median duration is 133 min; the distribution is plotted in Figure 3.1.

Considering that these transcripts files are really long, I divided them into
temporal fragments lasting 2 minutes; let’s identify with fi,j the fragment j for the
transcript file i, where 1 ≤ i ≤ 33. I randomly select N fragments between them.
This random selection avoids to select fragments only coming from a small number
of files and, as a consequence, to create a corpus highly sensitive to the content
discussed in a specific debate. In total, I annotated 77 fragments, that is the 23%
of the entire original dataset.
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Figure 3.1: Subtitles duration

3.2 Wikidata ontology description
In order to guarantee an high level of consistency of annotations, I took as refer-
ence Wikidata1. The items and properties in Wikidata that are used to struc-
ture the ontology are class (Q16889133),2 entity (Q35120),3 Wikidata metaclass
(Q19361238)4, instance of (P31)5 and subclass of (P279)6.

Classes are items that conceptually group together similar items, as human
(Q5)7 groups together humans. The items in a class are known as its instances,
and they are related to the class via instance of (P31). Classes are related to more-
general classes using subclass of (P279), i.e. human (Q5) is a subclass of person
(Q215627).8

If a class is a subclass of another, then it is transitively a subclass of any

1https://www.wikidata.org/wiki/Wikidata:Main_Page

2https://www.wikidata.org/wiki/Q16889133

3https://www.wikidata.org/wiki/Q35120

4https://www.wikidata.org/wiki/Q19361238

5https://www.wikidata.org/wiki/Property:P31

6https://www.wikidata.org/wiki/Property:P279

7https://www.wikidata.org/wiki/Q5

8https://www.wikidata.org/wiki/Q215627
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more-general classes, so human (Q5) is a subclass of animal (Q729)9 because it
is a super class of person (Q215627). It is not necessary to explicitly state these
subclass relationships, so human (Q5) does not have animal (Q729) as a value for
subclass of (P279) even though it is a subclass of animal (Q729).

An other important aspect of Wikidata is that each entities is identified by a
specific URI (e.g. http://www.wikidata.org/entity/Q5577) that is composed by
the Wikidata prefix (http://www.wikidata.org/entity) and the entity identifier
(e.g. Q5577).

3.3 Annotations problems and related tools

In order to annotate the subtitles files, I used brat rapid annotation tool.10

brat is a web-based tool for text annotation or, in other words, for adding notes
to existing text documents [35]. For my purposes, brat is useful to a have a nice
interface to annotate documents and because it offers the possibility to upload a
collection of files to be annotated. The collection is a folder that contains the text
files (.txt suffix) that has to be annotated. For each of these files, it is necessary
to add an annotation file (.ann suffix) in the folder with the same base name
and it could be also empty; for example, in the folder f you need to find the file
DOC-1000.txt and its annotation fileDOC-1000.ann.

Annotations created in brat are stored in the annotation files separately from
the annotated document text, which is never modified by the tool. All annotations
follow the same structure: each line contains one annotation, and each annotation is
given an ID that appears first on the line, separated from the rest of the annotation
by a single TAB character. The rest of the structure varies by annotation type. An
example of annotation file is shown below.

T1 PERSON 6 12 Salame
T2 ORGANIZATION 44 54 entreprise
T4 PERSON 62 70 salaries
T6 MISC 111 117 themes
T7 MISC 137 148 suppression
T9 MISC 152 158 compte
T10 PERSON 183 200 Francois Hollande

9https://www.wikidata.org/wiki/Q729

10http://brat.nlplab.org/index.html
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3.4 Annotations guidelines
During the annotation phase, I define some criteria to create a consistent ground
truth, in particular related to these issues:

1. Overlapping mentions, which are two different entity type labels or URIs
that are applied to a single phrase in a document. For example, given the
sentence:

Lors de l’affaire Kerviel, vous avez demandé la démission du PDG
dela Société Générale

you would overlap mentions if you annotate Kerviel as PERSON and affaire
Kerviel as EVENT for the single phrase affaire Kerviel. Building the ground
with brat, I annotate both the overlapping mentions, but I mark the one
that is more interesting (generally the longest one in terms of chars) with
a specific note, in order to easily create a secondary ground truth without
overlapping mentions (Figure 3.2).

Figure 3.2: Note example for overlapping mentions

In the example above réforme de la Constitution is an EVENT, while Constitution is a WORK;
adding the symbol + in the notes related to réforme de la Constitution allows to recreate a
ground truth without overlapping mentions, preserving only the annotation with + as note

2. Coreferences, which are two or more expressions in a text refer to the same
person or thing. If we consider the example below:
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- D. Pujadas : Matteo Renzi à sa manière, aller à Bruxelles pour
changer l’Europe et ils n’ont jamais réussi. Comment feriez-vous,
vous? Avez-vous une baguette magique?
- A. Montebourg : Il y a d’abord des récriminations internationales
qui montent contre l’Union européenne.

the proper noun Matteo Renzi and the pronoun Il refer to the same person,
namely to Matteo Renzi.

I choose to consider also the case of coreferences. However, as done for the
overlapping mentions, I mark them with a specific note, in order to easily
build a ground truth without coreferences.

3.4.1 Entity annotations
The first step to create the ground truth is to look for all possible named entities
in the subtitles documents and then to link each of them with the correspondent
Wikidata entity, assigning them the related identifier. To perform the entity re-
search I used the Wikidata search engine, with the surface form of the named entity
as input.

However, when the surface form does not exactly match the entity label, Wiki-
data search engine is not able to find the appropriate disambiguation entity. For
example, this is the case for a surface form like N. Sarkozy: using it as input
string of the search engine I don’t get results (Figure 3.3). Further attempt of
using third-part tools like wikidata-autocomplete11 have not provided solutions
to this issue. For this reason, I implemented a workaround that relies on a search
on Google, that usually returns the correct Wikipedia page with the proper label.
Using this label as input of the Wikidata search engine or the Wikidata autocom-
plete tool is possible to retrieve the right entity and the associated URI (Figure
3.4 and 3.5).

When I find an entity related to a mention, I insert the related Wikidata ID as
brat note.

3.4.2 Type annotations
I consider as Wikidata classes all the entities that are subject or object of at least
one triple with subclass of (P279) as predicate. The target type that I choose
corresponds to the subset of Wikidata classes mentioned in Table 3.1.

11https://athalhammer.github.io/wikidata-autocomplete/wikidata.html
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Figure 3.3: Wikidata Search engine (no results)

Looking for N. Sarkozy the Wikidata search engine doesn’t return result

Figure 3.4: Google Search

Considering as before the example of N. Sarkozy, the referred Wikidata entity
is Q32912, that is an instance of human (Q5); so in this case the correct type is
PERSON.

Let’s consider instead the case in which the surface form presented in the text
is country. It corresponds to Wikidata entity country (Q6256)13. It is not an
instance of a class, as France (Q142)14 could be, but directly a class that is a
subclass of geographical point (Q2221906).15 In this case I add to the correct type

12https://www.wikidata.org/wiki/Q329

13https://www.wikidata.org/wiki/Q6256

14https://www.wikidata.org/wiki/Q142

15https://www.wikidata.org/wiki/Q2221906

24

https://www.wikidata.org/wiki/P279
https://www.wikidata.org/wiki/Q5
https://www.wikidata.org/wiki/Q6256
https://www.wikidata.org/wiki/Q142
https://www.wikidata.org/wiki/Q2221906
https://www.wikidata.org/wiki/Q329
https://www.wikidata.org/wiki/Q6256
https://www.wikidata.org/wiki/Q142
https://www.wikidata.org/wiki/Q2221906


3.4 – Annotations guidelines

Figure 3.5: Wikidata Search engine (with results)

Table 3.1: Wikidata interesting classes

uri label
http://www.wikidata.org/entity/Q215627 person
http://www.wikidata.org/entity/Q43229 organization
http://www.wikidata.org/entity/Q11471 time
http://www.wikidata.org/entity/Q186081 time interval
http://www.wikidata.org/entity/Q11563 number
http://www.wikidata.org/entity/Q309314 quantity
http://www.wikidata.org/entity/Q2221906 geographical point
http://www.wikidata.org/entity/Q1190554 occurrence
http://www.wikidata.org/entity/Q1656682 event
http://www.wikidata.org/entity/Q15621286 intellectual work
http://www.wikidata.org/entity/Q214339 role

http://www.wikidata.org/entity/Q12737077 occupation
http://www.wikidata.org/entity/Q16334295 group of humans
http://www.wikidata.org/entity/Q231002 nationality

GEOGRAPHICAL POINT a letter C, that distinguishes the between instances
and classes mentions.

If the entity annotation step is done before, the types can be dynamically
assigned because both steps depend on the same knowledge base (Wikidata). For
this purpose I wrote a Python script called assign_types.py that looks for the
annotated disambiguation URIs and automatically adds the type information; to
perform this action is necessary to query theWikidata Query Service16 for each
of the classes mentioned in Table 3.1 in order to get all subclasses and then the
instances of each subclass.

16https://query.wikidata.org/
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Considering for example the class/type organization (Q43229), the query to get
all subclasses is:

SELECT DISTINCT *
WHERE {
?s wdt:P279* wd:Q43229.

}

Then I got all instances for each of the subclasses of organization (Q43229),
through the query:

SELECT DISTINCT *
WHERE {
?s wdt:P31 wd:CLASS_IDENTIFIER.

}

By processing and managing the results of the queries, I produce a table that
represents the association between entities and types. A sample of this table is
reported in Table 3.2.

Table 3.2: Uri-type mapping table

WD Id WD Type
Q37175 PERSON
Q192909 EVENT C
Q142 LOCATION, ORGANIZATION

Looking at the last sample of the table, the identifier Q142, that corresponds to
the France’s entity, is linked to more than one type. In fact using a set of Wikidata
classes as types causes an issue: the types are not mutually exclusive. It happens
for two reasons:

1. some selected classes are subclasses of other selected classes; for instance,
let’s consider group of humans (Q16334295) and organization (Q43229); the
latter is a subclass of the former; in these cases I assign as type the most
specific, so the subclass (organization (Q43229) in the considered example);

2. some entities are instances of more than one class; taking the entity France
(Q142) for example, it is an instance of both organization (Q43229) and
geographical point (Q142); in these cases I annotate at first leaving both
types, creating a first ground truth where both types are present.
Then, in a secondary annotation step, I select the most appropriate type
depending on the context of the mentions, creating a second ground truth.
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In order to to remove arbitrariness from the choice of the most appropriate
type, I decided to also take in consideration the DBpedia type. Having already
the information about the Wikidata ID, I can retrieve the correspondent DBpedia
entity by querying the DBpedia SPARQL Endpoint17:

SELECT ?db_uri
WHERE {
?db_uri owl:sameAs WD_URI.

}

Once I get the DBpedia URI, I can derive the type of the respective entity
through the query:

SELECT ?db_type
WHERE {
DB_URI rdf:type ?db_type.

}

The only limit is that if the DBpedia entity has not a correspondent Wikidata
entity, I cannot retrieve the correspondent type starting by the Wikidata entity.
However, this case is really rare.

3.4.3 Optimizations
In order to speed-up the annotation phase, I wrote another script called propa-
gate_annotations.py that looks for specific notes in the annotation files and exe-
cute an action linked to the type of note. For example, let’s consider to have the
word F. Lenglet in the subtitle file a at starting char n and to have already linked
it with its disambiguation uri. It is really probable that each time that the surface
form F. Lenglet is present in the subtitles files, the annotation will be the same.
Adding the note -a to this mention, the annotation will be propagated into all
annotation corpus.

For example, in fragment_0_48 I annotate the phrase F. Lenglet linking it with
its Wikidata entity represented by the identifier Q3085156 and accordingly by the
URI https://www.wikidata.org/entity/Q3085156. I add -a in the annotation
note, after the identifier (Figure 3.6). It is interpreted as a command by the script
propagate_annotations.py that replicates the annotation note in all corpus files;
the Figure 3.7 shows that the note is replicated in fragment_0_50.

Specifying -f rather than -a, the annotation is only replicated in the fragment
that is currently annotated.

17https://dbpedia.org/sparql
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Figure 3.6: fragment_0_48

Figure 3.7: fragment_0_50

This propagation procedure sometimes causes mistakes; in fact, supposing to
replicate the annotations referred to the phrase France founded in the fragment a,
it is reasonable to think that in the majority of cases it corresponds to the country
France. However, it could happen that the French television channel France 2
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appears in another subtitle file b; in this case the word France in b is wrongly
annotated as in a. However the annotation is implemented in order that the same
mention is not annotated more then once in the same fragment. So supposing that
the file b is already annotated the word France presented in France 2 will not be
annotated. At the opposite, if file b is not already annotated, the word France will
be wrongly annotated. However, it is in charge to the human annotator the deletion
of wrong annotations. This process can appear expensive in time consumption, but
it is much less than manually looking for the right identifier each time the word
France appears.

A second optimization that I use to speed up the annotation phase is to
avoid to start with completely empty annotation files: the script called gener-
ate_annotations.py automatically generates annotations using as input sources:

1. the entities extracted by the extractors mentioned in Chapter 2.1 with an high
relevance or confidence score or that are extracted by more than n extractors;
increasing n, the precision of the automatically annotated mentions increases
but the recall decreases;

2. the entities previously annotated; if you have already annotated a set of file
F and you are currently annotating a file c, the algorithm uses the phrases
that are already annotated in F and looks for them in the new file c and, if
it finds once of them, copies the related annotations.
For example, let’s consider the case in which you are annotating the fragment
i; if the phrase affaire Kerviel was already annotated in a fragment p and if
the same phrase is present in i, the annotations notes are copied for affaire
Kerviel in i.
It is also possible to set an option o that allows to propagate the annotation
also when the phrases are not exactly the same but are really similar, using
as similarity criteria the Levenshtein distance and defining a threshold theta
beyond which the entities are considered different; this usually increases the
recall, but decreases the precision.
Considering the previous phrase (affaire Kerviel), the option allows to prop-
agate the associated annotations also when the phrase in the new document
is not exactly affaire Kerviel, as for affaire Gerome Kerviel. However there is
the risk to propagate the annotation also when the phrase Kerviel appears,
and for this reason, it is better to set an high threshold.
In addition, setting up the option o increases the time to generate the au-
tomatic annotation; in this case, considering the phrase affaire Kerviel, the
corresponding entity link l and a new fragment i, the scripts acts like this:

• it forms all possible phrases of d consecutive words in i, where d ≤ D
and D is a constant, that indicates the maximum considered phrase
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length (I usually set this parameter to 7); I identify the set of these
phrases as P ;

• for each of phrase p in P , it computes the Levenshtein distance from
the phrase affaire Kerviel and if it is higher than the threshold theta, it
considers p as matched.

Instead, when the option o is not set up the script only checks if the phrase
affaire Kerviel is in i.

3. the Wikidata entities that have a French label similar to a phrase found in the
new file. If option o is set up, a set S of all possible phrases of d consecutive
words in the new file is created. Then, the script looks for each phrase of
S in the Wikidata French labels, and if it founds it assign the URI of the
entity related to the matching label. This is the way to create automatically
annotations that causes more mistakes because the Wikidata French labels
include also creative works titles.

3.5 Summary
Accordingly with the ground truth creation criteria previously discussed, I anno-
tated the files in such a way it is possible to generate different ground truths,
depending on the final needs:

1. with or without overlapping mentions;

2. with or without coreferences;

3. with or without types;

4. with or without disambiguation URIs.

In Chapter 6, I define two ensemble methods, for type recognition and for
NE disambiguation. I test both them using a final ground truth GTdebates. This
derives from the annotations that I discussed in this Chapter. This is formed by
not considering overlapping mentions and coreferences and assigning, for each NE,
the Wikidata disambiguation ID and the DBpedia type.
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Chapter 4

Wikidata embedding

In order to pursue scopes as Named Entity Recognition and Linking, I look for a
way to represent each entity returned by the extractors as a vector. In particular,
I look for a representation in which more the entities are similar, more easily they
are confused by the extractors predictions.

More generally Knowledge Base Embedding is a process that serves the pur-
pose to compute vector representations of Knowledge Graph entities; the goal is
usually to preserve semantic similarities between them, in order to perform tasks
as classification or recommendation. In this chapter I focus on describing how I
embed the Wikidata KB, representing the entities as features vectors.

4.1 State of the art

In [37], for instance, the authors investigate how to leverage the heterogeneous
information in a knowledge base to improve the quality of recommender systems.
By performing knowledge base embedding and collaborative filtering jointly, they
can simultaneously extract feature representations from the knowledge base and
capture the implicit relationship between users and items. In particular, for the
knowledge base embedding, the information stored in the knowledge base can be
divided into three parts:

1. structural knowledge: this knowledge can be regarded as a heterogeneous
network with multiple types of entities and multiple types of links to express
the structure of the knowledge base. For structural embedding component,
they apply a network embedding procedure called Bayesian TransR, a state-
of-the-art embedding approach for heterogeneous network [12].
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2. textual knowledge: for an item entity such as book or movie in the knowl-
edge base, they use the textual summary to represent the textual knowledge.
They apply an unsupervised deep learning model called stacked denoising
auto-encoders (SDAE) to get item entities’ textual representations from the
textual knowledge.

3. visual knowledge: for an item entity, except for previous textual descrip-
tion, there are usually some images in the knowledge base, they use a book’s
front cover image or a movie’s poster image to represent its visual knowledge
and similarly to previous textual embedding part, they apply another unsu-
pervised deep learning model, termed as stacked convolutional auto-encoders
(SCAE), to extract item entities’ semantic representations from the visual
knowledge.

In [19] the author presents the web service Webemebedder 1 for querying an
embedding of entities in the Wikidata knowledge graph. To compute the embed-
ding the authors downloaded the Wikidata truthy dump, they filtered it accord-
ing to some specific properties, stripping the prefixes http://www.wikidata.org/
entity/ and http://www.wikidata.org/prop/direct/, getting a list of triples,
as shown below:

Q22 P1546 Q2016568
Q22 P610 Q104674
Q22 P1151 Q8143311
Q22 P31 Q3336843
Q22 P36 Q23436
Q22 P47 Q21
...

Each line can be regarded as a very simple graph walk consisting of a single step
from one Wikidata item through a typed property to the next Wikidata item.
These triple data are now regarded as a sentence of three words which can be
treated byWord2Vec model [16] in the Gensim program to compute the embedding.
This is a word embedding method; a word embedding is a learned representation
for text where words that have the same meaning have a similar representation.
Each word is mapped to one vector and the vector values are learned in a way that
resembles a neural network, and hence the technique is often lumped into the field
of deep learning.

Another approach that is generally used for graph embedding is node2vec [10].
This framework learns low-dimensional representations for nodes in a graph by

1https://tools.wmflabs.org/wembedder/
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optimizing a neighborhood preserving objective. The objective is flexible, and the
algorithm works by simulating a random walk on the graph, generating sequences
of nodes, which are then fed in Word2Vec model [16] as if they were sentences of a
document to learn vector representations of the nodes. From these representations,
the relatedness between two nodes can easily be computed using vector similarity
measures. However, in a knowledge graph different properties have different se-
mantic values and should have different weights in judging the relatedness between
two entities.

In [20] the authors proposed a framework (entity2rec) that solves this issue.
They learn property-specific vector representations of knowledge graph entities in
a completely unsupervised way via node2vec. For each property, node vector
representations is computed with node2vec and these representation are used as
property-specific relatedness scores between users and items. Then the property-
specific relatedness scores are combine din a global relatedness score using a su-
pervised learning to rank approach optimizing top-N item recommendation.

All the mentioned approaches consider two entities as similar when they are se-
mantically correlated. As stated before, my notion of similarity is different because
it reflects the probability that an extractor confuses the right entity with another
in the prediction. Using one of the discussed methods means to consider the two
concepts of similarity are near and infers that if two entities are semantically sim-
ilar, the probability that the extractors predict one rather than the other is high.
Is that the case?

I tried to understand which are the typical reasons why the extractors fails to
predict the right entity. Obviously, depending on the extractor, the reasons could
be different but through the observation of the extractors output and intuitively
reasoning about which could be the principal factors that affect the predictions, I
considered some possible causes:

1. the extractors could confuse two entities that represent similar concepts; in
particular they could take an human for another, or a geographical point
with another. In this context it could be useful to keep in consideration the
KB structural part, so the properties that express hierarchical relationships:
subclass of (P279), instance of (P31), part of (P361).2 In addition, it could
be useful to consider some specific properties related to a specific class; for
example, considering the class human (Q5), the property occupation (P106)3

could be useful to more precisely distinguish between two human instances.

2. the extractors could confuse two entities with a similar label; (e.g., Paris

2https://www.wikidata.org/wiki/Property:P361

3https://www.wikidata.org/wiki/Property:P106
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(Q90)4, the city, with Paris Hilton (Q47899)5, the actress). For this purpose,
it could be useful to represent the label as features vector. In addition, also
considering the abstract describing each entity will be easier to distinguish
two different entities.

In order to establish more surely the causes of the wrong predictions it would
be necessary to look at the model of the single extractors; but considering that
the models are not always public, this solution is unfeasible. In addition, the idea
of my ensemble methods is to not focus too much on the single extractors but see
them as a “black box”, in order to be easily able to add new extractors without
thinking about how they work.

Another difference in pursuing recommendation purposes rather than correcting
the wrong entity returned by the extractors is that the former case is nearer to
clustering perspective in which the items in the same cluster are similar, so it is
important to have a global view on all the KB; in the latter, it is not enough to
establish that two entities are similar, but it is also important to differentiate two
entities that are globally similar, keeping into account features that ensure a good
local precision.

In the following of the chapter, I describe the approaches that I experimented
to get an embedding that presents the features discussed before.

4.2 Node2Vec
The section describes some experiments I did to test node2vec [10] scalability. In
particular I focused on understanding if this framework allows a Wikidata embed-
ding in a timely fashion. My internship work lasts six months and, for this reason,
I was interested to get the final embedding in a month at most.

To test the node2vec feasibility I used two different graphs A and B. In order
to form these graphs, I followed these steps:

1. I got a Wikidata dump composed by the unified output of two queries:

SELECT DISTINCT *
WHERE {
?s wdt:P279 ?o.

}

4https://www.wikidata.org/wiki/Q90

5https://www.wikidata.org/wiki/Q47899
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SELECT DISTINCT *
WHERE {
?s wdt:P31 ?o.

}

The first query contains all subclass of relationships; the second one all the
instance of relationships. So the dump contains all the hierarchical rela-
tionships formed by these properties and presented in Wikidata KB and it
considers all the relations among classes and between classes and instances;

2. by using the edgelist got by the query response I formed the graph A;

3. in order to form B, I restricted A, considering only the classes that are
instances or subclasses of the Wikidata classes shown in Table 3.1;

4. for each of these classes I got, using the property subclass of (P279), all the
superclasses and subclasses and the connections between them, through some
SPARQL queries;

5. the formed graph corresponds to B.

Graph A contains around 1500000 nodes, while B contains around 100000
nodes. The part of B representing the top classes is visible in Figure 4.1.

At this point I tried using node2vec to obtain the embedding for both graphs.
As previously mentioned, node2vec works simulating many random walks. The

framework provides a way of balancing the exploration-exploitation tradeoff that in
turn leads to representations obeying a spectrum of equivalences from homophily
to structural equivalence. In addition it allows to set some parameters:

• p and q parameters: while a low q encourages outward exploration (ho-
mophily emphasis), a low p ensures that the walk does not go too far from
the start node (structural equivalence emphasis);

• the number of features d (default: 128);

• the number of walks r (default: 10);

• the walk length l (default: 80);

• the neighborhood size k (default: 10);

• the number of workers w (default: 1).
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Figure 4.1: Top classes

In addition, there is another option (preprocessing) that allows to preprocess
all transition probabilities or compute them on the fly. The first choice is the
faster one but requires more RAM capacity. By default the preprocessing option
is disabled.

In the next section, I analyze the node2vec performances for both A and B.

4.2.1 Performance analysis
Before to directly focus on node2vec behaviour for A and B, I analyze as the
learning quality varies according to the parameters previously described (Figure
4.2).

With the aim of understanding how much each parameter affects the learn-
ing time, I iteratively tested node2vec changing the parameters one by one and
setting with a fix number of edges (around 1,000); this edgelist is got by taking
the first 1000 edges from the edgelist that forms the graph A . The experiment
was conducted considering both the cases of preprocessing or not the transition
probabilities. The results are reported in the Tables 4.1 and 4.2 and Figures 4.3
and 4.4 .

Looking at the correlation values, it is possible to realise that all parameters
seem directly or inversely correlated to the duration when the preprocessing option
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Figure 4.2: Results extrapolated by [10]

Table 4.1: Correlation values without preprocessing

parameter correlation with duration
walk length 0.999990524513316

number of walks per entity 0.9999929333856371
dimensions 0.428024784058904
window size 0.9938776427280335
workers -0.9853259012698113

Figure 4.3: Correlation visualization without preprocessing

is disabled. The number of dimensions is the least correlated parameter.
Instead, using the preprocessing option, the number of walks (0.99), the num-

ber of dimensions (0.8) and the window size (0.75) are the values more correlated.
Looking at both cases and at 4.2 it is possible deducing that improving the em-
bedding quality also means increasing the learning time. So it is necessary to look
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Table 4.2: Correlation values with preprocessing

parameter correlation with duration
walk length 0.2104442835579027

number of walks 0.9999710569307252
dimensions 0.8061769084780231
window size 0.7482112524087928
workers -0.4372913161718269

Figure 4.4: Correlation visualization with preprocessing

for a good tradeoff.
In addition I examined as the learning time varies according to the number

of edges and nodes (Figure 4.5), running node2vec iteratively and changing the
length of the edgelist forming the graph and using the default parameters values.
Also in this case, the edgelists that I used derive from the ones that forms the
graph A by cutting it depending on the number of edges I wanted to consider.

Examining the learning time variation, I observe that the elapsed time linearly
increases with the number of edges when the preprocessing option is set, otherwise
it exponentially increases.

I can conclude that the preprocessing option makes the algorithm faster and
the only limitation is the risk to fit the memory, in particular when dealing with
big graphs. In addition I observe that the elapsed time exponentially increases
with the number of edges.

To understand how the memory consumption varies according to the number
of edges, I run node2vec iteratively, changing the length of the edgelist that forms
A from 2000 to 10000, with the preprocessing option and the default values for the
other parameters.

In Figure 4.6 two trends are shown: the blue one represent the real trend of the
memory consumption respect to the number of edges, the green one is a polynomial
of degree 2 that approximates the real trend. The latter is useful to have a generic
idea about the time consumption when the number of edges is bigger than 10,000
(Figure 4.7). In fact it is not possible to analyze the memory consumption variation
for graphs bigger than 10,000 because running the algorithm will require too much
time. Considering this, we can not be sure that the trend will be the same for bigger
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Figure 4.5: Elapsed time (in seconds) respect to the number of edges and nodes

graphs; in Figure 4.7 a linear variation is visible, but this is a rough approximation
that considers the case in which the trend continues to be linear, so the best one.

Reasoning about these behaviours, I can now establish if node2vec can compute
the embedding for A and B in a timely fashion.

200,000 MiB (21 GB) of RAM would be necessary for a graph composed by
100,000 nodes (Figure 4.7); considering that A is composed by millions of nodes, it’s
clear that the RAM would be saturated using the preprocessing option. However,
not using it really affects the embedding time, that would become greater than 2
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Figure 4.6: Trend of the memory consumption according to number of edges

Figure 4.7: Prediction of the memory consumption according to the number of
edges

months. This means that computing the embedding for graph A is not feasible,
according with the constrains described at the beginning of this section.

On the contrary, graph B is only composed by 100,000 nodes. Considering that
I used a machine that has more than 21 GB of RAM, I was able to compute the
embedding for this graph with these options:
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1. walk length = 100

2. number of walks per entity = 30

3. p = 0.25

4. q = 0.25

5. preprocessing = True

6. dimensions = 150

7. window size = 10

8. iterations = 3

9. workers = 3

The estimated learning duration is one week. In terms of timing, this solution is
feasible. As disadvantage, the dump restriction causes that there is not embedding
for the instances, but only for some specific classes. In addition, the formed graph
contains only structural information and it is composed only by the properties
subclass of (P279) and instance of (P31), not considering all the other properties
that I considered being useful in Section 3.2.

For these limits, I decided to test other methods to get the Wikidata Embedding
Representation.

4.3 All pairs shortest path length matrix and di-
mensionality reduction

This approach based on two steps: considering a graph G, I compute the all min
shortest path matrix and I reduce the matrix dimensionality using PCA or autoen-
coders.

4.3.1 All pairs shortest path length matrix
Let’s consider the Wikidata set of properties P , and a graph G composed by the
Wikidata entities linked by at least one of the properties in P . I computed All-
Pairs Shortest Paths Length for GP and I obtained a matrix n×n (symmetric),
where the value of each cell ci,j identify the shortest paths length between the node
i and the node j. I call this matrix All pairs shortest path length matrix
(M).

Each matrix row represents a specific node i, and the values contained in the
row cells could be seen as a features vector representing the node i.
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In such a way, the node representation is strictly correlated with the node
position in the graph. However, each features vector is composed by n cells, where
is the number of nodes in the graph. For big graphs, as for the Wikidata one,
considering this number of features is unfeasible; so it is necessary to reduce the
number of features through a dimensionality reduction method. This step leads to
delete all the features related to the nodes that are not really discriminative.

Table 4.3: All pairs shortest path length matrix sample

Q1 Q2 ... Qn
Q1 0 5 ... 2
Q2 5 0 ... 4
... ... ... ... ...
Qn 2 4 ... 0

Each Q represents an entity in the Wikidata graph

4.3.2 Incremental Principal Component Analysis
Because of its huge dimension, loading in memory all M is not possible. Some
dimensionality reduction methods are required for managing and processing the
matrix.

I used Incremental PCA rather than the simple Principal Component
Analysis. IPCA is typically used as a replacement for PCA when the dataset to
be decomposed is too large to fit in memory. IPCA builds a low-rank approxima-
tion for the input data using an amount of memory which is independent of the
number of input data samples. It is still dependent on the input data features,
but changing the batch size allows for control of memory usage. I used the IPCA
implementation described in [30], where the authors present an incremental model
that is an extension of the Sequential Karhunen-Loeve Transform [11].

In order to evaluate the dimensionality reduction quality and the amount of
original data that is preserved I performed an experiment. I built a Wikidata
subgraph GS in such a way:

1. using the property subclass of (P279), I considered the Wikidata set of classes
C, where each element c in C is subclass or a superclass of the classes specified
in Table 3.1; so I formed an edgelist E1 from which you can derive a graph
G1;

2. using the property instance of (P361), I added to E1 the edges in which the
instances are super classes (subclass of (P279)) of other entities; so I got a
new edgelist E2 and a correspondent graph G2;
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3. using the property part of (P31), I added the edges in which at least one
node is in G2; so I got the edgelist E3 and the graph G3.

4. for each item x of the subset X of entities that are objects of the triples
formed by the property part of (P31) and that has an associated node in G3,
I associated a virtual node v representing all instances of x. At the end of
this step I got I the edgelist ES and the graph Gsmall.

Gsmall contains 338,202 nodes. This graph represents a part of the hierarchical
and structural information presented in Wikidata. However it considers only the
entities linked to the classes in Table 3.1 and it doesn’t make distinction between
two instances of the same class because they are associated to the same virtual
node. However, for the goal of evaluating the dimensionality reduction, we can
consider it a good compromise.

In order to evaluate how much data is lost during the dimensionality reduction
phase, I compute M for Gsmall. Then I define fi as the matrix vector corresponds
to the row i, fr

i as the reconstructed vector fi after computing the PCA and n
as the number of nodes (338,202) in Gsmall. At this point I compute 2 different
measures:

1. Mean Square Error = MSE(fi, fr
i ) =

qn
i=1(fi − fr

i )2

2. Coefficient of determination = R2(fi, fr
i ) = 1− MSE(fi,fr

i )qn

i=1
(fi−

qn

i=1
fi

n )2

= 1−

MSE(fi,fr
i )qn

i=1
(fi−f)2

MSE(fi, fr
i ) has to be as low as possible and R2(fi, fr

i ) is a metric that assumes
scores comprised between 0 and 1, where 1 indicates the best case.

In this specific case, MSE(fi, fr
i ) = 0.004 and R2(fi, fr

i ) = 0.998. I can
conclude that my dimensionality reduction method works because MSE(fi, fr

i )
assumes a low value and R2(fi, fr

i ) is really close to 1.

4.3.3 Autoencoders
An autoencoder is an artificial neural network, whose aim is is to learn a repre-
sentation (encoding) for a set of data, typically for the purpose of dimensionality
reduction. Architecturally, the simplest form of an autoencoder is a feedforward,
non-recurrent neural network very similar to the multilayer perceptron (MLP)6,

6A multilayer perceptron is a neural network composed by an input layer, an output layer and
one or more hidden layers connecting them.
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but with the output layer having the same number of nodes as the input layer, and
with the purpose of reconstructing its own inputs instead of predicting the target
value Y given inputs X.

The advantage of using a NN to reduce the dimensionality is that, as for the
PCA, I can pass the input data to the network batch by batch, loading in memory
a batch per time.

I used a simple architecture as shown in Figure 4.8: the network is formed by an
input layer X that is fully connected to the hidden layer Z, the output of Z is the
compressed representation of the input data; Z is fully connected to the output
layer Y . The activation functions are always linear. The reason why I opted
for a simple and linear network is that, trying more complex architectures with
more layers and different activations, I realised that the learning time drastically
increases.

In addition I used “tied weights” (W T
Z,Y = WX,Z) to reduce the model complex-

ity, the number of parameters and because they act as regularizers. Autoencoders
with “tied weights” in linear case are equivalent to PCA and this may lead to more
geometrically adequate coding.

Figure 4.8: autoencoder architecture

I computed MSE(fi, fr
i ) and R2(fi, fr

i ) where fr
i is the fi reconstructed by

the autoencoder. In this case MSE(fi, fr
i ) = 0.005 and R2(fi, fr

i ) = 0.991. I can
conclude that the values are really similar to the ones got by using IPCA. However
IPCA is really faster to compute than training the autoencoder.
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4.3.4 Performances analysis
The approach described in this section resent some improvements respect than
using node2vec. In fact it reduces the time to compute the embedding and it
produces a data representation more appropriate for my purposes. In addition
it allows to load in memory only a part of data, avoiding to fit it. However the
approach still presents some limits; at first I experimented the approach using a
graph composed by around 300,000 nodes. If the number of nodes increases, some
problems occurs:

1. the computation time increases exponentially with the number of nodes; in
addition the percentage of data than the memory is able to handle is less; so
the number of batches increases and it causes that the time to read batches
from the disk also increases;

2. the available space on disk has to be more.

4.4 Summary
In this chapter I discussed about some criteria to embed Wikidata entities. In
particular I tried running node2vec for Wikidata and I evaluated the limits. Then
I tried adopting a different approach based on all pairs shortest path length matrix
and dimensionality reduction. Both approaches are limited to represent the Wiki-
data information related to the class hierarchy and a structural knowledge but fails
to represent a semantic knowledge.

For this reason, I do not use the criteria described before to represent the entity
information, but in 5.4 I will discuss an alternative method to represent this kind
of information.
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Chapter 5

Ensemble approach: features
engineering

5.1 Introduction
In this chapter I discuss how to numerically represent the information retrieved
by extractors in order to generate features arrays. In Section 2.1, I described the
extractors, highlighting that some of them performs only type recognition and some
others returns only the disambiguation URIs (Table 5.1).

Table 5.1: Extractors output

Extractor Type recognition NE disambiguation
AlchemyAPI 3 7

DandelionAPI 7 3

DbSpotlight 7 3

TextRazor 3 3

Babelfy 7 3

MeaningCloud 3 7

Adel 3 7

OpenCalais 3 7

N.B. = 3indicates that the extractor supports the action for the French language

In addition, I mentioned as some extractors return scores. The last source of
information that I want keep into consideration is the text passed to the extractors
to extract NE, in particular the word embedding associated to each textual token.
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We can summarize the sources of information that I want to consider: surface form,
type, entity, scores.

In the following, I will analyze them one by one, describing how I can numeri-
cally represent this information. The adopted notation will be also used in Chapter
6.

5.2 Surface form features
The surface form features are strictly related to the text used to extract named
entity. In fact the text is divided into tokens. For example, let’s consider the
sentence: Lors de l’affaire Kerviel. The sentence is tokenized as shown in Table
5.2.

Table 5.2: Tokens

Surface Start Char End Char
Lors 0 3
de 5 6
l 8 8
’ 9 9

affaire 10 16
Kerviel 18 24

Each token can be seen as a word, and the goal here is to embed each word/
token.

In [2] the authors highlight the advantages of representing a - by a real-valued
vector, often tens or hundreds of dimensions. This is contrasted to the thousands
or millions of dimensions required for sparse word representations, such as one-hot
encoding.

There are many algorithms that follow this goal. The one that I use is called
FastText1 [4]. It produce several advantages:

1. FastText proposes a new approach based on the skipgram model, where each
word is represented as a bag of character n-grams. A vector representation is
associated to each character n-gram; words being represented as the sum of
these representations; doing this it doesn’t ignore the morphology of words
as many others word embedding methods;

2. it is fast, allowing to train models on large corpora quickly;

1https://github.com/facebookresearch/fastText
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3. it allows us to compute word representations for words that did not appear
in the training data;

4. it is possible to represent each word in 300 dimensions, that is really a few
number of dimensions compared to one-hot encoding representations;

5. it offers the possibility of using precomputed vectors or models trained using
Wikipedia for a specific language;

Let’s define þsn as the real-valued vector associated to a specific word/token n.
For the corpus described in 3 I got this vector by concatenating two others vectors:

þsn =
#

þsn
p | þsn

c

$
þsn
p (300 dimensions) corresponds to the token embedding computed using the pre-
computed FastText French model. I used this model for computing the vector
associated to word presented in my corpus.

þsn
c (100 dimensions) is the token embedding computed training FastText using

all subtitles corpus.
þsn is composed by 400 dimensions.
I tested the quality of my ensemble method using also other datasets. They are

in English and in this case þsn = þsn
p ; this means that I used only the pre-trained

English model.

5.3 Type features
Let’s define T as the set of extractors that return type information and U as the
set of extractors that return disambiguation URIs. TextRazor is the only extractor
that is in both sets: T ∩ U = {TextRazor}.

As I mentioned in Chapter 2.1, each extractor in T assigns types accordingly to
the ontology that it uses. It could be a specific extractor ontology, as for Meaning
Cloud, or a known knowledge base as DBpedia for DandelionAPI. It means that
each extractor in T has a different set of types.

In these cases a type alignment step is usually done, in the simplest case man-
ually. However the purposes of my ensemble method is to avoid type alignment in
order to be easily able to add new extractors without mapping types. In chapter 6
I will discuss how some layers of my Neural Network learn to align type. For the
moment I focus only on how to get vector representation from a type.

Let’s consider an extractor e ∈ T and its own ontology o. The ontology is a
tree formed by many levels of hierarchy (L represents the number of levels in the
ontology). For simplicity let’s assume that the ontology o is formed as shown in
5.1. This is not a real ontology, but it is useful to clarify the idea. It is composed
by 2 levels:
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1. Level 1 includes three types: PLACE, ORGANIZATION and PERSON.

2. Level 2 includes four types: CITY and MOUNTAIN (subtypes of PLACE)
and ACTOR and MUSICIAN (subtypes of PERSON).

Figure 5.1: Ontology example

Let’s define Ci as the number of different types for the level i (e.g. C1 = 3 in
o). I infer a one-hot encoding representation for each level as shown in Table 5.3.

Table 5.3: Type features

LEVEL 1 LEVEL 2
Type Representation Type Representation

PERSON 001 ACTOR 0001
ORGANIZATION 010 MUSICIAN 0010

PLACE 100 CITY 0100
MOUNTAIN 1000

Let’s consider a generic type τ in the last layer (e.g. ACTOR in o). I get the
features vector representing τ walking in tree from the root to the leaf associate to
τ , concatenating the one-hot representation of each type founded on the walk. So,
the features vector for ACTOR is 0010001, where the first three values 001 derive
from PERSON and the last four values 0001 derive from ACTOR. The features
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vector length V is defined as: V =
qL

i Ci. If the extractor e ∈ T returns a type
that is not the last level in the hierarchy, as PERSON, I fill the missing vector
positions with 0. So the feature vector associated to PERSON is 0010000.

What described for the ontology o is extensible to all ontologies. However the
features vector length is different for each extractor, depending on the ontology
that it uses.

What I discussed until now is valid for extractors that return type information.
Considering a generic extractor e, where e ∈ U ∧ e /∈ T , it returns an URI for each
entity returned. The URI is related to a specific knowledge base.

1. if the URI derives from Wikidata, I leave it unchanged;

2. if the URI derives from another KB, I remap it with its corresponding
Wikidata URI; for example, DBSpotlight returns URIs related to DBpe-
dia Fr, (e.g http://fr.dbpedia.org/resource/Nicolas_Sarkozy); in this
case I use the property foaf:isPrimaryTopicOf2 to get the Wikipedia URI
(https://fr.wikipedia.org/wiki/Nicolas_Sarkozy), using the latter to
get the corresponding Wikidata identifier and URI through the MediaWiki
API3 (e.g. Q329);

Table 5.4: Wikidata matching

Extractor Disambiguation KB Percentage of URIs matched in WD
Dandelion Wikipedia 99%

DBSpotlight DBpedia Fr 98%
TextRazor Wikidata 100%
Babelfy DBpedia 100%

In the latter case there is the risk that no one Wikidata node corresponds to the
original URI, which it means this information is not present in Wikidata knowledge
base. However this case is really rare, as Table 5.4 shows.

Once all the URIs are remapped to the Wikidata KB, I can infer a type for
each entity represented by the URIs as described in Section 3.4.2.

I define þtw
e as the the features vector representing the type for the named entity

w and the extractor e where e ∈ U ∨ e ∈ T .

2http://xmlns.com/foaf/0.1/isPrimaryTopicOf

3https://www.mediawiki.org/wiki/API:Main_page
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5.4 Entity features
In Chapter 4, I described how to embed Wikidata entities in order to have a
numerical representation for each of them. I pointed out a possible solution in
Chapter 4.3, but it is still presenting a problem: it allows to represent only the
structural knowledge of Wikidata.

In this section I consider the problem of representing the entities information
returned by the extractors from another point of view, considering that the goal is
to limit the number of disambiguation and recognition mistakes, remembering the
possible causes described at the end of Section 4.1.

The approach is based on the idea that, in a ensemble perspective, my goal
consists more in representing how the extractors differ in the named entities pre-
diction than in directly representing the single entity. For this reason, I define a
similarity metric between two entities based on the extractors outputs and that is
able to correct the possible mistakes.

Let’s consider two generic entities w1 and w2; the similarity between them is ex-
pressed as a features vector of 5 dimensions (Figure 5.2). The first four dimensions
represent semantic knowledge:

1. the first dimension value represents if the compared entities share the same
URI; so it is a boolean. I can express this value as Suri(w1, w2);

2. the second dimension value is the Levenshtein distance4 between the labels
associated to the compared entities. I can express this value as SLev(w1, w2).
In order to get the labels of the entities, I used the property rdfs:label5;

3. the third dimension value is the TF-IDF Cosine Similarity between the
abstracts associated to the compared entities; I can express this value as
ST fIdf (w1, w2). In order to get the abstracts of the entities, I used the prop-
erty schema:description6; this dimension represents a textual knowledge
as in [37];

4. the fourth dimension value represents if the compared entities share the same
occupation. I can express this value as Socc(w1, w2). The occupation is got
through a specific Wikidata property: P1067. This property is specific for

4The Levenshtein distance between two words is the minimum number of single-character edits
(insertions, deletions or substitutions) required to change one word into the other

5http://www.w3.org/2000/01/rdf-schema#label

6http://schema.org/description

7https://www.wikidata.org/wiki/Property:P106
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entities of type PERSON and it helps in the disambiguation of people with
similar names but different professions. This means that Socc(w1, w2) can be
1 only when two entities referred to people that practice the same profession
are compared.

Figure 5.2: Entities similarity

Last dimension represents the structural knowledge as in [37]. Its value is
extracted from a Wikidata subgraph G. Considering the properties set P , the
graph is realised by considering all triples in which a property in P appears. The
properties in P are:
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1. subclass of (P279)

2. instance of (P31)

3. part of (P361)

Once I form this graph, I define the distance dw1,w2 between two generic entities
w1 and w2 as the shortest path length that links w1 and w2. Then I compute the
maximum distance between 2 nodes in the graph G, defining it as dmax. Now I
can define the structural similarity between w1 and w2:

Sstruct(w1, w2) = −dw1,w2

dmax
+ 1

The total similarity between w1 and w2 can be expressed like this:

þS(w1, w2) =
= [Suri(w1, w2), SLev(w1, w2), ST fIdf (w1, w2), Socc(w1, w2), Sstruct(w1, w2)]

This definition of similarity is useful to generate the entities features. The way
in which I will use the similarity vectors to form entities features vector varies
accordingly to the NN purposes (type recognition or NE disambiguation) and, for
this reason, they will be described directly in Chapter 6. For the moment, let’s
only consider the notion of similarity and that I will use the similarity vectors
rather than the entities embedding to represent the information returned by the
extractors.

5.5 Score features
As stated before, some extractors return scores associated to the named entities.
We can name these set of extractors as K. I define þkw

e as the the features vector
representing the scores for the named entity w and the extractor e where e ∈ K.
The length of þkw

e depends on the considered extractors, and more precisely, on the
number of scores returned by a specific extractor. So, if the extractors w returns
two scores, where the former indicates the relevance and the second indicates the
confidence, dim( þkw

e ) = 2.
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Chapter 6

Ensemble methods

6.1 Type recognition
6.1.1 Adopted technique
In order to reach type recognition purposes, I designed a Neural Network that uses
the extractors output as input features to outperform the single extractors results.

We define a generic ground truth GT formed by N textual fragments, such that
I can split each fragment in tokens. I express the number of tokens for a fragment i
as Fi. The total number of tokens is

qN
i=0 Fi. Let’s consider xi as a generic token

and Xi as the ordered list of tokens for fragment i. Concatenating the lists Xi, I
get a list X, that is the ordered list of tokens for all corpus. Let’s identify x as a
token in X.

oGT is the ontology associated to GT and it contains H types. GT associates
a type in oGt to each token. Let’s identify the NN target as Yt. The number of
samples in Yt is equal to the total number of tokens (

qN
i=0 Mi).

The NN goal is to assign the right type to each token. I identify this NN with
the acronym ENNTR (Ensemble Neural Network for Type Recognition)
and I represent its architecture in Figure 6.1.

ENNTR has an output layer O formed by H neurons: the number of neurons
in the output layer is equal to the number of types in the ground truth Gt. For
this reason each value returned by a neuron in the output layer corresponds to the
probability that a token x is of a specif type.

Hence each target sample þyt is a vector formed by H values, where each value
corresponds to a type and a neuron.

In Figure 6.1 I am assuming that H = 4.
ENNTR presents many input layers. Using the same notation that I used in

Chapter 5, T is the set of extractor that return type information, K is the set of
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Figure 6.1: ENNTR architecture

extractors that return score information, U is the set of extractors that performs
disambiguation. Let’s define the variable I, as the set of input layers of ENNTR.
I can identify four different types of input depending on the kind of features enter
inside.

I = IT ∪ IK ∪ IU ∪ IS

|I| = |IT |+ |IK |+ |IU |+ |IS | = |T ∪ U |+ |K|+ 1 + 1

Let’s start looking at the input layers IT . These layers receive the features
representing the type information got by the extractors. The number of samples
that enter in these layers is equal to

qN
i=0 Mi. It means that there is a sample

per token x and that the tokens related to each fragment g in GT are vertically
concatenated to form the input data.

Each sample is represented by a features vector þtx
e , which is the features vector

representing the type of the token x for the extractor e where e ∈ U ∨ e ∈ T . In
Section 5.3, þtw

e is defined as the features vector representing the type for the named
entity w and the extractor e where e ∈ U ∨ e ∈ T . Now I focus on how to get þtx

e

from þtw
e . At each named entity w corresponds one or more tokens. So if I tokenize

w, I get a set of tokens Xw. Let’s define a default vector þdt, that has the same
dimensionality than þtw

e but contains only 0 values. I can get þtx
e like this:

þtx
e =

;
þtw
e if x ∈ Xw

þdt if x /∈ Xw
(6.1)
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An example of this step is represented in Figure 6.2. Here the sentence Lors
de l’affaire Kerviel is splitted in tokens { Lors, de, l, ’, affaire, Kerviel } and a
generic extractor retrieves the named entity associated to the surface form affaire
Kerviel and assigns to it the type EVENT, represented by the vector 00001. For
each token in the original sentence that is also part of the surface form related to
the found NE I assign the vector 00001, otherwise the vector 00000.

Figure 6.2: From NE to type features

What I described for input layers IT is also valid for IK . In this case the input
layers IK receive the scores features. The number of samples that enter in these
layers is still equal to

qN
i=0 Mi. þkx

e is the features vector representing the scores
for the token x and the extractor e where e ∈ K. From þkw

e it is possible to derive
þkx
e :

þkx
e =

I
þkw
e if x ∈ Xw

þdk if x /∈ Xw

The input layers IU receive the features representing the entity information got
by the extractors and more precisely the similarity between the extracted entities.

For each fragment g in Gt, each extractors e, such that e ∈ U , returns a list
of named entities, in which each entity has its specific disambiguation identifier.
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Now I concatenate the lists of named entities of each fragments f in order to form
a final list of named entities representing all corpus: so there is a list of named
entities le for each extractor e.

I tokenize the le and I get a set of tokens Xe for each extractor. I assign an
entity identifier per extractor e to each token, e ∈ U , in such a way that I obtain
a list of entity identifiers ue for each e of the same length of the list of tokens
(
qN

i=0 Mi). When the extractor does not return an entity for a particular toke, I
declare a null identifier (NAN).

After this step, I get the entity we predicted by each extractor for a specific
token. In Chapter 5.4 I defined the similarity S(w1, w2) between two entities w1
and w2. I can derive the entity features vector for a token x as shown in Figure
6.3.

Figure 6.3: Entity features for NER

The input layers IS receive the surface features as described in Chapter 5.2 ; a
Fasttext features vector þsw corresponds to each token x.

After describing the features creation and the way in which these features enter
in the network, it is time to focus on the other part of the network. In particular,
each input layer Ik is fully connected with a layer Mk as shown in Figure 6.4. Mk,
as O, is formed by H neurons, where H is the number of types in the ground truth.
The activation of Mk neurons is linear.

Figure 6.4: Alignment block

I refer to this part of the network as alignment block. It is useful for many
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aspects. At first, let’s consider that each Ik is formed by a different number of
neurons depending on the related features vector; they are mapped on H neurons
in Mk. This avoids that the NN risk to privilege features vectors with higher
dimensionality – it happens directly concatenating different features vectors. In
addition, the value assumed by each neuron of Mk represents the probability that
the predicted type is right, using only the features that enter in the related input
layer Ik.

The alignment block is also useful to align the type between the ones retrieved
by a specific extractor and the ground truth ones. To demonstrate this, I run the
NN only considering the alignment block related to the Alchemy type features and
I get the predicted types by the values of the neurons in Mk. Table 6.1 shows a
sample of the predicted ground truth types when Alchemy returned a type for a
specific token.

Table 6.1: Alignment block output sample

surface alchemy output alignment block output
president JobTitle Role
eugenio Person Person
canfari Person Person
enrico Person Person

university Organization Organization
of Organization Organization

turin Organization Organization
foreign JobTitle Role
member JobTitle Role

This part of the NN aligns the types between the extractors and the ground
truth ontologies. This is pretty similar to the Inductive Entity Typing Alignment
discussed in [29]. The difference here is that the alignment step is learned by a fully
connected layer, not using k-Nearest Neighbour (k-NN) or Naive Bayes (NB). In
addition, the alignment and recognition phase are no more separated, because they
are part of the same network. This aspect make a further difference between my
ensemble method and the one described in [32,34], in which the ontology mapping
is not done by the MLP.

Last part of the network is the ensemble block ( Figure 6.5 ).
At first, Mk layers are concatenated forming a new layer P . |oGT | is the number

of types in the ground truth, |I| the number of input layers and |P | the number of
neurons in P :

|P | = |oGT | · |I|

P is fully connected to the output layer O. The activation of the neurons in O
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Figure 6.5: Ensemble block

is linear. This means that ENNTR is basically a linear combinations of features;
the key is the way in which the features are generated and enter in the network.

The values vh of the H output neurons in O correspond to the probability that
a specif type is correct. I take the highest value vmax between them and if it is
greater than a threshold θ, I set the type related to its neuron as the predicted
one.

The final output of the ensemble method is a list of predicted type lp for each
token x.

In a final step, sequences of token which belong to the same type are merged to
a single entity, at the same way of [32,34]. From each entity, there is an associated
type, start and end char and file from which it derives. So I can generate a brat
annotation file for each file in GT . I identify this corpus of files as Ap.

6.1.2 Evaluation
In order to understand the quality of ENNTR I evaluated it with some gold stan-
dards. Considering a generic gold standard as GT , I compute two different kinds
of scores: token based scores and brat based scores.

The token based are computed similarly to [33], [34] and [32]. From GT I can
derive a list of types lt (target), as long as the number of tokens |X| (each type in
the list correspond to a token x in the corpus). Considering the two lists of tokens
lt (target) and lp (predicted), I compute, for each type tGT in GT , the precision
Precision(lt, lp, tGT ), the recall Recall(lt, lp, tGT ) and the F1 score F1(lt, lp, tGT ).
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Then I compute macro and micro averaged measures:

1. Precisionmacro(lt, lp) : macro precision

2. Recallmacro(lt, lp) : macro recall

3. F1macro(lt, lp) : macro F1 score

4. Precisionmicro(lt, lp) : micro precision

5. Recallmicro(lt, lp) : micro recall

6. F1micro(lt, lp) : micro F1 score

The brat based score are got by using BratUtils.1 I allows calculating inter-
annotator agreement in brat annotation files. This library roughly follows the
definitions of precision and recall calculation from the MUC-7 test scoring.2
At represent the corpus of brat annotations files got by the ground truth GT .
Precisionbrat(At, Ap), Recallbrat(At, Ap) and F1brat(At, Ap) respectively corre-
spond to the precision, the recall and the F1 score got by using brat scorer.

I was also interested to understand if the ensemble method outperforms the
single extractors outputs. The problem here is that each extractor uses a specific
set of types. To solve this issue I mapped the extractor types to the ground truth
ones using the alignment block of ENNTR, as shown in Table 6.1 for Alchemy.

The loss function used to train the network is the Mean Square Error.

OKE2016

The first gold standard that I used to test my ensemble method was OKE2016.
This ground truth was created for 2016 Open Knowledge Extraction (OKE) Chal-
lenge. The OKE2016 types set is composed by PERSON, ORGANIZATION,
PLACE and LOCATION. Considering that the number of types is 4, the num-
ber of output neurons in ENNTR will be 4 as well. The OKE2016 set is already
splitted in train and test data. So, I trained ENNTR using the features formed by
the train data, and I evaluated it on the test set, computing both token based and
brat based scores. Tables 6.2, 6.3 and 6.4 show respectively the F1, precision and
recall token based scores for single extractors and the ensemble.

From this data, I can derive some conclusions. For macro and micro token based
scores the ensemble method always outperform the single extractors in terms of
precision, recall and F1.

1https://github.com/savkov/BratUtils

2https://aclweb.org/anthology/M/M98/M98-1024.pdf
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Table 6.2: F1 scores (OKE2016)

Organiz. Person Place Role macro micro
alchemy 0,83 0,76 0,81 0,67 0,77 0,79
adel 0,94 0,75 0,91 0,83 0,86 0,87

opencalais 0,68 0,52 0,71 0 0,48 0,56
dandelion 0,71 0,65 0,72 0,36 0,61 0,64
dbspotlight 0,61 0,56 0,66 0,52 0,59 0,59
babelfy 0,73 0,63 0,74 0,38 0,62 0,66
textrazor 0,8 0,76 0,82 0,34 0,68 0,74

meaning_cloud 0,64 0,61 0,77 0,18 0,55 0,59
ensemble 0,93 0,98 0,88 0,96 0,94 0,94

Table 6.3: Precision scores (OKE2016)

Organiz. Person Place Role macro micro
alchemy 0,96 0,95 0,89 0,87 0,92 0,93
adel 0,96 0,89 0,85 0,72 0,86 0,88

opencalais 0,96 0,98 1 0 0,73 0,97
dandelion 0,92 0,97 0,81 0,68 0,84 0,89
dbspotlight 0,77 0,91 0,67 0,65 0,75 0,75
babelfy 0,88 0,94 0,8 0,83 0,87 0,88
textrazor 0,82 0,9 0,89 0,95 0,89 0,86

meaning_cloud 0,98 0,82 0,9 0,91 0,9 0,91
ensemble 0,97 0,99 0,96 0,98 0,98 0,98

Table 6.4: Recall scores (OKE2016)

Organiz. Person Place Role macro micro
alchemy 0,74 0,63 0,75 0,54 0,67 0,68
adel 0,92 0,64 0,98 0,98 0,88 0,87

opencalais 0,53 0,35 0,55 0 0,36 0,39
dandelion 0,58 0,49 0,66 0,25 0,49 0,51
dbspotlight 0,5 0,41 0,66 0,44 0,5 0,49
babelfy 0,63 0,47 0,69 0,25 0,51 0,53
textrazor 0,79 0,66 0,77 0,21 0,6 0,65

meaning_cloud 0,48 0,49 0,67 0,1 0,43 0,44
ensemble 0,89 0,97 0,81 0,95 0,91 0,91

I cannot derive the same conclusions looking at the single types scores. Looking
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at the F1 score in particular, that is the most important because is the trade-
off between precision and recall, I realized that ADEL outperforms the ensemble
method for ORGANIZATION and PLACE types. However this conclusion is not
completely true, or at least is limited to this specific case. In fact, as explained in
2.1.1, I can query ADEL specifying the model I want to use. In this case I querying
ADEL using the model trained on OKE2016, the same dataset that I used for the
evaluation. Looking at the ADEL response I have realized that ADEL gives really
higher scores on the test set than on the training. However, I am using the features
formed by ADEL training response to train my Neural Network.

The brat based scores for OK E2016 are reported in Table 6.5.

Table 6.5: Brat based scores (OKE2016)

fsc pre rec
adel 0,84 0,85 0,83

alchemy 0,88 0,92 0,86
babelfy 0,74 0,79 0,7

dandelion 0,78 0,83 0,75
dbspotlight 0,6 0,77 0,52

meaning_cloud 0,72 0,78 0,69
opencalais 0,69 0,71 0,68
textrazor 0,77 0,81 0,74
ensemble 0,94 0,95 0,92

Looking at these scores, I can conclude that the ensemble method outperforms
the single extractors for F1, precision and recall.

To understand which are the features that contribute more to the obtained
result, I trained 4 other different NNs:

1. the first one is equal to ENNTR but it considers only the input layers related
to type features: I = IT

2. the second one is equal to ENNTR but it considers only the input layers
related to score features: I = IK

3. the third one is equal to ENNTR but it considers only the input layers related
to entity features: I = IU

4. the fourth one is equal to ENNTR but it considers only the input layers
related to surface features: I = IS

The F1 token based scores on test set for each of these NNs are reported in
Table 6.6. They clearly show that the most useful features are the types ones (F1
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Table 6.6: Features F1 (OKE2016)

Organization Person Place Role macro micro
type 0,86 0,88 0,92 0,91 0,89 0,88
score 0,34 0,30 0,00 0,00 0,16 0,23
uris 0,57 0,56 0,00 0,00 0,28 0,40

surface 0,39 0,65 0,38 0,58 0,50 0,49

macro is 0.89 and F1 micro is 0.88). Then, there are the surface ones (F1 macro
is 0.50 and F1 micro is 0.49). Entity features contribute slightly less to the final
result (F1 macro is 0.28 and F1 micro is 0.40), while the score features are the
least useful (F1 macro is 0.00 and F1 micro is 0.16). The reason is in the fact that
scores features serve only to reinforce the type features and are not intended to be
considered them alone.

French Debates Subtitles

The second ground truth for which I tested ENNTR is the one I annotated. It is in
French, so that it allows to evaluate the ensemble method on a language different
from English. I splitted the dataset in train set (64 fragments) and test set (13
fragments). Then I trained ENNTR on the training framents and I tested it on
the test fragments.

Tables 6.7, 6.8 and 6.9 show respectively the F1, precision and recall token
based scores for the single extractors and for the ensemble.

Table 6.7: F1 scores (subtitles transcripts)

Organization Person Place macro micro
alchemy 0,00 0,87 0,00 0,29 0,80
adel 0,00 0,75 0,00 0,25 0,68

opencalais 0,00 0,62 0,51 0,37 0,58
dandelion 0,00 0,30 0,00 0,10 0,26
dbspotlight 0,08 0,55 0,00 0,21 0,48
babelfy 0,00 0,59 0,51 0,36 0,55
textrazor 0,36 0,88 0,10 0,45 0,81

meaning_cloud 0,33 0,86 0,61 0,60 0,82
ensemble 0,44 0,95 0,82 0,74 0,92

Looking at these Tables, the ensemble method always outperforms the single
extractors in terms of precision, recall and F1, for both macro and micro scores
and single types scores. The single extractors scores appear much lower then the
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Table 6.8: Precision scores (subtitles transcripts)

Organization Person Place macro micro
alchemy 0,00 0,92 0,00 0,31 0,77
adel 0,00 0,68 0,00 0,23 0,57

opencalais 0,00 0,48 0,41 0,30 0,45
dandelion 0,00 0,19 0,00 0,06 0,16
dbspotlight 0,04 0,40 0,00 0,15 0,34
babelfy 0,00 0,42 0,54 0,32 0,41
textrazor 0,25 0,85 0,05 0,39 0,74

meaning_cloud 0,21 0,84 0,51 0,52 0,77
ensemble 0,29 0,97 0,76 0,67 0,90

Table 6.9: Recall scores (subtitles transcripts)

Organization Person Place macro micro
alchemy 0,00 0,92 0,00 0,31 0,77
adel 0,00 0,68 0,00 0,23 0,57

opencalais 0,00 0,48 0,41 0,30 0,45
dandelion 0,00 0,19 0,00 0,06 0,16
dbspotlight 0,04 0,40 0,00 0,15 0,34
babelfy 0,00 0,42 0,54 0,32 0,41
textrazor 0,25 0,85 0,05 0,39 0,74

meaning_cloud 0,21 0,84 0,51 0,52 0,77
ensemble 0,29 0,97 0,76 0,67 0,90

ones computed for OKE2016. On the other side, this fact allows a much stronger
improvement of results when the ensemble method is applied. In particular, the
recall improvement shows that ENNTR is able to sum up the knowledge deriving
from different extractors.

Table 6.10 shows the brat based scores for OKE2016.
Looking at these scores, the ensemble method outperforms the single extrac-

tors for F1, precision and recall. Only Alchemy reaches scores comparable to the
ensemble ones.

Also in this case, I wonder which features contribute more to the ensemble
method. So I trained four NNs, each one with a single feature enabled. Table
6.11 reveals once again that type features are the ones that contribute more to
the result. Score and entity features seem to mainly contribute on PERSON type,
while surface features are more useful for PLACE recognition.
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Table 6.10: Brat based scores (subtitles transcripts)

fsc pre rec
adel 0,75 0,83 0,7

alchemy 0,87 0,97 0,81
babelfy 0,65 0,74 0,59

dandelion 0,51 0,69 0,42
dbspotlight 0,5 0,61 0,45

meaning_cloud 0,8 0,87 0,76
opencalais 0,81 0,9 0,76
textrazor 0,75 0,8 0,72
ensemble 0,92 0,98 0,87

Table 6.11: Features F1 (subtitles transcripts)

Organiz. Person Place macro micro
type 0,29166667 0,94620253 0,64864865 0,62883928 0,87533157
score 0 0,83860759 0 0,27953586 0,70291777
entity 0 0,79746835 0 0,26582278 0,66843501
surface 0 0,60759494 0,45945946 0,35568480 0,55437666

6.2 Entity Linking

6.2.1 Adopted technique
In order to reach Wikidata entity linking purposes, I designed a Neural Network,
to which i will refer as ENND (Ensemble Neural Network for Disambigua-
tion). The architecture is shown in Figure 6.6.

Let’s define a generic ground truth GD formed by N textual fragments, such
that I can split each fragment in tokens. I express the number of tokens for a
fragment i as Mi. The total number of tokens is

qN
i=0 Mi. Let’s consider xi as a

generic token and Xi as the ordered list of tokens for fragment i. Concatenating
the lists Xi, I get a list X, that is the ordered list of tokens for all corpus. Let’s
identify x as a token in X. GD associates a Wikidata entity identifier (URI) to
each token. Let’s identify the target as Yd.

The ENND goal is not to directly predict the right disambiguation Wikidata
entity but to determine if the predicted entity by an extractor e, where e ∈ U , is
correct. For this reason the number of samples in target Yd is not more equal to
the number of tokens. Let’s consider a token x; each extractor e (e ∈ U) returns
a predicted entity wxe : I call the set of predicted entities for token x Cx, and
the correct entity vx; |Cx| ≤ |U | because more extractors could predict the same

66



6.2 – Entity Linking

Figure 6.6: ENND architecture

entity. For each candidate cx,j ∈ Cx, where 0 < j ≤ |Cx|, I generate a target
sample yd ∈ Yd:

yd =
;

1 if cx,j = vx

0 if cx,j /= vx

The output layer O contains a single neuron that should converge to yd. The
O activation is a sigmoid.

ENND has many input layers. Let’s define the variable I, as the set of input
layers of ENND. I can identify two different types of input depending on the kind
of features enter inside.

I = IU ∪ IT

|I| = |IU |+ |IT | = 1 + |T ∪ U |

The entity similarity features enter through IU . A similarity features sample
is associated to each target sample yd, that allows to compute an entity similarity
features vector for each candidate px,j in such a way:
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þux,j = [þS(px,j , wx1)|þS(px,j , wx2)|...|þS(px,j , wxn
)] where n = |U |

Considering my specific case, in which the full set of extractor is equal to U =
{Dandelion, DbSpotlight, TextRazor, Babelfy}, and remembering that a generic
þS(w1, w2) is composed by 5 dimensions, we can state that:

dim( þux,j) = dim(þS(w1, w2)) · |U | = 5 · 4 = 20

dim(þv) expresses the dimensionality of a generic vector þv.
The way in which þux,j is formed is represented in Figure 6.7.

Figure 6.7: Entity features for NED

The input layers IT receive the features representing the type information got
by the extractors. The number of samples that enter in these layers is equal to the
number of samples in target.

As for type recognition, for each e ∈ U ∨e ∈ T , the feature vector þtw
e represents

the type for the named entity w, while þtx
e represents the type for the token x. I

can get þtx
e from þtw

e as described in 6.1.
It can happen that, for each token x, there are multiple entity candidates. I

assign at each candidate px,j the vector þtw
e correspondent to the token x, from

which px,j derives (Figure 6.8).
IT layers are fully connected to the layers Mk as in ENNTR (Figure 6.4). Mk,

as O, is formed by H neurons; however, in this case, H is no more the number
of types in the ground truth, but it indicates the number of dimensions to encode
the type information got by each extractor. In fact, it is not mandatory that GD
contains also the types associated to each entity because it serves for entity linking
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Figure 6.8: Type features for NED

and not for type recognition. Clearly, if GD has type information, the best option
is to set H equal to the number of types. As for ENNTR, the Mk activation is
linear.

After this step, the IU layer and the Mk layers are concatenated forming a new
layer R. In this layer some neurons some neurons represent the type information,
some other the entity features; the idea is to exploit the fact that some extrac-
tors are more precise on certain types. The number of neurons in P is equal to
dim( þux,j) + |T ∪ U | ·H.

The last part of the network is composed by two dense layers3 and the output
layer O discussed before. The activation functions of the dense layers are Scaled
Exponential Linear Units (selu):

selu(x) = λ

;
x if x > 0

αex − α if x ≤ 0

The loss function used to train the network is the Mean Square Error.
The neural network goal is to determine the probability that an entity candidate

is right. In fact for each sample, I get an output value that corresponds to this
probability.

px,j corresponds to the output value of the input sample associated to the
candidate entity j for token x and P corresponds to the output value list. More
candidates Cx are associate to each token x. I select the candidate associated with
the highest value px,max among all output values

)
px,1, px,2, ..., px,|Cx|

*
.

Defining a threshold τd, if px,max > τd, I select as predicted entity for token
x the one related to px,max; otherwise I set that the token x does not correspond
to a named entity. I can identify this selection method with the name candidate
selection. It returns the list of predicted entities identifiers zp

3A dense layer is a layer fully connected to the previous one.
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6.2.2 Evaluation
From the disambiguation ensemble algorithm description presented in the previous
section, I can distinguish two parts: the neural network ENND, whose goal is to
understand if the entities candidates are right, and the candidate selection that
uses the ENND output to set the final predicted entity.

For this reason I decided to perform two different kinds of evaluations: the first
one evaluates if the NN is able to identify the wrong and the right candidates,
the second one evaluates instead the final output of the disambiguation ensemble
method.

For the former I consider the neural network target list Yd and the predicted
values list P . Yd values are boolean, instead P values are continuous values included
between 0 and 1. Rounding P , I get Pround.

Using this list I compute two different metrics:

1. the categorical cross entropy between two probability distributions. It
measures the average number of bits needed to identify an event from a
set of possibilities, if a coding scheme is used based on a given probability
distribution P , rather than the “true” distribution Yd. It follows the formula:

HENND(Yd, P ) = −
Ø

k

Yd(k) log(P (k))

2. the F1 score between Yd and Pround, according to the formula:

F1ENND(Yd, Pround)

To evaluate the final output of the disambiguation ensemble method, I use a
token based approach. Considering a generic gold standard GD, I can derive a list
of entities identifiers zt (target), as long as the number of token |X|. Considering
the two lists of tokens zt (target) and zp (predicted), I can compute F1, precision
and recall scores. I respectively identify them with F1(zt, zp), precision(zt, zp),
recall(zt, zp). To have an idea about how zt and zp are formed, have a look at the
following example:

z = [NAN, Q21, Q21, ..., NAN ]

Q21 is the Wikidata identifier of a specific entity, NAN means that no entity was
predicted for the corresponding token.

To compute precision, recall and F1, I define the true positives, the true nega-
tives, the false positives and the false negatives as shown in Algorithm 1.

From zt I derive zpt (pseudo-target): for a token x, zpt(x) = zt(x) if at least an
extractor e ∈ U returned the correct entity identifier, otherwise zpt(x) = NAN .
Using zpt(x) I can compute F1(zpt, zp), precision(zpt, zp) and recall(zpt, zp). These
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Algorithm 1 Compute true positives, true negatives, false positives and false
negatives
1: procedure get_TP_TN_FP_FN(target_identifiers_list,

predicted_identifiers_list number_of_tokens)
2: true_positive← 0
3: false_positive← 0
4: true_negative← 0
5: false_negative← 0
6: i← 0
7: while i < number_of_tokens do
8: target_id← target_identifiers_list[i]
9: predicted_id← target_identifiers_list[i]
10: if target_id = predicted_id = NAN then
11: true_negative← true_negative + 1
12: end if
13: if target_id = predicted_id /= NAN then
14: true_positive← true_positive + 1
15: end if
16: if target_id /= predicted_id then
17: if predicted_id = NAN then
18: false_negative← false_negative + 1
19: else if target_id = NAN then
20: false_positive← false_positive + 1
21: else
22: false_negative← false_negative + 1
23: false_positive← false_positive + 1
24: end if
25: end if
26: i = i + 1
27: end while
28: Return true_positive,true_negatives,false_positive,false_positive
29: end procedure
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scores have the advantage that they consider the fact that my ensemble method
is not able to predict entities that no one extractor predicts. This means that
F1(zpt, zp) = 1 is always reachable, instead F1(zt, zp) = 1 is reachable only when
for each token x at least one extractor predicted the right entity.

I tested the disambiguation ensemble method using three different gold stan-
dards: OKE2016, AIDA and the French subtitles fragments that I annotated.

In the following, I will report and discuss the obtained result.

OKE2016

OKE2016 has already been described in Section 6.1.2, but now I consider the
identifiers associated to each NE rather than the types.

The ENND scores got for the test set are here reported:

HENND(Yd, P ) = 0.92

F1ENND(Yd, Pround) = 0.94

The token based scores are reported in the following tables: in particular in
Table 6.12 are reported F1(zt, zp), precision(zt, zp), recall(zt, zp) scores for each
single extractor and for the ensemble.

In Table 6.13 the scores are computed respect to the pseudo target: F1(zpt, zp),
precision(zpt, zp) and recall(zpt, zp).

Table 6.12: Token based scores (OKE2016) for target

F1 precision recall
babelfy 0,52 0,46 0,62

dandelion 0,52 0,45 0,62
dbspotlight 0,39 0,33 0,49
textrazor 0,67 0,67 0,67
ensemble 0,76 0,89 0,66

Table 6.13: Token based scores (OKE2016) for pseudo target

F1 precision recall
babelfy 0,57 0,46 0,74

dandelion 0,56 0,45 0,75
dbspotlight 0,42 0,33 0,59
textrazor 0,73 0,67 0,8
ensemble 0,84 0,89 0,79
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The ensemble method outperforms the single extractors in terms of F1 score,
improving it by 12% (from 0.67 to 0.76); this because the ensemble method really
increases the precision, from 0.67 (the highest precision of the single extractors) to
0.89. Looking at the recall, TextRazor returned the highest value; for this reason,
I can conclude that the ensemble model for OKE2016 improves the TextRazor
response by using the responses of the other extractors to filter out the wrong
predicted entities.

I define the similarity between the identifiers lists,ze1
p and ze2

p , respectively
returned by extractors e1 and e2, as:

sim(e1, e2) = F1(ze1
p , ze2

p )

I computed the similarities between all possible extractors responses pairs in
Figure 6.9.

Instead, Figure 6.10 shows the similarities between the extractors responses
filtering out by the responses the wrong predictions. In other words, it shows
how much two extractors are similar when they predict the right entities: if the
similarity is high, they generally identify the same entities, hence to combine their
responses in an ensemble method will not be really convenient for an improvement
in prediction.

Figure 6.9: Similarity extractors on OKE2016

Looking at both similarities figures, I can deduce that some extractors are
really similar in terms of retrieved entities. For instance, the Figure 6.10 show an
high similarity value between TextRazor and Babelfy (0.79) and TextRazor and
Dandelion (0.82). Knowing that TextRazor is the best single extractor in terms of
F1 score for OKE2016, improving its output response recall is difficult because the
other extractors are similar in terms of retrieved entities.
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Figure 6.10: Similarity extractors on OKE2016 (right predicted)

The last research task investigates how much the type features contribute to im-
prove the final prediction. To understand this, I run ENND removing the IT input
layers and considering only the IU input layers. It means that R = IU . Applying
these changes, the HENND(Yd, P ) cross-entropy score decreased from 0.92 to 0.88
and therefore F1(zt, zp) score decreased from 0.76 to 0.67. Hence I can establish
that the types features have a 12% contribution on F1(zt, zp). In practice, using
only the entity features, the ensemble method does not outperform TextRazor. I
can conclude that types are really useful also in terms of disambiguation and some
extractors are probably reaching greater results on some specific types.

French Debates Subtitles

French Debates Subtitles corresponds to the corpus annotated by myself. This
corpus allows to test the disambiguation ensemble method also on the French
language.

The ENND scores got for the test set are here reported:

HENND(Yd, P ) = 0.98

F1ENND(Yd, Pround) = 0.98

The token based scores are reported in the following tables: in particular in
Table 6.14 are reported F1(zt, zp), precision(zt, zp), recall(zt, zp) scores for each
single extractor and for the ensemble. In Table 6.15 the scores are computed
respect to the pseudo target: F1(zpt, zp), precision(zpt, zp) and recall(zpt, zp).

Also for French debates corpus, the ensemble method outperforms the single
extractors in terms of F1 score, improving it by 25% (from 0.66 to 0.8); this
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Table 6.14: Token based scores (French subtitles) for target

F1 precision recall
babelfy 0,28 0,23 0,35

dandelion 0,18 0,18 0,17
dbspotlight 0,2 0,14 0,36
textrazor 0,66 0,62 0,7
ensemble 0,8 0,97 0,68

Table 6.15: Token based scores (French subtitles) for pseudo target

F1 precision recall
babelfy 0,31 0,23 0,47

dandelion 0,2 0,18 0,23
dbspotlight 0,22 0,14 0,48
textrazor 0,74 0,62 0,93
ensemble 0,94 0,97 0,9

improvement is bigger than the OKE2016 one (12%). The reason is that the
ensemble method really increases the precision, from 0.62 (the highest precision
of the single extractors) to 0.97. Looking at the recall, TextRazor returned the
highest value. The conclusion is similar to the previous case: the ensemble model
improves TextRazor response by using the responses of the other extractors to filter
out the wrong predicted entities.

As for OKE2016, I report in Figure 6.11 and 6.12 the extractors similarities. In
this case, only Babelfy and Dandelion responses seem similar (0.81 in 6.12). They
probably reinforces the TextTazor response to avoid false positive prediction.

To sum up, I run ENND without the types features to monitor if these features
are also significant in this case. Once again, I note that both HENND(Yd, P ) and
F1(zt, zp) decrease, respectively from 0.98 to 0.95 and from 0.8 to 0.76. Hence the
types features contributes by the 5%. This improvement is lower than the one got
for OKE2016, but it still persists.

AIDA

Last gold standard I used to test the ensemble method is the English AIDA dataset.
In this case, I could not use the DBspotlight response because the service was not
available during my test.

The ENND scores got for the test set are here reported:

HENND(Yd, P ) = 0.95
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Figure 6.11: Similarity extractors on French debates

Figure 6.12: Similarity extractors on French debates (right predicted)

F1ENND(Yd, Pround) = 0.97

The token based scores are reported in the following tables: in Table 6.16 are
reported F1(zt, zp), precision(zt, zp), recall(zt, zp) scores for each single extractor
and for the ensemble. In Table 6.17 the scores are computed respect to the pseudo
target: F1(zpt, zp), precision(zpt, zp) and recall(zpt, zp).

The ensemble method outperforms the single extractors in terms of F1 score,
improving it by 18% (from 0.6 to 0.73); this improvement is bigger than the one I
estimated on OKE2016 (12%) but lower to the one I estimated on French subtitles
corpus (25%); also in this case the ensemble method increases the precision, from
0.5 (the highest precision of the single extractors) to 0.8, while the recall falls
down (from 0.79 to 0.88). As for the previous gold standards, the ensemble model
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Table 6.16: Token based scores (AIDA) for target

F1 precision recall
babelfy 0,37 0,27 0,59

dandelion 0,4 0,29 0,66
textrazor 0,6 0,5 0,75
ensemble 0,73 0,8 0,68

Table 6.17: Token based scores (AIDA) for pseudo target

F1 precision recall
babelfy 0,38 0,27 0,69

dandelion 0,42 0,29 0,77
textrazor 0,64 0,5 0,88
ensemble 0,8 0,8 0,79

improves the TextRazor response by using the responses of the other extractors to
filter out the wrong predicted entities.

I report in Figure 6.13 and 6.14 the extractors similarities. In this case, all the
extractors responses seem similar.

Figure 6.13: Similarity extractors on AIDA

To conclude, I run ENND without the types features to monitor if these features
are also significant in this case. I note that both HENND(Yd, P ) and F1(zt, zp)
decrease, respectively from 0.95 to 0.92 and from 0.73 to 0.6. Hence the types
features contributes by the 18%.
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Figure 6.14: Similarity extractors on AIDA (right predicted)

6.2.3 Summary
By looking at the F1 token based scores got by the previous evaluations, I can
conclude that the ensemble method improves the extractors response and it gen-
erally happens because the precision increases.

In addition, I showed as for all considered ground truth, the role of type features
is crucial because its absence makes null the improvement of the ensemble method
respect to a single extractor prediction.
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Chapter 7

Conclusions and future work

In this master thesis I presented two multilingual ensemble methods which combine
the responses of web services (extractors) performing Named Entity Recognition
and Disambiguation.

The first ensemble method is based on a neural network called Ensemble
Neural Network for Type Recognition (ENNTP) and it outperforms the
single extractors scores for NER. It allows to avoid the manually type alignment
between the type ontologies of each extractor and the ground truth ontology. In
particular, a particular block of the network – the alignment block – performs
this task.

The second ensemble method is based on a neural network called Ensemble
Neural Network for Disambiguation (ENND) and it outperforms the single
extractors scores for NED; Wikidata is the knowledge base containing the entities
to which entity mentions can be linked.

I demonstrated that the features generation is crucial for the success of these
ensemble methods. In particular I presented four different kinds of features: sur-
face features related to a specific text, type, entity, score features related
to the extractor outputs. In addition I showed how much each of these features
contributes to the scores improvements.

Despite having reached the goal to outperform the single extractors, some steps
forward could be done as future work:

1. in Chapter 2.1, I described the extractors that I am currently using for my
ensemble methods. However, this list of extractors is extensible and should be
updated to add the new services presented on the Web; for instance, spaCy;

2. in Chapter 3, I explained the annotation criteria I used to annotate 77 frag-
ments extrapolated by the debates transcripts corpus. Using the same crite-
ria, other fragments could be annotated in order to increase the number of
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training data;

3. in Chapter 4, I focused on finding a way to embed Wikidata knowledge base.
I solved the problem for a graph composed by around 300000 nodes but
I did not use this embedding method due to scalability problems with big
graphs. The possibility of running the algorithm in a distributed way should
be explored;

4. in Chapter 5, I described the different sources of information I used to create
features. A step further could be adding Part of Speech tags features to each
token presented in anaayzed corpus;

5. in Chapter 6.1, I presented the architecture of ENNTR and I showed as
the input layer that receive the surface features is connected to a dense layer.
This part of the network could be replaced by a BiLSTM that takes in consid-
eration the token context. I start performing an experiment in this direction
but it failed in improving the result, mainly because of the increased (and
not fulfilled) training time required by the network. A further step could be
to understand why it happens and to try different word embedding methods
rather than the Fasttext one.
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