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Summary

Nowadays, designing complex interconnected electronic systems heavily relies on nu-
merical simulations, in what is called Electronic Design Automation (EDA). With this
acronym, a broad category of software tools aimed to support engineers in the develop-
ment process is intended. These design techniques are even more important in optimiza-
tion phases when focused what-if analyses are performed. Most often, these numerical
simulations require massive computing resources and long runtimes. A well-established
approach for speeding up these analyses is based upon macro-models. A macro-model is
intended to be a behavioral reduced-order model that, after careful identification from
a restricted set of known input/output responses, enables accurate simulations while
keeping computational times manageable. A further boost to this method comes along
with the parameterization of such models that, embedding an explicit dependence on
design parameters, greatly simplifies the whole system optimization and design centering
process. Two fundamental requirements that a parametric macro-model must fulfil to
guarantee numerically reliable simulations are uniform stability and passivity throughout
the parameter space. A non-passive model may lead to instability, causing a general
failure in the system verification process. Unfortunately, standard model fitting algo-
rithms are generally not able to ensure these requirements, and ad-hoc post-processing
techniques must be used to impose these conditions for any parameter combination. This
work, starting from state-of-the-art passivity verification techniques, proposes an effective
and reliable extension to first check, and then enforce if necessary, the model passivity
throughout a possibly multivariate parameter space. The main theoretical tool that is
used in this approach is the so-called Hamiltonian matrix (or pencil) associated with the
model, whose imaginary eigenvalues are known to provide a purely algebraic test for pas-
sivity. A single Hamiltonian eigenvalues computation is sufficient for non-parameterized
models, but repeated eigenvalues extractions are necessary throughout the possibly high-
dimensional parameters space in case of multivariate models. The main contribution of
this work is the formulation and implementation of an adaptive method to sample the
parameter space, looking for passivity violations. In contrast with previous approaches,
this algorithm relies on first-order perturbations of Hamiltonian eigenvalues as a metric to
drive the sampling algorithm, enabling checking for passivity violations only a minimum
and strictly required number of parameters combinations. The major improvement of
the proposed approach is its predictive property, which allows to outlook via a first-order
approximation the passivity behavior of the system, even at regions in the parameters
space that are not sampled. It results that, when using this adaptive sampling scheme
within a passivity enforcement scheme, that iteratively perturbs model coefficients until
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passivity is reached, major savings in CPU times were observed with respect to brute-
force uniform fine-grid sampling approaches. The proposed algorithm was successfully
tested on a large number of test-cases, some of which designed on purpose to stress the
capability of the scheme to capture even very small passivity violations, and some other
coming from real design parts obtained from industrial partners. We can safely state that
the obtained results constitute the first available, reliable, multivariate passivity check
and enforcement scheme. For this reason, a few conference papers have been submitted
and an extended journal paper is in preparation.
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Preface

The present thesis project is self-consistent and it has been developed independently by
the Author, under the supervisor guidance. However, the results that have been achieved
are of practical interest only if cast in a more general framework, in which other two
thesis projects are involved: the shared effort of a team composed of Tommaso Bradde,
Marco De Stefano and Alessandro Zanco enabled each member of the group to finalize
his work. Being part of a joint effort, each of the three thesis projects shares a common
background, which has been summarized in Chapters 1 and 2. These two chapters were
written jointly and are common to all three thesis projects. The remaining chapters of
each dissertation are the core of each project and are original for each individual team
member.
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Chapter 1

General Framework and

Motivations

This chapter is co-authored by T. Bradde, M. De Stefano and A. Zanco.

1.1 Data Driven Modeling

This thesis project concerns mathematical modeling of linear dynamic systems, namely,
systems that are governed by linear differential equations. By ”mathematical modeling”,
we refer to the procedure by means of which a representation of a physical phenomenon
or structure is given in a numerically (i.e quantitatively) exploitable form. This kind of
representation grants us the opportunity to describe and predict what would happen in a
given scenario in which the described object is involved; we can say that such a procedure
is at the same time the foundation and the objective of science and a necessary step of
the design process in every engineering field.
Although the first-principle laws of science are theoretically able to properly describe a
broad range of dynamic phenomena, usually making use of partial differential equations,
it is often inappropriate or impossible to derive from them a model able to satisfy the
requirements of a current design process: the (exponentially) increasing complexity of the
structures to be modeled would lead to an excessive computational cost with respect to
the need of an easily manageable description of the item under design. Further, a model
derived from first-principle laws must take care of all the physical quantities involved in
the system dynamic, while often, only a subset of them is of practical interest.
The Data Driven Modeling techniques are intended to overcome these issues and to pro-
vide simpler yet accurate descriptions, able to catch the case-relevant aspects of the
structures under investigation by exploiting, as common ground, a set of data collected
to extract information about the system behaviour. Making use of proper algorithms, a
suitable reconstruction of the relations underlying the data is achieved.
To gather the data, one can either carry out physical measurements of the desired quan-
tities to be tracked or perform (once) a set of first-principle simulations from which the
simplified model can be derived.
The most appropriate algorithm to process the data is always a matter of purposes, since
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Data Driven Modeling

the structure of the algorithm influences, in some measure, the structure of the final
model.
Beside the possible implementations, a broad spectrum classification of those algorithms
can be based upon the a priori assumptions about the structure of the system: in the
so called white and gray box approaches, a total or partial knowledge of the structure
is assumed and the algorithm is expected to give back some quantities that characterize
the imposed structure from the physical point of view; on the other hand, black box ap-
proaches make no assumptions on this structure and make no claims towards a physical
description of the system, focusing only into the construction of models that fit numeri-
cally the data of the input-output relationship.
The first class of methods can give a deeper insight into the system behaviour, but they
rely on the goodness of the a priori assumptions, that can result to be inaccurate or not
possible to be made at all. Conversely, the lack of physical meaning of a black box model
is counterbalanced by the opportunity to derive an input-output description without any
assumption beyond linearity.
From now on, we will treat the black box methods and we will refer to the obtained model
as ”Macromodel”.

1.1.1 Macromodels: construction flow and advantages

In the following, we will focus on macromodels devoted to the behavioural simulation of
complex electrical interconnects, or, more generally, electromagnetic structures. The main
objective of the macromodeling procedure is to obtain a macromodel that replaces the
high complexity dynamics of the structure with a lower complexity model, which catches
only the main features of the relationship between the electrical inputs and outputs of
interest.
If we are modeling the system in the frequency domain, our starting point is a set of
input-output data:

H̆k = H̆(sk) for k = 1,2, ...,K

where sk denotes a complex frequency and H̆(sk) is the transfer function of the system
sampled at sk. The total number of measurements is K.
In most cases, the measurements are performed at the real frequencies jωk, with sk = jωk.
In this case we have:

jω1 = jωmin, jωK = jωmax

The objective is then to reconstruct the response by means of an interpolation or approx-
imation procedure that returns a model:

H(jω) ≈ H̆(jω) for ω ∈ [ωmin, ωmax]

Throughout this text, we will denote with the symbol H̆(·) the true system response,
while with the symbol H(·) the model response. The obtained model is intended to be
exploited in a circuit simulation software such as SPICE or EMTP in a fast and reliable
way.
We now present a brief overview of how a macromodel is usually obtained and of the
strong points that makes it useful.
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Data Driven Modeling

❼ Macromodeling from field solver data: a full-wave solver is used to obtain the
input-output data; detailed knowledge of the structures and of the characteristics
of the actual system is required to perform the primary simulation. The data can
be collected both in the time domain or in the frequency domain.
This method is not properly a black-box one, since the structure of the model must
be known to perform the full-wave simulation; anyway, we can say that it is a black
box method for what concerns the macromodeling algorithm, that receives only
data as inputs, without additional informations about structure. This scenario is
common in industrial design environments where commercial field solvers are used.

❼ Macromodeling from measurements: a physical realization of the system un-
der modeling is provided; the data are collected and reconstructed by performing
measurements over the electrical ports that we wish to characterize. Also in this
case, both frequency and time domain data can be gathered. This approach is truly
black-box, in every step of the identification procedure.

Once the data are processed by the chosen algorithm, one can dispose of the obtained
macromodel with the following advantages:

1. A closed form expression for the behaviour of the system is obtained from the discrete
set of data points collected.

2. The macromodel describes the system behaviour without disclosing any insight
about the physical structure: sharing a macromodel doesn’t represent a risk for
the diffusion of proprietary information.

3. Whatever is the nature of the data set used for the fitting, the resulting macromodel
is intended to permit fast time domain simulations.

4. The obtained macromodel can be interfaced with other macromodels for simula-
tion of large interconnects system, allowing the possibility to simulate and optimize
various design scenarios.

1.1.2 Macromodel requirements for simulations

Some features are required on the macromodel, in order to guarantee its exploitability
and reliability. In particular, since we are dealing with the modeling of linear systems, a
suitable model structure should be chosen among all the possible ones; indeed, we know
that when a system is governed by ordinary differential equations, all the transfer func-
tions that can be derived for its input-output description result to be rational functions
of the Laplace variable s.
The choice of a model structure of this type not only catches the underlying governing
laws of the system, but results also particularly appropriate to be exploited to perform
simulations driven by linear circuit simulation software.
The numerical precision of the model must always be consistent with some physical
characteristics of the modeled structure to reproduce its behavior correctly; here, we
list the most relevant in an intuitive fashion, leaving a more precise description to later
sections.
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Data Driven Modeling

❼ Realness. Although the rational macromodels make use of complex variables to
describe the input-output behaviours, all the simulated quantities must be real num-
bers when observed in the time domain.

❼ Causality. Any physical system at rest can change its state only as a result of an
external stimulus; for an input-output description, this fact implies the necessity of
the output to be temporally preceded by its cause, the input.

❼ Stability. The concept of stability can be provided with various definitions; in the
following we define stable a model whose poles show negative real part, that is, if
{pi} is the set of poles of the model, then:

Re {pi} < 0 for i = 1,2, ..., n

where n is the order of the associated transfer function. The lack of the stability
property can imply numerically unbounded simulations that clearly do not reflect
the behavior of a real system.

❼ Passivity. A system is passive if it is not able to generate energy on its own; it can
realease energy to the outer environment only if that energy was previously provided
and stored inside it. The property of passivity can be regarded as the most general,
since it automatically implies stability, causality and realness.

1.1.3 Rational fitting algorithms

The choice of a particular fitting strategy is the first step in any modeling procedure: we
must first fix the structure of our model in order to restrict the set of all the possible
candidate representations. Since our aim is to model electrical interconnects and their
frequency-dependent behavior, the system will intrinsically exhibit a linear relationship
between input and output, due to the nature of the electromagnetic phenomena.
It is well known that any linear system is fully characterized by a rational function of the
complex variable s through its input-output transfer function:

H(s) =
N(s)

D(s)
(1.1)

where N(s) and D(s) are polynomials.
Therefore, a natural choice is to try to reconstruct the system through a rational fitting
procedure, that returns a model potentially able to catch all the information of interest.

Rational fitting algorithms make use of rational functions as basis for the model. Rational
functions are universal approximators: any set of data can be fitted by a series of rational
functions if a suitable order (i.e. number of basis functions) is considered. Even if this is
for sure an encouraging starting point, several issues affect a modeling process relying on
rational fitting:

❼ The behavior of the returned model is very accurate at the fitting points, but might
show an unwanted and improper oscillating nature between the data points and
beyond the limits of the data interval; this is particularly common when a very high
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order for the interpolating function is chosen.
This phenomenon is known as over-fitting and must be taken into account during
the identification procedure: one should use a subset of the available data to test
the model quality at points of the domain that are not exploited for the fitting
procedure.

❼ The imposition of constraints that ensure the model physical consistency can prevent
the convergence of rational fitting algorithms or, most often, be the cause of a poor
quality of the fitting.

From now on, we will assume that the model to be identified is a proper rational function
of the variable s, although an extension to the improper case is straightforward.
The unknowns that the rational fitting algorithm is intended to return depend on the
formulation of the rational function that we want to use. This formulation is fundamental
because, as we will see, it can cast the model in forms that are more suitable with respect
to others to achieve a good approximation. We now present the most common formula-
tions of rational functions together with the unknowns that an algorithm is expected to
return when such formulations are used as starting point.

❼ Ratio of polynomials: in this case, we assume that the model is representative of
an underlying dynamics expressed as:

H(s;x) =
N(s;x)

D(s;x)
=

a0 + a1s+ a2s
2 + · · ·+ amsm

b0 + b1s+ b2s2 + · · ·+ bn−1sn−1 + sn

in this case, the unknown vector x collects the 2n parameters:

x = [a0, a1, a2, . . . , am, b0, b1, b2, . . . , bn−1]
T

and the quality of the fitting can be evaluated by means of the residual quantity:

rk(x) = H̆k −
a0 + a1sk + a2s

2
k + · · ·+ amsmk

b0 + b1sk + b2s2k + · · ·+ bn−1s
n−1
k + snk

evaluated for each of the data samples.

❼ Pole-zero form: with this formulation the rational function reads:

H̆(s,x) = α

∏n−1
j=1 (s− zj)∏n
j=1(s− pj)

the 2n unknown vector is now:

x = [α, z1, z2, . . . , zn−1, p1, p2, . . . , pn]
T

and each residual quantity is evaluated as:

rk(x) = H̆k − α

∏n−1
j=1 (s− zj)∏n
j=1(s− pj)
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❼ Partial fractions form: in this case, the rational function is expressed as a series
of partial functions of the form:

H(s,x) =

n∑
j=1

cj
s− pj

(1.2)

with the assumption that the multiplicity of each pole equals one, that is:

pi /= pj ∀i /= j.

The 2n unknown vector is now defined as:

x = [c1, c2, . . . , cn, p1, p2, . . . , pn]
T

and the residual quantities are:

rk(x) = H̆k −
n∑

j=1

cj
s− pj

❼ Ratio of rational functions: to formulate the model in this form, we observe first
that any rational function of the variable s can be expressed as a ratio of other two
rational functions in s; for this reason, we can cast the model in a more general form
that reads:

H(s;x) =
N(s;x)

D(s;x)
=

∑n
i=1 ciϕi(s)∑n
i=1 diϕi(s)

(1.3)

where both numerator and denominator are expressed as a sum of rational basis
functions ϕi(s). In this case, the unknowns vector embeds the 2n coefficients of the
series expansions:

x = [c1, c2, . . . , cn, d1, d2, . . . , dn]
T

while the residual vector is defined as:

rk(x) = H̆k −
∑n

i=1 ciϕi(s)∑n
i=1 diϕi(s)

1.2 Rational fitting with fixed poles

Our main attempt is to formulate the rational fitting problem in such a way that a linear
dependence holds between the unknowns and the basis functions that we want to use
to fit the data. If this linear relation holds, then the rational fitting problem can be
solved by means of a standard least squares problem: the basis functions are sampled in
the points of the domain for which data points are available and the resulting numerical
values are used to build the regressor matrix of the least square problem.
We can see how, among all the formulations of a rational function, the only one that can
guarantee linearity between the unknowns and the basis functions is the partial fractions
expansion (1.2) under the assumption that the poles pj are fixed apriori. This formulation
will be deeply exploited in the following since it allows the formulation of the rational
fitting problem as a standard least squares problem.

18



Rational fitting with fixed poles

1.2.1 Partial Fractions

We usually define the frequency-dependent basis functions, due to their very convenient
numerical properties, as a set of partial fractions with a fixed set of poles. In particular,
we realize a prescribed set of distinct n̄r real poles qi ∈ R− and n̄c complex pole pairs
qi,i+1 = q′i ± jq′′i ∈ C−, where ϕ0(s) = 1. The total number of basis functions is assumed
to be n = 1 + n̄r + 2n̄c, including the constant term. We can define:

if q̄i ∈ R→ ϕi(s) = (s̄− q̄i)
−1;

if q̄i ∈ C→

{
ϕi(s) = (s̄− q̄i)

−1

ϕi+1(s) = ϕ∗
i (s) = (s̄− q̄∗i )

−1

To improve numerical conditioning, this basis definition is based on normalized indepen-
dent variables and poles, defined as:

s̄ =
s

ω0
, q̄i =

qi
ω0

where ω0 is a scaling frequency, which is in general obtained considering the largest model
pole.

1.2.2 Least squares formulation of the fitting problem

Denoting with ϕi(s) the generic element of our basis of partial fraction defined over a
set of poles {qi}, with i = 0,1,2, ..., n, then the residual quantities related to each data
sample can be written as:

rk(x) = H̆k −ϕT
kx

with

ϕT
k = [ϕ1(sk), ϕ2(sk), ..., ϕn(sk)], x = [c1, c2, ..., cn]

T

If we drop the dependency of the residuals on x we can write the above relationship in
matrix form by writing: ⎛⎜⎜⎜⎝

r1
r2
...
rK

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
H̆1

H̆2
...

H̆K

⎞⎟⎟⎟⎠−
⎛⎜⎜⎜⎝
ϕT

1

ϕT
2
...

ϕT
K

⎞⎟⎟⎟⎠x.

We can use the more compact and general notation:

b =

⎛⎜⎜⎜⎝
H̆1

H̆2
...

H̆K

⎞⎟⎟⎟⎠ , r =

⎛⎜⎜⎜⎝
r1
r2
...
rK

⎞⎟⎟⎟⎠ , Φ =

⎛⎜⎜⎜⎝
ϕT

1

ϕT
2
...

ϕT
K

⎞⎟⎟⎟⎠
and write:

r = b−Φx
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General Rational Fitting

Since our goal is to minimize the value of the residuals, we can solve the least squares
problem [26,27]:

Φx ≈ b

that returns an unknown vector x∗ such that the euclidean norm of the vector r is
minimized.
By writing the matrix Φ in extended form we obtain the Cauchy matrix:

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

s1 − q1

1

s1 − q2
...

1

s1 − qn

1
1

s2 − q1

1

s2 − q2
...

1

s2 − qn

1
...

...
...

1
1

sK − q1

1

sK − q2
...

1

sK − qn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

It is well known that the condition number [16,23] of the normal equations associated to
the regressor matrix,

κ(Φ) =

√
σmax(ΦHΦ)

σmin(ΦHΦ)

strongly influences the quality of the solution of the least squares problem. Fortunately,
being the partial fraction basis linearly independent (although not orthogonal) the Cauchy
matrix is usually well conditioned.

1.3 General Rational Fitting

The situation explained in the previous section is desirable to solve the fitting problem,
but it is very uncommon to known a priori the set of poles of the underlying system.
For this reason, black box rational fitting algorithms must be able to return a model
without any initial assumption beyond linearity. Two example of such algorithms are the
Generalized Sanathanan-Koerner iteration (GSK), introduced in the following, and the
Vector Fitting Iteration, for which a discussion can be found in [21].

1.3.1 Generalized Sanathanan Koerner iteration

The GSK [32]iteration makes use of the model formulation (1.3) to iteratively solve a
linearized version of the rational fitting problem. At each iteration ν of the algorithm a
modified residual quantity, defined as:

rνk(xν) =
D(sk;xν)H̆k −N(sk;xν)

D(sk;xν−1)
, for k = 1, 2, ..,K

is minimized in LS sense. In this formulation D(sk;xν) is the denominator of the model
at the current iteration (that is the one that will be found after the solution of the LS
problem), while D(sk;xν−1) is the denominator of the model computed at the previous
iteration, evaluated at the fitting points. We denote with xν an iteration-dependent
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General Rational Fitting

unknowns vector.
The idea behind the GSK algorithm is that as the number of iteration increases, the
estimate of the denominator stabilizes, implying that the residual quantity becomes for
ν →∞:

rνk(x∞) = H̆k −
N(sk;x∞)

D(sk;x∞)
for k = 1, 2, ..,K

which coincides with the residual that we actually want to minimize. When the model is
cast in the form (1.3), then the components of the residual vector rν(xν) at iteration ν
will read:

rνk(xν) =
[ϕ0(sk) +

∑n
j=1 d

ν
jϕj(sk)]H̆k −

∑n
j=0 c

ν
jϕj(sk)

ϕ0(sk) +
∑n

j=1 d
ν−1
j ϕj(sk)

Here we imposed d0 = 1 to guarantee a unique solution of the system since the component
ϕ0 is usually associated with a constant term. We made all the coefficients iteration-
dependent.
The iterative minimization of ||rν(xν)|| is achieved through the least square solution of
the system:

(Mν−1Ψ)xν ≈Mν−1b

where:

Mν−1 = diag{mν−1
1 ,mν−1

2 , ...,mν−1
K }, mν−1

k =
1

D(sk;xν−1)
,

b = [H̆1ϕ0(s1), H̆2ϕ0(s2), ..., H̆Kϕ0(sK)]T,

Ψ = [Φ0, −H̆Φ1],

Φ0 =

⎛⎜⎜⎜⎝
ϕ0(s1) ϕ1(s1) ... ϕn(s1)
ϕ0(s2) ϕ1(s2) ... ϕn(s2)

...
...

...
ϕ0(sK) ϕ1(sK) ... ϕn(sK)

⎞⎟⎟⎟⎠

Φ1 =

⎛⎜⎜⎜⎝
ϕ1(s1) ϕ2(s1) ... ϕn(s1)
ϕ1(s2) ϕ2(s2) ... ϕn(s2)

...
...

...
ϕ1(sK) ϕ2(sK) ... ϕn(sK)

⎞⎟⎟⎟⎠
The rational basis function that is usually exploited is the partial fractions basis.
We end this section by pointing out that the formulations of GSK we presented is given for
the scalar case; anyway, a straightforward extension is possible to the multiport systems.
For details see [21]. From now on, we will denote with the symbol H̆(·) ∈ CP×P the
multiport response of the true system and with H(·) ∈ CP×P the multiport response
of our models, where the symbol P denotes the number of ports of the system. In the
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following, we will describe the main model formulations used to characterize a multiport
system macromodel.

1.4 Multiport (MIMO) Model Formulations

Approximating the true system response in a suitable macromodel form is fundamen-
tal to include the curve fitting result in system-level simulations using standard circuit
solvers such as SPICE. Several mathematical structures are available: the identification
algorithm efficiency, in frequency and time domain, is affected by this choice.
In this Section we are going to describe the model formulation through a transfer matrix
and a state space realization; the latter will be useful for the macromodel characterization.

1.4.1 Transfer Function Formulation

Recalling to the scalar model of (1.1), we extend now the formulation realizing a rational
model of a MIMO system. Considering a generic MIMO LTI system with rational transfer
function, we can adopt the so-called Generalized Sanathanan-Koerner (GSK) form [33]
[21] as:

H(s) =
N(s)

D(s)
=

∑n̄
n=0Rn ϕn(s)∑n̄
n=0 rn ϕn(s)

(1.4)

where we denoted with Rn ∈ RP×P and rn ∈ R the numerator and denominator model
(real-valued) coefficients, respectively.
Frequency variations are induced by chosen basis function ϕn(s), which are rational func-
tions of s , with n̄ frequency basis order.
Both numerator and denominator of (1.4) share the same basis poles set, which are as-
sumed stable.

1.4.2 State Space and Descriptor Realizations

We now explore the state space and descriptor realizations of a MIMO LTI system,
starting from the pole-residue or GSK form of the model H(s) in the Laplace domain.

State Space for Pole-Residue Form

Considering a general P -ports model in a pole-residue form, we can write:

H(s) = H∞ +

n̄∑
n=1

Rn

s− qn
(1.5)

22



Multiport (MIMO) Model Formulations

where H∞ = R0 and n̄ is the overall number of poles.
Denoting as:

A = blkdiag{qnIP }n̄r

n=1

B =
[
1, . . .,1

]T ⊗ IP
C =

[
R1, . . . ,Rn̄

]
D = H∞ .

with ⊗ the matrix Kronecker product, we define a regular state-space system realization
as: {

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1.6)

where u,y ∈ RP are the system input and output, respectively, and x ∈ RN are the
system internal states.
The notation that we provide for the state-space realization is the following:

H(s) = D+C(sI−A)−1B↔
(

A B
C D

)
Considering now the model in (1.4), with ϕ(s) defined as the partial-fraction basis with
a prescribed set of poles qn (see Section 1.2.1), we can write:

N(s) = R0 +

n̄∑
n=1

Rn

s− qn

D(s) = r0 +

n̄∑
n=1

rn
s− qn

We now construct the two separate state-space realizations for numerator and denomi-
nator as:

N(s)↔
(

A0 B0

C1(s) D1(s)

)
(1.7)

D(s)IP ↔
(

A0 B0

C2(s) D2(s)

)
where:

A0 =blkdiag{A0r, A0c}
BT

0 =
[
BT

0r, BT
0c

]
C1 =

[
R1, . . . ,Rn̄

]
C2 =

[
IP r1, . . . , IP rn̄

]
D1 =R0

D2 =IP r0.
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with:

A0r =blkdiag{qnIP }n̄r

n=1

A0c =blkdiag

{[
q′nIP q′′nIP
−q′′nIP q′nIP

]}n̄c

n=1

B0r =
[
1, . . .,1

]T ⊗ IP
B0c =

[
2,0, . . .,2,0

]T ⊗ IP

where real-valued matrices have been used for complex conjugate poles.
Cascading the expressions in (1.7), we obtain a compact state-space realization for the
rational model H(s), that reads:

H(s) = N(s)(D(s)−1IP )↔
(

A0 −B0D
−1
2 C2 B0D

−1
2

C1 −D1D
−1
2 C2 D1D

−1
2

)
We recall [21] and [25] for more details.

Descriptor Form

We now define an alternative system realization, denoted as descriptor form (or differential-
algebraic system of equations (DAE), see [21]) of an impulse free model as:{

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1.8)

where u and y are the system input and output, respectively, and x ∈ RN+P , with
N = n̄P , the system internal states: the number of states changes with respect to the
state-space realization, increasing the problem dimension.
The descriptor matrices of (1.8) are:

E =

(
IN 0N,P

0P,N 0P,P

)
A =

(
A0 B0

C2 D2

)
C =

(
C1 D1

)
B =

(
0N,P

−IP

)
with 0J,K the null matrix of size J ×K.
It can be proven that the model expression of (1.4) is equivalent to

H(s) = C(sE−A)−1B

as detailed in [21].
The descriptor form is particularly useful because it requires no block matrix inversion
and moreover all matrix elements depend linearly on the model coefficients, in opposition
with the regular state space realization.

In the following sections we are going to describe in more details how the model should
reflect the physical properties of the true system.

24



Stability

1.5 Stability

Several stability definitions may be formulated for an LTI system, analysing the general
properties of all the possible solutions of a system. During our work we only modelled
black-box systems, which can be characterized, from a stability standpoint, through the
matrix A of the state-space realization (1.6) of the model H(s).
For this reason, we can define an LTI system [24] [30] [45] as:

❼ asymptotically stable if and only if all the poles have a strictly negative real part,
Re {qn} < 0 ∀n;

❼ stable if and only if all the poles have a negative real part, Re {qn} ≤ 0 ∀n, and all
the purely imaginary poles have a multiplicity that is at most one;

❼ unstable if at least one pole has either a strictly positive real part, Re {qn} > 0 , or
a null real part with a multiplicity higher than one.

Furthermore, since the eigenvalues of A are the model poles qn, the matrix A can be
denoted as (asymptotically) stable if its eigenvalues have a (strictly) negative real part.

1.6 Passivity

In electronic systems engineering, it is a common practice to deal with many intercon-
nected sub-systems. Especially during high-speed electronic devices design, it is fun-
damental to assess the signal and power integrity (SI, PI), when all the sub-systems are
connected together, since even individual components like vias and packages may strongly
affect SI and PI performances if the design is poor. In general, it is common to perform
in-depth analyses of these components and, to speed-up the whole process, surrogate
macro-models for each sub-system are used, that will be connected together just in simu-
lation phases. Such analyses of interconnected systems may suffer from instabilities, even
if all the models are internally asymptotically stable. In fact, if one or more of the single
macro-models is not passive, an un-physical energy generation may occur, leading to a
distorted output signal which may have detrimental effects on the whole system. This
fact, under suitable load conditions, may be responsible of an uncontrolled amplification
of the output signal, resulting in an unstable simulation.
Model passivity turns out to be a fundamental requirement that must be carefully anal-
ysed when such macro-models are synthesized to ensure reliable simulations under any
working condition.

The passivity of a system is strongly related to the net power it absorbs at any time
instant t. Considering a P-ports system, the absorbed instantaneous power is:

p(t) =

P∑
k=1

pk(t) =

P∑
k=1

vk(t)ik(t)

that can be written in compact form as:

p(t) = v(t)Ti(t) = i(t)Tv(t)
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where v = [v1, . . . , vk]
T and i = [i1, . . . , ik]

T.

In case the system is in immittance representation, input and output variables, denoted
respectively as uk(t) and yk(t) may be either voltage or currents. The instantaneous
power is thus:

p(t) = yT(t)u(t) = uT(t)y(t)

Considering input and output as complex valued signals, the instantaneous power defini-
tion can be generalized, as:

p(t) = Re
{
vH(t)i(t)

}
= Re

{
iH(t)v(t)

}
(1.9)

For scattering representations, voltages vk and currents ik are transformed in incident
and reflected scattering waves, denoted respectively as ak and bk. To this end we recall
that:

ak =
1

2
√

Rref,k

(vk +Rref,kik)

bk =
1

2
√

Rref,k

(vk −Rref,kik)

where Rref > 0 is the normalization resistance of each port.
The power p(t) for scattering representation is thus:

p(t) =

P∑
k=1

√
Rref,k[ak(t) + bk(t)]

1√
Rref,k

[ak(t)− bk(t)] = a(t)Ta(t)− b(t)Tb(t)

with a(t) = [a1(t), . . . , ak(t)] and b(t) = [b1(t), . . . , bk(t)].
Defining generic input and output signals as u(t) = a(t) and y(t) = b(t), it follows that:

p(t) = u(t)Tu(t)− y(t)Ty(t)

Generalizing this definition to the case in which u(t) and y(t) are complex-valued signals,
the instantaneous power is:

p(t) = u(t)Hu(t)− y(t)Hy(t) (1.10)

The net energy absorbed by a P-ports system in a time interval [t1, t2] is defined as:

E(t) =
∫ t2

t1

p(τ)dτ (1.11)

If the energy for t1 → −∞ is vanishing, the cumulative net energy at an arbitrary time
instant t is:

E(t) =
∫ t

−∞
p(τ)dτ (1.12)

The definition for passivity now can be stated.
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Definition 1.1 [21, 45, 46] A P-ports system is passive if the cumulative net energy in
(1.12) is non-negative for any time t

E(t) ≥ 0, ∀t (1.13)

and for any input signal u(t).

The term ”passivity” is often replaced by its synonym ”dissipativity”, so that a passive
system is also denoted as ”dissipative”.

1.6.1 The dissipation inequality

The passivity definition given in the previous section regards only the net input/output
energy flow, without making any reference to the system internal energy. An alternative
way to describe the passivity of a system is to relate the amount of energy it stores and
exchanges with the environment, for any time t. Considering a generic system (described
in its state space representation) the following dissipativity definition holds:

Definition 1.2 [21] A system (expressed in its state space representation) is dissipative
with respect to the supply rate p(t) if there exist a scalar-valued function V (x), with x
the system states, such that

V (x(t1)) ≤ V (x(t0)) +

∫ t1

t0

p(t)dt, ∀ t0 ≤ t1and ∀ u,y,x. (1.14)

.
The integral term in (1.14) is exactly the net cumulative energy entering the system in
the time interval [t0, t1], as defined in (1.11). The function V (x(t)) is recognized to be
the energy that is stored by the system at any time instant t. Equation (1.14) states that
in a system, to be dissipative, the variation on internal energy V (x(t1)) − V (x(t0)) can
not exceed the energy that is supplied from the environment to the system during the
time interval [t0, t1].
If the storage function is differentiable, Equation (1.14) can be rewritten in differential
form as:

d

dt
V (x(t)) ≤ p(t), ∀t (1.15)

Under the assumption that the energy stored for t→ −∞ is vanishing, inequality (1.14)
reduces to the passivity condition in Equation (1.13). This way to characterize the pas-
sivity of a system will turn out to be useful later on, when advanced algebraic passivity
assessment methods will be derived

1.6.2 Passivity characterization

Considering now the class of MIMO (Multi Input-Multi Output) lumped LTI systems
with input u(t) and output y(t), for which there exist a transfer matrix representation,
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the previous dissipativity definition can be written in terms of the transfer function H(s),
for both immittance and scattering representations.

For an immittance system, in order to derive passivity conditions in terms of its transfer
matrix H(s), we can explicitly write the instantaneous absorbed power under cisoidal
excitation u(s) = u est using (1.9) as:

p(t) = Re
{
uHHu

}
e2σt, σ = Re {s} (1.16)

The cumulative net energy can be computed as:

E(t) =
∫ t

−∞
p(τ)dτ = Re

{
uHH(s)u

} e2σt

2σ

where σ > 0 to ensure the integral convergence.
Recalling the passivity condition in (1.13), it must hold E(t) ≥ 0, ∀t. Thus, being e2σt

2σ > 0
by assumption, it follows that:

Re
{
uHH(s)u

}
= uH

[
1

2
(H(s) +HH(s))

]
u ≥ 0, ∀u ∈ CP

We can conclude that an immittance system is dissipative if:

H(s) +HH(s) ≥ 0, Re {s} > 0 (1.17)

For further details on these derivations see [21].

To derive passivity conditions for scattering systems, as for the immittance case, we
must write the instantaneous power in terms of H(s). Under a cisoidal excitation u(t),
recalling Equation (1.10), the power p(t) reads:

p(t) = u(t)Hu(t)− y(t)Hy(t) = uH[I−H(s)HH(s)]u e2σt.

As for the immittance case, we compute the cumulative net energy absorbed by the
system at time instant t as:

E(t) =
∫ t

−∞
p(τ)dτ = uH

[
I−HH(s)H(s)

]
u
e2σt

2σ

with σ > 0.
The passivity condition in (1.13) implies that:

I−H(s)HH(s) ≥ 0, Re {s} > 0. (1.18)

The two passivity conditions for immittance and scattering representation given above
are now generalized with reference to Positive Real and Bounded Real matrices [2,21,44].
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Definition 1.3 A transfer matrix H(s) is Positive Real if:

1. each element of H(s) is defined and analytic in Re {s} > 0

2. H∗(s) = H(s∗)

3. Θ(s) = H(s) +HH(s) ≥ 0 for Re {s} > 0

where H∗(s) denotes the complex conjugate of H(s).

Definition 1.4 A transfer matrix H(s) is Bounded Real if:

1. each element of H(s) is defined and analytic in Re {s} > 0

2. H∗(s) = H(s∗)

3. Θ(s) = I−HH(s)H(s) ≥ 0 for Re {s} > 0

Condition 1 is related to stability and causality. In fact both causality and stability re-
quires the transfer function to be analytic (must not have poles) in the closed right half
complex plane.

Condition 2 may be interpreted as a ”consistency” one, since it implies that the transfer
matrix is real for any s ∈ R. This condition strongly affects the residues of H(s): in fact,
to be satisfied, they must be real, for real poles, or must appear in complex conjugate
pairs, when corresponding to complex conjugate poles.

Finally, Condition 3 is exactly the one we derived above in Equations (1.17) and (1.18),
related to the energy of the system described by H(s).
We are now ready to re-formulate LTI system passivity conditions in terms of Positive
Real and Bounded Real matrices, as stated in Theorem 1.1 ( [2, 21,44]).

Theorem 1.1 A LTI system with transfer matrix H(s) is defined to be passive if and only
if H(s) is Positive Real (for immittance representations) or Bounded Real (for scattering
representations).

This theorem 1.1 provides a powerful theoretical tool to check the passivity of an LTI
system through its transfer matrix. However, verifying that the three conditions are con-
currently fulfilled in the open complex plane, implies considerable computational efforts.
In the following, we derive some simpler conditions, based on the rational nature of the
model underlying the transfer matrix H(s) to assess whether the model is passive, for
both immittance and scattering representations.
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Considering immittance systems, the following Theorem holds [2, 21,44].

Theorem 1.2 A rational matrix H(s) is Positive Real if and only if

1. H(s) has no poles in C+

2. H∗(jω) = H(−jω)

3. H(jω)+HH(jω) ≥ 0, ∀ω ∈ C, except for simple poles jωi of H(s) where the transfer
matrix must be Hermitian and nonnegative definite.

4. for ω →∞, H(s) ∼ R∞s in Re {s} > 0, with R∞ real, symmetric and non-negative
definite

The main advantage of this theorem with respect to the more general one, as shown
in [21], is evident from the third condition. In fact, comparing it with the one defined
in Definition 1.3, it turns out that the non-negative definiteness of H(s) +HH(s) can be
checked just along the imaginary axis rather than in the right half open complex plane.
If Conditions 1,2,4 are satisfied (as usually are), the only thing we need to check is Con-
dition 3, whose statement can be cast as follows:

λmin(jω) ≥ 0, ∀ω ∈ R
with:

λmin(jω) = min{λ(H(jω) +HH(jω)}, ∀ω ∈ R
Assuming the transfer matrix to be asymptotically stable, the above eigenvalues are con-
tinuous functions of frequency, making in turn λmin(jω) to be a continuous function of
frequency.
This fact enables the use of frequency sampling techniques in advanced passivity assess-
ment algorithms.
Now we are going to detail, for immittance and scattering systems, a set of fundamental
results that enable the construction of advanced passivity verification techniques.

Immittance systems

Particularizing the dissipation inequality (1.15) for immittance LTI systems, we will derive
a condition to assess system passivity in terms of the state-space representation matrices.
To this end, we need to have an analytic expression of the supplied power that is given
by Equation (1.16) and reads:

p(t) =
1

2
[uT(Cx+Du) + (Cx+Du)Tu]

If the storage function is defined as V (x) = 1
2(x

TPx), with P a symmetric positive
definite matrix, its derivative (rate of change of the internal energy) will be:

d

dt
V (x(t)) =

1

2
[(Ax+Bu)TPx+ xTP(Ax+Bu)]

Let us now impose the dissipativity condition defined in Equation (1.13). Splitting input
and state signals, with trivial algebraic manipulations we get to the following LMI form,
known as Positive Real Lemma [2, 34].
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Lemma 1.1 A LTI system in immittance form is passive if and only if, for any signal
x,u satisfying the state equations, it holds that:

∃P = PT > 0 :

(
x
u

)T(
ATP+PA PTB−CT

BTP−C −(D+DT)

)(
x
u

)
≤ 0

We now derive a fundamental result (for details see [21]) used extensively in LTI pas-
sivity assessment algorithms, that enables the use of algebraic methods to spot passivity
violations. In details, it will be shown that the imaginary eigenvalues of a particular
Hamiltonian-structured matrix are strongly related to the location of passivity violations
along the frequency axis.
First, let us define a support matrix function, called Popov function, Ψ(s) as:

Ψ(s) = H(s) +HT(−s)

Recalling that, to be passive, the transfer matrix of an immittance system must satisfy:

Θ(s) = H(s) +HH(s) ≥ 0

in turns out that Θ(s) and Ψ(s) are equal when evaluated on the imaginary axis. This
enables us to check the non-negative definiteness of Ψ(jω) instead of Θ(jω).
The condition that must be verified to guarantee passivity is thus:

Ψ(jω) ≥ 0, ∀ω

Focusing our attention to this last equation, we see that the frequencies jωi at which
Ψ(jωi) becomes singular, algebraically pinpoint passivity violations, beingΨ(jωi) singular
exactly when H(jωi) +HT(−jωi) = 0.
These frequencies are defined to be the solutions of:

Ψ(jωi)u = 0 (1.19)

for some vector u.
In order to algebraically find these solutions, we derive a state-space realization of Ψ(s),
the analytic extension to the open complex plane of Ψ(jω). This turns out to be useful
since the solutions of Equation (1.19) are the poles of Ψ−1(s), for which a simple state
space realization is readily computed. The poles of Ψ−1(s) are the eigenvalues of its
dynamic matrix, that reads:

N 0 = AΨ−1 = AΨ −BΨD
−1
Ψ CΨ

where AΨ, BΨ, CΨ, DΨ are the state-space realization matrices of Ψ(s).
ExpandingN 0 in terms of the system realization matricesA,B,C,D we get the following
matrix:

N 0 =

(
A−B(D+DT)−1C −B(D+DT)−1BT

CT(D+DT)−1C −AT +CT(D+DT)−1BT

)
Defining as J the following matrix:

J =

(
0 In
−In 0

)
31



Passivity

it holds that:

(JN 0)
T = JN 0 (1.20)

which shows that N 0 has a Hamiltonian structure.
Because of that, N 0 has some peculiar characteristics. In particular, its eigenspectrum
is symmetric with respect to both imaginary and real axes. In fact the set of poles of
Ψ(s) includes the ones of H(s) which are symmetric with respect to the real axis, and
their mirror images, symmetric with respect to the imaginary axis.
The following theorem, proposed in [4,17,21], provides a fundamental results that relates
the eigenvalues of N 0 with the ones of Ψ(jω).

Theorem 1.3 Let H(s) be the transfer matrix of an immittance system, whose state
space matrices are {A,B,C,D}, where A has no purely imaginary eigenvalues and D+
DT is non-singular. Then, jω0 is an eigenvalue of N 0 if and only if 0 is an eigenvalue
of Ψ(jω0).

It follows that, if N 0 has imaginary eigenvalues, the related LTI system is not passive
for some frequency bands.
This result is formally stated in Theorem 1.4.

Theorem 1.4 Let H(s) be the transfer matrix of an immittance system, whose state
space matrices are {A,B,C,D}, where A has no purely imaginary eigenvalues and D+
DT is positive definite. Then the system is passive if the Hamiltonian matrix N 0 has no
purely imaginary eigenvalues.

Theorems 1.3 and 1.4 provide an algebraic tool that is able to precisely verify system
passivity and enables us to easily localize violation areas along the frequency axis.
To this end we must notice that Hamiltonian imaginary eigenvalues correspond to the
complex frequencies at which at least one eigenvalue of Ψ(jω) crosses the zero-threshold.
These frequencies induce a partition of the frequency axis in disjoint sub-bands, where
Ψ(jω) is either positive definite or not. This means that, being the Hamiltonian eigen-
values the edges of these sub-bands, the frequency axis is now partitioned in passive and
not-passive areas, so that a detailed passivity characterization is available.
In Figure 1.1 we show the described partitioning of the frequency axis in passive and non-
passive bands induced by imaginary Hamiltonian eigenvalues. In the left panel we show
an eigenvalue of H(jω) +HH(jω) as function of the frequency that, becoming negative,
denotes a non-passive frequency band, shown in red. Imaginary Hamiltonian eigenvalues
are represented as black dots and bound this violation area. In the right panel we show
the Hamiltonian eigen-spectrum, where it is possible to see that the magnitude of purely
imaginary eigenvalues coincides with the edges of the violation interval discussed before.
The violation bands in the complex plane are represented with red lines.

The main result presented here relies on the strong assumption that D + DT is not
singular. However, the same approach can be extended to the case in which D +DT is
singular with minor modifications. For details see [21].
In order to relax the non-singularity condition on D+DT, it is necessary to slightly mod-
ify Theorem 1.3 resulting in an extended eigenvalue problem where, now, no inversions
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Figure 1.1: Frequency axis partitioning induced by Hamiltonian imaginary eigenvalues
(immittance systems)

on D+DT are required. The new problem, shown in Equation (1.21) is cast in what is
usually called a ”generalized eigenvalue problem”, where the unknowns are no more the
eigenvalues of a matrix, but the ones of a matrix pencil (N ext

0 ,K):

N ext
0 v = jω0Kv (1.21)

where

N ext
0 =

⎛⎝A 0 B
0 −AT −CT

C BT D+DT

⎞⎠ , K =

⎛⎝I 0 0
0 I 0
0 0 0

⎞⎠
This matrix pencil is denoted as ”Skew-Hamiltonian/Hamiltonian”, because N ext

0 has
Hamiltonian structure while K is skew-Hamiltonian.

Up to now, just a state-space realization for H(s) has been considered. However there
are several situations for which a descriptor realization is preferable, e.g., when using
MNA (Modified Nodal Analysis) method to automatically solve electrical circuits. For
this reason, a generalization of the Hamiltonian approach to descriptor realization is
needed. Minor modifications to Theorem 1.3 allow to state that, for immittance systems
in descriptor form, the complex frequencies at which passivity violations occur are the
purely imaginary generalized eigenvalues of this generalized eigen-problem:

N ext
0 v = jω0Kv
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where

N ext
0 =

⎛⎝A 0 B
0 −AT −CT

C BT D+DT

⎞⎠ , K =

⎛⎝E 0 0
0 ET 0
0 0 0

⎞⎠

Scattering systems

We now focus on scattering systems.
Recalling Theorem 1.1, a scattering system, to be passive, must have a Bounded Real
transfer matrix. Verifying system passivity throughout the complex plane is too expensive
in terms of computational effort.
As for the Positive Real Lemma, a formulation of the Bounded Real Lemma exists for
rational matrices [2, 21,44].

Theorem 1.5 A rational matrix H(s) is Bounded Real if and only if

1. H(s) has no poles in C+

2. H∗(jω) = H(−jω)

3. I−H(jω)HH(jω) ≥ 0, ∀ω ∈ R

Conversely from the immittance case, no further conditions are required for purely imag-
inary poles, since passive scattering systems can not have poles on the imaginary axis. As
in Theorem 1.2, the main advantage that the rational nature of the system brings with it,
is that Conditions 2 and 3 can be checked just along the imaginary axis. Assuming the
system to be asymptotically stable (all the poles of H(s) has strictly negative real part)
and that the state-space realization matrices real, the first two conditions are verified and
only the third remains to be checked.
Here, in contrast with the immittance case, a product of transfer matrices appears, so a
direct eigenvalues calculation, to guarantee that the smaller one is above the zero thresh-
old, should be avoided. An alternative formulation for Condition 3 is based on the SVD
(Singular Values Decomposition) of H(jω), that reads:

H(jω) = U(jω)Σ(jω)V(jω)H

The third condition is then re-formulated in terms of the singular values of H(jω):

I−H(jω)HH(jω) ≥ 0⇔ σmax(H(jω)) = ∥H(jω)∥2 ≤ 1, ∀ω ∈ R

Being additionally, by assumption, the transfer matrix H(jω) regular in an open subset of
the complex plane containing the imaginary axis, singular values are continuous functions
of jω, enabling the use of frequency sampling techniques.
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Since any passive system must satisfy the dissipation inequality in (1.15), to derive a
precise passivity characterization, it must be particularized for scattering systems.
The supplied power p(t) is:

p(t) = uTu− yTy = uTu− (Cx+Du)T(Cx+Du)

where u,y are, respectively, the input and output signals and the time dependency has
been omitted for readability.
The storage function V (x), defined as V (x) = xTPx, with P = PT ≥ 0, leads to the
following equation:

d

dt
V (x(t)) = (Ax+Bu)TPx+ xTP(Ax+Bu) ≤ p(t), ∀t

Combining the previous relation with the dissipation inequality, and splitting the input
and state signals, the so-called Bounded Real Lemma [2, 34] can be stated.

Lemma 1.2 A LTI system in scattering form is passive if and only if, for any signal
x,u satisfying the state equations, it holds that:

∃P = PT > 0 :

(
x
u

)T(
ATP+PA+CTC PB+CTD

BTP+DTC −(I−DTD)

)(
x
u

)
≤ 0

In the following we derive, as for immittace representations, a set of results that enables
to cast the passivity verification problem in a closed algebraic form. See [21] for details.
Defining Θ(s) as:

Θ(s) = I−HH(s)H(s)

and denoting the Popov function as:

Ψ(s) = I−HT(−s)H(s)

it is easy to see that, when evaluating these functions for s = jω, they are equal:

Ψ(jω) = Θ(jω)

Passivity condition can be cast in terms of the Popov function as:

Ψ(jω) ≥ 0, ∀ω (1.22)

Equation (1.22) exactly matches the one for immittance representations, where passivity
violations are solutions of:

Ψ(jω)u = 0 (1.23)

for some vector u.
To find the zeros of Ψ(jω), a state space realization for Ψ(s) (whose matrices are
AΨ,BΨ,CΨ,DΨ) is derived, from which it is possible to get a realization for Ψ−1(s),
whose purely imaginary poles are the solutions of Equation (1.23). The poles of Ψ−1(s)
are the eigenvalues of its state-space dynamic matrix, that reads:

M1 = AΨ −BΨD
−1
Ψ CΨ
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Writing now this matrix in terms the state-space realization matrices A,B,C,D of H(s),
we get the following matrix:

M1 =

(
A+B(I−DTD)−1DTC B(I−DTD)−1BT

−CT(I−DDT)−1C −AT −CTD(I−DTD)−1BT

)
Matrix M1 has Hamiltonian structure, since it satisfies the condition in (1.20).

What relates matrixM1 with system passivity is given by the following theorem: [4,17,21]

Theorem 1.6 Let H(s) be the transfer matrix of a scattering system, whose state space
matrices are {A,B,C,D}, where A has no purely imaginary eigenvalues and I −DTD
is non-singular. Then, jω0 is an eigenvalue of M1 if and only if 0 is an eigenvalue of
Ψ(jω0) and 1 a singular value of H(jω0).

This result allows us to derive the following theorem, that provides a sufficient passivity
condition for scattering systems:

Theorem 1.7 Let H(s) be the transfer function of an asymptotically passive (∥D∥2 < 1)
and stable scattering system, whose state-space matrices are (A,B,C,D). The system is
uniformly passive if M1 has no purely imaginary eigenvalues

Furthermore, the frequencies ωi solving Ψ(jωi)u = 0, i.e., the Hamiltonian imaginary
eigenvalues, induce a partition of the frequency axis in passive and not-passive sub-
bands. These considerations allow to characterize in details the passivity of a system for
any frequency value.
Figure 1.1 shows the partitioning of the frequency axis in passive and non-passive bands
induced by imaginary Hamiltonian eigenvalues. In the left panel we show singular val-
ues of H(jω) that, when their value exceeds one, allow to identify non-passive regions,
represented in red. Imaginary Hamiltonian eigenvalues are represented as black dots and
bound these violation areas. In the right panel we show the Hamiltonian eigenspectrum,
where we see that the magnitude of purely imaginary eigenvalues coincide with the edges
of the violations interval discussed before. The violations bands in the complex plane are
represented with red lines.
As we did for immittance systems, it is possible to relax the non-singularity condition on
I−DTD.
As proposed in [21], Theorem 1.6 can be generalized to the case in which D is arbitrary.
Slightly modifying its proof, it is possible to define an extended eigen-problem shown in
(1.24), that does not require any inversion of I−DDT and I−DTD, as:

Mext
1 v = jω0Kv (1.24)

where

N ext
0 =

⎛⎜⎜⎝
A 0 B 0
0 −AT 0 −CT

0 BT −I DT

C 0 D I

⎞⎟⎟⎠ , K =

⎛⎜⎜⎝
I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
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Figure 1.2: Frequency axis partitioning induced by Hamiltonian imaginary eigenvalues
(scattering systems)

It can be proven that purely imaginary eigenvalues of (1.24) correspond exactly to the
location on the frequency axis of passivity violations.

Previous results are based on the assumption that a state-space realization for H(s) is
used. Here, we provide a generalization of the Hamiltonian-driven passivity characteri-
zation to descriptor realizations, that will be used extensively later on in this work, and
are of paramount importance in many other applications.
Passivity violations are again defined by complex frequencies jωi for which Ψ(jωi)v = 0.
Suitably modifying Theorem 1.6, we find that this condition is reached if and only if jωi

is an eigenvalue of the generalized eigenproblem in (1.25).

Mext
1 v = jω0Kv (1.25)

where

N ext
0 =

⎛⎜⎜⎝
A 0 B 0
0 −AT 0 −CT

0 BT −I DT

C 0 D I

⎞⎟⎟⎠ , K =

⎛⎜⎜⎝
E 0 0 0
0 ET 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
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Chapter 2

Multivariate Macromodels

This chapter is co-authored by T. Bradde, M. De Stefano and A. Zanco.

In the previous chapter, we assumed that the system under modeling is characterized
by a fixed (yet unknown) physical structure. In many situations, however, this hypoth-
esis is not the most suitable: some physical parameters of the system could be design
objectives or could be intrinsically uncertain due to production process tolerances.
A parametric macromodel is able to reproduce the system behaviour for all the possible
values that the varying parameters assume within a prescribed range. This possibility
proves to be extremely useful in many fields of the design process, from the optimization
of the design variables, to the simulation of worst-case scenarios induced by the physical
realization of the structure. Typical examples regard the role of temperature in electronic
devices, the geometrical parameters of an interconnect, the linearization point of a non-
linear device, and many more.
The construction flow of a parametric macromodel requires the knowledge of the input-
output behavior for a discrete number of values within the range that the parameters can
span; once those data are collected and processed, the interpolation algorithm returns a
closed form description of the system within the entire range of variation.
In this case, the input-output data must be representative of the model behavior within
all the range of values assumed by each parameter; in particular, consider the case in
which the model is required to depend on a number ρ of design parameters. Then, for
the i-th parameter we can denote its variation range as:

Θi =
[
ϑi
min, ϑi

max

]
for i = 1,2, . . . , ρ

Thus, the global parameter domain can be defined as:

Θ = Θ1 ×Θ2 × · · · ×Θρ ⊆ Rρ (2.1)

In a discretized parameters space, a point in Θ is uniquely identified by its projections
along the parameters axes. To keep the notation compact, this point is denoted as

ϑm = [ϑm1
, . . . , ϑmρ

]T

where m is a multi-index m = [m1, . . . ,mρ].
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To synthetize a parametric macromodel, a set of M points in the parameter domain Θ is
defined to be representative of the parametric system response; for each of these points,
we collect K frequency samples of the transfer functions associated with the underlying
system. The resulting dataset reads:

H̆k,m = H̆(sk;ϑm) for k = 1,2, . . . ,K m = 1,2, . . . ,M

If, as it is common, we collect data at real frequencies ωk, our goal is to obtain a model:

H(jω;ϑ) ≈ H̆(jω;ϑ) for ϑ ∈ Θ, ω ∈ [ωmin, ωmax]

While the structure of an univariate model is supposed to be a rational function of the
Laplace variable, we are free to cast the dependence of the model on the parameters in
a larger set of possible structures: a variety of basis functions can be used to fit the
data. The thesis project is particularly focused on the investigation of issues related to
the construction of precise and reliable parametric macromodels, for which many open
problems still exist.

2.1 Parametric Model Formulation

Approximating the true system response H̆(sk;ϑk) in a suitable macromodel form is fun-
damental to include the curve fitting result in system-level simulations using standard
circuit solvers such as SPICE. Several mathematical structures are available: the identifi-
cation algorithm efficiency, in frequency and time domain, is affected by this choice. More-
over, all the formulations may suffer from ill-conditioning depending on the parameter-
dependent basis choice.

Therefore, considering a P -ports multivariate macromodel of a generic LTI system, we
adopt the so-called Parameterized Sanathanan-Koerner (PSK) form [37], [36], [13], [12],
[22]

H(s;ϑ) =
N(s, ϑ)

D(s, ϑ)
=

∑n̄
n=0

∑ℓ̄
ℓ=1Rn,ℓ ξℓ(ϑ)ϕn(s)∑n̄

n=0

∑ℓ̄
ℓ=1 rn,ℓ ξℓ(ϑ)ϕn(s)

. (2.2)

We remark that the model numerator and denominator are constructed by linear combi-
nation of suitable basis functions: it is straightforward to prove that if the basis functions
ϕn(s) are rational, the model indicated in (2.2) is a rational function ∀ϑ.
In particular, we denoted with n̄ the frequency basis order and with ℓ̄ the cardinality of
the parameter-dependent basis function. To maintain the notation compact, we define a
multi-index ℓ = (ℓ1, . . . , ℓρ), if ρ > 1.
Both the numerator and denominator coefficients are guaranteed real-valued: they are
indicated with Rn,ℓ ∈ RP×P and rn,ℓ ∈ R, respectively, in (2.2).

We can simplify the model expression presented in (2.2), gathering the parameter infor-
mation

H(s;ϑ) =
N(s, ϑ)

D(s, ϑ)
=

∑n̄
n=0Rn(ϑ)ϕn(s)∑n̄
n=0 rn(ϑ)ϕn(s)

, (2.3)
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where

Rn(ϑ) =

ℓ̄N∑
ℓN=1

Rn,ℓN ξℓN (ϑ) rn(ϑ) =

ℓ̄D∑
ℓD=1

rn,ℓD ξℓD(ϑ) (2.4)

are the numerator and denominator model coefficients, respectively.
Note that a different parameter-dependent basis order for numerator(ℓ̄N ) and denominator(ℓ̄D)
polynomials is possible, as specified in (2.4). Without loss of generality, in the following
we will set ℓ̄N = ℓ̄D = ℓ̄ .
The model structure presented before is completely general with respect to the input data
set H̆(sk;ϑk) representation (scattering, admittance or impedance).

2.1.1 Parameter-dependent basis functions

The variations induced by the external parameters ϑ ∈ Θ are embedded in the model
structure (2.2) through the parameter-dependent basis functions ξℓ(ϑ). These basis func-
tions must be selected carefully because upon this choice depends the fitting accuracy.
The literature offers several sets of functions, which are characterized by their own nu-
merical properties.
In the following we will consider only one external parameter (ρ = 1).
One important point for our further observations is the (commonly used) procedure of
improving the numerical conditioning of fitting algorithms by the normalization of the
polynomials argument within [−1, 1]. In particular, we compute the normalized param-
eter value ϑ̃ as:

ϑ̃ = −1 + 2 · ϑ− ϑmin

ϑmax − ϑmin

The problem conditioning will direct affect the parameter-dependent basis choice.
We now provide several examples of the available choices for the parameter-dependent
basis.

Monomials

The simplest function that could be used to capture the parameter evolution is defined
as the standard monomials basis functions [41]:

ξℓ(ϑ) = ϑℓ

where ℓ = 0, ..., ℓ̄ (as defined in (2.2)).
We provide a numerical example, realizing a third-order basis as showed in Fig.2.1.
This represents the most intuitive case for parameter-dependent basis definition, but
this sort of basis function usually leads to the construction of an ill-conditioned fitting
problem.

Chebychev Polynomials

Other functions that are widely used as parameter bases are the orthogonal polynomials
[1], [28]. From [7], we know that any orthogonal polynomial can be expressed with this
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Figure 2.1: Monomials parameter-dependent basis evolution for ℓ = 0,1,2,3.

recurrence relation:

ξℓ+1(ϑ) = (αℓϑ+ βℓ)ξℓ(ϑ) + δℓ−1ξℓ−1(ϑ)

In the following we will extensively use Chebychev polynomials, a special class of orthog-
onal polynomials, for which the expansion coefficients α, β, δ are equal to:

α0 = 1 , β0 = 0 , δ0 = 0,

αℓ = 2 , βℓ = 0 , δℓ = −1 ∀ℓ ≥ 1

It is well known that the basis functions defined as before present very favourable numer-
ical properties, which lead to a well-conditioned (and easy manageable) fitting problem
with a reasonable condition number. We denote the Chebychev polynomials of the first
kind basis functions ξℓ(ϑ) = Tℓ(ϑ) (see [3] and [15]) as:

Tℓ(ϑ) = cos[ℓ cos−1(ϑ)] , ϑ ∈ [−1, 1] , ℓ = 0, ..., ℓ̄

which is equivalent to the standard expression:

Tℓ(cos t) = cos(ℓt) , t ∈ [0, 2π] , ℓ = 0, ..., ℓ̄

An example of the fourth order Chebychev polynomials (first kind) is reported in Fig. 2.2.

Fourier Series

In order to guarantee a parameterization from a smooth function, when ϑ implies periodic
variations, with ϑ ∈ [0, 2π] (e.g. the external parameter is an angle), as discussed in [20],
we can define a parameter-dependent basis function as the standard Fourier basis in the
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Figure 2.2: Chebychev parameter-dependent basis evolution for ℓ = 0,1,2,3.

trigonometric form:

ξℓ(ϑ) =

⎧⎨⎩ 1, ℓ = 0
cos(⌈ℓ/2⌉ϑ), ℓ = 1, 3, 5, . . .
sin(⌈ℓ/2⌉ϑ), ℓ = 2, 4, 6, . . .

where the argument of ⌈·⌉ is rounded to the nearest larger integer. Figure 2.3 provides a
numerical example for the first five terms of the Fourier basis (ℓ = 0, ...,4), through the
parameter range ϑ ∈ [0◦, 360◦].

2.1.2 State Space and Descriptor Forms

We now present the state-space and descriptor realizations of a parameter-dependent LTI
system, starting from the pole-residue form of the model H(s;ϑ). As in the univariate
case, also for a multivariate model this representation is appropriate to describe the
properties of the model in algebraic form.

State Space Realizations

Following the procedure reported in Section 1.4.2, we can realize a parameter-dependent
macromodel equivalent state-space description. Recalling the pole-residue model form of
(1.5) and embedding the parameter dependency, the extension to the parametric case is
straightforward. In fact, considering now the model in (2.3), with ϕn(s) defined as the
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Figure 2.3: First four terms (ℓ = 0,1,2,3) of the Fourier parameter-dependent basis,
through the parameter range ϑ ∈ [0◦,360◦]. The polynomials arguments is normalized
within [−1,1] using the variable range.

partial-fraction basis with a prescribed set of poles qn, (see Section 1.2.1), we can write:

N(s, ϑ) = R0(ϑ) +

n̄∑
n=1

Rn(ϑ)

s− qn

D(s, ϑ) = r0(ϑ) +

n̄∑
n=1

rn(ϑ)

s− qn

which allows us to construct the two separate state-space realizations for N(s, ϑ) and
D(s, ϑ) as:

N(s, ϑ)↔
(

A0 B0

C1(ϑ) D1(ϑ)

)
(2.5)

D(s, ϑ)IP ↔
(

A0 B0

C2(ϑ) D2(ϑ)

)
where

A0 = blkdiag{A0r,A0c}
BT

0 =
[
BT

0r,B
T
0c

]
C1(ϑ) =

[
R1(ϑ) · · · Rn̄(ϑ)

]
C2(ϑ) =

[
IP r1(ϑ) · · · IP rn̄(ϑ)

]
D1(ϑ) = R0(ϑ)

D2(ϑ) = IP r0(ϑ).
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with

A0r =blkdiag{qnIP }n̄r

n=1

A0c =blkdiag

{[
q′nIP q′′nIP
−q′′nIP q′nIP

]}n̄c

n=1

B0r =
[
1, . . .,1

]T ⊗ IP
B0c =

[
2,0, . . .,2,0

]T ⊗ IP

Following the steps described in [36], we finally obtain a compact model state-space
realization cascading the expressions in (2.5) as:

H(s;ϑ) = N(s, ϑ)(D(s, ϑ)−1IP )↔
(

A0 −B0D
−1
2 (ϑ)C2(ϑ) B0D

−1
2 (ϑ)

C1(ϑ)−D1(ϑ)D
−1
2 (ϑ)C2(ϑ) D1(ϑ)D

−1
2 (ϑ)

)
We recall [36] for more details.

Descriptor Forms

Recalling to the descriptor representation (1.8) in Section 1.4.2, we now define its parameter-
dependent form [36] as:

E =

(
IN 0N,P

0P,N 0P,P

)
A(ϑ) =

(
A0 B0

C2(ϑ) D2(ϑ)

)
C(ϑ) =

(
C1(ϑ) D1(ϑ)

)
B =

(
0N,P

−IP

)
with 0J,K the null matrix of size J ×K.
The model expression of (2.2) is equivalent to:

H(s;ϑ) = C(ϑ)(sE−A(ϑ))−1B

as detailed in [36] and [18].

2.2 Parametric Model Extraction

Using the model shown in Equation (2.2), to find the residues Rn,ℓ, rn,ℓ we solve the
following problem: H(jωk;ϑ)− H̆k,m

2 ≈ 0 (2.6)

By construction, the problem in (2.6) is non-linear, thus we proceed with a linear re-
laxation that brings to an iterative formulation, known as Parameterized Sanathanan-
Koerner iteration (PSK), a parametric extension of the GSK iteration shown in Section
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1.3.1. For details see [10,36,40].
We set-up the PSK scheme as:

min

Nµ(j2πfk, ϑm)− Dµ(j2πfk, ϑm) H̆k,m

Dµ−1(j2πfk, ϑm)


2

F

µ = 1, 2, . . .

where ∥·∥F denotes the Frobenius norm.

The iterative process is initialized with D0(jωk, ϑm) = 1 and stops when the estimates of
model coefficients Rn,ℓ, rn,ℓ stabilize.
With respect to the non-parametric case (GSK), the PSK least-square problem is a com-
putationally more expensive task, due to the higher dimension of the regressor matrix.
To keep estimation times reasonable, there are advanced PSK formulation, known as Fast
Parameterized Sanathanan-Koerner, (FPSK), that alleviate this problem [5,19].
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Chapter 3

Non-Parameterized Passivity

Enforcement

3.1 Model Perturbation to Enforce Passivity

In this chapter the problem of enforcing the passivity of a lumped LTI system will be
addressed. With passivity enforcement we refer to the procedure through which a non-
passive model is forced to be passive by slightly perturbing its coefficients. This can be
achieved thanks to passivity conditions derived in Section 1.6 that, in addition to char-
acterizing the passivity of immittance and scattering models, are the starting point to
formulate proper constraints for passivity enforcement algorithms. Here we will briefly go
through some methods that allow, starting from passivity violations locations, to enforce
the model to be passive, still keeping its responses accurate as much as possible.
Indicating the non-passive model transfer matrix as H(s) and the passive one as Ĥ(s),

we define the difference ∆H(s) = Ĥ(s) −H(s). Our aim is to perturb the non-passive

model transfer matrix H(s) toward Ĥ(s). To get the proper coefficients variation, sev-
eral different frameworks has been developed. In fact, it is possible to directly perturb,
under suitable constraints, the model residues while minimizing the error with respect to
data but, studying the problem from other standpoints, the realization matrices or even
the Hamiltonian matrix associated with the system may be used to find proper model
perturbations. In this work we focus just on the model residues-perturbation method for
local passivity enforcement. For more details about this and the other schemes used in
enforcing macro-model passivity, see [21].

We recall here the non-parameterized rational model structure:

H(s) =
N(s)

D(s)
=

∑n̄
n=0Rn ϕn(s)∑n̄
n=0 rn ϕn(s)

(3.1)

Potentially both numerator and denominator residues can be perturbed. However, a
perturbation of denominator coefficients rn, may have detrimental effects on the model
in terms of stability and frequency response. For this reason, the only degrees of freedom
we will exploit are the numerator residuesRn. This consideration leads to define explicitly
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the difference transfer matrix ∆H(s) as:

∆H(s) =

∑n̄
n=0∆Rn ϕn(s)∑n̄
n=0 rn ϕn(s)

where ∆Rn corresponds to the perturbation on the n-th numerator residue. Once the
perturbations ∆Rn for n = 0, . . . , n̄ are known, the perturbed model Ĥ(s) can be con-
structed as:

Ĥ(s) =
N̂(s)

D(s)
=

∑n̄
n=0(Rn +∆Rn) ϕn(s)∑n̄

n=0 rn ϕn(s)

In the next sections we address the problem of determining these perturbations that must
ensure the final model Ĥ(s) to be passive and accurate.

3.2 A Local Enforcement Approach

3.2.1 Asymptotic passivity enforcement

Before discussing in details how to find residues perturbations that guarantee passivity
and accuracy for finite frequencies, some remarks are in order about the asymptotic
passivity enforcement.
The model we must consider in this case is simpler with respect to the more general one
in Equation (3.1) because all the summation terms vanish when ω → ∞, except for R0

and r0 since related to the unitary partial fraction basis term ϕ0(s) = 1.
We define H(∞) as:

H(∞) =
R0

r0
, H(∞) ∈ RP,P

To ensure asymptotic passivity, recalling Theorems 1.2 and 1.5, it must hold that:

H(∞) +HH(∞) = H(∞) +HT(∞) ≥ 0 (3.2)

for immittance systems, and:

I−HH(∞)H(∞) = I−HT(∞)H(∞) ≥ 0 (3.3)

for scattering systems.

In the following, a simple yet effective asymptotic enforcement technique is detailed for
immittance and scattering systems.

Immittance systems asymptotic perturbation

Condition in (3.2) can be re-written as:

H(∞) +HT(∞)

2
= H

′
(∞) ≥ 0
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where H
′
(∞) is the symmetric part of H(∞). This result states that any perturbation

on the skew-symmetric part of H(∞) is ineffective in terms of asymptotic passivity. For
this reason, from now on, only the symmetric part will be considered.
Any real symmetric matrix admits a spectral decomposition, thus H

′
(∞) can be written

as:
H

′
(∞) = VΛVT

where Λ = diag(λ1, . . . , λP ) contains in its main diagonal the eigenvalues of H
′
(∞) and

V contains the eigenvectors of H
′
(∞) in its columns.

The model results to be non-asymptotically passive if there is at least one eigenvalue
λi < 0. Assuming that the eigenvalues inΛ are sorted in descending order (λ1 ≥ λ2, . . . ,≥
λP ), asymptotic-passivity can be enforced simply by replacing negative eigenvalues with
a positive real constant ϵ while keeping fixed the other ones.
If i is the index for the last non-negative eigenvalue, we can formulate this passivity
enforcement method as:

λ̂j =

{
λj , j = 1, . . . , i

ϵ, j = i+ 1, . . . , P.

Once the eigenvalues λ̂i are known, the perturbed matrix Ĥ
′
(∞) is reconstructed as:

Ĥ
′
(∞) = VΛ̂VT

where Λ̂ = diag(λ̂1, . . . , λ̂P ).

Once the perturbed residue R̂0 is known, an asymptotically passive model can be de-
rived just by replacing R0 with R̂0.
This perturbation scheme is optimal, since its energy ∥∆H(∞)∥22 coincides with the min-
imum amount necessary to ”lift” the negative eigenvalues up to the prescribed value.

Scattering systems asymptotic perturbation

Condition in (3.3) can be re-stated in terms of singular values of H(∞) as:

I−HT(∞)H(∞) ≥ 0⇔ max
i=1,...,P

σi(H(∞)) ≤ 1

Similarly to what has been done for immittance systems, asymptotic passivity enforce-
ment is fulfilled by singular values truncation, where non-passive singular values (σi > 1)
are replaced with passive ones (σi ≤ 1).
Since R(∞) is a real valued matrix, its singular value decomposition is:

H(∞) = UΣVT

where Σ = diag(σ1, . . . , σP ) and U,V collect, respectively, left and right singular vectors,
it is easy to understand that it is sufficient to modify the diagonal elements on Σ.
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By construction, the singular values in Σ are sorted in descending order, thus the model is
non-asymptotically passive if there exist i ∈ {1, . . . , P} such that σj > 1 for j ∈ {1, . . . , i}.

To enforce passivity is then sufficient to define a new set of truncated singular values
as:

σ̂j =

{
1− ϵ, j = 1, . . . , i

σj , j = i+ 1, . . . , P.

with 0 < ϵ < 1, such that σ̂1 ≤ 1.

The perturbed matrix Ĥ(∞) is then re-constructed starting from the new passive singular
values as

Ĥ(∞) = UΣ̂VT

where Σ̂ = diag(σ̂1, . . . , σ̂P ).
The asymptotically passive model is now obtained by replacing the numerator residue
R0 with the perturbed one R̂0.
Also this perturbation is optimal, since it is the smallest one allowing to bring the largest
singular value σ1 below the prescribed threshold 1− ϵ.

This is not the unique method that allows to enforce the asymptotic model passivity.
In fact, through a local approach, it is possible to formulate constraints at infinite fre-
quency to be used inside an optimization problem. This last method is the one we use in
the following.
In the next section we are going to detail how to derive local passivity constraints and
how to use them during an optimization problem to enforce the model passivity.

3.2.2 Local passivity constraints

In Section 3.1, the problem of enforcing the passivity of lumped LTI models has been
introduced. We stated that our aim is to enforce the passivity while minimizing the devi-
ation of the model response from data. This is equivalent to minimizing the perturbation
energy induced by ∆H(s) while imposing passivity with suitable constraints. The passiv-
ity enforcement procedure can be thus stated in terms of an optimization problem [21]:

min ∥∆H(s)∥2 (3.4)

s.t. H(s) + ∆H(s) is passive.

where the cost-function is the perturbation energy, considered as some norm of the trans-
fer matrix perturbation.
The cost function ∥∆H(s)∥2 can be cast in a form suitable for a quadratic convex op-
timization problem, where the decision variables are explicit. To this end, considering
s = jωk, it is possible to rewrite the cost-function ∥∆H∥2 as E2, where:

E2 =
P∑
i,j

E2i,j , with E2i,j =
k̄∑

k=1

|∆Hi,j(jωk)|2
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where k is a frequency sample index and (i, j) indicates the i-th, j-th entry of the matrix
∆H(jωk).

We collect the decision variables ∆Rn for n = 1, . . . , n̄, in a vector x, structured as:

xT = [xT
1,1, . . . ,x

T
P,P ]

with
xT
i,j = [(∆R0)i,j , . . . , (∆Rn̄)i,j ]

where (∆Rn)i,j denotes the (i-th, j-th) entry of the matrix ∆Rn.

Defining βk;n as:

βk;n =
ϕn(jωk)

D(jωk)

and collecting all the terms, one for each basis function, in a vector bk:

bk = [βk;0, . . . , βk;n̄]
T

it holds that:
E2i,j = ∥Bi,jxi,j∥22

where, Bi,j = [bT
1 , . . . ,b

T
k̄
]T.

As proposed in [18], it is possible to further modify the cost function computing the
so called ”economy size” QR factorization of the matrix Bi,j . In fact Bi,j can be decom-
posed as:

Bi,j = Qi,jΨi,j , QT
i,jQi,j = I

Since Qi,j is orthonormal, and recalling that an orthonormal transformation preserves
the 2-norm, it holds that:

∥Bi,jxi,j∥22 = ∥Qi,jΨi,jxi,j∥22 = ∥Ψi,jxi,j∥22

Applying this transformation allows to have a numerically more stable solution while
reducing computational times.
Finally, the cost-function can be written as:

E2 = ∥Ψx∥22 ,
with Ψ = blkdiag{Ψi,j}

to consider all the possible input/output ports combinations.
It is important to notice that, being the decision variables ∆Rn explicit in ∥Ψx∥22, the
problem in (3.4) has a convex cost-function. If passivity constraints can be written as
convex functions of ∆Rn, the optimization problem in (3.4) reduces to be convex. This
means that it always admits an optimal solution and enables the use of well-established
solving techniques, such as gradient-descent or interior point methods.

For these reasons, in the next paragraph we will focus on deriving a set of convex passivity
constraints for immittance and scattering systems.
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Immittance local constraints

In order to derive a set of local passivity constraints for immittance systems, we re-
call that, to be passive, H(s) + HH(s) must be non-negative definite. Supposing that,
for sk = jωk, the system is not passive, there is for sure at least one eigenvalue of
H(sk)+HH(sk) smaller than zero. To enforce the system to be passive, it is necessary to
”lift” all negative eigenvalues above the zero threshold perturbing the model numerator
coefficients through ∆H(s).
Unfortunately there is not an explicit relation between the model residues variation and
the eigenvalues displacement. However, it is possible to explicitly compute a first order
approximation of the eigenvalues variation induced by ∆H(s).
To this end, we can define ∆H(sk) = ∆Hk as:

∆Hk =

∑n̄
n=0∆Rnϕn(sk)

D(sk)
, with D(sk) =

n̄∑
n=0

rnϕn(sk)

and denote as λk a simple eigenvalue of H(sk) +HH(sk).

Applying a perturbation ∆Hk to H(sk), λk will be correspondingly perturbed, at first

order, toward λ̂k, as shown in Equation (3.5):

λ̂k = λk + vH
k (∆HH

k +∆Hk)vk (3.5)

where vk is the right eigenvector of HH(sk) +H(sk), related to λk.
In the following, just negative eigenvalues will be considered, to avoid non-active con-
straints in the final optimization problem.
To derive proper constraints, the decision variables (the numerator coefficients of ∆Hk),
must be de-embedded from (3.5). To this end it is easy to prove that (3.5) can be
re-written as:

λ̂k = λk + 2 · Re
{
vH
k∆Hkvk

}
(3.6)

Defining now:

αk;n =
ϕn(sk)

D(sk)

it is possible to stack all these terms in a vector:

ak = [αk,0, . . . , αk,n̄]
T

enabling writing (3.6) as:

λ̂k = λk + 2 · Re
{
(vH

k ⊗ vT
k )⊗ aTk

}
x (3.7)

The first order perturbed eigenvalue λ̂k must be set greater than zero to guarantee pas-
sivity:

λk + 2 · Re
{
(vH

k ⊗ vT
k )⊗ aTk

}
x ≥ 0
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This relation can be re-arranged as a linear inequality constraint:

pT
k · x ≤ −λk (3.8)

with pT
k = −2 · Re

{
(vH

k ⊗ vT
k )⊗ ak

}
.

Collecting now all the c̄ passivity violation locations (frequencies at with the largest
violation is attained) in a structure W, it is possible to define a convex polytope, defined
by the superposition of linear inequality constraints, that approximates the true feasibil-
ity set corresponding to HH(sk) +H(sk) ≥ 0.
Summarizing, the optimization problem in Equation (3.4) can be particularized as follows:

min
x
∥Ψx∥22 (3.9)

s.t. P · x ≤ −λ

with P = [pT
1 , . . . ,p

T
c̄ ]

T and λ = [λ1, . . . , λc̄]
T.

Scattering local constraints

Local passivity constraints for scattering systems can be formulated both starting from
the non-negative definiteness of I−HH(s)H(s) or from the singular values decomposition
of H(s). Here we follow this second approach.
Denoting as Hk = H(jωk) the model transfer matrix evaluated in s = jωk, it admits the
following singular values decomposition:

Hk = UkΣkV
H
k

where Uk,Vk collects, respectively, left and right singular vectors and Σk has in its main
diagonal the singular values of Hk, sorted in descending order.

Recalling the results in Theorem 1.7, a scattering system is passive if, for any frequency,
all the singular values are below the unitary threshold. It follows that, to enforce the
passivity of a scattering system all the non passive singular values must be enforced to
be less than 1 by perturbing numerator residues.
Also in this case, there are no analytic relations linking singular values perturbations
induced by a variation on model coefficients. On the other hand, it is possible again to
write explicitly the first order approximation of singular values displacement induced by
∆Hk.
Denoting as σk a singular value of Hk and perturbing the transfer matrix with ∆Hk, σk

will be correspondingly perturbed, at first order, toward σ̂k, as Equation (3.10) shows:

σ̂k = σk +Re
{
uH
k∆Hkvk

}
(3.10)
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where uk,vk are respectively left and right singular vectors of ∆Hk related to σk.

Decision variables x are embedded in Equations (3.10). Following the same approach
used in the immittance case, it is still possible to de-embed model residues from ∆Hk.
To this end, keeping the same ordering as in Equation (3.7), it is possible to write Equa-
tion (3.10) as:

σ̂k = σk +Re
{
(vH

k ⊗ uT
k )⊗ aTk

}
· x (3.11)

where it still holds that ak =
[
ϕ0(sk)
D(sk)

, . . . , ϕn̄(sk)
D(sk)

]T
.

Imposing scattering systems passivity constraint (σ̂k ≤ 1) in Equation (3.11), it turns
out that:

σk +Re
{
(vH

k ⊗ uT
k )⊗ aTk

}
· x ≤ 1

Re-arranging the terms, we get to the linear inequality constraint:

fTk · x ≤ 1− σk (3.12)

with fTk = Re
{
(vH

k ⊗ uT
k )⊗ aTk

}
.

Collecting now all the c̄ passivity violation locations (frequencies at which the largest vio-
lation is attained) in a structureW, the true feasibility set, defined by I−HH(s)H(s) ≥ 0,
can be approximated through a set of linear inequality constraints by a convex polytope.
The general optimization problem in Equation (3.4), can be particularized for scattering
systems as:

min
x
∥Ψx∥22 (3.13)

s.t. F · x ≤ s

with F = [fT1 , . . . , f
T
c̄ ]

T and s = [1− σ1, . . . ,1− σc̄]
T.

3.3 Passivity Assessment

In this section, we address the problem of how to properly find and collect the location
of passivity locations. The main issue in getting local passivity constraints, is where to
search for passivity violations along the frequency dimension, without losing any critical
point.
Almost every frequency-sampling based technique is going to fail. In fact, recalling Theo-
rems 1.2 and 1.5, the entire frequency axis ω ∈ [0,∞] must be checked, and potentially an
infinite number of sampling points have to be processed. A restriction of this set to the
system bandwidth is not allowed because, when the macro-model is used in simulation,
the embedded simulation engine may excite frequencies outside the system bandwidth
that, if not passive, may lead to a general failure due to unstable solutions.
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The Hamiltonian-driven method is a purely algebraic passivity assessment scheme that
allows to accurately pinpoint violations along the frequency axis thus avoiding brute-force
sampling methods. Hamiltonian matrices related to system realizations, recalling what
already stated in Section 1.6, can be used to algebraically find frequency values at which
passivity violations occurs. The main result of Section 1.6 is that purely imaginary eigen-
values of a Hamiltonian matrix (or pencil), denoted as λim, associated with the model,
equal exactly the complex frequencies at which passivity violations occur.
Imaginary Hamiltonian eigenvalues induce then a partitioning on the frequency axis in
passive and non-passive bands. To decide whether a band is passive or not, it is sufficient
to check if there exist negative eigenvalues of H(jω)+HH(jω), if in immittance represen-
tation, or singular values of H(jω) that exceed one, if in scattering representation.
Focusing now our interest just in non-passive bands, we need to find the largest passivity
violation (for each eigenvalue/singular value) inside this band and formulate proper local
constraints. To this end, each non-passive band is finely sampled looking for the min-
imum eigenvalue/maximum singular value, in order to reduce the computational effort
during the passivity enforcement.
This procedure to find non-passive areas is used inside a passivity verification algorithm
that, storing violation locations, is the core of passivity enforcement algorithms.
A sketch of the algorithm used to localize passivity violations is shown in Algorithm 3.1.

Algorithm 3.1 Passivity test algorithm

Require: Non-passive model
1: Define violation structure W as empty
2: Build Hamiltonian matrix M or pencil (M,K) as in Section 1.6
3: Solve the corresponding eigen-problem to get Hamiltonian imaginary eigenvalues λim

4: if λim /= Ø then
5: Partition the frequency axis in card(λim) + 1 sub-bands
6: Define µ non-passive sub-bands
7: for b = 1, . . . , µ do
8: Sample the b-th band to find the largest violation for each eigenvalue/singular

value
9: Stack the new violation in W

10: end for
11: end if
12: return Passivity violations W

3.4 Passivity Enforcement

In Section 3.2 we derived a general scheme to impose passivity on a non-passive model
through a convex optimization problem, subject to linear inequality constraints for both
immittance and scattering representations. In Section 3.3 we discussed an algebraic
method to find where, along the frequency axis, formulate these constraints.
Now we are ready to properly state a passivity enforcement scheme (for further details
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see [21]).

Before proceeding in the algorithm definition, some remarks about our theoretical frame-
work are in order. The main assumption underlying the formulation of passivity con-
straints in Section 3.2.2, is that the eigenvalues/singular values perturbations induced
by model coefficients variations are linear. However, approximating the true feasibility
set with a polytope may lead to inaccuracies and, even if the linearized problems admits
feasible solutions, these in general do not coincide with the ones of (3.4).
On the other hand, even if these linearized constraints differ from the true feasibility set,
it has been noted that they lead to a reduction of violation areas when adopted in model
passivity enforcement. Thus, even though the solutions of optimization problems (3.9)
and (3.13) do not return the passive model residues, this result enables the use of pas-
sivity enforcement iterative algorithms where, as the number of iterations grows, model
passivity is enforced uniformly throughout ω ∈ R.
This approach is now a common practice in solving passivity enforcement problems, since
the use of full non-linear constraints requires an LMI optimization (Lemma 1.1 and 1.2),
whose computational cost is not manageable when the number of ports or the model
dynamical order increases [21].

The proposed iterative passivity enforcement algorithm relies on Algorithm 3.1 to get
passivity violation locations and solves iteratively convex optimization problems in (3.9)
and (3.13) to reduce, iteration after iteration, passivity violations, until a passive model
is obtained. This passivity enforcement scheme is reported in Algorithm 3.2.

Algorithm 3.2 Passivity enforcement algorithm

Require: Model coefficients Rn, rn for n = 1, . . . , n̄
1: Get passivity violations structure W computed as in Algorithm 3.1
2: while W not empty do
3: Build constraints as in (3.8) or (3.12)
4: Build cost function regressor Ψ
5: Get residues perturbations ∆Rn solving convex optimization problem as in (3.9)

or (3.13)
6: Update model coefficients as Rn ← Rn +∆Rn

7: Get passivity violations vector W of the perturbed model with algorithm 3.1
8: end while
9: return Passive model coefficients

While the linear approximation on constraints allows to solve in reasonable time even
high-order problems, it has a major counter-effect: there is no guarantee that the algo-
rithm converges to a passive model.
In fact, it is possible that it enters in a ”cycle” of period γ where, after γ passivity en-
forcement iterations, the perturbed model is identical to the first one, never converging
to a passive model. This undesired phenomenon is strictly related to the constraint lin-
earization. Fortunately, robust formulations that are guaranteed to converge are known.
One of these relies on a ”constraint prediction” scheme, that is able to avoid oscillating
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behaviours. The main idea is to stack in a single constraints vector the ones obtained
from a given number of successive passivity enforcement iterations δ, in such a way that
all the intermediate constraints are used in a final optimization problem. Geometrically,
stacking δ constraint sets all together means that we are locally reducing the error with
which the linear constraints polytope approximates the true (non-linear) feasibility set,
thus reducing the error induced by the constraints linear approximation.
In details, denoting as H(s) a non passive model at the k-th passivity enforcement iter-
ation, we collect, through an inner enforcement loop, additional constraints, to be used
in an outer optimization problem. In this inner loop the enforcement Algorithm 3.2,
starting from H(s), works on intermediate models H(i)(s), where i denotes the inner loop
iteration index, that are used to collect sets of violations locationsWi related to a number
δ of successive enforcement iterations. The main difference of this robust implementation
with respect to the previous one is that, instead of deleting information about constraints
at previous iterations, it keeps them in memory.
Once a suitable set of δ successive constraints set has been stored, a final passivity en-
forcement is performed on the initial model H(s), under the extended set of constraints
defined by the violations Wext = [WT

1 , . . . ,WT
δ ]

T. The resulting perturbed model, if still
not passive, will be used in the next robust passivity enforcement iteration.
It may happen that, if no more oscillating solutions arise, the inner enforcement loop
converges to a passive model. In this case the inner loop returns a number 0 < δ∗ < δ of
stacked set of constraints, that are directly cast in the final optimization problem.

Indicating respectively with Rn, R
(i)
n the n-th numerator residue of H(s), H(i)(s) and

with ∆Rn, ∆R
(i)
n the outer and inner loop perturbation coefficients, this passivity en-

forcement robust implementation is described in Algorithm 3.3

Numerical results show that in most of the cases the non-robust implementation is enough
to guarantee the algorithm convergence to a passive model, keeping the responses accu-
rate. However, in all the cases where oscillatory solutions arise, the robust implementation
might be used. The computational effort in this case, however, is possibly higher.
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Algorithm 3.3 Robust passivity enforcement algorithm

Require: Non-passive model (H(s)) coefficients Rn for n = 1, . . . , n̄
Require: Number of prediction iterations δ
1: Get current model passivity violations vector W as in Algorithm 3.1
2: while W /= Ø do
3: Set H(0)(s) = H(s) and W1 =W
4: Set i = 1 and Wext = Ø
5: while i ≤ δ do

6: Get perturbation coefficients ∆R
(i)
n as in Algorithm 3.2, given Wi

7: Update H(i)(s) coefficients as R
(i+1)
n ← R

(i)
n + ∆R

(i)
n to get the perturbed

intermediate model H(i+1)(s)
8: Get H(i+1)(s) passivity violations Wi+1 as in Algorithm 3.1
9: if Wi+1 /= Ø then

10: Stack passivity violations vector Wi+1 in Wext = [WT
ext, WT

i+1]
T

11: else
12: break
13: end if
14: i← i+ 1
15: end while
16: Get perturbation coefficients ∆Rn as in Algorithm 3.2 with the extended set of

passivity violations Wext

17: Update H(s) coefficients as Rn ← Rn +∆Rn

18: Get passivity violations W of the perturbed model
19: end while
20: return Passive model coefficients
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Chapter 4

Passivity Enforcement Schemes

for Mono-variate Macromodels

The extraction of passive macro-models becomes of major importance when parametric
simulations are required since, with the help of reduced-order models, computational
times can be reduced of several orders of magnitude with respect to classical techniques
that, often, involve the use of full-wave electromagnetic solvers. As shown in Chapter
2, the well-established Parametric Sanathanan-Koerner iteration (PSK) ( [10,33,35,37])
allows to extract parametric macro-models from sets tabulated data. However, as for
the non-parameterized case, this estimation algorithm does not embed any passivity
constraint, so that the synthesized models are not guaranteed passive neither along the
frequency axis nor along the parameters ones. This leads to the necessity of parametric
passivity enforcement schemes that are able to enforce passivity uniformly along both the
frequency and parameters dimensions. In this Chapter we will discuss a known passivity
verification and enforcement algorithm for parameterized macro-models, in view of the
further developments that will be presented in Chapters 5 and 6.

4.1 Passivity on a Bi-Dimensional Space

As suggested in the introductory part of this Chapter, dealing with parametric macro-
models, whose structure is recalled in Equation (4.1):

H(s;ϑ) =
N(s, ϑ)

D(s, ϑ)
=

∑n̄
n=0

∑ℓ̄
ℓ=1Rn,ℓ ξℓ(ϑ)ϕn(s)∑n̄

n=0

∑ℓ̄
ℓ=1 rn,ℓ ξℓ(ϑ)ϕn(s)

(4.1)

implies an extension to a multi-dimensional space of the passivity verification method
detailed in Chapter 3. In fact, if in the non-parametric case the passivity must be ver-
ified just along one dimension, for parametric models we must check for violations in a
(ρ+ 1)-dimensional space, with ρ the number of external parameters.
In this Chapter we consider just the case in which ρ = 1, thus the space in which we
search for violations is a subset of R2.
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As we have extensively shown in Sections 3.2–3.4, the Hamiltonian-driven scheme is
the main tool that is used to spot passivity violations along the frequency axis. In prin-
ciple, to be sure that the model is uniformly passive for any feasible parameter value,
it would be necessary to perform non-parameterized Hamiltonian tests for a large set
of parameter values. Unfortunately, eigenvalues extraction, that is the main operation
in the Hamiltonian verification method, is a computationally expensive task, especially
when the matrix dimension increases, as in the case of parametric macro-models. Thus,
a parametric passivity assessment method that pursues this line, apart from being useless
in some cases, would lead to un-manageable computational times. For these reasons it
has been chosen to develop an adaptive algorithm that, according to some rules that will
be detailed later on, samples the parameter space just where it is required, without the
intervention of the user.

In the next section we will introduce some aspects of parameterized Hamiltonian eigen-
values, that will be extensively used throughout this work.

4.2 Parametrized Hamiltonian Eigenvalues

The Hamiltonian matrix associated with the system contains the model realization ma-
trices, that are parameter dependent as shown in Section 2.1.2. This means that a pa-
rameter variation induces a variation on the Hamiltonian matrix coefficients, thus on its
eigenvalues and eigenvectors. Figure 4.1 shows Hamiltonian eigenvalues for a parametric
macro-model as a function of the parameter ϑ.
Recalling the results in Theorems 1.4 and 1.7 we know that, in order to make a precise
passivity characterization for a parametric model, our aim is to find all the parameter
values for which the Hamiltonian matrix has, at least, a pair of purely imaginary eigen-
values. Unfortunately, the relation that links these eigenvalues with the parameter is too
complex and can not be used to predict if, for a given parameter value, the system is
passive or not.
However, even though an algebraic parametric passivity verification scheme is unavail-
able, we can exploit the Hamiltonian eigenvalues implicit parameterization to adaptively
search along the parameter axis to detect where violation areas are likely to be found.
To this end, we should sample the parameter space just in these areas where Hamiltonian
eigenvalues trajectories are close to the imaginary axis. In these cases, in fact, under a
small parameter variation some eigenvalues may become purely imaginary, leading to a
passivity violation.
In the next section we will detail how Hamiltonian eigenvalues trajectories can be used
to build a parametric passivity assessment algorithm.
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Figure 4.1: Parameterized Hamiltonian eigenvalues

4.3 Parametrized Adaptive Passivity Verification
Scheme

4.3.1 Adaptive Sampling Strategy

In this section we present a parametric passivity verification and enforcement method,
presented originally in [18]. Previously, we focused our attention on the implicit parame-
terization of Hamiltonian eigenvalues. Moreover, we stated that, to detect violation areas,
the main metric we use is the distance of these eigenvalues with respect to the imaginary
axis. In order to measure this distance, we introduce a scalar function of the parameter
Ψ(ϑ), defined as:

Ψ(ϑ) = min
λ(ϑ)∈Λ(ϑ)

|Re {λ(ϑ)}|
ρ(ϑ)

(4.2)

where Λ(ϑ) denotes the Hamiltonian eigen-spectrum evaluated in ϑ and ρ(ϑ) is the spec-
tral radius, defined as:

ρ(ϑ) = max
λ(ϑ)∈Λ(ϑ)

|λ(ϑ)|

This function, denoted as ”spectral distance”, returns the real part absolute value of the
closest eigenvalue with respect to the imaginary axis and provides a way to check whether
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a parameter value is critical or not. In fact, we detect a passivity violation when there
are purely imaginary Hamiltonian eigenvalues that, by definition, make Ψ(ϑ) to vanish
throughout the violation area. Thus, in this framework, the main idea to find violations is
to adaptively reconstruct Ψ(ϑ) from a limited set of data, retrieved from an initial coarse
linear sampling, to detect where it is likely to vanish. In details, the initial sampling
partitions the parameter space in µ̄ sub-intervals whose edges are:

θµ = ϑmin +
µ

µ̄
(ϑmax − ϑmin), µ = 1, ..., µ̄

Knowing the values of Ψ(ϑ) at these points enables to check if other samples are necessary
to better approximate it. If the function is sufficiently smooth, no additional samples are
required while, if Ψ(ϑ) is particularly ill-behaved, we need to add samples.
A fundamental characteristic of this function is that, in general, it is not uniformly differ-
entiable throughout the parameter space. In fact, recalling its definition, if one eigenvalue
is moving away from the imaginary axis and, meanwhile, another one is moving in op-
posite direction, there will be a non-differentiability point when the real parts of the two
eigenvalues coincide. Moreover, the function is not differentiable when violations occur.
The non-differentiability plays its role in the process of reconstructing Ψ(ϑ). In fact, to
properly approximate an unknown function from a set of points, we must be aware that
we can not use approximating functions that are smoother than the one we are trying
to approximate. Being Ψ(ϑ) ∈ C0, this consideration leads us to use at most piecewise
approximating functions.

As mentioned before, a subinterval defined by its edges {θµ, θµ+1} needs additional sam-
ples (from now on we denote this process as ”refining”) if Ψ(ϑ) does not satisfy some
smoothness condition for ϑ ∈ {θµ, θµ+1}. In order to measure the smoothness of Ψ(ϑ)
in this sub-interval, recalling that just linear functions are allowed, we use as metric a
”linear interpolation error”.
A linear interpolation error approach means that, to decide if the sub-interval must be
refined, we measure the distance between the ”true” Ψ(ϑ) and the linear approximating
line, for a given parameter point θ∗ ∈ [θµ, θµ+1]. Assuming that the maximum deviation
between the two is attained for:

θ∗ = θµ+ 1

2
=

1

2
(θµ + θµ+1)

the linear interpolation error, denoted as ϵµ+ 1

2
, reads:

ϵµ+ 1

2
=

⏐⏐⏐⏐Ψ(θµ+ 1

2
)− 1

2
[Ψ(θµ) + Ψ(θµ+1)]

⏐⏐⏐⏐ (4.3)

If ϵµ+ 1

2
> γ, with γ a given threshold, then the function can not be approximated with

sufficient precision (dependent on the value of γ) and we need additional samples inside
{θµ, θµ+1}. Figure 4.2 shows graphically this approach.

In addition to that, in order to better characterize violation areas, some other information
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Figure 4.2: Linear interpolation error representation

about the Hamiltonian spectrum can be exploited for setting up the adaptive strategy.
Thus, denoting as ν(ϑ) the number of purely imaginary Hamiltonian eigenvalues for a
fixed parameter ϑ, we can identify four sub-cases that may occur:

1. If Ψ(θµ) = Ψ(θµ+1) = 0 and ν(θµ) = ν(θµ+1) we can infer that we spotted a
uniformly non passive area, so no refinement to the interval [θµ, θµ+1] is necessary.

2. If Ψ(θµ) = Ψ(θµ+1) = 0 and ν(θµ) /= ν(θµ+1) we spotted a non passive area in which
the number of non passive bands changes from θµ to θµ+1. Thus a refinement must
be performed to obtain a precise characterization.

3. If Ψ(θµ) > 0 and Ψ(θµ+1) = 0 or, conversely, Ψ(θµ) = 0 and Ψ(θµ+1) > 0, a non
passive region is respectively opening and closing, then it is necessary to refine in
order to spot the exact point in which the violation occurs.

4. If Ψ(θµ) > 0 and Ψ(θµ+1) > 0 we can be both in a uniformly passive region, or a non
passive region may open and close inside our sampling interval. Thus, in order to
discriminate between these two cases, we check if Ψ(ϑ) present critical behaviours
inside the subinterval through the linear interpolation error, defined in (4.3). If this
error exceeds a threshold γ the subinterval must be refined.

In order to finely reconstruct Ψ(ϑ), this refinement process is cast in a iterative loop
that, at each iteration, samples, if required, additional points θµ+ 1

2
and adds them to the

previous subset. This process stops when Ψ(ϑ) is approximated satisfactorily by the set
of sampled points or a maximum number of iterations M is reached.

4.3.2 Adaptive Sampling Algorithm

In the previous section we detailed how to adaptively sample the parameter space to find
passivity violations. In the following, we will discuss in details how these violations are
characterized in a 2-dimensional space. In fact, in contrast with the non-parametric case,
in order to formulate a single local constraint, we must identify a tuple of frequency-
parameter values corresponding to the largest violation. To this end, we know that,
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for any feasible parameter value θµ, Hamiltonian imaginary eigenvalues ωi(θµ) induce a
partition in the frequency axis in ν(θµ) + 1 sub-bands:

Ωi(θµ) = {ωi(θµ), ωi+1(θµ)}, i = 0, . . . , ν(θµ)

that can be locally passive or not passive. In order to include the DC point and to con-
sider asymptotic passivity violations we set ω0 = 0, ων(θµ)+1 = +∞.
The worst case passivity violation, attained for ϑ = θµ, in the i-th non-passive band,
is identified by the minimum eigenvalue λi,µ of H(jω̄i; θµ) + HH(jω̄i; θµ) for immittance
systems or by the maximum singular value σi,µ of H(jω̄i; θµ) for scattering systems. In
the following we will denote this location in the frequency-parameter space as (ω̄i, θµ).
At the end of the passivity check, these violations are stored in a data-structure W as
triplets (ω̄i, θµ, λi,µ) for immittance systems or (ωi, θµ, σi,µ) for scattering ones.

A final remark is in order about the number of initial samples. In fact, even if the
initial coarse sampling is followed by, at most, M refined passes, the number of initial
point is critical: if is too low we may lose some important violation areas while, if it is
too high, it may take an excessively long time to be accomplished. The amount of initial
samples is directly related with the model variation induced by the parameter. Here
we assume, as detailed in Section 2.1.1, that the parameter basis functions are smooth
throughout the parameter space. Thus, due to this property we can use the heuristic rule
in (4.4) to find the number of initial sub-intervals.

µ̄0 = κℓ̄, with κ > 1 (4.4)

The complete adaptive refinement strategy is described in Algorithm 4.4

4.3.3 Numerical Results

In the following we present some numerical results. We will mainly focus on the ability
of the algorithm to adaptively reconstruct Ψ(ϑ) by comparing its outcomes with a brute-
force sampling on the parameter space. Figures 4.3a and 4.3b make this comparison on
a real test-case (Test Case 2–a, see Appendix A).
We can see from Figure 4.3b that, even with a smaller number of points, the adaptive
strategy is able to approximate Ψ(ϑ) as satisfactorily as the brute-force sampling does,
whose result is shown in Figure 4.3a. Moreover, we see that the adaptive algorithm
refines, as detailed above, just in critical areas, highlighted in red in Figure 4.3b. This
allows us to be sure, at a level given by the threshold γ, that no other violations are
present in the parameter space, leading to a considerable time saving. In fact, the brute-
force sampling needs 23.6 s to be accomplished (103 points), while the adaptive one just
6.6 s being, more or less, 4 times faster but still reliable.

4.4 Parametric Passivity Enforcement

Once the parametric passivity check is performed, if the model is not passive, we must
enforce its passivity through a parametric passivity enforcement [18]. The procedure we
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Algorithm 4.4 Parametric passivity verification

Require: Parameter basis order ℓ̄
Require: Model state-space/descriptor realization
Require: Control parameters M , κ
1: Define the number of initial sub-intervals µ0 as in (4.4)
2: Sample initial parameter points and store them in S0 = {θµ, µ = 0, . . . , µ̄0}
3: Set m = 0
4: while Sm is not empty or m ≤M do
5: for µ = 1, . . . , µ̄m do
6: Build Hamiltonian matrixM(θµ) or the Skew Hamiltonian/Hamiltonian pencil

(M(θµ),K) as detailed in Section 1.6
7: Extract Hamiltonian imaginary eigenvalues ωi(θµ), with i = 1, . . . , ν(θµ)
8: Extract local worst case violations (ω̄i, θµ, σi,µ) or (ω̄i, θµ, λi,µ) for each non-

passive band and store them in W
9: end for

10: m← m+ 1
11: Determine new samples Sm according to the adaptive strategy
12: Redefine the number of parameter space sub-intervals µ̄m to be checked at next

iteration
13: end while
14: return Passivity violations locations W
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Figure 4.3: Brute force/Adaptive sampling strategies comparison (Test Case 2–a)

pursue to enforce the model passivity is based again on numerator residues perturbations,
as in the non-parameterized case. Defining with Ĥ(s;ϑ) the passive model and with
H(s;ϑ) the not passive one, we want to find the numerator residues of a transfer matrix
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∆H(s;ϑ) that allow to bring H(s;ϑ) toward Ĥ(s;ϑ). The perturbation matrix is defined
as:

∆H(s;ϑ) =
∆N(s, ϑ)

D(s, ϑ)
=

∑n̄
n=0

∑ℓ̄
ℓ=1∆Rn,ℓ ξℓ(ϑ)ϕn(s)∑n̄

n=0

∑ℓ̄
ℓ=1 rn,ℓ ξℓ(ϑ)ϕn(s)

, (4.5)

The perturbation residues are computed through the optimization problem in (4.6):

min ∥∆H(s;ϑ)∥2 (4.6)

s.t. H(s;ϑ) + ∆H(s;ϑ) is passive.

Before going into the details on how to derive parametric passivity constraints, some
algebraic manipulation on the cost-function are required to explicit the decision variables.
Following the same scheme, as in Section 3.2.2, we rewrite the cost function as:

E2 =
P∑

i,j=1

E2i,j , E2i,j =
k̄∑

k=1

m̄∑
m=1

|∆Hi,j(jωk;ϑm)|2 (4.7)

where k and m are, respectively, frequency and parameter sample indices, and (i, j) de-
note the (i-th, j-th) element of the matrix ∆H(jωk;ϑm).

Assuming that the decision variables are organized in a vector x as:

x = [xT
1,1, . . . ,x

T
i,j , . . . ,x

T
P,P ]

T

where
xi,j = [(∆R0,1)i,j , . . . , (∆Rn,ℓ)i,j , . . . , (∆Rn̄,ℓ̄)i,j ]

T

We can define βk,m;n,ℓ as:

βk,m;n,ℓ =
ξℓ(ϑm)ϕ(jωk)

D(jωk, ϑm)

and
bT
k,m = [βk,m;0,1, . . . , βk,m;n,ℓ, . . . , βk,m;n̄,ℓ̄]

thus, it holds that:
E2i,j = ∥Bi,j xi,j∥22 (4.8)

with Bi,j = [bT
1,1, . . . ,b

T
k̄,m̄

]T.

Recalling the properties of the QR-factorization applied to a least-square problem (see
Section 3.2.2), Equation (4.8) can be written as:

E2i,j = ∥Ξi,jxi,j∥22 (4.9)

where Bi,j = Qi,j Ξi,j and QT
i,j Qi,j = I

Thus, the cost function in 4.6 can be cast in the following form:

min ∥Ξ x∥22 ,
Ξ = blkdiag{Ξi,j}Pi,j=1
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To formulate parametric passivity constraints we will pursue again a local approach. In
the following, considering a local worst case violation occurring at ω = ωi and ϑ = θµ,
we will derive as in Section 3.2.2 linearized local passivity constraints for immittance and
scattering systems.

4.4.1 Parametric Immittance Systems

Denoting as λi,µ the smallest eigenvalue of HH(jω̄i; θµ)+H(jω̄i; θµ), under a perturbation

matrix ∆H(jω̄i; θµ), λi,µ will be correspondingly perturbed, at first order, toward λ̂i,µ as
shown in (4.10):

λ̂i,µ = λi,µ +Re
{
vH
i,µ∆H(jω̄i,µ; θµ)vi,µ

}
(4.10)

where vi,µ is the right eigenvector of HH(jω̄i; θµ) + H(jω̄i; θµ) associated with λi,µ. For
the derivation see 3.2.2.

Thus, defining αi,µ;n,ℓ as:

αi,µ;n,ℓ =
ξℓ(θµ)ϕn(jω̄i,µ)

D(jω̄i,µ, θµ)

and
ai,µ = [αi,µ;0,1, . . . , αi,µ;n,ℓ, . . . , αi,µ;n̄,ℓ̄]

T

Equation (4.10) can be cast as:

λ̂i,µ = λi,µ +Re
{
(vH

i,µ ⊗ vT
i,µ)⊗ aTi,µ

}
x (4.11)

Imposing the passivity constraint λi,µ ≥ 0, we rewrite (4.11) as:

pT
i,µ x ≤ −λi,µ (4.12)

with
pT
i,µ = −2 · Re

{
(vH

i,µ ⊗ uT
i,µ)⊗ aTi,µ

}
(4.13)

Assuming to have a total number of frequency and parameter violation points equal to ı̄
and µ̄, respectively, collecting all the passivity constraints we can write (4.6) as:

min
x
∥Ξx∥22 (4.14)

s.t. P · x ≤ λ

with P = [pT
0,0, . . . ,p

T
ı̄,µ̄]

T and λ = [λ0,0, . . . , λı̄,µ̄]
T.

4.4.2 Parametric Scattering Systems

Denoting as σi,µ the largest singular value of H(jω̄i; θµ), under a perturbation matrix
∆H(jω̄i;ϑ) that acts on H(jω̄i;ϑµ), σi,µ will be correspondingly perturbed, at first order,
toward σ̂i,µ as shown below:

σ̂i,µ = σi,µ +Re
{
uH
i,µ∆H(jω̄i,µ; θµ)vi,µ

}
(4.15)
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where ui,µ and vi,µ are, respectively, the left and right singular vectors associated with
σi,µ.
Recalling the definitions of αi,µ;n,ℓ and ai,µ, we can cast Equation (4.15) as:

σ̂i,µ = σi,µ +Re
{
(vT

i,µ ⊗ uH
i,µ)⊗ aTi,µ

}
x (4.16)

Imposing the passivity constraint σ̂i,µ ≤ 1, we rewrite (4.16) as:

fTi,µ x ≤ 1− σi,µ (4.17)

with
fTi,µ = Re

{
(vT

i,µ ⊗ uH
i,µ)⊗ aTi,µ

}
(4.18)

Assuming to have a total number of frequency and parameter violation points equal to ı̄
and µ̄ respectively, collecting all the passivity constraints we can write (4.6) as:

min
x
∥Ξx∥22 (4.19)

s.t. F · x ≤ s

with F = [fT0,0, . . . , f
T
ı̄,µ̄]

T and s = [1− σ0,0, . . . ,1− σ ı̄,µ̄]
T.

Since we are using linearized local passivity constraints, the same problems discussed
in Section 3.4 arise and lead to an iterative enforcement approach. Thus, even if it has
been developed for non-parametric macro-models, an algorithm similar to 3.2 can be
exploited to enforce passivity in the parametric case. A pseudo-code for it is given in
Algorithm 4.5.

Algorithm 4.5 Passivity enforcement algorithm

Require: Model coefficients Rn,ℓ, rn,ℓ for n = 1, . . . , n̄, ℓ = 1, . . . , ℓ̄
1: Get passivity violations structure W computed as in Algorithm 4.4
2: while W /= Ø do
3: Build constraints as in (4.12) or (4.17)
4: Build cost function regressor Ξ as in (4.9)
5: Get residues perturbations ∆Rn,ℓ solving convex optimization problem as in (4.19)

or (4.14)
6: Update model coefficients as Rn,ℓ ← Rn,ℓ +∆Rn,ℓ

7: Get passivity violations vector W of the perturbed model with algorithm 4.4
8: end while
9: return Passive model coefficients

4.5 Numerical Results

In this section we are going to present a set of numerical results related to passivity
enforcement on parametric macro-models. In particular we will show the performances
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of Algorithms 4.4 and 4.5 on Test Case 7 (see Appendix A). We start from a non pas-
sive model, whose Ψ(ϑ) function is represented in Figure 4.4a. Through the proposed
passivity enforcement algorithm we present a set of plots, shown in Figures from 4.4a
to 4.4c, representing Ψ(ϑ) associated with models at successive enforcement iterations,
until passivity is reached. We see that, as the number of iterations grow, Ψ(ϑ) is ”lifted
up”, until it is uniformly strictly positive, which means that the model is passive for
all the feasible parameter points. In Figures from 4.5a to 4.5c we look at the passivity
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Figure 4.4: Ψ(ϑ) at successive enforcement iterations (Test Case 7 )

enforcement process from another standpoint. In fact we are looking at the (ω, ϑ) plane:
the yellow dots represent the passivity violations (i.e., the frequencies corresponding to
purely imaginary Hamiltonian eigenvalues) found with the Hamiltonian driven scheme
ad the red lines are the non passive frequency sub-bands. We see that, as before, as the
number of iterations grow, violation areas disappear, until we have a passive model where
no violations are detected.
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Figure 4.5: Violation in frequency-parameter plane at successive enforcement iterations
(Test Case 7 )

About the accuracy with respect to initial data, Figure 4.6 shows the frequency response
of the passive model with respect to tabulated data for a set of parameter values. Wee see
that, throughout the bandwidth and for all the represented parameter values, the model
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is still very accurate. Quantitatively the maximum relative error is 4.5 · 10−3, that, even
if higher with respect to the non-passive model one, is negligible for our purposes.
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Figure 4.6: Data and passive model response comparison (Test Case 7 )
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Chapter 5

A Linear-Prediction Based

Passivity Verification Scheme

In this chapter we introduce a novel adaptive passivity verification method. The necessity
for a new passivity assessment algorithm comes from the need of both a higher reliability
and a scalable approach to high order multi-variate macro-models passivity enforcement.
Here we introduce the mono-parametric case, while in Chapter 6 we will extend it to the
multi-variate case.
Even if the passivity verification method presented in Chapter 4 (from now on defined
as Ψ-based) turns out to be effective in most of the cases, there are some critical circum-
stances in which it may fail in detecting some violation areas. In fact, Figure 5.1a shows
the function Ψ(ϑ), defined in (4.2), for a model (whose structure is detailed in Appendix
A, under Test Case 2–b) made passive with the Ψ-based approach. Thus we expect that,
for any parameter value in the parameter space Θ, there are not singular values greater
than 1. However, if we evaluate our passive model for ϑ = 7.84 ∈ Θ, and we perform
a brute-force singular values sampling (the model is in scattering representation) we see
that, as Figure 5.1b shows, for a frequency f ≈ 27 GHz, there is a violation. This means
that the Ψ-based scheme defines as passive a non-passive model.
This problem is related to the ”blindness” of the Ψ-based algorithm to fast Hamiltonian
eigenvalues variations inside a parameter space sub-interval. To overcome this problem
we propose an algorithm based on linear perturbations of Hamiltonian eigenvalues that
is able to predict, at first order, where after a small parameter variation these eigenvalues
fall, without explicitly computing them.
In the following, after a brief introduction to matrix perturbation theory, we extensively
present, with the help of several numerical results, this novel passivity assessment algo-
rithm. Finally, we will discuss in detail about asymptotic passivity for parameterized
macro-models.

5.1 Eigenvalue Perturbations

In this chapter the concepts of eigenvalues perturbations and polynomial derivatives are
extensively used. This section covers some basic aspects of these topics. The problem
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Figure 5.1

we face here is to find the eigenvalues of a matrix, or a matrix pencil, when the matrix
coefficients are perturbed by an infinitesimal quantity. Matrix perturbation theory shows
that, for a given parameter dependent matrix M(ϑ) or for a (M(ϑ),K) pencil, it is
possible to retrieve information about eigenvalues positions of a new perturbed matrix,
obtained as M(ϑ + dϑ) ≈M + dM, with dϑ an infinitesimal perturbation. Considering
an initial parameter value ϑ = ϑ0, the matrix dM(ϑ0) reads:

dM(ϑ0) =
∂M(ϑ)

∂ϑ
|ϑ=ϑ0

· dϑ

The eigenvalues displacements, indicated as dλϑ0
, induced by an infinitesimal perturba-

tion dM(ϑ0) on a matrix M(ϑ0) can be computed analytically as:

dλϑ0
=

∂λ(ϑ)

∂ϑ
|ϑ=ϑ0

· dϑ (5.1)

where

dλϑ0
=

vH(ϑ0) · dM(ϑ0) · u(ϑ0)

vH(ϑ0) · u(ϑ0)
(5.2)

while for a pencil (M(ϑ0),K) it reads:

dλϑ0
=

vH(ϑ0) · dM(ϑ0) · u(ϑ0)

vH(ϑ0) ·K · u(ϑ0)
(5.3)

where v(ϑ0) and u(ϑ0) are respectively the right and left matrix/pencil eigenvectors
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computed at parameter value ϑ0. For further details on matrix pencils perturbation
see [43].
Eigenvalues perturbation techniques will be used extensively for Hamiltonian matrices
associated with the system realization, that have been derived in Section 1.6.2. Thus,
in the following, we will discuss, step by step, how to compute analytically Hamiltonian
perturbed eigenvalues. To this end, we must derive an expression for dM, for Hamiltonian
matrices associated with state-space and descriptor realizations.

5.1.1 State-space Realizations

The state-space realization for a system transfer matrix H(s;ϑ) is detailed in Section
2.1.2. In order to derive an expression for dM, the state-space realization matrices must
be differentiated with respect to the parameter (from now on, the dependency on the
parameter has been omitted for readability):

∂A

∂ϑ
= B0

∂D−1
2

∂ϑ
C2 −B0D

−1
2

∂C2

∂ϑ
(5.4)

∂B

∂ϑ
= B0

∂D−1
2

∂ϑ

∂C

∂ϑ
=

∂C1

∂ϑ
− ∂D1

∂ϑ
D−1

2 C2 −D1
∂D−1

2

∂ϑ
C2 −D1D

−1
2

∂C2

∂ϑ

∂D

∂ϑ
=

∂D1

∂ϑ
D−1

2 +D1
∂D−1

2

∂ϑ

where

∂D−1
1

∂ϑ
=

∂R−1
0 (ϑ)

∂ϑ

∂D−1
2

∂ϑ
= IP

∂

∂ϑ

(
1

r0(ϑ)

)
For convenience, we recall from Section 1.6 the Hamiltonian matrices associated with
immittance (N 0) and scattering (M1) systems in state-space representation:

N 0 =

(
A−B(D+DT)−1C −B(D+DT)−1BT

CT(D+DT)−1C −AT +CT(D+DT)−1BT

)

M1 =

(
A+B(I−DTD)−1DTC B(I−DTD)−1BT

−CT(I−DDT)−1C −AT −CTD(I−DTD)−1BT

)
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By differentiating each term with respect to the parameter we obtain, for immittance
systems:

∂N 0

∂ϑ
=

⎛⎜⎝ ∂A
∂ϑ −

∂
∂ϑ(BQ−1

0 C) −∂B
∂ϑQ

−1
0 BT −B∂Q−1

0

∂ϑ BT −BQ−1
0

∂BT

∂ϑ

∂CT

∂ϑ Q−1
0 C+CT ∂Q−1

0

∂ϑ C+CTQ−1
0

∂C
∂ϑ −∂AT

∂ϑ + ∂
∂ϑ(C

TQ−1
0 BT)

⎞⎟⎠ ,

(5.5)

Q0 = D+DT

with

∂

∂ϑ
(BQ−1

0 C) =
∂B

∂ϑ
Q−1

0 C+B
∂Q−1

0

∂ϑ
C+BQ−1

0

∂C

∂ϑ

∂

∂ϑ
(CTQ−1

0 BT) =
∂CT

∂ϑ
Q−1

0 BT +CT∂Q
−1
0

∂ϑ
BT +CTQ−1

0

∂BT

∂ϑ

while for scattering systems we have:

∂M1

∂ϑ
=

⎛⎜⎝ ∂A
∂ϑ −

∂
∂ϑ(BQ−1

1 DTC) ∂B
∂ϑQ

−1
1 BT +B∂Q−1

1

∂ϑ BT +BQ−1
1

∂BT

∂ϑ

−∂CT

∂ϑ Q̃−1
1 C−CT ∂Q̃−1

1

∂ϑ C−CTQ̃−1
1

∂C
∂ϑ −∂AT

∂ϑ −
∂
∂ϑ(C

TDQ−1
1 BT)

⎞⎟⎠ ,

(5.6)

Q1 = I−DTD

Q̃1 = I−DDT

where

∂

∂ϑ
(BQ1

−1DTC) =
∂B

∂ϑ
Q−1

1 DTC+B
∂Q−1

1

∂ϑ
DTC+BQ−1

1

∂DT

∂ϑ
C+BQ−1

1 DT∂C

∂ϑ

∂

∂ϑ
(CTDQ−1

1 BT) =
∂CT

∂ϑ
DQ−1

1 BT +CT∂D

∂ϑ
Q−1

1 BT +CTD
∂QT

1

∂ϑ
BT +CTDQ−1

1

∂BT

∂ϑ

5.1.2 Descriptor Systems

The descriptor realization for a system described by a transfer matrix H(s;ϑ), is detailed
in Section 2.1.2. As for the state-space case, we must compute the first order derivatives
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of descriptor matrices, as:

∂E

∂ϑ
= 0N+P (5.7)

∂A

∂ϑ
=

⎛⎝ 0 0

∂C2

∂ϑ
∂D2

∂ϑ

⎞⎠
∂B

∂ϑ
=

(
0N,P

0P

)

∂C

∂ϑ
=

(
∂C1

∂ϑ
,

∂D1

∂ϑ

)
For convenience we recall from Section 1.6 the structure of Hamiltonian matrices for
immittance (N ext

0 ) and scattering (Mext
1 ) systems in descriptor realization:

N ext
0 =

⎛⎝A 0 B
0 −AT −CT

C BT D+DT

⎞⎠ , K =

⎛⎝E 0 0
0 ET 0
0 0 0

⎞⎠

Mext
1 =

⎛⎜⎜⎝
A 0 B 0
0 −AT 0 −CT

0 BT −I DT

C 0 D I

⎞⎟⎟⎠ , K =

⎛⎜⎜⎝
E 0 0 0
0 ET 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
By differentiating these matrices we get, for immittance systems:

∂N ext
0

∂ϑ
=

⎛⎜⎜⎜⎜⎝
∂A
∂ϑ 0 0

0 −∂AT

∂ϑ −∂CT

∂ϑ

∂C
∂ϑ 0 ∂D

∂ϑ + ∂DT

∂ϑ

⎞⎟⎟⎟⎟⎠ (5.8)

while for scattering systems we have:

∂Mext
1

∂ϑ
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂A
∂ϑ 0 0 0

0 −∂AT

∂ϑ 0 −∂CT

∂ϑ

0 0 0 ∂DT

∂ϑ

∂C
∂ϑ 0 ∂D

∂ϑ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.9)
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By looking at realization matrices definitions we see that, to obtain their derivatives, we
need to differentiate the numerator and denominator residues contained in C1(ϑ), C2(ϑ),
D1(ϑ) and D2(ϑ) (as shown in Section 2.1.2) and assemble them properly.
Recalling that the numerator and denominator residues associated n-th order partial
fraction are:

Rn(ϑ) =

ℓ̄∑
ℓ=0

Rn,ℓξℓ(ϑ) rn(ϑ) =

ℓ̄∑
ℓ=0

rn,ℓξℓ(ϑ) (5.10)

it holds that the differentiated residues have the form:

∂Rn(ϑ)

∂ϑ
=

ℓ̄∑
ℓ=0

Rn,ℓ
∂ξℓ(ϑ)

∂ϑ

∂rn(ϑ)

∂ϑ
=

ℓ̄∑
ℓ=0

rn,ℓ
∂ξℓ(ϑ)

∂ϑ
(5.11)

Equation (5.11) shows that, to get differentiated residues, it suffices to compute the basis
functions derivatives and then multiply them with the corresponding residues Rn,ℓ, rn,ℓ.

Thus, in order to get the matrix ∂M
∂ϑ |ϑ=ϑ0

we follow this procedure:

1. All the basis function ξℓ(ϑ) are differentiated with respect to the parameter and
evaluated for ϑ = ϑ0;

2. The differentiated residues at ϑ0 are computed through (5.11);

3. With the differentiated residues we construct the differentiated realization matrices
through (5.4) and (5.7);

4. Finally the matrix ∂M
∂ϑ |ϑ=ϑ0

is re-constructed through (5.5), (5.6), (5.8) and (5.9).

In the next section, we address the problem of computing basis function derivatives in
the case where these functions are polynomials.

5.1.3 Basis Functions Derivatives

As detailed in the previous section, to get differentiated Hamiltonian matrices we proceed
by computing numerator and denominator residues derivatives. The main idea that un-
derlies this computation is based on the particular structure of parameter basis functions,
that most of the times are polynomials in the variable ϑ. In these cases, what relates
basis functions and their derivatives are just linear transformations.
Thus, considering ξℓ(ϑ) as a generic ℓ-th order polynomial parameter basis function, we
will set:

bℓ̄(ϑ) =

⎛⎜⎜⎜⎝
ξ1(ϑ)
ξ2(ϑ)
...

ξℓ̄(ϑ)

⎞⎟⎟⎟⎠
It is then possible to write the vector of differentiated polynomials as:

∂bℓ̄(ϑ)

∂ϑ
= Tℓ̄ · bℓ̄(ϑ)
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where Tℓ̄ ∈ Rℓ̄×ℓ̄ is a suitable ℓ̄-th order transformation matrix (how this matrix is
computed is detailed is Section 5.1.4).
Assuming that we are working with a mono-parametric model (multivariate cases can be
reduced to mono-parametric by evaluating the basis functions for all parameters except
the one for which the derivative is computed), we denote as r ∈ Cn̄ℓ̄×1 the vector collecting

the denominator residues. It is possible to re-organize its coefficients as a matrixR ∈ Rn̄×ℓ̄

as shown below:

r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r00
...

rn̄0
...
r0ℓ̄
...

rn̄ℓ̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R =

⎡⎢⎣r00 · · · r0ℓ̄
...

...
rn̄0 · · · rn̄ℓ̄

⎤⎥⎦

This re-shaping operation is formally written as:

R = mat(r)

where the operator ”mat(·)” reshapes a [n̄l̄ × 1] vector as a [n̄× l̄] matrix.

The scalar product between the n-th row of R and the column vector bℓ̄ is exactly
the same as (5.10). Thus, Equation (5.12) returns a vector r(ϑ) ∈ Rn̄×1 that contains
the residues associated to denominator poles, evaluated for a given parameter value ϑ.

r(ϑ) = R bℓ̄(ϑ) (5.12)

Supposing that the transformation matrix Tℓ̄ is known, the differentiated model denom-

inator residues ∂r(ϑ)
∂ϑ ∈ Rn̄ can be computed, recalling (5.11) as:

∂r(ϑ)

∂ϑ
= R · ∂bℓ̄(ϑ)

∂ϑ
= R ·Tℓ̄ · bℓ̄(ϑ)

The same procedure is applied to numerator residues, by considering one input/output
port combination at a time.

In the next section we will derive transformation matrices Tℓ for monomial and Cheby-
shev parameter basis functions.
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5.1.4 Linear Transformation Matrices

Monomials Parameter Basis

The monomial basis is defined as a set of monomials in ϑ, up to the ℓ̄-th order.
The basis vector bℓ̄ thus reads:

bℓ̄(ϑ) =

⎛⎜⎝ϑ0

...

ϑℓ̄

⎞⎟⎠
and the linear transformation is associated with a matrix Tℓ̄ whose structure is:

Tℓ̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0
1 0 0 0 · · · 0
0 2 0 0 · · · 0
0 0 3 0 · · · 0
...

...
. . .

...
...

0 0 · · · 0 ℓ̄ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The derivation comes from the simple differentiation rule for monomials.

Chebyshev Parameter Basis

The derivative of a ℓ-th order Chebyshev polynomial (first kind), here indicated as Tℓ(ϑ),
can be computed through this recursive formula

∂Tℓ(ϑ)

∂ϑ
= ℓ

(
2Tℓ−1(ϑ) +

1

ℓ− 2

∂Tℓ−2(ϑ)

∂ϑ

)
(5.13)

This relation shows that Chebyshev polynomial derivatives are linear combination of
Chebyshev polynomials themselves. Thus, we have a rule to recursively compute these
derivatives that can be easily implemented as a recursive algorithm.
First of all, it must be noticed that this formula is applicable just for ℓ > 2, so the
transformation matrix Tℓ ∈ Z(ℓ+1)×(ℓ+1) must be initialized by hand, at least up to
second order.
For Chebyshev polynomials these first order derivatives are:

T0(ϑ) = 1
∂T0(ϑ)

∂ϑ
= 0 (5.14)

T1(ϑ) = ϑ
∂T1(ϑ)

∂ϑ
= 1

T2(ϑ) = 2ϑ2 − 1
∂T2(ϑ)

∂ϑ
= 4ϑ
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Derivatives in (5.14) can be written as linear combinations of T0(ϑ), T1(ϑ) and T2(ϑ) as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂T0(ϑ)
∂ϑ = 0 · T0(ϑ) + 0 · T1(ϑ) + 0 · T2(ϑ)

∂T1(ϑ)
∂ϑ = 1 · T0(ϑ) + 0 · T1(ϑ) + 0 · T2(ϑ)

∂T2(ϑ)
∂ϑ = 0 · T0(ϑ) + 4 · T1(ϑ) + 0 · T2(ϑ)

(5.15)

Equations in (5.15) are now cast in a matrix form:⎛⎜⎜⎜⎜⎜⎝
∂T0(ϑ)
∂ϑ

∂T1(ϑ)
∂ϑ

∂T2(ϑ)
∂ϑ

⎞⎟⎟⎟⎟⎟⎠ = T2

⎛⎜⎜⎜⎜⎝
T0(ϑ)

T1(ϑ)

T2(ϑ)

⎞⎟⎟⎟⎟⎠
where T2 is the initial transformation matrix that reads:

T2 =

⎡⎣0 0 0
1 0 0
0 4 0

⎤⎦
This initial transformation matrix, valid just up to second order Chebyshev polynomials,
is the starting point to build the general one. To obtain the next rows of the transforma-
tion matrix we will recursively use Equation 5.13.

With the following example we shown how to get the fourth row of T3 starting from
T2. High order rows are computed using the same method.

Applying (5.13) with ℓ = 3 leads to:

∂T3(ϑ)

∂ϑ
= 3

(
2T2(ϑ) +

∂T1(ϑ)

∂ϑ

)
where the term ∂T1(ϑ)

∂ϑ is itself a linear combination of chebyshev polynomials and can be

written starting from T2 by considering that its 2nd row corresponds to ∂T1(ϑ)
∂ϑ = T0(ϑ).

Thus, the previous relation can be written as:

∂T3(ϑ)

∂ϑ
= 3(2T2(ϑ) + T0(ϑ)) = 3T0(ϑ) + 6T2(ϑ)

Then, the fourth row of T3 is [3 0 6 0] and the final matrix is:

T3 =

⎡⎢⎢⎣
0 0 0 0
1 0 0 0
0 4 0 0
3 0 6 0

⎤⎥⎥⎦
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Thus, in general, the ℓ-th row of the transformation matrix, denoted as tℓ can be com-
puted as:

tℓ = zℓ + aℓ

with zℓ = [0, . . . , 0, 2ℓ, 0] ∈ Rℓ and a = [ ℓ
ℓ−2tℓ, 0].

In this section, we derived a simple method to compute the eigenvalues of a parame-
ter dependent matrix (structurally Hamiltonian) under an infinitesimal parameter vari-
ation. In the next section we will discuss about eigenvalues perturbations induced by
finite parameter variations, that are the main tool for the proposed passivity verification
scheme.

5.1.5 Hamiltonian Eigenvalue Trajectories

Up to now, just infinitesimal parameter perturbations have been considered. However,
if our purpose is to predict where Hamiltonian eigenvalues fall after a finite parameter
variation, as usually is, some remarks are required. In fact, the eigenvalues trajectories
under finite parameter variations are non-linear and hardly predictable. Thus, being able
to compute the first derivative of these trajectories, as detailed in the previous section,
we can make just a linear prediction on where perturbed eigenvalues will fall under a
finite parameter variation.
These linearly perturbed eigenvalues can be seen as a first order Taylor expansion of an
unknown non-linear function λ = λ(ϑ). Thus, denoting the finite parameter variation as
δϑ = ϑ− ϑ0, it is possible to get these perturbed eigenvalues as:

λ̂(ϑ) = λ(ϑ0) +
∂λ(ϑ)

∂ϑ
|ϑ=ϑ0

· δϑ (5.16)

as detailed in Equation (5.1).

To better explain these concepts, some numerical examples are reported. In particular,
Figure 5.2 compares the exact Hamiltonian eigen-spectrum, shown in blue, computed for
increasing parameter values, with the approximated one, computed with (5.16), repre-
sented in red. As one can expect, the linearly perturbed eigenvalues are straight lines
centered at λ(M(ϑ0)), while the exact ones have non-linear trajectories. In general, we
have the best approximation for small parameter perturbations. This consideration is
fundamental for the adaptive verification algorithm that will be presented in the next
section.

Later on in this work, eigenvalue perturbations will be extensively used thus, in order
to improve the readability, we introduce a compact notation to identify matrix/pencil
eigenvalues perturbation.
We will denote the set of linearly perturbed eigenvalues of a matrix M(ϑ0) or pencil
(M(ϑ0),K) in ϑ = ϑ0 + δϑ as:

Λ̂ϑ0
(ϑ) = Pδϑ

M,K(ϑ0) (5.17)

where Pδϑ
M,K(ϑ0) is the first order perturbation operator applied on matrix M(ϑ0) or

(M(ϑ0),K) pencil, centered at ϑ = ϑ0, for a finite parameter variation equal to δϑ.
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Figure 5.2: Linearly perturbed eigenvalues compared to the exact ones

Summarizing, in this section a first order approximation approach that allows to predict,
for a sufficiently small parameter interval, the trajectories of Hamiltonian eigenvalues
has been presented. This method is the theoretical background of the adaptive sampling
framework that will be discussed in next sections, since it enables to gather information
about Hamiltonian eigenvalues without explicitly computing them, thus saving compu-
tational time.

80



Eigenvalue Perturbation Based Adaptive Sampling Algorithm

5.2 Eigenvalue Perturbation Based Adaptive Sam-
pling Algorithm

As mentioned in the introduction to this chapter, in this section we are going to present
a parametric passivity verification algorithm based on Hamiltonian eigenvalue perturba-
tions. Before going into the details of this approach, we briefly discuss how the presented
method, from now on denoted as Derivative-based, can overcome the problems affecting
the Ψ-based scheme. Consider the case illustrated in Figures 5.3:

Im

Re

(a) Ψ-based method

Im

Re

(b) Derivative-based method

Figure 5.3: Graphical comparison between the two methods

Both panels show a Hamiltonian eigenvalue trajectory that has high sensitivity with re-
spect to the parameter at ϑ = ϑ1 and low sensitivity at ϑ = ϑ2. Figure 5.3a shows what
would happen using the Ψ-based algorithm: we see that the error between the computed
eigenvalue at ϑM = ϑ1+ϑ2

2 and the one predicted with a linear interpolation is small,
which means that the sub-interval [ϑL, ϑR] is not going to be refined. This leads to
losing the violation area highlighted in red.
The new approach we are going to describe relies, instead, on a first order approximation
of the true eigenvalue trajectory, as shown in Figure 5.3b. In this way, we are able to
detect the eigenvalue high sensitivity in ϑ = ϑ1 and refine accordingly the sub-interval,
finding the non-passive area.
Additionally, while the Ψ-based algorithm takes into account just the eigenvalues that are
closest to the imaginary axis, this new approach allows to keep track of all the Hamilto-
nian eigenvalues, leading to have a higher sensitivity toward those eigenvalues that, even
if far from the imaginary axis, may be displaced close to, or on it.
The algorithm presented here is based again on a coarse initial sampling, at a low refine-
ment level, and on successive adaptive refined passes, if needed.
For us, when a parameter space point is sampled some useful information about the
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model, when evaluated at that parameter value, is stored in memory. The sampling
process consists mainly in determining passivity violations, if any, with a Hamiltonian
driven method and in retrieving all the data necessary to formulate passivity constraints.
Moreover, we are interested also in collecting left and right Hamiltonian eigenvectors,
that are used, if needed, in eigenvalues perturbations.
All these data are listed below:

❼ Hamiltonian eigenvalues (used to detect passivity violations as in the non-parameterized
case) and their left/right eigenvectors, used in performing eigenvalue perturbations,
if needed, as in Equations (5.2) and (5.3);

❼ Passivity locations, that are stored as frequency-parameter tuples {ω̂, ϑ̂} correspond-
ing to the largest violation in each considered non-passive sub-band;

❼ Largest singular value and left/right singular vectors of H(jω̂; ϑ̂) for scattering sys-

tems or smallest eigenvalue and its right eigenvectors of H(jω̂; ϑ̂) + HH(jω̂; ϑ̂) for
immittance systems. These quantities, in addition to the passivity locations, are
used in the parametric passivity enforcement to formulate passivity constraints.

The data structure in which all this information is stored is denoted here as W.

5.2.1 Coarse Sampling

In the initial coarse sampling just some of the 2jmax parameter space points are sampled,
according to the initial refinement level j0. We define as jmax the maximum refinement
level allowed by the proposed sampling, so that the minimum spacing between two points
will be at most 2−jmax . For details on this hierarchical approach see Section 5.3.1. The
number of initial points is retrieved from the same heuristic rule as in Section 4.3.2 but,
to be compliant with the binary hierarchical grid we use, it must be a power of two.
In general, the number of initial samples can not be expressed as a power of two with
integer exponent thus, for this reason, and to avoid losing any violation area due to a too
coarse sampling, the initial refinement level, computed as the 2-logarithm of the minimum
initial samples number estimated as in (4.4), is rounded to the nearest greater integer, as
Equation (5.18) shows:

j0 = ⌈log2(κℓ̄)⌉ (5.18)

where κ is a positive integer and ⌈·⌉ is the ceiling operator.
At this early stage, the algorithm tries to find macro-areas (in the parameter space)
in which the identified model is not passive using a Hamiltonian driven scheme. The
retrieved information will be used, if necessary, for next refined sweeps. Algorithm 5.6
describes this initial coarse sweep.
Figure 5.4 shows the parameter space after the initial coarse sampling. Circular markers
represent the sampled points, our baseline for refined sweeps.

5.2.2 Refined Sweeps

At this stage, if through the coarse sampling we are not able to completely characterize
the passivity throughout the parameter space, we proceed with a number of adaptive
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Algorithm 5.6 Derivative based coarse sweep

Require: Integer number κ, the parameter basis order ℓ̄ and the model H(s;ϑ)
1: Get initial refinement level as in (5.18)
2: for k = 0, . . . ,2j0 do
3: Compute the current parameter value ϑk = k · 2−j0

4: Evaluate H(s;ϑ) in ϑk

5: Get the Hamiltonian matrix associated with H(s;ϑk)
6: Sample the current point as detailed in Section 5.2
7: Update data-structure W
8: end for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized parameter space

Initial sampling with j0 = 3

Figure 5.4: Initial sampling at coarse level j0 = 3

refined passes. To this end, the algorithm starts from refinement level j0 and, for each
sub-interval defined by the initial coarse sampling, place a fictitious node, indicated here
as ’testing node’, between two already sampled points. To make notation simpler, we will
use these support variables for readability:

❼ ϑT represent the testing node

❼ ϑL represent the node on the left of ϑT

❼ ϑR represent the node on the right of ϑT

The testing node is, in general, placed in the middle between ϑL and ϑR, thus:

ϑT =
ϑR + ϑL

2
(5.19)
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We must now determine whether the testing node corresponds to a critical parameter
value (a possibly passivity violation is close to ϑT ) or not through first order Hamiltonian
eigenvalues perturbations. The framework we are working on is illustrated in Figure 5.5.

Figure 5.5: Left,right and testing node representation

In details, starting from nodes ϑL, ϑR, we must compute Hamiltonian eigenvalues per-
turbations respectively toward ϑR, ϑL, and checks if some of the perturbed eigenvalues
become critical. For us, an Hamiltonian eigenvalue is critical if, after a small parameter
variation, it may become purely imaginary, identifying the presence of a non-passive area.
This double check (left to right and vice-versa) is required due to Hamiltonian eigenvalues
non-linearities. If the the first perturbation detects a critical area, the other direction is
not tested since it would be useless and no additional information would be retrieved.
To better explain this scheme, Figure 5.6 shows these two perturbations in parameter
space sub-interval, from two edge nodes ϑL, ϑR toward the testing node ϑT .

L R 

R L

Figure 5.6: Left-Right and Right-Left perturbation graphical representation

We now formalize the above scheme. Applying the perturbation operator defined in
Equation (5.17) to nodes ϑL and ϑR, and with the parameter variation equal to:

|δϑ| = 1

2
(ϑR − ϑL) (5.20)

we have: ⎧⎪⎨⎪⎩
Λ̂ϑL

(ϑT ) = P |δϑ|
M,K(ϑL)

Λ̂ϑR
(ϑT ) = P−|δϑ|

M,K (ϑR)

(5.21)
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where the first refers to the left-to-right perturbation and the second to the right-to-left
one.

Hamiltonian eigenvalues trajectories may be, in some cases, strongly non-linear and a
perturbation toward ϑT may be not enough to detect a violation. For this reason, in the
algorithm implementation we leave as a degree of freedom the perturbation extent. This
is made by defining a quantity, called α, whose value is related to the perturbation extent
by (5.22):

α =
ϑ− ϑL

ϑT − ϑL
(5.22)

or, equivalently, by

α =
ϑR − ϑ

ϑR − ϑT

where ϑ denotes the perturbation end point.
Thus, indicating with δϑ∗ the new perturbation amplitude, it holds that

|δϑ∗| = α |δϑ| (5.23)

In most of the cases it has been noted that a value α = 1 is enough to guarantee the
algorithm to find all the violations but, to ensure its functioning under any working con-
dition, this value has been set to α = 2, making it more reliable at the cost of a slightly
higher computational effort.

We are now ready to discuss in details the rules upon which the algorithm adaptively
samples the parameter space.
As theoretically derived in Section 1.6.2, the Hamiltonian eigen-spectrum symmetry jus-
tifies the choice to consider, without loss of generality, just the 2nd quadrant eigenvalues
(Re {λ} ≤ 0 and Im {λ} ≥ 0) with related perturbations.
In this framework, recalling that an eigenvalue is defined to be critical if there is a high
probability that it becomes imaginary due to a small parameter variation, we mainly
focus on two metrics: the eigenvalue trajectory direction and its distance from the imagi-
nary axis. Quantitative information about the trajectory direction can be retrieved from
(5.21) and, to decide if an eigenvalue is too close to the imaginary axis we introduce a
threshold δth ≥ 0.
How these metrics are used to determine if a parameter space area is critical or not is
detailed below:

1. If the real part of at least one 2nd quadrant perturbed Hamiltonian eigenvalue is
greater than −δth and its trajectory points toward the imaginary axis, it is likely
that a critical area is opening and it must be sampled. In the following we will refer
to this case as ”Case 1”. See Figure 5.7a;

2. If the real part of a 2nd quadrant eigenvalue is less than −δth we check if its real part
perturbation is greater than −δth: if this happens there is a high probability that
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with a small parameter variation we move toward a non-passive area, so additional
samples must be added. In the following we will refer to this case as ”Case 2”. See
Figure 5.7b;

3. If the real part of a 2nd quadrant Hamiltonian eigenvalue is less than −δth and it
is moving away from the imaginary axis, then for a sufficiently small parameter
variation no passivity violations are likely to be found. In this case no additional
samples are required. In the following we will refer to this case as ”Case 3”. See
Figure 5.7c;

4. If a 2nd quadrant Hamiltonian eigenvalue real part is greater than −δth but it is
moving away from the imaginary axis, no additional samples are required. This
condition consider the case in which a violation area has just disappeared (some
eigenvalues may be still very close to the imaginary axis without being necessarily
critical), and avoid to finely sample non-critical regions. In the following we will
refer to this case as ”Case 4”. See Figure 5.7d.

These rules are reported in Table 5.1 (ϑ0 is intended to be both ϑR and ϑL depending on
the perturbation direction). The term λϑ0

represents a 2nd quadrant Hamiltonian eigen-

value evaluated at ϑ0,
∂λ(ϑ)
∂ϑ |ϑ=ϑ0

represents its derivative with respect to the parameter

and λ̂ϑ0
(ϑ0 + δϑ) is its perturbation, for a parameter variation equal to δϑ.

Case Re {λϑ0
} < −δth Re

{
∂λ(ϑ)
∂ϑ |ϑ=ϑ0

}
> 0 Critical ?

1 NO YES YES

2 YES YES Check Re
{
λ̂ϑ0

(ϑ0 + δϑ)
}

3 YES NO NO
4 NO NO NO

Table 5.1: Mono-variate critical cases for adaptive refinement

By looking at the previous table, we see that just the first two cases (namely, Case 1 and
Case 2) are critical.
Furthermore, before performing this refined verification, the algorithm is set to execute
a preliminary test that mainly serves to avoid refinements in already non-passive defined
areas. It consists in detecting, through a Hamiltonian-driven test, if in both the sub-
interval edges ϑL and ϑR the model is not passive and, if true, no additional samples are
required to better characterize these zones that are considered as not-passive. In Figure
5.8a we show this case, where the red dots represent the non-passive sub-interval edges.
Additionally, if one of the two edges is passive and the other is not, no refined verifica-
tion are in order to completely characterize this sub-interval, that is critical (a passivity
violation area opens or closes passing from ϑL to ϑR) and it must be refined. Figure 5.8b
shows this case, where the red dot is the non-passive edge while the green dot represent
the passive one.
This preliminary test enables then to avoid refined tests on areas where it is not required
and, in some cases, to directly refine a sub-interval without performing any eigenvalue
perturbation. Algorithm 5.7 formulates the proposed adaptive sampling scheme
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Figure 5.7: Graphical representation of refined sweeps cases

5.3 Practical Implementation

In this section a number of practical implementation issues are discussed. The adaptive
sampling scheme, shown in Section 5.2, if implemented as is, may fail in detecting some
violation areas. This is due to the fact that not all the issues related to parametric
passivity verification, such as asymptotic singular values behaviour and parameter space
tessellation self-consistency, have been addressed.
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(a) Both non-passive edges

(b) Passive/non passive edges

Figure 5.8: Graphical representation of the preliminary test

In the next sections we go through these problems, proposing a solution for each of them,
with detailed algorithms and numerical results.

5.3.1 Hierarchical Approach

Motivation

While performing the adaptive sampling it is important to give a well defined structure
to the parameter space, leading to a better performances of the whole algorithm. For
this reason, it has been chosen to adopt a hierarchical approach, which means that all
the points on our parameter space belongs to a tree structure at a certain hierarchical
level.
The main driving factor to adopt this kind of structure is numerical stability. In fact,
this approach enables the use of only integers instead of floating point numbers to define
a certain point in the parameter space, eliminating then the possibility of truncation
errors. This particular structure makes it easy to improve the algorithm also from other
standpoints. For example, it is possible to make our sampled parameter space self-
consistent, allowing the sampling to be more effective, as explained in the related section.

Implementation

To better explain this hierarchical approach it is necessary to normalize the parameter
space. To this end, we take the usual parameter space, 1-D for simplicity, defined as
[ϑmin, ϑmax], and normalize it to a [0, 1] segment. This is possible through this simple
linear transformation:

ϑ̃ =
ϑ− ϑmin

ϑmax − ϑmin

where ϑ̃ is the normalized parameter value.
Considering then the normalized parameter-frequency space, it is possible to map set of
points on a uniform grid with spacing 2−j to a tuple of positive integers {k, j} through
this relation:

ϑ̃ = k · 2−j

More specifically, index j represents the refinement level, expressed as the negative expo-
nent of 2, since a bisection approach is used. The other index k ∈ {0,1, ..., 2j} is a linear
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Algorithm 5.7 Derivative-based adaptive sampling

Require: Parametric model H(s;ϑ)
Require: Perturbation amplification factor α as defined in (5.22)
1: for j = j0, . . . , jmax do
2: Find k-indices of points at current refinement level {k1, . . . , km}
3: for k = {k1, . . . , km} do
4: Compute ϑL = (k − 1) · 2−j and ϑR = (k + 1) · 2−j

5: Define ϑT as in Equation (5.19)
6: Get Hamiltonian pencils (M,K) associated with H(s;ϑL) and H(s;ϑR)
7: Check if H(s;ϑL) and H(s;ϑR) are passive.
8:

9: if H(s;ϑL) and H(s;ϑL) are both non-passive then
10: break
11: else
12: Sample ϑT as in Section 5.2
13: Update data-structure W
14: break
15: end if
16:

17: Define δϑ as in (5.20) and δϑ∗ as in (5.23)

18: Get perturbed eigen-spectra Λ̂ϑL
(ϑL + |δϑ∗|) = P |δϑ∗|

M,K (ϑL), Λ̂ϑR
(ϑR − |δϑ∗|) =

P−|δϑ∗|
M,K (ϑR)

19:

20: if Case 1 critical then
21: Sample ϑT as in Section 5.2
22: Update data-structure W
23: break
24: else if Case 2 critical then
25: Sample ϑT as in Section 5.2
26: Update data-structure W
27: end if
28:

29: end for
30: end for

index that identifies a specific point on a uniform grid at the j-th refinement level.
To better explain how a hierarchical structure is built, Figure 5.9 (defined as ”ladder”
representation of the parameter space) compares the usual linear partitioning of the pa-
rameter space with respect to the hierarchical one.

This mapping is not injective, since each point ϑ ∈ [0, 1] may be represented by an
infinite number of tuples {k, j} just by taking a suitable index k for a given index j.
Example:
Taking ϑ̃ = 1

4 , it is easy to show that it corresponds to indices k∗ = 1, j∗ = 2.
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  j j
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Figure 5.9: Linear space representation compared to hierarchical

However, the same normalized parameter ϑ̃ correspond to hierarchical indices k1 =
2, j1 = 3 and, in general, to any tuple {ki, ji} with ki = k∗ · 2i, ji = j∗ + i, for
i ∈ N.

For our purposes this may induce ambiguities in defining points along the normalized
parameter axis. On the other hand, we can overcome this problem ensuring that, for any
tuple {k, j}, k-index is always odd. Indices that are guaranteed to satisfy this condition
are expressed in what will be called the ”reduced form”.
To ensure that only reduced indices are used, an index-reduction routine has been imple-
mented. Starting from any tuple {k, j}, it returns the reduced indices by halving k and
correspondingly decreasing j, until k is odd.
Algorithm 5.8 represent this procedure.

5.3.2 Grid Self-Consistency

Motivation

The proposed bisection approach, used inside the adaptive sampling method, is very effec-
tive in precisely locating passivity violations. However it has a major drawback. In fact,
this refinement strategy, without any control, may lead to have abrupt refinement levels
changes on adjacent parameter space subsets. This mainly happens near passive/non-
passive interface regions where, moreover, it is important to detect all passivity violations.

90



Practical Implementation

Algorithm 5.8 Index reduction algorithm

Require: k, j indices
1: if k = 0 then
2: j = 0
3: return {k, j}
4: end if
5: if k = 2j then
6: j = 0
7: k = 1
8: return {k, j}
9: end if

10: while k is even do
11: k ← k

2
12: j ← j − 1
13: end while
14: return {k, j}

The algorithm, as is, can not smoothly check in these areas, leading to a reduced accu-
racy.
As anticipated, the particular structure we gave to the parameter space lead to easily
improve the passivity check algorithms. In this scope, a parameter space hierarchical
structure allows to easily overcome this problem, because it enables to precisely place
additional samples on the edges of the above discussed critical areas, thus enabling more
reliable passivity verifications.

Implementation

A parameter-space grid is defined to be self-consistent if it does not contain steep varia-
tions on refinement levels on adjacent samples. In details, for us self-consistency means
that the maximum difference on refinement levels between two adjacent samples can not
be greater than one. In order to fulfill this condition, an a-posteriori algorithm, defined
as ”grid-fixing algorithm”, samples the required points to make the grid self-consistent.
Denoting with j0 and jmax the lowest and highest refinement levels respectively, the pro-
posed grid-fixing algorithm checks if for each point k̂ at refinement level ̂, the left and
right adjacent samples exist on the level ̂ − 1. If a point is missing, it is sampled and
added to the data-structure.
In details, considering a normalized parameter point identified by its hierachical indices
{k̂, ̂}, we define its right and left adjacent samples with the tuples:

{kR, jR} =

{
❱ k̂ + 1

2
❲, ̂− 1

}
(5.24)

{kL, jL} =

{
❚ k̂ − 1

2
❯, ̂− 1

}
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where {kR, jR} and {kL, jL} are respectively right and left adjacent samples indices
and the operators ❱·❲, ❚·❯ round their arguments to the nearest greater and smaller odd
integers, respectively

A decreasing-level strategy (from jmax to j0) is adopted because it does not need any
iteration to accomplish a complete grid-fixing, as would be required by an increasing-
level (from j0 to jmax) approach.
A sketch of this procedure is shown in Algorithm 5.9.

Algorithm 5.9 Grid-fixing algorithm

1: for ̂ = [jmax,−1, j0] do
2: for k = 1, 3, 5, . . . , 2̂ − 1 do
3: Get left {kL, jL} and right {kR, jR} samples indices as in (5.24)
4: Define ϑL = kL · 2−jL and ϑR = kR · 2−jR

5: if ϑL or ϑR /∈ W then
6: Sample missing parameter points as detailed in Section 5.2
7: Update data-structure W
8: end if
9: end for

10: end for

This algorithm, as is, may wrongly sample points outside the normalized parameter space
[0, 1], when trying to ”fix” boundary areas that are, not belonging to the normalized grid,
not self-consistent with it by definition. In order to fix this problem the final algorithm
has some additional controls on the values to be added.

In the following we present a numerical example where, through a graphical interpre-
tation, we show the difference between an initially non-self consistent grid and the same
grid made self-consistent by the proposed algorithm.
In particular, Figure 5.10a shows, in the ladder representation, the non self-consistent
grid while Figure 5.10b shows the self-consistent one. Looking at the right panel, it is
clear that each grid point has on its right and on its left the corresponding samples at the
previous refinement level while, the one on the left, does not satisfy our self-consistency
definition.

5.4 Numerical Results

In this section we are going to provide several numerical results that compare the Ψ-based
approach with the one presented in this chapter.
At the beginning of this chapter we showed that the Ψ-based algorithm failed in detecting
a non-passive area.
Here, we propose the same test-case by comparing the Ψ(ϑ) functions resulting from the
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(b) Self-consistent grid

Figure 5.10: Non self-consistent VS self-consistent grid (Test Case 2–b)

two passivity verification approaches. Figure 5.11 shows these results. It is clear from
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(b) Derivative-based method

Figure 5.11: Passivity verification methods comparison (Test Case 2–b)

the right panel, showing the outcome of the derivative-based verification algorithm, that
the new approach is able to spot a very small non-passive region, the one we saw in the
introductory section through the fine singular values sampling, while the Ψ-based, whose
result is shown in the left panel, does not. This performance improvement is mainly due
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to the predictive aspects of eigenvalue derivatives: in fact, by looking at the Hamiltonian
eigenvalues real part as a function of the parameter in Figure 5.12, we see that there are
two Hamiltonian eigenvalues that move fast toward the imaginary axis, become imaginary
for a small parameter interval, then return to be complex. The derivative based method
detects this phenomenon by checking the real part of eigenvalues derivatives, while the
Ψ-based one is effective just if the initial coarse sampling samples a point in this small
interval.
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Figure 5.12: Candidate passive model Hamiltonian eigenvalues real part (Test Case 2–b)

Figure 5.13 shows the same phenomenon from the complex plane perspective. The blue
crosses represent the Hamiltonian eigenvalues evaluated for ϑ = 7.7 that are falling rapidly
towards the imaginary axis. These eigenvalues become purely imaginary for ϑ ≈ 7.84 (red
crosses) and come back to have a non-vanishing real part for ϑ ≈ 7.85 (green crosses).
Finally they move away from imaginary axis toward yellow crosses for ϑ ≈ 8.1. This is
not an isolated case. In fact, due to the high non-linearity of Hamiltonian eigenvalues,
these kind of trajectories are not uncommon. For the sake of completeness, Figures 5.14a
and 5.14b compare the two verification methods on another test-case (Test Case 12–b).
As in the previous one we have a sharp variation of Ψ(ϑ) that it is not detected by the
Ψ-based algorithm. The derivative-based one is able to locate it detecting the presence
of some eigenvalues that have a high sensitivity to the parameter in this area.
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Figure 5.13: Candidate passive model eigenvalues trajectories (Test Case 2–b)
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In the previous examples we saw that the new approach is more reliable in detecting
small violations induced by quick Hamiltonian eigenvalues variations.

We are going now to exploit the proposed verification scheme to enforce passivity by
means of the enforcement procedure discussed in Section 4.4. To this end, starting from
a non-passive model (for the structure see Test Case 6 in Appendix A), whose Ψ(ϑ)
function is reported in 5.15a, we try to enforce it to be passive. We see that the enforce-
ment algorithm, combined with the derivative-based verification method, is capable of
returning a passive model, whose Ψ(ϑ) function is reported in 5.15b, in 4 iterations, with
a total CPU time of 6.63 seconds.
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Figure 5.15: Comparison on Ψ(ϑ) functions (Test Case 6 )

About the passive model accuracy, Figure 5.16 compares the scattering responses of the
passive model with respect to data. We notice that the passive model is still very ac-
curate: quantitatively, the maximum relative error between the passive model response
and data is 2.5 · 10−3, almost equal to the one of the non-perturbed model. These results
show that the combination of the derivative-based adaptive sampling with the parametric
enforcement algorithm, detailed in Section 4.4, is capable of reliably enforcing passivity
on parametric macromodels without affecting the accuracy.

A key point for passivity verification algorithms are computational times, since they
are used repeatedly during passivity enforcement procedures. Thus, even if the deriva-
tive based algorithm has proved to be more reliable, we must ensure that it can be used
to accomplish in reasonable time a complete passivity enforcement. To this end, in the
following, we present a comparison between the two passivity verification approaches,
mainly in terms of:
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Figure 5.16: Comparison between model response and data (Test Case 6 )

❼ Passivity enforcement computation time;

❼ Passivity enforcement number of iterations;

❼ Passivity enforcement outcome (0: non passive, 1: passive);

❼ A cross-check indicating if a model, defined passive for a method, is still passive for
the other (0: non passive, 1: passive).

The settings used for the Ψ-based algorithm are:

❼ Maximum number of successive refinements = 10;

❼ Linear interpolation error threshold = 0.2;

❼ Additional singular values/eigenvalues = 30;

❼ Non-self-consistent grid.

while for the derivative based are:

❼ Maximum number of successive refinements = 10;

❼ Perturbation amplification factor α = 2;

❼ Threshold δth = 10−6;

❼ Additional singular values/eigenvalues = 30;

❼ Self-consistent grid.

Table 5.2 shows a comparison between the two methods for models with ensured positive-
real denominator (for details see [22], [8], [9]), from now on denoted as ”PR”, while Table
5.3 shows the same comparison made this time on models whose denominator is not
ensured to be positive-real throughout the parameter space. The latter will be denoted
as ”not-PR”.
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For Test Cases descriptions see Appendix A.

Analyzing these results we see that, in general, the CPU time required to accomplish
a complete passivity enforcement is similar for the two approaches. Sometimes, however,
the computational effort required by the derivative-based approach is remarkably lower,
as in Test Cases 1, 7, 9, 11 in Table 5.2 and for Test Cases 9, 10 in Table 5.3.
On the other hand, there are cases for which the proposed sampling scheme is more
time-consuming, as in Test Case 12. This particular test-structure is characterized by a
considerable number of ports (6) thus, computing Hamiltonian eigenvalue perturbations
may become a very expensive task, leading to higher computational times.
About the reliability, both Tables confirm the results we detailed previously. In fact,
there are several test cases in which the Ψ-based method labels as passive models that,
when checked with the derivative-based method, show residual passivity violations for
some parameter values. We can notice this fact in Test Cases 2–a, 13 in Table 5.2 and
in Test Cases 1, 4–a, 12, 13 in Table 5.3.
Test Case 2–a deserve attention, in fact we see that for none of the two models, PR and
not-PR, the enforcement algorithm has been capable to return a passive model within 40
iterations. In this case, due to the particular behavior of Hamiltonian eigenvalue trajec-
tories, 49 enforcement iteration were required.

A last consideration must be made about models with not ensured positive-real denom-
inator: these models may present, for some parameter values, a vanishing denominator
that makes the whole function not differentiable. This fact, in practice, may cause the
eigenvalues derivatives to blow up in amplitude, in turn requiring that unnecessary pa-
rameter samples could be added, slowing down the entire passivity enforcement process.
This explains why, for some cases in Table 5.3, the time to enforce the passivity is, ap-
parently, unnecessarily high.
To show this phenomenon, we provide an example, based on Test Case 3–b (see Appendix
A), where the model denominator has a singularity for ϑ ≈ 600 µm. In Figure 5.17a,
we report the function Ψ(ϑ) obtained with the derivative-based method: we see that,
when ϑ approaches the critical value of 600 µm, the algorithm densely samples the area
since derivative values blow up. Furthermore, by comparing Figure 5.17a with Figure
5.17b, the latter representing the function Ψ(ϑ) obtained with the Ψ-based method, we
notice that the Ψ-based approach is not able to detect this violation, labeling as passive
the model. This is another evidence that the proposed derivative-based scheme greatly
improves the sampling reliability with respect to Ψ-based one.
Anyway, passive or not, a model with a singularity located inside the parameter space is
not feasible for simulation. On the other hand, state-of-the-art macro-model extraction
algorithms [8, 9, 22], are able to enforce the model stability acting on the model denomi-
nator, forcing its real part to be uniformly positive throughout the parameter space. This
lead to avoid denominator singularities, overcoming the problems discussed above.
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Figure 5.17: Denominator singularity effects on Ψ(ϑ) function (Test Case 3–b)

5.5 Parametric Asymptotic Passivity Character-
ization

A model is defined asymptotically passive if passivity conditions in Section 1.6.2 are
verified when s = jω →∞. Here, however, we are dealing with parametric macro-models
and our aim is to guarantee asymptotic passivity for any feasible value attained by the
parameter. In this work, we will discuss about the two main causes that may lead a
parametric macro-model to be non-asymptotically passive, that are listed below:

❼ Vanishing model denominator
If the model denominator approaches zero, for a bounded input energy, the output
one will diverge towards infinity, then there is a passivity violation.

❼ Model passivity violation
A more generic situation is where the model is ”well-behaved”, so that the denomi-
nator does not vanishes in the considered parameter space, and asymptotic passivity
violations are found for some parameter value.

Instead of looking at the well-known passivity conditions for LTI systems, there is an
interesting alternative way to look at asymptotic passivity that is related to the Hamil-
tonian eigen-spectrum.
From Section 1.6 we know that the purely imaginary eigenvalues of the Hamiltonian
matrix associated with the system are located exactly at the frequencies at which pas-
sivity violations occur. In our case, since we are focusing on asymptotic violations, these
eigenvalues will have infinite imaginary part. Supposing that such a violation occurs for
ϑ = ϑ∗ and that the model is passive ∀ϑ ∈ [ϑmin, ϑ∗), we can represent the situation
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as in Figures 5.18a and 5.18b. In the left panel we show the violation (red area) in the
parameter-frequency plane while the right one shows the Hamiltonian eigenvalues corre-
sponding to this violation.

(a) Asymptotic violation in (ϑ, ω) plane

0

0

Re

Im

-

(b) Hamiltonian eigenvalues corre-
sponding to asymptotic violation for
ϑ = ϑ∗

Figure 5.18: Asymptotic passivity characterization

Denoting as ϑ = ϑ∗ + ϵ, with ϵ ∈ R, a generic parameter value, we can study what
happens for different values of ϵ. Considering a pair of Hamiltonian eigenvalues we can
identify three different conditions:

1. ϵ < 0: The model is passive by assumption so no purely imaginary eigenvalues are
present (see Figure 5.19a);

2. ϵ = 0: The model is not passive for ω →∞, which means that there are purely imag-
inary Hamiltonian eigenvalues with infinitely large magnitude (see Figure 5.19b);

3. ϵ > 0: In this region the model is not passive thus there are finite purely imaginary
Hamiltonian eigenvalues (see Figure 5.19c).

Recalling that the Hamiltonian eigen-spectrum has a 4-quadrant symmetry, the only way
through which a real eigenvalue can become imaginary (with infinitely large magnitude),
is to follow an unbounded trajectory that, ideally, connects together real and imaginary
axes. This consideration leads us to conclude that, as the passive model approaches the
asymptotic violation area, the eigenvalues real part increases toward infinity.
To better visualize what happens, a good insight is given by the eigenvalues projection
onto the Riemann’s sphere. In Figure 5.20a and 5.20b we show the behaviour of a Hamil-
tonian eigenvalue λi(ϑ) for increasing parameter values: we are interested to study the
intersections of the green line, that connects the eigenvalue position on the complex plane
and the Riemann’s sphere top, with the sphere itself. This method is very useful in this
scope because, by definition, it is possible to map the whole open complex plane on the
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Figure 5.19: Riemann sphere eigenvalues projections

Riemann’s sphere, enabling to deal with infinitely large quantities.
Initially λi(ϑ) is purely real and for increasing parameter its real part increases corre-
spondingly, as the 5.20a shows. It is important to notice that, as the eigenvalue moves
away from the origin, the green line becomes more and more horizontal, making the in-
tersection point to converge toward the top of the sphere. Once Re {λi(ϑ)} → ∞ for
ϑ = ϑ∗, its projection on the sphere lays exactly on the north-pole, being the connec-
tion line perfectly collinear with the real axis. As the parameter value increases by an
infinitesimal quantity, the projection continuously moves on the sphere and, due to spec-
trum symmetry, makes the green line to rotate by 90 degrees, leading to the phenomenon
discussed above, as shown in Figure 5.20b
Thinking at the eigenvalue projection on the Riemann’s sphere instead of at its position
on the complex plane avoids the introduction of an unbounded trajectory that λi(ϑ) must
follow.
As one can imagine by looking at the Riemann’s sphere projections, as one eigenvalue
λi(ϑ) is approaching the violation area, its velocity vλi

(ϑ), intended as:

vλi
(ϑ) =

∂|λi(ϑ)|
∂ϑ

blows up to infinity.
This consideration enables us to cast the search for asymptotic violations, in the derivative-
based framework, as the search for parameters areas in which the velocity of at least one
eigenvalue (and the one of its mirror image) increases by orders of magnitude.
Unfortunately this scheme is not suitable for our purposes because, even if not common,
there are situations in which the velocity of some eigenvalues blows up without, how-
ever, being related to an asymptotic passivity violation. This would lead to sampling
non-critical areas, slowing down the whole adaptive sampling process. For this reason,
more refined techniques to detect asymptotic violations for parametric macro-models are
required.
In the following we will go through two of these. The first one deals with the case in
which the model denominator vanishes for some parameter value, while the other enables
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Figure 5.20: Riemann’s sphere projections

to find violations along the parameter axis, for a fixed frequency.
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5.5.1 Vanishing Denominator

As anticipated, a vanishing denominator leads to an asymptotic passivity violation. In
fact, denoting with ϑ∗ the parameter value for which the denominator vanishes, the
transfer function, when evaluated for ϑ∗, blows up to infinity. This means that, for
ϑ = ϑ∗ at least one Hamiltonian eigenvalue (and its mirror image) is purely imaginary
with infinite magnitude, as we discussed before. This fact can be seen on the singular
values of the direct coupling matrix D(ϑ) associated with the system realization, that for
ϑ = ϑ∗ blow up, as Figure 5.21 shows:
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Figure 5.21: Singular values on singular model (Test Case 14 )

Unfortunately, at this stage, nothing can be done to fix this issue. In fact we would need
to act on denominator residues and perturb them to guarantee that no zeros are present
in the parameter space, without losing accuracy. However, in the proposed passivity
enforcement scheme we are allowed to modify just numerator residues (se Section 3.1),
keeping the denominator ones fixed.
There exist advanced parametric model identification techniques that, to ensure uniform
stability throughout the parameter space, enforce the denominator real part to be positive
for any feasible parameter value (see [9], [8], [22]). A model identified with these methods,
for sure, will not present this kind of issues.

5.5.2 Model Passivity Violation

If the model denominator does not have singularities, we have an asymptotic passivity
violation when I −D(ϑ)TD(ϑ) or D(ϑ) +D(ϑ)T are not positive semi-definite for some
parameter value, for scattering and immittance systems respectively. In the following
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paragraphs we derive an algebraic approach to detect asymptotic violations for immit-
tance and scattering representations.

Scattering Systems

Looking at D(ϑ) matrix singular values, two situations may occur:
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Figure 5.22: Asymptotic violations comparison

The case shown in 5.22a it is not critical, since any parametric passivity verification
algorithm is able to detect the variation on the number of Hamiltonian imaginary eigen-
values, thus sampling accordingly the parameter space. Figure 5.22b shows instead a
more critical case because the passivity violation is located in a small parameter space
area, highlighted by the red circle. Being these asymptotic violations detectable just by
the difference between the number of Hamiltonian imaginary eigenvalues at different sam-
pling points, a standard passivity check algorithm may not spot them. For this reason,
some violations similar to the latter may not be detected and more refined techniques
must be used.
In the following, we are going to present an algebraic method that is able to detect for
which parameter a singular value of D(ϑ) intersects the unity threshold, detecting the
opening or closing of a violation area.
To this end, recalling that D(ϑ) is real-valued, we focus on the following equation:

I−D(ϑ)TD(ϑ) = 0

Recalling the definition of singular values, the previous relation can be cast (for unitary
singular values) as: {

D(ϑ) · u = v

DT(ϑ) · v = u
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and, using the expression of D(ϑ) in terms of model residues (see Section 2.1.2), we get:⎧⎪⎨⎪⎩
R0(ϑ)
r0(ϑ)

· u = v

RT
0(ϑ)

r0(ϑ)
· v = u

(5.25)

where R0(ϑ) and r0(ϑ) are, respectively, the numerator and denominator residues as-
sociated with the partial fraction basis ϕ0(s) = 1. Recalling that ℓ̄N and ℓ̄D are the
parameter basis orders for numerator and denominator respectively, it holds that:⎧⎪⎨⎪⎩

R0(ϑ) =
∑ℓ̄N

ℓ=0R0,ℓξℓ(ϑ)

r0(ϑ) =
∑ℓ̄D

ℓ=0 r0,ℓξℓ(ϑ)

it is then possible to expand Equation (5.25) as:⎧⎪⎨⎪⎩
∑ℓ̄N

ℓ=0R0,ℓ · uℓ −
∑ℓ̄D

ℓ=0 r0,ℓ · vℓ = 0

∑ℓ̄N
ℓ=0R

T
0,ℓ · vℓ −

∑ℓ̄D
ℓ=0 r0,ℓ · uℓ = 0

(5.26)

with vℓ(ϑ) = ξℓ(ϑ)v and uℓ(ϑ) = ξℓ(ϑ)u. We omit the dependency on ϑ for readability.
Up to now the basis functions ξℓ(ϑ) are generic. In the following we will focus on orthog-
onal polynomials basis functions. We know from section 2.1.1 that a generic orthogonal
polynomial can be generated through a recurrence relation, with suitable weights αℓ, βℓ
and δℓ, that reads:

ξℓ+1(ϑ) = (αℓϑ+ βℓ)ξℓ(ϑ) + δℓ−1ξℓ−1(ϑ)

In this case, vectors uℓ and vℓ can be recursively written, up to order ℓ̄− 1 as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = α0ϑu0 + β0u0

u2 = (α1ϑ+ β1)u1 + δ0u0

...

uℓ̄−1 = (αℓ̄−2ϑ+ βℓ̄−2)uℓ̄−2 + δℓ̄−3uℓ̄−3

v1 = α0ϑv0 + β0v0

v2 = (α1ϑ+ β1)v1 + δ0v0

...

vℓ̄−1 = (αℓ̄−2ϑ+ βℓ̄−2)vℓ̄−2 + δℓ̄−3vℓ̄−3

(5.27)

so that the terms uℓ̄ and vℓ̄, through the previous set of equations, depend linearly on
the parameter ϑ, as shown below:

uℓ̄ = (αℓ̄−1ϑ+ βℓ̄−1)uℓ̄−1 + δℓ̄−2uℓ̄−2

vℓ̄ = (αℓ̄−1ϑ+ βℓ̄−1)vℓ̄−1 + δℓ̄−2vℓ̄−2
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Thus Equation (5.26) can be re-written as⎧⎪⎨⎪⎩
∑ℓ̄N−1

ℓ=0 R0,ℓ · uℓ +R0,ℓ̄N · uℓ̄N −
∑ℓ̄D−1

ℓ=0 r0,ℓ · vℓ − r0,ℓ̄D · vℓ̄D = 0

∑ℓ̄N−1
ℓ=0 RT

0,ℓ · vℓ +RT
0,ℓ̄N
· vℓ̄N −

∑ℓ̄D−1
ℓ=0 r0,ℓ · uℓ − r0,ℓ̄D · uℓ̄D = 0

(5.28)

where uℓ̄N , uℓ̄D , vℓ̄N and vℓ̄D are explicit and depends linearly on the parameter ϑ through
(5.27).
The set of equations formed by (5.28) and (5.27) is thus affine in the parameter. By
re-arranging properly the terms, it is possible to solve this system for ϑ. The re-arranged
equations are shown in Equation (5.29):⎧⎪⎨⎪⎩

[Wℓ̄N
R , −Wℓ̄D

IP r] · z+ ϑ · [Sℓ̄NR , −Sℓ̄DIP r] · z = 0

[−Wℓ̄D
IP r Wℓ̄N

RT ] · z+ ϑ · [−Sℓ̄DIP r, Sℓ̄NR ] · z = 0

(5.29)

with

Wℓ̄N
R = [R0,0, R0,1, . . . ,R0,ℓ̄N−2 +R0,ℓ̄N δℓ̄N−1, R0,ℓ̄N−1 +R0,ℓ̄Nβℓ̄N−1, ZN ]

Wℓ̄D
IP r = [IPr0,0, IPr0,1, . . . , IPr0,ℓ̄D−2 + IPr0,ℓ̄Dδℓ̄D−1, IPr0,ℓ̄D−1 + IPr0,ℓ̄Dβℓ̄D−1, ZD]

Sℓ̄NR = [0,0, . . . , αℓ̄N−1Rℓ̄N , ZN ]

Sℓ̄DIP r = [0,0, . . . , αℓ̄D−1Rℓ̄D , ZD]

z = [uT
0 , . . . ,u

T
ℓ̄−1,v

T
0 , . . . ,v

T
ℓ̄−1]

T, ℓ̄ = max{ℓ̄N , ℓ̄D}

where matrices ZN and ZD take into account the case in which ℓ̄N /= ℓ̄D.
More precisely, if ℓ̄N > ℓ̄D:

ZD = 0 ∈ RP×P (ℓ̄N−ℓ̄D)

ZN is empty

conversely, if ℓ̄D > ℓ̄N :

ZN = 0 ∈ RP×P (ℓ̄D−ℓ̄N )

ZD is empty

Finally, if ℓ̄N = ℓ̄D, both ZD and ZN will be empty.
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Defining now the following matrices:

Ξℓ̄ =

⎛⎜⎜⎜⎝
β0IP −IP 0P

δ1IP β1IP −IP
. . .

. . .
. . .

δℓ̄−2IP βℓ̄−2IP −IP

⎞⎟⎟⎟⎠

Ψℓ̄ =

⎛⎜⎜⎜⎝
α0I 0P

α1I 0P

. . .
...

αℓ̄−2 0P

⎞⎟⎟⎟⎠
the complete set of equation is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝Wℓ̄N
R −Wℓ̄D

IP r

Ξℓ̄ 0P (ℓ̄−2)

⎞⎟⎠ · z+ ϑ ·

⎛⎜⎝Sℓ̄NR −Sℓ̄DIP r

Ψℓ̄ 0P (ℓ̄−2)

⎞⎟⎠ · z = 0P ℓ̄×1

⎛⎜⎝−W
ℓ̄D
IP r Wℓ̄N

RT

0P (ℓ̄−2) Ξℓ̄

⎞⎟⎠ · z+ ϑ ·

⎛⎜⎝ −S
ℓ̄D
IP r Sℓ̄NRT

0P (ℓ̄−2) Ψℓ̄

⎞⎟⎠ · z = 0P ℓ̄×1

Looking at its particular structure, the above system can be cast in just one block equation
as follows:

P0 · z+ ϑP1 · z = 02P ℓ̄×1 (5.30)

where the matrices P0 and P1 are:

P0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wℓ̄N
R −Wℓ̄D

IP r

Ξℓ̄ 0P (ℓ̄−2)

−Wℓ̄D
IP r Wℓ̄N

RT

0P (ℓ̄−2) Ξℓ̄

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R2P ℓ̄ (5.31)

P1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sℓ̄NR −Sℓ̄DIP r

Ψℓ̄ 0P (ℓ̄−2)

−Sℓ̄DIP r Sℓ̄NRT

0P (ℓ̄−2) Ψℓ̄

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R2P ℓ̄
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Immittance Systems

An immittance system is not asymptotically passive if D(ϑ) + DT(ϑ) is not positive-
definite. In order to find asymptotic violations we need to find for which parameter
values D(ϑ) +DT(ϑ) is singular. To this end we can write:[

D(ϑ) +DT(ϑ)
]
u = 0

for any vector u.
We recall that:

D(ϑ) =
R0(ϑ)

r0(ϑ)

Assuming that r0(ϑ) /= 0 ∀ϑ, as it is always when dealing with guaranteed stable models
[8, 9, 22], it follows that:[

R0(ϑ)

r0(ϑ)
+

RT
0 (ϑ)

r0(ϑ)

]
u = 0 ⇒

[
R0(ϑ) +RT

0 (ϑ)
]
u = 0 (5.32)

Defining R
′
(ϑ) = R0(ϑ) +RT

0 (ϑ), we know from Section 2.1 that:

R
′
(ϑ) =

ℓ̄∑
ℓ=0

(R0,ℓξℓ(ϑ) +RT
0,ℓξℓ(ϑ)) =

ℓ̄∑
ℓ=0

R
′

0,ℓξℓ(ϑ)

where R
′

0,ℓ = R0,ℓ +RT
0,ℓ From (5.32) we can state that:⎡⎣ ℓ̄∑
ℓ=0

R
′

0,ℓξℓ(ϑ)

⎤⎦u = 0⇒

⎡⎣ ℓ̄∑
ℓ=0

R
′

0,ℓuℓ(ϑ)

⎤⎦ = 0 (5.33)

with uℓ(ϑ) = u ξℓ(ϑ).
As in the scattering case, using the orthogonal polynomials recursive relation we can
write vectors uℓ up to the order ℓ̄− 1 as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u1 = α0ϑu0 + β0u0

u2 = (α1ϑ+ β1)u1 + δ0u0

...

uℓ̄−1 = (αℓ̄−2ϑ+ βℓ̄−2)uℓ̄−2 + δℓ̄−3uℓ̄−3

(5.34)

Thus, through the previous relations, the term uℓ̄ depends linearly on the parameter ϑ.
We can expand (5.33) as:

ℓ̄N−1∑
ℓ=0

R
′

0,ℓ · uℓ +R
′

0,ℓ̄N
· uℓ̄N = 0 (5.35)

The last term is linearly dependent on ϑ through (5.34). The set of Equations defined
by (5.35) and (5.34) is now affine in the parameter ϑ. Thanks to this consideration it is
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possible to cast the problem of finding asymptotic violations as we did in the scattering
case. Moreover, in this case, the matrices that are involved are much simpler.
By re-arranging the terms in (5.35) and (5.34), we get:

P0z+ ϑ P1z = 0 (5.36)

where z = [u0, . . . ,uℓ̄−1], and

P0 =

⎛⎝Wℓ̄N
R′

Ξℓ̄

⎞⎠ P1 =

⎛⎝Sℓ̄N
R′

Ψℓ̄

⎞⎠
Equations (5.30) and (5.36) form generalized eigenvalue problems, where the generalized
eigenvalues are the parameter values for which at least a singular value of D(ϑ) matrix
intersects the unity threshold or an eigenvalue of D(ϑ) + DT(ϑ) vanishes. The solu-
tion of these problems can be found with any available eigen-solver. In general, not all
the generalized eigenvalues correspond to a passivity violation because they may be in
complex-conjugate pairs (that are not feasible since the parameters of interest are real
numbers) or be located outside the considered parameter space. Therefore we need to
find the generalized eigenvalues ϑi ∈ Θ.
In the following we present a set of numerical results that test this algorithm on a number
of real test cases. We report results for scattering cases, but the same holds for immit-
tance systems. In the figures, blue lines represent the singular values of D(ϑ) computed
for a dense parameter sweep, while yellow dots correspond to unit threshold intersection
computed with the proposed method.
In Figure 5.23 we propose a result taken from Test Case 2–b (see Appendix A), where
the asymptotic passivity violation spans a large amount of the parameter space, then
it is well detectable by the standard passivity check algorithm and no refined algebraic
checks are required. However, we see that this method is able to spot precisely where
asymptotic violations occur.

Figure 5.24 shows, instead, a more critical case (taken from Test Case 4–b) where, as
explained above, an algebraic test is required. In fact the violation is located in a small
parameter space region (the parameter space is defined from ϑ = 1 to ϑ = 25, then the
violation spans just a 0.06 % of the whole space), that may not be detected by the stan-
dard passivity verification algorithm. We see that the proposed scheme is able to detect
violation points.

Figures 5.25a shows an even more interesting test case (Test Case 4–b), in which it
seems that the proposed method fails. In fact, there is a solution of (5.30) corresponding
to ϑ ≈ 24.8 without any singular value crossing the unit threshold. Actually, by zoom-
ing in this area, as shown in Figure 5.25b, we see that the algebraic approach returns
a correct result and the above problem is due to poor number of sampled singular values.

If violations are found, we need to formulate additional passivity constraints. To this
end, as for the classical Hamiltonian driven method performed along the frequency axis,
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Figure 5.23: Well behaved singular values (Test Case 2–b)
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Figure 5.24: Critical singular values (Test Case 4–b)

we partition the parameter space accordingly to the solutions of (5.30) or (5.36) and, by
extracting the singular values of D(ϑ) or the eigenvalues of D(ϑ) +D(ϑ)T in the middle
of each violation sub-interval we can detect which is passive and which is not. In the non-
passive ones, a set of additional points are sampled and the constraints are formulated.
Algorithm 5.10 shows this procedure.
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(a) Seemingly wrong solution
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(b) Zoom on the same area

Figure 5.25: An example of the algebraic method accuracy (Test Case 4–b)

Algorithm 5.10 Asymptotic passivity violations detection

1: Get model numerator and denominator residues Rn,ℓ, rn,ℓ for n = 0, . . . , n̄, ℓ =
0, . . . , ℓ̄

2: Build matrices P0 and P1 according to (5.31)
3: Solve the eigenproblem in (5.30) or (5.36) for ϑ ∈ Θ and collect violations in a vector

τ
4: if card(τ) = 0 then
5: break
6: else
7: Partition the parameter axis in card(τ) + 1 sub-intervals according to the viola-

tions found before
8: Find nv regions where the model is not asymptotically passive through D(ϑ)

singular values or D(ϑ)T +D(ϑ) eigenvalues
9: for i = 1 : nv do

10: Get left and right edges [ϑLi
, ϑRi

] of the i-th violation interval
11: Sample this region with additional points as detailed in Section 5.2
12: Update violation structure W
13: end for
14: end if
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Chapter 6

Multi-Variate Passivity

Verification

In previous Chapters the problems of passivity verification and enforcement for para-
metric macro-models has been addressed. However we restricted our framework to non-
parametric (just frequency dependent) or mono-parametric models (dependent on the
frequency and an external parameter). In this Chapter we are going to extend our frame-
work to multi-parametric models. In particular, we will discuss about some issues that
come along with the increasing number of parameters and we will present a passivity
verification method for bi-variate macro-models (dependent on the frequency and two
external parameters). Finally, several numerical results show the capabilities of the pro-
posed scheme.

6.1 Multi-Parametric Passivity Assessment

In Chapters 4 and 5 we saw that, as the number of parameters increases, the complexity in
developing passivity verification algorithms increases correspondingly due to the necessity
of finding a suitable trade-off between reliability and computational times. In fact, since
no algebraic approaches are available to detect passivity violations in a (ρ+1)-dimensional
space, with ρ the number of parameters, all we can do is to adaptively move along
the parameters directions while performing Hamiltonian-driven tests along the frequency
axis. As one can imagine, as the number of parameters increase, this task becomes
more and more complex, up to be un-manageable in terms of memory and computational
time requirements. In technical literature this fact is known with the name of ”curse of
dimensionality”. In details, the curse of dimensionality arises whenever we deal with high
dimensional problems and, in our case, is related to the number of samples required to
reliably check the model passivity on a multi-dimensional space, that grows exponentially
with the number of parameters. In fact, supposing that each parameter is orthogonal with
respect to the others, the parameter space is a hypercube in Rρ. Thus, assuming to place
a number f of samples along each dimension, we see that the total number of points
is F = fρ. Recalling that for each sample we must extract Hamiltonian eigenvalues, it
follows that computational times blow up even with low values of ρ. These considerations
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lead us to conclude that the problem of multi-parametric passivity verification is, in
general, too hard to be solved with adaptive techniques and that more refined schemes
are needed. On the other hand, with ρ = 2 the computational effort is expected to be
still reasonable. Thus, in the following we will develop an adaptive passivity verification
algorithm for bi-variate macro-models.

6.2 A Bi-Dimensional Parameter Space

In the case of a bi-variate model, the space in which we must verify passivity is a subset
of R3. Assuming to use a Hamiltonian-verification method along the frequency axis, we
need to adaptively search for violations no more on a segment, as in the mono-dimensional
case, but on a bounded subset Θ of R2, see (2.1). Some observations about this plane
are in order. From now on, in fact, we will assume that the parameters are independent,
so that the variation of one parameter does not affect the other. This is compliant with
the parameters space definition given in (2.1), that leads Θ to be at most rectangular.
Additionally, with the idea of using a hierarchical approach to define the points in Θ, as
detailed in Section 5.3.1, we will normalize its boundaries to be [0, 1] segments, reducing

it to a unit area square, denoted as Θ̃. In the following, we will label the two parameters,

without loss of generality, with x and y. Thus, a point ϑ̃m = [ϑ̃
(x)
mx , ϑ̃

(y)
my ]

T belonging to

the normalized space Θ̃ is uniquely determined by the value attained by the multi-index

m = [mx, my]
T. Coordinates ϑ̃

(x)
mx and ϑ̃

(y)
my are identified in the hierarchical framework

by indices {kmx
, jmx

} and {kmy
, jmy

} as:

ϑ̃(x)
mx

= kmx
· 2−jmx (6.1)

ϑ̃(y)
my

= kmy
· 2−jmy

As for the mono-parametric case, we partition the normalized parameter space Θ̃ in
smaller areas, from now on denoted as ”patches”, used as elementary objects where, with
a suitable strategy, we will search for passivity violations (in the following we will refer
to this practice also as ”tessellation”). About the shape of these patches, we must be
aware that the refinement algorithm performances strongly depend on it. We know from
finite-elements literature that is common practice to use triangle meshes due to some
peculiar properties that they have but, in our case, being the domain Θ̃ a square, we can
safely use squares or, more in general, rectangles. This choice, as we will see later on,
greatly simplifies the algorithm implementation without reducing its reliability.
A patch is completely defined by the coordinates of its four vertices: in fact, with just
these information we can identify uniquely every patch in the parameter space. Starting
from the left-bottom vertex and moving in counter-clockwise direction, the vertices are
denoted as V1, V2, V3, V4. A graphical representation is given in Figure 6.1

If a set of non-passive parameter values is likely to be found inside a patch, the lat-
ter must be refined to better characterize the area. For us, refining a patch means to
subdivide it in smaller patches that, inheriting all the properties detailed above, must be
at most rectangles.
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Figure 6.1: Elementary patch with vertices location

If, in addition to that, we notice from (6.1) that a bisection approach is used to define
points along both axes, just three different types of patch subdivision are allowed:

❼ Four sub-squares (see Figure 6.2a). When this refinement is performed all the edges
mid-points and the patch center are sampled. In the following we will denote this
refinement as ”full”;

❼ Two rectangles whose length is twice the height (see Figure 6.2b). This refinement
requires to sample just the vertical edges mid-points. In the following this refinement
will be denoted as ”vertical”;

❼ Two rectangles whose height is twice the length (see Figure 6.2c). This refinement
requires to sample just the horizontal edges mid-points. In the following this refine-
ment will be denoted as ”horizontal”.

(a) Full refinement (b) Vertical refinement (c) Horizontal refinement

Figure 6.2: Patch refinement schemes

To better explain the refinement procedure we want to pursue, Figure 6.3 shows an ex-
ample of two successive refinements, identified by different colors. We start with a 2× 2
uniform grid, whose vertices are identified by blue dots, then we proceed by refining
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horizontally the left-bottom patch, sampling the red-dotted points. Then, the resulting
rectangular patch is then fully refined, which means that all the five green-dotted points
are sampled.

Figure 6.3: Successive refinements on the normalized parameter plane Θ̃

We assume now that the vertices locations for a generic patch on the parameters space
are known and defined by a multi-index mi = [mix , miy ]

T, such that the i-th vertex Vi
is defined as:

Vi = ϑ̃mi
= {ϑ̃(x)

mix
, ϑ̃(y)

miy
}

for i = 1, . . . ,4.
For readability, from now on, we will drop the subscript m and superscripts (x), (y), thus:

Vi = {ϑ̃ix , ϑ̃iy}

The hierarchical indices for ϑ̃ix and ϑ̃iy are, respectively, {kxi
, jxi
} and {kyi

, jyi
}.

Furthermore, we suppose that, without loss of generality, this patch is a rectangle whose
width is 2−jH and height 2−jV , with jH , jV ∈ N.
Denoting now the refined patch vertices as Vr1 , Vr2 , Vr3 , Vr4 , Vr5 , placed as in Figure 6.4,
in the following we derive, starting from the vertices of the patch we are refining, the

hierarchical indices k
(r)
xi , j

(r)
xi , k

(r)
yi , j

(r)
yi for each sub-patch vertex:

Vr1 = {ϑ̃1x
, ϑ̃1y

}, k(r)x1
= kx1

· 2jH+1−jx1 + 1 (6.2)

j(r)x1
= jH + 1

k(r)y1
= ky1

j(r)y1
= jx1

117



A Bi-Dimensional Parameter Space

Figure 6.4: Ordering of refined vertices

Vr2 = {ϑ̃2x
, ϑ̃2y

}, k(r)x2
= kx2

j(r)x2
= jx2

k(r)y2
= ky2

· 2jV +1−jy2 + 1

j(r)y2
= jV + 1

Vr3 = {ϑ̃3x
, ϑ̃3y

}, k(r)x3
= kx3

· 2jH+1−jx3 − 1

j(r)x3
= jH + 1

k(r)y3
= ky3

j(r)y3
= jy3

Vr4 = {ϑ̃4x
, ϑ̃4y

}, k(r)x4
= kx4

j(r)x4
= jx4

k(r)y4
= ky4

· 2jV +1−jy4 − 1

j(r)y4
= jV + 1

Vr5 = {ϑ̃5x
, ϑ̃5y

}, k(r)x5
= kx1

· 2jH+1−jx1 + 1

j(r)x5
= jH + 1

k(r)y5
= ky2

· 2jV +1−jy2 + 1

j(r)y5
= jV + 1
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These equations allow us to retrieve sub-patches vertices coordinates, thus enabling to
completely define them. Thus, according to the previous categorization, in refining a
patch the following rules hold:

❼ To perform a full-refinement we need to compute all the vertices coordinates Vr1 ,
Vr2 , Vr3 , Vr4 , Vr5

❼ To perform a vertical refinement we need to compute Vr2 and Vr4

❼ To perform a horizontal refinement we need to compute Vr1 and Vr3

The need of three different sub-patches types comes along with the necessity of improving
the efficiency of the adaptive algorithm. In principle, to avoid losing any violation area,
a full patch refinement would be necessary. However, there are cases in which this strat-
egy turns out to be too conservative and unnecessarily time-consuming. For this reason
we introduced the other two methodologies, enabling to save computational time (they
require to sample just two points instead of five) in these cases where a full-refinement
does not add useful information with respect to the other ones.

Summarizing, in this section we discussed about a 2-dimensional parameter space and
its normalization. Moreover, we introduced a parameter space tessellation strategy to be
used in localizing passivity violations. In the following section we will present in detail
the adaptive refinement technique used in a bi-variate passivity verification algorithm.

6.3 Bi-Dimensional Adaptive Refinement Scheme

In this section we are going to present an adaptive bi-dimensional sampling scheme for
bi-variate macro-models passivity verification. The main framework remains unchanged
with respect to the mono-parametric case. In fact, an initial uniform sampling, whose
aim is to coarsely define violation macro-areas, is followed by a number of refined passes,
if necessary, used to better characterize the more critical ones.

6.3.1 Coarse Sampling

The proposed passivity verification algorithm starts with a coarse uniform sampling of
the parameter space Θ̃ by subdividing both directions into 2j

x
0 and 2j

y
0 intervals, for x

and y directions respectively. To define the initial refinement levels jx0 and jy0 we proceed
similarly to what we did in the mono-parametric case (see Section 5.2.1). However, since
the heuristic rule in Equation (5.18) is strongly related to the cardinality of the parameter
basis functions, the two refinement levels are, in general, different. Denoting with ℓ̄x and
ℓ̄y the cardinalities of these basis functions for x and y parameters respectively, we can
retrieve the initial refinement levels as shown in Equation (6.3):

jx0 = log2⌈κ ℓ̄x⌉
jy0 = log2⌈κ ℓ̄y⌉ (6.3)
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for κ > 1.

A number 2j
x
0 + 1 and 2j

y
0 + 1 of uniformly spaced points, stored respectively in Sx0 and

Sy0 , are thus identified along x and y directions. Then, the parameter space points to be
sampled at this stage, denoted as SG, are defined by the cartesian product SG0 = Sx0 ×S

y
0 .

After all these points have been sampled, 2j
x
0+jy0 patches are constructed starting from

the coordinates in SG0 . For us, constructing a patch, means that, starting from the ver-
tices coordinates, we define its edges and we store the corresponding patch information as
elementary cell in a data-structure. In the case of a coarse sampling, this data-structure
is defined as Qj0 and the i-th patch in it is denoted as Qj0

i .

Figure 6.5 shows an example of the normalized parameter space Θ̃ after the initial sam-
pling, performed with jx0 = 2 and jy0 = 3. Blue dots represent the sampled points, defined
by the cartesian product, while the black lines denote the patch edges.

Figure 6.5: Initial coarse sampling in Θ̃ with jx0 = 2 and jy0 = 3

6.3.2 Refined Adaptive Sampling

In this section we are going to discuss about the adaptive refinement strategy.
In Chapter 4 and 5 we proposed two adaptive passivity assessment methodologies for
mono-variate models. In the bi-variate case we chose to follow the derivative-based ap-
proach (Chapter 5), due to its higher reliability, as numerical results show in Section 5.4,
and because it can be easily extended to a multi-variate case with minor modifications.

The mathematical framework we derived in Section 5.1 about Hamiltonian eigenvalues
derivatives must be now extended to a multi-dimensional case.
To this end, given the eigen-spectrum Λϑ0

of a Hamiltonian matrix M(ϑ0) or a pencil

(M(ϑ0),K), we want to compute the set of linearly perturbed eigenvalues Λ̂ϑ0
at generic

parameter space point ϑ = ϑ0 +∆ϑ, where ϑ0 = [ϑ1
0, . . . , ϑ

ρ
0] and ∆ϑ = [δϑ1, . . . , δϑρ].
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Considering thus an eigenvalue λ ∈ Λϑ0
, a variation δϑi along the i-th parameter induces,

at first order, an eigenvalue perturbation δλi that reads:

δλi =
∂λ

∂ϑi
|ϑ=ϑ0

· δϑi (6.4)

To compute this derivative we must evaluate M(ϑ0) for all the parameters, except for
the i-th one, and follow the same procedure detailed in Section 5.1.
Assuming that the perturbations δλi are known for i = 1, . . . , ρ, we can compute the
perturbation of λ in ϑ, denoted with λ̂, as:

λ̂ = λ+

ρ∑
i=1

δλi (6.5)

In the case of a 2-dimensional parameter space, the terms ϑ0 and ∆ϑ read:

ϑ0 = [ϑ
(1)
0 , ϑ

(2)
0 ] = [ϑ

(x)
0 , ϑ

(y)
0 ]

∆ϑ = [δϑ
(1)
0 , δϑ

(2)
0 ] = [δϑ

(x)
0 , δϑ

(y)
0 ]

Thus, the perturbed eigenvalue λ̂ is:

λ̂ = λ+ δλx + δλy

where

δλx =
∂λ

∂ϑx
|ϑ=ϑ0

· δϑx

δλy =
∂λ

∂ϑy
|ϑ=ϑ0

· δϑy

What is important to notice is that, to retrieve linearly approximated perturbed eigen-
values, it suffices to compute ρ mono-dimensional perturbations, as in Equation (6.4),
and then combine them together as in (6.5). Thus, the same method we developed for
the mono-dimensional case can be applied here without modifications.
Finally, as for the mono-dimensional case, we define a multi-dimensional perturbation
operator as:

Λ̂ϑ0
(ϑ) = P∆ϑ

M,K(ϑ0)

Once we detailed how Hamiltonian eigenvalues perturbations can be applied to a multi-
dimensional space, we are ready to discuss about the adaptive scheme.
The parameter space patches subdivision described in the previous section turns out to
be fundamental in this context. Well-defined patch structures allow us to exploit their
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geometrical properties to detect if some critical areas (where a passivity violation may
occur) are located inside them. In particular, we assume that, in order to decide whether
the patch must be refined or not, just its edges have to be checked, leading us to easily
select which type of refinement (full, vertical or horizontal) should be applied.
For this purpose, we identified the following rules:

❼ If a horizontal edge must be refined, a corresponding horizontal refinement is applied
to the patch;

❼ If a vertical edge must be refined, a vertical refinement is applied to the patch;

❼ If both horizontal and vertical edges must be refined, then a full-refinement is applied
to the patch.

Therefore, the following strategy is used to detect if a generic patch edge needs a refine-
ment

❼ If both edge end-points are not passive, a non-passive area around the edge has
already been found and no additional samples are required. An example of this
situation is shown in Figure 6.6a, where the red dots represent the non passive edge
end-points;

❼ If one edge end-point is passive and the other is not, a violation area is located
somewhere inside the edge. Thus, this edge is labelled as critical, since additional
samples are then required to find the actual boundaries of this area. An example
is given in Figure 6.6b, where the red and green dots represent the non-passive and
passive end-points of the black edge;

❼ If both edge end-points are passive we can either infer that we identified a passive
area or that a violation may be located between the two points. Then, to distinguish
these two cases, a more refined check is needed. We present an example in Figure
6.6c, where the green dots are the passive edge end-points and the dashed line
bounds a possibly non-passive area that, being not yet spotted, must be detected
with a more refined technique.

(a) Both non-passive end-points

(b) Passive/non-passive end-points

(c) Passive end-points

Figure 6.6

122



Bi-Dimensional Adaptive Refinement Scheme

To detect, in the third case, if some violation areas are likely to be located inside an
edge aligned with the i-th parameter, we use the technique of Hamiltonian eigenvalues
perturbations. Thus, we proceed by extracting all the Hamiltonian eigenvalues at both
edge end-points, then we perturb them of a quantity δϑi toward a testing node ϑi

T lo-
cated at the edge mid-point (Figure 6.7 shows these perturbations applied on a generic
patch edge). This double check is required to deal with the non-linearity of eigenvalues

Figure 6.7: Perturbations directions on a generic patch edge

trajectories. Additionally, as detailed in Section 5.2.2, we note that a perturbation to-
ward the edge center may be not enough to detect violations, specifically when strong
non-linearities occur. Thus, we introduce a factor α, in such a way that we can modulate
the perturbation extent as: ⏐⏐δϑi

ext

⏐⏐ = α ·
⏐⏐δϑi

⏐⏐
In the majority of test-cases a value α = 1 is enough to guarantee that all violation areas
are spotted, but a suitable trade-off between computational times and reliability is given
by α in the range [34 , 2]. In this bi-dimensional case the choice of this value greatly affects
the CPU time, thus it must be chosen carefully.
We see that, with the assumption of looking just at patch edges, the bi-dimensional
passivity verification problem reduces to the one we addressed in the mono-dimensional
case, enabling to use the same strategy, illustrated in Table 5.1, with minor changes.
Considering thus a 2nd quadrant Hamiltonian eigenvalue λ(ϑ0) evaluated for ϑ = ϑ0

and its first order derivative with respect to the i-th parameter ∂λ
∂ϑi |ϑ=ϑ0

, if λ̂(ϑi
0 + δϑi)

denotes its perturbation induced by a parameter variation equal to δϑi, the rules in Ta-
ble 6.1 hold (for a graphical representation of cases detailed below see Figures 5.7a–5.7d):

Case Re {λ(ϑ0)} < −δth Re
{

∂λ
∂ϑi |ϑ=ϑ0

}
> 0 Critical ?

1 NO YES YES

2 YES YES Check Re
{
λ̂(ϑi

0 + δϑi)
}

3 YES NO NO
4 NO NO NO

Table 6.1: Multi-dimensional critical cases for adaptive refinement

As anticipated, we see that the definitions of critical cases have not changed with re-
spect to the mono-dimensional case, they have been just extended to a higher dimension.
Furthermore, we see that, in the context of a multi-dimensional space, the derivative-
based framework enables to reduce the problem of detecting passivity violations to the
computation of perturbed Hamiltonian eigen-spectra along suitable directions defined by
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the perturbation vector ∆ϑ. Once these perturbed eigenvalues are known, the same rules
in Table 6.1 hold.

So far, by assumption, we focused just on a generic patch edge. However this verifi-
cation strategy applies without modifications to all the edges, as shown in Figure 6.8.

Figure 6.8: Patch edges eigenvalues perturbation directions

As one can see, the red and green arrows follow two different rotation directions. Thus,
during the actual implementation, instead of focusing on single edges perturbations, it is
better to execute all the clockwise followed by the counter-clockwise ones (or vice-versa).
This arrangement enables us to have a cleaner implementation and better performances
of the whole algorithm.

Now that we detailed how a patch edge is checked to detect possible nearby passivity
violations, we can discuss about the strategy we pursue in checking, through its edges,
the whole patch. Conversely from what we did in the mono-dimensional case, where as
soon as a violation was detected a refinement was applied, here we store in a structure R
the directions (vertical or horizontal) that are critical then, at the end of the verification
process, a refinement is applied according to its content.
First of all, we coarsely characterize the patch through its vertices by detecting which are
passive and which are not through a standard Hamiltonian-driven test. According to the
results, the following cases may occur:

❼ If for all the vertices the model is not passive, no other verifications are required
since we spotted a uniformly non-passive area. Thus, the patch is not refined and
we proceed directly in analyzing the next one;

❼ If for all the vertices the model is passive, we need further verifications to characterize
the patch. However, up to now, no refinement are needed, thus R is left empty;

❼ If the model is passive for some vertices and for other is not, we need to refine the
patch according to the relative positions of passive and non-passive edges. Thus R
is filled with the directions along which we need to refine.
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At this stage, if not all the vertices are not passive, according to the cardinality of R (i.e.
the number of critical directions it contains), we can directly proceed in fully refining the
patch, if card(R) = 2, or we need to perform further verifications if card(R) = 0 or
card(R) = 1.
If refined checks are required, we define a new structure R̄ that is, in some sense, comple-
mentary to R, since it contains the directions that are not contained in R, and that need
additional tests to be labeled as critical or not. Thus, through the Hamiltonian eigen-
values perturbations technique, performed on the directions contained in R̄, we detect if
some violations are likely to be found along the considered edges. If some direction is
labeled as critical, it is added to R.
Once all the required perturbations have been performed, we are ready to refine the patch
according to the content of R

❼ If R =Ø, no refinement are needed;

❼ If it contains just the horizontal or vertical direction, the patch is refined accordingly;

❼ If it contains both directions, a full refinement is performed.

Once the the patch is refined and the sub-patches are created and stored in memory, we
can remove from it the initial patch, since useless from now on.

The proposed adaptive refinement technique is cast inside an iterative loop that, at each
iteration, checks just the elementary patches that have been refined at the previous one,
stored in a data-structure Qj with j an iteration index, avoiding expensive yet useless
eigenvalues extractions on areas already characterized as passive or not passive. This
iterative process stops when no refinements have been performed at the current iteration,
which means that no other information is needed to characterize the model passivity, or
when a maximum refinement level jmax is reached.

As result of this bi-variate passivity verification algorithm we obtain the locations of
passivity violations. In particular, planning to use this verification scheme inside a multi-
variate extension of the iterative passivity enforcement algorithm presented in 4.4 (based
on local linearized passivity constraints), we must locate the worst case violations (mini-
mum eigenvalue/maximum singular value) in each non-passive frequency band, for a fixed
parameters values combination ϑm = {ϑmx

, ϑmy
}. Thus, to properly formulate passivity

constraints we must store the largest violations as triplets (ω̄i,ϑm, λi) for immittance
systems or (ω̄i,ϑm, σi) for scattering systems, where λi and σi denote the minimum
eigenvalue of H(jω̄i;ϑm) +HH(jω̄i;ϑm) and the maximum singular value of H(jω̄i;ϑm),
respectively. All the passivity locations are collected in a data-structure W.

In Algorithm 6.11 we show a pseudo-code for the proposed verification scheme.
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Algorithm 6.11 Bi-dimensional adaptive passivity verification algorithm

Require: Parametric model H(s;ϑ)
Require: Parameters basis orders ℓ̄x, ℓ̄y
Require: Algorithm control parameters κ, α, jmax

1: Get initial refinement levels jx0 , jy0 as in (6.3)
2: Sample initial points along x and y directions and store them in Sx, Sy respectively
3: Get initial grid points SG0 as Sx0 × S

y
0

4: Sample points in SG0 and store violations in W as (ω̄i,ϑm, λi) or (ω̄i,ϑm, σi)
5: for j = max{jx0 , j

y
0}, . . . , jmax do

6: Define the set of patches Qj to be checked at the current iteration
7: if Qj =Ø then
8: Return passivity violations W
9: break

10: end if
11: Set q as the cardinality of Qj

12: for i = 1, . . . , q do
13: Initialize R = Ø
14: Get vertices coordinates V1, . . . ,V4 of the i-th patch in Qj , denoted as Qj

i
15: Check if H(s;ϑm) is passive in V1, . . . ,V4
16: if H(s;ϑm) not passive ∀ V1, . . . ,V4 then
17: break
18: else
19: Store in R the directions to be refined, according to the adaptive strategy
20: end if
21: if cardinality of R = 2 then
22: Compute vertices coordinates Vr1 , . . . ,Vr5 as in (6.2)
23: Sample the vertices and store violations as (ω̄i,ϑm, λi) or (ω̄i,ϑm, σi) in
W

24: Construct new sub-patches and store them in Qj+1

25: break
26: end if
27: Set R̄ as the complementary of R
28: Get perturbed eigen-spectra Λ̂ϑi

(ϑ) = P∆ϑ
M,K(ϑi) centered in Vi, along direc-

tions in R̄
29: if Λ̂ϑi

(ϑ) critical according to Table 6.1 then
30: Update R with critical direction
31: end if
32: end for
33: if R = Ø then
34: break
35: else
36: Compute required vertices coordinates Vr1 , . . . ,Vr5 ,as in (6.2), according to R
37: Sample the vertices and store violations as (ω̄i,ϑm, λi) or (ω̄i,ϑm, σi) in W
38: Create sub-patches and store them in Qj+1

39: end if
40: end for
41: return Passivity violations W 126
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6.3.3 Numerical Results

In this Section we are going to present some numerical results, showing the performances
of the proposed verification scheme. In details, we want to focus on its ability to locate
all the violation areas in the parameter space and refine just the more critical ones. To
this end, we use an intermediate passivity enforcement model (fifth iteration) related
to Test Case 15 (for details see Appendix A), adaptively sampled with the proposed
method. Figures 6.9a–6.9d represent the violations in parameter space related to four
successive refinement iterations: green dots denote parameter space points where the
model is passive ∀ω while the red-dots represent, instead, points in which the model is
not passive for at least one frequency value.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Adaptive refinement: Iteration 1 (b) Adaptive refinement: Iteration 2

(c) Adaptive refinement: Iteration 3 (d) Adaptive refinement: Iteration 4

Figure 6.9: Successive adaptive refinement iterations )Test Case 15

We see that the proposed adaptive approach, whose settings are listed below:

❼ jx0 = 3, jy0 = 3

❼ jmax = 6
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❼ α = 3
4

is able to iteratively locate and define all the violations areas in the parameter space and
it is remarkable its ability to define passive/non-passive interface regions. In this respect,
the choice of enabling the use of rectangular sub-patches turns out to be fundamental.
To verify the reliability of this method, we compare the result shown in Figure 6.9d
with the one Figure 6.10, that represents the outcome of a fine uniform passivity check.
We notice that the proposed strategy, precisely because of the look-ahead properties of

Figure 6.10: Uniform passivity verification outcome

Hamiltonian eigenvalue perturbations, is able to spot all the violation areas, even the
smallest, as the one located in the upper-left quadrant. The difference in computational
times is remarkable. In fact, the adaptive algorithm took 40 sec to reach the presented
results, while the uniform check took around 2 minutes. This difference justifies the choice
of an adaptive approach in parametric passivity verification.
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6.4 Multi-Parametric Passivity Enforcement

In this section we will extend the local passivity enforcement algorithm shown in Sec-
tion 4.4 to the multi-dimensional case. Before detailing how this can be done, we must
discuss about the notation, in order to keep it compact even when the number of param-
eters increases. To this end, in the following, we will go through two different indexing
methodologies for tensors, namely, the subscripts and the linear indexing.

6.4.1 Linear and Subscript Indexing for Tensors

Suppose that Ti,j,k is a 3-way tensor, whose entries are identified by the values assumed
by indices i, j, k. Our aim is to vectorize the elements of this tensor through a suitable
operator, similarly to what the operator vec(·) does on matrices. Thus, assuming that
i = 1, . . . , ı̄, j = 1, . . . , ̄, k = 1, . . . , k̄ and denoting as Tk the k-th slice extracted from
the tensor along the third dimension, we define the operator Vec(·) that, acting on T as
shown in (6.6), returns its vectorization, denoted as t:

t = Vec(T ) ⇔ t = [vec(T1)
T, . . . ,vec(Tk)

T, . . . ,vec(Tk̄)
T]T (6.6)

For a generic g-way tensor T , the operator Vec(·) re-shapes its elements according to the
ordering followed by MATLAB built-in function sub2ind.

The same re-shaping operation can be performed on the indices of tensor elements. It is
common in dealing with these objects to pass from a so-called subscript notation (the one
with i, j, k indices) to a linear one, where each element belonging to the tensor is iden-
tified by a linear index. To better explain this operation we start with a bi-dimensional
example. Denoting with M a 3× 3 matrix, we identify its entries in subscripts notation
as tuples (i, j). Our aim is to assign to each element in M a linear index that identifies
it uniquely. In Figure 6.11, the left panel represents the subscripts notation while in the
right panel is shown the linear one.

1,1 1,2 1,3

2,1 2,32,2

3,1 3,2 3,3

(a) Subscript indexing

1

2

3

4

5

6

7

8

9

(b) Linear indexing

Figure 6.11: Subscripts and linear indexing for a 3× 3 matrix

Supposing now that M is a generic m̄x × m̄y matrix, whose elements are identified in
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subscripts notation as m = (mx, my), we can define a linear index p = 1, . . . , p̄, with
p̄ = m̄x · m̄y, that can be used to uniquely identify each matrix element. The operation
that allows to pass from m to p is bijective and, for a two-dimensional case, is:

p = mx + (my − 1)m̄x

We define thus an operator IVec(·) that returns the linear index p, given the set of
subscript indices (mx, my):

p = IVec(m)

Thanks to bijectivity, we can retrieve subscripts indices starting from the linear one as:

mx = ((p− 1) mod m̄x) + 1

my =
⌊p− 1

m̄x

⌋
+ 1

In higher dimensions the relation that links the subscript indices of a tensorM with the
linear one, follows the same ordering of the MATLAB built-in function sub2ind.
The one-to-one relation that links linear indices with subscripts enables us to identify
tensor element just with a scalar. This, as we will see later on, turns out to be funda-
mental to compactly construct cost-function and constraints.

Some additional remarks about the notation are in order. In fact, we know that, in a
model dependent on ρ external parameters, the variability that they induce is translated
as the product of ρ parameter basis functions. To keep the notation compact, denoting
as ℓ = [ℓ1, . . . , ℓi, . . . , ℓρ]

T a multi-index whose i-th entry must satisfy 1 ≤ ℓi ≤ ℓ̄i and
identifying as ϑm a point in Θ, we define as:

ξℓ(ϑm) = ξℓ1(ϑ
(1)
m1

) · . . . · ξℓi(ϑ(i)
mi

) · . . . · ξℓρ(ϑ(ρ)
mρ

)

the value of the parameters basis functions product evaluated at ϑm. In this section we
fixed some notation to deal with tensors. In the next one, we will extensively use it in
defining matrices to be used in a multi-variate passivity enforcement algorithm.

6.4.2 Passivity Enforcement Algorithm

In this section we are going to extend the mono-dimensional passivity enforcement al-
gorithm detailed in Section 4.4 to a higher dimensional case. To avoid repetitions, we
report just the main differences that arise when dealing with multi-parametric models.
Supposing to use the residues perturbation technique, the perturbation matrix ∆H(s;ϑm)
is defined as in (4.5) and the decision variables are stored in x as:

x = [xT
1,1, . . . ,x

T
i,j , . . . ,x

T
P,P ]

T

where
xi,j = [(∆R0,1)i,j , . . . , (∆Rn,ℓ)i,j , . . . , (∆Rn̄,ℓ̄)i,j ]

T

where now ℓ is a multi-index.
Thus, the vector x stacks into a single column all elements of a high-order (ρ + 3)-way
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tensor with dimensions P × P × n̄× ℓ̄1 × · · · × ℓ̄ρ.

Recalling that the optimization problem we solve to find residues perturbation is:

min ∥∆H(s;ϑm)∥2

s.t. H(s;ϑm) + ∆H(s;ϑm) is passive.

the first main difference arises in de-embedding the decision variables from the cost-
function ∥∆H(s, ϑm)∥2. Following the procedure detailed in Section 4.4, we must gener-
alize the definition of βk,m;n,ℓ that, for a mono-dimensional model, a 4-way tensor. Firstly,
being ϑm a continuous variable in Θ, we must discretize it. Thus, supposing that the
number of external parameters is ρ, we discretize the frequency-parameter space as a
(ρ + 1)-dimensional grid, whose vertices are identified by indices i along the frequency
dimension and (m1, . . . ,mρ) along parameter axis; the latter are then collected in a multi-
index m. Thus, we denote as ϑm a vector containing the coordinates of a point in the
discretized parameter space, identified by indices m = [m1, . . . ,mρ].
Assuming that the number of frequency samples is k̄ and that, along the i-th parameter,
we have m̄i discrete parameter samples, it holds that:

β ∈ R(k̄×m̄1×···×m̄ρ)×(n̄×ℓ̄1×···×ℓ̄ρ)

Supposing now to extract from β the element related to frequency/parameter sample
with indices (k,m) and associated to the parameter basis functions with orders (n, ℓ) we
define:

(Bi,j)pr,pc
:= βk,m;n,ℓ =

ξℓ(ϑm)ϕn(jωk)

D(jωk, ϑm)

where

pr = IVec(k,m)

pc = IVec(n, ℓ)

The matrix Bi,j ∈ Rp̄r×p̄c defined in Section 4.4 contains, with a suitable ordering, the
terms (Bi,j)pr,pc

related to all the frequency/parameter samples, associated with all the
basis function combinations. By construction, matrices Bi,j are equal ∀i, j = 1, . . . , P :
we use this notation to easily construct a compact cost-function, as shown in Equation
(6.7).
Then, computing an economy-size QR-factorization of Bi,j as:

Bi,j = Qi,j Ξi,j , QT
i,j Qi,j = I

(see Section 4.4 for details), the term E2i,j , defined in (4.7), can be written as:

E2i,j = ∥Ξi,jxi,j∥22
Thus, the cost-function can be cast in the following compact form:

min ∥Ξ x∥22 , (6.7)

Ξ = blkdiag{Ξi,j}Pi,j=1

131



Multi-Parametric Passivity Enforcement

The other main difference from the mono-dimensional case is related to the formulation
of linear passivity constraints. In Section 4.4.1, in order to explicit the decision variables,
we introduced the tensor αi,µ;n,ℓ. In a higher dimensional case, we generalize this notation
defining αn,ℓ(ω,ϑ) as:

αn,ℓ(ω,ϑ) =
ξℓ(ϑ)ϕn(jω)

(jω,ϑ)

with ϑ a point in the discretized parameter domain. Additionally, we define an index z
as:

z := (ω, ϑ)

thus, supposing we are formulating a constraint for ω = ωi and ϑ = ϑµ, with µ a ρ
dimensional multi-index, it holds that

αn,ℓ(zj) = αn,ℓ(ωi,ϑµ)

with zj = (ωi, ϑµ).

Assuming that, for a given combination of basis functions orders (n, ℓ), a number ı̄ of
constraints must be formulated, we define a matrix An,ℓ as

An,ℓ =

⎛⎜⎜⎜⎜⎜⎜⎝

αT
n,ℓ(z1)
...

αT
n,ℓ(zi)
...

αT
n,ℓ(z̄ı)

⎞⎟⎟⎟⎟⎟⎟⎠
collecting all the terms needed to construct passivity constraints as detailed in Equations
(4.13), (4.18) for immittance and scattering systems, respectively.

Finally, once cost-function and constraints are properly formulated, the enforcement al-
gorithm structure derived in the mono-dimensional case can be exploited as is without
modifications also in this more general framework.

6.4.3 Numerical Results

In this section we are going to present some numerical examples showing the capabilities
of the proposed multi-parametric passivity enforcement algorithm, combined with the
bi-dimensional verification scheme detailed in the previous sections.
In details, we want to show that, given an initially non-passive model, the algorithm is
able to reduce, iteration after iteration, the passivity violations, until a passive model is
obtained.

The first example is based on the Test Case 16, a high-speed PCB link (see Appendix A
for details). We start by presenting an initially non-passive model, whose violations in
the parameter space are represented in Figure 6.12a.
By setting the bi-dimensional passivity verification algorithm with the following param-
eters:
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❼ jx0 = 4, jy0 = 4

❼ jmax = 7

❼ α = 3
4

the proposed enforcement algorithm is capable of make it passive in 5 iterations.
Figures 6.12a–6.12d show how passivity violations on the parameter space are reduced
iteration after iteration, until a passive model, whose violations in the parameter space
are shown in Figure 6.12d, is obtained.

(a) Parameters space of the initial non-
passive model

(b) Passivity enforcement iteration 1

(c) Passivity enforcement iteration 2
(d) Passivity enforcement final itera-
tion

Figure 6.12: Successive bi-variate passivity enforcement iterations (Test case 16 )

To be sure that a passive model is reached, we perform on it a further passivity verifica-
tion on a uniform fine grid, with a refinement level jmax = 7, to be compliant with the
settings of the adaptive verification algorithm. The result of this latter test, shown in
Figure 6.13, clearly states that no violations are found in the parameter space, thus the
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Figure 6.13: Uniform passivity verification outcome (Test case 16 )

model is passive.

Once the guaranteed passive model has been obtained, we must be sure that its ac-
curacy with respect to raw data is still acceptable. For this purpose, we compare the
frequency response of ports (1, 1) of the passive model with respect to raw data for vari-
ous parameters combinations. In particular, in Figure 6.14a we show the model response
for ϑ̃y fixed at 0.5 and varying ϑ̃x, while in Figure 6.14b we show the response for ϑ̃x = 0.5

and varying ϑ̃y. We see that, for every parameter combination, the model response is
very accurate. The maximum relative error among all the ports combinations and for all
parameters is equal to 14 · 10−3 , that is almost identical to the error of the non-passive
model, showing that this enforcement procedure is able to keep the model accurate while
imposing passivity.

About computational times, in the proposed example we chose as maximum refinement
level jmax = 7, that leads the algorithm to complete the passivity enforcement in more or
less 12 minutes, where around 5000 Hamiltonian eigenvalue extractions were necessary.
We would like to emphasize that just the uniform sampling performed to obtain Figure
6.13 took 15 minutes, more than the time required by the adaptive algorithm to perform
a complete enforcement. This result is another evidence of the fact that, especially in
higher dimensions, the use of adaptive algorithm is fundamental.
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Figure 6.14: Uniform passivity verification outcome (Test case 16 )

The second example we propose is an integrated inductor whose details are reported
in the Appendix A, under Test Case 17. We show this test-case mainly because, being
inductors strongly reactive circuit elements, it is likely that, due to the low intrinsic dis-
sipativity, many violations may occur. An evidence of that is given in Figure 6.15a, that
shows the violations on the parameter space for the initial non-passive model: we see
that the model is not passive for all the parameter combinations in the uniform grid.
By setting verification algorithm as detailed below:

❼ jx0 = 4, jy0 = 4

❼ jmax = 7

❼ α = 2

the enforcement algorithm is able to return a passive model, whose violations in the pa-
rameter space are shown in Figure 6.15f, in 12 iterations.
Figures 6.15a–6.15f represent violations in the parameter space for 6 enforcement iter-
ations. Again, we notice how the violation areas are well-spotted and removed by the
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(a) Parameters space of the initial non-
passive model

(b) Passivity enforcement iteration 4

(c) Passivity enforcement iteration 5 (d) Passivity enforcement iteration 6

(e) Passivity enforcement iteration 8 (f) Passivity enforcement final iteration

Figure 6.15: Successive bi-variate passivity enforcement iterations for Test Case 17
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verification and enforcement algorithms.
To be sure that the obtained model is passive we perform a uniform passivity check on a
fine parameter grid with refinement level jmax = 7, to be compliant with the verification
algorithm settings. Figure 6.16 shows violations in the parameter space of the candidate
passive model: we see that no violations are present, thus we are sure that the resulting
model is passive.

Figure 6.16: Uniform passivity verification outcome for Test case 17

In this Chapter we introduced the passivity verification and enforcement problem for
multi-variate macro-models. In the introductory part we stated that for high-dimensionality
models, fundamental issues related to computational complexity arise. The proposed
adaptive algorithm tries to overcome, to some extent, these problems for bi-dimensional
models. However, by comparing the results we obtained in the mono-dimensional case,
particularly in terms of computational times, we see that the latter have considerably
increased.
A three-parameter case could be the natural extension of the proposed algorithm, however
we argue that CPU times would no longer be manageable. In the next, and final, Chapter
we will briefly introduce and discuss some advanced techniques that should enable us to
deal with high-dimensional parameters spaces.
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Conclusions

In this work, we discussed passivity verification and enforcement methods for macro-
models, with emphasis on parametric and multi-parametric structures. For the latter,
we proposed an innovative passivity verification scheme for mono- and bi-variate macro-
models, for which theoretical and practical implementation aspects are discussed in de-
tails. Furthermore, several numerical results show the reliability and the efficiency of the
proposed algorithms.
In the first Chapters, we detailed what macro-models are, discussing their structure and
why they are so important in many engineering fields. In this scope, we pointed out
that standard fitting algorithms (Generalized Sanathanan-Koerner [35], [37], [10], [33])
and even the most advanced ones, such as the Fast Parameterized Sanathanan-Koerner
[19], [5], are not able to extract guaranteed passive macro-models thus, an a-posteriori
passivity enforcement procedure is required.
We started addressing the problem of non-parametric passivity verification and enforce-
ment in Chapter 3, where we introduced an algebraic method, the Hamiltonian-driven
technique [17, 21], to spot passivity violation areas along the frequency axis. Moreover,
we discussed a passivity enforcement scheme, originally presented in [21] that, suitably
perturbing model numerator coefficients, is capable to return a passive model starting
from a non-passive one, without affecting its accuracy with respect to raw data.
Being parameterized macro-models our main focus, in Chapter 4 we introduced the
problem of parametric macro-models passivity. In particular, we discussed an adap-
tive verification and enforcement scheme, originally presented in [18], that, exploiting the
Hamiltonian-based frequency sampling, enables to efficiently check the model passivity
on a bi-dimensional frequency-parameter space.
The main contribution of this work, presented in Chapters 5 and 6, aims to be an exten-
sion of state-of-the-art passivity assessment methodologies. In Chapter 5, we proposed
a novel mono-parametric passivity verification method that, relying on the ’predictive’
aspect of Hamiltonian eigenvalue perturbations, solves some reliability issues encountered
with the method presented in Chapter 4. Additionally, after an in-depth discussion on
asymptotic passivity characterization, we propose an innovative method to algebraically
detect asymptotic passivity violations.
The several numerical results show that the proposed scheme effectively solves the men-
tioned reliability problems, without affecting computational times, that are in many cases
even lower. This result is of paramount importance, because model labeled as passive by
previous verification algorithms could present some residual violations, leading to possi-
ble simulation instabilities.
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Multi-Parametric Passivity Enforcement

The same verification methodology is then exploited in Chapter 6 to develop an adap-
tive bi-variate passivity assessment scheme [47]. The proposed numerical examples state
that our bi-dimensional adaptive strategy is very effective in locating passivity violation
areas in a bi-dimensional parameter space, keeping reasonable the computational times.
Furthermore, the parametric enforcement algorithm presented in Chapter 4 has been ex-
tended to a multi-dimensional case.
The realization of reliable mono- and bi-variate passivity verification algorithms turn out
to be fundamental also in the field of stability enforcement. In fact, exploiting the tech-
niques detailed in [8, 9, 22, 47], we are now able to enforce the model stability during the
estimation process for parametric bi-variate macro-models.

Unfortunately, especially during the development of the bi-variate passivity verification
algorithm, we realized that the presented adaptive approaches are un-feasible when the
number of parameters increases, due to the curse of dimensionality. Thus, being conscious
that many complex engineering problems are strongly multi-variate, further improve-
ments, enabling to break the exponential dependence of computational requirements on
the number of parameters, are in order. To this end, many advanced techniques, widely
used in other scientific fields, are available, such as sparse-grids and tensor decomposi-
tions.
By means of sparse-grids, we refer to a set of numerical discretization techniques, ex-
tensively used in multi-variate problems, such as Finite Element Methods (FEM). These
methods rely on the superposition (tensor product) of successive mono-dimensional basis
grids. This approach enables to reduce the number of degrees of freedom, leading to a
computational complexity that depends just logarithmically on the number of parame-
ters. For details, see [6, 14].
Another way to efficiently deal with the curse of dimensionality in high dimensional prob-
lems is to exploit tensor properties. In fact, the most natural framework in dealing with
high dimensional discrete grids are tensors. As reported in [48] and [42], tensor compu-
tation brings with it, by definition, the curse of dimensionality. However, with the help
of decomposition techniques, such as high-order SVD and tensor trains, it is possible to
represent large tensors through their decompositions, alleviating the issues induced by
the possibly large number of dimensions.
Both methods are already well established in many scientific and engineering fields, such
as PDE discretization and big-data analysis, thus we are confident that they can give a
considerable performance boost to high-dimensional passivity verification schemes.
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Appendix A

Test cases

In this Appendix, we collect and detail all the test cases used as numerical examples
throughout this work. For each test case, we provide a brief description of the underlying
physical structure as well as several bibliographic references, when available. Further-
more, being the model responses strongly related to fitting algorithm settings, such as
basis functions orders, this information is also provided.

Remark: In the following, we will refer to models with ensured positive real denom-
inator (see [8,22]) with the acronym PR, while the models with not ensured positive real
denominator are identified as not-PR.

Case 1

Microstrip Filter with Double Folded Stub
The physical structure underlying this test case is a microstrip band-stop filter with
double folded stubs, originally presented in [11] and [38] and depicted in Figure A.1

Figure A.1: Microstrip Filter with Double Folded Stub

We took as free parameter the length λ of the folded stubs, variable in [2.08, 2.28] mm.
From successive simulations, we have 21 datasets containing frequency responses obtained
for different parameter values. Each set contains k̄ = 300 frequency samples, with a
bandwidth of [5, 20] GHz. To estimate the model we used 11 of them, while the other
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ones are exploited for validation purposes. We extracted the model with partial fractions
basis order n̄ = 10 and with Chebyshev polynomials as parameter basis functions, with
orders ℓ̄N = ℓ̄D = 2 for numerator and denominator, respectively.
The maximum relative error between the PR-model and validation data is 4.5 · 10−3,
while for the not-PR model the error is 4.4 · 10−3.

Case 2

Link on printed circuit board
This structure is an s-shaped link, 300 µm wide, placed on a printed circuit realized on
a FR4 epoxy board with thickness 0.76 mm, dielectric constant equal to 4.4 and loss
tangent 0.02. The structure, originally presented in [39], is depicted in Figure A.2. The
free parameter is the middle-segment length, indicated with L in the Figure, variable in
the range [2, 18] mm, while the first and third segments have a fixed length of 2 cm.
The dataset is composed of 9 sets of frequency responses, obtained for different parameter
values, composed themselves of k̄ = 100 frequency samples spanning the band [0.1, 10]
GHz.

L

Figure A.2: Link on printed circuit board

Different models of this structure have been used throughout this work: the characteristics
of each one are listed below.

Case 2–a

The model to which we refer here has partial fractions basis order n̄ = 16 and parameter
basis functions (Chebyshev polynomials) orders ℓ̄N = 4 and ℓ̄D = 3 for numerator and
denominator, respectively. This choice led us to use all the available datasets to fit the
model.
The worst-case relative error for the PR-model with respect to fitting data is 200 · 10−3

while, for the not-PR, is 54.9 · 10−3.
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Case 2–b

In this case, the model orders are n̄ = 16 and ℓ̄N = ℓ̄D = 4, where Chebyshev polynomials
are used as parameter basis functions. To fit this model we used all the available datasets.
With the orders listed above, and with 9 parametric datasets, the estimation problem is
under-constrained along the parameter direction, leading to a possible loss of accuracy.
However, for us this in not an issue, since this model has been extracted just to stress
the presented passivity verification algorithms.
The largest relative error between the PR-model and raw fitting data is 1.5 · 10−1, while
for the not-PR model is 38.5 · 10−3.

Case 3

Via with Residual Stub
This structure (depicted in Figure A.3), originally presented in [35], is a via connecting
a microstrip line and a stripline in a multi-layer PCB. The metallization process that is
performed to create the via, running from top to bottom, generates a residual stub, that
is not necessary and may be a source of signal integrity problems. To reduce this issue,
the stub height h can be adjusted through a backdrilling procedure. For this reason, we
want to parameterize the model behavior with respect to the stub height h, in order to
run simulations and find an optimal value for this parameter.

Figure A.3: Via with residual stub [35]
➞2008 IEEE

The dataset is composed of 10 sets of frequency responses obtained by means of a full-
wave solver, simulating the structure behavior for 10 values of the stub height, assumed
as free parameter, ranging from 0 µm to 716 µm. Each response is composed of k̄ = 1001
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frequency samples, spanning the band [0, 40] GHz.
Different models of this structure have been used in this work, thus we list below the
characteristics of each one.

Case 3–a

In this case, we extracted the model with partial fraction basis order n̄ = 13 and with
Chebyshev polynomials as parameter basis functions, with orders ℓ̄N = 3 and ℓ̄D = 3 for
numerator and denominator, respectively. Among the available parametric datasets, we
used 6 of them to fit the model, while the other 4 are used for validation purposes.
The maximum relative error between the PR-model responses and validation data is
39.4 · 10−3, while for the not-PR model the error is 41.5 · 10−3.

Case 3–b

This model has been extracted with the same basis function orders as in Test Case 3–a.
We changed the data used to fit the model: we use 5 parametric datasets for fitting and
the remaining ones for validation.
The maximum relative error between the PR-model responses and validation data is
120 · 10−3, while for the not-PR model is 84.7 · 10−3.

Case 4

PCB Interconnect Over a Slotted Reference Plane
In this case, the structure is a microstrip disposed over a dielectric reference surface,
where a rectangular discontinuity, placed at a distance d from the center of the reference
plane and with length L, breaks the current return path [22]. The structure, depicted in
Figure A.4

Figure A.4: PCB Interconnect Over a Slotted Reference Plane

has the following fixed geometrical parameters

❼ a = 100 mm;
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❼ b = 100 mm;

❼ ϵr = 4.7;

❼ t = 0.035 mm;

❼ w = 0.12 mm;

❼ h = 0.3 mm;

❼ L = 25 mm.

We consider as free parameters the slot length L, variable in [1, 25] mm, and its offset
from the plane center d, which can vary in the range [0, 25] mm. Frequency responses
were obtained with a full-wave solver for different parameter values combinations. Each
dataset contains a set of k̄ = 1858 frequency samples, spanning the band [0, 10] GHz.
These data were split to obtain smaller datasets, as detailed below.

Case 4–a

In this case, we fix the slot offset to 25 mm and consider as free parameter its length. To
fit the model we used a partial fraction basis order n̄ = 30 and Chebyshev polynomials as
parameter basis functions, with orders ℓ̄N = 6 and ℓ̄D = 2 for numerator and denomina-
tor, respectively. During the fitting process we used all the available parametric datasets.
The worst-case relative error between the PR-model with respect to raw fitting data is
19.9 · 10−3, while for the not-PR model we obtain an error of 9.3 · 10−3.

Case 4–b

In this case, we fix the slot length to 25 mm and consider as free parameter the offset. To
fit the model we used a partial fraction basis order n̄ = 34 and Chebyshev polynomials
as parameter basis functions, with orders ℓ̄N = 10 and ℓ̄D = 6 for numerator and denom-
inator, respectively. To extract the model we used all the available parametric datasets.
We see that the chosen basis function orders are un-feasible with the number of available
parametric datasets, leading the estimation problem to be under-constrained along the
parameter dimension. However, this model has been extracted just to stress the proposed
algorithms, thus we do not consider this as an issue.
The worst case relative error between the available data and the not-PR model is 2.5·10−3.

Cases 5–8

Transmission Line With Embedded Discontinuity
This structure, originally presented in [22], is a transmission line with an embedded
lumped RLC discontinuity, as depicted in Figure A.5.
We assume as free parameters the values of the discontinuity inductance L1 and capaci-
tance C. The values of the other components are fixed and listed below:

❼ Lines characteristic impedance Z∞ = 40Ω;
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Figure A.5: Transmission Line With Embedded Discontinuity

❼ Propagation times TD1 = 100 ps, TD2 = 230 ps;

❼ Discontinuity resistance R1 = R2 = 1Ω;

❼ Discontinuity inductance L2 = 10 nH.

From repeated SPICE solver runs, we obtain 11 sets of parametric frequency responses,
each one composed of k̄ = 1000 frequency samples, spanning the band [10 MHz, 10 GHz].
Depending on the values assumed by the free discontinuity parameters we have the fol-
lowing sub-cases.

Case 5

In this case, we assume as free parameter the capacitance C, that ranges in [0.1, 10] pF.
The inductances L1 = L2 are fixed to 10 nH.
To extract the model we used a partial fractions order n̄ = 18 and Chebyshev polynomials
as parameter basis functions, with orders ℓ̄N = ℓ̄D = 1. Six of the 11 available parametric
datasets are used to fit the model, while the others are exploited for validation purposes.
The largest relative error of the PR-model with respect to validation data is 4.6 · 10−3,
while for the not-PR model the error is 3.9 · 10−3.

Case 6

In this case, we assume as free parameter the inductance L1, that ranges in [10 pH, 1 nH],
while the capacitance C is fixed to 1 pF. The model orders are n̄ = 18 for partial fraction
basis and ℓ̄N = ℓ̄D = 1 for the parameter basis functions (Chebyshev polynomials). Six
of the 11 available parametric datasets are used to fit the model, while the others are
exploited for validation purposes.
The largest relative error of the PR-model with respect to validation data is 2.5 · 10−3,
while for the not-PR model the error is 2.1 · 10−3.

Case 7

In this case, we assume as free parameter the capacitance C, that ranges in [0.1, 1] pF.
The inductances L1 = L2 are fixed to 10 nH. The model has partial fractions basis order
n̄ = 18 and Chebyshev polynomial as parameter basis functions, with orders ℓ̄N = 1 and
ℓ̄D = 2. Five of the 11 available parametric datasets are used to fit the model, while the
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other ones are exploited for validation purposes.
The largest relative error for both the PR and not-PR models with respect to validation
data is 3.3 · 10−3.

Case 8

In this case, we assume as free parameter the capacitance C, that ranges in [1, 10] pF.
The inductances L1 = L2 are fixed to 10 nH. To extract the model we set the partial
fractions order n̄ = 18 and Chebyshev polynomial as parameter basis functions, with
orders ℓ̄N = 1 and ℓ̄D = 1. Six of the 11 available parametric datasets are used to fit the
model, while the other ones are exploited for validation purposes.
The largest relative error for both the PR and not-PR models with respect to validation
data is 0.768 · 10−3.

Case 9

Multi-Layer integrated Inductor
In this case, the structure is a spiral integrated inductor with 1.5 turns, placed on a
multilayer substrate (courtesy of Prof. M. Swaminathan, Georgia Institute of Technology,
Atlanta, GA, USA), for details see [38] and [18]. The inductor has a square outline and
its side-length is assumed as free parameter, with a range of variation in [1.02, 1.52] mm.
From repeated simulations, we have a set of 11 frequency responses for different parameter
values: 6 of them are used to fit the model, while the others are used for validation
purposes. The model has been extracted with partial fractions basis order n̄ = 8 and with
parameter basis function (Chebyshev polynomials) orders ℓ̄N = ℓ̄D = 2 for numerator
and denominator, respectively.
The worst case relative error between the PR-model and validation data is 43.0 · 10−3,
while for the not-PR model the error is 3.6 · 10−3.

Cases 10–11

Integrated Inductor
In this case, we refer to a PCB integrated inductor with a square outline, placed on a
plane dielectric substrate, presented in [18, 38]. Depending on the number of turns it
has (1.5 and 2), we have two different datasets. In both cases, the free parameter is the
inductor side-length, that ranges in [1.02, 1.52] mm. From repeated simulations, we have
11 sets of frequency responses, each one containing k̄ = 477 frequency samples, spanning
the band [0.1, 12] GHz. In the following, we will detail the model characteristics for the
two cases.

Case 10

In this case, we refer to the inductor with 1.5 turns. The orders used to extract the model
are n̄ = 6 for partial fractions and ℓ̄N = ℓ̄D = 2 for parameter basis functions (Chebyshev
polynomials). All the available parametric datasets, except for one, were exploited as
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fitting data.
The maximum relative error with respect to validation data is, for the PR-model 10.4 ·
10−3, while for the not-PR one is 0.783 · 10−3.

Case 11

In this case, we refer to the inductor with 2 turns. The orders used to fit the model are
the same as for Test Case 10, however, to extract it, we used just 6 parametric datasets,
leading the others to be exploited for validation purposes.
The maximum relative error with respect to these validation data is, for the PR-model
19.9 · 10−3, while for the not-PR one is 3.4 · 10−3.

Cases 12–13

Coupled Transmission Lines
In this test case, we consider a set of N differential pairs, each formed by two parallel
identical wires located one next to the other, as depicted in Figure A.6.

Figure A.6: Coupled Transmission Lines

The structure, presented also in [18,19], has the following characteristics:

❼ wires length = 10cm;

❼ radius of the conductors rw = 0.5 mm;

❼ radius of the dielectric insulator rd = 0.8 mm;

❼ relative permittivity ϵr = 4.2;

❼ distance between the wires center D = 1.61 mm.

Each conductors pair is considered as decoupled over a length L− Lc while, for a length
greater than Lc, all the conductors form a coupled 2N multi-conductor line. The free
parameter is the coupling length Lc that is in the range [20, 40] mm. Parametric data
have been extracted with a full-wave solver for 11 linearly spaced parameter values, each
composed by a set of k̄ = 500 frequency samples.
Depending on the number of coupled wires N we consider, different models have been
extracted.
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Case 12

In this case we consider the structure with two differential pairs, thus N = 2. We set the
partial fraction basis order n̄ = 30 and Chebyshev polynomial are used as parameter basis
functions with cardinalities ℓ̄N = ℓ̄D = 4 for numerator and denominator, respectively.
All the available datasets have been used to estimate the model.
The worst case relative error between raw fitting data and the PR-model is 9.1 · 10−3,
while for the not-PR model the error is 11.1 · 10−3.

Case 13

Here the structure has three differential pairs, thus N = 3. The model orders have
been set to n̄ = 30 for the partial fraction basis and to ℓ̄N = ℓ̄D = 4 for numerator
and denominator parameter basis functions (Chebyshev polynomials). All the available
datasets have been used to estimate the model.
The worst case relative error between raw fitting data and the PR-model is 13.0 · 10−3,
while for the not-PR model the error is 9.7 · 10−3.

Case 14

Capacitor
This structure is a capacitor whose plates side-length, variable in [254, 609.6] µm, is
assumed as free parameter. From repeated simulations we have 9 parametric datasets,
each one composed of k̄ = 191 frequency samples, spanning the band [0.5, 10] GHz.
We estimated the model with partial fractions order n̄ = 4 and Chebyshev polynomial
as parameter basis functions, with orders ℓ̄N = ℓ̄D = 1 for numerator and denominator,
respectively. To extract the model we used 5 parametric datasets, leading the other 4 to
be used for validation purposes.
The maximum relative error between the PR-model and validation data is 15.4 · 10−3,
while for the not-PR model the error is 13.1 · 10−3.

Case 15

Two-Stage buffer
This structure is a two-stage buffer, depicted in Figure A.7, originally presented in [29].
This buffer is parameterized by the supply voltage Vdd and by the ambient temperature
T , ranging, respectively, in [0.5, 1.5] V and [20, 40] ◦C.
The available dataset is composed of the frequency responses for 11 points along Vdd and
21 along T , linearly spaced in their ranges. For each parameters combination we have
k̄ = 293 frequency samples, spanning the band [0, 100] THz. This frequency range is not
indicative of the real component bandwidth, it has been exploited just for transistor-level
simulations.
To estimate the model we used partial fractions order n̄ = 6 and Chebyshev polynomial
as parameter basis function with orders ℓ̄1N = 2, ℓ̄1D = 2 for the first parameter (supply
voltage) and ℓ̄2N = 3, ℓ̄2D = 2 for the second one (temperature). Among the available
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Figure A.7: Two-Stage Buffer

parametric datasets, we used half of them to estimate model coefficients and the others
for validation purposes.
The maximum relative error between PR-model responses with respect to validation data
is 28.4 · 10−3, while for the not-PR model the error is 7.9 · 10−3.

Case 16

Printed Circuit Board Interconnect
The structure underlying this test case is a high-speed PCB signal link (Courtesy of Prof.
Christian Schuster and Dr. Jan Preibisch, Technische Universität Hamburg-Harburg,
Hamburg, Germany), for details see [18, 22, 31, 47]. The signal path is a stripline routed
in the inner layer of two PCB’s, attached by a connector. The signal is provided to this
connector by four vertical vias, whose pad and anti-pad radii are assumed as free param-
eters, varying respectively in [100, 300] µm and [400, 600] µm.
From repeated simulations, we have 81 frequency response datasets (9 for each parame-
ter), each one containing k̄ = 250 frequency samples, spanning the band [1 Hz, 5 GHz].
We set partial fractions basis order to n̄ = 24 and parameters basis functions (Chebyshev
polynomials) orders ℓ̄1N = 3, ℓ̄1D = 2 for the first parameter (pad radius) and ℓ̄2N = 3,
ℓ̄2D = 2 for the second one (anti-pad radius). All the available datasets are used for fitting
purposes.
The maximum relative error between raw fitting data and the PR-Model is 136 · 10−3,
while for the not-PR model is 14.3 · 10−3.

Case 17

Inductor (Multi-parametric)
In this case, the structure is a 1-turn PCB plane inductor, with a square outline, placed
on a dielectric substrate.
In details, we have a set of responses depending on two free parameters: the line width
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and the dielectric thickness, variable in [76, 127] µm and [762, 1016] µm respectively. The
dataset is composed of 9 sets of frequency responses (3 for each parameter), composed
themselves of k̄ = 699 samples, spanning the band [100 MHz, 35 GHz]. We set as partial
fractions basis order n̄ = 8 and Chebyshev polynomial as parameter basis functions with
orders ℓ̄1N = 2, ℓ̄1D = 2 for the first parameter (line width) and ℓ̄2N = 1, ℓ̄2D = 1 for the
second one (dielectric thickness). All the available data are used for fitting purposes.
The worst case relative error of the PR-model with respect to raw data is 14.3 · 10−3,
while for the not-PR one the error is 4.4 · 10−3.

150



Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover
Publications, 1968.

[2] B. Anderson and S. Vongpanitlerd. Network analysis and synthesis: A modern
systems theory approach, eaglewood cli s, 1973.

[3] J. P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[4] S. Boyd, V. Balakrishnan, and P. Kabamba. A bisection method for computing the
h norm of a transfer matrix and related problems. Mathematics of Control, Signals
and Systems, 2(3):207–219, 1989.

[5] T. Bradde. Fast data-driven algorithms for parameterized macromodeling of multi-
port systems. Master’s thesis, Politecnico di Torino, 2018.

[6] M. Bungarts, Hans-Joachim e Griebel. Sparse grids. Acta numerica, 13:147–269,
2004.

[7] T. Chihara. An introduction to orthogonal polynomials (gordon and breach science
publishers, new york, ny). Technical report, ISBN 0-677-04150-0, 1978.

[8] M. De Stefano. Automated generation of stable bias-dependent small-signal behav-
ioral macromodels for circuit-level simulation. Master’s thesis, Politecnico di Torino,
2018.

[9] M. De Stefano, S. Grivet-Talocia, T. Bradde, and A. Zanco. A framework for the
generation of guaranteed stable small-signal bias-dependent behavioral models. In
Microwave Conference (EuMC), 2018 European. IEEE, 2018.

[10] D. Deschrijver and T. Dhaene. Parametric macromodeling of time domain responses.
In Signal Propagation on Interconnects, 2008. SPI 2008. 12th IEEE Workshop on,
pages 1–2. IEEE, 2008.

[11] F. Ferranti, L. Knockaert, and T. Dhaene. Parameterized s-parameter based macro-
modeling with guaranteed passivity. IEEE Microwave and Wireless Components
Letters, 19(10):608–610, 2009.

[12] F. Ferranti, L. Knockaert, and T. Dhaene. Guaranteed passive parameterized
admittance-based macromodeling. IEEE Transactions on Advanced Packaging,
33(3):623–629, 2010.

[13] F. Ferranti, L. Knockaert, and T. Dhaene. Passivity-preserving parametric macro-
modeling by means of scaled and shifted state-space systems. IEEE Transactions on
Microwave Theory and Techniques, 59(10):2394–2403, 2011.

[14] T. Gerstner and M. Griebel. Sparse grids. Encyclopedia of Quantitative Finance,
2010.

[15] A. Gil, J. Segura, and N. M. Temme. Numerical methods for special functions,

151



Bibliography

volume 99. Siam, 2007.

[16] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. Johns Hopkins
Univ Pr, 1996.

[17] S. Grivet-Talocia. Passivity enforcement via perturbation of hamiltonian matrices.
IEEE Transactions on Circuits and Systems I: Regular Papers, 51(9):1755–1769,
2004.

[18] S. Grivet-Talocia. A perturbation scheme for passivity verification and enforcement
of parameterized macromodels. IEEE Transactions on Components, Packaging and
Manufacturing Technology, 7(11):1869–1881, 2017.

[19] S. Grivet-Talocia, T. Bradde, M. De Stefano, and A. Zanco. A scalable reduced-order
modeling algorithm for the construction of parameterized interconnect macromodels
from scattering responses. In IEEE Symposium on Electromagnetic Compatibility,
Signal and Power Integrity. IEEE, 2018.

[20] S. Grivet-Talocia and E. Fevola. Compact parameterized black-box modeling via
fourier-rational approximations. IEEE Transactions on Electromagnetic Compatibil-
ity, 59(4):1133–1142, 2017.

[21] S. Grivet-Talocia and B. Gustavsen. Passive macromodeling: Theory and applica-
tions, volume 239. John Wiley & Sons, 2015.

[22] S. Grivet-Talocia and R. Trinchero. Behavioral, parameterized, and broadband mod-
eling of wired interconnects with internal discontinuities. IEEE Transactions on
Electromagnetic Compatibility, 60(1):77–85, 2018.

[23] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, Philadelphia,
PA, 1996.

[24] T. Kailath. Linear systems. Prentice-Hall Englewood Cliffs, NJ, 1980.

[25] R. E. Kalman. On a new characterization of linear passive systems. In First Allerton
Conference on Circuit Theory, 1963.

[26] L. Ljung. System Identification: Theory for the User. Prentice Hall, 1999.

[27] D. G. Luenberger. Optimization by vector space methods. Wiley-Interscience, 1997.

[28] A. F. Nikiforov, V. B. Uvarov, and R. P. Boas. Special functions of mathematical
physics. Birkhäuser, 1988.
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