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Summary 

The path planning of a mobile robot in this paper is a result of a recent work based on 

previous use of LIDAR sensors.  Lidar sensors have been in use for many years now in 

various fields for numerous purposes. Path planning, environment mapping, obstacle 

avoidance, weather mapping, terrain mapping and etc. have been the major 

application of a Lidar sensor.  

The work in this thesis consists of the use of RPLIDAR A1 sensor from Robo Peak for 

the development of the algorithm for environment mapping, localization and 

trajectory planning with obstacle avoidance in indoor environment.  

At first it is about learning the limitations and calibrating the sensor for optimal use in 

closed environment. This is followed by the development of algorithm for mapping the 

said environment. Then the second stage of development requires us to develop 

algorithm for trajectory planning and localization or SLAM. 

The central part of the work consists of the development of efficient and productive 

algorithm for mapping and path planning in a simulated environment.  

Finally it produces the possibility of reading of the local environment and trajectory 

planning in closed environment. This information can be useful in developing in-house 

robots for service industry that can be used in restaurants, offices and house and be a 

part of our daily lives while making them easier and more productive. Use of 3D 

sensors and cameras can vastly improve the performance and usability of the mobile 

robot. 
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Chapter 1 

Introduction 

1.1 Introduction of mobile robotics 

Mobile robot is defined as a machine able to move in the environment that surrounds 

it, thus distinguishing himself from robotics sets used for holding tasks on site. 

Until now we have built robots able to move and work in any environment, from those 

able to move in water or flying over for space applications, up to the most common 

robot of movement on the ground, the type that the work here is based on. 

Important applications for this last type of robots are in the field of security, such as 

for reconnaissance and surveillance, and in the military or in general a hazardous place 

for humans, who may be browsing and making interventions in areas which are 

potentially harmful to people. 

In order to operate effectively in different environments that may require the use of a 

mobile robot, various modes of locomotion, each with its strengths and weaknesses 

were studied upon. 

There are three categories of so-called ' pure ' locomotion: 

-       on wheels (wheeled – W) 

-       dozers (tracked – T) 

-       with more or less articulated (legged – L) 

 Locomotion wheels (category W) is the easiest 

and most efficient. The robots equipped with 

such a system can reach the highest speed on flat 

surfaces and require a simpler system of control 

than the other two categories, but these qualities 

often contrasts with a limited ability to 

overcoming obstacles and therefore are not 

adaptable to different types of environments that 

may be found to act. 

Figure 1.1 a -Example of wheeled robot 
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 The presence of tracks (category T) instead, 

due to increased area of contact with the 

ground, allows the robot a better grip and a 

better movement in uneven terrain than on 

wheels and a decent ability to overcome 

obstacles, but this result in greater resistance 

resulting in increased consumption of energy 

and a limited top speed.  

 Figure 1.1 b -Example of robot fitted with Caterpillar tracks 

  

The legged (category L) movement allows the 

robot mobility in environments with very 

irregular terrain, but more number of limbs, is a 

problem for higher energy consumption and slow 

movements which are more or less depending on 

the degree of irregularity of the soil and the 

complexity of the architecture of the limbs. The 

control of the various actuators can be also very 

complex. 

Figure 1.1 c -Example of robot with legs 

  
Such strategies of motion can be joined together, thus defining the categories of 

'hybrid' locomotion (Figure 1.2), designed to meet the most diverse and special needs 

for movement and efficiency by the combination of the merits of the categories as well 

from which they are derived, namely:  

-       Legs-Wheels (LW) 

-       Legs-Tracks (LT) 

-       Wheels-Tracks (WT) 

-       Legs-Wheels-Tracks (LWT) 

  

 Figure 1.2 -Categories of ground mobile robots 
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An interesting example of robot LW is shown 

in Figure 1.3. The unit is the second version 

of Mantis hybrid robot, designed for 

surveillance purposes. It is equipped with 

two front drive wheels and a couple of 

rotating legs, which are the characteristic 

that distinguishes this unit. The locomotion 

on a flat surface is done purely on wheels 

while the limbs are used in the presence of 

an obstacle to be overcome, situation visible 

in the figure.  

Figure 1.3 -Robot with LW hybrid mobility 

  

Mobile robot provided with legs and tracks (LT) is 

the category that allows to obtain the best 

performance in rough environments that present 

the most difficulty moving, but as for the two 

categories as well from which they derive, the 

problem is efficiency and speed. Clear example of 

this approach is the mobile robot visible in Figure 

1.4.  

 

Figure 1.4 – Example of LT hybrid robot 

The combination of tyres and tracks (WT) is ultimately best for environments not 

overly uneven, for example for open spaces, as you reach the objectives of efficiency, 

speed and adaptability to the lay of the land. 

The Daegu Gyeongbuk Institute of Science & 

Technology has developed a robot in this 

direction (Figure 1.5). The obstacle is tackled 

with the crawler tracks, while the ability to 

fold them allows the wheel to move on to 

better performance and efficiency on flat 

surfaces. 

 
 

Figure 1.5 – Example of WT hybrid robot 
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 When the three categories are joined together at the same time it defines the solution 

LWT which has the possibility to deal with the most varied soil conditions ensuring 

alternating high adaptability and speed, but can lead to excessive energy consumption 

due to the mass of the various accessories and locomotor groups that are to be made 

of the unit and high mechanical complexity which can make it difficult to maintenance 

or a shift in mechanical architecture. 

Azimuth (Figure 1.6) is a good example of a medium that combines all three 

technologies introduced; the unit consists of four joints leg-track-wheel completely 

independent of each other which can provide the most varied possibilities for 

overcoming obstacles and handling.  

  

  

  

  

 

Figure 1.6 -Robot (LWT) Azimuth 

When selecting the best robot unit for different requirements, it is good to pay 

attention to mechanical complexity in particular because it has a significant weight on 

its reliability and can cause considerable time for any repair work in case of failure or 

Simply for modifications to the actuating or disposition organs of the constituent 

group. 

There is no better strategy for locomotion, but the class to be chosen from time to 

time is based on priorities and mobility goals and efficiency. 

1.2 Introduction of LIDAR sensors 

LIDAR also called as Lidar or LiDAR is a surveying method that measures distance to a 

target by illuminating that target with a pulsed laser light, and measuring the reflected 

pulses with a sensor. Differences in laser return times and wavelengths can then be 

used to make digital 2D or 3D-representations of the target. The name lidar, 

sometimes considered an acronym of Light Detection and Ranging. 

Lidar is popularly used to make high-resolution maps, with applications in geodesy, 

geomatics, archeology, geography, geology, geomorphology, seismology, forestry, 

atmospheric physics, laser guidance, airborne laser swath mappling (ALSM), and laser 

https://en.wikipedia.org/wiki/Surveying
https://en.wikipedia.org/wiki/Laser
https://en.wikipedia.org/wiki/3D_modeling
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saltimetry.  The technology is also used for control and navigation for 

some autonomous cars. Lidar sometimes is called laser scanning and 3D scanning, with 

terrestrial, airborne, and mobile applications. 

  

Figure 1.7 – LIDAR sensor working kayout 
 

The LiDAR instrument fires rapid pulses of laser light at a surface, some at up to 

150,000 pulses per second. A sensor on the instrument measures the amount of time 

it takes for each pulse to bounce back. Light moves at a constant and known speed so 

the LiDAR instrument can calculate the distance between itself and the target with 

high accuracy. By repeating this in quick succession the insturment builds up a complex 

'map' of the surface it is measuring. With airborne LiDAR other data must be collected 

to ensure accuracy. As the sensor is moving height, location and orientation of the 

instrument must be included to determine the position of the laser pulse at the time of 

sending and the time of return. This extra information is crucial to the data's integrity. 

With ground based LiDAR a single GPS location can be added for each location where 

the instrument is set up. 

Generally there are two types of LiDAR detection methods. Direct energy detection, 

also known as incoherent, and Coherent detection. Coherent systems are best for 

Doppler or phase sensitive measurements and generally use Optical heterodyne 

detection. This allows them to operate at much lower power but has the expense of 

more complex transceiver requirements. In both types of LiDAR there are two main 

pulse models: micropulse and high-energy systems. Micropulse systems have 

developed as a result of more powerful computers with greater computational 

capabilities. These lasers are lower powered and are classed as 'eye-safe' allowing 

them to be used with little safety precautions. High energy systems are more 

commonly used for atmospheric research where they are often used for measuring a 

variety of atmospheric parameters such as the height, layering and density of clouds, 

cloud particles properties, temperature, pressure, wind, humidity and trace gas 

concentration. 

 

https://en.wikipedia.org/wiki/Autonomous_car
https://en.wikipedia.org/wiki/Laser_scanning
https://en.wikipedia.org/wiki/3D_scanner
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Chapter 2 

State of Art 

• Types of Sensors (For Environment Mapping) 

• Types of Algorithm 

• Path Planning Approach 

2.1 Types of Sensors 

There are many types of sensors that can be used for Environment Mapping, Obstacle 

avoidance, Path planning, Localisation and etc. So we will only read about Distance 

sensor. 

Most proximity sensors can also be used as distance sensors, or commonly known as 

Range sensors. 

• Lidar-  Lidar sensors are also called LIDAR, LiDAR and LADAR. Lidar stands for Light 

Detection and Ranging. This type of sensor works with the use of a laser in the setup 

which will emit laser pulse on the object and when the laser pulse comes back it is 

intercepted by a receiver in the setup which will then analyse the data of the 

objects distance and the angle of the object with respect to the Lidar sensor or a 

robot on which the sensor has been mounted. This is the most commonly used 

sensor for mapping the environment. These sensors are also the cheapest sensors 

with basic function capabilities and good output feedback available in the market 

for beginner. There are two types of Lidar sensors 2D sensors and 3D sensors. In this 

paper we are using a 2D scanning sensor. 

 

• Infrared Distance Sensor- IR circuits are designed on triangulation principle for 

distance measurement. A transmitter sends a pulse i=of IR signals which is detected 

by the receiver if there is an obstacle and based on the angle the signal is received 

and the distance is calculated. SHARP has a family of IR transceivers which are very 

useful for distance measurements. A simple transmit and receive using a couple of 

transmitters and receivers will still do the job of distance measurements, but if you 

require precision, then prefer the triangulation method. 

 

• Ultrasonic Distance Sensors- The sensor emits an ultrasonic pulse and is captured 

by a receiver. Since the speed of sound is almost constant in air, which is 344m/s, 

the time between send and receive is calculated to give the distance between your 

robot and the obstacle. Ultrasonic distance sensors are especially useful for 

underwater robots. 
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• Stereo Camera- Two cameras placed adjacent to each other can provide depth 

information using its stereo vision. Processing the data received from a camera is 

difficult for a robot with minimal processing power and memory.  If opted for, they 

make a valuable addition to your robot. 

 

• Encoders- Encoders are not actually sensors, but a combination of different 

components which convert angular position of a shaft or wheel into an analog or 

digital code. The most popular encoder is an optical encoder which includes a 

rotational disk, light source and a light detector. The rotational disk has transparent 

and opaque pattern or sometimes its black and white pattern painted or printed 

over it. When the disk rotates along with the wheel the emitted light is interrupted 

generating a signal output. The number of times the interruption happens and the 

diameter of the wheel can together give the distance travelled by the robot. 

We can also include Navigation/Positioning sensors in the list but they are more useful 

in an open environment, but as this experiment is conducted in a closed environment 

we have no use of such sensors here. 

2.2 Types of Algorithm 

There are many types of algorithm for SLAM (Simultaneous localization and mapping) 

which are listed below: 

• EKF SLAM 

• FastSLAM 

• L-SLAM 

• GraphSLAM 

• Occupancy Gird SLAM 

• DP-SLAM 

• Parallel Tracking and Mapping (PTAM) 

• LSD-SLAM 

• S-PTAM 

• ORB-SLAM 

• ORB-SLAM2 

• MonoSLAM 

• CoSLAM 

• SeqSLAM 

• iSAM (Incremental Smoothing and Mapping) 

Now we will talk about a few methods only, one of which is EKF SLAM which we are 

using for our experiment. 



17 
 

 

1. EKF SLAM- In robotics, EKF SLAM is a class of algorithms which utilizes the extended 
Kalman filter (EKF) for simultaneous localization and mapping (SLAM). Typically, EKF 
SLAM algorithms are feature based, and use the maximum likelihood algorithm for 
data association. EKF SLAM is based on Kalman filtering, also known as linear 
quadratic estimation (LQE), is an algorithm that uses a series of measurements 
observed over time, containing statistical noise and other inaccuracies, and 
produces estimates of unknown variables that tend to be more accurate than those 
based on a single measurement alone, by estimating a joint probability 
distribution over the variables for each timeframe. The filter is named after Rudolf 
E. Kálmán, one of the primary developers of its theory. 

The Kalman filter has numerous applications in technology. A common application is 
for guidance, navigation, and control of vehicles, particularly aircraft and 
spacecraft. Furthermore, the Kalman filter is a widely applied concept in time 
series analysis used in fields such as signal processing and econometrics. Kalman 
filters also are one of the main topics in the field of robotic motion planning and 
control, and they are sometimes included in trajectory optimization. The Kalman 
filter also works for modeling the central nervous system's control of movement. 
Due to the time delay between issuing motor commands and receiving sensory 
feedback, usage of the Kalman filter supports the realistic model for making 
estimates of the current state of the motor system and issuing updated commands. 

The algorithm works in a two-step process. In the prediction step, the Kalman filter 
produces estimates of the current state variables, along with their uncertainties. 
Once the outcome of the next measurement (necessarily corrupted with some 
amount of error, including random noise) is observed, these estimates are updated 
using a weighted average, with more weight being given to estimates with higher 
certainty. The algorithm is recursive. It can run in real time, using only the present 
input measurements and the previously calculated state and its uncertainty matrix; 
no additional past information is required. 

Associated with the EKF is the gaussian noise assumption, which significantly 
impairs EKF SLAM's ability to deal with uncertainty. With greater amount of 
uncertainty in the posterior, the linearization in the EKF fails. 

 

2. FastSLAM- The key idea of FastSLAM exploits the fact that knowledge of the robot’s 
path s1, s2, . . . , st renders the individual landmark measurements independent, as 
originally observed by Murphy. FastSLAM decomposes the SLAM problem into one 
robot localization problem, and a collection of K landmark estimation problems. 

In FastSLAM, alike in EKF SLAM, poses are assumed to behave according to a 
probabilistic law named motion model with an underlying density  

p (st | st−1). 
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Likewise, the measurements are governed by the (probabilistic) measurement 
model p (zt | st, θ, nt) with zt measurement, θ = {θ1, . . . , θK} the set of landmarks, 
and nt ∈ {1, . . . , K} the index of the observed landmark at time t (only one at a 
time). The ultimate goal is to estimate the posterior p (st , θ | zt ). 

Basically, EKF SLAM and FastSLAM solve the same problem while making use of the 
identical probabilistic motion and measurement models. Furthermore, both use 
Kalman filtering: EKF SLAM applies the filter once to a high dimensional filtering 
problem where FastSLAM employes M · K tiny EKFs (K of them in each particle). 

 

3. GraphSLAM- In robotics, GraphSLAM is a Simultaneous localization and 
mapping algorithm which uses sparse information matrices produced by generating 
a factor graph of observation interdependencies (two observations are related if 
they contain data about the same landmark). Where a factor graph is a bipartite 
graph representing the factorization of a function. In probability theory and its 
applications, factor graphs are used to represent factorization of a probability 
distribution function, enabling efficient computations, such as the computation 
of marginal distributions through the sum-product algorithm. One of the important 
success stories of factor graphs and the sum-product algorithm is the decoding of 
capacity-approaching error-correcting codes, such as LDPC and turbo codes. 

Factor graphs generalize constraint graphs. A factor whose value is either 0 or 1 is 
called a constraint. A constraint graph is a factor graph where all factors are 
constraints. The max-product algorithm for factor graphs can be viewed as a 
generalization of the arc-consistency algorithm for constraint processing. 

 

4. Parallel Tracking and Mapping (PTAM)- PTAM is a monocular SLAM (Simultaneous 
Localization and Mapping) system useful for real-time 6-DOF camera tracking in 
small scenes. It requires no markers, pre-made maps, known templates, or inertial 
sensors. It was originally developed as a research system in the Active Vision 
Laboratory of the University of Oxford. 

 

5. LSD-SLAM- LSD-SLAM is a novel, direct monocular SLAM technique. Instead of using 
keypoints, it directly operates on image intensities both for tracking and mapping. 
The camera is tracked using direct image alignment, while geometry is estimated in 
the form of semi-dense depth maps, obtained by filtering over many pixelwise 
stereo comparisons. We then build a Sim pose-graph of keyframes, which allows to 
build scale-drift corrected, large-scale maps including loop-closures. LSD-SLAM runs 
in real-time on a CPU, and even on a modern smartphone. 

 

2.3 Path Planning Approach 

The path planning approach for the experiment is based on EKF-SLAM (Extended 

Kalman Filter). We will be working in a closed environment and trying to determine the 
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shortest route for the robot to reach its final destination while avoiding the objects in 

the environment. So we are going to use a LIDAR sensor in ROS to perform our 

experiment and test the algorithm proposed to achieve the maximum efficiency while 

path planning and obstacle avoidance in a closed environment. 

In the experiment we will use a simple robot mule or do the experiment on ROS on 

virtual machine and Matlab. But in order to test the algorithm and incure lower cost of 

working we are going to use ROS Indigo on Virtual machine for our experiment. 

Our approach of the algorithm is based on EKF-SLAM for mapping. EKF SLAM is a class 

of algorithms which utilizes the extended Kalman filter (EKF) for simultaneous 

localization and mapping (SLAM). Typically, EKF SLAM algorithms are feature based, 

and use the maximum likelihood algorithm for data association. EKF SLAM is based on 

Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that 

uses a series of measurements observed over time, containing statistical noise and 

other inaccuracies, and produces estimates of unknown variables that tend to be more 

accurate than those based on a single measurement alone, by estimating a joint 

probability distribution over the variables for each timeframe. 

For the past decade, the EKF SLAM has been the de facto method for SLAM, until the 

introduction of FastSLAM. But we are not going to use FastSLAM for our experiment. 

 

Chapter 3 

RPLIDAR A1 

3.1 Introduction to RPLIDAR A1 

RPLIDAR A1 is a low cost 360 degree 2D laser scanner (LIDAR) solution developed by 

SLAMTEC. The system can perform 360 degree scan within 6 meter range. The 

produced 2D point cloud data can be used in mapping localization and 

object/environment modeling. 

Until RPLIDAR A1’s scanning frequency is 5.5 hz when sampling 360 points each round. 

And it can be configured up to 10 hz maximum. 

RPLIDAR A1 is basically a laser triangulation measurement system. It can work 

excellent in all kinds of indoor environment and outdoor environment without 

sunlight. 
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3.1.1 System Connection 

RPLIDAR A1 contains a range scanner system and a motor system. After power on each 

sub-system, RPLIDAR A1 starts rotating and scanning clockwise. User can get range 

scan data through the communication interface (Serial port/USB). 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 3.1 - RPLIDAR A1 System Composition 

 

RPLIDAR A1 comes with a speed detection and adaptive system. The system will adjust 

frequency of laser scanner automatically according to motor speed. And host system 

can get RPLIDAR A1’s real speed through communication interface.  

The simple power supply scheme saves LIDAR system’s BOM cost and makes RPLIDAR 

A1 much easier to use.  

3.1.2 Mechanism 

RPLIDAR A1 is based on laser triangulation ranging principle and uses high-speed 

vision acquisition and processing hardware developed by SLAMTEC. The system 

measures distance data in more than 2000 times per second and high resolution 

distance output (<1% of the distance).  

RPLIDAR emits modulated infrared laser signal and the laser signal is then reflected by 

the object to be detected. The returning signal is sampled by vision acquisition system 

in RPLIDAR A1 and the DSP embedded in RPLIDAR A1 start processing the sample data 

and output distance value and angle value between and RPLIDAR A1 through 

communication interface. 

(clockwise rotation) 

Motor System 

power supply 5-10V 

Digital System 

power supply 5V 

 

Interface: 

UART/USB 

Range Scanner 

System 

Motor system 

Fix platform 

(customizable) 
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Figure 3.2 – The RPLIDAR A1 Working Schematic 

The high-speed ranging scanner system is mounted on a spinning rotator with a build-

in angular encoding system. During rotating, a 360 degree scan of the current 

environment will be performed. 

3.1.3 Safety and Scope 

RPLIDAR A1 system use a low power (<5mW) infrared laser as its light source, and 

drives it using modulated pulse. The laser emits in a very short time frame which can 

make sure its safety to human and pet and reach Class I laser safety standard. 

The modulatedd laser can effectively prevent ambient light and sunlight during ranging 

scanning process. This makes RPLIDAR A1 work excellent in all kinds of indoor 

environment and outdoor environment without sunlight. 

3.1.4 Data Output 

When RPLIDAR A1 is working, sampling data will output to communication interface. 

Each sample point contains information. RPLIDAR A1 outputs sampling data 

continuously. Host systems can configure output format and stop RPLIDAR A1 by 

sending stop command. 
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1])
 

… 

Data Type Unit Description 

Distance mm 
Current measured distance value  between the  rotating 

  core of the RPLIDAR A1 and the sampling point  

Heading degree Current heading angle of the measurement 

Quality level Quality of the measurement 

Start Flag (Boolean) Flag of a new scan 

Figure 3.3 – The RPLIDAR A1 Sample Point Data Information 

 

Figure 3.4 – The RPLIDAR A1 Sample Point Data Frames 

 

3.1.5 Application Scenarios 

The RPLIDAR A1 can be used in the following application scenarios: 
 

o Home service / cleaning robot navigation and localization 
 

o General robot navigation and localization 
 

o Smart toys localization and obstacle avoidance 
 

o Environment scanning and 3D re-modeling 
 

o General simultaneous localization and mapping (SLAM) 
 

 

 

 

 

 

 

… 
1]) ) ])

 

Start Flag 

A new scan 
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Chapter 4 

Experimental Test 

4.1 Calibration of RPLIDAR A1 

In order to calibrate the sensor we need to test it in an undisturbed control working 

environment. An environment where we can ensure high data accuracy during testing 

and low chances of corruption.  

For this test I performed it in the University Laboratory for better outcome. We will use 

simple measuring tools to take measurements of the angle, distance and height and 

compare it to the data string from the sensor outcome. 

Equipment’s used: 
• RPLIDAR A1 sensor 

• Measuring tape of 2m length 

• Large scale protractor 
 

 

Experiment (Date- 29/05/2017) 
 

Sensor Data 
  

Experiment Data 
 Angle 

(Degree) 
Distance 
(mm) Quality 

Angle 
(Degree) 

Distance 
(mm) 

Height 
(mm) 

4.2813 668.3 14 4 663.5 33 

5.2344 663.3 14 5 661 34 

6.3125 671 11 6 666.2 37 

7.1406 722.8 32 7 720.5 43 

8.2344 723.5 33 8 721 47 

9.1719 725.8 29 9 723.5 40 

10.2188 728 29 10 726 42 

11.1719 729.8 26 11 728 40 

12.1563 732.3 28 12 730.5 43 

13.2188 733.5 26 13 732 41 

14.1406 736.5 25 14 735 40 

15.25 739.8 25 15 738 39 

16.125 742.5 25 16 741.5 37 

17.1875 746 25 17 744.5 37 

18.1719 750.3 24 18 749 35 
Figure 4.1 – The Calibration test 1 data table for RPLIDAR A1 
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The experiment was performed in a control environment in a laboratory with fixed 

objects to be taken as the data points. 

We took 15 sample points to compare the data with. These points where fixed points in 

the real world reference frame which reduced the possibility of high error. These points 

were of objects in the lab such as, walls, boxes, beams and etc. They were all of made 

up of different material thus resulting in varying quality of the signal received back by 

the sensor. 

We cannot compare Quality string of data as we cannot measure it in real world. 

Here we see that in Experimental data we have measured the height at which the 

sensor pings the data point in the environment. 

Graphs 

Now we will see the data comparison in between the data accumulated by the sensor 

and the data obtained in the experiment results. We will compare the data in reference 

to the Distance and the corresponding Angle of a point. This will result in two identical 

lines. The gap between them will be the error between the two sets of data. 

 

Figure 4.2 – The Calibration test 1 line graph of RPLIDAR A1 

  

Below is a line graph plot in MATLAB of the data accumulated from the above 

experiment. The line graph here is based on sensor data of 246 points it accumulated 

in 360 Degree field of view. We have Angle (Degree) of the point with respect to the 

650

660

670

680

690

700

710

720

730

740

750

760

0 5 10 15 20

D
is

ta
nc

e 
(m

m
)

Angle (Degree)

Calibration Test 1

Sesnor Data
Experimental Data



25 
 

sensor on X-axis and Distance (mm) of the corresponding point with respect to the 

sensor on Y-axis on the graph. 

Every flat plane in the graph can be read as an object with many consecutive data 

points forming a sensor facing surface. And every sudden rise or fall in peak can be 

read as two different data points on two different objects. 

MATLAB-Plot 

 
Figure 4.3 – MATLAb grah for all data points of RPLIDAR A1 

 

Below is the simulated image of data points that were processed by the SLAMTEC 

provided SDK tool for RPLIDAR A1 known as Frame Grabber. This image is of the 

experiment that was performed to gather data and calibrate the sensor. 

Here you can see various data points around the sensor with the scaled graph showing 

the distance and angle reference for each point in the environment. On top left of the 

screen you can see the mouse pointer’s current distance and its corresponding angle in 

red. Frequency and the rotor speed below it in white. 
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Figure 4.4 – Screen grab from Frame Grabber tool.  

 

4.2 Calibration test 2 of RPLIDAR A1 

In this calibration test we will check the corresponding range to specific degree angle 

of the data point. This will allow us to see the variation in change of data with respect 

to the distance of the object from the sensor. 

 

Experiment (Date- 01/06/2017) 
 

Angle (Degree) 
Distance Data 1 
(mm) 

Distance Data 2 
(mm) 

Distance Data 3 
(mm) 

4.2813 668.3 768.3 868.2 

5.2344 663.3 763.3 863.2 

6.3125 671 771 870.9 

7.1406 722.8 822.9 922.9 

8.2344 723.5 823.5 923.4 

9.1719 725.8 825.8 9259 

10.2188 728 828 928 

11.1719 729.8 829.7 928.8 

Figure 4.5 – The Calibration test 2 data table for RPLIDAR A1 

The experiment was performed in a control environment in a laboratory with fixed 

objects to be taken as the data points. 

We took 8 sample points of an object to compare as the distance is progressed shifting 

the object away from the sensor 100mm for every data set. These points where fixed 

points in the real world reference frame which reduced the possibility of high error.  



27 
 

Here we will see small error that has occurred in data set as the object is moved away 

from the sensor. The error is very small around 0.1mm. This shows that the sensor is 

very accurate and has very low chances of error. 

Graphs 

Now we will see the data comparison in between the different data sets of distance 

with corresponding angle registered by the sensor. As we plot the graph we will see 

that the lines are identical and have very little error. 

 

Figure 4.6 – The Calibration test 2 line graph of RPLIDAR A1 

4.3 Result 
 
We learned from the experiment that the values were within 0.5 degree and up-to 5 

mm of tolerance to the data obtained from the sensor. The height measured is also 

ranging from 33mm-47mm which is within the parameters of the RPLIDAR A1 sensor. 

This falls well within the parameters of the sensor tolerance. Thus the sensor is very 

accurate as the tolerance is less than 1% as the company specifies. The quality of the 

signal is subjective to the material of the object, the angle of attack and the surface 

reflective quality of the object dependent on material and shape. 
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Chapter 5 

Environment Mapping 

5.1 SLAM Mapping 

Here in this experiment we are going to map the environment in which the experiment 

was performed for our calibration exercise. 

We will use the sensor data and use it to map the environment.  

The experiment is based on the RPLIDAR reading points in the environment and then 

those points being used to form surface of obstacles in the environment. Here all those 

points which will be too close to each other and consecutive will be formed into line 

segments of the surface of the objects. We will use an algorithm which will process the 

images and knit them together closely forming a video which will show us the outcome 

as mapping being done. 

This practice of mapping will be further used in path planning of a robot. 

5.2 Environmental Setup 

Here we will see how the environment was setup during the experiment. 

 
Figure 5.1 – Scale used for RPLIDAR A1 sensor in experiment.  



29 
 

This scale was used as a reference and mounting point in the environment for the 

sensor in order to make sure that the data was not corrupted in repeated 

experimentation. 

In the experiment we had setup 3 fixed objects as to compare data and ensure result 

reliability. 

Two objects were cardboard boxes places at 90 degrees apart with respect to the 

sensor and at varying distance from the sensor. While the third object was an iron 

beam near a wall. 

These different objects placed with different angles with respect to the sensor resulted 

in varying quality of the sensor data. 

In this experiment we will map the environment and do path planning with the use 

sensor data processed through coding in MATLAB. This code is based on EKF-SLAM 

which helps us in using the data from the sensor such as distance and the bearing of 

the object that has reflected the laser of the sensor. The purpose of doing so is to find 

an effective functioning code which can process the data from the sensor and be used 

in acquiring the image of the environment. This can further lead us to read the data in 

real time and do path planning which can be very useful in automation of the robot or 

the automotive medium to navigate its path through obstacles and reach its 

destination in the most efficient way possible. 

 

5.3 MATLAB Code 
 
Functions to perform 2D EKF-SLAM (Extended Kalman Filter – Simultaneous 

Localization and Mapping) with a range-and-bearing (Distance-and-Angle) sensor are 

given below. In here we have differentiated between elementary function blocks and 

the function block SLAM really needs. The SLAM functions are often compositions of 

elementary functions. All functions are able to return the Jacobian matrices of the 

output variables with respect to each input variables. 

Finally, we give a simple but sufficient code of a full working SLAM algorithm, with 

simulation, estimation and graphics output. 
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5.4 Frame transformations 

 
Express a global point in a local frame: 
 
function [pf, PF_f, PF_p] = toFrame(F , p) 
% TO THE FRAME - Transform point P from global frame to frame F 
% 
% In: 
%   F : reference frame           F = [f_x ; f_y ; f_alpha] 
%   p : point in global frame     p = [p_x ; p_y] 
% Out: 
%   pf: point in frame F 
%   PF_f: Jacobian wrt F 
%   PF_p: Jacobian wrt p 
t = F(1:2); 
a = F(3); 
R = [cos(a) -sin(a) ; sin(a) cos(a)]; 
pf = R' * (p - t); 
if nargout > 1    % Jacobians requested 
    px = p(1); 
    py = p(2); 
    x = t(1); 
    y = t(2); 
    PF_f = [... 
        [ -cos(a), -sin(a), cos(a)*(py - y) - sin(a)*(px - x)] 
        [ sin(a), -cos(a), - cos(a)*(px - x) - sin(a)*(py - y)]]; 
    PF_p = R'; 
end 
end 
function f() 
%% Symbolic code below -- Generation and/or test of Jacobians 
% - Enable 'cell mode' to use this section 
% - Left?click once on the code below ? the cell should turn yellow 
% - Type ctrl+enter (Windows, Linux) or Cmd+enter (MacOSX) to execute 
% - Check the Jacobian results in the Command Window. 
syms x y a px py real 
F = [x y a]'; 
p = [px py]'; 
pf = toFrame(F, p); 
PF_f = jacobian(pf, F) 
End 

 
Express a local point in global frame: 
 
function [pw, PW_f, PW_pf] = fromFrame(F, pf) 
% FROM THE FRAME - Transform a point PF from local frame F to the global frame. 
% 
% In: 
%   F : reference frame     F = [f_x ; f_y ; f_alpha] 
%   pf: point in frame F    pf = [pf_x ; pf_y] 
% Out: 
%   pw: point in global frame 
%   PW_f: Jacobian wrt F 
%   PW_pf: Jacobian wrt pf 
t = F(1:2); 
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a = F(3); 
R = [cos(a) -sin(a) ; sin(a) cos(a)]; 
pw = R*pf + repmat(t,1,size(pf,2)); % Allow for multiple points 
if nargout > 1    % Jacobians requested 
    px = pf(1); 
    py = pf(2); 
    PW_f = [... 
        [ 1, 0, - py*cos(a) - px*sin(a)] 
        [ 0, 1, px*cos(a) - py*sin(a)]]; 
    PW_pf = R; 
end 
end 
function f() 
%% Symbolic code below -- Generation and/or test of Jacobians 
% - Enable 'cell mode' to use this section 
% - Left-click once on the code below - the cell should turn yellow 
% - Type ctrl+enter (Windows, Linux) or Cmd+enter (MacOSX) to execute 
% - Check the Jacobian results in the Command Window. 
syms x y a px py real 
F = [x;y;a]; 
pf = [px;py]; 
pw = fromFrame(F,pf); 
PW_f = jacobian(pw,F) 
PW_pf = jacobian(pw,pf) 
end 
 
 

• Project to sensor 
 
function [y, Y_p] = scan (p) 
% SCAN - Perform a range-and-bearing measure of a 2D point. 
% 
% In: 
%   p : point in sensor frame   p = [p_x ; p_y] 
% Out: 
%   y : measurement             y = [range ; bearing] 
%   Y_p: Jacobian wrt p 
px = p(1); 
py = p(2); 
d = sqrt(px^2+py^2); 
a = atan2(py,px); 
% a = atan(py/px); % use this line if you are in symbolic mode. 
y = [d;a]; 
if nargout > 1    % Jacobians requested 
    Y_p = [... 
        px/sqrt(px^2+py^2) , py/sqrt(px^2+py^2) 
        -py/(px^2*(py^2/px^2 + 1)), 1/(px*(py^2/px^2 + 1)) ]; 
end 
end 
function f() 
%% Symbolic code below -- Generation and/or test of Jacobians 
% - Enable 'cell mode' to use this section 
% - Left-click once on the code below - the cell should turn yellow 
% - Type ctrl+enter (Windows, Linux) or Cmd+enter (MacOSX) to execute 
% - Check the Jacobian results in the Command Window. 
syms px py real 
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p = [px;py]; 
y = scan(p); 
Y_p = jacobian(y,p) 
[y,Y_p] = scan(p); 
simplify(Y_p - jacobian(y,p)) 
end 
 

• Back project from sensor 
 
function [p, P_y] = invScan(y) 
% INVERSE SCAN - Backproject a range-and-bearing measure into a 2D point. 
% 
% In: 
%   y : range?and?bearing measurement     y = [range ; bearing] 
% Out: 
%   p : point in sensor frame             p = [p_x ; p_y] 
%   P_y: Jacobian wrt y 
d = y(1); 
a = y(2); 
px = d*cos(a); 
py = d*sin(a); 
p = [px;py]; 
if nargout > 1    % Jacobians requested 
    P_y = [... 
        cos(a) , -d*sin(a) 
        sin(a) , d*cos(a)]; 
end 

 
 

5.5 SLAM level operations 
 

• Robot motion 
 
function [ro, RO_r, RO_n] = move(r, u, n) 
% MOVE - Robot motion, with separated control and perturbation inputs. 
% 
% In: 
%   r: robot pose           r = [x ; y ; alpha] 
%   u: control signal       u = [d_x ; d_alpha] 
%   n: perturbation, additive to control signal 
% Out: 
%   ro: updated robot pose 
%   RO_r: Jacobian d(ro) / d(r) 
%   RO_n: Jacobian d(ro) / d(n) 
a = r(3); 
dx = u(1) + n(1); 
da = u(2) + n(2); 
ao = a + da; 
if ao > pi 
    ao = ao - 2*pi; 
end 
if ao < -pi 
    ao = ao + 2*pi; 
end 
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% build position increment dp=[dx;dy], from control signal dx 
dp = [dx;0]; 
if nargout == 1    % No Jacobians requested 
    to = fromFrame(r, dp); 
else     % Jacobians requested 
    [to, TO_r, TO_dt] = fromFrame(r, dp); 
    AO_a = 1; 
    AO_da = 1; 
    RO_r = [TO_r ; 0 0 AO_a]; 
    RO_n = [TO_dt(:,1) zeros(2,1) ; 0 AO_da]; 
end 
ro = [to;ao]; 
 

• Direct observation model 
 
function [y, Y_r, Y_p] = observe(r, p) 
% OBSERVE - Transform a point P to robot frame and take a range-and-bearing measurement. 
% In: 
%   r : robot frame             r = [r_x ; r_y ; r_alpha] 
%   p : point in global frame   p = [p_x ; p_y] 
% Out: 
%   y: range?and?bearing measurement 
%   Y_r: Jacobian wrt r 
%   Y_p: Jacobian wrt p 
if nargout == 1    % No Jacobians requested 
    y = scan(toFrame(r,p)); 
else     % Jacobians requested 
    [pr, PR_r, PR_p] = toFrame(r, p); 
    [y, Y_pr] = scan(pr); 
        % The chain rule! 
    Y_r = Y_pr * PR_r; 
    Y_p = Y_pr * PR_p; 
end 
 

• Inverse observation model 
 
function [p, P_r, P_y] = invObserve(r, y) 
% INVERSE OBSERVE - Backproject a range-and-bearing measurement and transform to map frame. 
% 
% In: 
%   r : robot frame     r = [r_x ; r_y ; r_alpha] 
%   y : measurement     y = [range ; bearing] 
% Out: 
%   p : point in sensor frame 
%   P_r: Jacobian wrt r 
%   P_y: Jacobian wrt y 
if nargout == 1    % No Jacobians requested 
    p = fromFrame(r, invScan(y)); 
else     % Jacobians requested 
    [p_r, PR_y] = invScan(y); 
    [p, P_r, P_pr] = fromFrame(r, p_r); 
        % here the chain rule ! 
    P_y = P_pr * PR_y; 
end 
end 
function f() 
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%% Symbolic code below -- Generation and/or test of Jacobians 
% - Enable 'cell mode' to use this section 
% - Left-click once on the code below - the cell should turn yellow 
% - Type ctrl+enter (Windows, Linux) or Cmd+enter (MacOSX) to execute 
% - Check the Jacobian results in the Command Window. 
syms rx ry ra yd ya real 
r = [rx;ry;ra]; 
y = [yd;ya]; 
[p, P_r, P_y] = invObserve(r, y);  % We extract also the coded Jacobians P_r and P_y 

% We use the symbolic result to test the coded Jacobians 
simplify(P_r - jacobian(p,r))  % zero?matrix if coded Jacobian is correct 
simplify(P_y - jacobian(p,y))  % zero?matrix if coded Jacobian is correct 
end 
 

 
5.6 EKF-SLAM code 
 
This follows a 102-lines-of-code m-file performing SLAM. This code uses all the files 

above, plus the helper function cloister.m (also given below) which is just used to 

define the set of landmarks for the simulation. 

HELP NOTES: 
 
1. The robot state is defined by [xr;yr;ar] with [xr;yr] the position  and [ar] the orientation 

angle in the plane. 
 

2. The landmark states are simply Li=[xi;yi]. There are a number of N landmarks organized in 
a 2-by-N matrix W=[L1 L2 ... Ln] so that Li = W(:,i). 

 
3. The control signal for the robot is U=[dx;da] where [dx] is a forward motion and [da] is the 

angle of rotation. 
 

4. The motion perturbation is additive Gaussian noise n=[nx;na] with covariance Q, which 
adds to the control signal. 

 
5. The measurements are range-and-bearing Yi=[di;ai], with [di] the distance from the robot 

to landmark Li, and [ai] the bearing angle from the robot's x-axis. 
 

6. The simulated variables are written in capital letters, 
R: robot 
W: set of landmarks or 'world' 
Y: set of landmark measurements Y=[Y1 Y2 ... YN] 
 

7. The true map is [xr;yr;ar;x1;y1;x2;y2;x3;y3; ... ;xN;yN] 
 

8. The estimated map is Gaussian, defined by 
x: mean of the map 
P: covariances matrix of the map 
 

9. The estimated entities (robot and landmarks) are extracted from {x,P} via pointers, 
denoted in small letters as follows: 
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           r: pointer to robot state. r=[1,2,3] 
         l: pointer to landmark i. We have for example l=[4,5] if i=1, 
          l=[6,7] if i=2, and so on. 
          m: pointers to all used landmarks. 
           rl: pointers to robot and one landmark. 
           rm: pointers to robot and all landmarks (the currently used map). 
          Therefore:  x(r) is the robot state, 
                  x(l) is the state of landmark i 
                  P(r,r) is the covariance of the robot 
                  P(l,l) is the covariance of landmark i 
                  P(r,l) is the cross?variance between robot and lmk i 
                  P(rm,rm) is the current full covariance -- the rest is unused. 
 
10. Managing the map space is done through the variable mapspace. mapspace is a logical 

vector the size of x. 
If mapspace(i) = false, then location i is free. 
Oterwise mapspace(i) = true. Use it as follows: 

            * query for n free spaces: s = find(mapspace==false, n); 
            * block positions indicated in vector s: mapspace(s) = true; 
            * liberate positions indicated in vector s: mapspace(s) = false; 
 
11. Managing the existing landmarks is done through the variable landmarks. 

Landmarks is a 2-by-N matrix of integers. l=landmarks(:,i) are the pointers of landmark i in 
the state vector x, so that x(l) is the state of landmark i. 

Use it as follows: 
          * query 1 free space for a new landmark: i = find(landmarks(1,:)==0,1) 

               * associate indices in vector s to landmark i: landmarks(:,i) = s 
               * liberate landmark i: landmarks(:,i) = 0; 
 
12. Graphics objects are Matlab 'handles'. See Matlab doc for information. 
 
13.   Graphic objects include: 
         RG: simulated robot 
        WG: simulated set of landmarks 
      rG: estimated robot 
     reG: estimated robot ellipse 

          lG: estimated landmarks 
        leG: estimated landmark ellipses 

 
 
% SLAM 2D - A 2D EKF-SLAM algorithm with simulation and graphics. 
% 
% I. INITIALIZE 
% I.1 SIMULATOR -- use capital letters for variable names 
% W: set of external landmarks 
W = cloister(-4,4,-4,4,7);       % Type 'help cloister' for help 
% N: number of landmarks 
N = size(W,2); 
% R: robot pose [x ; y ; alpha] 
R = [0;-2;0]; 
% U: control [d_x ; d_alpha] 
U = [0.1 ; 0.05];    % fixing advance and turn increments creates a circle 
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% Y: measurements of all landmarks 
Y = zeros(2, N); 
% I.2 ESTIMATOR 
% Map: Gaussian {x,P} 
% x: state vector's mean 
x = zeros(numel(R)+numel(W), 1); 
% P: state vector's covariances matrix 
P = zeros(numel(x),numel(x)); 
% System noise: Gaussian {0,Q} 
q = [.01;.02];    % amplitude or standard deviation 
Q = diag(q.^2);   % covariances matrix 
% Measurement noise: Gaussian {0,S} 
s = [.1;1*pi/180];    % amplitude or standard deviation 
S = diag(s.^2);   % covariances matrix 
% Map management 
mapspace = false(1,numel(x));  % See Help Note #10 above. 
% Landmarks management 
landmarks = zeros(2, N);   % See Help Note #11 above 
% Place robot in map 
r = find(mapspace==false, numel(R) ); % set robot pointer 
mapspace(r) = true;   % block map positions 
x(r) = R;     % initialize robot states 
P(r,r) = 0;    % initialize robot covariance 
% I.3 GRAPHICS -- use the variable names of simulated and estimated variables, followed by a capital G 
to indicate 'graphics'. 
% NOTE: the graphics code is long but absolutely necessary. 
% Set figure and axes for Map 
mapFig = figure(1);   % create figure 
cla     % clear axes 
axis([-6 6 -6 6])    % set axes limits 
axis square    % set 1:1 aspect ratio 
% Simulated World -- set of all landmarks, red crosses 
WG = line(... 
    'linestyle','none',... 
    'marker','+',... 
    'color','r',... 
    'xdata',W(1,:),... 
    'ydata',W(2,:)); 
% Simulated robot, red triangle 
Rshape0 = .2*[... 
    2 -1 -1 2; ... 
    0 1 -1 0];    % a triangle at the origin 
Rshape = fromFrame(R, Rshape0);  % a triangle at the robot pose 
RG = line(... 
    'linestyle','-',... 
    'marker','none',... 
    'color','r',... 
    'xdata',Rshape(1,:),... 
    'ydata',Rshape(2,:)); 
% Estimated robot, blue triangle 
rG = line(... 
    'linestyle','-',... 
    'marker','none',... 
    'color','b',... 
    'xdata',Rshape(1,:),... 
    'ydata',Rshape(2,:)); 
% Estimated robot ellipse, magenta 
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reG = line(... 
    'linestyle','-',... 
    'marker','none',... 
    'color','m',... 
    'xdata',[ ],... 
    'ydata',[ ]); 
% Estimated landmark means, blue crosses 
lG = line(... 
    'linestyle','none',... 
    'marker','+',... 
    'color','b',... 
    'xdata',[ ],... 
    'ydata',[ ]); 
% Estimated landmark ellipses, green 
leG = zeros(1,N); 
for i = 1:numel(leG) 
leG(i) = line(... 
    'linestyle','-',... 
    'marker','none',... 
    'color','g',... 
    'xdata',[ ],... 
    'ydata',[ ]); 
end 
% II. TEMPORAL LOOP 
for t = 1:200 
    % II.1 SIMULATOR 
    % a. motion 
    n = q .* randn(2,1);           % perturbation vector 
    R = move(R, U, zeros(2,1) );  % we will perturb the estimator 
                                    % instead of the simulator 
    % b. observations 
    for i = 1:N                      % i: landmark index 
        v = s .* randn(2,1);      % measurement noise 
        Y(:,i) = observe(R, W(:,i)) + v; 
    end 
    % II.2 ESTIMATOR 
    % a. create dynamic map pointers to be used hereafter 
    m = landmarks(landmarks~=0)';    % all pointers to landmarks 
    rm = [r , m];                     % all used states: robot and landmarks 
                                       % ( also OK is rm = find(mapspace); ) 
    % b. Prediction -- robot motion 
    [x(r), R_r, R_n] = move(x(r), U, n); % Estimator perturbed with n 
    P(r,m) = R_r * P(r,m);    
    P(m,r) = P(r,m)'; 
    P(r,r) = R_r * P(r,r) * R_r' + R_n * Q * R_n'; 
    % c. Landmark correction -- known landmarks 
    lids = find( landmarks(1,:) );  % returns all indices of existing landmarks 
    for i = lids 
        % expectation: Gaussian {e,E} 
        l = landmarks(:, i)';   % landmark pointer 
        [e, E_r, E_l] = observe(x(r), x(l) ); % this is h(x) in EKF 
        rl = [r , l];    % pointers to robot and lmk. 
        E_rl = [E_r , E_l];   % expectation Jacobian 
        E = E_rl * P(rl, rl) * E_rl'; 
        % measurement of landmark i 
        Yi = Y(:, i); 
        % innovation: Gaussian {z,Z} 



38 
 

        z = Yi - e;    % this is z = y - h(x) in EKF 
        % we need values around zero for angles: 
        if z(2) > pi 
            z(2) = z(2) - 2*pi; 
        end 
        if z(2) < -pi 
            z(2) = z(2) + 2*pi; 
        end 
        Z = S + E; 
        %  
        if z' * Z^-1 * z < 9 
            % Kalman gain 
            K = P(rm, rl) * E_rl' * Z^-1;  % this is K = P*H'*Zˆ-1 in EKF 
            % map update (use pointer rm) 
            x(rm) = x(rm) + K*z; 
            P(rm,rm) = P(rm,rm) - K*Z*K'; 
        end 
    end 
    % d. Landmark Initialization -- one new landmark only at each iteration 
    lids = find(landmarks(1,:)==0);     % all non-initialized landmarks 
    if ~isempty(lids)                    % there are still landmarks to initialize 
        i = lids(randi(numel(lids)));    % pick one landmark randomly, its index is i 
        l = find(mapspace==false, 2);    % pointer of the new landmark in the map 
        if ~isempty(l)                   % there is still space in the map 
            mapspace(l) = true;         % block map space 
            landmarks(:,i) = l;          % store landmark pointers 
            % measurement 
            Yi = Y(:,i); 
            % initialization 
            [x(l), L_r, L_y] = invObserve(x(r), Yi); 
            P(l,rm) = L_r * P(r,rm); 
            P(rm,l) = P(l,rm)'; 
            P(l,l) = L_r * P(r,r) * L_r' + L_y * S * L_y'; 
        end 
    end 
    % II.3 GRAPHICS 
    % Simulated robot 
    Rshape = fromFrame(R, Rshape0); 
    set(RG, 'xdata', Rshape(1,:), 'ydata', Rshape(2,:)); 
    % Estimated robot 
    Rshape = fromFrame(x(r), Rshape0); 
    set(rG, 'xdata', Rshape(1,:), 'ydata', Rshape(2,:)); 
    % Estimated robot ellipse 
    re = x(r(1:2));                   % robot position mean 
    RE = P(r(1:2),r(1:2));           % robot position covariance 
    [xx,yy] = cov2elli(re,RE,3,16);  % x- and y- coordinates of contour 
    set(reG, 'xdata', xx, 'ydata', yy); 
    % Estimated landmarks 
    lids = find(landmarks(1,:));    % all indices of mapped landmarks 
    lx = x(landmarks(1,lids));       % all x-coordinates 
    ly = x(landmarks(2,lids));       % all y-coordinates 
    set(lG, 'xdata', lx, 'ydata', ly); 
    % Estimated landmark ellipses -- one per landmark 
    for i = lids 
        l = landmarks(:,i); 
        le = x(l); 
        LE = P(l,l); 
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        [xx,yy] = cov2elli(le,LE,3,16); 
        set(leG(i), 'xdata', xx, 'ydata', yy); 
    end 
    % force Matlab to draw all graphic objects before next iteration 
    drawnow 
    % pause(1) 
end 
  
function f = cloister(xmin,xmax,ymin,ymax,n) 
% CLOISTER - Generates features in a 2D cloister shape. 
%   CLOISTER (XMIN,XMAX,YMIN,YMAX,N) generates a 2D cloister in the limits indicated as parameters. 
% 
%   N is the number of rows and columns; it defaults to N = 9. 
if nargin < 5 
    n = 9; 
end 
% Center of cloister 
x0 = (xmin+xmax)/2; 
y0 = (ymin+ymax)/2; 
% Size of cloister 
hsize = xmax-xmin; 
vsize = ymax-ymin; 
tsize = diag([hsize vsize]); 
% Integer ordinates of points 
outer = (-(n-3)/2 : (n-3)/2); 
inner = (-(n-3)/2 : (n-5)/2); 
% Outer north coordinates 
No = [outer; (n-1)/2*ones(1,numel(outer))]; 
% Inner north 
Ni = [inner ; (n-3)/2*ones(1,numel(inner))]; 
% East (rotate 90 degrees the North points) 
E = [0 -1;1 0] * [No Ni]; 
% South and West are negatives of N and E respectively. 
points = [No Ni E -No -Ni -E]; 
% Rescale 
f = tsize*points/(n-1); 
% Move 
f(1,:) = f(1,:) + x0; 
f(2,:) = f(2,:) + y0; 
end 
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Chapter 6 

Conclusion 

The development of an effective algorithm allows the user to communicate and 

perform movement operations and collect relevant data for real time control and path 

planning. 

The type of controller developed is fairly simple and very effective and offers great 

possibility to modify and control the behavior of a robot or any other form of 

automotive medium such as cars, drones and unmanned-vehicles and etc. While in 

case of automatic mode or trajectory planning there is greater possibility to improve 

the algorithm. There are still some problems of working in outside environment where 

the intensity of light creates problem in data acquisition and reduces the performance 

of the sensor. For this problem can be solved with the use of more powerful sensors 

which can work more accurately in harsh environments. 

As for the robots ability to do path planning is very good and can be improved upon 

with better algorithm. As currently the algorithm only allows basic obstacle detection, 

obstacle avoidance, trajectory planning and environment mapping. 

The next step could be the use of a GPS sensor, which could improve tracking more 

efficiently and use 3D-Lidar sensor to read the environment with better efficiency. We 

could also incorporate use of visual aid such as camera which can further improve the 

ability to read and detect obstacles and their avoidance. We could also improve the 

algorithm for better automatic maneuverability. 
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Chapter 7 

Appendix 
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