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“A journey of a thousand miles begins with single step.”

Lao Zi



Abstract

The aim of this work is to develop some applications via high-level synthesis based on

an FPGA board, and the performance of the application could be improved as compares

with these applications without high level synthesis. The idea is divided into two parts,

the first part is that transforms an algorithm description into a hardware implemen-

tation in Vivado HLS and Catapult; The second part is that synthesis the hardware

implementation in Vivado that interface with the hardware that generated by vivado

hls and catapult with the processing system and the memory system in the same FPGA

board, and compare the timing and utilization for different cases.

In order to achieve these objectives, three software is desired which is (1)vivado hls and

catapult, a tool can use a series of steps to generate the hardware.(2)vivado, a tool can

generate the system and compare the result between these different cases.

In this work, c language is used to write the code,vivado hls and catapult is used to

transfer the code into RTL implementation, vhdl is used to package the ip.



Acknowledgements

I want to start with the feeling of appreciation to My supervisor, Prof. Luciano Lavagno

and co-supervisor Dr. Mihai Lasarescu for their support and motivation throughout the

course of this work. Without their help, my work and paper might not have been so

smooth.. They provided me with the opportunity to improve my technical skills and

provided me the resources to fulfill this task.

I would appreciate Dr.Ma Liang, Dr.Arslan Arif, Dr.Javed Iqbal for their suggestions

and useful instructions. Also the other staffs and classmates in the department, like

Dr.Sarmad Uiiah, Dr.Shan Junnan, Marco De Clemente, Pooya Poolad, Pablo Henao

have given me a hand when I faced problems.

I am thankful to my parents and family and friends, who have always been a source of

motivation for me in the endeavor of knowledge.

Moreover, I am especially thankful to my girlfriend Zhao Rui for her endless loves and

timely assistance both in the study and in my life.

iv



Dedicated to my parents ”Guo Bangqiang” and ”Chen Yueying”.

v



Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures ix

Abbreviations xi

1 Introduction 1

1.1 Electronic System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Synthesis Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Electronic System-level Design and High-Level Synthesis . . . . . . . . . . 4

1.2.1 The relevance between ESL and HLS . . . . . . . . . . . . . . . . . 4

1.2.2 ESL design methodology . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Function-based ESL methodology . . . . . . . . . . . . . . . . . . . 6

1.2.4 Architecture-based ESL methodology . . . . . . . . . . . . . . . . 6

1.2.5 High-level synthesis within an ESL design methodology . . . . . . 6

1.3 High level synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 High-level synthesis Input/Output . . . . . . . . . . . . . . . . . . 7

1.3.2 Typical high-level synthesis design flow . . . . . . . . . . . . . . . 9

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Vivado HLS V.S Catapult 11

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Vivado HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Overview of Vivado HLS . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Base knowledge of Vivado HLS . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Vivado HLS performance improvement methods . . . . . . . . . . 13

2.2.3.1 Adding directives . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3.2 Reduce latency by loop unroll . . . . . . . . . . . . . . . 14

2.2.3.3 Reduce latency by loop flatten . . . . . . . . . . . . . . . 15

vi



Contents vii

2.2.3.4 Reduce latency by loop merging . . . . . . . . . . . . . . 15

2.2.3.5 Dataflow optimization for optimizing throughput . . . . . 15

2.2.3.6 Pipeline optimization . . . . . . . . . . . . . . . . . . . . 17

2.2.3.7 Performance Bottleneck . . . . . . . . . . . . . . . . . . . 17

2.3 Catapult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Overview of Catapult . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 comparision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 KNN and Digit Recognition Application 19

3.1 KNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Example of KNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Distance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Sorting methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.4 Choice of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Digital Recognition Application . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Loading the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Distance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Distance Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.4 Count the occurrence . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.5 Verify the recognition rate . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 The Comparison of Experimental Results of high level synthesis Ac-
celeration 28

4.1 Topkref Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Topkref implemented in Vivado hls . . . . . . . . . . . . . . . . . . 28

4.1.1.1 Interface Aspect . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1.2 Loop Aspect . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1.3 Architecture Aspect . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 The result of top ref implemented in Vivado hls . . . . . . . . . . . 30

4.2 Topkref implemented in Catapult . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Synthesis by setting the top function . . . . . . . . . . . . . . . . . 31

4.2.2 Synthesis by setting the outer loop pipeline . . . . . . . . . . . . . 32

4.2.3 Synthesis by setting the outer loop pipeline and unroll . . . . . . . 32

4.2.4 Synthesis by setting the outer loop pipeline and inner loop pipeline 33

4.2.5 Synthesis by setting the data enable interface . . . . . . . . . . . . 33

4.2.6 Synthesis by setting two way handshake interface . . . . . . . . . . 34

4.2.7 Synthesis by adding block size in the interface . . . . . . . . . . . . 34

4.2.8 Synthesis by creating c-cores in the mapping process . . . . . . . . 35

4.2.9 Result comparision for Topkref distance in Catapult . . . . . . . . 35

4.3 Topksorted Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Topksorted implemented in Vivado hls . . . . . . . . . . . . . . . . 36

4.3.1.1 Interface Aspect . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1.2 Loop Aspect . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1.3 Architecture Aspect . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 The result of top sorted implemented in Vivado hls . . . . . . . . . 37

4.4 Topksorted distances implemented in Catapult . . . . . . . . . . . . . . . 38



Contents viii

4.4.1 Synthesis by setting the top function . . . . . . . . . . . . . . . . . 38

4.4.2 Synthesis by setting the outer loop pipeline . . . . . . . . . . . . . 38

4.4.3 Synthesis by setting the outer loop pipeline and unroll . . . . . . . 39

4.4.4 Synthesis by setting the outer loop pipeline and inner loop pipeline 40

4.4.5 Synthesis by setting the data enable interface . . . . . . . . . . . . 40

4.4.6 Synthesis by setting two way handshake interface . . . . . . . . . . 41

4.4.7 Synthesis by adding initiation interval size in the interface . . . . . 41

4.4.8 Synthesis by creating c-cores in the mapping process . . . . . . . . 41

4.4.9 The result comparison of top sorted implemented in Catapult . . . 42

4.5 The Comparison of Experimental Results in Vivado Synthesis . . . . . . . 43

4.5.1 Topkref Synthesis in Vivado . . . . . . . . . . . . . . . . . . . . . . 43

4.5.1.1 Topksorted Synthesis in Vivado . . . . . . . . . . . . . . 44

5 Conclusion and Prospect 46

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Some Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Digit recognition system Developing . . . . . . . . . . . . . . . . . 47

5.2.2 High Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A Appendix Title Here 48

Bibliography 49



List of Figures

1.1 Electronic system design flow . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 synthesis process from specification to implementation . . . . . . . . . . . 3

1.3 the role of HLS in ESL design . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 typical high level synthesis output . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Typical high-level synthesis flow . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Vivado HLS design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 throughput optimizing by pipeline . . . . . . . . . . . . . . . . . . . . . . 14

2.3 loop merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 sequential tasks inside top function . . . . . . . . . . . . . . . . . . . . . 16

2.5 parallel process inside top function . . . . . . . . . . . . . . . . . . . . . . 16

2.6 with and without data flow inside top function . . . . . . . . . . . . . . . 17

3.1 First type of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Second type of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 The effect of two data combination . . . . . . . . . . . . . . . . . . . . . 22

3.4 An example of testDigital(label 0) . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Loading the training file (label 0) . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Timing and Latency and Utilization comparison . . . . . . . . . . . . . . 30

4.2 The resource and final timing implementation . . . . . . . . . . . . . . . 31

4.3 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.9 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.10 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.11 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.12 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.13 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.14 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.15 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.16 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.17 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.18 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.19 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



List of Figures x

4.20 Timing and Latency and Utilization comparison . . . . . . . . . . . . . . 38

4.21 The resource and final timing implementation . . . . . . . . . . . . . . . 38

4.22 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.23 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.24 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.25 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.26 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.27 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.28 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.29 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.30 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.31 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.32 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.33 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.34 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.35 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.36 The latency and Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.37 The total area post synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.38 The comparision of different synthesis method in catapult . . . . . . . . . 42

4.39 The comparision of Topkref Synthesis in Vivado . . . . . . . . . . . . . . 43

4.40 Pareto-optimal point in the graph . . . . . . . . . . . . . . . . . . . . . . 44

4.41 The comparision of Topksorted Synthesis in Vivado . . . . . . . . . . . . 44

4.42 Pareto-optimal point in the graph . . . . . . . . . . . . . . . . . . . . . . 45



Abbreviations

HLS High Level Synthesis

FPGA Field- Programmable Gate Array

HDL Hardware Ddescription Language

CPU Central Processing Unit

KNN K Nearest Neighbor

RTL Register Transfer Level

ESL Electronic System Level

xi



Chapter 1

Introduction

1.1 Electronic System Design

In electronic system design, there are some common features in electronics system level

design synthesis methodologies. In this chapter, the common principles would be speci-

fied in the first and second parts. In order to get a general picture for the ESL synthesis,

the system design process would be specified in general to better understand the elec-

tronic system level design.

1.1.1 Design Flow

For the design flow of ESL level, top-down mode is the typical ESL synthesis approach.

[1], I will explain the design process in this chapter in the ways of top down methodolo-

gies. Furthermore, the approach will show software synthesis steps in the task level and

instruction level while it also shows the hardware synthesis steps in component level and

logic level in the design flow. we can seen the double roof model [2] shown in Fig1.1.

In the real electronics system design process,the double roof model includes hardware

and software systems. As it can be easily seen from the graph, in the left side, the levels

of the software design process has been illuminated as well as the hardware design process

in the right side. Two abstraction levels constitute both side, If we look down from the

top system level, in the hardware side, includes task and instruction levels; while in the

software side, includes component and logic levels. As it shows in the graph, in the top

1
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Figure 1.1: Electronic system design flow

there is a level named as system level, which is used in both hardware and software.

After the completion of each synthesis step, an implementation would generate from the

source of the specification. And inside each adjacent level,the elements or result in the

current level’s implementation would be the input of next down level specifications.

The double roof model shows how the electronic system level specification turns into

implementation, within these top down levels, the channels is needed for the process

communication. The ESL synthesis is the process for choosing an proper platform,

and then can map its behavioral model into architecture, continuing to generate the

implementation.

The ESL high level synthesis can contains two parts,for the first synthesis step, a func-

tional description would polish into a structural implementation; for the second synthesis

step, the FPGA based processor use as a hardware accelerator to synthesis the process

into RTL implementation, ffs, memory units, functional units and connector should the

combination of the RTL implementation. In this paper, we use the vivado hls and Cat-

apult and Vivado as the synthesis tools to perform high-level synthesis behavior. At the

logic level, the ESL design would be presented in form of logic gates and flip-flops. If

the logic level synthesis resource comes from the Catapult,and in Vivado, we can apply

the vhdl source in the implementation within Catapult file; Else if the the logic level
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synthesis resource comes from the Vivado HLS and we need to use it in Vivado, then

we can generate directly predesigned intellectual property (IP),and then use the ip in

Vivado.

1.1.2 Synthesis Process

As mentioned in the previous section, a specification in the higher lower would need

multiple step in order to synthesis into an implementation in the lower level, the flow

path could be shown in Fig1.2.

Figure 1.2: synthesis process from specification to implementation

Normally, a behavioral model and constraints form a specification, and the ESL system

functions were expressed inside the behavioral model. This kind of model declares

its expressibility and analyzability. For the software side, By using the programming

language like C/C++, Java to represent the behavioral model ; For the hardware side,
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the behavioral model can be written by hardware description language, like Verilog or

VHDL.

The synthesis process can transform a specification into an implementation. For the

specification, it consists of behavior and constraints part, the behavioral model can be

refined into structure model. An implementation has two main components, structural

model and quality numbers. The behavioral model under the constraints model can

refine to structure model, as the structure model keeps the result architecture of syn-

thesis performs, such as the behavior model describes and function, the structure model

resulting in architecture as the combination of components.

As it shows in Figure 2, in order to generate an implementation from a specification, the

synthesis need the process of decision making and refinement. Decision making means

the decision of the mapping process in terms of utilization and timing, such as how many

and what kinds of resources should to be use, how much time it needs to complete the

synthesis process. At the mean time, in the decision making step the available resource

and clock constrains also need to take into account. Moreover, the decision making step

will find a solution for resource contention for the refinement operation.

After decision making, the role of refinement is arranging the improper decisions,after

removing theses wrong decisions, the efficiency and accuracy could be improved in the

final implementation, generating the eligible structure. At the end, a sets of optimization

methods would be preformed instead of single optimization model.In this paper, I define

more than ten different optimization methods for the synthesis task. In conclusion,

decision making define the resource allocation, calculating the timing; wile the refinement

can define the quality members as a result of synthesis.

1.2 Electronic System-level Design and High-Level Syn-

thesis

1.2.1 The relevance between ESL and HLS

Basically, ESL design focus at the process where the low levels of abstraction can map

into register-transfer level(RTL) components through a series of steps. The system in-

puts are typically described in the algorithms functions, and the system outputs are
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typically described in VHDL or IP. HLS(high level synthesis) is a kind of enabling tech-

nology, which provides a bridge between a programming language description design and

it’s transfer level structural implementation. With the development of automation de-

sign, the demand for HSL has risen sharply with the requirement of very large transistor

count design.

1.2.2 ESL design methodology

Based on Moore’s law, the complexity of chips doubles every 18 months, the complexity

of chips make RTL design unable scale with the emerging designs and cost of RTL design

is not economy.This trend make the higher levels of abstraction design more economical

and practical,thus the ESL designs are becoming a preferable choice .

There are three elements of ESL design in RTL abstraction.The first element is com-

putation which specifies each component’s function, and using the hardware description

language like verilog and VHDL in RTL abstraction can express each component. The

component’s computation is obtained by how much registers transformed at each clock

cycle, which specifies as per-cycle behavior. The second element is composition, which

specifies how components assembled and how to organzie their computation into a larger

system. In RTL abstraction, the composition is done by using HDL language like VHDL

to connect the components’ ports with wires. The third element is the communication,

which specifies how the components exchange information through the wires. In con-

clusion, an RTL method can be specified as: In RTL abstraction synthesis, based on

component’s computation per-cycle behavior, the synthesis tool converts each entity in

VHDL into gate level design; and then combine all the entities together with wires in

gate level design for this level optimization. Lastly,with the default clock cycle period,

the entities can simulate into processes in the simulation steps. In the contents below,

two electronics system level design methods will be specified in the design abstraction

level, especially for the field of component constitution and communication. And exam

the mapping procedures for the component synthesis and system synthesis, and the ver-

ification procedures of component mapping to RTL and full system. There are two main

methods, one is function-based ESL methods, which specify how different components

into a full system.One method is function-based ESL method, one is architecture-based

ESL method.
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1.2.3 Function-based ESL methodology

This kind of ESL methodology focus on parallel execution of different components in the

system in order to embedded into a complete system, and the communication protocols

between each components. In this function based method, there are four component

synthesis methods, the first one is the direct translation to RTL; the second one direct

map to predesigned intellectual property component the third method is through the

high-level synthesis to RTL; The fourth method is compiled to software programs. In

the job I have done, these components synthesis were done by the HLS method.

1.2.4 Architecture-based ESL methodology

As some components are reused designs, some these reusable components from previous

projects, other from the third parties. In the field of industry, these components named

as intellectual property(IP) components. These components can be communicated based

on communication protocols like AMBA bus, and this protocol refers to a set of trans-

actions. In this method, a set of virtual components(IP) is embedded into the system.

And component synthesis can be done by three main different ways. The first way is

instantiating a predesigned IP component; The second is the synthesis process from an

architecture description language(ADL) specification; The third is high-level design to

RTL, this way is used when an existing IP cannot meet power, energy, cost constraints.

1.2.5 High-level synthesis within an ESL design methodology

High-level synthesis is a method of transforming the algorithmic descriptions into RTL

designs, HLS is a role inside the ESL design method.

Inside the ESL design, there are three types of HLS:

1. Functional component synthesis, which is based on function-based ESL method, in

this method, even if the communication constraints between different components are

diverse, but the synthesis process for each component can be run synchronously. 2.

Co-processor synthesis, which is based on architecture based ESL method. this type of

HLS has the distinct feature as part of the application will execute on a programmable

processor,and it acts as a software, this part also called the hardware accelerator. 3.
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Figure 1.3: the role of HLS in ESL design

Application processor synthesis In ESL design, large RTL design can be done by con-

structed by small RTL designs, as the hardware logic is always the most costly part in

all chip design, so HSL method has to be considerable more and more in the emerging

design flow.

1.3 High level synthesis

In one word, the HLS takes an program that written in high level language like C as

input, then generate an implementation that written in hardware description language

like VHDL as output. In the algorithmic description of the program, we use algorithmic

written by high level languages such as systemC, C/C++ capture the behavioral-level

(high level) description of the design; In the output of integrated circuits the VHDL and

Verilog language express the RTL description of the design.

1.3.1 High-level synthesis Input/Output

Giving a program sample with double loops to show the high level synthesis input and

output. As it shows below, the program was written in c language
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int A[100], B[100];

int sum , i;

sum = i = 0;

while (i < 100 )

{

sum = sum + A[ i] * B[ i];

i = i + 1;

}

In this behavioral description, there is no any hardware implementation detail,but the

program includes these statements, variables and loop descriptions.

Figure 1.4: typical high level synthesis output

In this figure 1.4, its a typical RTL description output of HLS, It consists a controller

and a datapath, while the controller represent by the finite state machine model. The

controller follows algorithmic behavior to sequence the design, and the datapath consider

the data types to perform the computations. The controller output a set of signals to

the data path and receive a set of the status signal from data path as input; the data

path combines by a set of registers, function units, and multiplexers. In one word, the

controller decides when registers in the data path should be executed by sending control
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signals, and the data path performs register transfers, or computation, data processing,

data storage between registers.

1.3.2 Typical high-level synthesis design flow

Here a complete HLS design flow will be specified, includes behavioral description, RTL

representation, scheduling, code generator, etc.The full procedures is shown in the figure.

Figure 1.5: Typical high-level synthesis flow

The first part is the program algorithm that written in C/C++ language, the second

part is the front-end which analysis the behavioral program code to build the third

part as an arithmetic and logic computation based operations as intermediate repre-

sentation(IR). The fourth part is an optimizer, which analysis the IR to eliminate the

redundant information and extract the needed information and improve IR. Different

types of optimization methods like unrolling, pipelining are used to simplify the code

and improve the algorithm. The most important part of high-level synthesis is backend,

which performs the allocation, scheduling, and binding operations to transform the IR

into an RTL representation. Inside the three steps, the first step allocation allocates the



Chapter 1. Introduction 10

hardware resource to implement the operation within the IR; The second step schedul-

ing these operations into limit clock cycles, and in order to ruduce the timing, some

operations can map into a single clock cycle as we can use pipeline optimization; the

third step binding, which maps each operation into a function unit. The six-part is

also the final part, called code generator, which generates the Verilog/VHDL code that

is used for RTL and logic synthesis. The output code is infinite state machine mode.

In conclusion, HLS can make the RTL design within one tool, and generate the RTL

output automatically, which allows the designers concentrate on the behavioral level,

thus results in a large gain in design productivity.

1.4 Thesis Organization

In chapter 2 some fundamental concepts about tools used for high-level synthesis in the

thesis, such as Vivado hls V.S Catapult.

Chapter 3 specify an example of HLS application, the example based on the algorithm

of KNN and digit recognition application

In chapter 4, The Comparison of Experimental Results of Acceleration generated by

vivado hls and catapult

In chapter 5, Conclusion and Future Work
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Vivado HLS V.S Catapult

2.1 Background

Since using Hardware Description Language(HDL) as a method of hardware design is a

very complex procedure, and its a time consuming for the designers perform handwritten

register transfer level(RTL). In order to make the hardware devices development more

economy in terms of time, HLS is becoming more and more relevant. HLS process can

operate in the abstract level that transforms an c/c++ description programs into the

ideal hardware implementation(VHDL). Compile the input program’s code by adding

hardware constraints and then synthesize the input into RTL format. So hardware de-

signers can design at a high description level, not at the hardware level, and can avoid

hardware details at design time. HLS will involve a series of steps, such as allocation,

scheduling, binding, and RTL generation. these steps decide the resource utilization,

FSM behavior in the controller, variables mapping related to the hardware compo-

nents, vhdl codes for the RTL implementation. During these steps, time constraints and

resource constraints will apply and finally, the throughput will be compared through

different types of synthesis.

With the development of HSL in recent decades, different companies have developed

different HSL tools for design, testing, and debugging. They have their own advantages

and disadvantages. , several HLS tools are introduced such as

1.Catapult

2.Vivado HLS

11
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3.Cynthesizer

4.Synphony C

but in this project, I will specifically use Catapult and Vivado HLS.

2.2 Vivado HLS

2.2.1 Overview of Vivado HLS

The Xilinx Vivado HLS is an HLS tool that it can be implemented directly using high-

level language C/C++ code to program the programmable device like FPGA, which can

accelerate the IP creation, during the process, RTL can be created automatically. Here

its design flow:

Figure 2.1: Vivado HLS design flow
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1.In C simulation step, run C simulations to check the functions written in C, C++,

System C is functionally correct. 2.In optimizing c into RTL implement step, using

different types of optimization directives, and generate reports. 3.In Vivado HLS, there

is a pushbutton to verify the RTL automatically, and it shows the warning and errors.

4.In the package RTL to IP step, package the RTL implementation into IP block, using

logic synthesis, IP can be synthesized into an FPGA bitstream.

2.2.2 Base knowledge of Vivado HLS

Different from other C programs, in Vivado HLS design, the top-level function is the

sub-function below main(). And a tech bench is highly recommended to be added to

verify the top-level C function and Verify the RTL output. In RTL verification step, the

program returns zero to main()if the RTL is functionally identical.In the RTL export

step, RTL output files will embedded into IP, late in Vivado, the vivado IP catalog can

be used in Vivado Design Suite.

2.2.3 Vivado HLS performance improvement methods

Vivado HLS has several ways of improving performance, like adding directives, opti-

mizing latency, optimizing throughput, and remove performance bottlenecks. Here is a

small function as an example:

void func top(a,b,c,d,∗x,∗y)

{

func A();

func B();

func C();

func D();

return res;

}

If the function A,C,D take 2 cycles,and B take 4 cycles,as the latency is defined as the

clock cycle period between the initial input and output, the throughput is defined as

clock cycles count until a new input, so if there is no concurrency, the latency should

be as same as throughput,equal to 10 respectively. In Vivado HLS, if the pipeline is

applied, then the throughput will be improved to 4 cycles.As it shows:
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Figure 2.2: throughput optimizing by pipeline

2.2.3.1 Adding directives

In the first step, open the source code in the information pane, and then for the interface

element, by using add directives, we can apply ARRAY MAP,ARRAY PARTITION,ARRAY RESHAPE,INTERFACE,RESOURCE

and STREAM; For each loop inside the top-level function, by using add directives, we can

apply ALLOCATION, DATAFLOW, DEPENDENCE, LOOP FLATTEN, LOOP MERGE,

LOOP TRIPCOUNT, PIPELINE, UNROLL,etc..after applying directives respectively,

the performance may improve.

2.2.3.2 Reduce latency by loop unroll

In Vivado HLS, the loops remains rolled by default, and it means there is only one entity

for these loops, the synthesis steps performed in the same hardware resource.Here is an

example:

for(i=5; i>0; i–)

{

a[i] = b[i] * [i];

}

when the loop is rolled, for the hardware requirement, one multiplier and a single port

block RAM can satisfies the execution of each iteration,but each iteration has the de-

manding for one clock cycle, so at least four clock cycles are needed for the implemen-

tation. But if I make the unroll the loop and make the partition rate set as factor 2,

then for each clock cycle, two reads and two writes operation can execute parallel, which

only require two multipliers and dual port RAM hardware, but the advantage is that
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the implementation need takes 2 clock cycles to complete. When fully unroll the loop, if

there are abundant hardware resource, each clock cycle can execute all the operations,

but the implementation requires four multipliers, as well as 4 reads and writes operations

executed in one clock cycle, but the single block RAM has 2 port only, so the arrays

need to be partitioned.

2.2.3.3 Reduce latency by loop flatten

Vivado HLS can automatically flatten the innermost loop, thus reducing the clock cycles

between inner and outer loop. Here is the example:

Outer loop: while(j<10){

Inner loop: while(i<3){ 1 cycle to enter inner loop

...

LOOP BODY

...

} // 1 cycle to exit inner

}

in this example, entering the inner while loop takes 1 cycle as well as exit from the inner

while loop, is needed to enter inner, and 1 cycle to exit inner, so for this function, if

it didnt flatten, the execution of the outer loop requires 20 extra clock cycles. But if

loop flatten is being in the Vivado HLS, the extra clock cycles will be saved.

2.2.3.4 Reduce latency by loop merging

The loop merge optimization directive can automatically merge loops.As it shows from

the example below, this rolled loop needs 11 ccs by default, but after applying merge

directive, the ccs will be reduced to 6 to execute the loop.

but there are restrictions such as FIFO access cannot be merge.

2.2.3.5 Dataflow optimization for optimizing throughput

In the top-level function, if there are a series of sequential tasks such as sub-functions,

loops, Dataflow optimization can be applied.
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Figure 2.3: loop merger

Figure 2.4: sequential tasks inside top function

After applying dataflow optimization, a parallel processor architecture will be cre-

ated.Between these processes, it exists some channels, the channel can ensure the task

can execute directly instead of spending time to wait the previous task has completed all

its operations. Thus increasing the throughput of the design and reduce the latency.Here

its figure

Figure 2.5: parallel process inside top function

Here is a latency and throughput comparison with and without dataflow optimization.

As the figure shows, there are three functions inside this top-level function, if without

dataflow pipelining, the latency would be 8 cycles as well as throughput; but if the data

flow pipeline is applied, the latency will reduce to 5 cycles, and the throughput will

reduce to 3 cycles. But for the Dataflow optimization, it is strictly requested that the

data flow follows the rule as shift from one task to the next one. Some limitations such

as bypassing tasks, feedback between tasks, loops with multiple exit conditions may

prevent Vivado HLS perform this optimization.
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Figure 2.6: with and without data flow inside top function

2.2.3.6 Pipeline optimization

As it is mentioned above, dataflow pipelining has the limitation of working only on func-

tions or loops at the top level of the hierarchy, and cannot be used in sub-functions.When

there are sub-loops inside the function or loop, we may implement function or loop

pipelining.In Vivado HLS, when pipeline the loop, all the sub-loops will be unrolled,

but there is one thing need to notice, the inner loop with variable bounds cannot be

unrolled.

2.2.3.7 Performance Bottleneck

Even there are several ways to remove bottlenecks in order to improve the performance

of high-level synthesis. 1.Array Partitioning In array partitioning technique, the array

partitioning can break an array into smaller elements, but all the partitions have the

same resource target. 2.Array Dimensions In array dimension, an array can be divided

into small parts, such as an example:

array[10][6][4] can be divided into:

array 0[10][6]

array 1[10][6]

array 2[10][6]

array 3[10][6]

3.Array Reshaping This directive combines array partitioning with array map to reduce
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the number of block RAM. So this directive allows more data to be accessed in a single

clock cycle.

2.3 Catapult

2.3.1 Overview of Catapult

The Catapult is a platform designed by the Mentor, which can help the designer to

describe functions and move to an abstraction level.It Has three main parts in sense

of high-level synthesis: 1. C/C++/SystemC HLS The Catapult is the only natively

high-level synthesis platform that supports the high-level description by ANSI C++

and System C, and then based on thesis codes written by an abstract level description

language such as C, Catapult can generate optimized Verilog or VHDL, ready for pro-

duction of RTL synthesis and verification flows. 2.HLS verification In Catapult, there

are three types of verifications, the first is checking user’s C code before synthesis in

order to find errors; the second is verification during simulation, comparing the func-

tionality of users C source with generated RTL; the third is verify the code with the

RTL from Catapult design checks. 3.Low power HLS Catapult low power(LP) is a tool

that targets power as an optimization goal.The designer can use Catapult LP to explore

different hardware architecture and measures the power, performance, and area of each

solution.

2.4 comparision

For these two tools, both inputs are C/C++ SystemC codes, and both outputs in the

form of Verilog, VHDL, SystemC, but Catapult don’t support for float point arith-

metic.And the performance such as timing, hardware will be shown in chapter 4.



Chapter 3

KNN and Digit Recognition

Application

In this chapter, the theory of KNN and digit recognition application (DCA)will be spec-

ified respectively.The algorithm of KNN and DCA will be applied synthesis performance

in Vivado HLS and Catapult respectively, so explanation the principle of the KNN and

DCA is necessary.

3.1 KNN

There are lots of algorithms that used in machine learning field, KNN is one of the

simple algorithms. KNN is a classification by measuring the distance between different

eigenvalues. Its train of thought is: Giving a test point, and calculating the distance

between the test point with neighbor points, then sort the k most near points in terms

of distances,if the k points have the same category, then the test point can be predicted

belong to this kind of category,as for the k value which is usually no more than 20

k integers. In KNN algorithm, the k nearest neighbors’ type has already known in

advance. Based on this method, by using the k nearest points category, the sample’s

category can be defined. In one world, a new instance can be classified by its ’K’

neighbors’ majority class. Based on this character, KNN can be used for classification,

estimation, and prediction.In this algorithm, the large amount of training data is set,

a undefined category test point can be determinated easily by inputing test data, the

19
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characteristics of the test data and training focused on to compare the characteristics

of the corresponding, and find the most similar of training focus and former K data,

then the test data, the corresponding category k nearest neighbors category. Here is the

algorithm

1) computing the Euclidean distance between the test data and sets of training data;

2) sorting according to the increasing in terms of distance; 3) choose K points with the

smallest distance; 4) determine the occurrence frequency of the category of the previous

K points; 5) using high occurrence rate category of the nearest k points to predict the

type of the test point. The KNN algorithm is expressed as[3]:

for all the unsorted points(i)\\

for the every known training or reference points(j)\\

calucalte the Euclidean distance between unsorted point(i)and reference points(j)\\

and save the in dist[j]\\

end for\\

sort and find the k points with smallest distances \\

locate the types of the samples k points ,like point(j1),..,point(jk)\\

predict unsorted point(i) to the class has the high occuren in the k sample points \\

end for\\

3.1.1 Example of KNN

Suppose there are a group of data in the figure,and these data are divided into two dif-

ferent types.The first type of data is shown in the form of blue cross,as it shows below:

and the second type of data:

Based on the coordinate of each point on the data 1 and data 2, there are several steps

for KNN algorithm.

From the figure above, if we want to predicate the type of one point in the figure, the

better way is to find it k-nearest neighbor, if the majority of the k-nearest neighbor

points belong to one cross type, then we can predicate this point belongs to the cross

type. But some issues come with the example above, these issues include: 1.How is the

K value should be chosen? That is, how many neighbors should be considered? 2.how

to measure the distance?
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Figure 3.1: First type of data

Figure 3.2: Second type of data
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Figure 3.3: The effect of two data combination

3.1.2 Distance Function

In math, the distance in the space is defined by

If M is a space, and function d is a distance function in M, and it satisfies

1.d(x,y) ≥0, and d(x,y) = 0 if and only if x = y;

2.d(x,y) = d(y,x);

3.d(x,z) ≤ d(x,y) + d(y,z);

Propery1 indicate that the distance is always positive, property 2 indicates commutativ-

ity, property 3 states that the distance between the two should be the shortest distance,

a third point can never shorten the distance between these two points. The most useful

distance function is Euclidean distance, it represents as:

dEuclidean(x,y) = [
√

(x1 − x2)2 + (y1 − y2)2 ]

3.1.3 Sorting methods

In order to find the k-nearest values, sorting should be applied to the distance array

dist[j], after applying sorting, the K smallest value will be store to the sort distance[k],
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and based on majority class of sort distance[k],the class or the type of the unknown

point can be predicted.Here is list of different type of sorting methods:

Bubble Sort: Bubble sortBubble sort, the basic idea is: starting from the chaotic

sequence in the head, two comparison, according to the size of the swap places, until

finally the maximum (small) exchange of data elements to the disorder of the queue, and

become part of an orderly sequence; The next time you continue this process, until all

the data elements are sorted. The core of the algorithm is to select the largest (small)

data elements of the remaining unordered sequences at the end of the queue each time

through two or two comparisons.

(2) The operation of bubble sort algorithm is as follows:

1. Compare adjacent elements. If the first one is bigger than the second (small), swap

them both.

2. Do the same work for each pair of adjacent elements, from the first pair to the last

pair at the end. When this is done, the final element will be the largest (small) number.

3. Repeat the above steps for all elements, except for the ones that have been selected

at the end.

4. Repeat the above steps for fewer and fewer elements (unordered elements) each time,

until no pair of Numbers need to be compared, and the sequence is finally ordered..This

algorithm is suitable for small data sets as complexity is O(n2) if n stands for the number

of elements.

Insertion Sort: Each time an ordered record is inserted, the appropriate place in the

sequence of subsequences is inserted by its keyword size until the full record is inserted.

Set the array as a[0... n-1]. 1. At the beginning, For I = 1, a[0] becomes an ordered

area, and the disordered area is a[1..n-1].

2. A [I] is incorporated into an ordered range of a[0... I].

3. I ++ and repeat step 2 until I ==n-1. Sort done..Similar to bubble sort, the com-

plexity is O(n2) if n stands for the number of elements.

Merge Sort: Merge sort Refers to the operation of combining two sorted sequences

into one sequence. Merge sort algorithm depends on merge operation. Merge sort has

multiple merge sort, two merge sort, can be used for inner sorting, and can also be used

for external ordering., it has the complexity of (n log n), so this sort method is the most

respected algorithms.

Quick Sort: Fast sorting based on divide-and-conquer, The divide-and-conquer pro-

cess for A typical subarray A[p...r] is three steps: 1. Break down:
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A[p..r] is divided into two (possibly empty) subarrays A[p.. q-1] and A[q+1..r].

A[p. Q -1] ¡= A[q] ¡= A[q+1..r]

2. Solution: quicksort by recursive call, and sort the subarray A[p..q-1] and A[q+1..r].

3. The merger: In this sort algorithm, the complexity is O(n2), same as bubble sort and

insertion sort.

3.1.4 Choice of K

Different K values have a significant impact on the results of KNN classifier[4], the

choice of K should be carefully as it plays an important role .The choice of K value will

affect the prediction in both positive and negative way. If the K value is very small,

the reduction of K means that the model becomes more complex and the correctness

rate tends to be unstable ; but if the K is a large value, the large value of K makes the

performance decreases as the consideration of other classes.

3.2 Digital Recognition Application

Among the number of algorithms in machine learning, KNN is always used in recognition

pattern.A K-NN classifier can predict a class based on its k-nearest neighbors.The term

nearest is considered by the distance while the k is considered as the number of K nearest

values.So the KNN algorithm is quite useful in the application of digit recognition. For

the job of thesis, two groups of dataset will be introduced in this application.

trainDigits: a collection of 1924 instances with known class labels which will be used as

training set;

testDigits: a collection of 845 instances with known class labels but the labels will not be

used by the classifier, instead, the labels will be used as a test set to check the accuracy

of the predictions. Each class for each data is represented by two-dimensional arrays

of 10 integers, the X-Y coordinates are represented by 32*32 space.Each point in the

two-dimensional arrays is represented by 0 or 1.Here is an example of a test digit.

In the left parts, I will explain the use of KNN algorithm in digit recognition in several

steps.
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Figure 3.4: An example of testDigital(label 0)

3.2.1 Loading the dataset

In the step1: The training file should be read first by using the function.In this function,

the first two loops read all the files as the first loop focus on reading the label while

the second loop focuses on reading the order number of each label.The third and the

fourth loop upload the binary number in each file.As it can be seen from the example of

the test digit, each image size is equal to image edge*image edge, and each image edge

size is 32, so the image size for each file is 32*32 as 1024.Here is function of read train

code(train code),the code is shown as:

In the step2: Then back to the testbench, the outer 2 loops are used to read the
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Figure 3.5: Loading the training file (label 0)

test data file one by one, after access each file of the testdigit, using the function of

readtestcode(test code, testdigit) to read each binary number of each files.

3.2.2 Distance Calculation

In the step3, after reading the data from both training and testing file, then the dis-

tance should be calculated.In our case in this paper, the Euclidean distance would be

considered.

3.2.3 Distance Sorting

After calculating the distance, the top k minimum values should be found by sorting.In

this stage, the KNN algorithm would be applied.

3.2.4 Count the occurrence

After sorting the top k minimum values based on the distance array, the occurrence

of the class of these k values should be counted.If the class occurrence of one of these

classes is greater than other classes occurrence, then we can predicate the type of the

testing file. [? ].
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3.2.5 Verify the recognition rate

After the count the occurrence of the predicted class, use the division value between the

occurrence of predicted and the number of k, then we can get the ratio of the division,

we can call this ratio as the recognition rate. Higher of the recognition rate, the higher

of success rate. [? ].

3.3 Summary

The KNN based digit recognition application is a simple example of machine learn-

ing.In the consequent chapter, the high-level synthesis based on this application will be

analyzed.



Chapter 4

The Comparison of Experimental

Results of high level synthesis

Acceleration

In this chapter, I will perform the experiment in the platform such as Vivado hls, Cata-

pult and Vivado, and at the same time, each experiment will be done in series different

ways, and the result of the comparison will be shown in the following content.

4.1 Topkref Distances

The Topkref Distances will be performed in both Catapult and Vivado HLS. There are

two main steps in this top function, the first step is calculating the distance between the

points of training file and testing file; The second step is finding the max value of the in

the distance array. In the Vivado HLS, I applied the 10 different optimization methods

for optimizing the function, these methods will be explained in the below section.

4.1.1 Topkref implemented in Vivado hls

The optimization will be done in three main aspects, named as interface aspect, loop

aspect, architecture aspect.Here are the details that related to these aspects.

28
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4.1.1.1 Interface Aspect

I ARRAY: In order to improve the performance of high-level synthesis, the array ar-

gument would be implemented as some different types of RTL ports.In my design, I

specify the dual ports RAM interface for input reading and specify the RESOURCE

as the type of the RAM that connected to an interface.So I select RESOURCE in the

directive editor and click the core option and select RAM 2P BRAM.

I FIFO: FIFO is a special array accesses,FIFO means the order of access the array is

based on the sequential rule that entry start from zero, especially for these arrays that

should be read from multiple locations, should be following the FIFO order.

I FIFO FULLPARTITION: For large arrays implemented in block RAM which has a

limited number of ports, it may reduce the synthesis performance.In order to improve

the performances, the array can be partitioned into small arrays, while at the same time,

more registers would be used as the result of large array partition.In the fully-partition,

we modify the partitioning type to complete.

I FIFO PARTITION: As compared to the above case, I modify the options type par-

tition to block.In this case, the array was partitioned into some small arrays, but not

completely partitioning.

I AXI: In high-level synthesis, there is another type of interfaces named as AXI4, gen-

erally speaking, almost any kind of inputs an array or pointer output argument can use

AXI4 interface. AXI4 interface has the ability transfer data in sequential streaming way,

and three kinds of registers mode are used in the AXI-Stream interfaces, respectively as

Forward: the TDATA and TVALID signal.

Reverse: the READY signal is registered.

Both: All signals TDATA,TVALID,READY are registered.

In high-level synthesis design, the AXI4-Stream can be used in two different model,

respectively as side channels and without side-channels.In this thesis, we use the AXI4-

Stream interfaces without side-channels.Here is an example:

#pragma HLS INTERFACE axis port=A
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4.1.1.2 Loop Aspect

p pipeline: There are two loops in the code, I respectively apply the pipeline directive to

the inner and outer loop in order to reduce initiation interval.After applying pipeline op-

timization, multiple operations within a function can be executed concurrently. p unroll:

For the inner loop, I unroll the for loop to generate multi independent operations instead

of a single collection of operation.

4.1.1.3 Architecture Aspect

A Dataflow: in the architecture level, allows the functions and loops execute concur-

rently by allowing task level pipeline. Inline: When inline a function, the function hi-

erarchy can be removed.By reducing function call and function boundaries, the latency

and interval can be reduced.

4.1.2 The result of top ref implemented in Vivado hls

Figure 4.1: Timing and Latency and Utilization comparison

Studies have shown that using different directives, the performance will be the differ-

ence.In terms of timing, if apply the A dataflow, it uses the minimum time;In terms of
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Figure 4.2: The resource and final timing implementation

latency, if apply I AXI, the value of latency and interval will increase;In term of uti-

lization, the I AXI uses the max resource; For the final timing implementation, when

pipeline the inner loop, the critical path achieved post-synthesis get the minimum value.

4.2 Topkref implemented in Catapult

In the previous section, the top function of top ref was discussed in the synthesis tool of

vivado hls, and in this section, the synthesis process will be implemented in Catapult,

and then I will compare the synthesis results in the two different tools.

4.2.1 Synthesis by setting the top function

In this subsection, for the hierarchy setting of the function of ”void topkref distances(bool

a[IMAGE SIZE],bool b[N TRAIN][IMAGE SIZE],int r dist[K],int r index[K])”, I choose

”Top” out of Inline, Block, Top.

Here is the result of synthesis by catapult.

Figure 4.3: The latency and Throughput
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Figure 4.4: The total area post synthesis

4.2.2 Synthesis by setting the outer loop pipeline

In this subsection, I still set the void topkref distance as the top function, and in the

synthesis task of Architecture, I set the topkref distances label0 and label loop pipe as

pipeline, the other parts of settings are default from the first subsection. Here is the

result of synthesis by Catapult. Here is the result of synthesis by catapult.

Figure 4.5: The latency and Throughput

Figure 4.6: The total area post synthesis

4.2.3 Synthesis by setting the outer loop pipeline and unroll

In this subsection, the first loop topkref distances label0 will be set as pipeline, and the

second loop pipe will be set as unroll, and the other parts of setting are default from

the second subsection,here is the result of the synthesis by catapult.

Figure 4.7: The latency and Throughput
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Figure 4.8: The total area post synthesis

4.2.4 Synthesis by setting the outer loop pipeline and inner loop pipeline

In this subsection, the second loop topkref distances label0:for, loop init, loop unroll

and loop assign will be set as pipeline, and the other parts of setting are default from

the second subsection,here is the result of the synthesis by catapult.

Figure 4.9: The latency and Throughput

Figure 4.10: The total area post synthesis

4.2.5 Synthesis by setting the data enable interface

From this subsection, the interface synthesis in Catapult will be explained. In these

three sections, SCVerify flow will be used, as the SCVerify function is proving the C++

algorithm and RTL function equivalent by giving the same input vectors. In the blow

sections, I will use different methods to control the flow of data, enable signal and

wait interfaces. In the first synthesis method, I click on the Flow Manager tab and

make sure that SCVery is enabled.For the output interface r dist and r index, I choose

mgc out stdreg en. Here is the result after synthesis:

Figure 4.11: The latency and Throughput
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Figure 4.12: The total area post synthesis

4.2.6 Synthesis by setting two way handshake interface

In this subsection, the interface will shift to two-way handshake, even the data is not

available, but the catapult block can be installed. I set the interface as mgc ioport.mgc inout buf wait,

here is the result after synthesis.

Figure 4.13: The latency and Throughput

Figure 4.14: The total area post synthesis

4.2.7 Synthesis by adding block size in the interface

In this subsection, the setting is same as the second case, but the block size will increase

from 0 to 1, here is the result of the synthesis by catapult.

Figure 4.15: The latency and Throughput

Figure 4.16: The total area post synthesis
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4.2.8 Synthesis by creating c-cores in the mapping process

In this subsection, the c-cores method will be used.C-CORE is a user-defined opera-

tion that consists of a collection of one or more operators.It can improve the area by

minimizing the MUX sharing logic and reduce the run time by reducing the number

of variables. For applying the c-core methodology,I first modify the code then in the

mapping step, select the design type as CCORE, and then select combinational block.

Here is the result of the synthesis by catapult.

Figure 4.17: The latency and Throughput

Figure 4.18: The total area post synthesis

4.2.9 Result comparision for Topkref distance in Catapult

As applying different types of synthesis methods, the result is compared in the following

table:

Figure 4.19: The total area post synthesis
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4.3 Topksorted Distances

Similar to topkref distances application, the topksorted distances will also be implement

in Catapult and Vivado HLS in the same method.For the function topksorted distances,the

first step is calculating the distance between the points of training file and testing file;

The second step is finding the sorted K minimum value in the training file. In the Vivado

HLS, I applied the 10 different optimization methods for optimizing the function, these

methods will be explained in the below section.

4.3.1 Topksorted implemented in Vivado hls

The optimization will be done in three main aspects, named as interface aspect, loop

aspect, architecture aspect.Here are the details that related to these aspects.

4.3.1.1 Interface Aspect

I ARRAY: In high-level synthesis, the array argument can be implemented as a number

of different types of RTL ports.In my design, I specify the dual ports RAM interface for

input reading and specify the RESOURCE as the type of the RAM that connected to

an interface.So I select RESOURCE in the directive editor and click the core option and

select RAM 2P BRAM.

I INTERFACE: When the top function is synthesized, the parameters to the func-

tions are synthesized into RTL ports.There are many types of interface synthesis meth-

ods,including m axi,ap fifo,ap memory,etc.

I FULLPARTITION: For large arrays implemented in block RAM which has a limited

number of ports, it may reduce the synthesis performance.In order to improve the per-

formances, the array can be partitioned into small arrays, while at the same time, more

registers would be used as the result of large array partition.In the fully-partition, we

modify the partitioning type to complete.

I PARTITION: As compared to the above case, I modify the options type partition to

block.In this case, the array was partitioned into some small arrays, but not completely

partitioning.

I AXI: There is another type of interfaces that used in high-level synthesis as AXI4,

which can be applied to any kind of inputs an array or pointer output argument.AXI4
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interface is a kind of interfaces that transfer data in sequential streaming way, and three

kinds of registers mode are used in the AXI-Stream interfaces, respectively as

Forward: the TDATA and TVALID signal.

Reverse: the READY signal is registered.

Both: All signals TDATA,TVALID,READY are registered.

There are two ways to use AXI4-Stream in high-level synthesis design, respectively as

side channels and without side-channels.In this thesis, we use the AXI4-Stream inter-

faces without side-channels.Here is an example:

#pragma HLS INTERFACE axis port=A:

4.3.1.2 Loop Aspect

p pipeline: There are two loops in the code, I respectively apply the pipeline directive to

the inner and outer loop in order to reduce initiation interval.After applying pipeline op-

timization, multiple operations within a function can be executed concurrently. p unroll:

For the inner loop, I unroll the for loop to generate multi independent operations instead

of a single collection of operation.

4.3.1.3 Architecture Aspect

A Dataflow: in the architecture level, allows the functions and loops execute concur-

rently by allowing task level pipeline. Inline: When inline a function, the function hi-

erarchy can be removed.By reducing function call and function boundaries, the latency

and interval can be reduced.

4.3.2 The result of top sorted implemented in Vivado hls

Studies have shown that using different directives, the performance will be the differ-

ence.In terms of timing, if apply the A dataflow, it uses the minimum time;In terms of

latency, if apply I AXI, the value of latency and interval will increase;In term of uti-

lization, the I AXI uses the max resource; For the final timing implementation, when

pipeline the inner loop, the critical path achieved post-synthesis get the minimum value.
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Figure 4.20: Timing and Latency and Utilization comparison

Figure 4.21: The resource and final timing implementation

4.4 Topksorted distances implemented in Catapult

In the previous section, the top function of top sorted was discussed in the synthesis tool

of vivado hls, and in this section, the synthesis process will be implemented in Catapult,

and then I will compare the synthesis results in the two different tools.

4.4.1 Synthesis by setting the top function

In this subsection, for the hierarchy setting of the function of ”void topkref distances(bool

a[IMAGE SIZE],bool b[N TRAIN][IMAGE SIZE],int r dist[K],int r index[K])”, I choose

”Top” out of Inline, Block, Top.

Here is the result of synthesis by catapult.

Figure 4.22: The latency and Throughput

4.4.2 Synthesis by setting the outer loop pipeline

In this subsection, I still set the void topkref distance as the top function, and in the

synthesis task of Architecture, I set the topksorted distances label0 as pipeline, the other
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Figure 4.23: The total area post synthesis

parts of settings are default from the first subsection. Here is the result of synthesis by

Catapult. Here is the result of synthesis by catapult.

Figure 4.24: The latency and Throughput

Figure 4.25: The total area post synthesis

4.4.3 Synthesis by setting the outer loop pipeline and unroll

In this subsection, the first loop topksorted distances label0 will be set as pipeline, and

the second loop topksorted distance label2:for will be set as unroll, and the other parts

of setting are default from the second subsection,here is the result of the synthesis by

catapult.

Figure 4.26: The latency and Throughput

Figure 4.27: The total area post synthesis
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4.4.4 Synthesis by setting the outer loop pipeline and inner loop pipeline

In this subsection, the first loop topksorted distances label0 and topksorted distances label2:for

will be set as pipeline, and the other parts of setting are default from the second sub-

section,here is the result of the synthesis by catapult.

Figure 4.28: The latency and Throughput

Figure 4.29: The total area post synthesis

4.4.5 Synthesis by setting the data enable interface

From this subsection, the interface synthesis in Catapult will be explained. In these

three sections, SCVerify flow will be used, as the SCVerify function is proving the

C++ algorithm and RTL function equivalent by giving the same input vectors. In

the blow sections, I will use different methods to control the flow of data, enable signal

and wait interfaces. In the first synthesis method, I click on the Flow Manager tab

and make sure that SCVery is enabled.For the output interface r dist and r I choose

mgc import out stdreg en. Here is the result after synthesis:

Figure 4.30: The latency and Throughput
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Figure 4.31: The total area post synthesis

4.4.6 Synthesis by setting two way handshake interface

In this subsection, the interface will shift to two-way handshake, even the data is not

available, but the catapult block can be installed. I set the interface r dist:rsc and

r index:rsc as mgc ioport.mgc inout buf wait, here is the result after synthesis.

Figure 4.32: The latency and Throughput

Figure 4.33: The total area post synthesis

4.4.7 Synthesis by adding initiation interval size in the interface

In this subsection, the setting is same as the second case, but the initiation interval will

increase from 1 to 2, here is the result of the synthesis by catapult.

Figure 4.34: The latency and Throughput

4.4.8 Synthesis by creating c-cores in the mapping process

In this subsection, the c-cores method will be used.C-CORE is a user-defined opera-

tion that consists of a collection of one or more operators.It can improve the area by
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Figure 4.35: The total area post synthesis

minimizing the MUX sharing logic and reduce the run time by reducing the number

of variables. For applying the c-core methodology,I first modify the code then in the

mapping step, select the design type as CCORE, and then select combinational block.

Here is the result of the synthesis by catapult.

Figure 4.36: The latency and Throughput

Figure 4.37: The total area post synthesis

4.4.9 The result comparison of top sorted implemented in Catapult

In this section, I make a table for the comparison of different synthesis methods.As it

can be see, the synthesis method of setting outer loop pipeline and inner loop pipeline

have the better performance in terms of latency and area.

Figure 4.38: The comparision of different synthesis method in catapult
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4.5 The Comparison of Experimental Results in Vivado

Synthesis

As it shows from the above chapter, The Topkref distances and Topksorted distance

was synthesized in Vivado HLS and Catapult respectively,and the result of synthesis

have compared in above chapter. Moreover, in order to compare the synthesis efficient,a

deeper synthesis implementation should be done in Vivado by using the same method

in same Zedboard.Here is the comparison in Vivado.

4.5.1 Topkref Synthesis in Vivado

Figure 4.39: The comparision of Topkref Synthesis in Vivado

The function of Topkref was synthesis in nine different ways in Vivado HLS, and five

ways in catapult, then for each IP generated by Vivado HLS and Catapult, it would be

synthesis again in the tool of Vivado, and the result was list in the table. In this table,

throughput was calculated by the format of 1/(Latency*Period)/1000000 as the unit of

period was expressed by ns.From this table, we can found out that the LUTRAM has

not been used; For the synthesis method of AXI,the maximum source will be used. In

terms of BRAM, the catapult has the better performance as compare with Vivado hls.

In the Pareto-optimal point graph, the Pareto-optimal point would be showed as

the gray color point. the Pareto optimization is used for in a design to decide what

is good or desirable,as a involves multiple criteria such as capital cost,operating cost,

quality and efficiency etc. In this thesis, The ideal design mainly involves the hardware



Chapter 4. The Comparison of Experimental Results of high level synthesis
Acceleration 44

Figure 4.40: Pareto-optimal point in the graph

resources such as LUTs,FF(flipflop) and the other part that needed to be considered is

the throughput.

4.5.1.1 Topksorted Synthesis in Vivado

Figure 4.41: The comparision of Topksorted Synthesis in Vivado

Similar to the function of Topkref, the function of Topksorted will also synthesis in

Vivado HLS and catapult respectively. And then in Vivado, setting the clock period

and syntheis the IP that generated by the Vivado HLS and Catapult.The result of the

synthesis would list in this table above.In the graph, we can see that the catapult even

donnot use the resources of LUTRAM, but in terms of BRAM, it seems that there is
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no big difference between Vivado HLS and Catapult. In this graph, we can see that the

Figure 4.42: Pareto-optimal point in the graph

synthesis method of P inner should be the Pareto optimal solution as compares to other

solutions. In this graph, the throughput of Vivado HLS range asymmetrically, and the

throughput from catapult keeps stable in terms of using different number of resources.



Chapter 5

Conclusion and Prospect

5.1 Conclusion

This thesis focus on the design of digit recognition system, and the implementation

of High level synthesis to some top functions in the design. Meanwhile, topkref and

topksorted function in the digit recognition system are implemented as the main tech-

nique in optimization and simulation in Vivado HLS ,and Catapult consequently in

Vivado. Fortunately, some achievements have been obtained finally.

Generally speaking, the Vivado HLS is very suitable and powerful tool in the optimiza-

tion of complicated architectures. In addition, Vivado is a convenient device in terms of

performance computation and sensitivity analysis for the design implemented in FPGA.

5.1.1 Some Achievements

• The digit recognition system was programmed in Ubuntu are further developed for

simulation and optimization in terms of timing and resource utilization in Vivado

HLS and Catapult.

• The reason why choose the digit recognition system has been discussed.

• The functions of topkref and topksorted in the digit recognition system has been

synthesis by using multiple methods in Vivado HLS and Catapult respectively.

46
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• The Pareto optimal point in terms of utilization and throughput for both functions

have been obtained by using above method.

• The recognition rate of the digit recognition system has been achieved to 97 per-

centage out of 100.

5.2 Prospect

5.2.1 Digit recognition system Developing

Automatic handwriting recognition has a variety of applications at the interface be-

tween man and machine[5]. Since the Digit recognition system is already widely used as

discussed, there is still a large room to develop it both in theory and practice.

Unlike the KNN I used in the thesis, there should be more researches in digit recog-

nition.Putra Sumari [6] implemented the handwritten Digital Recognition using Neural

Network, Morocco [7] introduced the approaches of Discrete Cosine Transform (DCT)

for digit recognition. in the near future, more methods to deal with the digit recognition

will be proposed in order to improve the recognition rate and precision. And in terms

of coding, the program and the algorithms would be developed by multiple languages

instead of c/c++.

5.2.2 High Level Synthesis

The high level synthesis is still remaining on third generation,and the fourth generation

will emerge from the current generation[8]. in the future work, the HLS may focus on

complex algorithm and system design into FPGA forms as the FPGA provides parallel

architecture as compare to traditonal processors. Any way, this thesis is not the end

but the start of the research.
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