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Summary

The general goal of the thesis is to optimize the automation of a unit section of Bianco
SPA textile production line. Sanforizing compactor, being the unit section under consid-
eration is responsible for a controlled compression and tension of fabrics to achieve desired
dimensional stable compaction on a given fabric material.
Currently, the plant is being controlled with Proportional-Integral (PI) controller and and
it is subject to undesired tuning for any adjustment in the parameters. Due to non-linear
system parameter variations, hugely contributed by wide variation in property of fabric
material on which compaction is desired, there is a need to design a control system that
can adapt to these variations.
Exploiting standard procedures, a detailed description of a strategy for modelling the San-
forized system using Set membership System Identification approach has been outlined.
Also, using Bond-graph modelling procedure, an approximate state space equation model
of the system was obtained.
For ease of control, the plant system was split in Stages I and II, and Model Predictive
Controller objects were designed to control the modelled plant subsystems whose states
are initialized with steady state operating point variables. The MPC controls the plant
using manipulated variables obtained through optimisation and prediction of possible vi-
olation on the imposed constraints over a prediction horizon.
For adaptability, adaptive MPCs were designed on the basis of the MPC objects. The
plant systems is estimated on-line using ARX algorithm. The estimated plant is con-
verted into a state space model and used to updates the internal state of the MPC object
at runtime.
The control systems were tested with both internal linearised plant and the external sub-
systems, and through review on QP Hessian Matrix Validity, Closed-Loop Internal Sta-
bility, Closed-Loop Nominal Stability, Closed-Loop Steady-State Gains, Hard MV Con-
straints, Other Hard Constraints, Soft Constraints, the system was ascertained to be
consistent and satisfactory.
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Chapter 1

Thesis Opening

This first chapter is written to give a first insight into the thesis work. Motivations and
reasons of the work are explained, together with the actual state of the art.
The structure of the thesis is also reported.

1.1 Motivation
The paradigm shift in the production systems over 20 years today, from manual imple-
mentation to automation has become the competitive advantage for manufacturing and
process industries. The dream of modern industries is to reach a point where every unit
of production is automated - at that point, as Tom Preston-Werner puts it, when you are
either the one that creates the automation or you’re getting automated.
Automation of production systems apparently has become the hope for many companies
to remain competitive under recent harsh economic atmosphere and based on statistics,
a carefully planned investment in automation can make good financial sense. A two or
three-year payback on reduced labour costs is the equivalent of an excellent 30� to 50� re-
turn on investment. The is the possibility of increasing productivity by 20% to 30% while
handling most of the repetitive and complex tasks. A fast, stable and accurate production
flow contributes to the reduction of production times and the cost of the manufactured
products. The use of automated production lines significantly reduces production costs
and labour costs, and minimizes human errors, ensuring output consistency, improves re-
peatability, safety and quality.
As an industrial practise, it is customary to automate sub-systems that contributes to
an integrated automated production line. To obtain desirable automation within these
subsystems, control systems are often required. However, based on the method of im-
plementation of the control system, full or partial automation can be obtained. Partial
controlled systems can be designed using PID controller. PID is attractive for it’s sim-
plicity. However, it may require tuning at certain intervals should parameters of the plant
which it controls change. This is often a challenge for the support team of OEM compa-
nies, since quality time is bound to be dedicated in clients’ support.
To bridge this gap, there is need to design a control system that can adapt to these pa-
rameter changes while still maintaining or improving the attributes mentioned above. A
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1 – Thesis Opening

suitable method to achieve this is with the use of an Adaptive MPC with plant parameters
obtain through on-line estimation and this shall be the major discussion of this thesis.

1.2 State of the Art

This section discusses the current method of implementing automation on Sanfore. The
benefits and limitations of this implementation are also presented here with some refer-
ences that provide more details.

Sanforization is a treatment process, mainly applied to cotton fabrics and textiles
made from natural or chemical fibres, patented by an American, Sanford Lockwood Cluett
(1874–1968) in 1930.[33].

1.2.1 Bianco Spa Textile Finishing Line

Bianco Textile finishing line consists of the Linea Rosa (Pink Line), Gruppo Centra-
tore (Centering/fabric entry), Alzatrice (Widthwise Stenter), Compattatore Sanforizzo
(Sanforizer Compactor), Compattatore a feltro (Felt Compactor/Calender) and Faldatore
(Plaiter) as seen in the figure below.

Figure 1.1. Textile Process Line

1.2.2 Proportional-Integrator (PI) Controller

A desired dimension stable fabric is achievable with Sanforized compaction system and
this requires a minimum constant tension at the exit of this system unit. The tension is
measured using a load cell which works with the principle of Strain gage. This tension
is regulated using a Proportional - Integrative (PI) Controller to the desired reference
tension. The output of the plant is the controlled speed of the slave motor at the exit.
This measured tension, with some gains and offset compensations is the feedback of the
PI (Proportional-Integrative) controller. The target is to obtain an error of zero (0) in
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1.2 – State of the Art

comparison with the desired (pre-set) tension. If there is a deviation, the PI controller is
tuned based on experts’ experience, in such a way that the difference is used to obtain a
variable for adjusting the speed of the corresponding motor and to maintain a constant
tension. The diagram of the PI controller is shown in figure below.

Figure 1.2. Current PI Controller Scheme

1.2.3 Some Variable Parameter Considerations

• The Load cell functions with the principle of Wheatstone bridge. The measured
tension corresponds to the output voltage of the Load cell. The Load cell produces
0mV that corresponds to 0N load tension and 20mV for 200N tension. The Volt-to-
Tension gain represents the scaling factor corresponding to tension obtained from
Voltage. For a given class of fabric materials, a corresponding tension is necessary
to obtain the required quality and this tension varies for different materials.

• The Offset variable makes up for Load Cell roller weight.

• The Line Speed in the speed of the master motor while the Output speed is the
speed of the slave motor. Manual Regulation input corresponds to the percentage
of slave speed required for manual regulation.

• The belt is subject to ageing and wear and tear on the external surface. As a result,
after a while, the belt is ground the belt thickness. Since the belt is tensioned
from the internal surface, the set tension of the belt is not affected. However, the
compaction due to the rubber belt is affected. A sensor is used to detect the thickness
of the belt.

• Fabric Angle of Entry For a given tension applied on a given fabric material, the
quality of the output fabric material can be varied by changing the entry angle of
the fabric.
The plant’s complexity, coupled with the variation in these parameters raises the
need for a robustly estimated it to correspondingly robustly control it.
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1.3 Thesis outline
The structure of the thesis work is summarized below.

Chapter 1 : It is the current chapter which introduces the thesis, giving insight on the
motivation, the need-gap and the current state of art.

Chapter 2 : A brief description of Sanforized compaction techniques with theoretical
background of the system modelling and control strategies.

Chapter 3 : Describes the subsystem divisions, the various subsystem model strategies
and the adaptive and non adaptive control design strategies adopted.

Chapter 4 : Dedicated to discussion of the findings based on the results obtained from
chapter 3 as well as recommendations.

Chapter 5 : This chapters gives an insight on possibilities for further research work in
this field while concluding the thesis.

Appendix A : This give alternative approach to predict by simulation the compaction
of a fabric without the physical specimen.

Appendix B : It contains the MPC object MATLAB codes and the representation of
the Simulink implementation.
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Chapter 2

Description and Theory

This chapter describes the basic techniques and processes of compaction, the theories be-
hind Set Membership Robust System Identification and Bond-graph modelling approaches,
and the control of the Sanfored compactor.

2.1 Compaction

2.1.1 Compaction Theory

The structure of a fabric contributes to its shrinkage tendency. More open structures have
greater propensity to shrink. A mechanical process, known as Compaction can be used
to reduced fabric length shrinkage by mechanically forcing the fabric structure to compress
itself. Yarns are flexible, and during fabrication, are bent into non-linear configurations.
In the case of Knit, fabrication and processing tension tends to elongate loops [4]. If the
shape of the individual loops can be made more round, the fabric is made more compact
and length can be reduced. This process limits washing (residual) shrinkage. Examples
of Knit material include: felt, jersey, etc.

Figure 2.1. Knit Fabric Configuration

In the case of woven fabric, more cramp is created along the warp line and this reduces
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2 – Description and Theory

its length. The more the cramp, the lower the residual shrinkage. Jean is an example of
woven fabric.

Figure 2.2. Woven Fabric Configuration

When knits and woven fabrics are compacted, the fabrics become heavier and thicker
and yardage is reduced. With softeners and steam applied to the fabric in the process,
the yarns can easily sleep by each other and readjust themselves.

2.1.2 Basis Techniques of Compaction

Based on Heated Roll and Shoe principle: Steam is applied as fabric raps around
a heated feed roll made of steel. Just enough moisture is applied so that fabric
is moves freely. The fabrics moves between two heated rolls which have special
surfaces to grab the fabrics in a controlled way. The gap between the two shoes is
zone for compaction. The Delivery Roll is made of rubber and turns at a slower
surface speed than the Feed Roll and along with the shoes, slows the fabric down
to allow for compaction. When the fabrics hits the surface of the heated shoes, the
fabric slows, shortens and compacts based on the surface friction on the compaction
zone. Over compaction will lead to corrugated appearance. The fabric that exits
the machine is noted to be thicker than that is going in.

Figure 2.3. Compaction Based on Heated Roll and Shoe Principle
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2.1 – Compaction

An equivalent design of this technique is seen where a single heated shoe is place
in-between the Feed Roll and Delivery Roll.

Figure 2.4. Alternative Compaction Based on Heated Roll and Shoe Principle

Based on Belt compaction:
It utilizes either a rubber or a felt belt that is stretched by flexing over a pressure
roll. The fabric is laid on the belt while the belt is still stretched. Steam is applied
as fabric enters the compressed path between the belt and the heated Palmer unit.
Compressive shrinkage of the fabric is obtained with the recoil of the belt when it is
flexed around the Palmer unit. This is the method implemented in Bianco Sanforizer
Compactor design. In the Sanforizer, the fabric material is pre-moistened with steam
at the Chain machine (Alzatrice) that precedes the compactor.

Figure 2.5. Compaction based on Rubber Belt

2.1.3 Compaction Process

The shrinkage of woven and knitted fabrics is partly attributable to tensions imposed
during the manufacturing cycle. These tensions are released in finishing.The com-
pressive shrinkage (compaction) process is intended for reducing this fabric residual
shrinkage using mechanical treatment. This process improves dimensional stability
and reduces the residual shrinkage by removing tensions in warp and compacting the
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2 – Description and Theory

fabric structure. Before the compaction process, the fabric is moistened to lubricate
the fibres and yarns to enhance compaction [3]. A steam heated cylinder is then
used to achieve a uniform and stable compaction on the fabric. To determine fabric
shrinkage level, Water test is carried out on the compacted fabric. At this point
the shrinkage level is compared with the desired. Nevertheless, based on design,
the fabric is given a slight tension to obtain a more precise compaction result. If
a considerable difference is found, the compaction variables are changed to improve
the compaction.
The Sanfore compactor is designed to optimize the lengthwise compaction ratio and
this vary based of the following parameters which include;

• compression due to rubber belt
• fabric tension
• motor speed
• angle of entry

Fabrics have varying potential for compaction. For fabrics with high potential for
compaction, one of the acceptable strategies applied in Bianco is to first slightly over-
compact with the compression on the rubber belt. Afterwards, the over-compacted
fabric is slightly tensioned to achieve the desired compaction. The procedure is
very desirable for fast and stable response since the response by tension is almost
immediate while there is a considerable amount of delay on the compaction due
to the rubber belt. For fabrics with less potential for compaction due to structure
and preparation, it’s often a practice to reduce the line speed of the system until
the desire compaction is reached. The speed reduction enables the compaction zone
sufficient time for more compaction. The rate of compaction is dependent on three
major factors; the temperature of the heated roller (less than 120oC for most generic
fabrics and less than 140oC for heavy Denim fabric), maximum level of compression
on the rubber belt, the amount of moisture on fabric. Using a smooth and soft rubber
belt surface gives the best shrinkage result with no defects on fabric. However, the
normal use of the belt causes a slow wear on the surface of the belt. The belt surface
is often ground after every 500000 – 600000 m of fabrics treated.

2.2 System Modelling
The model of a plant can be derived from mathematical and physical laws. Models derived
with this method are often simplified and hence are only approximations of the true sys-
tem. This approximation results in the uncertainty of the plant model. Some parameter
are not exactly known a-priori, and this results in parametric uncertainty of the plant.
Other parameters are not modelled at all, and this results in dynamic uncertainty.
The basic approach is to describe the plant under study as a member of a set of systems
[18]. This is set then known as model set. Considering an (Linear Time Invariant) LTI
system, a parametric uncertain plant is modelled with a finite number of parameters and
this defined by a structured model set. On the other hand, a total ignorance of the order
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2.3 – Robust System Identification

and phase is assumed for a dynamic uncertain plant and this modelled as unstructured
model set.

The method applied to derive the plant model is very important. Generally speaking,
models can be obtained by First principle model or by experimental method.

• First Principle Method plus A set of A-priori Information on the Physical Parame-
ters: This is known as the White-Box Modelling. The mapping of the inputs and the
outputs is obtained through computation application of physical and mathematical
laws.

• Based on Experimental Data plus A set of A-priori Information on the Model Struc-
ture: This method is essentially known as system Identification. It’s devoid of errors
associated with physical and mathematical laws. However, since input and output
data is required, the result of this method is dependent on how accurately these
data are collected and the consideration of possible data noise. The structure (eg:
linear, non-linear, time variant etc) of the system is conveniently selected in such a
way that optimization can be simplified.
When significant structural information is available based on some physical insight,
the model is known as Gray-Box Modelling. However, if only mild assumptions are
made on the system class, the system is known as Black-Box Modelling.

Figure 2.6. continuous time transfer function

w(t) = f [w(t − 1), w(t − 2), ..., w(t − m), u(t), u(t − 1), ..., u(t − m)] (2.1)

t = 1,2,3,4,...,5

The above equation considers the past and present input and output variables as the state
variables of a dynamic system.

2.3 Robust System Identification

Certain sources of data used for system Identification (such as the measuring instruments)
are subject to uncertainty. This section emphasize on deriving the mathematical model of
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2 – Description and Theory

a system considering the influence of these uncertainties.

Gp = α1s + α0
β2s2 + β1s + β0

(2.2)

where αi, βj ∈ [−∞+∞] are the parameters of the plant Gp computed considering un-
certainties. The data used for this computation is affected by noise which is represented by
the uncertainty range. Also, sometimes, due to approximation of physical systems, some
flexural poles and zeros might be neglected. These poles and zeros are accommodated
within the uncertainty range [19].

2.3.1 Important Definitions:

The a-priory information for system identification is related to functional knowledge of
the system.

f ∈ F (2.3)

• Parametric and Non-Parametric Functions: From above, f is a:
Parametric Function if the class F can be described by finite number of Parameters,
or
Non-parametric Function if the class F cannot be describe by finite number of pa-
rameters.
Considering a second order system in equation 2.2, the current output is defined by
the finite number of parameters, α1, α0, β2, β1, β0.

• Time-Variant and Time-Invariant Models: A model is time-invariant if the
function f does not depend on time. Otherwise, it is time-variant.
A time in-variant model has the parameters αi, βi as constant variable while in other
case, the the parameters are non-constant variables.

• Linear and Non-linear Functions: A function is said to be linear if;
f ∈ F = {linear combination ofw(t − 1) w(t − 2)...w(t − m) u(t) u(t − 1)...u(t − m)}
parametrized by
θ = [α0, α1, ...β1, β0]

Hence, System Identification problem is the problem of estimating the values of θ

2.4 Parametric Identification of LTI System

Given a set of input and output data,

{w(t), u(t)} t = 1, ..., N
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w(t) = w(t − 1), w(t − 2), ..., w(t − m), u(t), u(t − 1), ..., u(t − m)

For a second order System,

w(3) = −α1w(t − 1) − α2 + β0u(t) + β1u(t − 1) + β2u(t − 2) (2.4)

⎡⎢⎢⎢⎢⎢⎣
w(3)
w(4)
w(5)
w(6)
w(7)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
−w(2) −w(1) u(3) u(2) u(1)
−w(3) −w(2) u(4) u(3) u(2)
−w(4) −w(3) u(5) u(4) u(3)
−w(5) −w(4) u(6) u(5) u(4)
−w(6) −w(5) u(7) u(6) u(5)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
α1
α2
β0
β1
β2

⎤⎥⎥⎥⎥⎥⎦ (2.5)

Which can be represented as;
b = A.θ (2.6)

Since A is a square matrix from equation 2.5, A is invertible, hence;

θ = A−1.b

The variable b corresponds with the number of measurements, N taken. Often, with
a very few number of measurements, a problem of over-fitting is often encountered. This
is overcome by taking infinite number of measurements. This however, leads to a non-
invertible matrix A and hence to an inconsistent system. To solve this, a pseudo-inverse
of A is derived. Thus,

b = A.θ

b ∈ RN+1

θ ∈ R(2m+1)x1

A ∈ RNx(2m+1)

N >> 2m + 1 (
AT A

)−1
AT b =

(
AT A

)−1 (
AT A

)
θ

AT b = AT A θ

θ =
(
AT A

)−1
AT b (2.7)

where
(
AT A

)−1
AT is the pseudo-inverse of A.

Pseudo-inverse of A apparently converts the inconsistent system to a consistent one.

Note:
It is not a good idea to take measurements at steady state since this often results to A
matrix whose columns are linearly dependent and hence to under-determined system with
no unique solution.
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2.5 System Identification with Error Added:

Introducing error into equation 2.6, the basic equation becomes;

b = Aθ + e (2.8)

and hence the error equation becomes;

e = b − Aθ (2.9)

This introduces us the system identification problem statement which goes as
follows;
find the value of θ such that error is minimized

θ = argmin||e|| = argmin||b − Aθ|| (2.10)

θ affected by error is hence;

θN =
(
AT A

)−1
AT b −

(
AT A

)−1
AT e (2.11)

If e(t) is Gaussian (ie, normally distributed), and with zero (0) mean,

lim
t→∞

θN = θtrue

Error introduced in the system is considered in terms terms of structure and the type
of estimator in used.

2.6 Error Structure:

The error structure defines the way in which error enters a given system of equation. Three
main error structures shall be discussed here and they include:

• Equation Error Structure

• Error in Variable Structure

• Output Error

2.6.1 Equation Error Structure:

Given,

Gd(q−1) = N(q−1)
D(q−1) (2.12)
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2.6 – Error Structure:

Where q−1 is the backwards shift operator (q = z)

w(t) = N(q−1)
D(q−1) u(t) (2.13)

where u(t) and w(t) are true input and output of the system.

If there is no noise (uncertainty),

y ∼= w

For a second order system,

w(t) =
[
−w(t − 1) −w(t − 2) −u(t) −u(t − 1) − u(t − 2)

]
⎡⎢⎢⎢⎢⎢⎣

α1
α2
β0
β1
β2

⎤⎥⎥⎥⎥⎥⎦
for t = 3, ..., N

b = A.θ

A and b are absolutely known.
Error is said to enter a problem in an equation error structure form if the system

equation structure appears as follows:

D(q−1).y(t) = D(q−1) + e(t) (2.14)

w(t) = N(q−1)
D(q−1) .u(t) + 1

D(q−1)e(t) (2.15)

Figure 2.7. Equation Error Scheme
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This demonstrates that error enters the output of the system filtered by the denomina-
tor of the transfer function of the system to be Identified. This infers that the device that
is used for input and output data collection, and which is affected by noise is itself related
to the system which is to be identified. This presents the limitation for error entering the
output in this structural manner.

With error introduced, we have
b = A.θ + e (2.16)

Although the error appear to be dissociated with the system to be identified, looking
closely, it shall be discovered that the previous values of y which are components of A are
affected by noise. This means that A which should be known is affected by noise. For
more information on equation error, refer to [25]

2.6.2 Error-In-Variables:

For equation 2.13

w(t) = N(q−1)
D(q−1) u(t)

Figure 2.8. Equation Error Scheme

w(t) = y(t) − η(t) (2.17)

u(t) = û(t) − ϵ(t) (2.18)

y(t) − η(t) = Nd(q−1)
Dd(q−1)(û(t) − ϵ(t)) (2.19)
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For a second order system,

m = 2

y(t) − η(t) = −α1y(t − 1) + α1η(t − 1) − α2y(t − 2) + α2η(t − 2) + β0û(t) − β0ϵ(t) +
β1û(t − 1) − β1ϵ(t − 1) + β2û(t − 2) − β2ϵ(t − 2).

This demonstrates that the parameter to be estimated is affected by error non-linearly.

The EIV is often useful when both the inputs and the outputs of the system must be
measured. The application is seen when the input of the system to be identified is an
output of a super-system. [19] [20] [21] [23]

Sometimes, the input of the system is known exactly. In such case, the Error-In-
Variable Structure results in Output Error Structure.

2.6.3 Output Error Structure:

This is a particular case of EIV with the input known exactly and hence unaffected by
measurement noise [24]. The scheme is as shown below:

Figure 2.9. Equation Error Scheme

To solve, EIV , a-priori information about the ϵ and η is required. Such a-priori infor-
mation on ϵ and η include:

• Structure: The structures of ϵ and η may be either,

– Equation Error (EE)
– Error-In-Variable (EIV) or
– Output Error (OE)
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• Other Information:

– ϵ and η are assumed to be random variables statistically distributed according
to probability density function (PDF) that is at least partially known. The
assumption is only possible if variables are random and usually, large amount
of data required to obtain statistical consistency.

– ϵ and η are bounded. That is, they are only known to belong to a given bounded
set. With this approach, small amount of data can be useful.

|η| ≤ ∆η(t) ∀t
|ϵ| ≤ ∆ϵ(t) ∀t

where
∆η(t) ∈ R is known, and

∆ϵ(t) ∈ R is known

2.7 Parameter Estimators
In a broad sense, two kinds of estimators exist;

• Point-wise Estimator (PWE):
PWE functions with an algorithm that provides solution to estimation by finding
single point values of the system parameters.

Given a transfer function,

Figure 2.10. discrete time transfer function

From equation 2.13

w(t) = N(q−1)
D(q−1) u(t)

where u(t) and w(t) are true input and output of the system.
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Now, let y(t) be the collected measurement of w(t) that is affected by noise. If the
error or uncertainty is assumed to enter the problem in an equation error structured
form as in the equation 2.6.1,

D(q−1).y(t) = D(q−1).w(t) + e(t)

Estimators of this kind include:

– Least Square (e2 norm ) Estimator:
– L∞-norm Estimator:

2.7.1 Least Square (e2 norm ) Estimator:

The least square estimators aims at reducing the energy of the error. Refer to [25]
[26] for more details

θls = θN = argmin
θ

||y − φT θ||2 (2.20)

θls is the value that minimizes the 2-norm of the error.
φT is known as the matrix of regressors.

θls = argmin
θ

||D(q−1).y − N(q−1).u||2 (2.21)

h = D(q−1).y − N(q−1).u

h = [h(1), h(2) h(3), ..., h(N)]

θls = argmin
θ

||h||2

D(q−1) = 1 + α1q−1 + α2q−2 + ... + αmq−m

N(q−1) = β0 + β1q−1 + ... + βmq−m

h(t) = y(t)+α1y(t−1)+ ...+αmy(t−m)−β0u(t−1)−β1u(t−2)− ...−βmu(t−m)

t = 1, ..., N

h = y(t) − φT (t)θ

where
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2 – Description and Theory

φT (t) =
[
y(t) y(t − 1) ... y(t − m) −u(t − 1) −u(t − 2) ... −u(t − m)

]

θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1
α2
...
αm

β0
β1
β2
...
βm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b =

⎡⎢⎢⎢⎢⎢⎣
y(m + 1)

.

.

.
y(N)

⎤⎥⎥⎥⎥⎥⎦ A =

⎡⎢⎢⎢⎢⎢⎣
φT (m + 1)

.

.

.
φT (N)

⎤⎥⎥⎥⎥⎥⎦

2.7.2 L∞-norm Estimator:

The L∞-norm Estimator aims at reducing the value of the maximum error. Refer
to [27]

θl∞ = argmin
θ

||D(q−1).y − N(q−1).u||∞ (2.22)

θl∞ = argmin
θ

||b − Aθ||∞ (2.23)

h = b − Aθ

θl∞ = argmin
θ

(|h(1)|, |h(2)|, |h(3)|, ..., |h(N)|) (2.24)

The optimization problem here is associated with minimizing the maximum value
of h(i). This is achieved by inducing a slake variable, γ that represents the norm of
the maximum value of h(i).

θl∞ = argmin
θ,γ

γ (2.25)

h(1) = |γ| → −γ ≤ h(1) ≤ γ
h(2) = |γ| → −γ ≤ h(2) ≤ γ

...

...

...
h(N) = |γ| → −γ ≤ h(N) ≤ γ
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We are minimizing a linear function of γ and θ subject to a number of constraints on
γ and θ. The optimization problem to be solved is a Linear Programming Problem
(LPP) and hence a Convex Problem with unique global minimum value of the error
obtained.

A linear programming tool of matlab, linprog, can be used for this solution.

x = linprog(f, Â, b̂) (2.26)

that solves the equation,
x = argmin

x
fT .x (2.27)

subject to,
Â.x ≤ hatb (2.28)

where fT is a row vector of zeros (of dimension 2m + 1) and a 1.

fT =
[
0 0 0 ... 0 1

]
x is a column vector of dimension 2(m + 1)

x =
[

θ
γ

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1
...
αm

β0
...
βm

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Set-Wise Estimator (SWE) This approach of system Identification in presence

of error assumes that the error is Unknown But Bounded. It shall be covered in
the next section.

2.8 Set-Membership (Unkonwn But Bounded error) Iden-
tification of LTI System

2.8.1 Set Membership Identification of Discrete Time LTI Model from
Input Out Data Corrupted by Equation Error

• A-priori assumption on the plant

f ∈ F
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2 – Description and Theory

• A-priori assumption on noise due to measurement

– Structure: Considering Equation Error (EE) Structure,

y(t) = −α1y(t−1)−...−αmy(t−m)+β0u(t−1)+β1u(t−2)+...+βmu(t−m)+ϵ(t)

• Other Information: Bounded Error

(ϵ(t), η(t)) ∈ S
S = {ϵ(t), η(t) : hi(ϵ(t), η(t)) ≥ 0, i = 1, ..., r, t = 1, ..., N}

Error Set S: S = {e(t), t = 1, ..., N, |e(t)| < ∆e}

Feasible Parameter Set (FPS), Dθ: This is a set of all the values of θ which are con-
sistent with the a-priory information on the plant and the noise for all the collected
data.

Dθ = {θ =∈ R2m+1 : y(t) = −θ1y(t − 1)... − θmy(t − m) + θm+1u(t) + ... + β2m+1u(t − m) + e(t),
|e(t)| ≤ ∆e(t)

∀t = m + 1, ..., N}
(2.29)

It can be shown that since the FPS is consists of the equality linear dynamic system
and inequality error equation, the optimization problem is a convex solution of a
polytope and hence a Linear Programming Problem.

Figure 2.11. PUI around Polytope
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Parameter Uncertainty Interval (PUI):
This solution which corresponds to the global minimum and maximum intervals is
computed for each of the parameters.[18] [25]
Computing PUI introduces conservativeness as seen from figure 2.13

PUI1 = [θ1
−

,
−
θ1]

PUI2 = [θ2
−

,
−
θ2]

...

...

...

PUI2m+1 = [θ
−2m+1

,
−
θ2m+1]

The linear programming problem is solved using linprog of matlab as follows:

[x, fval] = linprog(f, A, b) (2.30)

Where x, known as minimizer, is the vector of the parameters to be estimated
x = argmin

x
fT .x

subject to
A.x ≤ b

fval is the minimum bound of the Parameter Uncertainty Interval (PUI),

θi
−

= minfT x (2.31)

The maximum bound of the Parameter Uncertainty Interval (PUI) is given as;

−
θi = maxθi = min(−θi) (2.32)

fT is as indicated in equation 2.26

Nominal Parameter
The nominal parameters of a plant is the defined as the center of the set known as
Chebyschev center of FBS in L∞ form.

θc = arg min
θ′ ∈R2m+1

max||θ′ − θ||∞ (2.33)

θc = [θc
1, θc

2, ..., θc
2m+11] (2.34)
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2 – Description and Theory

θc
i =

θi
−

+
−
θi

2 (2.35)

θi
−

= min
θ∈Dθ

θi ;
−
θi = max

θ∈Dθ

θi

2.8.2 Set Membership Identification of Discrete Time LTI Model from
Input Out Data Corrupted by Output Error

Here, the a-priori assumptions on plant and noise are the similar to that specified for
Equation Error with the exception that the noise is of Output Error structure. [24]

w(t) = −α1w(t − 1) − ... − αmw(t − m) + β0u(t − 1) + β1u(t − 2) + ... + βmu(t − m) + ϵ(t)

Feasible Parameter Set (FPS):

Dθ = {θ =∈ R2m+1 : y(t) − η(t) = −θ1(y(t − 1) − η(t − 1))...
−θm(y(t − m) − η(t − m)) + θm+1u(t) + ... + θ2m+1u(t − m),

y(t) = w(t) + η(t)
|η(t)| ≤ ∆η(t)

∀t = m + 1, ..., N}

(2.36)

Extended Feasible Parameter Set (EFPS):

Dθ,η = {θ =∈ R2m+1, η ∈ RN : y(t) − η(t) = −θ1(y(t − 1) − η(t − 1))...
−θm(y(t − m) − η(t − m)) + θm+1u(t) + ... + θ2m+1u(t − m),

y(t) = w(t) + η(t)
|η(t)| ≤ ∆η(t)

∀t = m + 1, ..., N}

(2.37)

The EFPS is described by bi-linear equality plant and inequality error. This results
in a Polynomial Optimization Problem which is non-linear and non-convex.
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2.8 – Set-Membership (Unkonwn But Bounded error) Identification of LTI System

Figure 2.12. PUI representation for POP

Hence, the optimization problem for the Parameter Uncertainty Interval of

PUIθi
= [θi

−
,

−
θi]

is

θi
−

= min
θ,η∈Dθ,η

θi ;
−
θi = max

θ,η∈Dθ,η

θi

Convex Relaxation:

This is the process of replacing non-convex Polynomial Optimization Problem sets
with with convex ones which are solved to obtain global minimum and maximum.
It involves the approximation of the POP from the outside. This approach, however
introduces some degrees of conservativeness. [23]
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Figure 2.13. Convex Relaxation of POP

The measure of convex relaxation of the convex set is given by the order of relax-
ation.
It is desirable to shrink the convex set to the barest minimum which is known as
Convex Hull for Dθ. This results in a minimum conservativeness.
As δ → ∞, PUI that results in a convex hull is obtained. However, increasing δ
increases computation time and memory storage demand.

2.8.3 Set Membership Identification of Discrete Time LTI Model from
Input Out Data Corrupted by Error-In-Variable:

Here, there are both input and output noise, though unknown, they are bounded. [20]
[21]

w(t) = −α1w(t − 1) − ... − αmw(t − m) + β0u(t − 1) + β1u(t − 2) + ... + βmu(t − m) + ϵ(t)

Feasible Parameter Set (FPS):

Dθ = {θ =∈ R2m+1 : y(t) − η(t) = −θ1(y(t − 1) − η(t − 1))...
−θm(y(t − m) − η(t − m)) + θm+1u(t) + ... + θ2m+1(u(t − m) − ϵ(t − m)),

y(t) = w(t) + η(t)
|η(t)| ≤ ∆η(t)
|ϵ(t)| ≤ ∆ϵ(t)

∀t = m + 1, ..., N}

(2.38)
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Extended Feasible Parameter Set (EFPS):

Dθ,η,ϵ = {θ =∈ R2m+1, η ∈ RN , ϵ ∈ RN : y(t) − η(t) = −θ1(y(t − 1) − η(t − 1))...
−θm(y(t − m) − η(t − m)) + θm+1u(t) + ... + β2m+1(u(t − m) − ϵ(t − m),

y(t) = w(t) + η(t)
|η(t)| ≤ ∆η(t)
|ϵ(t)| ≤ ∆ϵ(t)

∀t = m + 1, ..., N}
(2.39)

This also results in a Polynomial Optimization Problem, and the Parameter Uncer-
tain Interval is computed thus;

PUIθi
= [θi

−
,

−
θi]

θi
−

= min
θ,η,ϵ∈Dθ,η,ϵ

θi ;
−
θi = max

θ,η∈Dθ,η,ϵ

θi

2.8.4 Set Membership Identification of Stable Discrete Time LTI Sys-
tem:

If BIBO stability is an a-priori information about the plant, then, stability criteria are
imposed on the Identification process to actualize this. [28] [29]
G(q−1) is BIBO stable if and only if poles of G(q−1), that is, the roots of the polynomials,
A(q−1) are all inside the unit circle in the complex plane. The Jury criteria are used to
check if the requirements a fulfilled.

Jury Criteria states that the roots of polynomial A(q−1) belongs to the open unit circle
(strictly inside) if and only if the following conditions are met;

• A(1) > 0

• (−1)na > 0

• |ana | < 1

• Entries of the Jury table satisfies the following conditions
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ana ana−1 ana−2 ... a1 1
1 a1 a2 ... ana−1 ana

cna−1 cna−2 ... c1 c0
c0 c1 ... cna−2 cna−1

dna−2 dna−1 ... d0
d0 d1 ... dna−2
. .
. .
. .

q2 q1 q0

|cna−1| < |c0|, |dna−2| < |d0|, . . . , |q2| < |q0|

cna−jc =
[
ana ana−jc

1 ajc

]

dna−jd =
[
cna−1 cna−jd

c0 cjd

]
where na is the System’s order
q0 = 1

2.9 System Modelling By Bond-Graph Approach:

2.9.1 Introduction

Bond graphs are a domain-independent graphical description of dynamic behaviour of
physical systems. This means that systems from different domains (cf. electrical, mechan-
ical, hydraulic, acoustical, thermodynamic, material) are described in the same way. The
basis is that bond graphs are based on energy and energy exchange. Analogies between
domains are more than just equations being analogous: the used physical concepts are
analogous. Using bond graphs and the classification of power and energy variables, only a
few basic types of multiport elements are required in order to represent models in a wide
variety of energy domains [30]. In order to maintain relevance, we shall be restricted to
only mechanical domain. 1

2.9.2 Input - Output Relation:

It can be shown that if Effort, e is input to a subsystem, then, Flow, f necessarily has
to be the output.

e = Rf (2.40)

1Some of the formulas and diagrams in this section are with reference to [30]
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2.9 – System Modelling By Bond-Graph Approach:

Figure 2.14. Block Diagram Notation

Causal Stroke: A causal stroke is equivalent to a subsystem receiving receiving
Effort, e as an input.

Figure 2.15. Causal Stroke Notation

Considering a mechanical subsystem of mass, m represented below,

Figure 2.16. Simple Mechanical System

F = m
.
v (2.41)

v =
∫

F/mdt = 1/m

∫
Fdt (2.42)

Considering effort, F as the input, we have the following representation,
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2 – Description and Theory

Figure 2.17. Simple Mechanical System

Considering flow, v as input, we have the following representation,

Figure 2.18. Simple Mechanical System

2.9.3 Power Relation:

Power indicates the common relationship that exists between interacting sub-systems be-
longing to different domains. Table 2.1 shows different power variables for mechanical
domain with their corresponding units.

Domain Power Unit
General ef
Mechanical Fv F [N ], v[m/s]
Mechanical Tω T[Nm], ω [rad/s]

Table 2.1. Power Variable Table

Other variable obtained from Power Variable:

Linear Momentum, P:
F = dP

dt
(2.43)
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2.9 – System Modelling By Bond-Graph Approach:

Angular Momentum Pθ

F = dPθ

dt
(2.44)

Hence, generally, effort, e is
e = dP

dt
(2.45)

p = [P, Pθ] While flow, f is;

f = dq

dt
(2.46)

where q = displacement q = [q, θ]

2.9.4 Basic 1-Port Elements

A 1-port element is addressed through a single power port, and at the port a single pair
of effort and flow variables exists.
Here we first deal with the most primitive 1-ports. We consider, in order, 1-port elements
that dissipate power, store energy, and supply power.

Non-conservative Components (1-port resistor):

The 1-port resistor is an element in which the effort and flow variables at the single port
are related by a static function. These are mechanical components that dissipate energy.
In physical terms, a resistor is an idealization of such devices as electric resistor, damper,
torsional damper, and hydraulic damper. The mechanical dashpot is a 1-port resistor. If
an ideal dashpot is characterized by a force–velocity relationship such as;

F = bV (2.47)

where b = [b, bθ] is the dashpot constant (damping coefficient, b[Ns/m] and torsional
damping coefficients [Nms/rad]), then it is represented as a 1-port R element. Since F is
an effort and is V a flow, the constitutive relationship also fits our definition of a 1-port
resistor.

Figure 2.19. 1-Port Resistor with Bond-graph representation
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2 – Description and Theory

1-port resistor Energy:

E =
∫

Pdt =
∫

efdt (2.48)

where P = Power

Figure 2.20. 1-Port Resistor Input-Output Plot

It can be seen from equation 2.48 that energy is a function of time and since we cannot
go back in time, resistor is hence a dissipative component.

1-Port Conservative Components (Compliance):

These are 1-port devices in which a static constitutive relation exists between an effort
and a displacement. Such a device stores and gives up energy without loss. In bond graph
terminology, an element that relates e to q is called a 1-port capacitor or compliance.
In physical terms, a capacitor is an idealization of such devices as springs, torsion bars,
electrical capacitors, gravity tanks, and hydraulic accumulators.

Figure 2.21. 1-Port Compliance with Bond-graph Representation

e = φ−1
c q (2.49)
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2.9 – System Modelling By Bond-Graph Approach:

where q = displacement [x, θ] for spring and torsional spring respectively.

q =
∫

fdt → f = dq/dt (2.50)

1-port Compliance Energy:

E =
∫ t

0
Pdt =

∫ t

0
efdt =

∫ q

0
edq (2.51)

∫ q

0
edq = −

∫ 0

q
edq (2.52)

E0q = −Eq0 (2.53)
Since E is a function of q from equation 2.51, energy is therefore conservative.

Figure 2.22. Area interpretation of stored energy for a 1-port capacitor: (a)
nonlinear case; (b) linear case.

Compliance Derivative Causality:

It can be shown that if effort,e is the input to a compliant subsystem, a derivative causality
is obtained a shown in figure 2.23.

Figure 2.23. Compliance Derivative Causality

With derivative causality, there is no initial condition and hence no state variable.

31
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Compliance Integrative Causality:

It can also be shown that if flow is the input to a compliance subsystem, an integrative
causality is obtained as shown in figure 2.24.

Figure 2.24. Compliance Integrative Causality

With integrative causality, an initial condition is obtained and hence a state variable.

.
q = f → State equation, 1 initial condition

e = φc(q) → output

1-Port Conservative Components (Inertial):

A second energy-storing 1-port arises if the momentum p is related by a static constitutive
law to the flow f . Such an element is called an inertia in bond graph terminology. The
bond graph symbol for an inertia, the constitutive relation, and several physical examples
are shown in Figure 2.25. The inertia is used to model inductance effects in electrical
systems, and mass or inertia effects in mechanical or fluid systems.
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2.9 – System Modelling By Bond-Graph Approach:

Figure 2.25. 1-Port Inertial with Bond-graph Representation

f = φ−1
I p (2.54)

where P = momentum [P, Pθ] for linear and angular momentum respectively.

p =
∫

edt → e = dp/dt (2.55)

1-port Inertial Energy:

E =
∫ t

0
Pdt =

∫ t

0
efdt =

∫ p

0
fdp (2.56)

∫ p

0
fdp = −

∫ 0

p
fdp (2.57)

E0p = −Ep0 (2.58)

Since E is a function of p from equation 2.56, energy is therefore conservative.
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Figure 2.26. Area interpretation of stored energy for 1-port inertia. (a) Nonlin-
ear case; (b) linear case

Inertial Derivative Causality:

It can be shown that if flow,f is the input to a inertial subsystem, a derivative causality is
obtained a shown in figure 2.27.

Figure 2.27. Inertial Derivative Causality

With derivative causality, there is no initial condition and hence no state variable.

Inertial Integrative Causality:

It can also be shown that if effort,e is the input to a compliance subsystem, an integrative
causality is obtained as shown in figure 2.28.
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Figure 2.28. Inertial Integrative Causality

With integrative causality, an initial condition is obtained and hence a state variable.

.
p = e → State equation, 1 initial condition

f = φI(p) → output;
p is the state variable for e input

Integrative and Derivative Path Summary for Inertial and Compliant Components is
shown in figure 2.29

Figure 2.29. Integrative and Derivative Path Summary for Inertial and Compliant Components

1-Port Supply (Effort and Flow Source):

the 1-port sources are idealized versions of voltage supplies, pressure sources, vibration
shakers, constant-flow systems, and the like. In each case, an effort or flow is either
maintained reasonably constant, independent of the power supplied or absorbed by the
source, or constrained to be some particular function of time.
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Figure 2.30. 1-Port Supply with Bond-graph Representation

1-port Source Energy Consideration:

For Effort source, e = constant

E =
∫

Pdt =
∫

efdt = e

∫
fdt (2.59)

The longer the supply is used, the more the energy obtained from it.

2.9.5 Basic 2-Port Elements:

The 2-ports to be discussed here are ideal in the specific sense that power is conserved. If
any 2-port, —TP—, has the sign convention

then power conservation means that at every instant of time

e1(t)f1(t) = e2(t)f2(t) (2.60)

where the bonds are numbered so that all variables can be simply described as a type, e,
f, p, or q with a bond number subscript.
Equation 2.60 states that whatever power is flowing into one side of the 2-port is simulta-
neously flowing out of the other side.

Transformers are found to satisfy equation 2.60 and the constitutive laws for an ideal
2-port transformer is

e1 = me2, mf1 = f2, (2.61)
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parameter m is called the transformer modulus and the subscripts 1 and 2 correspond to
the two ports, as shown in Figure 2.31 for ideal rigid lever and gear pair.

Figure 2.31. Transformers: (a) bond graph; (b) ideal rigid lever; (c) gear pair

The lever is an ideal transformer because kinematics dictates that (b/a)V 1 = V 2 and
moment equilibrium requires F1 = (b/a)F2. This is exactly the definition for the ideal
transformer from Equation 2.61 with the ratio (b/a) playing the role of the modulus m.

The same is also applicable to the ideal gear set,

(r1/r2)ω1 = ω2
τ1 = (r1/r2)τ2

Other form of 2-port elements such as Gyrators (GY), Modulated Transformers (MTF),
Capacitive Capacitive (CC), Capacitive Inductive (CI), etc, are not covered within this
scope.

2.9.6 Multi-Port Junction Elements:

The idea of Junction formulation is to represent in multiport form the two types of con-
nections, which, in electrical terms, are called the series and parallel connections. Such
connections are extendible to all types of systems, including mechanical systems as shall
be considered here.
Junction elements are ideal in that power is neither dissipated nor stored.

Common Effort Junction:

This is also known as flow junction or 0-junction and it is symbolized by zero(0) with
bonds emanating from it. It represents the parallel connection of the electrical system.
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Figure 2.32. Common Effort Junction Representation

Using the inward power sign convention (+ve for inward bond) shown in the last
version of the junction of figure 2.32 , this implies

e1f1 + e2f2 + e3f3 = 0. (2.62)

The common effort junction is defined such that all efforts are the same, thus,

e1(t) = e2(t) = e3(t). (2.63)

hence,
f1(t) + f2(t) + f3(t) = 0. (2.64)

The efforts on all bonds of a common effort junction are always identical, and the
algebraic sum of the flows always vanishes. In other words, if power is flowing in on two
ports of the three, then it must be flowing out of the third port.

A good example of the mechanical representation of the common effort junction is
shown in figure 2.33

Figure 2.33. Common Effort Junction Representation for Mechanical System

The causal rule for common effort junction stipulates that there must be one effort
imposed on a common effort junction. All other efforts are imposed by the junction to the
components or subsystems.
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Figure 2.34. Causal Rule and Block Representation for Common Effort Junction

Common Flow Junction:

This is also known as effort junction or 1-junction and it is symbolized by one(1) with
bonds emanating from it. It represents the series connection of the electrical system.

Figure 2.35. Common Flow Junction Representation

Using the inward power sign convention (+ve for inward bond) shown in the last
version of the junction of figure 2.35 , this implies

e1f1 + e2f2 + e3f3 = 0. (2.65)

The common flow junction is defined such that all flows are identical, thus,

f1(t) = f2(t) = f3(t). (2.66)

hence,
e1(t) + e2(t) + e3(t) = 0. (2.67)

The efforts on all bonds of a common flow junction are always identical, and the
algebraic sum of the efforts always vanishes.

A good example of the mechanical representation of the common flow junction is shown
in figure 2.36
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Figure 2.36. Common Effort Junction Representation for Mechanical System

The causal rule for common flow junction stipulates that there must be one flow input
on the common flow junction. All other flows are outputs from the common flow junction
to the components or subsystems.

Figure 2.37. Causal Rule and Block Representation for Common Flow Junction

2.10 System Control
In this section, we shall discuss the approach adopted for controlling the modelled plant,
their benefits and limitations will also be highlighted. The controller design is based on
Model Predictive Controller (MPC) as will be demonstrated below according to ([31]:
Sachin C. Patwardhan, 2106).

2.10.1 Model Predictive Control(MPC)

Considering that more often than not, the parameters of the plant system change, it is
desirable to approach the problem using a controller that is capable of handling online
estimation. An adaptive MPC is suitable for this and more advantages which include: It’s
capability to systematically and optimally

• handle multi-variable interactions
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• impose operating input and output constraints

• process non-linearity

Theory Behind MPC: MPC is based on iterative, finite-horizon optimization. At
time, t the current plant state is sampled and a cost minimizing control strategy is com-
puted (via a numerical minimization algorithm) for a relatively short time horizon in the
[12]. Given a model of plant dynamics, possible consequences of the current input- moves
on future plant behaviour can be forecast online, and used while deciding the input-moves
that will not violate the future constraints.

Figure 2.38. System’s Schematic Representation

The Dynamic Model is useful for online forecast over a moving time horizon (or win-
dow). At each sampling time, an optimization problem is formulated over the finite
window.

Description of Approach

Finite Horizon Formulation: Optimization problem is formulated over a finite window of
time starting from the current instant.

At each sampling instant, a constrained optimization problem is formulated over the
window and solved.

Moving Horizon / Window: the time window keeps moving or receding from

[k, k + p] → [k + 1, k + p + 1] (2.68)

... and so on
p is known as the prediction horizon

Proactive Constraint Management: Given a good dynamic model, an online forecast can
be performed any possible constraint violation can be predicted within the window.

Components of MPC

• Internal Model and State Estimator:
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– Discrete Line State Space Model developed from mechanistic approach / time
series modelling (FIR of Finite State Model were used before)

– State Estimator: Open-loop observer / Kalman Predictor /Kalman Filters /Le-
unberg Observer / Innovative form of State Observer developed from ARX/AR-
MAX/BJ model

• Prediction of Future Plant Behaviour This involves handling drifting disturbances
and plant model mismatch

• On-line Constraint Optimization Strategy: The two major strategies are Linear and
Quadratic Programming approaches

Figure 2.39. Basic Feedback Structure of MPC [13]

• State Estimator and Predictor:
We shall adopt state estimation and prediction using prediction form of observer;

x̂(k + 1|k) = Φx̂(k|k − 1) + Γu(k) + Lpe(k)
e(k) = y(k) − Cx̂(k|k − 1) (2.69)

where Lp = Linf

Such an observer can be developed using the outlined state estimators.

Estimation of Current State And Innovation:

x̂(k|k − 1) = Φx̂(k − 1|k − 2) + Γu(k − 1) + Lpe(k − 1)
e(k − 1) = y(k − 1) − Cx̂(k|k − 2) (2.70)
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Future Prediction

Innovative Bias Approach:
When the model is perfect, the innovation sequence e(k) is a zero mean white noise
signal. However with the plant affected by drifting coloured unmeasured drifting
disturbances which has not been accounted for by the plant, the innovation sequence
e(k) is no longer a white noise and hence, the expectation of e(k),

E {e(k)} /= 0 (2.71)

The effect of model plan mismatch and/or unmeasured disturbance signal is ex-
tracted by filtering the innovation through a unity gain low-pass filter to obtain
ef (k). This obtains the non-zero mean of the signal.

ef (k) = Φef (k − 1) + [1 − Φe] e(k) (2.72)

Φe = diag [α1 α2 ... αr]

where
0 ≤ αi < 1 for i = 1,2,3, . . ., r are tuning parameters

Given a guess of future manipulated inputs,

{u(k + j|k) : j = 0,1,2, ..., p − 1}

Model prediction over future time window [k + 1 : k + p] are generated using the
discrete dynamic model as follow, assuming that ef (k) is constant:

future instance (k+1):

ẑ(k + 1) = Φẑ(k) + Γu(k|k) + Lef (k)
ŷ(k + 1|k) = Cẑ(k + 1|k) + ef (k)

ẑ(k) = x̂(k|k − 1) (2.73)

where ẑ is the prediction variable and x̂ is the observer variable.

future instance (k+2):

ẑ(k + 2) = Φẑ(k + 1) + Γu(k + 1|k) + Lek

= Φ2ẑ + ΦΓu(k|k) + Γu(k + 1|k) + (Φ + I)Lef (k)
ŷ(k + 2|k) = Cẑ(k + 2) + ef (k)
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...
future instance (k+p):

ẑ(k + p) = Φẑ(k + p − 1) + Γu(k + p − 1|k) + Lek

= Φpẑ + Φp−1Γu(k|k) + Φp−2Γu(k + 1|k) + Γu(k + p − 1|k) + (Φp−1 + Φp−2 + I)Lef (k)
ŷ(k + p|k) = Cẑ(k + p) + ef (k)

(2.74)
Hence, the future trajectory prediction for a given prediction horizon p is ;

ŷ(k + p|k) = [CΦp] x̂(k|k − 1) + (CΦp−1Γ)u(k|k) + ...+
(CΓ)u(k + p − 1|k) +

[
Φp−1L + Φp−2L + ... + L + I

]
ef (k) (2.75)

This shows that

Future Output Prediction =
Effect of the past States on the future outputs +

Effect of the future outputs on the future outputs +
Effect of Plant Model mismatch and the unmeasured disturbance on the future

outputs

p is the prediction horizon. It is the period (or window) over which the future
behaviour is being predicted.

2.10.2 Optimization Parameters

• Model Prediction Equation

The prediction generated using innovation bias approach is equivalent to carrying
out prediction using observer augmented with an artificially introduced integrated
white noise model, that is, the prediction generated using the following dynamic
system.

ẑ(k + j + 1) = Φẑ(k + j) + Γu(k + j|k) + L∈̂(k + j)
∈̂(k + j + 1) = ∈̂(k + j)

ŷ(k + j|k) = Cẑ(k + j|k) + ∈̂f (k + j)
(2.76)

Initial conditions:
ẑ(k) = x̂(k|k − 1) and ∈̂(k) = ∈̂f (k) for j = 0,1,2,3...,p-1

The introduction of white noise in prediction helps to achieve an offset-free closed
loop behaviour.
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2.10 – System Control

• Constraints in Manipulated Inputs

To reduce the dimension of the online optimization problem, degrees of freedom
available for shaping the future trajectory are often restricted to the first q moves.

{u(k|k), u(k + 1|k), ..., u(k + q − 1|k)} (2.77)

By imposing input constraints of the form

u(k + q|k) = u(k + q + 1|k) = ... = u(k + p − 1|k) = u(k + q − 1|k) (2.78)

q is known as the control horizon, which is the horizon over which the inputs are
allowed to change and after which it is kept constant

• Bounds on Manipulated Inputs and Outputs

ul ≤ u(k + j|k) ≤ uH for j= 0,1,2,. . ., q-1

yl ≤ ŷc(k + j|k) ≤ yH for j= 0,1,2,. . ., q-1
The output bound is useful for zone control where superscripts l and H indicates lower
and upper bounds respectively This constraint gives rise to zone control variable

• Bounds on the rate of change of Manipulated Inputs

∆ul ≤ ∆u(k + j|k) ≤ ∆uHforj = 0,1,2, ..., q − 1 (2.79)
∆u(k + j|k) = u(k + j|k) − u(k + j − 1|k)forj = 0,1,2, ..., q − 1 (2.80)

∆u(k|k) = u(k|k) − u(k − 1) (2.81)

Alternatively, degree of freedom for shaping the future trajectory can be used through
input blocking constraints

Since predictions are carried out online, we can choose output moves that respect the
above constraints.
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Figure 2.40. Schematic Representation of Control Horizon and Input Bounds

2.10.3 Future Set-point Trajectory:

In addition to predicting the future output trajectory, at each instance, filtered future set-
point trajectory is generated using a reference difference equation system of the form:

xr(k + j + 1|k) = Φrxr(k + j|k) + [I − Φ][r(k) − y(k)]
yr(k + j + 1|k) = y(k) + xr(k + j + 1|k)forj = 0,1,2,3, ..., p − 1

Φr = diag[γ1 γ2 ... γr]
0 ≤ φi ≤ 1 for i = 1,2,3, ..., r

(2.82)

with initial condition xr =
−
0

Here r(k) ∈ Rr represent the set-point vector.
The tuning parameter, γi is chosen once to generate a smooth trajectory from the current
set-point.
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Figure 2.41. Future Setpoint Trajectory

In some practical cases, simple reference signal previewing is used instead of applying
filters. [17]

When the reference vector is a 1-by-ny signal, where ny is the number of outputs,
there is no reference signal previewing. The controller applies the current reference values
across the prediction horizon.

To apply signal previewing, reference signal matrix of dimension N-by-ny has to be
specified. N is the number of time steps for which the reference values are specified.

Here, 1 < N ≤ p, and p is the prediction horizon.

Previewing usually improves performance, since the controller can anticipate future
reference signal changes. The first row of reference signal matrix specifies the ny refer-
ences for the first step in the prediction horizon (at the next control interval k = 1), and
so on for N steps.

If N < p, the last row designates constant reference values for the remaining p - N steps.

For more insight, suppose ny = 2 and p = 15. At a given control instant, the signal
connected to the ref inport is: ⎡⎢⎢⎢⎣

2 5
2 6
2 7
2 8

⎤⎥⎥⎥⎦
→ k = 1
→ k = 2
→ k = 3
→ k = 4

The signal informs the controller that:
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• Reference values for the first prediction horizon step k = 1 are 2 and 5.

• The first reference value remains at 2, but the second increases gradually.

• The second reference value becomes 8 at the beginning of the fourth step k = 4 in
the prediction horizon.

• Both values remain constant at 2 and 8 respectively for steps 5 → 15 of the prediction
horizon.

This demonstrates set-point filtering in a more visualizable way. However, when pre-
cision and smoothness of trajectory is of utmost importance, using of filter is inevitable.

It is worthy of nothing that the reference vector r(k) dimension must not change from
one control instant to the next each of its element must be a real number.

2.10.4 Constraint MPC Formulation:

Given the prediction model, input and output constraints, and desired set-point trajectory,
the MPC optimization problem at the sampling instant is formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
uf (k)

Es(k + p|k)T W∞Es(k + p|k)

+
p−1
Σ

j=1
E(k + j|k)WEE(k + j|k)

+
q−1
Σ

j=0
∆u(k + mj |k)W∆uu(k + mj |k)

uf (k) = [u(k|k)T u(k + m1|k)T ... u(k + mq−1|k)T ]T
E(k + j|k) = yr(k − j|k) − ŷ(k + j|k)

Es(k + p|k) = x̂(k + j|k) − −
xs(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.83)

This optimization is a minimization problem subject to :

• Model prediction Equation

• bounds on future inputs and predicted outputs

WE = Symmetric positive definite error weighting matrix
W∆u = Symmetric positive semi-definite input weighting matrix

These matrix are treated as tuning parameters which are used to shape the closed loop
behaviour of the input and output.
The terminal state weighting function W∞ can be solved by solving discrete Lyapanov
equation. When poles of Φ are inside the unit circle, W∞ can be solved thus,

W∞ = CT WEC + ΦT W∞Φ (2.84)
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When some poles are outside the unit circle, the procedure for computing the terminal
weighting matrix is given in Muske and Rawlings (1993)[16]

2.10.5 Steady State Target Computation

min
us(k)

[
r(k) − −

y(k)
]T

WE

[
r(k) − −

y(k)
]

subject to

[I − Φ] −
xs(k) = Γus(k) + Lef (k)

−
y(k) = C

−
xs(k) + ef (k)

uL ≤ us(k) ≤ uH

(2.85)

Case 1: If number of manipulated inputs = Number of controller outputs, then, an
unconstrained solution exists.

−
us(k) = [C(Φ − I)−1Γ]−1[r(k) − (C(I − Φ)−1L + I)ef (k)] (2.86)

−
xs(k) = [I − Φ]−1[Γus(k) + Lef (k)] (2.87)

Case 2: When the number of outputs is greater than the number of inputs, zone
variable are used.

2.10.6 Moving Horizon Implementation

The resulting constrained optimization problem is solved online for each sampling instant
using any standard optimization method.
The controller is implemented in a moving horizon framework, thus solving optimization
problem over the window [k, k + p]. Only the first optimal move is implemented on the
plant, that is,

u(k) = uopt(k|k) (2.88)
The optimization problem is formulated again on the next sampling instance over the

time window [k + 1, k + p + 1] based on the updated information from the plant and is
re-resolved.

Note: Reducing q reduces manipulability but enhances optimization efficiency.

2.10.7 Quadratic Programming (QP)

A constrained optimization problem is known as Quadratic Programming (QP) formula-
tion if it has the following standard form;

min
U

{1
2UT HU + F T U

}
(2.89)
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subject to
AU ≤ b

where H is a complex matrix of [Φ, Γ, C]

A large dimensional QP formulation can be solved very quickly using an efficient search
method. Through a series of algebraic manipulations, the Constrained MPC formulation
can be transformed to a Quadratic Programming (QP) Problem. To understand how the
MPC optimization problem can be transformed to a quadratic programming problem,
consider MPC formulation without terminal state weighting just for simplicity.

Defining the future input vector Uf and the predicted output vector Ŷf (k)

Uf (k) = [u(k|k)T u(k + m1|k)T ... u(k + mq−1|k)T ]T

Ŷf (k) = [Ŷ (k|k)T Ŷ (k + m1|k)T ... Ŷ (k + mq−1|k)T ]T

Then the prediction model will be

Ŷf (k) = Sxx̂(k|k − 1) + SuUf (k) + Se ∈f (k) (2.90)

Sx =

⎡⎢⎢⎢⎣
CΦ
CΦ2

...
CΦp

⎤⎥⎥⎥⎦ Se =

⎡⎢⎢⎢⎣
CL + Ir

CΦL + CL + Ir

...
CΦp−1L + ... + CL + Ir

⎤⎥⎥⎥⎦

Su =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

CΓu 0 0 ... 0
CΦΓ CΓu 0 ... 0

... ...
CΦq−1Γu CΦq−2Γu 0 ... C(Φ + 1)Γu

... ...
CΦp−1Γu CΦp−2Γu 0 ... C(Φp−q + ... + 1)Γu

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Sx is the matrix relating to the effect of the past state to the future predictions
Se = Matrix relating the effect of the past unmeasured disturbances and the model plant
mismatch on the future predictions

Su (Number of inputs x Number of prediction horizon)
It is the matrix relating the future manipulated inputs on future predictions. In consists
of impulse response coefficients of the model, and it is referred to as Dynamic Matrix.
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2.10 – System Control

2.10.8 Tuning of MPC

Figure 2.42. Tuning of MPC

• Prediction Horizon: Typically chosen close to open loop settling time.

• Control Horizon: Typically chosen small to avoid model inversion problems

• Input rate constraints

• Zone / Range Control: Not necessary to specify set points on each output. Instead,
high and low limits can be defined within which output should be maintained
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Chapter 3

METHODOLOGY: System
Modelling and Control of
Sanforized Compactor

The previous chapter has been dedicated to the theoretical analysis of the methodology
used in this work. Here, we will demonstrate how they are applied in the development
of this project, while pointing out the necessary adjustments and the limitations. All the
assumptions made in order to simplify the system are also pointed out here. The result
analysis of this design shall be discussion in the next chapter.

3.1 Specification Requirement:

The main objectives of this modelling and control include:

• to optimize automation of Sanforizing machine by controlling the compaction ratio
of the fabric

• to obtain a fast regulation with the least possible rise time, settling time and over-
shoot, that guarantees a stable output with acceptable 20% variation in amplitude.

• to find a good compromise between productive and maintenance cost, considering
compressive rubber belt usage.
The above requirements are subject to the following constraints;

– bounds on the input of electric motor = [5 50] m/min

– bounds on the compaction ratio = [1 0]
The last constraint has been imposed to prevent negative compaction and to
limit compaction to 100% maximum value.
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3 – METHODOLOGY: System Modelling and Control of Sanforized Compactor

3.2 System Modelling:
Considering the complexity of the system, it was necessary to split the compaction process
into two stages for ease of modelling and control, and in order to achieve the above goals.
The splitting will be based on the variables that influence compaction, and will be in
stages I and II. It will be seen that the subsystems will be inter-dependent on each other
for variables.
As was mentioned in chapter 2, fabric compaction with Sanforizing machine is dependent
mainly on some variables such as;

• steam cylinder compression on the rubber belt

• tension on fabric

• motor speed

Other variables that influence compaction include;

• fabric angle of entry

• temperature of steam drum

• amount of humidity on fabric

• fabric material etc. For simplicity

For simplicity, only the main variables will be modelled as input variables. The theo-
retically description of the principle behind system modelling by means of Set membership
and Bond graph approaches have been demonstrated. This chapter will extract these prin-
ciples with just a few modifications to achieve the desired models of the subsystems of
Stages I and II compaction.

Only a SISO 1 system modelling has been considered so far with Set membership ap-
proach of system Identification. The stage II compaction subsystem is however a MISO2

system. For this reason, it is necessary to modify the approach for MISO Identification as
will be demonstrated in the Stage II compaction subsection.

Bond graph approach will is used here as an alternative modelling approach to ap-
proximates the subsystems and in principle, obtain an approximate result.

For further insight on how fabric volume compaction can be predicted with a good
degree of accuracy and without access to the physical specimen. through FEA 3, please
refer to Appendix A.

1MISO - Single Input Single Output
2MISO - Multiple Input Single Output
3FEA - Finite Element Analysis
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3.3 – Stage I Compaction:

3.3 Stage I Compaction:

This first level of compaction is obtained at the compaction zone of the steam cylinder.
The amount of compaction obtained here is a function of the force of compression. The
force of compression is turn a function of the position of the free compression roller.
This level of compaction is characterised by slow dynamics. As a result, it is desired to
over-compact the fabric at this stage and then use a faster dynamic system at stage II to
obtain a more regular and precise compaction.

3.3.1 Subsystem Description

This stage of compaction is obtained through the compressive effect of pressure roll and
the steam cylinder on the compressive rubber belt as demonstrated in figure(3.1).

Figure 3.1. Stage I Compaction (by Compression)

The compressive rubber belt of thickness, 50.8mm to 70 mm [2] is worn in such a way
that it forms a convex shape on the free rolling pressure roll and the tension roll, and then
a concave shape on the motorized steam cylinder as shown. This configuration produces
the maximum rubber belt surface extension on the pressure and the tension rolls. A piece
of fabric is now laid on the rubber surface on the pressure roll end, with entire system
rotating to sandwich the fabric between the rubber surface and steam cylinder [4][3][5].

As the rubber is allowed to straighten, the length on the fabric is observed to exceed the
length of the rubber, forming a loop shape. This surplus fabric is available for compressive
compaction.[5] Since the fabric can slide smoothly on the the hot, polished and chromium
plated steam cylinder, it therefore follows the pattern of the rubber at the compression
zone[3]. The fabric exits this unit by-passing the rubber belt extended mode at the opposite
end free roll cylinder. The higher the contact pressure of the rubber belt, the greater the
compaction. At the entry point, the rubber belt can be compressed at most down to 25%
of its normal thickness.[4]

The major factor that influence compaction at this stage is the force of compression.
The force The command speed affects the rate of compaction but not the actual compaction
level since the rate of compaction at steady state equals zero (0). The force of compression
therefore will be considered as the only major input to the stage I compaction. Hence,
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3 – METHODOLOGY: System Modelling and Control of Sanforized Compactor

we have a SISO stage I subsystem. As mentioned earlier, other variable such as humidity,
temperature and fabric angle of entry shall be considered fixed.

Since the motion experienced by every unit of this subsystem is constant, the com-
paction will be modelled considering a common flow junction (1-junction) modelling strat-
egy. Since the focus is only on the mechanical behaviour of the fabric, only the parameters
and variables that affect this behaviour is modelled. The fabric will be modelled as a spring
with internal damper. The spring parameter models the elastic nature of fabric while the
damping feature models the acceptable permanent fabric deformation.

3.3.2 Model Parameters

Elastic Constant (Young’s Modulus), E: This defines the tensile elasticity, or the
tendency of an object to deform along a given axis when opposing forces are applied along
that axis. It is a physical property of a material and it is independent of the material
dimension. It can be demonstrated that based on the direction of tension imposed on
a fabric material, the Elastic constant of cotton fibre can range from 0.821 MPa for 40o

to 32.559 MPa for 0o [15]. Also, treating fabric with steam changes slightly the elastic
constant of the material.

E = σ

ϵ
(3.1)

where σ = Stress and epsilon = Strain

Force Constant, k This is also a physical property of a material that depends on
the Elastic Constant the dimension of the material. Like the elastic constant or Young’s
modulues, it describes the elastic behaviour of a material for a given tensile or compressive
force, but in this case, influenced by the material dimension as seen in equation 3.2.

k = AE

l
(3.2)

where A = Area of the material and l = initial length of the material. 4

Damping Coefficient, c This is the internal property of the fabric material that act as
friction against the vibration of the fabric spring property. Since it is not desired that the
fabric material return to it’s original position after compaction, the damping ratio which
is a function of the damping coefficient is greater than one (1).

ζ = c

2
√

mk
> 1 (3.3)

where k = mass.

4You may reference for further details on how the determine the spring constant of a fabric material
[15]
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Others Parameters Including other parameters such as; fabric dimension, rubber belt
dimension, motorized and free-roll cylinders’ dimension, cylinder mass inertial and so on.

Table 3.1 summarises the values of these parameters.

Parameter Unit Value
Young’s Modulus, (Ym) MPa 0.738900
Force Constant, k N/m 2.2903e+03
Fabric internal Damping Coefficient (c) Ns/m 1600
Fabric angle of Entry,(θe) deg 45o

Fabric Thickness, (tf ) m 2.7e-3
Initial length of Fabric, (l0f ) m 1
Fabric width, (wf ) m 1.43
Steam Cylinder radius, (r) m 0.3050
Compression rubber width, (wr) m 2.54
Partial Mass Inertial of Rubber Belt (Jb) kg 401.7297
Moment of Inertia of Steam Cylinder (Jc) kgm2 367.866168

Table 3.1. Subsystem Parameters and Corresponding Values

3.3.3 Input / Output Variables

The input and output variables of the stage I subsystem include:

• Compression Force (Fc): This is the only input variable to the stage on subsystem.
It is hence automatically the manipulated variable of the closed loop control system.

• First Compaction: This is the output of the closed loop control system. It shall be
modelled here as the spring displacement. It is desired that it tracks the reference
given the control system.

3.3.4 Subsystem Modelling with Bond-graph

In other to design a controller for this subsystem, a mathematical representation that
mimics the behaviour of the system must be extracted. It must therefore be modelled
as plant using any standard modelling approach. This subsystem will be modelled us-
ing Bond-graph approach as described in section 2.9. A pictorial representation of the
subsystem is shown in figure 3.2
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Figure 3.2. Stage I Compaction Scheme

The compaction obtained at this stage is as a result of the difference in pressure level
along the circumference of the rubber belt courtesy of its convolution. This pressure
difference along the rubber belt and the fabric material is modelled with Bond-graph as a
common flow junction (1-junction). The Bond-graph representation of stage I compaction
is shown in figure 3.3.

Figure 3.3. Stage I Compaction Bond-Graph Realization

Based on the mass spring damper system representation, the the common flow junction
(1-junction) indicates a common speed (flow) of all the parameter components in the
compaction zone. This speed is imposed by the inertia of the rubber belt. The force Tc

corresponds to the linear compression force on the fabric by the belt [2]. Jb represents
the partial mass inertia of the rubber belt on the fabric. k1 models the spring behaviour
of the fabric material as given in equation 3.3.2. c models the damping property of the
fabric.

It is note worthy that we have assumed that only a few percentage of the force of
compression imposed on the rubber belt is transmitted to the fabric due to the property
of high force absorbing capacity of the rubber belt.
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3.3.5 Derivation of State Equation

From the Bond-graph representation of figure 3.3, it can be seen there are two states as
indicated with

∫
. One state variable is associated with the spring displacement, q3 and the

second is associated with rubber belt momentum p2. This results in two state equations.
.
p2 = e1 − e3 − e4

.
p2 = Tc − k1q3 − f4c1
.
p2 = Tc − k1q3 − p2

Jb
c1

(3.4)

.
q3 = f3 = p2

Jb
(3.5)

[ .
p2
.
q3

]
=

[
c

Jb
−k1

1
Jb

0

] [
p2
q3

]
+

[
Tc

0

]
(3.6)

y = f3 = .
q3 = p2

Jb
(3.7)

Equation 3.7 shows that the output of the subsystem corresponds to the rate of com-
paction q3.

At steady state,
q3 = lim

s→0

Tc

k1 + sJb(s + c1/Jb)
(3.8)

3.4 Stage II Compaction

In this section, it will be demonstrated how the second stage of compaction is modelled
using both Set-membership System Identification and Bond-graph modelling approaches.
Using set-membership system identification approach generates a highly accuracy estima-
tion and considering also the noise in the system. However, in absence of data, using
Bond-graph modelling approach can generate a reasonable approximation of the system.
In our case, the control system will be designed with the plant model developed from
Bond-graph modelling approach.

The second level of compaction is characterized by a fast dynamics. It is therefore
useful to take advantage of this to obtain a more accurate compaction ratio. In fact, since,
there is over-compaction in the first stage of compaction, we use a negative compaction
at this stage to obtain a more accurate result.

When a fabric under process leaves the Sanforized compaction zone, about to be in-
troduced to the Felt compaction zone, the fabric is subjected to a slight tension which is
measured by Load Cell. This tension results from a difference in speed between the line
(master) speed motor of the Felt Compactor and the command (slave) speed motor of the
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Sanforized compactor. This slight tension contributes a negative compaction which has
been referred here as the Stage II Compaction.

Figure 3.4. Stage II Compaction Zone

3.4.1 Subsystem Description

This subsystem is defined mainly by two (2) motorized cylinders (master and slave), the
load cell and the fabric material as demonstrated in the figure 3.4. It is desired to obtain
a constant tension output computed from the difference in the command speed and the
line speed inputs. It will be seen that this requirement will be satisfied by the common
effort junction modelling strategy.

The electric motor parameters of the subsystem will not be considered. Instead, only
the parameters of the fabric and the cylinders will be highlighted. As discussed earlier,
based on the mechanical properties of fabric, it can be modelled as a spring with internal
damper.
All the parameters are the same for both stages I and II compaction with only a variation
in the force constant parameter as expected.

Parameter Unit Value
Force Constant, (k) N/m 1.5849e+03

Table 3.2. Subsystem Parameters and Corresponding Values

The Input / Output Variables of stage II subsystem include;

• Line Speed,(ωl): This is an input to the master speed motor and it is the basis for
obtaining a command speed. It has been modelled here as an input disturbance to
the Stage II compaction subsystem since it’s change is desired to be attenuated.

• Command Speed, (ωc): This is the manipulated variable input to the plant and the
adaptive output of the controller given to the plant in order to track the reference
variable.
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• Tension, (F1): This is a plant output that is obtained on the basis of the difference
in the line speed and the command speed. It is modelled to be maintained constant
along the fabric using 0-junction bond-graph approach.

• Compaction: This is the controlled output of the feedback system. It shall be
modelled as the displacement in the fabric length. It is desired that the reference
signal track this value.

3.4.2 Stage II Plant Modelling By Set-Membership System Identifica-
tion Approach

Set Member Identification of Multiple Inputs - Single Output (MISO) Discrete
Time LTI System: The theoretical analysis of Set Membership approach of performed
in chapter 2.8 has only covered SISO systems. Here, the approach will be extended for
MISO system considerations.

Since there are three inputs for the Stage II compaction, it is necessary to model it as
a MISO system. It will be seen that MISO systems are subsets of MIMO systems.

Figure 3.5. MIMO Transfer Function Representation

G(q−1)5 is a matrix whose entries are transfer functions.
Hence, considering a given output i,

wi(t) = Gi1(q−1)u1(t) + Gi2(q−1)u2(t) + ... + Gip(q−1)up(t) (3.9)

This means that MIMO can be addressed as series of MISO systems.

For a single output system,

w(t) = [G1(q−1) + Gi2(q−1) + ... + Gip(q−1)]u(t) (3.10)

where,
u(t) = [u1(t), u2(t), ..., up(t)]′

5q−1 is known as the backward shift
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A-Priori Information:

• G1 relates u1 to output

• G2 relates u2 to output and so on

• An idea of the order of the system is necessary

Considering a MISO system, the optimization problem is a polynomial problem of
constraints p+1 for all the inputs summed to p considered separately.

Slack Variable Approach to Identification of MISO LTI Discrete Time
Model

With this approach, the problem of solving p+1 optimization constraints is eliminated.

w(t) = G1(q−1)u1(t) + G2(q−1)u2(t) + ... + Gp(q−1)up(t) (3.11)

w(t) = z1(t) + z2(t) + ... + zp(t) (3.12)

where zi is the partial output (slack variable) for each input

z1(t) = G1(q−1)u1(t)

z2(t) = G2(q−1)u2(t)

z3(t) = G3(q−1)u3(t)

Hence,

Model Function, F

w(t) = z1(t) + z2(t) + ... + zp(t)

zi(t) = Gi(q−1)ui(t)
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Noise

Figure 3.6. MISO Transfer Function Representation

Error-In-Variable Structure

Bound Error assumption Both input and output errors are unknown but bounded

|η(t)| ≤ ∆η∀t|ϵ(t)| ≤ ∆ϵ∀t (3.13)

The set of all the feasible parameters is given by the Feasible Parameter Set (FPS)
and the correspond solutions are given in Feasible Solution Set (FSS)

Feasibility Parameter Set (FPS)

For a given partial output,

zi(t) = βi
0 + βi

1q−1 + ... + βi
mq−m

1 + αi
iq

−1 + ... + αi
mq−m

(3.14)

∀i = 1,2,3,...,p 6

Dθ = {θ ∈ R(2m+1)p : w(t) = z1(t) + z2(t) + ... + zp(t),
zi(t) = −αi

iz1(t − 1)... − αmi
i z(t − mi) + βi

0 [ûi(t) − ϵ̂(t)] + ... + βi
mi [ûi(t − mi) − ϵ̂(t − mi)] ,

∀i = 1,2, ..., p

∀t = m + 1, m + 2, ..., N

ui(t) = û(t) − ϵi(t)
w(t) = y(t) − η(t)
∀t = 1,2, ..., N}

6p represents the number of inputs and
m is the order of the system
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Now, since our model considers three (3) inputs, the MISO reduces to Three Inputs
Single Output system,
Assuming a first (1st) order system,

Also, since equation defining the FPS depends also on unknown but bounded samples
of noise sequences, we need to define the Extended Feasibility Parameter Set (EFPS)

Extended Feasibility Parameter Set (EFPS)

Dθ,η,ϵ = {θ ∈ R(2∗1+1)3, η ∈ RN , z ∈ RN : (3.15)
w(t) = z1(t) + z2(t) + z3(t) (3.16)

y(t) = w(t) + η(t) (3.17)
z1(t) = −α1

1z1(t − 1) + β1
0 [u1(t) − ϵ1(t)] + β1

1 [u1(t − 1) − ϵ1(t − 1)] (3.18)
z2(t) = −α2

1z2(t − 1) + β2
0 [u2(t) − ϵ2(t)] + β2

1 [u2(t − 1) − ϵ2(t − 1)] (3.19)
z3(t) = −α3

1z3(t − 1) + β3
0 [u3(t) − ϵ3(t)] + β3

1 [u3(t − 1) − ϵ3(t − 1)]} (3.20)

where θ ∈
[
αj

i , βj
i

]
Parameter Uncertainty Interval (PUI)

Then we define the Parameter Uncertainty Interval (PUI) as follows:

PUIθi
=

[
θi
−

,
−
θ i

]
(3.21)

θi
−

= min
θ,η,ϵ∈Dθ,η,ϵ

θi ;
−
θi = max

θ,η,ϵ∈Dθ,η,ϵ

θi

Nominal Parameter:

θc
i =

θi
−

+
−
θi

2 (3.22)

Objective function

θi
−

= minαj
i (3.23)

−
θi = maxαj

i = −minαj
i (3.24)

subject to some constraints:
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Equality Constraints

Assume η1 = η2 = η3

Equality Constraint 1

z1(t) + α1
1z1(t − 1) − β1

0 [u1(t) − ϵ1(t)] − β1
1 [u1(t − 1) − ϵ1(t − 1)] = 0 (3.25)

Equality Constraint 2

z2(t) + α2
1z2(t − 1) − β2

0 [u2(t) − ϵ2(t)] − β2
1 [u2(t − 1) − ϵ2(t − 1)] = 0 (3.26)

Equality Constraint 3

z3(t) + α3
1z3(t − 1) − β3

0 [u3(t) − ϵ3(t)] − β3
1 [u3(t − 1) − ϵ3(t − 1)] = 0 (3.27)

Equality Constraint 4

y(t) = η(t) − z1(t) − z2(t) − z3(t) = 0 (3.28)

Minimum and maximum bounds on error

η(t) ≤ ∆η; η(t) ≥ −∆η;
ϵ ≤ ∆ϵ; ϵ ≥ ∆ − ϵ;

∀t = m + 1, m + 2, ...N

This leads to a Bilinear (Polynomial) optimization problem. Such a problem is non-
convex and the global minimum for such as a non-linear problem can be computed by
convex relaxation. This can be implemented using SparsePOP software.[14]

Solving the problem with SparsePOP involves building support matrices from the
equality and non-equality constraints, obtaining an array of coefficients of the variables
being optimized,and choosing the relaxation order.

Support Matrix and Coefficient Array for Objective Function

Considering parameter, α1
1,

Objective Function:
α1
−

= min
θ,η,ϵ∈Dθ,η,ϵ

α1

Support Matrix: [1, 0, 0, ....0] (1x (N+(number of parameters to be estimated=9)))
Array of Coefficients:

[1] for min α1 and (3.29)
[−1] for max α1 (3.30)
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Support Matrix and Coefficient Array for Bilinear Equality Constraints

Using the equality constraint equations, the equality matrices are developed thus;

Support Matrices:

Equality Constraint 1:

z1(t) + α1
1z1(t − 1) − β1

0 [u1(t) − ϵ1(t)] − β1
1 [u1(t − 1) − ϵ1(t − 1)] = 0

Array of Equality Coefficient 1:

[1, 1, −u1(t), −u1(t − 1), 1, 1]

For t =2;

Figure 3.7. First Support Matrix

Equality Constraint 2:

z2(t) + α2
1z2(t − 1) − β2

0 [u2(t) − ϵ2(t)] − β2
1 [u2(t − 1) − ϵ2(t − 1)] = 0

Array of Equality Coefficient 2:

[1, 1, −u2(t), −u2(t − 1), 1, 1]

Figure 3.8. Second Support Matrix
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3.4 – Stage II Compaction

Equality Constraint 3:

z3(t) + α3
1z3(t − 1) − β3

0 [u3(t) − ϵ3(t)] − β3
1 [u3(t − 1) − ϵ3(t − 1)] = 0

Array of Equality Coefficient 3:

[1, 1, −u3(t), −u3(t − 1), 1, 1]

Figure 3.9. Third Support Matrix

Equality Constraint 4:

y(t) = η(t) − z1(t) − z2(t) − z3(t) = 0

Array of Equality Coefficient 3:

[y(t), −1, −1, −1 − 1]

Figure 3.10. Fourth Support Matrix

relaxation Order

Since the highest order of the Polynomial constraints is two(2), the minimum relaxation
order will be;

δmin = m/2 (3.31)

2/2 = 1
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3.4.3 Stage II Plant Modelling With Bond-Graph

In the design of controllers for a specific plants, mathematical models which represent the
plants are used. Any model can at best be the approximation of the true plant. In our
case, the state equations of the plant will be extracted using bond-graph approach.

The model scheme of stage II compaction is shown in figure 3.11

Figure 3.11. Stage II Compaction Scheme, ωc = command speed, ωl = Line Speed

Since the tension on the fabric results from the change in speed between the line speed
and the command speed, a common effort junction (0-junction) is used to model this
change in speed as well as the constant tension as desired.

Based on the analysis done in section 2.9, the following bond-graph is obtained,

Figure 3.12. Stage II Compaction Bond-Graph Realization

The first common flow junction (1-Junction) from the left indicates the common speed
that exists between the slave speed motor the mass inertia of the steam cylinder. This
speed is imposed by the slave speed motor. The angular variables (Torque and angular
speed) of this motor are transformed into linear variables (Force and linear speed) using
the transfer function (TF) and the linear variable with the damper and the spring are
subjected to a common effort indicated by common effort junction (0-Junction). In other
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words, the 0-junction is used for summing the difference in speed imposed by slave and
the master motors. The linear variables are converted again into angular variables and are
subjected to a common flow with the mass inertia of the Felt cylinder. This is common
flow is imposed by the master speed motor. As in stage I, k and c model spring and
damping properties of the fabric respectively.

3.4.4 Derivation of State Equation:

From the above analysis, it can be seen that only one state variable is possible and hence,
a single state equation. The state variable is associate to the spring and it is the spring
displacement, q6.

.
q6 = f4 − f5 − f7.

q6 = f3Rm − f5 − f8Rm.
q6 = ωcRm − e5/c − ωlRm.
q6 = ωcRm − kq6/c − ωlRm

(3.32)

.
q6 = −kq6/c + Rm(ωc − ωl) (3.33)

y = e1 = P2/Jc (3.34)

Equation 3.33 is the state equation while equation 3.34 is the output.
From the state equation, the steady state value of q6 can be computed.

q6(s + k/c) = Rm(ωc − ωl) (3.35)
q6 = lim

s→0
Rm(ωc − ωl)c/k (3.36)

3.5 Control System Design

A feedback control system is necessary to take into account the uncertainty of the plant
and to ensure that performance specifications are met within guaranteed limit. Feedback
systems also have the capacity of reducing the effect of disturbances and compensate for
plant parameters uncertainty and model mismatch.
The representation of a feedback control system is shown in figure 3.13
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3 – METHODOLOGY: System Modelling and Control of Sanforized Compactor

Figure 3.13. Feedback Control System Layout

Based on the layout of figure 3.13, our feedback control system has the following
components:

• The Plant represents the subsystem to be controlled.

• The Sensor gives information about the plant. Here, the pick-counter is used as the
output sensor for compaction value. Also, values read from PLC gives information
of other plant variable such as command speed, line speed and so on.

• The Controller Compares measured values to their desired values and provides
input variable to the plant.

The main signals of interest include:

• Reference Signal,r(t) gives prescribed values of the controlled signal.

• Input Signa, u(t) influences the plant and it is a manipulatable variable. It is
provided by the controller.

• Controlled Signal, y(t) is the signal under control

• Disturbance Signal, dp(t) influences the plant but cannot be manipulated.

• Sensor noise, ds(t) affects the measured signal.

• Measured signal, z(t) is measured by means of sensor and contains information
about the state of the plant.

The closed-loop controller provides signal to the plant on the basis of past and present
values of both the reference signal and the measured signal.
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3.6 Adaptive MPC Controller Design:
Since the subsystem are subject to parameter variation during operation, it is necessary
to adapt to this variations online and this motivates the use of Adaptive Model Predictive
Control (MPC) for the control design.

The Adaptive MPC is initialized with an MPC object which is a controller that has
been designed at a given operating point for a linearised plant model. In this case, the
plant has been linearised at steady state operating point. This linearised dynamic plant
model is internal to MPC object and it is needed for on-line forecast within a given moving
time horizon and it runs in parallel with the given non-linear plant model. In adaptive
mode and at runtime, the state of the internal plant is updated on-line with the state
variable estimated from the inputs and output variable of the non-linear plant model.

The given plant state space equation is as given in equations 3.33 and 3.34.

3.6.1 Creating Operating Point

The MPC object will be controlling a plant that has been linearised at given operating
point. Using trim output constraint of Simulink, an output signal variable is defined
for steady state operating point computation.
The MPC tool is incorporated with functionalities that determines the steady state oper-
ating point of a system whose known outputs variables at steady state are defined with
the trim function. Trim function uses constraint optimisation technique and attempts to
find values for X, U and Y that set the state derivatives, DX, of the S-function ’SYS’ to
zero (0).
It is desired that these known output variables track the reference variables of the feedback
control system. Every other input or output variable is assumed to to be unknown with
this strategy.

Stage I Subsystem Steady State Operating Point The Simulink representation of
Stage I are shown in figures 3.14

Figure 3.14. Representation of Stage I Compaction
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The input and output variable values for this subsystem is described in table 3.3

Signal Variable Variable Type Value
Manipulated Variable (Compression) input unknown
Controlled Variable (first_compaction) output 0.22
State 1 state 0
State 2 state 0

Table 3.3. Input and Output Variable and values of Stage I prior to Steady
State Operating Point Search

With the manipulated variable signal connected to the output of the controller and the
controlled output variable signal connected to the measured output port of the MPC con-
troller, an operating point search is performed and the report for Stage I Plant is shown in
3.15 It can be seen from figure, 3.15 that as desired, the change in the state (DX) variable

Figure 3.15. Steady State Operating Point Search Result

at steady state tends to zero (0).

Stage II Subsystem Steady State Operating Point: The Simulink representation
of Stage II subsystem is shown in figures 3.16.
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Figure 3.16. Representation of Stage II Compaction

The input and output variable values for this subsystem is described in table 3.4

Signal Variable Variable Type Value
Manipulated Variable (command_speed) input unknown
Unmeasured Disturbance Variable 1 (line_speed) input 10
Unmeasured Disturbance Variable 2 (first_compact) input 0.22
Controlled Variable (final_compact) output 0.2
State 1 state 0

Table 3.4. Input and Output variables and values of Stage II prior to Steady State
Operating Point Search

With the manipulated variable signal connected to the output of the controller and
the controlled output variable signal connected to the measured output port of the MPC
controller, an operating point search is performed as in stage I and the report for Stage II
Plant is shown in 3.17.

Figure 3.17. Steady State Operating Point Search result for Stage II

Also, it can be seen from figure, 3.17 that as desired, the change in the state variable
at steady state tends to zero (0).

73



3 – METHODOLOGY: System Modelling and Control of Sanforized Compactor

3.6.2 MPC Internal Dynamic Plant Model (Prediction Model) Creation

This operating point object is then used to initialise the non-linear plant model and the
plant model state is linearised at this initial condition.
The linearised plant is a continuous time plant system. Since the MPC can only work
with discrete time plant, the linear plant to converted to discrete time plant system with
a sampling time of 0.1. The linearised model for stages I and II shown in the listing below
3.6.2 and 3.6.2 respectively.

1 % The resulting state space of stage I linearized plant
2

3 A =
4 Integrator1 ( Integrator1 (
5 Integrator1 ( 0.6496 -187.1
6 Integrator1 ( 0.0002034 0.975
7

8 B =
9 compression

10 Integrator1 ( 0.2056
11 Integrator1 ( 2.742e -05
12

13 C =
14 Integrator1 ( Integrator1 (
15 first compac 0 1
16

17 D =
18 compression
19 first compac 0
20

21 Input groups :
22 Name Channels
23 Manipulated 1
24

25 Output groups :
26 Name Channels
27 Measured 1
28

29 Sample time: 0.1 seconds
30 Discrete -time state -space model.

1 % The resulting state space of stage II linearized plant
2

3 A =
4 Integrator
5 Integrator 0.9057
6

7 B =
8 mv Mux2 (1) Mux2 (2)
9 Integrator 0.001587 -0.001587 0

10
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11 C =
12 Integrator
13 ov -1
14

15 D =
16 mv Mux2 (1) Mux2 (2)
17 ov 0 0 1
18

19 Input groups :
20 Name Channels
21 Manipulated 1
22 Unmeasured 2,3
23

24 Output groups :
25 Name Channels
26 Measured 1
27

28 Sample time: 0.1 seconds
29 Discrete -time state -space model.

3.6.3 MPC Object Design

Given the discrete time dynamic plant model, future reference vector, and with the input
and output constraints defined, an on-line forecast is performed to foresee any possible
constraint violation over the finite time window. At each sampling time, a constrained
optimization problem is formulated over a finite window of time and solved starting from
the current instance through a moving horizon that has been defined in equation 2.68.

3.6.4 Implemented Constraints on Manipulated Inputs and Outputs

The time series optimized input variables is as follows;

{u(k|k), u(k + 1|k), ..., u(k + q − 1|k)}

The dimension of on-line optimization is reduced by restricting the control horizon, q to
it’s first set of moves.

u(k + q|k) = u(k + q + 1|k) = ... = u(k + p − 1|k) = u(k + q − 1|k)

• Control Horizon, q = 3 (chosen)

• Prediction Horizon, p = 15 (chosen)

• Bounds on Manipulated Inputs:
Stage I
Lower limit, uL

cp of the compression = 0 [kg]
Upper limit, uH

cp of the compression = 500 [kg]
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Stage II
Lower limit, uL

cs of the command speed = 5 [meter/min]
Upper limit, uH

cs of the command speed = 50 [meter/min]
Lower limit, uL

ls of the line speed = 5 [meter/min]
Upper limit, uH

ls of the line speed = 50 [meter/min]
Lower limit, uL

fc of the first compaction = 0
Upper limit, uH

fc of the first compaction = 1

• Bounds on Outputs:
Lower limit, yL of the compaction variable = 0
Upper limit, yL of the compaction variable = 1
Output constraints are useful for zone variable prediction when the number of out-
puts is greater than the number of inputs.

3.6.5 Future Set-point Trajectory Determination

At every sampling time, the optimization problem solved is used to predicting the future
trajectory with the prediction horizon. The trajectory targets the set-points at steady
states. An intuitive simplification of the method used in subsection 2.10.3 for computation
of the future set-point trajectory is obtainable through reference signal previewing.

For the reference signal vector of dimension (N-by- ny), our ny = 1 since we have only
a single reference signal in both stages I and II compaction. Also, we have maintained the
reference matrix to a single row (N=1) vector just for simplicity. This means that, since
N < p, this only row designates constant reference values for the remaining future p - 1
steps.

3.6.6 Constrained MPC Formulation

Given the discrete time prediction model, input and output constraints, and desired set-
point trajectory, the MPC optimization problem is formulated according to section 2.10.4.

As pointed out, the optimization is a minimization problem, subject to

• Prediction model

• bounds on future inputs and predicted outputs

error weighting matrix, WE must be Symmetric positive definite
input weighting matrix, W∆u must be Symmetric positive semi-definite

The Constrained MPC Formulation problem is transformed into Quadratic Pro-
gramming (QP) problem through series of algebraic manipulations and solved very
quickly using an efficient search method.

The MPC quadratic programming (QP) problem must have a unique solution. To
achieve this, cost function parameters (penalty weights) and horizons were chosen such
that the QP’s Hessian matrix is positive-definite.
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• Penalty Weights On Manipulated Variable Rates A positive-definite Hessian
was guaranteed by increasing penalties on manipulated variables’ rate of change
(MVrate). Table 3.5 shows the design values of Weights.MVrate for both stages I
and II

Manipulated Variable Compaction Stage Value
compression I 0.0960789
command_speed II 0.4392945

Table 3.5. Design values of Weights.MVrate for Stages I and II

The value of Weights.MVrate also influences the response speed of the control
system.

• Penalty Weights On Output Variables:
The penalty weighting function on the output variables Weights.OV also affect
the Hessian. The values have been chosen according to table 3.6 to emphasize the
importance of the output variable tracking and to increase the chances of obtaining
a unique QP solution.

Output Variable Compaction Stage Value
first compaction I 0.22764
final compaction II 1.04081

Table 3.6. Design values of Weights.OV for Stages I and II

• Penalty Weights On Input Variables:
The weighting function on manipulated variables Weights.MV have been retained
at zero (0) for the both stages.

• Weight on overall constraint softening
If there are soft constraints, increasing the overall constraint softening weighting
function, Weights.ECR 7 value makes these constraints relatively harder. The con-
troller then places a higher priority on minimizing the magnitude of the predicted
worst-case constraint violation.
Soft constraints have been implemented on the output variable’s lower and upper
bounds.
The assigned weight on the overall constraint softener Weights.ECR = 100000

7ECR means Equal Concern for Relaxation
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Tuning Weights.ECR may be helpful to achieve the proper balance in relation to the
other control objectives.

3.7 Controller Performance Tuning

Response Speed: Though Increasing the weighting function on the rate of change of
manipulated variable (MVrate) may guarantee positive definite QP’s Hessian matrix, it
can consequently lead to a more sluggish controller response. Maintaining MVrate at the
design values of table 3.5 returns the response speed while retaining a positive definite
QP’s Hessian matrix.

Minimum error tracking: Non-zero of Weights.OV values emphasize the importance
of OV target tracking. This is helpful in maintaining the output error very minimum.

Horizon Parameters For Plants With Delay: If a plant includes delay T, the pre-
diction and control horizons (P and M) must be set in such a way that,

P − M > T. (3.37)

This ensures that the last MV movement in the optimal control sequence which occurs
at step M, affect the OVs within the prediction horizon. Otherwise, the last MV movement
is irrelevant to OV control and the QP might not have a unique solution.

In our case however, the maximum total delay in the prediction model is T = 0 sam-
pling periods, and P(+1) - M = 13.

It is recommended to use prediction horizon of close to the settling time. However, for
computational efficiency, we have chosen a lower prediction horizon of 15 sample steps.

Scale Factors Scaling converts the relationship between output variables and manipu-
lated variables to dimensionless form. Scale factor specifications can improve QP numerical
accuracy. They also make it easier to specify tuning weight magnitudes.

In order for the outputs to be controllable, each must respond to at least one manip-
ulated variable within the prediction horizon. If the plant is well scaled, the maximum
absolute value of such responses should be of order unity.

The scaling factor on the manipulated variables and output variables have been set as
described in table 3.7
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Variable Compaction Stage Scale Factor
compression I 500
command speed II 10
first compaction I 1
final compaction II 0.2

Table 3.7. Design Scale Factors for Stages I and II

3.7.1 Hard MV Constraints

The controller should always satisfy hard bounds on a manipulated variable OR its rate-of-
change. Specifying both constraint types simultaneously, however, may result in a conflict
during real-time use. For this reason, only hard bounds on the manipulated variable
(command speed) has been used the design.

Lowerlimit, uLofthecommandspeed = 5[meter/min]
Upperlimit, uHofthecommandspeed = 50[meter/min]

3.7.2 Soft Constraints

If a constraint is too soft, an unacceptable violation may occur. If it is too hard, the
controller might pay it too much attention. Moreover, making a constraint harder cannot
prevent a violation if the constraint is fundamentally infeasible.

Two soft constraints have been implemented for each of the stages and they include;

• Soft constraint on the lower limit of the output variable,
OV.MinECR = 1;

• Soft constraint on the upper limit of the output variable,
OV.MaxECR = 1;

3.7.3 Adaptive Model Predictive Controller

Based on the operation modes on the Sanforized Compactor, it is anticipated that the
system is subject to continuous change in it’s parameters. For this reason, it is necessary
to adapt to these changes on-line. This is achieved by adapting the Model Predictive
Controller that has been designed in section 3.6.3 using the MPC Tool box of Matlab with
the changes in these parameter.

The adaptive MPC is designed on the basis of MPC object structure. Using an esti-
mator (external to the MPC object) that has been initialized with the state of the MPC
object internal plant, new state of the plant is obtained at runtime and used to update
the state of the MPC internal plant. Then, future prediction is optimized on the basis of
the new state.
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External Model Estimator

Many options exist for external on-line estimation of the plant model. In our case, a
Recursive Polynomial Model Estimator block of Matlab has been adopted to estimate an
ARX model structure.

ARX → A(q)y(t) = B(q)u(t − nk) + e(t) (3.38)

q is the time-shift operator and nk is the delay.

u(t) is the input, y(t) is the output, and e(t) is the error. For MISO models as
applicable to in this case, there are as many B(q) polynomials as the number of inputs.
The orders of this model is as follows:

na → 1 + a1q−1 nb → b1 + b2q−1

The orders na, nb and delay, nk, are known a priori and fixed. They corresponds to
the number of states of the MPC internal plant. They are provided as the initial estimate
and structure for the estimation process

It is a good practice to use the MPC internal plant state parameters as the initial
estimate. This is readily available through tfdata() of Matlab.

Using the input u(t) and output y(t) as input to the estimator, the parameters A(q),
B(q) are estimated and output as bus signal with the following elements:

1 % Obtaining the Polynomial Coefficients of Numerators (B) and Denominators (A) of the internal plant parameters for defining the estimator structure
2

3 % Stage I transfer function data
4 [num_I , den_I] = tfdata ( mpc_I_obj .Model.Plant );
5 Aq_I = den_I {1};
6 Bq_I = num_I {1};
7

8 % Stage II transfer function data
9 [num_II , den_II ] = tfdata ( mpc_II_obj .model.Plant );

10 Aq_II = den_II {1};
11 Bq_II = num_II {1};

Stage I
Aq_I → [1.0000 -1.6247 0.6715]
Bq_I → [0 0.2742 0.2401]
Stage II
Aq_II → [1.0000 -0.9057]
Bq_II → [0 -0.0016]

Table 3.8. Polynomial Coefficients of Numerators (B) and Denominators (A)
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The number of values in each polynomial coefficient vector indicates the number of
states (+ 1) of the internal plant.
For MISO data, Aq and Bq are matrices where the i-th row parameters correspond to the
i-th input.

Stage I → 1×1 cell array
Stage II → 1×3 cell array

These parameter signals are converted from ARX form into state space form using
Model Type Converter of Simulink and are collected through a Bus Selector into Sig-
nal Specification blocks. Signal specification is necessary to maintain consistency with
the parameter specification of the MPC internal dynamic plant model. The dimension
specification is as follows;

Stage I

state space parameters
<A> → [2 x 2]
<B> → [2 x 1]
<C> → [1 x 2]
<D> → [1 x 1]

1 % Norminal values of the Model Predictive Controller Object for Stage I
2

3 mpc_I_obj .Model. Nominal .X = [0; 0]
4 mpc_I_obj .Model. Nominal .Y = 0.2200
5 mpc_I_obj .Model. Nominal .U = 200.2291
6 mpc_I_obj .Model. Nominal .DX = [0; 0]

Stage II

state space parameters
<A> → [1 x 1]
<B> → [1 x 1]
<C> → [1 x 1]
<D> → [1 x 1]

1 % Norminal values of the Model Predictive Controller Object for Stage II
2

3 mpc_II_obj .Model. Nominal .X = 0
4 mpc_II_obj .Model. Nominal .Y = 0.2
5 mpc_II_obj .Model. Nominal .U = [10.5944 , 0, 0]
6 mpc_II_obj .Model. Nominal .DX = 0

The state space parameters together with the nominal variables of the controller, are
obtained through a Bus Creator and used to update the MPC internal plant model and
the nominal variables for optimization at runtime.
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Chapter 4

Results and Findings

This chapter is dedicated discussion of the result obtained from the design of chapter 3 for
the both stages of compaction. Based on the requirement specifications outlined in section
3.1, the feedback system has been designed to satisfy these requirements. The robust
stability and time domain performance will be analysed here on the basis of Simulink
simulation and design review function of MPC toolbox.

4.1 Evaluate MPC performance with linear plant

A linearised plant internal to MPC has been obtained at the design stage and a perfor-
mance verification check was carried out with the MPC design toolbox.

4.1.1 Stage I

The goal is to verify that the designed controller tracks the reference signal when given a
step reference signal. Here, there is no measured or unmeasured disturbance.
Given the set variables described in 4.1,

Variable Value Variation type
Reference Value (first compaction) 0.22 step size=0.1
Prediction Horizon 15
Control Horizon 3

Table 4.1. Model Predictive Controller Test parameters

the MPC is first run with its linear plant in a feedback system using the design nominal
values showed on listing 3.7.3.
It can be seen that the system response tracks the nominal reference as desired.
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Figure 4.1. Testing of Stage I Model Predictive Controller With Linear Plant
compaction with nominal values

With the weighting functions and constraints on the input and output variables im-
posed, the reference input is given a step size of 0.1. The controller is then tuned to reach
the desired speed. The simulation is run for 10 control steps. The result of the simulation
is as shown in the figure 4.2

Figure 4.2. Testing of Stage I Model Predictive Controller on Linear Plant with a
step size of 0.1 on the reference

The result shows that the control system consisting of the linear plant will reach a
steady state at about 3 time steps with the optimum control input and that the step
reference value is tracked.

4.1.2 Stage II

The goal is to verify that the designed controller tracks the reference signal in spite of the
input disturbances.
Given the set variables outlined in table 4.2,
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4.1 – Evaluate MPC performance with linear plant

Variable Value Variation type
Reference Value (Compaction) 0.2 constant
Unmeasured Disturbance (line speed) 10 step size = 1
Unmeasured Disturbance (first compaction) 0.22 step size = 0.1
Prediction Horizon 15
Control Horizon 3

Table 4.2. Model Predictive Controller Design Variables

the MPC is tested with the linear plant in a feedback system using the design nomi-
nal values. Also as desired here, it can the seen from 4.3 the system response tracks the
reference.

Figure 4.3. Testing of Stage II Model Predictive Controller With Linear Plant
compaction with nominal values

With the weighting functions and constraints on the input and output variables im-
posed, the line speed variable is given a step size of 1, the first compaction variable is
given a step size of 0.1 and the reference value is maintained constant to retain it’s nomi-
nal value. The controller is then tuned to reach the desired speed. The simulation is then
run for 350 time steps. The result of the simulation is as shown in the figure 4.4
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Figure 4.4. Testing of Stage II Model Predictive Controller on linear Plant with
steps on disturbance variables

From the result, it can be shown that the control system consisting of the linear plant
will reach a steady state at about 300 sec, tracking the reference input in spite of the input
disturbances.

4.2 Evaluate MPC performance with non-linear plant:

With this check, it is desired to have a better understanding of how the designed con-
troller will work in real life scenario. Exporting the design controller and updating the
MPC block with the designed MPC object, the plants’ manipulated input variables are
connected to the mv port of the controllers while the output variables of the plant are
connected to the measured output port of the controller to form a closed loop. The simu-
lation for stage I is run for 10 sec and result is viewed through a scope as shown in figure 4.5

Figure 4.5. Testing of Stage I Model Predictive Controller with Non-Linear Plant
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4.2 – Evaluate MPC performance with non-linear plant:

The result shows that the control system response is able to track the step reference
value for the non-linear plant just like in the case of the linear plant.

To check the effectiveness of the designed control system, it is necessary to view the
plots for the cost function and quadratic programming status as shown in figure 4.6.

Figure 4.6. Cost Function and Quadratic Programming for stage I.

The very low value cost function indicates that the controller is performing well and
that there are no constraint violations. The quadratic programming (qp.status) value of
one (1) means that the number of QP solver iteration using in the computation is just 1.

In stage II compaction control subsystem, the Line speed and the first compaction
inputs are increased by 1 and 0.1 respectively to reflected the set step size used in the test
of section 4.1.2. The simulation is then run for 350 steps. The result of the simulation
viewed through a scope is as shown in figure 4.7

Figure 4.7. Testing of Stage II Model Predictive Controller With Non-Linear Plant

The resulting control system generates optimum inputs for the manipulatable variable
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and drives the control system to the steady state at about 270s, tracking the reference
step input, and indicating similarity with the linear plant representation. This shows that
in spite of the disturbances, the performance of the control system is still retained.

The cost function and quadratic programming status as shown in figure 4.8.

Figure 4.8. Cost Function and Quadratic Programming for stage II.

4.2.1 MPC Adaptivity Check

To check the adaptivity of the control system, the MPC block is replaced with an Adaptive
MPC block and the rest of the features described in subsection 3.7.3 are implemented.
The stage I adaptive result shown in figure 4.9 indicates the Adaptive MPC is displays an
acceptable tracking error even with an on-line estimated parameters.

Figure 4.9. Adaptivity check result of Stage I

The cost function and Quadratic Programming status of the Stage I Adaptive MPC is
shown in figure 4.10
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4.2 – Evaluate MPC performance with non-linear plant:

Figure 4.10. Cost function and Quadratic Programming status of Stage I

Also, for stage II, the simulation result is as shown in figure 4.11. This results shows
that even though the controller of stage is not fast enough to track the reference value
within a short period, reference signal tracking is guaranteed within considerable time.

Figure 4.11. Adaptivity check result of Stage II

While the cost function and Quadratic Programming status of the Stage II Adaptive
MPC is shown in figure 4.12
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Figure 4.12. Cost function and Quadratic Programming status of Stage II

A Simulink representation of MPC and Adaptive MPC for Stage II is shown in Ap-
pendix B

4.2.2 Optimum Cost and Optimization Status:

These are features of MPC that act as indicators to the performance of the controller on
the bases of successful optimization as well as constraints violation status. A small value
of Optimum cost indicates that the controller is performing well and no constraint has
been violated. If optimization problem is infeasible, the value will be meaningless.

If a QP problem is solved successfully at a given control interval, the qp.status output
returns the number of QP solver iterations used in computation. This value is a finite,
positive integer and is proportional to the time required for the calculations. Thus, a large
value means a relatively slow block execution for this time interval.

The QP solver can fail to find an optimal solution for the following reasons:

qp.status = 0 → The QP solver cannot find a solution within the maximum number
of iterations specified in the mpc object. In this case, if the Optimizer

qp.status = -1 → The QP solver detects an infeasible QP problem.

qp.status = -2 — The QP solver has encountered numerical difficulties in solving a
severely ill-conditioned QP problem. In this case, the block holds its mv output at the
most recent successful solution.

The simulation results are shown in a tabular form;
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4.2 – Evaluate MPC performance with non-linear plant:

Variable Value Remark
Manipulated Variable 200.2 Satisfactory
Optimum Cost 4.189x10−19 Satisfactory
Quadratic Programming Status(qp.status) 1 Satisfactory
Disturbance and Noise Model State −8.267x10−12 Satisfactory
Measured Output ≈ Reference 0.22 Satisfactory

Table 4.3. Stage I simulation result for controller tested with non-linear plant

Stage I simulation result for Non-Linear Plant

Variable Value Remark
Manipulated 12.18 Satisfactory
Optimum Cost 4.098x10−14 Satisfactory
Quadratic Programming Status(qp.status) 1 Satisfactory
Disturbance and Noise Model State 2.173x10−7 Satisfactory
Measured Output ≈ Reference 0.2 Satisfactory

Table 4.4. Simulation result for controller tested with non-linear plant

Stage I simulation result for Non-Linear Plant

4.2.3 Design Review by MPC Review Functionality:

This review is carried out to reveal the stability status, effectiveness, suitability, and
limitations of the control system. Based on the results from the review, adjustments were
made to obtain an optimum controller.
Figure 4.13 shows the result summary of the review which the same of stages I and II.

91



4 – Results and Findings

Figure 4.13. Summary on Review of Model Predictive Control for Stages I and II Compaction

Closed-Loop Internal Stability Check Considering here that the plants of stages
I and II are stable as demonstrated by its bounded output for a given bounded input
as shown in figure 4.14, the designed feedback system is internally stable if all controller
modes are exponentially stable or pure integrators.

This test extracts the A matrix from the unconstrained controller’s state space real-
ization, and then calculates its eigenvalues. If the absolute value of each eigenvalue is 1
or less and the plant is stable, the feedback system is internally stable.

Figure 4.14. Demonstration of Stage II Plant Stability

Finding: the controller is internally stable.

4.2.4 Closed-Loop Nominal Stability

The feedback connection of the plant and controller should be stable for the nominal case:
when the controller’s prediction model represents the plant perfectly and no constraints
are active.
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4.2 – Evaluate MPC performance with non-linear plant:

This test obtains the discrete-time state-space realization of the closed-loop system –
the plant and controller connected in a feedback configuration. It extracts the A matrix
from this and calculates its eigenvalues. If the absolute value of each such eigenvalue is 1
or less, the nominal (unconstrained) system is stable. Finding: The Closed-Loop Nominal
Stability is satisfied.

4.2.5 Closed-Loop Steady-State Gains

cloffset is used to determine whether the controller forces all controlled output variables
to their targets at steady state, in the absence of constraints. The controller is verified to
forces all Output Variables to their targets at steady state

4.2.6 QP Hessian Matrix Validity

Since QP’s Hessian matrix must be positive-definite, positive-definite Hessian can be guar-
anteed by increasing penalties on manipulated variable change (MV rates). This may
however consequently result in a sluggish controller response. Based on the controller’s
minimum MV rates given in table 3.5, there is satisfaction in the controller behaviour.
Also, using a penalty weights on output variables emphasis the importance of output
tracking. The minimum weight given on table 3.6 on the output variable is helpful for an
acceptable effect on the Hessian.
Finally, as discussed in section 3.7, the Hessian is also influenced by scale factor and hori-
zon parameter for plants with delay.
Finding: No problem was detected.

4.2.7 Hard MV Constraints

The controller should always satisfy hard bounds on a manipulated variable OR its rate-
of-change. Specifying both constraint types simultaneously, however, may result in a
conflict during real-time use. For example, if an event pushes an MV outside a specified
hard bound and the hard MV rate bounds are too small, the resulting QP will be infeasible.

Finding: No hard MV constraint conflicts were detected on the control system design
based on the test review.

4.2.8 Other Hard Constraints

It can be impossible for the designed controller to satisfy all its hard constraints under
all conditions. If so, the controller will declare the optimal control (QP) problem to be
infeasible, an error condition.
The manipulated variable rates (MVrates) are the QP decision variables, so their bounds
are always feasible. Other variables, such as outputs (OVs), depend upon the MVrates.
Unusual events might make OV bounds impossible to satisfy. Hard custom constraints
can also become infeasible.

Finding: no hard output or custom constraints detected.
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4.2.9 Soft Constraints

ECR Parameters

This test evaluates the constraint ECR parameters to help you achieve the proper balance
of using hard and soft constraints. Having defined 2 soft constraints, table 4.5 below lists
these and shows potential violations based on specified variable bounds and other factors.

Constraint Assumed Violation Impact Factor Sensitivity Ratio
Stage I
Lower limit: Output Variable 0.1 1 1000
Upper limit: Output Variable 0.1 1 1000
Stage II
Lower limit: Output Variable 0.1 1 1000
Upper limit: Output Variable 0.1 1 1000

Table 4.5. Evaluation of Constraints ECR parameters

Impact Factor: the increase in the MPC cost function caused by this constraint viola-
tion relative to the average such increase. Rows are sorted in order of decreasing impact.

Sensitivity Ratio: the increase in the MPC cost function caused by this constraint
violation relative to the typical cost function magnitude when there are no violations.

We consider a possible constraint violation equal to 10% of the nominal OV range. It
then estimates the impact of such a violation on the MPC objective function relative to
the impact of other violations. A large impact factor indicates a high-priority controller
objective, and vice versa. A sensitivity ratio greater than 1e+08 may degrade QP solution
accuracy.

Finding: Sensitivity ratios are acceptable.

Impact of delays

Delays can make it impossible to satisfy output constraints. The presence of unattainable
constraints usually degrades performance. Let j be the location (within the prediction
horizon) of the first finite constraint value (Min or Max) for OV(i). If all delays for OV(i)
exceed j, the constraint is unattainable.

Finding: no problems detected.

4.2.10 Memory Size for MPC Data

A recommendation on the estimate amount of memory required for an on-line implemen-
tation of the MPC has been detailed also through this test. It is assumed that a scalar
value takes 4 bytes in single precision and 8 bytes in double precision. Table 4.6 below
estimates how much physical memory, for example RAM on board, is needed to store the
matrices used in online optimization. The value depends on the MPC controller settings
such as horizons, plant order, plant size and the number of constraints.
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4.3 – Practical Recommendations

Type Single Precision (kB) Double Precision (kB)
Stage I
MPC 10 20
MPC with Online Tuning 20 40
Stage II
MPC 10 20
MPC with Online Tuning 20 40

Table 4.6. Memory Estimation for MPC Deployment

The estimation does not include source code memory size (memory required to store
the generated code).

4.3 Practical Recommendations
Hard MV Constraint Conflict This conflict is avoided by specifying either hard MV
bounds OR hard MV rate bounds, but not both. Or if both must be specified, the lower-
priority constraint should be soften by setting its ECR to a value greater than zero.

qp.status In a real-time application, qp.status can be used to set an alarm or take other
special action.

Memory Issues If the physical memory size of the hardware is less than the estimated
data memory requirements of the controller, the hardware can run out of memory when
the controller is deployed. The controller should be redesign to reduce its memory re-
quirements by using shorter horizons, reducing the plant, or reducing the constraints.
Alternatively, the available physical memory should be increased.
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Chapter 5

Future Work, Final Remarks and
Conclusion

5.1 Future Work

Fabric quality actualization objective of Sanforized compactor makes it indispensable in
textile industry. The major attention on this system is to optimize its compaction precision
with a robust control system that accommodated parameter variations. For this reason,
researchers are being drawn from different engineering domains in a bid to find solutions
to the bothering challenges, and to invariably contribute to the sustainable supply of the
huge demands of the textile market.

5.1.1 Precise System Modelling

The subsystems of Sanforized compactor has been modelled in this project using an ap-
proximated model approach using Bond-graph. Better results can be obtained with Bond-
graph modelling if the parameters of the systems can be determined experimentally with
improved precision. This however may be way expensive. Robust system Identification
still remains the most viable option for the system modelling based on time and cost. With
the output sensors provided at strategic positions on the subsystems, the input and out-
puts values are automatically collected at runtime and desired results are correspondingly
obtainable.

ARX model which has been exploited here for the on-line estimation returns a good ap-
proximation of the on-line model. Set-Membership System Identification approach results
in a more precise and robust system estimation. However due to it’s high computation
demand, it is currently not on-line implementable. Nevertheless, with a few optimization,
the precision of ARX model can be improved too. A lot of researches are on-going in the
industry in improving on the computational demands and in finding alternative means for
fast on-line robust estimation.

A couple of other approaches that provide very accurate and robust system estimation
have been lay down on literatures. Recently, error-domain model falsification (EDMF)
has been demonstrate to be useful for situations where little information is available to
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define the probability density function (PDF) of modelling errors. Also a fast and robust
on-line system identification based on multi-layer recurrent neural networks strategy has
also been proposed by ([32]:Won-Kuk Son at al, 1997).

5.1.2 Simplified and Cost Effective Control

In comparison with the current PI controller being implemented in Sanforized compactor,
Model Predictive Controller has a larger structure complexity. The quadratic optimization
is not trivial for a layman’s understanding. For proper implementation and maintenance,
there should always be need for MPC experts. For this reason, it is desired that MPC be
structured for user friendliness.

The system has been split into stages I and II here for simplicity and for demonstrative
reasons, during implementation, the two (2) subsystems will be controlled by a single
controller. With this, the memory demand is reduced to half of the proposed value.

The overall process of Bianco textile production line is managed by Schneider Pro-
grammable Logic Controller (PLC) using any of the IEC 61131 standard programming
language and the process visualisation is obtained with Human Machine Interface (HMI)
programme. Bianco SPA Sanforized compactor runs on Unity Pro PLC and Vijeo HMI.
The challenge here is that, until now, there is no cross-compiler for converting Matlab
Simulink code into Unity Pro Standard PLC code. Any attempt to manually implement
this is very unpleasant and time consuming. One of the two proposed possibilities is to
use an advanced HMI panel. The advance HMI is incorporated with it extra high speed
memory for application extension. This memory is way enough to implement the MPC.
The drawback here is on the cost of the advanced HMI panel. Alternative, the MPC can
be deployed into an embedded micro-controller and the controller input and output values
captured through the ports and read across the PLC. This is a more viable option for cost
effectiveness. However, a more suitable and integrated control system will be guaranteed
if the need for Unity Pro cross-compiler is met.

5.2 Conclusion

Based on the needs under consideration, the analyses, designs, and results obtained so far,
it can be concluded that:

• an approximate Sanforized system model can be obtained using Bond-graph sys-
tem modelling approach. However, a more precise system model can be robustly
estimated using Set-membership system identification approach.

• Sanforized compactor requires a robust controller for the optimization of compaction
results and for obtaining a corresponding optimized production system automation.

• Model Predictive Controller may be enough to control the system, while respecting
the constraints, if the parameters of the system are not expected to change at run-
time.
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5.2 – Conclusion

• for an anticipated change in the system parameters at run-time, it is necessary to
use an Adaptive MPC in order to adapt to this changes at run-time.

99



100



Appendix A

Modelling of Compression
Behaviour of the fabirc

This analysis is mainly based on the work of (A. J. Thompson et al, 2017).[6] The mecha-
nistic analysis of the compressibility of fibrous structures has been the focus of a substantial
amount of research which can be traced back to [7, Van Wyk C.(1946)] and his pioneering
work on the compressibility of randomly orientated fibres. Van Wyk attempted to sim-
ulate the mechanics of fibre interaction by modelling them as a series of bending units.
Assuming that fibre bending was the only relevant deformation mechanism, he was able
to derive a relation between pressure and volume fraction of stochastically placed fibres.
Later on, [8, Gutowski (1992)] developed a similar method with specific application to
composite reinforcements.
Many works which followed focused on modifying these relationships to account for other
important mechanisms to gain higher accuracy ([9, Komori and Itoh (1997)]; [10, Komori
and Makishima (1977)]; [11, Pan (1993)]).

According to [6, A. J. Thompson et al, 2017], one of the main difficulties for pre-
dicting the compressive response of woven textiles is their multi-scale nature. Typically,
their micro-scale behaviour is determined by the interactions of thousands of aligned fi-
bres, bundled together to form yarns. These yarns are woven together to form complex,
ordered, meso-scale structures, the behaviour of which is driven by the inter-yarn inter-
actions as well as the fibre interactions within the yarns. As the meso-scale structure of
woven fabrics has shown to affect both the permeability and the mechanical behaviour of
the final component, it is necessary to predict the deformations of the structure as well as
its compressive response.

The multi-chain group of methods has been one of the major breakthroughs in the
discrete modelling of fibres within woven structures (Green et al., 2014; Mahadik and
Hallett, 2010; Zhou et al., 2004). These methods are based on the discretisation of yarns
into multiple 1D element chains, with each element chain representing a bundle of fibres.
The interactions between the element chains during weaving and compaction processes is
simulated through the use of contact models.
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Recent studies (El Said et al., 2014; Green et al., 2014) have shown the ability of these
methods to capture both yarn cross-section deformation and yarn path evolution for 3D
woven structures during the compaction process, achieving good correlation with x-ray
micro-computed tomography (CT) scans. However, the kinematic nature of these meth-
ods limits their ability to determine the mechanical response of the fabric, as the properties
of the physical constituents are not fully preserved within the model.[6]

A couple of other widely used methods have been published in the recent time. Nonethe-
less, considering the mechanical response limitation of this method, a two-step method
approach will be used to integrate two modelling techniques that capture the multi-scale
nature of textile reinforcement compaction.
This framework allows multiple layers of fabrics and their interactions to be simulated
using basic geometric data of the fabric architecture and a single yarn compaction curve.
The first step utilises a kinematic, multi-chain method for generation of the initial aswo-
ven geometry of the fabric. The second step uses this geometry to generate a 3D finite
element model, able to capture both the kinematic and mechanical response of fabrics
during compressive loading. The key benefit of this method is that the dependency on de-
tailed geometric and mechanical examination of the physical specimen is removed. Hence,
the possibility of making accurate predictions without access to the physical specimen is
attained. [6]
A multi-chain method for 2D fabrics is developed, based on (Green et al., 2014) to pre-
dict as-woven and compacted single and multi-layer fabric geometries. The fidelity of the
method in capturing the kinematic behaviour of fabrics during compressive loading is ex-
amined and compared to X-ray micro-CT scans. The geometric features of the as-woven
fabric, predicted by the kinematic method, are then used as an input for the 3D finite
element analysis of fabric compaction. A constitutive relation linking the pressure applied
on the yarn to its volume fraction is formulated within a hyper-elastic framework and
implemented within a user material for the finite element package Abaqus.
The model’s ability to capture both the mechanical and kinematic behaviour of fabric
during compaction processes is examined for both single and multi-layered preforms.

A.1 Kinematic Modelling of Weaving and Consolidation Pro-
cess

To evaluate with multi-chain method the evolution of the internal level architecture for a
single layer compaction, we consider analysing with;
- a 2/2 twill weave fabric
- Number of warp and weft yarns fibres - 12,000 fibres
- Diameter of fibre - 7 µm
these are then woven into a fabric with; - a unit cell size of 9.5 mm2
- areal density of 660 g/m2

With the analysis, the geometry was extracted was extracted for further for further
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analysis at three stages: as-woven, compaction to 55� volume fraction (Vf) and com-
paction to 60� Vf.
To analyse the results, the centrelines and surface geometries of each yarn were extracted
from the multi-chain model following the methodology outlined by Green et al. (2013).
The result is as shown graphically in figure A.1;

Figure A.1. Single Layer Result Analysis

For multi-layer woven fabric preforms one of the most important contributions to com-
paction is the nesting and packing of layers. Nesting, which occurs when successive layers
are offset, alters the contact surface between layers, changing the compressive response of
the fabric and the resulting deformations.

One of the challenges in modelling offsets between layers is that the unit-cell of the
fabric no longer remains constant from layer to layer, creating regions where yarns fall
outside the unit cell, thus compromising the periodicity of the model. In order to combat
this issue, slave yarns are introduced. Slave yarns are placed outside the unit cell and
mimic the behaviour of a yarn which lies within the unit cell at its opposing side. This is
achieved by copying the yarns which lie at the edges of the unit cell (master yarns) and
translating them by one unit cell length to their opposing side as shown in Figure A.2
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Figure A.2. Multiple Layer Offset Compensation

A.2 Mechanical Modelling and Consolidation Process

A method is therefore proposed here, whereby, the detailed as-woven geometry generated
using the multi-chain element method is extracted and meshed with solid hexahedral ele-
ments. An experimentally determined compaction curve of a single yarn is used to deduce
a relationship between intra-yarn volume fraction and pressure. Combining this relation-
ship with the as-woven geometry enables the initial transverse stiffness for each yarn to be
determined and updated incrementally based on the volumetric strain. By implementing
this relationship into a hyper-elastic framework (applied within a user defined material
subroutine in the FE package Abaqus) the compressibility of the yarns is handled by the
constitutive relationship and the overall compressive response of the fabric, resulting from
the interaction of interlacing yarns, is handled through the application of contact models.

Based on this method, a single layer compaction test result was plotted. The graph
shows the typical behaviour of a fibrous network where the compressibility of the yarn is
reduced with increased pressure until the yarn reaches maximum compaction as shown in
figure A.3a.
The compaction pressure-fibre volume fraction relationship is presented in A.3b, which
shows the yarn to stiffen as the volume fraction increases.
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Figure A.3. (a) Experimental results of a single yarn compaction test (b) derived relation-
ship of the intra yarn volume fraction/compaction load

With the above procedure, the elastic constants are also determined.

To determine the accuracy of the proposed method, compaction experiments were per-
formed on 5 samples of the same fabric as modelled here for comparison. Each sample
was a 100mm2, single layer of the 2/2 twill weave. The samples were placed on the bot-
tom plate of a 10 kN load cell universal testing machine and compacted at a rate of 0.5
mm/min. The machine compliance was measured prior to the test and the nonlinear ma-
chine displacement was subtracted from the measured displacements in the post-processing
of the results.
It can be shown that there is a close correspondence between the experimental and pre-
dicted results in figure A.4
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Figure A.4. Comparison between predicted and experimental results for a single
layer 2/2 twill weave compaction

The developed model can be further used to consider the compaction of a stack of
6 layers, comparing compressibility of the aligned and shifted configuration as shown in
figure A.5.

Figure A.5. Comparison of a single layer compaction with a 6 layer compaction
with and with-out nesting

Based on the results of this analysis, the first stage compaction plant was obtained
through estimation by set membership approach using the input and output data available
from the plot.
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Appendix B

MATLAB codes and Simulink
Representations

B.1 Stage I MPC object Matlab Code

1 %% Manual MPC Design for Stage I Compaction
2

3 plant_mdl = ’Stage_I_MPC_Plant ’;
4 op = operspec ( plant_mdl );
5

6 %First Compaction Input Variable
7 op. Outputs (1).y = 0.22;
8 op. Outputs (1). Known = true;
9

10 % Computation of Initial Conditions
11 [op_point , op_report ] = findop (plant_mdl ,op);
12

13 % Obtaining nominal values of x, y and u.
14 x0 = [ op_report . States (1).x];
15 y0 = [ op_report . Outputs (1).y];
16 u0 = [ op_report . Inputs (1).u];
17

18 % Obtain linear plant model at the initial condition .
19 sys = linearize (plant_mdl , op_point );
20

21 % Dropping the unused inputs and outputs
22 sys = sys (1 ,1);
23

24 % Discretize the plant model because Adaptive MPC controller only accepts a discrete -time plant model.
25 Ts = 0.1;
26 plant = c2d(sys ,Ts);
27

28 % Designing an MPC at the initial operating condition . When running in the adaptive mode , the plant model is updated at run time.
29 % Specify signal types used in MPC.
30 plant. InputGroup . ManipulatedVariables = 1;
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31 plant. OutputGroup . MeasuredOutput = 1;
32 plant. InputName = {’compression (kg)’};
33 plant. OutputName = {’first compaction ’};
34

35 % Create MPC controller with default prediction and control horizons
36 mpcobj = mpc(plant );
37

38 %Set nominal values in the controller
39 mpcobj .Model. Nominal = struct (’X’, x0 , ’U’, u0 , ’Y’, y0 , ’DX’, [0; 0]);
40

41 %Set scale factors because plant input and output signals have different orders of magnitude
42

43 mpcobj .MV. ScaleFactor = u0;
44 mpcobj .OV. ScaleFactor = y0;
45

46 % Constaints
47 mpcobj . ManipulatedVariables .Min = 0;
48 mpcobj . ManipulatedVariables .Max = 500;

B.2 Stage II MPC object Matlab Code

1

2 % Manual MPC Design for Stage II Compaction
3

4 plant_mdl = ’Stage_II_MPC_Plant ’;
5 op = operspec ( plant_mdl );
6

7 %Final Compaction Output Variable
8 op. Outputs (1).y = 0.2;
9 op. Outputs (1). Known = true;

10

11 %Line Speed Input Variable
12 op. Inputs (1).u = 10;
13 op. Inputs (1). Known = true;
14

15 % Initial Compaction Input Variable
16 op. Inputs (2).u = 0.22;
17 op. Inputs (2). Known = true;
18

19

20 % Computation of Initial Conditions
21 [op_point , op_report ] = findop (plant_mdl ,op);
22

23 % Obtaining nominal values of x, y and u.
24 x0 = [ op_report . States (1).x];
25 y0 = [ op_report . Outputs (1).y];
26 u0 = [ op_report . Inputs (1).u; op_report . Inputs (2).u; op_report . Inputs (3).u];
27
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B.2 – Stage II MPC object Matlab Code

28 % Obtain linear plant model at the initial condition .
29 sys = linearize (plant_mdl , op_point );
30

31 % Dropping the unused inputs and outputs
32 sys = sys (1 ,3);
33

34 % Discretize the plant model because Adaptive MPC controller only accepts a discrete -time plant model.
35 Ts = 0.1;
36 plant = c2d(sys ,Ts);
37

38 % Designing an MPC at the initial operating condition . When running in the adaptive mode , the plant model is updated at run time.
39 % Specify signal types used in MPC.
40

41 % plant. InputGroup . MeasuredDisturbances = 1;
42 plant. InputGroup . ManipulatedVariables = 1;
43 plant. OutputGroup . Measured = 1;
44 plant. InputName = {’command speed (m/min)’};
45 plant. OutputName = {’final compaction compaction ’};
46

47 % Create MPC controller with default prediction and control horizons
48 mpc_II_obj = mpc(plant );
49

50 %Set nominal values in the controller
51 mpc_II_obj .Model. Nominal = struct (’X’, x0 , ’U’, u0(3), ’Y’, y0 , ’DX’, 0);
52

53 %Set scale factors because plant input and output signals have different orders of magnitude
54

55 mpcobj .MV. ScaleFactor = u0 (3);
56 mpcobj .OV. ScaleFactor = y0;
57

58 % Constaints
59 mpcobj . ManipulatedVariables .Min = 5;
60 mpcobj . ManipulatedVariables .Max = 50;
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B – MATLAB codes and Simulink Representations

B.3 Simulink Representation of Stage II MPC

Figure B.1. Simulink Representation of Stage II MPC

B.4 Simulink Representation of Stage II Adaptive MPC

Figure B.2. Simulink Representation of Stage II Adaptive MPC
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