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Chapter 1

Introduction

Recent technological advances in entertainment applications all move in the di-
rection of providing the user with an increasingly tailor-made and personalized
experience. The reasons for this phenomenon are to be found in the need to offer
quality and relevant content to each user in order to increase the engagement and
improve the experience (and therefore revenues). The amount of data available is
enormous and the development of intelligent and automatic filters is one of the main
technological challenges currently underway. In this scenario, different technology
components are moving, such as recommender systems, chatbots and applications
for affective computing. The aim of this thesis work is to explore and evaluate, in
terms of design, usability and usefulness, the use of a conversational interface for a
recommender system, whose input data is previously filtered through an affective
computing software. In detail, the application developed is a multi-platform chat-
bot, named Beat in a Bot, whose purpose is to recommend music artists to listen
to, based on music preferences shared among groups of people with similar person-
ality traits. The result is a complete and usable product, currently available to the
public on Telegram and Facebook Messenger. The work is presented as follows:
the first chapter contains an overview of all the pieces of the project. The second
chapter covers related work in the fields of chatbot and recommendations, music
preferences and recommendations and personality of individuals and music prefer-
ences. The third chapter includes a description of the high-level architecture and
the details of each component. The fourth chapter is dedicated to the implemen-
tation and explains all the technical aspects of the application. The fifth chapter
shows the results of the evaluation process composed of the design, usability and
usefulness test. The last chapter is dedicated to conclusions, future improvements
and a possible provisional exploitation plan of the product.
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Chapter 2

Related Work

In recent years, several studies have been carried out on the topics covered in
this thesis project. As for chatbot and recommendations, (Ikemoto et al. 2018)
proposed a conversation strategy for interactive recommendations using a chatbot.
The strategy combines questions about user’s preferences and recommendations so-
liciting user’s feedback to them. (Kucherbaev et al. 2017) implemented a chatbot
to connect citizens with policy-makers to improve the civic engagement of citizens
providing recommendations based on open data sources, making it easy to con-
tribute to the city and to be involved in discussions about urban issues. (Holotescu
2016) built a MOOC (Massive Open Online Courses) recommender system as a
chatbot for Facebook Messenger called MOOCBuddy to find the best online learn-
ing resource. (Atzori et al. 2017) outlined a proof of concept to create a chat-based
client named Touristific, for inserting and requesting information into an integrated
system for planning travels. The approach consists of using a context-aware rec-
ommender system that uses attributes like position, social network connections,
weather conditions, date and time of the visit to predict personalized recommen-
dations; these are personalized packages built with semantic data integration and
presented using a chatbot as user interface. (Narducci et al. 2017) from Univer-
sity of Bari developed a conversational movie recommender system implemented
as Telegram Bot with the aim to integrate it as a component of an Internet of
Things device such as a smart TV. The bot is based on the Linked Open Data
(LOD) cloud and implements Personalized PageRank as recommender algorithm.
(Costa & Macedo 2013) described an ongoing recommender system application,
that implements a multi-agent system, with the purpose of gathering heteroge-
neous information from different sources and selectively deliver it based on: user’s
preferences, the community’s trends, and on the emotions that it elicits in the user.
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2 – Related Work

Several studies focused their attention on music preferences and recommenda-
tions: in particular (Nanopoulos et al. 2010, Symeonidis et al. 2008, Musto et al.
2012) have leveraged social media sources to music recommendations. One worth
mentioning is a work by (Bu et al. 2010) who proposed a novel music recommen-
dation algorithm that uses both multiple kinds of social media information and
music acoustic-based content. They modeled objects and relations using an hy-
pergraph and approached the music recommendation as a ranking problem on the
hypergraph; (Baltrunas et al. 2011) have elaborated a system design methodol-
ogy to build an effective context-aware mobile recommender system (CARS): such
a system adapts recommendations to the specific situation in which the recom-
mended item will be consumed. For instance, music recommendations while the
user is traveling by car should take into account the current traffic condition or
the driver’s mood. This requires the acquisition of ratings for items in several
alternative contextual situations, to extract from those data the true dependency
of the ratings on the contextual situation; (Lu & Tseng 2009) proposed an inter-
esting study to improve music recommendations described as “personalized hybrid
music recommendation”, which combines the content-based, collaboration-based
and emotion-based methods by computing the weights of the methods according
to users’ interests.

Correlations between music preferences and the Five Factor Model (McCrae &
John n.d.), a model used to describe aspects of personality such as openness to ex-
perience, agreeableness, conscientiousness, extraversion and neuroticism, has been
investigated by (Rawlings & Ciancarelli 1997) and (Dollinger 1993) who involved
university students to both NEO Personality Inventory and an update version of
Litle and Zuckerman’s Music Preference Scale, a questionnaire measuring music
preference. They found that Extraverts obtained high scores on the Popular Mu-
sic factor and Open individuals liked a wide range of musical forms outside the
mainstream of popular and rock music. They also found that females liked pop-
ular music styles more than what did males. Music preference also correlates to
Jungian types (Isabel Briggs Myers 1962) of personality, a model used to describe
personality of individuals using four dichotomic indexes that indicates how people
focus attention and energy (Extraversion-Introversion), how they extract informa-
tion from the surrounding world (Sensation-iNtuition), take decisions (Thinking-
Feeling) and relate to the external world (Judging-Perceiving). Such correlation
was explored by (Pearson & Dollinger 2004) who hypothesized and demonstrated
that the sensing–intuition dimension correlates with overall musical enjoyment, in
particular, individuals who scored towards the sensing end, endorse more musical
styles, particularly classical music, as well as they have greater musical training
and involvement. Furthermore, extraversion also correlates with overall musical
interest, particularly for popular/rock music. Finally, thinking–feeling correlates
with liking for country and western music.
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Chapter 3

Background

3.1 Chatbots

3.1.1 Introduction

Messaging platforms play an important role in today’s communications as demon-
strated by the enormous growth in terms of usage and time spent of messaging apps.
An analysis conducted by Text Request1, a company that offers enterprise solu-
tions for communication strategies using text messages, reported 18.7 billion text
messages sent every day with a growth from 2011 to 2014 of 140% (Burke 2016);
moreover, Flurry Analytics 2, a company by Yahoo that offers developer tools to
measure and analyze activity across mobile apps, published a report (Khalaf 2017)
showing a grew of 394% between years 2015 and 2016 in time spent for Messaging
& Social apps (Figure 3.1). Reasons of such popularity are to be found in the ben-
efits of using text communication tools. Text messages are fast, easy to use, cheap
or almost free, can be used in formal or informal contexts, they are not intrusive
like a phone call and they can be ubiquitous: can be sent from desktop or mobile
systems like smartphones, tablets and smartwatches. All these things explain why
text messages are so popular globally and why messaging platforms are growing
exponentially in terms of app usage and time spent. Chatbots, being part of the
instant messaging world, are surfing the raising wave of such popularity.
A chatbot could be thought as someone to chat with, that is always available and

1https://www.textrequest.com/

2https://developer.yahoo.com/analytics/
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3 – Background

will answer to all the questions in his sphere of understanding with the only excep-
tion that he is not human. From a technical perspective, a chatbot is a computer
program that conducts a conversation via auditory or textual methods with the
intention of simulating a human-like behavior3. Instant messaging apps like chat-
bots uses Web Socket or other real-time communication protocols that provide the
reliability and speed required for real-time text transmission. There is a big variety
of chatbot applications, from those that can handle few questions based on key-
words for few tasks, to those that use Natural Language Processing and Artificial
Intelligence algorithms, able to learn from their interlocutor to improve themselves
over time.

Figure 3.1. Flurry Analytics, 2015–2016 Year-Over-Year Time Spent Growth.

3http://searchdomino.techtarget.com/definition/IM-bot
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3.1 – Chatbots

3.1.2 History of chatbots
The first evidence of this kind of computer programs comes from Alan Turing, an
Englishman known as the father of computer science, who was a computer scientist,
crypt analyst, logician and mathematician. In 1950, he published his famous article
Computing Machinery and Intelligence (Turing 1995) which is used nowadays as
the basis of intelligence assessment of computer programs. In this article, he pro-
posed a criteria to determine if a machine is able to think or not; this is known as
the Turing Test and depends on the ability of a computer program to impersonate
a human in a real-time written conversation with a human judge, sufficiently well
that the judge is unable to distinguish, reliably on the basis of the conversational
content alone, between the program and a real human. The criteria of Alan Turing
inspired Joseph Weizenbaum, a German-American computer scientist and profes-
sor at Massachusetts Institute of Technology, who in 1966 published a program
called ELIZA (Weizenbaum 1966). The ELIZA program was built with the pur-
pose to give to his interlocutor, an illusion of intelligence, making people to think
they were talking to a real human. His algorithm (used by all the chatbot makers)
was able to analyze the input given by the users by searching from phrases and
keywords, and give pre-planned responses. For instance, given a sentence ELIZA
would do the following in order:

• Receive the input and store them in memory for further analysis;

• Search for keywords in the sentence;

• Give back the pre-programmed response if a keyword is matched;

• Give back the default answer “Sorry, don’t know about that” if there is no
clear match.

So, in a sentence containing the keyword “mother” a typical response by ELIZA
would be “Tell me more about your family”. Although the simplicity of the algo-
rithm, this was enough to give an illusion of intelligence to a human judge showing
the fact that such an illusion is surprisingly easy to generate, because humans are
so ready to give the benefit of the doubt when conversational responses are likely
to be interpreted as “intelligent”.

The term “ChatterBot”, that became then “chatbot” in the literature to follow, was
coined in 1994 by Michael Mauldin, an American inventor and scientist, founder
of Lycos Inc., who created the program Verbot, a popular chatbot that followed
the path traced by ELIZA. Its latest version, which was called Sylvie, can be con-
sidered as the first intelligent animated virtual human: it incorporates real-time
animations as well as speech and natural language processing. The idea was to
develop a conversational agent that could act as a human-machine interface.

7



3 – Background

Thanks to the latest progress in the field of artificial intelligence, chatbots can
develop their skills and learn from every single chat. So, the more conversations
about different topics they have, the more skilled they become. Such a chatbot
does not get stuck when he gets unknown questions because he can quickly make
connections between various notions and come to an answer. A good example of a
chatbot powered by artificial intelligence is Cleverbot4 created by British AI sci-
entist Rollo Carpenter. Cleverbot uses artificial intelligence to learn from human
inputs in order to give responses that are not pre-programmed. It responds to
the input by finding how a human responded to that input when it was asked.
Cleverbot has reached a score of 59.3% to the Turing Test, compared to the rating
of 63.3% human achieved by human participants. A score of 50.05% or higher is
often considered to be a passing grade (Aron 2011). The introduction of artificial
intelligence in the field of conversational agents, has attracted the attention of the
big companies of the IT world, which have started to release commercial products
that use this technology. Apple started the trend with the introduction of Siri,
the first digital smartphone assistant, followed by products such as Amazon Alexa,
Google Assistant, Microsoft Cortana and Samsung Bixby to cite the most popular.
Their most common features are: send text and email, make phone calls, schedule
appointments, check the weather, stocks and flight status, make conversions and
translations, search on the web, find what song is playing the room, buy products
on online stores, tells you when to leave based on the expected traffic and more.
The interest of such big companies to the digital assistants world, is a sign of the
enormous potential of this technology and how much it will have an impact in the
future of our lives.

3.1.3 Types of chatbots
Chatbots can be distinguished by the logic of their back-end that defines their in-
telligence level and capabilities. There are three types of bots: rule-based chatbots,
intent-based chatbots and conversational agents.

Rule-based chatbots

These bots were made to follow a pre-determined path on a logic tree. The de-
veloper writes a pattern and a template; when the bot encounters that pattern
in a sentence from user, it replies with one of the templates. Those kind of bots
are easy to create but it is incredibly difficult to make them answer to complex
queries. The pattern matching is weak and hence time consuming and takes a lot

4http://www.cleverbot.com/
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of effort to write the rules manually. A good example of this kind of bots is ELIZA.
ELIZA consisted of a simple substitution rules to mimic a psychologist from 1960s.
The main idea was that the bot simply replies to the questions by repeating back
the words of the questioner. If the question was “should I buy an orange?” a
possible answer was “tell me why you should buy an orange”. They do not have
the concept of statement meaning and only provide an appearance of conversation
without understanding what is being said.

Intent-based chatbots

These types of bots do not relies upon a match between patterns and templates,
instead they can handle free-text. This means that the user can simply enter any
sentence and the bot will understand language as commands. The understanding
is divided into two subproblems:

• Identifying what the user wants the machine to do (the “Intent”);

• Figuring out the details of the Intent.

For instance, if the user asks to “Play Jazz”, the bot first needs to understand
that user wants to play music (the Intent) and then it must understand that, in
particular, he wants to hear Jazz music (the details). Intents can be understood
using Natural Language Processing (NLP) algorithms such as word embeddings
(Mikolov et al. 2013), which converts words or phrases (called “tokens”) into vectors
of real numbers so that they can be used to train a deep learning algorithm to
recognize text patterns. A typical implementation is a sequence-to-sequence model
that consists of an encoder and a decoder. Both are implemented using recurrent
neural networks. The encoder takes as input the set of tokens and generates a
vector that goes as input into the decoder that generates a set of output tokens
until it generates a special stop symbol. This approach is vastly used in language
translation. A set of Italian words like “il libro è sul tavolo” is transformed into
a vector and translated into “the book is on the table” thanks to the number of
learning sessions the machine has done. Conversation can be seen as a translation
if we substitute the source language with the question and the destination language
with the answer. Intelligent models can learn from existing human conversations.
Lots of dialogues dataset can be found on the web like OpenSubtitles, Ubuntu
Dialog Corpus or replies to tweets from Twitter. There are several NLP/NLU
engines available on the web, some of them are open-source and owned by some of
the biggest companies in the planet; wit.ai 5(Owned by Facebook), which is now

5https://wit.ai/
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turning into a Messenger only technology, Dialogflow 6 (Owned by Google), used
as a component of this project and IBM Watson7 to mention the most popular.

Conversational Agents

Those are expansion of Intent-based agents to add multi-turn conversation. This is
done by keeping track of the state of the conversation and knowing when the person
wants to talk about something else. A good implementation of this concept is the
framework RavenClaw (Bohus & Rudnicky 2003) that uses a dialog stack and an
expectation agenda. The dialog stack keeps track of all the thing the chatbot wants
to talk about. The expectation agenda is a data structure to keep track of what
the chatbot expects to hear. For example, the chatbot asks, “what is 4+5?”; on
the top of the dialog stack there is the 4+5 question and the expectation agenda is
filled with the answer “9”. Let’s say the user replies “buy me a pizza”, the bot needs
to switch the context of the conversation and so, the dialog stack is pushed with
“order groceries” and the expectation agenda is updated with possible answers and
questions about ordering food. Another possible implementation that can be done
is using a machine learning approach with reinforcement learning (Serban et al.
2017). Reinforcement learning consists of a set of states, actions and a reward
function that provides a reward for being in a state s and taking an action a. The
idea is that the chatbot has states made of what the bot knows (questions it has
answered), the last thing the bot said and the last thing the user said. The bot
has to learn a policy (a rule) that gives the best action a for being in state s. The
problem is that learning a policy requires a lot of training and also, it is hard to
know exactly what state the agent is because of errors in speech-to-text or errors
in understanding.

3.1.4 Current state of chatbots and limitations
The growing interest in chatbots can be explained viewing at three different per-
spectives. From a financial perspective, business owners realized the usefulness
chatbots can provide to end users, especially when the information can be catego-
rized into concrete and predictable subjects. For example, chatbots can be easily
integrated into the customer support experience making the company available to
users 24 hours 7 days a week. In addition to that, it is proven that customers
prefer to chat with a fast responding customer support rather than find the num-
ber and wait to the phone until their turn to come. A chatbot can easily handle
all the Frequently Asked Question and when the problem cannot be solved by the

6https://dialogflow.com/

7https://www.ibm.com/watson/services/natural-language-understanding/
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machine, he could refer the users to the appropriate technician that is now freed
from the hassle of repeating again the same things over and over. This is also good
to separate the mechanic work from the brain work giving the machine and the
human the jobs that suit them well both. From a user perspective, chatbots can
finally give them the best interface to a machine for the human: the word, written
or spoken. This opens to a whole new world of possibilities, users can now speak
to a machine asking for the information they are searching for, in the most natural
way. From a development perspective, big companies has announced and released
their Software Development Kits and Application Programming Interfaces giving
the developers the ability to make their own chatbot available for the users: Apple
with his iPhone assistant Siri, IBM with the Watson project, Google with Google
Home, Amazon with Echo, Microsoft with Cortana, Facebook with the Messenger
platform and many others.

Bots are able to understand the intent of the user relatively well only if the inter-
face is made of a set of pre-defined commands hidden in keywords. Problems come
to rise when they have to fully understand human language.

Chatbots today are facing those main problems:

• They are devoid of meaning that means, they do not have any knowledge
of the world. For instance, in the statement “buy me 3 apples” there is
no difference between 3 apples or 300 for the machine and this may cause
understanding and evaluating problems. When we refer to an object, the bot
has never held the object or used it so it will have a limited understanding
of it. Since meanings that chatbots have are largely fixed we currently can
not negotiate meaning with them.

• They have problems with prosody (the way phrases are pronounced). Chat-
bots with speech interaction can not capture nuances of meaning from the
way a phrase is pronounced. As example, the phrase “I know that you know”
can hide a feeling of anger towards the interlocutor if a pause is inserted after
the word “you”. This is extremely difficult to encode in a chatbot working
logic.

• They have problems with logical inference (make a logical assumption given
what is been said). As example, in a normal conversation a simple sentence
like “I’m American” brings a set of logical inferences, for instance, the inter-
locutor is born in America, speaks English, knows about American culture et
cetera. Such information derives from a bag of shared experiences between
humans, something that chatbots can only have in a limited amount.

11
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In conclusion, the state of art is that we can build knowledge into chatbot that
they can use to cooperate with us on tasks requiring minimal understanding. Build-
ing better chatbots will necessitate knowledge engineering and research into how
agents can better follow and adapt to the subtleties of meaning and conversation.

12
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3.2 Recommender systems

3.2.1 Introduction

On the Web, where the number of choices is overwhelming, there is need to fil-
ter, prioritize and efficiently deliver relevant information in order to alleviate the
problem of information overload, which has created a potential problem to many
users. Recommender systems solve this problem by searching through large volume
of dynamically generated information to provide users with personalized content
and services. In this chapter, there will be a section about fundamentals of recom-
mender systems, what they are, how they generally works and why there is interest
in such technology. A second section to describe different types of recommender
systems and finally, what is the current state of the art, as well as, what are the
current challenges and limitations.

3.2.2 Fundamentals of recommender systems

Recommender systems are information filtering systems that deal with the problem
of information excess by filtering vital information fragment out of large amount
of dynamically generated information according to user’s preferences, interests,
or observed behavior over time. Recommender systems are used today for large
variety of tasks and can be beneficial to both service providers and users. They
reduce transaction costs of finding and selecting items in an online shopping envi-
ronment and it is proven that they can improve the decision making process and
quality: showing users items that might interest them, increases the time spent on
the platform and therefore the likelihood of a purchase being made. In scientific
libraries, recommender systems support users by allowing them to move beyond
catalog searches.

From a technical perspective, they are computer algorithms that uses linear alge-
bra theorems to predict a user preference from a user-item matrix so, to implement
a recommender system, a user-item matrix is first needed. Such matrix has all the
users on the rows and all the items on the columns. Each value of the matrix can
be the rating that a particular user gave to a particular item. Obviously, users have
rated only a limited number of items and so the matrix is sparse. This brings us to
the goal of the algorithm that is, to fill all the empty boxes with the predicted rat-
ings for the users to the items. The way the user-item matrix is filled, depends on
the typology of recommender systems: those are presented in the following section.

13
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Figure 3.2. An example of user-item matrix

3.2.3 Types of recommender systems
Since recommender systems can be used in a large variety of applications, dif-
ferent types of algorithms have been developed each with its peculiarities, pros
and cons. Recommender system algorithms can be divided into, Content-based
filtering, Collaborative filtering and Hybrid filtering.

Content-based filtering

Content-based filtering algorithm main idea is based on the concept that two items
are similar if their characteristics also are. For instance, two pairs of shoes are
considered similar if they are of the same brand or belongs to the same category
(i.e. boots); so items are represented in terms of their descriptors or attributes.
This means that the algorithm needs data provided with meta-data that describes
them. Such kind of data is called Classified data. Usually this type of filtering
is used with text documents like books or articles because such kind of items are
generally already classified for other purposes like cataloging.
Users and items need to be prepared before they can be used in a content-based
filtering algorithm. The process is performed in three steps handled by separate
components:

• Content Analyzer : In order to be used in a recommendation algorithm, infor-
mation (e.g. text) needs to be in a structured form. This component analyzes
data items and produce structured data for next processing steps by feature
extraction techniques (e.g. Web pages represented as keyword vectors). This
representation is the input to the Profile Learner and Filtering Component.

• Profile Learner : To match users with items, the system has to represent
users in the same information space of the items. This module collects data

14



3.2 – Recommender systems

representative of the user preferences and tries to generalize it in order to
construct the user profile. Usually, the generalization is realized through ma-
chine learning techniques like supervised learning algorithms, which generate
a predictive model (the user profile) that represent user interests starting
from liked or disliked items. For instance, the Profile Learner of a movie rec-
ommender system can implement an algorithm in which the learning tech-
nique combines vectors of positive and negative feedback into a prototype
vector representing the user profile. Training examples are movies on which
a positive or negative feedback has been provided by the user.

• Filtering Component: Once items and users are represented in the same
information space, the user profile can be exploited to suggest him relevant
items. Given a new item representation, the Filtering Component predicts
whether it is likely to be of interest for the active user, by comparing features
in the item representation to those in the representation of user preferences
(stored in the user profile). The result is a binary or continuous relevance
judgment i.e. a ranked list of potentially interesting items. The matching is
computed using some similarity metric like cosine similarity that exploits the
cosine between the two vectors to express distance.

The main problem with this type of algorithms is the difficulty to find data
that is already classified: each item has to be classified with its attributes and this
process is not always straightforward. First of all, there is the problem to choose
the attributes of the items and then to find how to measure them, as example, given
a movie, it is hard to know if it is drama or comedy without a manual classification.
So, data needs to be manually classified and this can be very tedious. This obstacle
makes content-based filtering approach less used compared to other algorithms of
recommendation systems.
One successful application of content-based filtering is the Music Genome Project
by Pandora Radio. The idea is to associate descriptors to each song. Each song is
described by a vector of 450 “genes” manually generated by professional musical
analysts. Genes are songs properties like the tempo, the pitch, the frequency and
more. Once each song has its own attributes, users can start to like songs and the
algorithm can do his recommendations.

Collaborative filtering

Collaborative filtering algorithms take inspiration from what happens to the real
life when we are searching for recommendations and we end up usually asking a
friend. This relies upon the idea that if two people have same opinions about a
group of items, then it is likely that they have the same opinion on other items too.
Every algorithm that is based on the user behaviors (history, reviews, similarity)
belongs to the branch of collaborative filtering algorithms. Unlike content-based,
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collaborative filtering does not require items to be classified, instead, this algorithm
can be used even with absolute no knowledge about the items that are going to be
recommended. These types of algorithms tries to predict the reviews of a user to
a product he has not reviewed yet. Review is a generic term and can be referred
to a positive-only feedback, where user has liked/not liked the item, an explicit
review, where the user assigns a number (typically on the Likert scale from 1 to
5) to the item, or an implicit review made of all the meta-data about a user like
the numbers of clicks, the time spent viewing a product, his temporary shopping
cart, his researches or his history of purchased products or digital goods consumed.
Of all the collaborative-filtering algorithms available, two in particular has gained
popularity in the community: the Nearest Neighbor algorithm and the Latent
Factor algorithm. The Nearest Neighbor algorithm finds user that are similar to
other users, using a metric for the similarity and a metric for the distance between
users. The Latent Factor algorithm tries to find common factors among users from
the reviews they already gave to items.

Hybrid recommender system

As the name suggest, hybrid recommender systems combine collaborative filtering
and content-based filtering techniques to obtain the best of both worlds and to
overcome some of the common problems in recommender systems such as cold start,
gray sheep and the sparsity problem (discussed in the following section). Several
studies (Burke 2002) empirically compared the performance of the hybrid with the
pure collaborative and content-based methods and demonstrate that the hybrid
methods can provide more accurate recommendations than pure approaches. There
are several ways to implement a hybrid approach: one can be making the content-
based and collaborative-filtering prediction separately and then combining them;
predictions are based on a weighted average of the content-based recommendation
and the collaborative recommendation. The rank of each item being recommended
could be a measure for the weight. In this way the highest recommendation receives
the highest weights. Another technique is to add content-based capability to a
collaborative-based approach or viceversa; since collaborative filtering looks for
the correlation between user ratings to make predictions, finding such correlation
can be unfeasible for users with few ratings. Adding content information to the
recommender system can help to correlate users. For example, if one user liked the
movie “Rocky” and another liked the movie “Rocky II” they would not necessarily
be matched together in a standard collaborative filtering algorithm because there
is no knowledge about items correlations. A hybrid approach deals with these
issues by incorporating both the information used by content-based filtering and
by collaborative filtering.
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Netflix 8, a popular streaming media platform, uses an hybrid recommender system.
The website makes recommendations by comparing the watching and searching
habits of similar users (i.e., collaborative filtering) as well as by offering movies
that share characteristics with films that a user has rated highly (content-based
filtering).

3.2.4 Current state and limitations

Latest studies (Gouvert et al. 2018, Wu et al. 2018) have shown the utility of
machine learning techniques in the area of recommendation systems and informa-
tion retrieval. The general opinion is that of significant improvements over the
conventional models. As example, deep learning can be used to help classifying
data for content-based algorithms or to replace matrix factorization with deep
neural networks for collaborative filtering. Most of the deep learning development
has been biased towards entertainment industry such as in movie and music rec-
ommendation. This can be largely attributed to the availability of rich datasets
for validation. Although this trend has covered all the three major variants of
recommender system algorithms, collaborative filtering, content based and hybrid
systems, it can be clearly seen from the number of publications made that the ma-
jority have leveraged deep learning to enhance collaborative filtering capabilities.
Unfortunately, recommender systems have a set of problems and limitations (Ado-
mavicius & Tuzhilin 2005) that has to be taken into account: cold start, synonymy,
gray sheep, data sparsity and shilling attacks are the most frequent.

Cold start

The cold start problem addresses the case of new items or new users in the sys-
tem: since they have no ratings history, find good recommendations can be tricky
for them. One of the solutions is to use a hybrid system called content-boosted
collaborative filtering that combines known attributes of items with demographic
data of users to improve collaborative filtering recommendations.

Synonymy

Synonymy occurs when the algorithm has to deal with items that are practically
the same but differs from a single or few attributes, like two different editions of
the same book; latent factor collaborative filtering works well with these cases.

8https://www.netflix.com
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Shilling attacks

Shilling attacks is the name given to the problem of dealing with users that want
to fool the recommender system. As example, think at a restaurant owner that
gives fake negative reviews to other restaurant while using fake accounts to give
positive reviews to his restaurant. In that cases, precautions is the best weapon.

Data sparsity

Data sparsity occurs when a lot of users have reviewed only few items: this makes
the user-item matrix very sparse, resulting in hardness to compute the prediction
and unsatisfied results. The solution is to use dimensionality reduction to remove
less important dimensions in vectors to reduce sparsity.

Gray sheep

Gray sheep are users with non-consistent opinions. The hypothesis on which col-
laborative filtering algorithms are based is that, if two users like the same item and
one of them likes another item, that item may interest the other user too, but it
is false with gray sheep. Content-boosted collaborative filtering can help dealing
with this problem.

3.3 Personalization
3.3.1 Introduction
With the enormous amount of available data on the web today, there is the need to
filter out what really interests users. Data filtering can improve user engagement in
entertainment applications, can enhance revenues of online shopping portal (think
about what Amazon does with “Customers who bought this item also bought”)
and can help search engines to give better query results. Recommender systems
were built to overcome the problem of data filtering but they only relies upon
items attributes and users history, with little “real-life” relation to the user. There
are strong desires to provide online users more dedicated and personalized services
that fits into individual’s need, usually strongly depending on the inner personality
of the user. Canada Peer Counseling Center (Chen 1998) considers that for most
people they have investigated, recommendations from companion volunteers with
same views as being the most effective. It means people with same personality tend
to attract each other. As a result, analysis of different personality features can be
the basis for building characterized service. For instance, an extrovert user may
have a higher level of online activity that is more likely to use recommendation
system to make new friends with strangers (Moore 2012).
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3.3.2 Background
Personality is defined as the set of habitual behaviors, cognition and emotional
patterns that evolve from biological and environmental factors (Corr & Matthews
2009). The study of the psychology in personality attempts to explain people
differences in behavior. Many approaches have been taken to study personality,
including biological, cognitive, learning and trait based theories, as well as human-
istic approaches. Following, there will be a description of two approaches used for
scientific applications thanks to their numerical nature: the Five Factor Model and
the Myers Briggs Type Indicator.

Five Factor Model

The Five Factor Model (FFM), also known as the Big Five Model (Big5), is a
model based on common language descriptors of personality. The model mainly
relies upon two theories: the lexical hypothesis according to which is possible to
derive a comprehensive taxonomy of human personality traits by sampling lan-
guage, and a statistical approach that identifies the characterizing dimensions of
individual differences through a factorial statistical analysis. Studies on the per-
sonality lexicon (John et al. 1988) started in 1884 by an English psychologist, Sir
Francis Galton, who was the first person that have investigated the hypothesis that
it is possible to derive a comprehensive taxonomy of human personality traits by
sampling language (Galton 1883). A study by (W. Allport & S. Odbert 1936) put
Galton’s hypothesis into practice by extracting 4,504 adjectives from the dictionary
that they believed were descriptive of observable human personality traits. This
number was reduced in a successive study by (Cattell 1957) who brought it to 171
by eliminating synonyms and adjectives. Finally, (C. Tupes & E. Christal 1992),
based on a subset of only 20 of the 36 dimensions Cattel had discovered, found just
five broad factors to describe personality of individuals that were labeled: Agree-
ableness, Conscientiousness, Extraversion, Neuroticism and Openness, also known
as OCEAN:

• Agreeableness refers to being helpful, cooperative, and sympathetic towards
others. Low Agreeableness is related to being suspicious, challenging and
antagonistic towards other people.

• Conscientiousness is determined by being disciplined, organized, and achievement-
oriented. Low Conscientiousness individuals tend to be more tolerant and less
bound by rules and plans.

• Extraversion is displayed through a higher degree of sociability, assertiveness,
and talkativeness. People low in extraversion are reserved and solitary.
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• Neuroticism refers to degree of emotional stability, impulse control, and anx-
iety. Those who have a low score in Neuroticism are more calm and stable.

• Openness is reflected in a strong intellectual curiosity and a preference for
novelty and variety. People low in Openness tend to be more conservative
and close-minded.

In 1985, psychologists McCrae and Costa developed a personality inventory
called The Revised NEO Personality Inventory (NEO PI-R) (Costa & McCrae
1992) that makes the Big Five personality traits measurable. The inventory consists
of 240 questions on a five-point Likert scale, and can accurately measure the five
personality traits plus six underlying facets for each of them. Traits are expressed
as dimensions of a vector in a scale between 0 and 1.

Myers Briggs Type Indicator

In 1942, two psychologists, Katharine Cook Briggs and her daughter Isabel Briggs
Myers, have developed a convenient way to describe the order of Jungian prefer-
ences of a person. Their work (Isabel Briggs Myers 1962) is based on the Jungian
theory of personality described in the book Psychological types (Jung 1921), in
which he outlines the different characteristics of attitudes and behaviors. Jung
mainly splits individuals in two categories, Introverts and Extroverts that repre-
sents the guidelines both in the objective and subjective world. Then, he postulated
that individuals relate to the world through two sets of opposed functions, rational
functions of thinking and feeling and irrational functions of sensation and intu-
ition. Jung work is descriptive and general, which from one side leaves personal
interpretation opened but on the other makes hard to outline personality attitudes
precisely.
Myers and Briggs, facing these difficulties, have extracted the more easily distin-
guishable personality traits from Jung work on which they added a personal con-
tribute based on a more traditional psychometric procedures. The result of their
studies is a set of intrinsically consistent indices that measures the differences in be-
havior of individuals. The set is made by four indexes, Extraversion-Introversion,
Sensing-Intuition, Thinking-Feeling and Judgment-Perceiving. The last index is
their contribution to Jung’s work. Each index is dichotomized, with a center-fixed
zero point and represented by two letters that indicate the ends. They indicate
how people:

• Focus attention and energy (Extraversion-Introversion)

• Extract information from the surrounding world (Sensation-iNtuition)

• Take decisions (Thinking-Feeling)
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• Relate to the external world (Judging-Perceiving)

The combinations of these four indexes outline 16 possible psychological types.
For instance, ESTJ means a profile made the following attributes: Extraversion
(E), Sensing (S), Thinking (T), Judgment (J) while INFP means Introversion (I),
iNtuition (N), Feeling (F), Perception (P).

3.3.3 Personality traits from social media platforms
Knowing the user personality can help to make better recommendations in rec-
ommender systems thanks to the homophily principle, which states that people
with related attributes, such as age, interests, and personality, form similar ties
(McPherson et al. 2001).
In psychological researches, most traditional personality analyzing experiments are
based on self-reported inventory. Self-Report Measures are any method of data col-
lection that is based on the participant to report his or her own behaviors, thoughts,
or feelings. The advantage of this method is that the researcher can obtain informa-
tion that is not easily observable, but the disadvantage is that participants’ report
may not be accurate or reliable. For example, asking students to report how many
hours per week they used Facebook, they may under-report the time due to em-
barrassment or not realizing how much time they spend on the site. However,
independent observation of Facebook use would be difficult and costly to imple-
ment. To solve these problems, several studies (Hughes et al. 2012, Bachrach et al.
2012, Gosling et al. 2011) has explored techniques of personality prediction from
social media behaviors. The rising of social media and their growing popularity
is a resource of enormous value for personality traits studies. Users fill them with
textual data that tend to reflect many aspects of real life, including personality.
They widely share their feelings, moods, and opinions, providing without knowing
a rich collection of information that could be used for a variety of purposes. This
phenomenon is known as subconscious crowdsourcing and indicates that people
are unaware and are subconsciously sharing information to their network. Gol-
beck et al. have shown that Extraversion and Neuroticism were found to correlate
with number of friends in the real world as well as on Facebook (Golbeck et al.
2011). Individuals high in Extraversion and low on Neuroticism tend to maintain
persistent connections with their friends (Anderson et al. 2001, Berry et al. 2000).
Extroverts people also find those platforms easy to use (Rosen & Kluemper 2008).
Generally, users tend to be friend of people with higher Agreeableness and select
contacts with similar Openness, Extraversion and Agreeableness (Schrammel et al.
2009).
There also are several tools to predict personality from social network behavior:
(Bai et al. 2012) have built a model to predict personality of RenRen users, a Chi-
nese social network. University of Cambridge Psychometrics Centre developed a
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web application called Apply Magic Sauce9, which uses artificial intelligence models
based on over 6 million social media profiles and matching scores on psychometric
tests; this gives the ability to predict user’s personality from their digital footprint.
Those are examples of the excellent body of work carried out by researchers in
order to better understand the existing correlation between personality and social
media platforms.

Unfortunately, collecting data about users personality can be a problem in terms
of privacy. The recent Cambridge Analytica scandal 10 is a clear example of the
delicacy of such data. They collected personally identifiable information of about
50 million Facebook users without explicit consent in 2014 using a Facebook app
called thisisyourdigitallife. The data was used to influence American elections and
the brexit vote. Such influence was conducted with news that exploited users hopes
and fears to guide public opinion towards politicians that paid Cambridge Analyt-
ica for such data. As a result, Facebook sparked public outcry (a #deletefacebook
campaign was born on Twitter) and lowered stock prices and had to publicly apol-
ogize both online and offline with posts and newspaper articles. Such episode
teaches us that the power of this technology is to keep under control and should
be limited to a scientific and conscious usage only in order to avoid this type of
problems in future applications.

9https://applymagicsauce.com/

10https://en.wikipedia.org/wiki/Facebook_and_Cambridge_Analytica_data_breach
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Chapter 4

Approach

4.1 Introduction
This chapter is dedicated to present the architectural work required before the
actual chatbot implementation, first from a high-level perspective, showing how
components are bound together to work and communicate, and then exploring the
details of each single component, their description, how they work and the rationale
for their choice.

4.2 High-level Architecture
To explore the various aspects that we had to take into consideration while archi-
tecting the chatbot application, is useful to start from the words of the thesis title.
The first word, Multi-channel, describes a property of the chatbot. It means that it
can be accessible from different platforms that offer the chatbot messaging service
and that users, once logged in, must be able to use the service independent of the
chosen chat interface. For the first functionality, two alternatives were possible:
write the code for each platform using the specific SDK or use a middleware, a
software that adds a level of abstraction above different SDKs thus making the
unified development of multiple applications possible under the same source code.
Fortunately, thanks to the growing popularity of chatbots, there are a lot of good
middleware called Chatbot Builders that can handle both conversational logic and
the multi-channel aspect such as Dialogflow, wit.ai, Chatfuel 1 and others. To
allow users authentication instead, we decided to use a login system, built in an

1https://chatfuel.com/
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external website, that directly communicates with the bot backend and can be
easily accessed from a link provided in the first message of the bot.
The second word, Conversational Agent, denotes the nature of the application.
This aspect is covered in part by the chatbot builder for routing user requests to
correct responses, and in part by a web server that builds the responses hosted on
a machine property of Istituto Superiore Mario Boella 2 research center.
As for Personalized Music Recommendations, first we have to explain what Person-
alized means in this application context. The chatbot recommends music artists
to users and those are chosen on a preference inferred by personality traits of each
user. To compute such traits we had two possibilities, a direct and an indirect one.
The former consists of subjecting users to a psychological assessment where they
directly express behaviors while responding to test questions, while the latter, is to
make use of an affective computing service to indirectly predict personality from
users online behaviors. Affective computing systems are technologies that can rec-
ognize, interpret, process and simulate human affects (Picard 1997). As discusses
in the Background section, there already are commercially available technologies
that can be classified as affective computing systems and that are able to infer
personality traits of individuals from their social network behaviors.
Analyzing the two possibilities, we can say that, given the fact that a psycholog-
ical assessment requires at least 10 to 15 minutes to be completed, the affective
computing software appears a more viable way for an entertainment product like
a music recommender chatbot.
The last aspect that we had to take into consideration is Music Recommendations.
Here, the obvious choice is to use a modern recommender system, the state-of-the-
art approach to give recommendations (Singhal et al. 2017). As for data storage,
we decided to use a MySQL database mainly for the ecosystem: MySQL has 40
years of existence and this means an enormous amount of already solved problems
and useful information are available today on the Web. Another reason is that
MySQL also supports JSON object storage, which is fundamental to interact with
REST webservices.
To recap, the architecture of Beat in a Bot is made of different components: a
chatbot builder to handle the conversational flow and the multi-channel aspect, a
website to provide shared authentication between the different platforms and to
show the results of the personality prediction, a recommender system to provide
personalized recommendations, a MySQL database to store users and artists data,
a web server to programmatically build responses, manage the database operations,
execute the recommender algorithm, make requests to the external web services

2http://www.ismb.it/en
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and to manage the authentication requests that come from the website. A visual
representation of the high-level architecture is depicted in Figure 4.1.

Figure 4.1. The system architecture

4.3 Building components
4.3.1 Dialogflow
Dialogflow 3, formerly known as Api.ai, is a developer of human-computer interac-
tion technologies based on natural language conversations. The company, is backed
by Google and runs on Google infrastructure, which means it can scale to millions
of users thus making it suitable also for the enterprise environment. It allows de-
velopers to easily build conversational agents, powered by AI, that once designed
can be easily deployed to a variety of platforms with a one-click integration. Com-
panies like KLM, Domino’s, Ticketmaster and others has built their conversation
agent with Dialogflow. It supports more than 14 languages and it is available in
two pricing options, a free standard edition and paid enterprise edition, making it
so appealing for both companies and individual developers.

Fundamentals

Dialogflow basic concepts are: Intents, Entities, Events, Contexts, Actions and
Parameters. In order to start a conversation with an agent, the user needs to
invoke it. A user does this by asking to speak with the agent in a manner specified

3https://dialogflow.com
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Figure 4.2. The Dialogflow console.

by the agent developer that can be an Event or a keyword that triggers an Intent.
In Dialogflow, an intent houses elements and logic to parse information from users
and answer to their questions. For the agent to understand the question, it needs
examples of how the same question can be asked in different ways. Developers
add these permutations to the User Says section of the intent console panel. The
more variations are added to the intent, the better the agent will comprehend the
user. Based on this data, Dialogflow builds a machine learning model (algorithm)
for making decisions on which intent should be triggered by a user input and
what data needs to be extracted. This algorithm is unique to each agent. The
algorithm adjusts dynamically according to the changes made in the agent and in
the Dialogflow platform. To make sure that the algorithm is improving, the agent
needs to constantly be trained using real conversation logs.
Dialogflow agent needs to know what information is useful for answering users’
requests. Those pieces of data are called Entities. Entities like time, date, and
numbers are covered by system entities while entities like weather conditions or
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seasonal clothing, needs to be defined by the developer so they can be recognized
as an important part of the question.

Figure 4.3. Dialogflow response logic
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The agent can respond to user questions in two ways: with text responses
directly provided in the Text response section of the intent console panel or by
providing a webhook to an external webservice, which subsequently fetches the
data needed, determines how it would like to respond and sends the response back
to Dialogflow that forwards it to the chat interface (Figure 4.3).

What makes Dialogflow chatbots real conversational agents is the concept of
Contexts. A Context can be used to remember something from one intent to
another. For instance, if the first intent was triggered by “What’s the weather
supposed to be like in San Francisco tomorrow?”, information can be saved in the
form of parameters, which in this case can be, the city we would like to know the
weather about and the time, tomorrow. The next intent can be “How about the
day after that?” and because the agent knows previous information thanks to the
context parameters, it can replies with the San Francisco forecast for the day after.
Contexts are also used to repair a conversation that has been broken by a user or
a system error, as well as branch conversations to different intents depending on
the user’s response.

Multi-channel

Dialogflow provides a one-click integration to deploy the conversational agent on
many different messaging platforms. The process works as follows: when on In-
tegrations section of the Dialogflow console, the developer selects the platform he
wants to deploy on. Once selected, a window showing instructions on how to make
the integration appears; after all is set in the correct way, the conversational agent
starts to work on the platform. As example, if the user wants to deploy the agent
on Telegram, he needs to start a conversation with the BotFather bot as stated
in the Telegram documentation. BotFather provides an access token that has to
be copied and pasted in the required box by Dialogflow. After that, the integra-
tion can be completed pressing the button Start that checks if the configuration is
correct and makes the communication between Dialogflow and the platform active.

Rationale for the choice

We decided to use Dialogflow rather than other platforms because at the same time
it is simple and powerful, reliable (thanks to the Google backend), and it has the
possibility to easily deploy the conversational agent on many different platforms.
This eliminates the need to re-write the code for each messaging platform making
the developer work easier.
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Figure 4.4. Integrations section of Dialogflow console.

4.3.2 MyMediaLite

MyMediaLite (Gantner et al. 2011) is a recommender system library for the Com-
mon Language Runtime (CLR, often called .NET). It is a free and open source soft-
ware developed by Zeno Gantner, Steffen Rendle, Lucas Drumond, and Christoph
Freudenthaler at University of Hildesheim. MyMediaLite can be used as an ex-
ecutable file or can be imported as a library in a personal project. It has many
recommendation algorithms that can use collaborative and attribute/content data;
since it is written in C# for the .NET platform, it can run on every architecture
supported by Mono as Linux, Windows and Mac OS X. The core library of My-
MediaLite, as the name says, is leaner and simpler and carries less overhead; it
has a size around 150KB and does not require a database to work. MyMediaLite
includes evaluation routines for rating prediction and item prediction; it can mea-
sure error metrics like Mean Absolute Error(MAE), Root Mean Squared Error
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(RMSE) and precision metrics like prec@N, Mean Average Precision (MAP), and
Normalized Discounted Cumulative Gain (NDCG). Other additional features are:

• Serialization: save and reload recommender models

• Real-time incremental updates for many recommenders

• Attribute-based diversification of recommendation lists

MyMediaLite addresses the two most common scenarios in collaborative filter-
ing:

• rating prediction (e.g. on a scale of 1 to 5 stars)

• item prediction from positive-only feedback (e.g. from clicks, likes, or pur-
chase actions).

Most Popular and Item K-Nearest Neighbor algorithms

MyMediaLite offers many recommendation algorithms that can be easily selected
specifying the command-line option –recommender=METHOD. Two algorithms in par-
ticular, the MostPopular and Item K-Nearest Neighbor, are used by the recom-
mender system in the chatbot backend. One or the other is used depending on the
decision-making process of the bot value chain discussed in the next chapter.

The MostPopular algorithm simply extracts from the user-item matrix the most
popular items i.e. those that have the highest number of users’ feedback. Results
are given in descending order from the most popular item to the least popular one.

The Item K-Nearest Neighbor is a collaborative-filtering based algorithm. Given a
target user and its positively (i.e., above a pre-defined threshold) rated items, the
algorithm relies on the items’ similarities for the formation of a neighborhood of
nearest items. The choice of the K nearest neighbors for the neighborhood forma-
tion results in a trade-off: a very small K leads to few candidate items that can be
recommended because there are not a lot of neighbors to support the predictions.
In contrast, a very large K impacts precision as the particularities of user’s pref-
erences can be blunted due to the large neighborhood size. Usually, K is set to be
in the range of values from 10 to 100, where the optimum K also depends on data
characteristics such as sparsity.

The similarity can be measured with two different metrics, cosine similarity and
Pearson correlation:

• Cosine Similarity: in the recommender system model, items are represented
as vectors whose dimensions are the recommendations given by users. The
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cosine of the angle between two vectors can be seen as a measure of how
far they are. If the two vectors are aligned, it means that the two items
are identical and the cosine value is 1. If they are perpendicular, the cosine
is zero and the items are rather different. If they are aligned but opposite,
the cosine is -1 and means that the two items are antithetical. The cosine
similarity formula is the following:

CosSim(x, y) =
q
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(4.1)

where x(x1, x2, ..., xi) is the vector of the first item and y(y1, y2, ..., yi) the
vector of the second item.

• Pearson Correlation: rather than considering the distance between item vec-
tors as a similarity measure, we can consider the correlation between items.
To compute the correlation between two items i and j, the first step is to
isolate users who both rated i and j (the co-rated cases). The set of such
users is denoted with U and the similarity between the two items is given by:

sim(i, j) =
q

uÔU (Ru,i − R̄i)(Ru,j − R̄j)ñq
uÔU (Ru,i − R̄i)2

ñq
uÔU (Ru,j − R̄j)2

(4.2)

where Ru,i denotes the rating of user u on item i , R̄i is the average rating
of the i -th item, same for item j.

The last step is to generate predictions. Once the set of most similar items are
isolated, the next step is to look into the target users ratings and use a technique
to obtain predictions. Two such techniques are considered, weighted sum and
regression:

• Weighted sum: As the name implies, this method computes the prediction
on an item i for a user u by computing the sum of the ratings given by the
user on the items similar to i. Each rating is weighted by the corresponding
similarity si,j between the active item i and its similar items j. Predictions
are computed with the following formula:

Pu,i =
q

allsimilaritems,N (si,N ∗ Ru,N )q
allsimilaritems,N (|si,N |) (4.3)

Basically, this approach tries to capture how the active user rates the similar
items. The weighted sum is scaled by the sum of the similarity terms to make
sure the prediction is within the predefined range.
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• Regression: This approach is similar to the weighted sum method but instead
of directly using the ratings of similar items it uses an approximation of the
ratings based on regression model. In practice, the similarities computed
using cosine or correlation measures may be misleading in the sense that two
rating vectors may be distant (in Euclidean sense) yet may have very high
similarity. In that case using the raw ratings of the “so called” similar item
may result in poor prediction. The basic idea is to use the same formula
as the weighted sum technique, but instead of using the similar item “raw”
rating values Ru,N ’s, this model uses their approximated values R

Í

u,N based
on a linear regression model. If we denote the respective vectors of the target
item i and the similar item N by Ri and RN the linear regression model can
be expressed as:

R̄
Í
N = αR

Í

i + β + Ô (4.4)

The regression model parameters α and β are determined by going over both
of the rating vectors; Ô is the error of the regression model.

The Cold Start problem

It is known that a recommender system in order to work properly needs a user
history over which building recommendations. Suppose the case of a Collaborative
Filtering algorithm: the system is based on similarity between users but how to
deal with new users? New users are a problem for recommender systems because
there are not enough data to define their profile so that similarity with other users
(or between items) can be measured. This problem takes the name of the Cold-
start problem because, as a car with a cold engine has troubles to start up, a
recommender system algorithm does not do his best when started with few data.
There are several solutions to the problem:

• Popularity based strategy: Global trends and popularity of products can be
used as well as what is popular in the area of the user or in a particular hour
of the day.

• Contextual information: Several information can be exploited from the user
profile like his position, the website from witch he came, his operating system
and his browser.

• Use of a personality model: Using a personality model like the Five Fac-
tor Model or the MBTI, a initial profile of the user can be created on his
personality.
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• Community information: Data can be extracted from a community the user
belongs to. As instance, information about a user gathered from a recom-
mender system that works on Amazon can be used for another that operates
on eBay.

• Decision tree: a decision tree classification model can be used. The tree is
build on the properties of the users that already are in the dataset.

The approach we take to solve the problem is the use of a personality model.
Since the application requires the prediction of the user personality, we can lever-
age this information to build some initial recommendations. The idea is to start
with the most popular artists of the musical genres that are bounded with users
personality profiles as described by a study4 by NERIS Analytics. Such study has
found a correlation between Myers-Briggs Type Indicators of personality and music
preferences. Details will be discusses in the Implementation section.

Rationale for the choice

We decided to use MyMediaLite as a recommender system because it is a ready-
to-use package making it very easy to integrate in the solution. MyMediaLite it
is also used by researchers of Istituto Superiore Mario Boella, the research center
where the thesis was born, who strongly support usage of open-source software.
This gave us the added value of having a live community support to the usage of
the software.

4.3.3 Apply Magic Sauce

Apply Magic Sauce is an application developed by The Psychometrics Centre, a
Strategic Research Network of the University of Cambridge, center of excellence
in psychological, occupational, clinical and educational assessment. It is released
as Software as a Service (SaaS) paradigm that includes a web application and a
RESTful Web service. Apply Magic Sauce is powered by an artificial intelligence
algorithm and its model is trained on over 6 million social media profiles and
matching scores on psychometric tests. It takes as input a digital footprint that
can be a list of Facebook pages IDs, Facebook statuses, tweets, user browsing
data, open text and other and gives as output an individual profile containing
psychographics and demographics.

4https://www.16personalities.com/articles/music-preferences-by-personality-type
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Figure 4.5. The Apply Magic Sauce Trait Prediction Engine. Image taken from
https://applymagicsauce.com/about_us.html

Machine-learning algorithms are very useful to find patterns in data but often those
data can be difficult to interpret. Apply Magic Sauce goal is to add psycholog-
ical data points to any sample to help interpret machine-learning algorithms re-
sults: these algorithms are at risk of perpetuating historical prejudice, being overly
domain-specific or prescribing norms that can feel impersonal. Apply Magic Sauce
API enables conversation between businesses and consumers about how predic-
tive technologies ought to be used. This could help algorithms explain themselves
and learn from their mistakes, just like humans. Once predicted, psychological
data points can be added to any sample data our devices records, making them
a valuable resource that can be used to tailor online experience on the different
personalities.

Rationale for the choice

As already discussed, to predict users’ personality profiles we had to choose be-
tween subjecting users to a psychological test or use an affective computing system
like Apply Magic Sauce. While the first choice has the advantage of not having any
requirement, we had to reason about the best way to implement it in a chatbot
application. One solution is to use the chatbot itself to submit the test questions
to the users, gather the answers and compute the result while another can be,
redirect users to an external resource where they can take the test and when fin-
ished, ask them to write the result back to the chatbot. The first case requires
the construction of a psychological assessment that is beyond the objective of this
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thesis, while the second case is considered bad practice in a chatbot implementa-
tion. However, both solutions will require a lot of time to be accomplished since
in its shorter version, the Form M, the MBTI questionnaire is made of 93 items.
The second choice, Apply Magic Sauce, is only feasible if the user has a enough
“digital footprints” like a Facebook account with a sufficient number of likes or a
Twitter account with enough tweets for the service to work. In the other end, it is
fast and reliable (it depends on the “quality” of footprints). The approach chosen
was Apply Magic Sauce for the speed of the process, taking into account the fact
that users tend to abandon apps if they require a tedious process to start up (Jain
2016).

4.3.4 Facebook Graph API
On April 21, 2010, during the F8 Live event, Facebook presented a series of news
about the way to develop applications for the social network. The most important
were the adoption of the OAuth 2.0 authentication standard, three new SDK, for
Javascript, Python and PHP and a new API called Graph API. Graph API is
described as “the primary way for apps to read and write to the Facebook social
graph”5. Technically speaking it is a low-level HTTP-based API that developers
can use to programmatically query data, post new stories, manage ads, upload
photos, and perform a variety of other tasks that an app might implement. The
Facebook Graph API is based on the concept of graphs. Graphs are mathemati-
cal structures, composed by elements called nodes linked together by edges. Those
structures extend their field of application way beyond mathematics, reaching com-
puter science and sociology. The idea behind the Graph API is to consider elements
like users, pages, photos, videos, comments and others as nodes of the graph (called
objects in Facebook documentation) and connections between them as edges. There
are also fields that represent information about objects. For instance, friend con-
nection links together user nodes and likes connections links a user to the pages
he likes. The Graph API is HTTP based so it can be used with any language that
has an HTTP library. Each node has an unique ID that is used to access it via the
Graph API. The following example shows how to make a request to the graph:

GET graph.facebook.com
/{node-id}

Responses are always formatted as JSON objects. The response of a request made
with Politecnico di Torino page-id, has the following format:

5https://developers.facebook.com/docs/graph-api
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{
"about": "Pagina ufficiale del PoliTo su Facebook",
"name": "Politecnico di Torino",
"fan_count": 60254,
"picture": {
"data": {
"height": 50,
"is_silhouette": false,
"url": "https://scontent.xx.fbcdn.net/v/p50x50/polito.jpg
"width": 50

}
},
"id": "17570259916"

}

To request for edges instead, the syntax is:

GET graph.facebook.com
/{node-id}/{edge-name}

It is also possible to push by making HTTP POST requests and to delete using
HTTP DELETE requests to the same endpoints.

Rationale for the choice

The choice of using this tools is linked to the usage of Apply Magic Sauce web
service. To predict users personality profiles, the list of page IDs that the user
liked is used as his digital footprints. The only way to programmatically retrieve
such list is to use the Facebook Graph API.

4.3.5 Website and login platform
The support website has two main purposes in the architecture: it allows chatbot
users authentication and communicates with the server to start the prediction of
user’s personality profile. The authentication system is implemented using Face-
book Login6 while the communication with the server occurs through an HTTP
GET request to the backend URL. Facebook, having joined the OAuth 2.0 stan-
dard for user authentication in 2010, provides a login system called Facebook Login
that can be easily integrated into a web page with the Facebook JavaScript SDK.

6https://developers.facebook.com/docs/facebook-login/web
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Facebook Login enables people to sign into a website using their Facebook creden-
tials.
The access to the site is via the chatbot. The first time a user starts a conversation
with the bot receives the website URL in the onboarding message. The page is
structured as a to-do list with two entries: first it is asked to log in with Facebook
Login and then to press a Start button. The first action allows to retrieve the user’s
Facebook username, ID and Access Token while the second action, which occurs
when the user presses the Start button, sends those data to the bot backend. The
server receives the data, starts the personality prediction and return the results
back to the caller (the website). As consequence, the website shows information on
the user’s personality such as a brief description of his Myers-Briggs Type Indicator
(taken from the official website of the Myers-Briggs Foundation7), the Facebook
pages that has determined the four dimensions of the MBTI and a list of music
artists who have the same personality as the user 8. Finally, a Back to the bot
button appears on the screen. Such button, automatically redirect users to the
platform on which the bot has been started allowing conversation to continue.

Rationale for the choice

The choice of developing a supporting website for the application is essentially
bound to two previous architectural choices: first one, the multi-channel support,
which automatically implies to have a flexible authentication method that can be
used independently of the messaging platform chosen to interact with the bot.
This is necessary because every single platform has its own login system and it is
up to developers to manage this aspect. The other, is a direct consequence of the
choice to use Apply Magic Sauce web service, which requires data from the user’s
Facebook profile to make the personality prediction. Since Apply Magic Sauce also
accept user’s Tweets as input, a possible extension for the website could be to allow
users authenticate with Twitter also. This soften the actual pre-requisites of the
application, allowing more people to use the service. As for the website hosting, we
chose GitHub Pages9, a hosting service offered by GitHub. It is free and it allows
developers to host directly from GitHub repositories, having all the benefits of the
git versioning platform like commit, push and pull to easily maintain and update
the website.

7http://www.myersbriggs.org

8http://intuitivemusician.com/

9https://pages.github.com/
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4.3.6 Web server
A web server is a software application that runs on a computer called server and
is in charge of handling requests from a client, typically a web browser. It uses
the HTTP (HyperText Transfer Protocol) protocol, the basic network protocol on
the World Wide Web. Main purpose of a web server is to process and deliver web
pages to clients but they can also run operations written in a server-side scripting
language as ASP, PHP, Python or Node.js. This allows to deliver dynamic web
pages and to retrieve and modify information from databases. In my application
context, the web server has four main purposes:

1. Act as webhook for the Dialogflow Fulfillment feature.

2. Communicate with Facebook Graph API.

3. Communicate with Apply Magic Sauce API.

4. Manage the database operations.

Webhook

Webhooks are described as “user-defined HTTP callbacks” (Fitz 2009) i.e. user
defined callbacks made with HTTP POST. To support webhooks in a platform
such a website, the developer has to allow users specify a URL where the appli-
cation will post and on what events. For instance, when an event occurs such as
pushing code to a repository or commenting a post on a blog, the source site makes
a HTTP request to the URL configured as a webhook. The main reason behind
webhooks is to augment or alter the behavior of a web page or a web application.
Dialogflow, the chatbot builder chosen as a middleware for this project, allows de-
velopers to define a webhook URL in the Fulfillment section of the agent builder
console. When an intent configured to reply using webhook is triggered, a REST-
ful POST request is sent to the URL previously specified. When this happens,
Dialogflow sends to the webhook a properly formatted JSON object, that includes
information about the triggered Intent, the original request, the conversation con-
texts and other metadata about the session and the user. When the web server
receives the request, it parses the JSON and replies accordingly to the data received
as discusses in the Dialogflow section.

Facebook Graph API

The first time a user interacts to the chatbot, a link to a website is presented to
him; once on the website, the user has to first authenticate with Facebook Login
and then, he has to press a button that starts the computation of his personality
profile. An app, which implements Facebook Login as the website, is able to
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obtain an access token that provides temporary, secure access to Facebook APIs.
An access token is an opaque string that identifies a user, an app, or a Page and
can be used by the app to make graph API calls. Basically, with an access token,
information on a node (a user, a page or other) can be retrieved from Facebook.
So, what the website does, is to first obtain the user access token and then send it
to the web server to make him able to retrieve the list of user’s likes to Facebook
pages from the Facebook Graph.

Apply Magic Sauce API

Once obtained the list of user’s likes to Facebook pages, it can be sent to the
affective computing service Apply Magic Sauce that exposes a so-called “Prediction
API” where information about user psychological traits can be retrieved from his
“digital footprints”. In this case, the web server sends the list of likes as input
to the API (the digital footprints) and the Big5 personality traits together with
the user’s Myers-Briggs Type Indicator are returned as output (the psychological
traits). The returned data is structured so that each Big5 trait is associated with a
list of IDs of Facebook paged described as “positive” or “negative”. Such distinction
helps identify what pages had determined or excluded the related trait. Those data
are sent back to the website as a result of the computation started when the Start
button in pressed.

Database operations

The web server is in charge of establishing a connection with the MySQL database
to fetch and store the data needed for the application. It has to fill and keep
updated the users table, extract the recommended artists information from the
ids given by the recommender system and keep track of the recommendations for
each user. Moreover, it stores the JSON objects gained from Apply Magic Sauce to
show users how the pages they liked on Facebook relates with the four dimensions
of their personality, it checks if a user is already signed in the application, it stores
the likes to recommended artists given by users on the chat and finally it manage
all the “next recommendation” requests.

Rationale for the choice

We chose to add and develop a web server in the application architecture to im-
plement and expand the functionalities offered by the chatbot. The web server
is vital for the majority of the operations (described in the sections above) and
without it, only a small amount of possibilities are available i.e. those offered by
the chatbot builder alone. We chose Python as the main programming language
for the server, mainly for the large variety of packages available, its compatibility
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with all the other software used and the support of the huge community on the
web. Python is also a preferred language between researchers at Istituto Superi-
ore Mario Boella (ISMB). As for the hosting, the python script runs on a ISMB
machine under Flask, a very popular micro web framework that allows to easily
implement a web server with very few lines of code. The URL mapping instead,
is managed by Apache, the most commonly used HTTP server over the net. The
web server is reachable at the following URL:

http://datascience.ismb.it/beatinabot

and exposes the following endpoints:

Endpoint Method Description

/dialogflow POST

It is the webhook endpoint where Dialogflow
fulfillment requests are sent. Responses are
JSON objects formatted as required by

Dialogflow.

/login GET
Login requests from the website are sent to
this endpoint. The server replies with the
JSON object from Apply Magic Sauce.

4.3.7 Database
A fundamental piece of the developed architecture (and every other web applica-
tion) is the database. A database is a collection of information that is organized
to be easily accessed, managed and updated. In a relational database, where infor-
mation is modeled as relations between sets of objects, data is organized into rows,
columns and tables, and it is indexed to make it easier to find relevant information.
Data gets updated, expanded and deleted as new information is added. Databases
process workloads to create and update themselves, querying the data they contain
and running applications against it.

There are several types of databases available today and, depending on the nature
of the application and of course the developer preferences, one can be preferred
over another to better fit the project needs. The database chosen for this chatbot
application is a relational database calledMySQL. MySQL is a Relational Database
Management System (DBMS) made of a command line client and a server; both are
available on Unix and Windows systems and it is released as an open source soft-
ware. It supports a large variety of programming languages like Java, Mono, .NET,
PHP, Python and many others. In the context of the application, the database
contains data about artists, users and their personal recommendations.
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Entity-Relationship model

Figure 4.6. Beat in a Bot database ER model

Beat in a Bot database model is made of 4 entities (user, like, recommendation,
artist) and 5 relations.
The user entity models information on a chatbot user and has 8 attributes:

• telegram_id: a unique id assigned by Telegram to the user. Retrieved when
the bot is used on Telegram

• messenger_id: a unique id assigned by Messenger to the user. Retrieved
when the bot is used on Facebook Messenger

• fbuserid: a unique id assigned by Facebook to the user. Retrieved after the
Facebook Login. It is the table primary key.

• jungian_type: user’s Myers-Briggs Type Indicator returned by Apply Magic
Sauce prediction API

• sessionId: a unique id assigned by Dialogflow to the current chat session.
Expires every 10 minutes

• username: user’s Facebook username

• lista: JSON object containing the list of recommendations’ IDs for the user

• ams_response: JSON object containing the result of the personality predic-
tion by Apply Magic Sauce
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The like entity represents a user feedback on a recommendation. It has 3
attributes:

• userID: foreign key that refers to the fbuserid attribute of the table user.
Combined with artistID is the primary key for the table

• artistID: foreign key that refers to the id attribute of the table artist

• weight: the feedback count of the user to the artist

The recommendation entity models an artist recommendation. It has 3 at-
tributes:

• indice: an integer number used as the recommendation index. Indices inside
the attribute lista of the table user refers to this attribute.

• sessionId: foreign key that refers to the sessionId attribute of the table user

• jsonmessage: the recommendation itself. It is a JSON object properly struc-
tured to be compatible with Telegram and Messenger that includes a card
with the artist image and the buttons I like it and next.

The artist entity represents an artist in the database. It contains the gold
standard discussed in the next section. It has 6 attributes:

• id: the artist id

• artist: the artist name

• lastfm_url: URL to the artist’s Last.fm profile

• image: artist’s image URL

• dbpedia: pointer to the artist’s DBpedia page

• genres: the list of artist’s music genres

The user entity relates with the like entity in a one to many relation: a user can
express zero or more likes while a like is express by one and only one user. User is
also in a one to many relation with the Recommendation entity. This means that
a recommendation can be assigned to only one user while a user can receive zero
or many recommendations.
The like entity is in a many to one relation with recommendation and with the
entity artist. A feedback (as a single entity) can be given to only one recommen-
dation while a recommendation can receive zero or many feedback. The same logic
applies to the artist-like relation.
Finally, an artist can be included in many recommendations while a single recom-
mendation only includes one artist. So, the relation between artist and recommen-
dations is one to many.
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Dataset used

The database has been initialized with data from hetrec2011-lastfm-2k (Cantador
et al. 2011), a gold standard built by Ignacio Fernández-Tobías with the collab-
oration of Iván Cantador and Alejandro Bellogín, members of the Information
Retrieval group at Universidad Autonoma de Madrid. It contains social network-
ing, tagging, and music artist listening information from a set of 2K users from
Last.fm10 online music system. The dataset has been enriched with the image URL
of each artist retrieved with the usage of Last.fm API.
When the users of the chatbot application give their feedback on recommendations,
those are added to dataset and used to build the models for the recommender
system as described in the Implementation section. Statistics of the dataset are
reported in the table 4.1.

Statistic Value
Users 1892
Artists 17632
Bi-directional user-friend relations 12717
(user_i, user_j) pairs 25434
Avg. friend relations per user 13443
User-listened artist relations 92834
Avg. artists most listened by each user 49067
Avg. users who listened each artist 5265
Tags 11946
Tag assignments (tas) 186479
Avg. tas per user 98562
Avg. tas per artist 14891
Avg. distinct tags used by each user 18930
Avg. distinct tags used for each artist 8764

Table 4.1. Dataset statistics

4.3.8 Music Preferences by Personality Type
The connection between music preferences and personality is supported by several
studies in the psychology literature. As example, (Daoussis & Mckelvie 1986, Litle
& Zuckerman 1986, McCown et al. 1997) has found that sensation seeking, extraver-
sion and psychoticism predicted liking for more stimulating music like rock-and-roll,

10https://www.last.fm
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or “exaggerated bass” in music. Pearson et al. found that extraverts likes more
types of music than introverts, and in particular they prefer popular/rockmusic.
They also found that Feeling people tend to like country and western music more
than those oriented toward Thinking (Pearson & Dollinger 2004).
In the context of this thesis application, such connection is used to solve the cold
start problem of the recommender system: data about users are enhanced with
music preferences obtained from their previously predicted personality type. Rec-
ommender algorithms that use previously enhanced data are known as Content-
boosted Collaborative Filtering and studies has proven that such algorithms achieve
better results than pure collaborative filtering, pure content-based and naive hy-
brid approach (Melville et al. 2002).

Figure 4.7. Agreement with “Do you enjoy listening to ...?”, by Role

The enhancing data used has been derived from a survey on musical preferences,
made by an English company named NERIS Analytics Limited. NERIS Analytics
Limited owns a website11 called 16Personalities.com on which they publish articles
and studies about personality types and their impact on our lives, geographical
distribution, social attitudes, relationships and more. Their model incorporates

11https://www.16personalities.com
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the latest advances in psychometric research, combining time-tested concepts with
robust and highly accurate testing techniques. The framework used by NERIS
Analytics is based on the Myers-Briggs Type Indicator and the 16 personality
described are grouped into four groups called Roles: Analysts (INTJ, INTP, ENTJ,
ENTP), Diplomats (INFJ, INFP, ENFJ, ENFP), Sentinels (ISTJ, ISFJ, ESTJ,
ESFJ) and Explorers (ISTP, ISFP, ESTP, ESFP). The survey was made on over
4000 respondents whose personality profile were already known. Questions was
of the type: “Do you enjoy listen to <music genre>?”. The survey has revealed
the outlooks different personalities have on music. Results are presented in figure
4.7, which shows the percentage of agreement to the question “Do you enjoy listen
to...?” of the four groups. Such results has been reported into a table in order to
better classify Roles and their musical preferences. This allowed to easily link each
Myers-Briggs Type Indicator predicted by Apply Magic Sauce with the relative
vector of preferred musical genres.

Analysts Diplomats Sentinels Explorers
Alternative 78,88% 84,87% 70,22% 81,20%
Ambient 52,52% 59,30% 44,63% 58,47%
Blues 42,60% 46,08% 33,33% 39,92%
Classica 76,06% 71,95% 65,12% 56,05%
Country 27,74% 36,76% 42,51% 38,89%
Electronica 61,62% 66,34% 55,43% 67,86%
Hip-Hop 43,47% 46,32% 39,56% 49,00%
Jazz 54,36% 54,37% 44,93% 46,83%
Metal 43,83% 34,66% 21,64% 36,29%
Pop 56,34% 71,70% 72,55% 73,52%
Punk 45,53% 44,36% 29,16% 41,30%
Reggae 26,98% 33,50% 26,58% 35,46%
Religious 21,96% 34,41% 40,44% 25,70%
Rock 80,45% 79,63% 63,22% 74,90%
Soul 37,08% 50,30% 44,38% 46,99%
World 37,38% 48,63% 34,06% 34,94%

Following are the python arrays ordered by descending percentage of agreement,
as they are declared within the server source code:

Analysts = [’Rock’,’Alternative’,’Classica’,’Electronica’,’Pop’,’Jazz’,
’Ambient’,’Punk’,’Metal’,Hip-Hop’,’Blues’,’World’,’Reggae’
,’Religious’]

Diplomats = [’Alternative’,’Rock’,’Classica’,’Pop’,’Electronica’,’Ambient’,
’Jazz’,’Soul’,’World’,’Hip-Hop’,’Blues’,’Punk’,’Country’,
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’Metal’,’Religious’,Reggae’]

Sentinels = [’Pop’,’Alternative’,’Classica’,’Rock’,’Electronica’,’Jazz’,
’Ambient’,’Soul’,’Country’,’Religious’,’Hip-Hop’,’World’,
’Blues’,’Punk’,Reggae’,’Metal’]

Explorers = [’Alternative’,’Rock’,’Pop’,’Electronica’,’Ambient’,
’Classica’,’Hip-Hop’,’Soul’,’Jazz’,’Punk’,’Blues’,
’Country’,’Metal’,’Reggae’,’World,’Religious’]
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Chapter 5

Implementation

5.1 Introduction
This chapter contains the details of how the application works from a technical
perspective. The description follows the flow of a typical user experience.

5.2 Initial phase
Users can interact with the bot in two different ways: by typing his name in
the search field of the supported messaging platforms or by following a link that
redirects them to the chat. All the platforms share a common paradigm to start a
conversation that consists of sending a welcome event to Dialogflow. Such event is
a RESTful POST request to Dialogflow webhook that embeds a properly formatted
JSON. The request triggers the entry point Intent called Default Welcome Intent;
such Intent is configured so that the response is not directly managed by Dialogflow
but instead, is delegated to the web server (the bot backend) which pointer is
configured as the default Dialogflow webhook for fulfillment option. The backend
receives from Dialogflow a JSON object that contains:

• Information on the triggered Intent (Default Welcome Intent)

• The resolved query

• The chat session ID

• The timestamp

• The language used
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• The status of the HTTP response

• The original request (The JSON response as sent by the chat platform)

Once received, it acts according to the triggered intent read from the JSON, in
this case, the Default Welcome Intent. In particular, it checks if the user has already
used the application before. The check is performed looking for a match between
the user’s platform id (parsed from the JSON) and those already in the database. In
case of a positive outcome, the user is recognized and the message Happy to see you
again <username>! To start, press the “Continue” button below! is displayed in
the chat. Otherwise, the bot shows the onboarding message with the authentication
instructions. The picture below illustrates the logic of the onboarding phase in the
case of a new user.

Figure 5.1. The initial workflow.

5.3 Authentication
Before moving on, we have to explain how users’ authentication has been imple-
mented. Users are identified with three different identifiers, the id assigned by
the chat platform, the session id assigned by Dialogflow and the Facebook user id
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taken from Facebook Login on the external website. The reason of using such set
of identifiers is due to a lack of an integrated and shared way among all platforms
to authenticate a user. Each of the three id has its own purpose: the session id,
contained into the JSON from Dialogflow to the web server, is active for 10 minutes
and it is used to recognize a user among all the different requests in the same chat
session; the platform id, also embedded into the JSON object, is used to identify
the user on a specific platform and since it does not expire like the session id, it
can be used as his main identifier (the one that makes possible to recognize him at
the first interaction with the bot). The last id, returned when the user logs in with
Facebook Login, is always unique regardless of the chat platform. This uniqueness
is due to the fact that the login operation is performed outside the chat. The
Facebook user id, being independent of the chat platforms and Dialogflow, is used
to associate all the others to the same user so that he can be recognized among all
the chat platforms.
While some platforms provide a webview as an integrated messaging chat element
but others do not, to maintain compatibility with as much platforms as possible,
the access to the login website is provided with a button within the chat that em-
beds a customized website URL for each client. The link is built using the user’s
session id and a pointer to the bot, on the platform it has been opened, as URL
parameters. The session id is simply sent back to the server after the Facebook
Login phase and has the purpose of linking the external website session to a spe-
cific user, while the pointer to the bot is needed to provide a back button after a
successful login. As example, if the bot is opened with Telegram, the website URL
is built as follows:

https://giulioverazzo.github.io/beatinabot_website/
?sessionId=<sessionId>&bot_url=https://t.me/beatinabot

5.4 Website implementation
5.4.1 Technical aspects
The supporting website is developed using modern technologies for web developing
like HTML5, CSS3, JavaScript and the jQuery library; rationale of choice is that
these technologies are largely used by the web developers community and this
represents an added value in terms of technical support. The site is built upon
a template by HTML5 UP1 that provides free, customizable and fully responsive
templates for the web. This allows to develop websites that easily adapts to the
screen form factors of smartphones and tablets as well as desktop and notebooks.

1https://html5up.net/
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Figure 5.2. The supporting website.

As for the hosting, we chose GitHub Pages, a service that gives the opportunity
to host directly from the GitHub repository for free. From what regards developing
details, we used Facebook JavaScript SDK to implement Facebook Login authen-
tication system and the jQuery library to make the asynchronous GET request to
the server.

5.4.2 Working logic
When user clicks on the website button provided in the chat, a new window is
opened and the page layout appears on the screen. The website is structured
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as a list of instructions to follow in order to log in and start the prediction of
user’s personality type. The login functionality is implemented with Facebook
Javascript SDK, which requires a registration on the Facebook Developers portal.
The registration is free and allows developers to create apps that can benefit from
Facebook services; when an app is created, an app id is assigned to it. Such id must
be inserted into the appropriate field of the SDK used, in this case, the Javascript
SDK. The SDK, asynchronously loaded inside the HTML page, provides a class
called FB that has a method, FB.init(), which takes the app id as a parameter.
After the SDK initialization, a Log in with Facebook button can be added to the
page. The SDK automatically handles the login system and the user’s login status.
When the login button is pressed, the SDK handles it and a pop up window shows
up asking for user’s Facebook credentials. If provided credentials are correct, the
user needs to grant the application with the permission to read his data such as the
email, the public profile, the list of friends and the list of likes to Facebook pages.
Such permission requests have to be properly set in the Facebook Developer console
of the application. While the first three are approved by Facebook automatically as
a predefined option, the permission to access user’s likes to Facebook pages needs a
special approval process. Developers must submit the app to a verification process
that usually requires two days to be completed: if the app has all the requirements
and passes Facebook internal tests, the user_likes permission can finally be asked
to users.

As login confirmation, the website receives from Facebook an access token that
can be used to retrieve user’s information from the Facebook Graph. The token,
together with the Facebook user ID, his username and the Dialogflow session id, is
sent to the backend when user press the Start! button on the website that makes
the following GET request:

GET http://datascience.ismb.it/beatinabot/hello
?userid=<Facebook-user-id>
&accessToken=<Facebook-user-access-token>
&name=<Facebook-username>
&sessionId=<chat-session-id>

At this point, the server receives the request and proceeds to check if the user
has ever used the chatbot before: if so, it directly replies with the JSON object
taken from Apply Magic Sauce while if not, using the access token, it first sends
a request to the Facebook Graph to retrieve the list of user’s likes to pages and
then, sends it to Apply Magic Sauce in the body of the successive POST request.

GET https://graph.facebook.com/v2.11/<fbuserid>/likes?
access_token=<Facebook-user-access-token>

POST https://api.applymagicsauce.com/like_ids?

51



5 – Implementation

traits=BIG5&interpretations=true&contributors=true

Figure 5.3. Additional information on user’s personality.

The response received is a JSON object that contains values expressed in per-
centile of the Big5 factors, the user’s Myers-Briggs Type Indicator and the sets
of pages that has determined, in a positive or negative way, each value of the
Big5 traits. The JSON object, together with user’s MBTI, Facebook id, username
and the session id are stored to the users table of the database and finally the
backend replies to the original website request, with the JSON object from Apply
Magic Sauce. When the website receives the response, the Start! button disappear
and a Back to the Bot! button takes his place; such button has the purpose of
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creating a natural flow that guides the user from the website back to the chat-
bot after the login phase. Its implementation depends on the chat platform used
to talk with the bot. The website sets the logic of the button checking the pa-
rameter bot_url of its URL: if it is a Telegram URL, the button just points to
http://t.me/beatinabot. If it is a Messenger URL instead, the button calls the
method requestCloseBrowser() of the Facebook Messenger SDK that closes the
webview.

After setting the back button, the website parses the JSON object received and
calls two methods: JungianTypeResult(mbti) and showLikes(obj, mbti). The
former takes the Myers-Briggs Type Indicator read from the JSON and populates
an empty DIV with a brief description of the user’s personality type taken from
the official Myers-Briggs Foundation website and a picture of one of four famous
musician with the same personality type as the user. The latter converts the Big5
dimensions to MBTI dimensions and builds a table, which rows, are populated
with the pictures of the Facebook pages that has determined the four dimensions
of user’s personality.

5.4.3 MBTI - Big5 Conversion
To show users what Facebook pages have determined the four dimensions of their
Myers-Briggs Type Indicator, a conversion to the Myers-Briggs domain of the Big5
index values returned by Apply Magic Sauce is required. Such conversion is based
on a study (McCrae & Costa 1989) that had the purpose of reinterpreting the
Myers-Briggs Type Indicator from the perspective of the Five-Factor Model of
personality. The study was conducted by submitting a sample of 267 men and
201 women, ages 19 to 93, to both the NEO-PI (the standard Big5 inventory) and
the MBTI inventory with the aim of finding a correlation between the indices of
the two models. The correlational analyses showed that the four MBTI indices
did measure aspects of four of the five major dimensions of normal personality: in
particular, a negative correlation was found between the Big5 Extraversion factor
and the Extraversion-Intraversion factor of MBTI scale, same for Big5 Conscien-
tiousness and the Judging-Perceiving factor, while a positive correlation showed
up between Big5 Openness and the MBTI Sensing-iNtuition and between the Big5
Agreeableness and the Thinking-Feeling factor of MBTI. As for the Neuroticism
factor, no significant correlation result was found.

The actual conversion is done by a JavaScript method inside the website. For
each of the Big5 traits, a switch-case statement selects the single traits and stores
in a vector the list of “positive” or “negative” pages depending of the first letter of
user’s MBTI.
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Figure 5.4. Correlations of Self-Reported NEO-PI Factors With MBTI Continu-
ous Scales in Men and Women (McCrae & Costa 1989)

for (var c of contrib){
switch(c.trait){

case ‘‘BIG5_Extraversion’’:

if(mbti[0] === ‘‘I’’){
first = c.negative;
p1 = ‘‘Introversion’’;

}else{
first = c.positive;
p1 = ‘‘Extroversion’’;

}
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break;
...
...
}

At the end of the loop, the four vectors named first,second,third and
fourth, will contain the IDs of the Facebook pages that has determined the four
dimensions of user’s personality. Such IDs are used to request from the Facebook
Graph the names and pictures that populates the table in the website.

5.5 Second phase: personality and recommenda-
tions

When the bot acquires the focus again after pressing the Back to the bot! button on
the website, the next step consists of sending the keyword Continue to the bot with
the provided quick reply button. Quick replies are in-conversation buttons that
appear prominently above or inside the composer; when a quick reply is tapped,
the buttons are dismissed, and the title of the tapped button is posted to the
conversation as a message. This particular design solution finds his meaning to the
fact that Dialogflow does not foresee sending events from external resources (the
website in this case) and so, there is no way to notify the bot about the successful
authentication.

When the keyword is received by Dialogflow, it triggers an Intent that uses
the webhook for its fulfillment. The server checks if the chat session id is in the
database and from here, three possible scenario can occur:

1. User has gone to the website, followed the instructions given and tapped on
the quick reply button.

2. User has tapped the quick reply button without first visiting the website or
has wrote something unexpected to the bot.

3. User has gone to the website and then has wrote something unexpected to
the bot.

On the first scenario (Figure 5.6), the conversation follows its natural flow and the
message “Cool! Your Facebook digital footprints tells me that you are an <MBTI>
person. Do you want to know more about your personality or go straight to your
music recommendations?” is returned as a positive outcome by the web server.
Users can reply with open phrases like “Tell me more about my personality” or
“Recommendations please”. Association between open phrases and Intents is man-
aged by Dialogflow with a proprietary Natural Language Processing algorithm
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Figure 5.5. Bot onboarding message and the quick reply button.

that mixes a rule-based approach with a machine learning model2. Based on the
response given by the user, either the Personality - more Intent or the Recommen-
dation Intent can be triggered: in the first case, response is given by the backend
that replies with the same description of the user’s Myers-Briggs Type Indicator
shown on the website and a quick reply button with the text “Now recommend
me!”. In the other case, the web server computes the recommendations and replies
with the first artist’s card. Details on how recommendations are built will be
explained in the following section.

On the second scenario, that occurs when user has tapped the quick reply
button without first visiting the website or has wrote something unexpected to the
bot, the conversation flow breaks and instructions on how to correctly proceed are
given to the user. Instructions includes a text message, a new button to the website

2https://dialogflow.com/docs/machine-learning

56

https://dialogflow.com/docs/machine-learning


5.5 – Second phase: personality and recommendations

Figure 5.6. First scenario.

and a new Continue quick reply button. The third and last scenario is managed
by Dialogflow using the Fallback Intent option. Fallback Intents are triggered if
a user’s input is not matched by any of the regular Intents; the conversational
flow is built setting the output and input contexts of the various Intents properly
and fallback Intents follows the same rule. In this particular case, the Personality
Intent, that is triggered by the Continue keyword, has the personality context both
as input and output context and the recommendation context as additional output
context. If no user’s input matches the Personality Intent, its relative fallback
Intent that has personality as input context, triggers and the response is delegated
to the backend that replies with the message “it is not so hard, just push the
continue button below.” and the Continue quick reply button to recover from the
error and restore the conversation flow.
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Figure 5.7. Second scenario.

5.6 Recommendations
The recommendations phase starts when the user asks the bot to compute them:
this triggers the Recommendation Intent inside Dialogflow and the response is once
again built by the web server. Using the session id as a key, the web server extracts
the user’s MBTI from the database and passes it as an argument to the function
genresListFromJungianType(...). The function returns a list whose elements
are the musical genres associated to the given MBTI by the study conducted by
NERIS Analytics Limited. Next, the server calls the artistsIDsFromFile(...)
method that takes the user’s Facebook id and his MBTI as arguments and imple-
ments the following value chain:
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Figure 5.8. Third scenario response.

5.6.1 Recommender models generation

Before moving on with the details of the value chain, it is necessary to explain how
the recommender system works. As written in the approach section, the recom-
mender system used is MyMediaLite. MyMediaLite is released as a binary file that
can be executed from the command line passing a set of arguments that specifies
the possible operations available. The binary file is programmatically executed us-
ing the call(...) method of the process library for Python. The recommender
system executable is mainly used for two operations: to save recommender system
models and to load the models for prediction making. The first operation is exe-
cuted by a Python script that is programmed to run every 30 minutes using the
Unix command cron. Cron is a Unix utility that allows tasks to be automatically
run in the background at regular intervals by the cron daemon. The tasks, called
cron jobs are written into a file called CronTab which contains the schedule of cron
entries to be run and at specified times. The string added to the server crontab is
the following:
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Figure 5.9. The value chain of Beat in a Bot recommendation process.

/30 * /home/musicbot/MusicBot/cron.sh

The execution time is empirically set to 30 minutes for the initial test phase;
it will be adjusted based on future analysis on the bot usage. The cronjob runs
a script that creates five Comma-Separated Values (CSV) files: one for each per-
sonality group for a total of four, and one for all the users. Those files contain the
user-like entries of the database table likes.

cat all.csv
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userID,artistID
967939456704050,412
967939456704050,441
967939456704050,691
967939456704050,986
...

Those are used to generate the prediction models for both the MostPopular and
the Item K-Nearest Neighbor algorithms. The result of this operation consists of
nine files: four Most Popular models and four ItemKNN models for the personality
groups and one Most Popular model for all the users.
To save models, the recommender system takes as input the CSV file of user’s
group, used to train the model, and generates as output, the model file. If no
–recommender option is specified, the MostPopular algorithm is used by default.
It runs using the following command:

./mymedialite/item_recommendation
--training-file=mymedialite/data/<group_name>.csv
--save-model=mymedialite/models/<group_name>_MPmodel

where the first argument specifies the path to the input file used to train the
model and the second argument where to save the model.

5.6.2 Recommendation value chain
The idea behind the recommendation process is to give users the best recommenda-
tions possible based on the data available on his ratings. Since users’ personalities
are grouped into four categories, the first decision is taken on the amount of groups
user-likes data available in the database: if data of the group to which the user
belongs to are enough i.e. there are at least 10 users who gave at least 5 ratings,
the algorithm proceeds with a second decision process otherwise, it loads the Most
Popular model file based on the Last.fm dataset, which can be used to predict
general recommendations. The second decision process checks if the active user
is part of the user-likes data of his group. If so, it means that there is a user
history and so, the ItemKNN model can be loaded and used: this allows to find
the recommendations with the highest precision possible. If the user is not part of
the user-likes data, it means that he is new to the system and he will be present
when the next cron job executes; in this case, the personality group Most Popular
model is loaded and used to predict optimal recommendations.
Recommendations prediction is executed running MyMediaLite with the following
command:
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./mymedialite/item_recommendation
--training-file=mymedialite/data/<group_name>.csv
--load-model=mymedialite/models/<group_name>_ItemKNNmodel
--prediction-file=mymedialite/mml_output/<fbuserid>.prediction

It takes three arguments: the training file used to train the model, the model that
has to be used to make predictions and the name of the output prediction file. As
a design choice, each prediction file is named with the active user’s Facebook id in
order to be unique for each user.
When the web server receives the request by Dialogflow with Recommendation as
the triggered Intent, it calls the method artistsIDsFromFile(...) that reads
the output prediction file of the active user and returns a list with the artists ids
predicted for him. At this point, for each user’s favorite music genres, the algorithm
uses the ids in the prediction list to extract from the database 50 random artists
of which only the first two are chosen to be inserted in the recommendations list.
As example, a user with a personality of the type INTP belongs to the Analysts
group and so is linked with the following vector of genres in descending order of
preference:

Analysts = [’Rock’,’Alternative’,’Classica’,’Electronica’,’Pop’,’Jazz’,
’Ambient’,’Punk’,’Metal’,Hip-Hop’,’Blues’,’World’,
’Reggae’,’Religious’]

the recommendations list for such user will contain 2 Rock artists, 2 Alterna-
tive artists and so on. In parallel, a list of indices for each recommendation is
maintained. Such list is shuffled at each iteration (and so for each music genre)
to add some randomness to recommendations. The algorithm checks if there are
doubles in the recommendations’ list and removes it. When the loop ends, the
recommendation indices’ list, which will contain 2 ids for each music genre, is first
reversed and then inserted in the database table as a JSON object in the relative
user’s row of the Users table. Finally, the Recommendations table of the database
is filled with the JSON objects of the blobs that Dialogflow sends to Messenger
and Telegram to show the recommendations. Such objects are indexed using the
recommendations indices’ list.

The solution of reverting the list of recommendations indices is due to the fact
that recommendations are given with a stack logic. This derives from the way
recommendations are presented to users in the chatbot interface: it shows one
artist recommendation at a time, in a form of a card containing the artist name,
his music genre, an image taken from his Last.fm profile and two buttons Next and
I like it! : the first is used to navigate recommendations and the second to express
a preference.
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Figure 5.10. The card with the recommended artist

The logic behind the operation of the Next button is as follows: when the button
is pressed, the Next Intent is triggered in Dialogflow and the response managed by
the web server as usual. The web server takes the list of recommendations indices
(which is reversed) from the database, pops out the id of the next recommendation
to extract the blobs from the Recommendation table, puts the list back into the
database and sends the blob to Dialogflow that forwards it to the chat interface
which will shows the artist’s card to the user; this logic provides a natural way to
take the count of recommendations in order to signaling the user when they are over
with the message: “You reached the bottom. This means your recommendations for
today are over. You can start back saying “hi” again or come visit me tomorrow
for new ones :)”.
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5.6.3 User preferences

Users can express their positive-only feedback tapping the I like it! button above
the artist’s card. Each like button is built to send a special string in a postback to
the bot. Such string is encoded as follows: “<artist_id>;<user_id>”. An Intent
named like inside Dialogflow, is triggered only by this specific string and the two
IDs contained are caught as system entities. As a consequence, the two values will
have a dedicated space in the JSON object sent to the webhook. When the web
server receives the request from Dialogflow, the two IDs can be easily read from
JSON object.

Figure 5.11. The like Intent inside Dialogflow
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At this point, the server stores the user-artist pair in the database table Likes,
that represents the user feedback. Then it replies with a randomly chosen message,
taken from a list of variants, and a quick reply button Next artist that guides the
user in the bot interaction.

Figure 5.12. Bot response to user feedback

65



5 – Implementation

If the user writes something unexpected to the bot, a fallback Intent named next -
fallback, entirely managed by Dialogflow, triggers and instructions for error recov-
ering are given to the user.

Figure 5.13. Beat in a Bot response to unexpected input during
recommendations phase
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Chapter 6

Experimental validation

6.1 Introduction
This chapter is dedicated to the experimental validation of the chatbot application
developed. The validation is composed by three different tests: a design test, a
usability test and a usefulness test. The design of the application has been tested
with an online tool called Alma, the chatbot test1 . It is based on a heuristic eval-
uation of 7 metrics of chatbots design. A test reliability study has been conducted
to validate the tool. The application usability has been tested with a qualitative
survey based on Nielsen’s heuristics. This subsection includes a background and
an analysis of the test results. The usefulness of the application has been evaluated
with an experiment: it has been asked to 43 people, between the ages of 20 and
35, to use the bot and express their preferences on recommendations considered
interesting. The subsection contains an analysis of the results obtained.

6.2 Design test
6.2.1 Introduction
To test chatbot design an online tool called Alma has been used. Alma is a free
Chrome extension released as an open source project by Jesús Martín (Product
Designer for BEEVA Labs), Carlos Muñoz-Romero (Digital Product Manager for
monoceros.xyz) and Nieves Ábalos (Conversational Interfaces expert for mono-
ceros.xyz) that acts like a chatbot itself. Alma asks 33 questions that helps to

1http://chatbottest.com/
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find problems in the human-chatbot interaction. The test is based on a heuristic
evaluation of 7 metrics of chatbot design:

• Personality: Alma’s questions tries to understand if the chatbot has a per-
sonality that can be recognized as unique, if that personality is coherent on
the whole conversation, if it is tailored on the chatbot audience and last, if
the tone adapts to the ongoing conversation.

• Onboarding: This metric will measure the clarity of the chatbot introduction
message. The onboarding has to be short and effective at the same time,
making clear what the chatbot can do and how users can get the most out
of it, avoiding errors and frustration.

• Understanding: Testing the understanding of a chatbot is something that
mainly deals with technical aspects of the development. This part really
depends on the type of service the chatbot offers: if it pretends to give a
human-like experience, the level of understanding must be high, otherwise a
command based conversation can be acceptable if the bot is mainly a single
purpose service.

• Answering / Speaking: Questions related to this metric will test how much
effectively chat elements are used inside the conversational interface. Such
elements are plain text, buttons, emojis, pictures, video, cards and any other
media and can be integrated to the chat to make the conversation much more
interesting and engaging.

• Navigation: As any good interface cannot lack of navigation tools like back
buttons and search boxes, a conversational interface has to provide ways
to help users go from some parts of the interaction to others. Navigation
questions will measure how well the chatbot implements this important in-
teraction tools.

• Error management: Conversational interfaces give a lot of freedom to users
but at a cost: users expects that the chatbot will understand everything due
the illusion of a human-like interaction. This inevitably brings errors and
this metric will test how well the chatbot can manage them.

• Intelligence: The test includes some questions that check the ability of a
chatbot to know things not necessarily said by the user, remember others
that appear during the interaction, and use that knowledge to adapt the
conversation to the user and the specific situation.
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6.2.2 Design test results
Test results are presented in a circular diagram in which each of the seven metrics
is expressed in a range between 0 and 100. Beat in a Bot design test has given the
following results:

Figure 6.1. A circular diagram reporting the scores of each metric of the test results.

Before analyzing the test results, it is necessary to have in mind that there is a
difference in the weight of the measures depending of the type of bot being tested.
The Understanding metric is much more important for a bot that has the purpose
of entertaining a human-like conversation rather then for a single-purpose bot that
mainly uses a command-based interaction. As for the former, it is expected to
answer to a large set of questions about different topics, but for the other, users
only expect replies to questions about his main activity.

Personality

As for the personality of Beat in a Bot, the score marks a value between 80 and
100, indicating a recognizable “persona”. The bot tends to maintain the same tone
during the conversation and always replies consistently with what is asked over
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time. Furthermore, the answers are always relevant, in the sense that, they reflect
user’s expectations.

Onboarding

Onboarding scores a mark of 100. The chatbot greets the user as soon as he writes
the first message explaining what his purpose is and giving the instruction on how
to continue the interaction.

Navigation

Navigation scores a mark just below 40. The reason is that, the chatbot, because
of the nature of the service it offers, does not need to provide the user with options
to undo operations since there is no critical task that needs to be undone (like for
instance, in a online shopping bots).

Chatbot Understanding

Here the chatbot has his lowest score, under 20. As for the metric “Navigation”, the
reason for this result is due to the intrinsic single-service nature of the bot, whose
conversational interface is mainly command-based. It does not need to have a
vast natural language understanding level, since available commands are presented
directly to user from the bot; this is a design choice to make the conversational
flow as effective as possible while reducing the risk of understanding errors.

Answering/Speaking

The answering/speaking metric settles on an high value, between 80 and 100.
The chatbot always gives the right answer to the given command and, once the
onboarding process is completed, it shows a card-buttons interface that allows to
navigate between recommendations or give a preference for an artist (Figure 5.10).

Error Manage

Test has given the mark of 100 for the “Error manage” metric. The bot correctly
recognizes and manages error cases and reports instructions on how to continue. A
representative example is the case in which the user tries to jump the log in phase.
The bot acknowledge that and asks the user to please log in before continue with
the conversation (Figure 5.13).

Intelligence

Intelligence scores a mark just above 60. Since the bot records the chat session and
uses an authentication system, it has the ability to remember data and preferences
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not explicitly said by the user. Those are used to adapt the conversation to the
user and to the specific situation, tailoring recommendations as preferences are
expressed.

6.2.3 Test reliability study
Tests aim to measure dimensions (or factors) of constructs through indicators. It
is known that every measurement brings errors that can be random or systematic.
To keep incidence of errors under control, the concept of reliability is introduced.
Reliability is the degree to which an assessment tool produces stable and consistent
results i.e. the degree of coherence between independent measurements of the same
construct. A measure is said to have a high reliability if it produces similar results
under consistent conditions. Usability is the construct of the test whose validity is
to be measured and its indicators are:

1. Personality

2. Onboarding

3. Navigation

4. Chatbot understanding

5. Chatbot answering

6. Error management

7. Intelligence

The reliability coefficient of the test expresses the proportion of true variance in
the measurement with respect to the total variance.

rtt = σ2(V )
σ2(X) = σ2(X) − σ2(E)

σ2(X) = 1 − σ2(E)
σ2(X) (6.1)

The variance, expressed as σ2(X) measure how far a set of (random) numbers
are spread out from their average value. It is an index of spreading. There are
several methods to compute reliability of a test:

Test-Retest Method

The Test-Retest method is the simplest way of testing the stability and reliability
of an instrument over time. Consists of submitting the test at two different times,
T1 and T2, and then calculate the correlation between the two scores. This method
relies upon the calculation of the Pearson correlation coefficient.
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Parallel-forms method

The Parallel-forms method consists of submitting two equivalent version of the test
(same average and same standard deviation) that both measure the same construct,
knowledge or skill. The test versions are given to the same sample of people within
a short period of time and an estimate of reliability is calculated from the two sets.
The correlation of the scores from the two tests is a measure of their reliability.

Split-half method

The Split-half method consists of first submitting the test once, then subdivides
the test in two equal halves and consider them as two parallel-forms (same average
and same standard deviation). The reliability is then calculated as a correlation
between values of the two forms.

Internal coherence method

The internal coherence test consists of submitting the test only once, at time T1.
Each item is considered as a separate test. The average correlation between all
the items is estimated (with special formulas), and from it, an evaluation of the
reliability coefficient is derived.

6.2.4 Reliability test and results
The method chosen to evaluate the reliability of the chatbot design test is the Test-
Retest method because it is the only one that does not require additional work on
the test itself: the test is made by external source and there is no way to subdivide
it into two equal halves; furthermore, there is no equivalent test available that can
be used as a different form. The following table shows the values of the indices
obtained in the two tests taken at time T1 and T2:
The test-retest coefficient is calculated with the following formula:

rtt = Cov(T1, T2)
Dev.St(T1) ∗ Dev.St.(T2) (6.2)

The covariance is equal to:

Cov(T1, T2) = 812,53 (6.3)

The test-retest coefficient is equal to:

rtt = 1 (6.4)
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T1 (01/25/2018) T2 (02/5/2018)
Personality 82 79
Onboarding 100 100
Navigation 38 40
Understanding 16 22
Answering 82 87
Error management 100 100
Intelligence 64 67

Average 68,86 70,71
Std. deviation 29,41 27,72

Table 6.1. Indices values obtained in tests T1 and T2

6.2.5 Result analysis

The test-retest reliability coefficients (also called coefficients of stability) vary be-
tween 0 and 1, where:

• 1 : perfect reliability,

• >= 0.9: excellent reliability,

• >= 0.8 < 0.9: good reliability,

• >= 0.7 < 0.8: acceptable reliability,

• >= 0.6 < 0.7: questionable reliability,

• >= 0.5 < 0.6: poor reliability,

• < 0.5: unacceptable reliability,

• 0: no reliability.

On this scale, a correlation of .9 (90%) would indicate a very high correla-
tion (good reliability) and a value of 10% a very low one (poor reliability). The
result obtained with the test-retest method used to evaluate the reliability of chat-
bottest.com, is a reliability coefficient equal to 1 indicating a perfect reliability of
the test.
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6.3 Usability test

To test the usability of Beat in a Bot it has been asked to 50 individuals, between
the ages of 20 and 35, to fill a survey 2 of 9 questions based on a custom review of
Jakob Nielsen’s usability heuristics for evaluating user interfaces. Jakob Nielsen,
Ph.D., is a User Advocate and principal of the Nielsen Norman Group which he co-
founded with Dr. Donald A. Norman (former VP of research at Apple Computer).
Nielsen established the “discount usability engineering” movement for fast and
cheap improvements of user interfaces and has invented several usability methods,
including heuristic evaluation. He holds 79 United States patents, mainly on ways
of making the Internet easier to use. In 1995 he developed 10 usability heuristics
(Nielsen 1995) for evaluating user interfaces. These heuristics have stood the test
of time, providing designers with a quick and easy way of evaluating the usability
of software interfaces against a set of universal design principles.

Figure 6.2. Nielsen’s Ten Heuristics.

2https://goo.gl/forms/cjmWnKvhaqSW79rf1
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6.3.1 Nielsen’s Ten Heuristics.

This subsection reports the Nielsen’s ten heuristics for user interfaces and for each
of them, an analysis is done to adapt them to the world of chatbots.

Visibility of system status

“The system should always keep users informed about what is going on, through
appropriate feedback within reasonable time.”

The medium of bots is a conversation, and conversation is governed by messages.
Since messages are ephemeral, they become stale with time and old messages are
less valuable than ones from few seconds ago.
This heuristic can be ported to chatbots in a slightly different form: the system
should allow user to request information about what is going on, through appro-
priate feedback within reasonable time.

Match between system and the real world

“The system should speak the users’ language, with words, phrases and concepts
familiar to the user, rather than system-oriented terms. Follow real-world conven-
tions, making information appear in a natural and logical order.”

The main obstacle to this heuristic is that, despite chatbots are made to chat,
they have problems with language understanding. Even those built atop the latest
tech are limited in what they can understand and how well they can respond. The
key to best follow this heuristic is to know the chatbot audience. Some users will
appreciate a command line interaction style, and others will expect to converse in
natural language. Still, others might speak in slang or abbreviations. Bots should
be built with a solid understanding of the audience they seek to appeal to.

User control and freedom

“Users often choose system functions by mistake and will need a clearly marked
“emergency exit” to leave the unwanted state without having to go through an ex-
tended dialogue. Support undo and redo.”

Chatbots can easily implement “emergency exits”, keeping the user aware of valid
options during any stage of the interaction.
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Consistency and standards

“Users should not have to wonder whether different words, situations, or actions
mean the same thing. Follow platform conventions.”

Unfortunately, at the time, there are no platform conventions for chatbots but
this heuristic can be interpreted to mean that bots should be internally consistent;
a bot should stick to a single style of language, whether that is natural language,
command line, or something in between.

Error prevention

“Even better than good error messages is a careful design that prevents a problem
from occurring in the first place. Either eliminate error-prone conditions or check
for them and present users with a confirmation option before they commit to the
action.”

Thanks to the conversational nature of chatbots, it is quite easy to follow this
design principle. Bot designers should build interactions with the assumption that
errors will happen early and often, given the ambiguity and impreciseness of most
human dialogue. Bots should ask users for confirmation before any critical step in
an interaction.

Recognition rather than recall

“Minimize the user’s memory load by making objects, actions, and options visible.
The user should not have to remember information from one part of the dialogue
to another. Instructions for use of the system should be visible or easily retrievable
whenever appropriate.”

One big problem of user interface design is that users do not seem to read much,
if at all. This problem intensifies with chatbots given that the medium is mostly
text. The majority of chatbot platforms provides structured messages that includes
button, menus and quick replies; while this seems a solution, an over-reliance on
them can feel contrived and can denatures the promise of talking to chatbots using
the human language.

Flexibility and efficiency of use

“Accelerators-unseen by the novice user-may often speed up the interaction for the
expert user such that the system can cater to both inexperienced and experienced
users. Allow users to tailor frequent actions.”
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Bots are supremely well positioned to provide these types of invisible accelera-
tors to power users providing both speaking and command interactions. While one
user might talk to the bot using well structured phrases, another may prefer to use
commands to achieve the same result. Here lies an open question: how to teach
users to become power users without resorting an help menu?

Aesthetic and minimalist design

“Dialogues should not contain information that is irrelevant or rarely needed. Ev-
ery extra unit of information in a dialogue competes with the relevant units of
information and diminishes their relative visibility.”

This principle is a little ambiguous for chatbots. Since they pretend to give an
human-like interaction, users are also led to ask questions unrelated to the core
competency of the bot. If a bot fails to reply such type of questions, the experience
will seem subpar but at the meantime, bots have a restricted area of competency
and it is impossible to cover all kinds of questions. The solution is in the middle:
bots should reply to all the questions related their area of competency plus should
be able to keep a small talk.

Help users recognize, diagnose, and recover from errors

“Error messages should be expressed in plain language (no codes), precisely indi-
cate the problem, and constructively suggest a solution.”

Easily applicable with bots. If an error occurs, bots should inform users about
that explaining what happened and how to recover.

Help and documentation

“Even though it is better if the system can be used without documentation, it may
be necessary to provide help and documentation. Any such information should be
easy to search, focused on the user’s task, list concrete steps to be carried out, and
not be too large.”

Also still applicable. Help and documentation should be accessible via the bot
itself with a menu or a command.
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6.3.2 The survey
The survey has been built keeping in mind the Nielsen’s heuristics and adapting
them to this specific thesis object application. It is composed of the following 9
items:

1. The chatbot explains its purpose clearly

2. During the conversation, the chatbot explains clearly what the user can do

3. The onboarding message (the initial greetings) makes you want to continue

4. The login system that involves the use of an external website is complicated

5. It is clear what the external web site does

6. How do you judge the usefulness of the recommendations?

7. How do you judge the overall experience?

8. Would you use it again?

9. Would you recommend it to your friends?

Users responses are structured using the Likert Scale, a psychometric scale
commonly used to scaling responses in survey research. The scale was invented by
psychologist Rensis Likert and allows respondents to specify their level of agreement
or disagreement on a symmetric agree-disagree scale for a series of statements.

6.3.3 Result analysis
The following chart shows the number of times a particular answer was given for
all the items of the survey in the form of vertical bars histograms.

The first survey item, “The chatbot explains its purpose clearly”, aims to eval-
uate if the onboarding message explains clearly what the bot can do for the user.
With 21 Strongly agree, 22 Agree, 1 Neutral, 1 Disagree and zero Strongly Disagree
responses, results confirms the item statement.

The purpose of the second item, “During the conversation, the chatbot explains
clearly what the user can do”, is to evaluate if users can easily understand what
options the bot makes available to them i.e. what users can do during the vari-
ous steps of the conversation. Results reveal that 16 participants responded with
Strongly agree, 15 with Agree, 5 with Neutral, only 1 with Disagree and zero with
Strongly disagree. It can be said that user available options during the chat are
fairly clear.
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The third item, “The onboarding message (the initial greetings) makes you want
to continue”, has the goal to measure the engagement power of the onboarding
message. Results are quite positive with 14 Strongly agree, 16 Agree, 7 Neutral,
zero Disagree and zero Strongly disagree responses. The message do its job but it
also leaves space for future improvements.

The object of the fourth item, “The login system that involves the use of an external
website is complicated”, is to see if users find the login system, which we consider
as the weak point of the application, complicated. Surprisingly, results show that
the procedure is well built from an usability perspective, and the majority of users
did not find it particularly cumbersome. Response numbers are 2 Strongly agree,
3 Agree, 7 Neutral, 13 Disagree and 12 Strongly disagree. A note on this item:
some users did not understand that the statement had a negative meaning and the
answers had to be given backwards relative to other items to express appreciation.

The fifth item whose statement is “It is clear what the external web site does”,
has the goal to understand if the bot explains clearly what is the role of the ex-
ternal website in the login procedure and if the website itself is built in a way
that does not confuse the user during the experience. This item, together with
the fourth, serves to understand the impact on usability of the particular access
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system due to the multi-platform nature of the bot. The results shows a number of
responses of 15 for both Strongly agree and Agree, 2 for Neutral, 5 for Disagree and
zero for Strongly disagree. The outcome can be interpreted as positive because,
even if there are 5 Disagree responses, the two positive responses marks a triple
score.

Item number six, How do you judge the usefulness of the recommendations? is
an explicit request to users to evaluate the quality of the recommendations in
terms of usefulness, that is the actual approval of the recommended artists. Al-
though positive responses score 12 for Strongly Agree and 16 for Agree, the results
show a significant number of Neutral responses, 9 to be precise; the reasons for
this result are due to the fact that many users did not know the artists proposed
and responded to the survey without first having listened to them. Unfortunately,
this phenomenon has been difficult to control, but despite this, the overall result
is positive.

Regarding the seventh item, How do you judge the overall experience?, results
are quite positive with a total of 16 Strongly agree responses, 19 Agree responses,
only 2 Neutral and zero responses for Disagree and Strongly disagree. This is a
clear sign of the goodness of Beat in a Bot it terms of usability.

The eighth item, Would you use it again?, aims to measure if users feel satisfied of
the overall experience and consider Beat in a Bot, a valid tool for the recommenda-
tion of new music artists to listen to. Results are: no negative responses (Strongly
disagree and Disagree), 7 Neutral, 17 Agree and 13 Strongly agree, showing a good
level of user appreciation.

The last item, Would you recommend it to your friends?, aims to evaluate the
application as a whole and to check if it is interesting enough to make people talk
about it. An high number of Strongly agree and Agree responses, 18 and 13 respec-
tively, confirms that the bot has aroused curiosity between users and the 6 Neutral
responses can be seen as an incentive for a further improvement of the service.
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6.4 Usefulness test

The usefulness test, carried out together with the usability test, aims to implicitly
measure how much users have found the tool useful, from the number of positive-
only feedback given to the proposed recommendations. Participants were asked
to use the bot, scroll through at least 10 suggestions and mark those considered
interesting. The actual users of the application were 27, 4 women and 23 men aged
between 20 and 35. The distribution of users based on their belonging to a certain
Myers-Briggs Type Indicator is shown in the following graph:

Figure 6.3. Distribution of users per MBTI.

Bars indicates a distribution of 8 INTP users, 8 ISTJ users, 3 INTJ users,
2 INFP, 2, ISTP, 2 ESTP, and 1 ENTP user. Adding the feedback from users
belonging to the same MBTI group, we obtain a result of 47 feedback from INTP
users, 52 feedback from ISTJ users, 33 feedback from INTJ, 14 feedback from INFP,
10 feedback from ISTP, 7 feedback from ESTP and 4 from ENTP. The result is
summarized in the figure below. Bars indicates the total number of feedback given
by each group of users. The similarity between the distribution of users graph and
the total number of feedback graph, shows that the number of preferences is directly
proportional to the number of users and that the average number of preferences
given for each user within his group is similar among the various groups.
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This is clearly shown by the dimension likeness of the colored part of the radial
graph above, where each of them represents the average number of feedback given
by users of each group. Numbers are 5.9 for INTP users, 4 for ENTP users, 3.5
for ESTP users, 7 for INFP, 11 for INTJ, 6.5 for ISTJ and 5 for ISTP. We can
conclude that, since it has been asked to go through at least 10 recommendations
and participants had the freedom of withdraw at each moment, a number of average
feedback greater than 5 for the majority of groups is a good result in terms of
application usefulness.
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Conclusions

The goal of this project was to experiment the usage of a multi-platform chatbot
as an interface for a recommender system and an affective computing service. The
first step was to outline an high-level architecture of the application then we went
to choose the individual components that best suited the solution defined: chatbot
logic management and multi-channel deployment were compassed with Dialogflow,
a conversational agent builder by Google. Facebook Login were used as authenti-
cation system, implemented with Facebook Javascript SDK into a HTML5 website
hosted on GitHub Pages. Recommendations were computed with MyMediaLite
choosing the algorithm on the basis of a value chain that takes into account the
size of the dataset and its content; the cold start problem were mitigated using
data about user’s personality, predicted with the affective computing service Apply
Magic Sauce and a study about the connection between music preferences and per-
sonality by NERIS Analytics. As for music artists data, the hetrec2011-lastfm-2k
gold standard by Ignacio Fernández-Tobías, Iván Cantador and Alejandro Bellogín,
were used. Dataset and data about users authentication and artist preferences
were stored using a MySQL database. User-tailored responses, database queries
and HTTP requests are managed by an Apache/Flask backend written in Python
and hosted on a server of the ISMB research center. After the architecture config-
uration, the bot was released on Facebook Messenger and Telegram with the name
Beat in a Bot.
Bot validation were done with three tests: a design test made with Alma, the
chatbot test, an usability test taken with a Nielsen’s heuristic-based survey and
a usefulness test based on usage analytics of the bot. Test results has revealed
bot strength and weaknesses and a good overall level of user’s appreciation. The
developed chatbot lends itself to a variety of future improvements. The main one
concerns the prediction phase of user’s personality. At the moment, it relies upon
two external web services, Apply Magic Sauce API and Facebook Graph API and
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has the user requirement of a Facebook account. External web services provide
a fast and easy way to obtain a result, but they may become a problem for the
application maintaining due to the fact that their functionality may change over
time, they have limitations and they are not under the complete control of the
chatbot developer. The Facebook account requirement can be an obstacle for pri-
vacy concerned people that do not want to share their personal information and
also for others that do not have a Facebook account. A solution to this problem is
represented by the possibility of predicting user’s personality from the chat itself,
using only text. This can be achievable expanding the onboarding experience with
a little conversation before moving to artist recommendations. Several studies have
explored the possibility of personality prediction from plain text. One worth men-
tioning is TwitPersonality by Carducci et al. (Carducci G. 2018) who presented
a supervised learning approach to compute personality traits by only relying on
what an individual tweets about his thoughts publicly. There also are several
products already available that are able to find user’s personality from written
text, like IBM Personality Insights 1, Apply Magic Sauce itself and Textgain2 but,
while they eliminate the need of a social account, they still have all the problem
of external services already discussed. Furthermore, to generate a reliable person-
ality prediction, 100 to 200 words are required and this is difficult to achieve in a
entertainment chatbot application.

From a financial perspective, the chatbot can be used to generate earnings ap-
plying a freemium pricing strategy. Freemium is a pricing plan by which a product
or service is provided free of charge, but money (premium) is charged for addi-
tional features, services, or virtual goods. The plan includes two versions of the
chatbot: a free version that provides only the names and images of artists as rec-
ommendations and a paid version that gives the possibility to receive personalized
music playlists composed of the best songs of the recommended artists. Playlists
can be created for all the different music streaming platforms available, so that
the chatbot can be used by a wider audience, rather than being proposed as an
individual service.
In conclusion, chatbots represent a good alternative to websites and apps and are
flexible enough to be used in conjunction with artificial intelligence, data science,
recommender systems and other fields of technology. They find their place in a wide
variety of applications, from entertainment to customer care, from e-commerce to
even psychotherapy. The chatbot developed for this thesis project has aroused
interest between users and can be considered a valid tool for personalized music
recommendation.

1https://www.ibm.com/watson/services/personality-insights/

2https://www.textgain.com/
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