
.

POLITECNICO DI TORINO
Collegio di Ingegneria Informatica, del Cinema e Meccatronica

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Design of an Enterprise-Grade

Software-Defined Datacenter Network

Supervisors

prof. Marco Giuseppe Ajmone Marsan (Politecnico di Torino)

...

prof. Giovanni Pau (Sorbonne Université)

..

Candidate

Gianstefano Monni

 ..

April 2018

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE MASTER’S DEGREE
OF DOCTOR IN COMPUTER ENGINEERING

 AT THE POLYTECHNIC UNIVERSITY OF TURIN

 To dad and mum.

ACKNOLEDGEMENTS

I would like to thank my supervisors, prof. Pau, whose support gave me the confidence to
start this work and really helped me in gathering the ideas for this paper, and prof. Marsan
for his precious and continuous feedback during the development of this work.
A special thank is for my wife Francesca, who always supported me, and without whom this
journey would have never been started, and, finally, I would like to thank Alex, Jeff, and all
the colleagues of the Zurich Enterprise Architecture and Service Design team whose concepts
and principles inspired part of this work.

Design of an Enterprise-Grade Software-Defined Datacenter Network

i

Table of Content

Table of Figures .. xiv

List of Tables .. xx

1 Introduction ... 1

1.1 Abstract ... 1

1.2 Organization of the document .. 1

1.3 Scope of the document .. 2

1.4 Abbreviations, acronyms and Descriptions ... 2

1.5 Main Revisions and Release Plan .. 3

SECTION I - DATACENTER NETWORK REQUIREMENTS .. 4

2 High level Requirements .. 4

2.1 Abstract ... 4

2.2 Business requirements ... 4

2.2.1 Effective and efficient .. 4

2.2.2 Ability to change .. 4

2.2.3 Improve business operations .. 5

2.2.4 Secure .. 5

2.2.5 Cost Effective ... 5

2.2.5.1 CAPEX and OPEX .. 5

2.3 Enterprise Requirements .. 6

2.3.1 IT Service Management ... 6

2.3.2 Service Catalogue .. 6

2.3.3 Service monitoring / Reporting ... 6

2.3.4 Information/lifecycle management ... 6

2.4 Business User requirements ... 7

2.4.1 The disappear of the work-place ... 7

2.4.1.1 Consumerization of IT and BYOD .. 7

2.4.1.2 From Location-based to Mobile-Centric ... 8

2.5 Software Development requirements: Dev/OPS and Infrastructure as Code 9

2.5.1 From Waterfall to CI/CD .. 9

2.5.1.1 Continuous Integration .. 10

2.5.1.2 Continuous Delivery ... 10

2.5.1.3 Continuous Deployment... 10

2.5.1.4 How They Work Together .. 11

Design of an Enterprise-Grade Software-Defined Datacenter Network

ii

2.5.2 The Dev/Ops approach .. 11

2.5.2.1 Dev Vs Ops ... 12

2.5.2.2 Infrastructure as code .. 12

2.6 Security ... 14

2.6.1 Security Controls ... 14

2.7 Business Continuity .. 16

2.7.1 Disaster Recovery .. 16

2.8 Other requirements ... 17

2.8.1 Government Regulations ... 17

2.8.2 Regulatory and other compliance Requirements .. 17

2.8.3 Support to Legacy Systems .. 17

2.8.4 Restrictions on Encryption... 18

2.8.4.1 Use of Cryptography .. 18

2.8.4.2 Import of Cryptography .. 18

2.8.4.3 Export of Cryptography .. 18

2.8.5 Restrictions on specific Data flows .. 19

3 Datacenter network-specific Requirements .. 20

3.1 Abstract ... 20

3.2 From Distributed to Centralized Networking in the Datacenter 20

3.2.1 Historical background .. 20

3.2.2 Distributed vs centralized networking in the datacenter .. 22

3.2.3 The need of a new approach to network management .. 23

3.2.4 The shift in datacenter traffic pattern: from North-South to East-West 23

3.2.5 Centralize the control plane .. 25

3.3 Inadequacies in Today’s Datacenter Networks .. 26

3.3.1 MAC Address Explosion ... 26

3.3.2 Number of VLANs .. 27

3.3.3 Spanning Tree .. 28

3.4 Agility with Stability ... 29

3.5 Failure Recovery .. 30

3.6 Dynamic infrastructure Delivery Model .. 30

3.6.1 Cloud computing Classifications .. 30

3.6.2 Service delivery Models ... 31

3.6.2.1 IaaS .. 31

3.6.2.2 PaaS ... 31

3.6.2.3 SaaS ... 31

3.6.3 Deployment Models .. 32

Design of an Enterprise-Grade Software-Defined Datacenter Network

iii

3.6.3.1 Public Cloud ... 32

3.6.3.2 Private Cloud .. 33

3.6.3.3 Hybrid Cloud .. 33

3.6.4 Containerization and Micro-segmentation .. 34

3.6.5 Multitenancy ... 34

3.6.6 Resource-location driven network topology ... 35

3.6.7 Infrastructure Automation and Orchestration .. 35

3.6.8 Zero Touch Provisioning (ZTP) ... 35

3.7 Carrier neutrality ... 36

SECTION II - DATACENTER NETWORK SPECIFICATIONS AND DESIGN TOOLS 37

4 Design Principles .. 37

4.1 Abstract ... 37

4.2 Architecture principles ... 37

4.3 A model for the Datacenter Network Topology ... 37

4.4 The three pillars of a modern DCN .. 38

4.5 Orchestration and dynamic resource allocation .. 38

4.6 Distributed Datacenter and Business Continuity Model ... 39

5 Network Topologies for the DCN .. 40

5.1 Abstract ... 40

5.2 Datacenter network topologies .. 40

5.2.1 Taxonomy of DCN topologies .. 40

5.2.2 Comparison of topologies ... 41

5.2.2.1 Comparison of Scale ... 41

5.2.2.2 Comparison of performances ... 43

5.3 Clos Networks .. 44

5.3.1 The first appearance of Clos Networks: the telephony systems 44

5.3.1.2 Clos networks architecture ... 45

5.3.1.3 Clos Theorem ... 45

5.3.2 The second appearance of Clos Networks: within Network Switches 45

5.3.3 The Datacenter Network Journey .. 46

5.3.3.1 Fat-tree topology ... 47

5.3.3.2 Design using active/active pair of links ... 47

5.3.4 The third appearance of Clos Networks: Spine-Leaf Architecture in DCN 48

5.3.5 POD-based design ... 50

5.3.6 Top-Of-Rack (ToR) ... 51

5.4 Modern Massively Scalable Datacenters examples ... 51

Design of an Enterprise-Grade Software-Defined Datacenter Network

iv

5.4.1 Amazon Datacenter Network Topology .. 52

5.4.1.1 Design parameters ... 52

5.4.1.2 Deployment Unit .. 52

5.4.1.3 Amazon POD .. 53

5.4.1.4 AWS DCN ... 53

5.4.2 Facebook Datacenter Network Topology .. 54

5.4.2.1 Deployment unit .. 54

5.4.2.2 FB Spine switch equivalent ... 55

5.4.2.3 FB POD ... 55

5.4.2.4 FB DCN Topology .. 56

5.4.3 Google Datacenter Network Topology .. 57

5.4.3.1 Google DCN .. 57

5.4.3.2 Deployment unit – Centauri reconfigurable chassis .. 57

5.4.3.3 Middle Block .. 58

5.4.3.4 Spine Block ... 58

5.4.3.5 Aggregation Block - Tier 1... 59

5.4.3.6 The Jupiter DCN Topology .. 59

5.4.4 Other topologies ... 60

5.4.4.1 Microsoft Azure Network Topology .. 60

5.4.4.2 Oracle Cloud... 61

5.4.4.2.1 Datacenter network (Availability Domains) .. 61

5.4.4.2.2 Regions .. 61

5.4.5 Comparison of the MSDC topologies ... 62

5.4.5.1 Architecture ... 63

5.4.5.2 Size .. 64

5.4.5.3 Performance .. 64

6 Network Virtualization ... 65

6.1 Abstract ... 65

6.2 Rise of virtualization .. 65

6.3 Properties of network Virtualization in the Datacenter ... 65

6.3.1 Switch systems Virtualization .. 65

6.3.1.1 Virtual Switching System (VSS) ... 66

6.3.1.2 Stacking.. 66

6.3.2 Access-Link Virtualization .. 67

6.3.2.1 LACP ... 67

6.3.2.2 Virtual Port Channel ... 67

6.3.3 VLANs .. 68

6.3.4 Network overlays .. 68

Design of an Enterprise-Grade Software-Defined Datacenter Network

v

6.3.4.1 L2 in L2 - Cisco Fabricpath .. 69

6.3.4.2 L2 in L4 – VXLANs ... 69

6.3.4.3 Other overlays.. 70

6.4 Virtualization of the network processes .. 71

6.4.1 vDCs... 71

6.4.2 VRFs ... 72

7 Software Defined Networking .. 73

7.1 Abstract ... 73

7.2 Data, control and management planes in network switches .. 73

7.3 Why SDN?.. 74

7.3.1 Forerunners of SDN ... 75

7.3.2 The Evolution of Network Switches ... 76

7.4 What is SDN? ... 77

7.4.1 The Five Goals of SDN .. 78

7.4.2 SDN Classification .. 79

7.5 Classical SDN.. 80

7.5.1 Forwarding Domain: SDN Switches (using OpenFlow) .. 80

7.5.1.1 Southbound API Layer .. 81

7.5.1.2 Abstraction Layer and Flow Tables ... 81

7.5.1.3 Forwarding Layer ... 82

7.5.1.4 Network Abstracted model .. 82

7.5.1.5 Proactive vs reactive Flows... 83

7.5.2 SDN Controller ... 84

7.5.2.1 SDN Controller Core operations ... 84

7.5.2.2 Northbound protocols .. 85

7.5.3 Applications and Orchestrations Domain .. 86

7.5.4 Big Switch Big Cloud controller (BCF): an example of Open/SDN Solution 87

7.6 VXLAN and SDN based on Overlays... 88

7.6.1 Introduction .. 88

7.6.1.1 Main features of Overlays in the DCN... 89

7.6.1.2 Classification of overlays .. 90

7.6.2 VXLAN Key Concepts ... 91

7.6.2.1 VXLAN Network Identifier .. 92

7.6.2.2 Host-based VXLAN Tunnel Endpoint ... 92

7.6.2.3 Network-based VXLAN Tunnel Endpoint... 93

7.6.2.4 VXLAN pros and cons ... 94

7.6.2.5 Network Discovery and Overlays .. 94

Design of an Enterprise-Grade Software-Defined Datacenter Network

vi

7.6.2.6 VXLAN control and management plane .. 95

7.6.2.6.1 OVSDB ... 95

7.6.2.6.2 EVPN ... 95

7.6.2.6.3 XMPP ... 96

7.6.3 Juniper Networks Contrail: an example of Overlay-based SDN 97

7.7 Hybrid SDN / SDN on API .. 98

7.7.1 Programmable SDN via Device API .. 98

7.7.2 Programmable SDN via Controller API .. 99

7.7.2.1 Controller API in the WAN: SD-WAN use-case .. 100

7.7.2.2 Controller API in the Datacenter: OpenDayLight... 100

7.7.3 Hybrid SDN via Policy API .. 101

7.7.4 Cisco APIC-DC: an example of SDN via Policy API .. 102

7.7.4.1 Cisco APIC model and promise theory .. 103

7.7.4.2 Physical Topology Model .. 104

8 Network Functions Virtualization ... 105

8.1 Abstract ... 105

8.1.1 The transition to Network Function Virtualization .. 105

8.1.2 The need of a modern Architectural framework ... 106

8.2 The NFV Framework ... 107

8.2.1 The three criteria of ETSI NFV.. 107

8.2.2 The High Level ETSI NFV Framework ... 107

8.2.3 NFVI and resource sharing... 108

8.2.4 Main advantages of NFV ... 109

8.3 Network Function Chaining .. 110

8.3.1 SFC Architecture .. 111

8.3.1.1 SFC Architecture principles ... 111

8.3.1.2 SFC Service Function Chain Classification and Encapsulation .. 111

8.3.1.3 Network Service Header (NSH) ... 112

8.3.1.4 Metadata ... 113

8.3.2 SFC Use Cases in the DCN .. 113

8.3.2.1 North-South Traffic .. 113

8.3.2.2 East-west traffic ... 115

8.3.2.3 Multi-tenancy... 116

9 Datacenter Network as a Service with SDN, NFV and NFC....................................... 118

9.1 Abstract ... 118

9.2 SDN and NFV ... 118

9.3 Network as a Service .. 120

Design of an Enterprise-Grade Software-Defined Datacenter Network

vii

9.3.1 Virtual Infrastructure build .. 120

9.3.2 Enable Network Self-management and monitor ... 123

9.4 Security Considerations .. 124

SECTION III - DESIGN OF AN ENTERPRISE DATACENTER NETWORK 126

10 The Distributed Datacenter Model (DDC) ... 126

10.1 Abstract ... 126

10.2 Applications and services landscape ... 126

10.2.1 Colocation and Cloud computing in the enterprise ... 127

10.2.2 Service Access Exchange ... 128

10.3 Distributed Datacenter Topology Diagram .. 129

10.4 Service Space ... 130

10.4.1 Private Datacenters ... 130

10.4.1.1 Technical Integration and Management (TIAM) ... 130

10.4.1.2 Network Services ... 130

10.4.1.3 Storage... 131

10.4.1.4 Security Services .. 131

10.4.1.5 Disaster Recovery model .. 132

10.4.1.5.1 Sacrificial UAT .. 133

10.4.1.5.2 ISO DR Section.. 133

10.4.1.5.3 DR Test ... 133

10.4.1.5.4 Real DR invocation ... 133

10.4.2 IaaS Services .. 134

10.4.3 PaaS/SaaS Services .. 134

10.4.4 Shared Services ... 134

10.4.4.1 DNS and IPAM .. 134

10.4.4.2 NTP .. 134

10.4.4.3 Authentication, Authorization and Identity Management .. 134

10.4.4.4 Service Aggregation and Orchestration .. 135

10.5 User Space ... 135

10.5.1 Internal Users .. 135

10.5.1.1 MPLS/WAN .. 135

10.5.1.2 VPN/Remote access ... 135

10.5.2 3rd Parties/Partners connectivity ... 135

10.5.3 External Users, Customers .. 136

10.6 Distributed Datacenter Global Network .. 136

11 High-Level Design of an Enterprise Grade Software Defined Datacenter network ... 137

Design of an Enterprise-Grade Software-Defined Datacenter Network

viii

11.1 Abstract ... 137

11.2 DDC ... 137

11.2.1 High Level Design .. 137

11.2.2 Service Provider Network (SPN) .. 138

11.2.3 Inter-Zone Gateway .. 139

11.3 Private Datacenter ... 139

11.3.1 Summary of the Specifications .. 139

11.3.2 DCN Contexts .. 139

11.3.2.1 CORE .. 140

11.3.2.2 DCI ... 140

11.3.2.3 Production ... 141

11.3.2.4 Non-Production .. 141

11.3.2.5 DMZ ... 142

11.3.2.6 Isolated Test ... 143

11.3.3 PROD/DEV Datacenter network topology ... 144

11.3.4 UAT/DR Datacenter Network Topology .. 145

11.3.5 Private DCN Network Functions .. 145

11.3.5.1 Stateful Firewall ... 145

11.3.5.2 Application-Aware Firewall .. 146

11.3.5.3 Load Balancer / Reverse Proxy ... 146

11.3.5.4 Tap ... 146

11.3.6 DCN Network Function Chains .. 146

11.3.6.1 Multi-purpose Firewall ... 146

11.3.6.2 Application-Level Gateway ... 146

12 Classical SDN Design using Big Switch Big Cloud Fabric ... 147

12.1 Abstract ... 147

12.2 DCN Physical Topology ... 147

12.2.1 Oversubscription ... 148

12.2.2 Scalability and bi-sectional bandwidth .. 148

12.2.3 Racks per pod .. 149

12.2.4 Network components ... 150

12.3 Logical View of the Enterprise private DCN using BCF .. 150

12.3.1 Key logical components .. 150

12.3.2 Primary Datacenter ... 151

12.3.2.1 Intra-tenant routing ... 151

12.3.2.2 Inter-tenant routing ... 151

12.3.3 Secondary Datacenter ... 152

Design of an Enterprise-Grade Software-Defined Datacenter Network

ix

12.3.3.1 Intra-tenant routing ... 152

12.3.3.2 Inter-tenant routing ... 152

12.4 Network Function Chaining .. 153

12.4.1 Virtual Network Functions .. 153

12.4.2 Context Firewall .. 154

12.4.2.1 Intra-Tenant Firewall .. 154

12.4.2.2 Inter Tenant Firewall .. 155

12.4.3 Context Firewall + Load Balancing SFC .. 155

12.5 Integration with VMWare vSphere ... 156

13 Overlay-based Design using Juniper Contrail .. 157

13.1 Abstract ... 157

13.2 DCN Underlay .. 158

13.2.1 Physical topology .. 158

13.2.1.1 Oversubscription .. 158

13.2.1.2 Scalability and bi-sectional bandwidth ... 159

13.2.2 Routing Options for the underlay.. 159

13.2.2.1 eBGP or iBGP .. 159

13.2.2.2 eBGP Design ... 160

13.2.2.3 Routing for the Primary and Secondary DCN underlay ... 161

13.3 DCN Overlay .. 161

13.3.1 Virtual network ... 161

13.3.2 Network policies ... 161

13.3.3 vRouter ... 162

13.3.4 Integration with ToR Switches (using OVSDB) ... 162

13.4 Logical view of the Enterprise private DCN using Contrail .. 164

13.4.1 Primary Datacenter ... 164

13.4.1.1 Intra-tenant routing ... 164

13.4.1.2 Inter-tenant routing ... 164

13.4.2 Secondary Datacenter ... 165

13.4.2.1 Intra-tenant routing ... 165

13.4.2.2 Inter-tenant routing ... 165

13.5 Network Function Chaining .. 166

13.5.1 NFC Modes .. 166

13.5.2 NFC Elements .. 166

13.5.3 Types of Service Chaining .. 166

13.5.3.1 VNF Chaining (V-NFC) ... 166

13.5.3.2 PNF Chaining (P-NFC) ... 167

Design of an Enterprise-Grade Software-Defined Datacenter Network

x

13.5.3.3 Hybrid NFC (H-NFC) .. 168

13.6 Integration with VMWare vSphere ... 169

13.6.1 vCenter-only mode ... 169

13.6.2 vCenter-as-Compute Mode ... 169

14 Intent-based design using Cisco ACI .. 170

14.1 Abstract ... 170

14.2 Key components .. 170

14.2.1 Cisco ACI Operating System .. 170

14.2.2 Physical Topology .. 170

14.2.2.1 APIC Controller Connectivity .. 171

14.2.2.2 External connectivity (Border Leaf) .. 172

14.2.2.3 Border Leaf Switch Design Consideration ... 173

14.2.3 The policy Object model ... 174

14.2.3.1 Tenants .. 174

14.2.3.2 Contexts ... 174

14.2.3.3 Endpoint groups ... 175

14.2.3.4 Contracts.. 175

14.2.4 The southbound protocol: OPFlex... 176

14.2.5 ACI Routing and Pervasive Gateway.. 177

14.2.6 ACI Forwarding .. 177

14.2.7 Service Function Chaining ... 179

14.2.7.1 Service insertion ... 179

14.2.7.2 Service graph ... 180

14.3 DCN Physical Topology ... 181

14.3.1 Design options .. 181

14.3.2 Oversubscription ... 182

14.3.3 Scalability and bi-sectional bandwidth .. 182

14.3.4 DCN Design ... 183

14.3.5 ToR to Spine Connection ... 184

14.4 Logical View ... 185

14.4.1 Tenants ... 185

14.4.2 Primary Datacenter ... 185

14.4.3 Secondary Datacenter ... 186

14.4.4 PROD and DEV Web Application ... 187

14.4.4.1 End-to-end access to DEV and PROD .. 188

14.5 Integration with VMWare vSphere ... 189

Design of an Enterprise-Grade Software-Defined Datacenter Network

xi

15 Comparison of the high-level designs ... 190

15.1 Abstract ... 190

15.2 Criteria .. 190

15.3 Physical infrastructure ... 190

15.3.1 Evaluation Parameters .. 190

15.3.2 Reference model for the physical DCN ... 191

15.3.3 Design performances .. 191

15.3.4 Benchmarking ... 192

15.3.4.1 Big Switch BCF .. 193

15.3.4.2 Juniper Contrail .. 193

15.3.4.3 Cisco ACI .. 193

15.4 Network Control Plane (SD-Layer) .. 193

15.4.1 Evaluation parameters .. 193

15.4.2 Benchmarking ... 194

15.4.2.1 Big Switch BCF .. 194

15.4.2.2 Juniper Contrail .. 194

15.4.2.3 Cisco ACI .. 194

15.5 Network Function Chaining and micro-segmentation .. 194

15.5.1 Evaluation parameters .. 194

15.5.2 Benchmarking ... 195

15.5.2.1 Big Switch BCF .. 195

15.5.2.2 Juniper Contrail .. 195

15.5.2.3 Cisco ACI .. 195

15.6 Orchestration .. 196

15.6.1 Evaluation parameters .. 196

15.6.2 HLD performances .. 196

15.6.2.1 Big Switch BCF .. 196

15.6.2.2 Juniper Contrail .. 196

15.6.2.3 Cisco ACI .. 196

15.7 Gartner Report for Datacenter Networking (2017) .. 197

15.7.1 Market Directions ... 197

15.7.1.1 The CLI Is Dead; the API Is Cool .. 197

15.7.1.2 Value Continues to Shift Toward Software ... 197

15.7.1.3 Fabrics Are the New Normal ... 197

15.7.1.4 Analytics and Intent-Based Networking .. 197

15.7.1.5 Open Networking ... 198

15.7.1.6 Disaggregation/Brite Box.. 198

15.7.1.7 Hyper Converged Integrated Systems (HCISs) ... 198

Design of an Enterprise-Grade Software-Defined Datacenter Network

xii

15.7.1.8 Containers .. 199

15.7.2 Magic Quadrant .. 199

15.7.3 Big Switch BCF ... 200

15.7.3.1 Description ... 200

15.7.3.2 Strengths .. 200

15.7.3.3 Cautions ... 200

15.7.4 Juniper Networks .. 201

15.7.4.1 Description ... 201

15.7.4.2 Strengths .. 201

15.7.4.3 Cautions ... 201

15.7.5 Cisco ACI .. 202

15.7.5.1 Description ... 202

15.7.5.2 Strengths .. 202

15.7.5.3 Cautions ... 202

16 Future Developments ... 203

16.1 Abstract ... 203

16.2 Google SDN ... 203

16.2.1 The four pillars .. 203

16.2.2 Google Espresso .. 204

16.2.3 The six high availability principles ... 205

16.3 Microsoft Azure and HSDN ... 206

16.3.1 Challenges ... 206

16.3.1.1 Brite boxes switches ... 206

16.3.1.2 ECMP forwarding ... 207

16.3.1.3 Cloud Scaling .. 208

16.3.2 Hierarchical SDN goals .. 208

16.3.3 Microsoft H-SDN Architecture... 208

16.3.3.1 Forwarding ... 209

16.3.3.2 Control plane ... 211

16.4 Facebook SDN .. 212

16.4.1 Abstract the network .. 213

16.4.2 Forwarding plane programmability ... 214

16.4.2.1 Network visibility (In-band network telemetry) .. 214

16.4.2.2 L4 Load Balancing ... 215

16.4.3 FB Disaggregated datacenter .. 216

16.5 SD-WAN .. 217

16.5.1 Introduction .. 217

Design of an Enterprise-Grade Software-Defined Datacenter Network

xiii

16.5.2 Software-Defined WAN ... 217

16.5.3 SD-WAN as an enabler for the Cloud .. 218

16.5.4 The future of SD-WAN... 219

16.6 Stitching all together: a future Enterprise Software-Defined Network 220

16.6.1 Evolutions of the Enterprise SDN .. 220

16.6.2 A possible topology for the future Enterprise DCN ... 221

16.6.3 SD-DCNs and SD-SAE ... 222

16.6.4 SD-WAN .. 224

16.6.5 Integrate SD-WAN and SD-DCN policies .. 224

16.6.6 Enterprise Network Orchestrator.. 226

16.6.7 The frontier: Self-managed software-defined datacenter 226

17 Bibliography ... a

Design of an Enterprise-Grade Software-Defined Datacenter Network

xiv

Table of Figures

Figure 2-1 - Employee Productivity benefit of mobile Apps [3] .. 8

Figure 2-2 - Rising of Personal Mobile Device support in the Enterprise [3] 8

Figure 2-3 - Waterfall model .. 9

Figure 2-4 - Dev/OPS and CI/CD relation ... 9

Figure 2-5 - Dev/OPS as the common ground for QA, Ops and DEV 11

Figure 2-6 - Infrastructure platform API clients [4] ... 13

Figure 3-1 – ToR Switches organization ... 22

Figure 3-2 - East-west Dataflows in a social-network Application .. 23

Figure 3-3 - Datacenter traffic flow shift: from North-South to East-West 24

Figure 3-4 - MAC Address Table Overflow ... 27

Figure 3-5 - 12 bits reserved for the VLAN ID (4094 VLANs) ... 28

Figure 3-6 - Redundant links blocking by STP .. 28

Figure 3-7 - the three main Cloud service delivery models ... 31

Figure 3-8 - Cloud Deployment Models ... 32

Figure 3-9 - Traditional Static Network Service path ... 35

Figure 4-1 - Distributed Datacenter model and BC ... 39

Figure 5-1 - Taxonomy of Datacenter network topologies (Fig. 3.1 in [22]) 40

Figure 5-2 - "3 stage switching array" (Fig. 3 in [35])... 44

Figure 5-3 - 3-stage Clos network [35] ... 45

Figure 5-4 - The datacenter network Journey [36] .. 46

Figure 5-5 - Traditional Three-Tier Datacenter Design .. 47

Figure 5-6 – STP to vPC improvement in the DCN [36] ... 48

Figure 5-7 - Datacenter Design with Extended Layer 3 Domain [37] 48

Figure 5-8 - Spine-Leaf Architecture (3-layers Clos) .. 49

Figure 5-9 - Datacenter Design with Extended Layer 3 Domain [37] 49

Figure 5-10 - Pod Design vs traditional [38]... 50

Figure 5-11 - ToR model. .. 51

Figure 5-12 - Amazon basic deployment unit .. 52

Figure 5-13 - Amazon TOR switch (assumption) .. 52

Figure 5-14 - Fabric Switch Configuration (Aggregation Layer) ... 52

Figure 5-15 - AWS POD .. 53

Figure 5-16 - AWS DCN Topology .. 53

Design of an Enterprise-Grade Software-Defined Datacenter Network

xv

Figure 5-17 - FB Datacenter 3D Representation [41] ... 54

Figure 5-18 - FB DC Deployment unit – Spine and Fabric configuration 54

Figure 5-19 - FB DC Deployment unit - TOR configuration .. 54

Figure 5-20 – FB spine – equivalent ... 55

Figure 5-21 - Facebook DC POD ... 55

Figure - 5-22 - Facebook DCN Topology .. 56

Figure 5-23 - Centauri in Main Mode... 57

Figure 5-24 - Centauri in TOR Mode .. 57

Figure 5-25 - Centauri in Middle Mode ... 58

Figure 5-26 - Middle Block topology .. 58

Figure 5-27 - Spine Block topology diagram .. 59

Figure 5-28 - Jupiter Aggregation Block ... 59

Figure 5-29 - Jupiter DCN Topology ... 60

Figure 5-30 - Oracle DCN Clos Topology [45] ... 61

Figure 5-31 - Regions in Oracle Cloud [45] .. 61

Figure 6-1 - Cisco VSS and VSL [49] .. 66

Figure 6-2 - Stacking of 4 switches ... 66

Figure 6-3 - LACP aggregation .. 67

Figure 6-4 STP to vPC improvement [51] ... 67

Figure 6-5 - VLAN Access and Trunking ... 68

Figure 6-6 - FabricPath Header .. 69

Figure 6-7 - VXLAN communication ... 70

Figure 6-8 - Default Operating Mode with Single Default VDC [59] .. 71

Figure 6-9 - vDC Mode [59] .. 72

Figure 6-10 - Multiple VRF instances inside the same physical Router 72

Figure 7-1 - Roles of control, management and data plane .. 73

Figure 7-2 - Switching and networking functions migrating to Hardware [61] 76

Figure 7-3 - From Traditional Networking to Classic SDN ... 77

Figure 7-4 - Classification of SDN ... 79

Figure 7-5 - Overview of SDN Operations .. 80

Figure 7-6 - SDN Hardware Switch Block Diagram... 81

Figure 7-7 - Flow Table Entry ... 82

Figure 7-8 - TCAM Matching [75] ... 83

Design of an Enterprise-Grade Software-Defined Datacenter Network

xvi

Figure 7-9 - Block diagram of a SDN Controller ... 84

Figure 7-10 - Northbound API on Classic SDN controller .. 85

Figure 7-11 - Big Switch – Classical SDN Architecture [76] .. 87

Figure 7-12 - Physical topology of a DCN based on Big Switch SDN [76] 88

Figure 7-13 - Host Overlays .. 90

Figure 7-14 - Network Overlays ... 91

Figure 7-15 - Hybrid Overlays .. 91

Figure 7-16 - VXLAN Encapsulation with Host-based VTEPs ... 92

Figure 7-17 - VXLAN Encapsulation with Hybrid VTEPs ... 93

Figure 7-18 - VXLAN Encapsulation Format ... 94

Figure 7-19 - Contrail Architecture .. 97

Figure 7-20 - Hybrid SDN approaches .. 98

Figure 7-21 - Hybrid SDN via Device API .. 98

Figure 7-22 - Hybrid SDN via Controller API .. 99

Figure 7-23 - Hybrid SDN via Policy API ... 101

Figure 7-24 - Declarative vs Imperative approach [85] ... 102

Figure 7-25 - APIC Northbound and Southbound interfaces ... 103

Figure 7-26 – Promise Theory Approach [85] .. 103

Figure 7-27 - Cisco ACI Fabric [86] ... 104

Figure 8-1 - Switch to Network Function Virtualization [47] ... 105

Figure 8-2 - High Level NFV Framework [87] ... 107

Figure 8-3 - Hardware resources shared between different VNFs [47] 109

Figure 8-4 - Main advantages of NFV [47] ... 109

Figure 8-5 – NFV, VNFs and NFC .. 110

Figure 8-6 - SFC Classifier ... 111

Figure 8-7 - NSH Protocol Header .. 112

Figure 8-8 - SFCs for North-South Traffic ... 114

Figure 8-9 - SFC for East-West ... 115

Figure 8-10 – SFC for Multitenancy ... 117

Figure 9-1 - SDN and NFV [47] ... 118

Figure 9-2 - Combination of SDN and NFV [47] ... 119

Figure 9-3- Network orchestration for SDN and NFV [47] ... 119

Figure 9-4 - Programmability Flow in a NFV/SDN enabled network [47] 120

Design of an Enterprise-Grade Software-Defined Datacenter Network

xvii

Figure 9-5 – Step 1: View of the Physical Network-topology [47] ... 122

Figure 9-6 – Step 2 and 3: View of the Virtual Network-topology [47] 122

Figure 9-7 – Step 4: View of the Network-Service [47] ... 122

Figure 9-8 – Step5: View of the Service-Policy [47] ... 122

Figure 9-9 - SDN and NFV Security Considerations [47] .. 124

Figure 10-1 – Distributed Datacenter Topology – high level ... 126

Figure 10-2 – Service Access Exchange .. 128

Figure 10-3 - Distributed Datacenter Topology ... 129

Figure 10-4- DR Model: Primary (PROD, SIT) and Secondary (DEV, UAT, DR) DC. 132

Figure 10-5 - Distributed Datacenter Global network ... 136

Figure 11-1 – DDC Network Block model... 137

Figure 11-2 - Contexts in the Regional DC ... 140

Figure 11-3 - CORE context .. 140

Figure 11-4 - Backend context ... 140

Figure 11-5 - -Prod Context .. 141

Figure 11-6 - Non-Prod Context ... 141

Figure 11-7 - -DMZ Context.. 142

Figure 11-8 - ISO Context ... 143

Figure 11-9 - PROD/DEV Primary DCN ... 144

Figure 11-10 - UAT/DR Secondary DCN ... 145

Figure 12-1 - BCF DCN Topology (Primary and Secondary DCs) .. 147

Figure 12-2 - Single Rack Pod (Front View) .. 149

Figure 12-3 - 10 racks pod with MoR placement (Top View) .. 150

Figure 12-4 - Primary DCN with BCF – Logical View .. 151

Figure 12-5 - Secondary DCN with BCF – Logical View .. 152

Figure 12-6 - Generic Network Function Chaining in BCF ... 153

Figure 12-7 - Intra-Tenant Firewall Service Function Chain .. 154

Figure 12-8 – Inter-Tenant Firewall Service Function Chain.. 155

Figure 12-9 - Load Balancing + Firewall SFC... 155

Figure 12-10 - Big Switch BCF integration with VMWare vSphere [102] 156

Figure 13-1 - Contrail Architecture .. 157

Figure 13-2 underlay DCN topology (Primary and Secondary DCs) using Juniper IP Fabric .. 158

Figure 13-3 - Use of eBGP in an IP Fabric [106] ... 160

Design of an Enterprise-Grade Software-Defined Datacenter Network

xviii

Figure 13-4 - Use of iBGP in an IP Fabric [106] .. 160

Figure 13-5 - Routing in the DCN underlay using eBGP and dedicated ASNs........................ 161

Figure 13-6 - Contrail ToR Service Node (TSN) [107] ... 162

Figure 13-7 - Primary DCN with Contrail – Overlay Topology Logical View 164

Figure 13-8 - Secondary DCN with Contrail – Overlay Topology Logical View 165

Figure 13-9 – Contrail basic V-NFC... 167

Figure 13-10 – Contrail V-NFC .. 167

Figure 13-11 – Contrail P-NFC .. 168

Figure 13-12 Contrail – vCenter-only Mode [109] ... 169

Figure 13-13 Contrail – vCenter-as-Compute Mode [109] .. 169

Figure 14-1 - ACI OS and NX-OS .. 170

Figure 14-2 – APIC Controller Connectivity ... 171

Figure 14-3 - Border leaf and external connectivity ... 172

Figure 14-4 - External routing on ACI .. 173

Figure 14-5 - Cisco APIC Logical Object Model [85] ... 175

Figure 14-6 - Cisco ACI Propagates Policies to All the Leaf Devices [85] 176

Figure 14-7 - Policy Rendering by the Network Devices [85] .. 176

Figure 14-8 - MP-BGP routing in ACI for External Networks [85] .. 177

Figure 14-9 - ACI VXLAN format ... 178

Figure 14-10 - ACI Forwarding [85] ... 178

Figure 14-11 - Encapsulation normalization in ACI .. 179

Figure 14-12 – ACI Service Insertion (Firewall and load balancer) [116] 179

Figure 14-13 – ACI Service graph concept [116] .. 180

Figure 14-14 – ACI DCN Design Options with 40-GE Interconnect .. 181

Figure 14-15 – ACI DCN Topology (Primary and Secondary DCs) .. 183

Figure 14-16 – ACI DCN ToR to Spine connection ... 184

Figure 14-17 – ACI Tenant configuration ... 185

Figure 14-18 – ACI Contexts in the Primary Datacenter .. 186

Figure 14-19 – ACI Contexts in the Secondary Datacenter .. 186

Figure 14-20 – Web Application network profile .. 187

Figure 14-21 - End-to-end access to PROD and DEV Workloads ... 188

Figure 14-22 – Cisco ACI integration with VMWare vSphere [117]....................................... 189

Figure 15-1 – Reference Leaf-Spine topology model .. 191

Design of an Enterprise-Grade Software-Defined Datacenter Network

xix

Figure 15-2 - Gartner Magic Quadrant for Datacenter Networking (2017) 199

Figure 16-1 – The four pillars of Google SDN [119] ... 204

Figure 16-2 – Google Espresso Metro [119] .. 204

Figure 16-3 – the scale and growth of Microsoft Cloud [127] ... 206

Figure 16-4 – H-SDN Forwarding [127] .. 209

Figure 16-5 – H-SDN design step 1 [120] ... 209

Figure 16-6 – H-SDN design Step 2 [120] ... 210

Figure 16-7 – H-SDN design Step 3 [120] ... 210

Figure 16-8 – UPBNs, UPBGs and HDSN label stack [120] ... 210

Figure 16-9 – Disaggregate the network approach [129] .. 212

Figure 16-10 – Path to the network abstraction [129] .. 213

Figure 16-11 – Fixed switch model [129] ... 214

Figure 16-12 – Protocol Independent Switch Architecture [129].. 214

Figure 16-13 – Example of IBT program written in P4 [129] ... 215

Figure 16-14 – Facebook software defined network components 216

Figure 16-15 – WAN Challenges for the Enterprise [132] ... 217

Figure 16-16 – SD-WAN as enabler for Cloud access .. 219

Figure 16-17 – Trend of Compute instances distribution in Private vs public vs non-cloud –

source: Cisco© Global Cloud index 2016-2021 ... 220

Figure 16-18 – A (possible) topology of the Enterprise Software-defined Network 222

Figure 16-19 – Multi-site DCN with Cisco ACI for private and public DCNs 223

Figure 16-20 – Software Defined Cloud Connect using Equinix Platform (© Equinix, 2018) 223

Figure 16-21 – Software-defined WAN and SAE .. 224

Figure 16-22 - Disjoint Polices between WAN and DCN (©Cisco Systems, Inc.) 225

Figure 16-23 Cisco ISE as the glue between SD-WAN and SD-DCN (©Cisco Systems, Inc.) .. 225

Design of an Enterprise-Grade Software-Defined Datacenter Network

xx

List of Tables

Table 1-1- List of Abbreviations, acronyms and their description ... 3

Table 1-2 – Main Revisions History and Release Plan ... 3

Table 2-1 - IT Security Guidelines and Controls [6] ... 16

Table 5-1 - Summary of parameters (Tab. 3.1 in [22]) .. 41

Table 5-2 - Number of Servers for different DCN topologies (Tab 3.2 in [22]) 42

Table 5-3 - Performance summary (Tab. 3.3 in [22]) ... 43

Table 5-4 - Google DCN generations [42] .. 57

Table 5-5- Comparison of AWS, Facebook and Google Jupiter DCNs 63

Table 7-1 - Forerunners of SDN (summary from [61]) ... 75

Table 14-1- ACI DCN scalability .. 182

Table 15-1 - Comparison of the physical topologies for the three HLDs 192

Table 15-2 – HLDs Benchmarks for the Physical topology .. 192

Table 15-3 – HLDs Benchmarks for the Network Control Plane .. 194

Table 15-4 – HLDs benchmarks for the support to NFC and µ-segmentation 195

Table 15-5 – HLDs Benchmarks for the support to Orchestration platforms 196

Design of an Enterprise-Grade Software-Defined Datacenter Network

1

1 Introduction

1.1 Abstract

This paper discusses the design of a modern Enterprise-grade Software-defined

datacenter network (DCN). The work begins with the identification of the high level and

domain-specific requirements and constraints of modern DCNs, then introduces some design

principles and technical solutions (mainly network virtualization, software-defined

networking, network function virtualization and network function chaining) to overcome the

constraints and to implement the requirements presented earlier. Then, a distributed service

delivery model for the Enterprise DCN and three high-level designs (HLDs) using different

platforms are introduced and compared to each other and to a theoretical model, and against

a well-known Datacenter Market report.

The last chapter, using some guidelines, best practices and lessons learned by the early

adopters of SDN (Facebook, Google, and Microsoft), briefly presents a possible design for a

future Software-Defined Enterprise Global network able to face the challenges posed to a

world-wide Enterprise company.

1.2 Organization of the document

The paper is organized in three sections and sixteen chapters:

- SECTION I – DATACENTER NETWORK REQUIREMENTS (Chapters 1-3): this section

introduces the most important high-level and domain-specific requirements for an

Enterprise DCN.

- SECTION II - DATACENTER NETWORK SPECIFICATIONS AND DESIGN TOOLS (Chapters

4-9): this section identifies the specifications for the requirements described in Section

I, then the core deployment concepts (network virtualization, Software-Definition,

Network Function Virtualization and Service Function Chaining) are briefly discussed.

The section finally introduces three different technologies that will be used in Section

III to propose different implementations of an Enterprise DCN.

- SECTION III – DESIGN OF AN ENTERPRISE DATACENTER NETWORK (Chapters 10 -16):

the section presents a service delivery model for the Enterprise Datacenter network

and then three different high-level designs adopting the proposed model and

implementing the requirements listed in Section I and using the solutions proposed in

Section II are presented and compared.

Design of an Enterprise-Grade Software-Defined Datacenter Network

2

1.3 Scope of the document

This document focuses on the requirements, specifications and high-level design of an

Enterprise Datacenter network. The design of other features of the datacenter (i.e. power,

cooling, storage, compute) is out of scope of the document.

1.4 Abbreviations, acronyms and Descriptions

Abbreviation Description

AAA Authentication, Authorization and Accounting

AD Active Directory

BUM Broadcast, Unknown, Multicast (Traffic)

BYOD Bring Your Own Device

CAPEX CAPital EXPenses

CI/CD Continuous Integration/ Continuous Delivery/Continuous Deployment

CNF Carrier Neutral Facility

COTS Commercial Off the Shelf

CSB Cloud Service Broker

CSP Cloud Service Provider

DCI Datacenter Interconnect

DDC Distributed Datacenter

DCN Datacenter network

DNS Domain Name Service

DDC Distributed Datacenter

ECMP Equal Cost Multi Path

GSLB Global Server Load Balancer

IG Inter-Zone Gateway

IPAM IP Address Management

NBI Northbound interface

Design of an Enterprise-Grade Software-Defined Datacenter Network

3

Abbreviation Description

OPEX OPerating EXpenses

PDU Protocol Data Unit

PNF Physical Network Function

QOS Quality of Service

SAE Service Access Exchange

SDN Software defined Networking

SIAM Service Integration and Management

SPN Service Providers Network

TCO Total Cost of Ownership

TIAM Technical Integration and Management

UAT User Acceptance Test

VNF Virtual Network Function

WAN Wide Area Network
Table 1-1- List of Abbreviations, acronyms and their description

1.5 Main Revisions and Release Plan

Date Version Notes Pages

14/09/2017 DRAFT 0 - R22 TOC, Chapters: abstracts, draft structure 58

25/09/2017 DRAFT 1 – R2 Chapters 1-4 - Completed Section I 114

09/10/2017 DRAFT 2 – R2 Chapters 5-9 - Completed Section II 156

02/12/2017 ALPHA 4 – R12 Chapter 10 - 16 - Completed Section III 197

23/01/2018 BETA 3 Added comparison of MSDCNs, reviewed Chapter 16 220

04/02/2018 RC1 Added Future SDN and Submitted for final Exam 223

31/03/2018 FINAL Final Editing and updates. Submitted for the discussion 226

Table 1-2 – Main Revisions History and Release Plan

Design of an Enterprise-Grade Software-Defined Datacenter Network

4

SECTION I - DATACENTER NETWORK REQUIREMENTS

2 High level Requirements

2.1 Abstract

This chapter presents the high-level requirements for an Enterprise datacenter. The

requirements are defined in natural language, and originate from different standpoints:

- Business: these requirements, often implicit, are the highest-level requirements, but also

from the main stakeholders’ perspective, the most important ones, on the base of which

all the others are defined.

- Security: security requirements are defined as a combination of Confidentiality, Integrity

Availability of Data and infrastructure. Non-repudiation, Resiliency, and DR capability are

usually added to this standard definition (some could argue that the latter two are part of

availability)

- End-user: the user of the datacenter covers a very broad spectrum of categories. In this

paper, by Datacenter user we mean the Corporate/external user, not the developer, the

sysadmin or other technical user.

- Other/external requirements: regulatory (i.e. GDPR), compliance to domain-specific

standards, corporate rulesets, best practices, standards, etc.

2.2 Business requirements

In an Enterprise, the main driver to build an infrastructure such a datacenter, and a

datacenter network, is always to (further) enable / facilitate business processes. This

paragraph presents the requirements as they would be stated from the top stakeholders, who

have a very high-level vision of the infrastructure (must enable business). These requirements

are then further detailed in the following paragraphs.

2.2.1 Effective and efficient

First and foremost, the datacenter network, as any other infrastructure, must enable

business to accomplish its goals as fast as possible, and carry out them (effectively) without

wasting resources in the process (efficient).

2.2.2 Ability to change

The market is always changing, and, with it, the needs of the business; this dynamicity

translates into new requirements for the architecture driving the design of the infrastructure.

Design of an Enterprise-Grade Software-Defined Datacenter Network

5

So, the ability to adapt, change and transform is a core feature, and often an implicit

requirement, of any Enterprise/Business solution.

2.2.3 Improve business operations

Another implicit requirement, sometime misunderstood, is the management’

expectation that a new infrastructure must improve business operations. This requirement

should always be considered even when, as quite often happens, operations are more

connected to business constraints rather than infrastructure,

2.2.4 Secure

Every architecture and infrastructure must be able to handle business applications and

data “securely”. In this context “security” is an umbrella term covering not only the classic

concepts of confidentiality, integrity and availability of data and applications but also

including resiliency, safety, non-repudiation and the overall protection of business core

assets.

From business perspective, every IT architecture should be secure(d) In this broad

sense. An introduction to Zero Trust Model applied to Datacenter network security

architecture is presented in [1] and shows how security of complex systems could/should be

seen as a holistic process, involving the ability to relate and co-relate different sources and

the need of defining a fuzzy, continuous level of “trust” and not just a binary property (Secure

vs. not secure).

2.2.5 Cost Effective

As already mentioned, cost effectiveness is an implicit, and often central, business

requirement. The resources allocated to implement/transform the datacenter infrastructure

should be used in the most effective way from the cost perspective. This often implies also to

consider that Enterprises are shifting the IT Cost from Capex to Opex (see below).

2.2.5.1 CAPEX and OPEX

Operating expense, or Opex, is the cost for running a product, business, or system: an

Opex is an ongoing cost that recurs regularly, usually monthly. It is generally provided under

a contract by the service provider. Examples of operational expenses are utility bills. These

costs recur regularly on an ongoing basis. Enterprise cloud storage and IaaS products are IT-

related examples of operational expenses. The Opex counterpart, called capital expenditure

(Capex), is the cost of developing or providing non-consumable parts for the product or

system, or a one-time cost to acquire an infrastructure.

Design of an Enterprise-Grade Software-Defined Datacenter Network

6

2.3 Enterprise Requirements

From an enterprise perspective, the following capabilities must be provided:

- IT Service Management

- Service Delivery through Service Catalogue

- Service monitoring / Reporting

- Information/lifecycle management

2.3.1 IT Service Management

Any IT solution must support:

- the implementation of ITIL V3, IT Service Management (ITSM) Framework for problem,

change, incident, release, configuration and capacity management disciplines;

- the design and adoption of an ITSM Service Desk to support partner organizations and

customers;

- a set of service tools enabling the provisioning of IT services (e.g. integration between

change, release, configuration management tools with automated deployment of IT

services).

2.3.2 Service Catalogue

The architecture must support the development and implementation of a service

catalogue and service portfolio management function.

2.3.3 Service monitoring / Reporting

To improve service quality through monitoring and reporting, the architecture must

be able to set up standardized metrics and to measure performance against Key Performance

Indicators (KPIs).

2.3.4 Information/lifecycle management

 To provision storage solutions in a cost-effective way, while ensuring enforcement of

Company policies, the architecture must allow Partner organizations to identify the minimum

data retention policies applicable for information lifecycle management.

Design of an Enterprise-Grade Software-Defined Datacenter Network

7

2.4 Business User requirements

2.4.1 The disappear of the work-place

“Work is verb, not a noun” [2]: Pip Marlow’s, managing director for Microsoft

Australia, statement is becoming increasingly important. Staff in modern Enterprises is facing

a major change: In the past, the typical workflow was commute, logging in from 09 am to 05

pm, and then return home. For the most part, critical tasks were confined to “standard”

business hours. Today’s approach is often “I do it with my own device, anytime from

anywhere” which translates in three transformations:

1. Consumerization of IT: Staff does not use only Enterprise devices: quite often they want

to use their own personal device.

2. Mobility and collaboration: staff is no longer limited to the office.

3. Always ON, always connected: staff does not work only during “standard” business hours.

2.4.1.1 Consumerization of IT and BYOD

In a study conducted in 2014 [3] , IDG Enterprise defines consumerization of IT as the

propensity for users’ experiences with technology as consumers to affect their expectations

regarding their technology experiences at work. The study shows that:

- “83% of organizations are planning to invest in mobile technology in the next 12

months, with tablets and employee training (49% each) leading the priority list.

- “The top four investment priorities are: buying smartphones (43%), network consulting

and integration services (34%), application development, improve user experience (33%)

- “Enterprises with over 1,000 employees are significantly more likely to invest in mobile

apps to increase customer satisfaction than their SMB counterparts (46% versus 38%).

- Enterprises are also outspending SMBs on mobile apps designed to increase customer

retention (38% versus 20%). The following graphic shows the breakdown by benefit area”

http://www.forbes.com/enterprise/
https://twitter.com/intent/tweet?url=http%3A%2F%2Fwww.forbes.com%2Fsites%2Flouiscolumbus%2F2014%2F03%2F24%2Fhow-enterprises-are-capitalizing-on-the-consumerization-of-it%2F&text=83%25%20of%20organizations%20are%20planning%20to%20invest%20in%20mobile%20technology%20in%20the%20next%2012%20months%2C
https://twitter.com/intent/tweet?url=http%3A%2F%2Fwww.forbes.com%2Fsites%2Flouiscolumbus%2F2014%2F03%2F24%2Fhow-enterprises-are-capitalizing-on-the-consumerization-of-it%2F&text=83%25%20of%20organizations%20are%20planning%20to%20invest%20in%20mobile%20technology%20in%20the%20next%2012%20months%2C

Design of an Enterprise-Grade Software-Defined Datacenter Network

8

Figure 2-1 - Employee Productivity benefit of mobile Apps [3]
2.4.1.2 From Location-based to Mobile-Centric

Personal mobile device support is expected to increase significantly, with tablets

leading all categories with an increase of 12% from 43% today to 55% in the next 12 to 18

months. The following graphic illustrates the trend across device categories:

Figure 2-2 - Rising of Personal Mobile Device support in the Enterprise [3]

Design of an Enterprise-Grade Software-Defined Datacenter Network

9

56% of respondents indicated that either the CIO/top IT executive or the IT department were

the primary leader in driving change through the consumerization of IT at their organizations.

It is worth mention that the support to mobility is needed not only for standard customer

facing/frontend applications but also for internal/corporate users and third parties. This need

triggers a change on the deployment model and has an impact on dataflows inside the

datacenter as well.

2.5 Software Development requirements: Dev/OPS and Infrastructure as Code

The dynamicity, elasticity, responsiveness, the need to adapt and transform fast are the

main drivers of a profound change in both hardware and software infrastructure delivery

models.

On the software side, the need to quickly adapt and implement software changes

triggered a change in the software delivery models, from the classical waterfall shown in

Figure 2-3 to a continuous process called Continuous integration/ Continuous Deployment/

Continuous Delivery model (CI/CD).

Figure 2-3 - Waterfall model

On the hardware side, the very same need Is driving a massive change in the IT

infrastructure and operations management model: to dynamically adapt, change and

transform the infrastructure, the infrastructure must be dynamic, fluid: essentially the

infrastructure is (should be) seen as something controlled by a library, an API: infrastructure

(computing, storage, network) as a code is born (for a deeper discussion about Infrastructure

as a code, see [4])

2.5.1 From Waterfall to CI/CD

Figure 2-4 - Dev/OPS and CI/CD relation

Design of an Enterprise-Grade Software-Defined Datacenter Network

10

Nowadays, continuous delivery, continuous deployment and continuous integration are

common approaches to modern software development, moreover in the Enterprise context,

where the need for agility, speed and overall responsiveness is one of the major

transformation drivers. In the next few paragraphs a brief description of CI/CD is presented

and then the connection with Enterprise Datacenter network is shown.

2.5.1.1 Continuous Integration

Continuous Integration (CI) is the practice of constantly merging development work

with the Main branch so that changes can be tested into the context of other related changes.

The underlying principle is to test the code as soon and as often as possible, so issues

can be caught as soon as possible. In the CI process, most of the work is done through

automated testing. Usually a build server specifically designed to perform these tests is used,

so that the development team can continue merging requests even during the testing phase.

2.5.1.2 Continuous Delivery

The constant delivery of code to an environment when the developer team feels the

code is ready to release (it could be UAT, staging or production) is called Continuous Delivery

(CD). The principle behind CD is that the code is constantly delivered to a user base, whether

it be Quality Assurance (QA) or customers for review and inspection.

The basis of CD is to have small batches of work continually fed to the next step, so it

can be consumed more easily, and issues can be found earlier.

2.5.1.3 Continuous Deployment

 The deployment or release of code to production as soon as it’s ready it is called

Continuous Deployment (CD). All the testing can be completed before merging to the

Mainline branch and can be executed on production-like environment, and this removes the

need for a long UAT process or for a large batching in staging before production. The

production branch is always stable and ready to be deployed by an automated process. The

automated process is key because it anyone should be able to perform it in a matter of

minutes (preferably by the press of a button).

After the deployment, logs must be inspected to determine if the key performance

indicators are affected, positively or negatively. Some of these metrics may include revenue,

response time or traffic and should be graphed for easy consultation.

The key CD feature is that it needs continuous integration and continuous delivery

because without them, errors will be generated in the release.

Design of an Enterprise-Grade Software-Defined Datacenter Network

11

2.5.1.4 How They Work Together

Several automation mechanisms must be in place when the CD process is

implemented. The CI build server must be fully automated from continuous delivery to

staging, and the process must be capable to deploy to production automatically.

In an ideal workflow, the CI/CD process could be automated from begin to end:

1. Developers check in the code to development branch.

2. CI server imports the change, merges it with the Master/Trunk/Mainline, performs the

testing and merges to staging environment based on test results.

3. If Step 2 is successful, developers deploy it to the staging environment and QA tests the

environment.

4. If Step 3 is passed, the move to production is voted and the CI server picks this up again

and determines if it’s ok to merge into production.

5. If Step 4 is successful, it will deploy to production environment.

2.5.2 The Dev/Ops approach

Figure 2-5 - Dev/OPS as the common ground for QA, Ops and DEV

In his book [5], Mike Loukides describes the state of DevOps and the current debate about

different approaches. Here is how DevOps is defined in the book:

…modern applications, running in the cloud, still need to be resilient and fault tolerant, still

need monitoring, still need to adapt to huge swings in load, etc. But those features, formerly

provided by the IT/operations infrastructures, now need to be part of the application,

particularly in “platform as a service” environments. Operations doesn’t go away, it becomes

Design of an Enterprise-Grade Software-Defined Datacenter Network

12

part of the development. And rather than envision some sort of uber developer, who

understands big data, web performance optimization, application middleware, and fault

tolerance in a massively distributed environment, we need operations specialists on the

development teams. The infrastructure doesn’t go away – it moves into the code; and the

people responsible for the infrastructure, the system administrators and corporate IT groups,

evolve so that they can write the code that maintains the infrastructure. Rather than being

isolated, they need to cooperate and collaborate with the developers who create the

applications. This is the movement informally known as “DevOps”.

2.5.2.1 Dev Vs Ops

Dev and Ops often have opposing priorities:

- Development (Dev) produces innovation and delivers it to the users as fast as possible.

- Operations (Ops) must ensure that users have access to a stable, fast, responsive system.

While Dev and Ops’ goal is to satisfy the business, their views of how to achieve this goal are

inherently divergent. It is a symptom of what is referred to as Water-SCRUM-Fall: developers

want and must deliver new features, fast. Operations want and must produce a stable system,

always.

When Developers and Operations lived in completely separated environments, this

dichotomy was not an issue: both were working on a schedule, with few interactions, typically

at release times. Developers knew when the release date was. Stability was maintained

“easily”.

The virtualization of systems and the CI/CD process triggers a massive shift on the

infrastructure and on the operational model. The number of environments and their

instances increase by several orders of magnitudes. Now CI Builds are released daily, often

multiple builds a day. All these releases must be tested and validated. This requires new

environment instances to be brought up as fast as possible, often with configuration changes.

Logging into server consoles to perform manual changes individually isn’t an option anymore.

Moreover, the need for speed pushes further. Developers’ build creates a backlog, as the

systems to just test them on are not available as required.

2.5.2.2 Infrastructure as code

To address the battle between Dev and Ops, two concepts should be introduced:

- Versioning Environments: maintaining multiple configurations and patch levels of

environments that are now required by development, on demand, needs Ops to change

the way they manage change and operate these environments. Any change Ops makes to

Design of an Enterprise-Grade Software-Defined Datacenter Network

13

an environment should be viewed as creating a new ‘version’ of the environment (not

simply changing a text file via SSH). The only way to do this properly is by scripting all

changes. When executed, these scripts would create a new version of the environment

they are executed on. This process, while maintaining Ops best practices (ITIL or

otherwise), rationalizes and simplifies change management, enabling it to scale.

- Cycle time: the average time taken from the time a new requirement is approved, a

change request is submitted or a bug that needs to be fixed via a patch is identified, to

the time it is delivered to production.

Both these needs – versioning environments and minimizing cycle time - can be addressed by

approaching and managing the Infrastructure as code

Figure 2-6 - Infrastructure platform API clients [4]

Bringing up new virtual environments or just new version of existing environments, simply

requires the execution of a script. Versioning these scripts allows for proper configuration

management. Releasing a new version of an environment simply requires checking out the

proper script(s) and performing the necessary changes to the scripts – define the operating

infrastructure, patching the OS, tweaking the application Server configuration or installing a

new release of the application, and then checking the scripts back in as a new version of the

environment.

Therefore, Infrastructure as Code becomes the stepping stone for the speed that

DevOps demands and the management of multiple versions of multiple environments, to

handle the CI builds.

Design of an Enterprise-Grade Software-Defined Datacenter Network

14

2.6 Security

In this paragraph, the security requirements are briefly outlined, for a deeper discussion

about the requirements see [1] and [6]. From a very high-level perspective, Security

requirements include but are not limited to:

- Preserve, enforce, verify, Confidentiality, Integrity and Availability of Data and

Applications

- Compliance to Security Standard/best practices

- Implement Security Controls

- Data classifications management

- Data retention policies management

2.6.1 Security Controls

IT security controls define safeguards and countermeasures that minimize, counteract

or avoid IT security risks. NIST Special Publication 200 [6] provides the following table which

identifies three security classes (technical, operational and management) and their associated

family control types that will form part of the reference and technical architecture design.

While the controls are grouped into three categories, the underlying implementation

of any control may blur these boundaries. For example, the operational controls within media

protection may involve a technical control implementation of cryptography to achieve the

control

Design of an Enterprise-Grade Software-Defined Datacenter Network

15

Security
Class

Class Description Control Family Types

Technical

Controls that are
implemented and

executed by
information systems

primarily through
security mechanisms

contained in
hardware, software

and firmware
components

• Access Control supports the ability to permit
or deny user access to resources within the
information system.

• Audit and Accountability supports the ability
to collect, analyze and store audit records
associated with user operations performed
within the information system.

• Identification and Authentication supports
the unique identification of users and the
authentication of these users when trying to
access information system resources.

• System and Communications
Protection supports the protection of the
information system itself, as well as
communications with and within the
information system.

Operational

Controls include
information system

security controls that
are primarily

implemented through
processes executed

by people

• Awareness and Training supports the
education of users with respect to the
security of the information system.

• Configuration Management supports the
management of all components of the
information system.

• Contingency Planning supports the
availability of the information system
services in the event of component failure or
disaster.

• Incident Response supports the detection,
response and reporting of security incidents
within the information system.

• Maintenance supports the maintenance of
the information system to ensure its ongoing
availability.

• Media Protection supports the protection of
information system media throughout their
lifecycle.

• Physical and Environmental
Protection supports the control of physical
access to information systems, as well as the
protection of the ancillary equipment (e.g.
power, air conditioning, wiring) used to
support the information system.

• Personnel Security supports the procedures
required to ensure that all personnel who
have access to the information system have
the required authorizations, as well as the
appropriate security screening levels.

• System and Information
Integrity Controls supports the protection of
the integrity of the information system
components and the data that it processes.

Design of an Enterprise-Grade Software-Defined Datacenter Network

16

Management

Controls include
security controls that
focus on activities for
the management of
IT security and IT

security risks

• Security Assessment and
Authorization supports the security
assessment and authorization of the
information system.

• Planning supports the security planning
activities.

• Risk Assessment supports the conduct of risk
assessments and vulnerability scanning.

• System and Services Acquisition supports
the contracting of products and services
required to support the implementation and
operation of the information system.

Table 2-1 - IT Security Guidelines and Controls [6]

2.7 Business Continuity

High Availability (HA) protects the Datacenter service within and across the same

geographic region, implementing different mechanisms like clustering, replication, storage

synchronization, at the network, platform and storage layers.

Disaster Recovery (DR) refers to the protection of Datacenter service provided out of

region and across DCs, using replication technologies (i.e. a platform-based replication and/or

asynchronous storage-based replication).

Enterprise DCs must be deployed to provide both HA and DR solutions to the end

systems that are deployed within.

Business continuity is a broader concept, which includes DR but actually refers to the

ability of an organization to get the business (not only IT) back to full functionality after a

disaster.

2.7.1 Disaster Recovery

Disaster recovery implementation is a matter of balancing the trade-off of the

required compute resource investment versus the business loss. Disaster Recovery design

implies having resources to bring up the systems with the required operations capacity level

(compute/storage capacity), within a required timeframe (RTO – recovery time objective),

with the needed business data (RPO – recovery point objective) to resume operations.

To protect the data, a mechanism must be implemented to extract the required data

to a secure location. Typical mechanisms are either backups or storage replication. The

parameter for the selection criteria is the RPO. To recover operations, you need compute

resources either on standby or on a contract/process enabling compliance with RTO

objectives. Low RTOs require equipment availability on premise, while high RTOs can absorb

Design of an Enterprise-Grade Software-Defined Datacenter Network

17

procurement time from the moment of disaster declaration. The operation capability levels

drive the compute/storage capacity.

In multi-tenant environments, the Disaster Recovery design considerations must

include the DR test process. This is key in shared infrastructure or services. Although the

Disaster is a DC event, business units should regularly test and update their DR procedures

for full functionality and correctness.

2.8 Other requirements

2.8.1 Government Regulations

Regulatory requirements usually depend on many external factors like the location of

the datacenter, the type of data managed by the Enterprise, the context, and other external

factors specific to the domain in which the Enterprise operates. This paragraph shows an

example of the type of requirements that are not strictly business-related.

Usually the Regulatory requirements cover, at least

- Data protection: there are regulatory requirements covering who, when, how, (from)

where the data is accessed and handled. One example is the General Data Protection

Regulation [7], active in EMEA and applicable to data owned by EMEA citizens.

- Safety and Security of workplaces.

- Policies on Management of IT.

- Policies on providing electronic information under the Policy on Information Management

- Enable exchange of information under the Policy on Government Security

2.8.2 Regulatory and other compliance Requirements

Other policies, regulations, standards are usually applicable In the Enterprise context. As

an example, Enterprise infrastructure handling Financial information could be required to

- Adopt standards required by the domain in which they operate (i.e. PCI-DSS [8] for the

financial sectors)

- Adopt standards/regulations required from Auditing reporting to management and/or

stakeholders (i.e. the board of shareholders)

2.8.3 Support to Legacy Systems

Sometimes some production workloads run on end of support/end of life/outdated

systems for some of critical applications. Suppliers such as Hewlett-Packard, IBM, Microsoft,

Tandem and Unisys still power important applications the Enterprise sector.

Design of an Enterprise-Grade Software-Defined Datacenter Network

18

Many Enterprises rely on core systems built in the late 1970s and early 1980s. The

transactions triggered in these systems pass through many legacy platforms which are hard

to maintain but even harder to migrate.

Outdated platforms often survive because of the risk and cost of replacing them. The

time and cost involved in system testing and the prospect of a massive end-user retraining

program can prove intimidating too.

2.8.4 Restrictions on Encryption

In some cases, restriction apply on what could be encrypted, when, and where. These

restrictions may vary; however, they could be summarized in three categories

1. Restrictions on use of cryptography (at rest, in transport, at all)

2. Restrictions on the export of Cryptography algorithms/devices

3. Restrictions on the import of Cryptography Algorithms/devices

2.8.4.1 Use of Cryptography

In some countries the use of cryptography is restricted, or anyway subjected to

regulations. There are different scenarios, however from the Enterprise perspective it is

important to know if a location chosen to host a datacenter restricts the use of encryption

and/or if data flows coming from/going to a specific site must be encrypted using specific

algorithm or not encrypted at all.

2.8.4.2 Import of Cryptography

Some countries may wish to restrict import of cryptography technologies for several reasons,

as an example:

- Imported cryptography may have backdoors or security holes exposing sensitive data to

the attacker organization; therefore, the use of cryptography is restricted to what is

approved and verified by the regulation.

- Users can anonymously communicate, preventing any external party, including Law

enforcing organizations, from monitoring them.

As stated in the previous paragraph, from an enterprise perspective, if such regulations exist

in a datacenter location, they must be considered beforehand.

2.8.4.3 Export of Cryptography

Some countries have regulated the export of cryptography for national security

reasons. As an example, as late as 1992, cryptography was on the U.S. Munitions List as an

Auxiliary Military Equipment [9]

Design of an Enterprise-Grade Software-Defined Datacenter Network

19

Due to the enormous impact of cryptanalysis in World War II, these governments saw

the military value in denying current and potential enemies access to cryptographic systems.

Accordingly, regulations were introduced as part of munitions controls which required

licenses to export cryptographic methods (and even their description); the regulations

established that cryptography beyond a certain strength (defined by algorithm and length of

key) would not be licensed for export except on a case-by-case basis. This policy was also

adopted elsewhere for various reasons. Currently, many countries, notably those taking part

in the Wassenaar Arrangement [10], have similar restrictions.

From an Enterprise, again, such restrictions, if applicable, must be considered to

guarantee, for instance the feasibility of inter-region DR (see par. 4.6), and/or many other

operations.

2.8.5 Restrictions on specific Data flows

Sometime, due to asymmetry in regulation policies, security concerns or other reasons,

some specific data flows are simply not allowed to cross/rest specific sites and/or some users

are requested to access the enterprise data only from specific locations/countries.

 These requirements must be considered when designing DCN and related strategies

(i.e. DR invocation

Design of an Enterprise-Grade Software-Defined Datacenter Network

20

3 Datacenter network-specific Requirements

3.1 Abstract

Besides the high-level requirements presented in the previous chapter, there are also

other technical/domain specific requirements that are amongst the main drivers of

datacenter innovation and demand a new design approach.

This chapter starts presenting why the distributed networking model should be

reconsidered in the context of datacenter networks, then introduces the current

technological constraints driven by some of the mentioned technical requirements (i.e. MAC

Address exhaustion, VLAN number space limitation). Other technical requirements are also

presented, describing demands from the point of view of Software Development/innovation,

Business Continuity, etc.

3.2 From Distributed to Centralized Networking in the Datacenter

3.2.1 Historical background

Until the first half of the 20th century, the biggest global telecommunication networks

were the telephone networks. These networks were based on circuit-switching, essentially an

evolution, both from the logical and design standpoints, of the telegraph networks. For the

voice communication to happen, a circuit (connection) needed to be established; initially the

circuit setup was provided through human intervention, later through signaling networks and

protocols able to program the corresponding virtual circuit setup/teardown. Besides being

circuit-switched, these global networks were centralized with a lot of users connected to large

switching facilities.

In those years, during the Cuba Missile Crisis, a nuclear apocalypse seemed imminent

between the two blocks and superpowers: The Western led by the United States (US) and the

Communist block led by Union of Soviet Socialist Republics (USSR). Both the US and the USSR

were building hair-trigger nuclear ballistic missile systems. Each country considered post-

nuclear attack scenarios. US authorities considered ways to communicate in the event of a

nuclear attack. How could "command and control network" continue? Paul Baran, a

researcher at RAND, offered a solution to this question: design a more robust communications

network using "redundancy" and "digital" technology [11]

Paul Baran, a Polish immigrant working in the 1960s as researcher at Rand Corporation,

challenged the centralized design of the telecommunication infrastructure, saying that such

approach would expose the network as an easy target in event of an enemy attack. In fact,

Design of an Enterprise-Grade Software-Defined Datacenter Network

21

the loss of a single switching center could potentially destroy the phone capability for a large

section of the Country. Mr. Baran suggested solution to the issue was to send the voice in

packets of data able to reach the destination and move independently from one other on the

network and implement what he called a Distributed Communication Network. The core idea

was that in case part of the path used for a specific communication were destroyed by the

enemy, the communication itself was still working thanks to the ability of the voice packets

to find their own way on different paths. In his paper, Mr. Baran demonstrated that the

national voice network could still work even if fifty percent of its switches were destroyed.

Baran proposed a network of unattended nodes routing information from one node to

another to their final destinations. To exchange communications these nodes would use a

protocol that Baran called "hot-potato routing”.

in the very same years, another cultural driver towards de-centralization was the need

to share information and knowledge amongst different scientific entities: to enable this

sharing, the experimental ARPANET program of the US Department of Defense (DoD) began

to operate in 1969 as “a mean to share data processing facilities at university, military bases

and other DARPA-funded research sites” [12]. ARPANET provided, amongst the others, two

benefits responding to the two drivers mentioned above:

1. Enable the sharing of information, which was a key requirement in the Research world

2. Test, implement and improve the resiliency of the communication infrastructure, as

envisioned by Baran.

This decentralized, connectionless network grew over the years and eventually became

the Internet we know today. For decades after the born of the ARPANET, professionals fought

wars around the advantages of connection-based vs. connectionless architectures and

centralized vs. distributed architectures. The explosive growth of the Internet in the 1990s

finally concluded these discussions: Internet, and its protocols, started to dominate, and their

architecture was clearly connectionless, distributed. Older connection-oriented protocols like

Frame relay seemed fated to the oblivion. All centralized designs were considered too

vulnerable, not enough resilient. Even Asynchronous Transfer Mode (ATM) would eventually

surrendered to the Internet that managed to handle the same throughput once conceivable

only using ATM.

Design of an Enterprise-Grade Software-Defined Datacenter Network

22

3.2.2 Distributed vs centralized networking in the datacenter

As its core, the Internet was connectionless and distributed: during its first cycle of

expansion, the World Wide Web gave birth to ever-growing facilities housing large numbers

of computers providing compute and storage capabilities. These facilities were protected

against external factors as much as possible by being situated in disaster-unlikely locations,

with redundant utilities and capacity.

Because of the large numbers of servers, these facilities were physically organized into

structured sets of server racks. Over time the need for efficiency increased the density of

these structures and pushed the adoption of server blades located in packed racks, instead of

individual servers installed in loosely populated cabinets. Racks of compute-servers were

hierarchically structured with Top-of-Rack (ToR) switches providing network both intra-rack

and inter-rack (see Figure 3-1)

Figure 3-1 – ToR Switches organization

During this process, the total numbers of servers in the datacenter raised quickly.

Modern Datacenters are currently able to accommodate over 120,000 physical servers, each

one of them able to host more than twenty virtual machines (VMs) and/or 10 times more

containers. This implies that the internal network in these datacenters would interconnect

2.4M VMs or 24M containers. This massive number of endpoints will need to communicate

with each other via a set of protocols and networking devices in a highly controlled

environment (the datacenter) where the type, amount and source of changes are barely

comparable to those for which those protocols were designed. As explained in the previous

paragraph, both the protocols and the networking devices were meant to work over a large,

disparate geographical area with unreliable communications links. Obviously, a network

Design of an Enterprise-Grade Software-Defined Datacenter Network

23

where hundreds of thousands of IP endpoints located side by side in an isolated bubble with

highly reliable communications links is a completely different scenario from the Internet (let

alone ARPANET and before that the Distributed Communication Network imagined by Mr.

Baran). Even though survivability, resiliency and availability in case of lost communications

were not highly important in the datacenters, a huge amount of complexity designed to meet

exactly those goals was making datacenter operations untenable.

3.2.3 The need of a new approach to network management

Besides the obvious difference in the stability of the network topology, and some

technological constraints presented in the next paragraph, the other major difference

between the Internet model and the current DCN is in the number of devices, links and

interconnections: the massive number of these features creates a completely new network

management challenge.

Management Networks designed for carrier public networks or large corporate

intranets simply cannot scale to the size of a modern DCN. A new network management

paradigm was needed.

3.2.4 The shift in datacenter traffic pattern: from North-South to East-West

The east-west traffic in the datacenter is composed of flows sent by one host in a

datacenter to another host in that same datacenter, as an example see Figure 3-2

Figure 3-2 - East-west Dataflows in a social-network Application

Design of an Enterprise-Grade Software-Defined Datacenter Network

24

Similarly, North-South traffic is the one arriving (leaving) the datacenter from (to) the

outside world / end-users. As an example, a web browser’s query to a search engine might

be processed by a web server (North-South) which, before responding to the user (North-

South), needs to retrieve data from one, often more, backend servers in the same datacenter

(East-West). Quite often some of these flows are called elephant flows due to their sizable

nature (compared to mouse flows, typically associated to north-south). These flows are

characterized by being of relatively long duration yet having a discrete beginning and end.

“The protocols designed to achieve robustness in the geographically dispersed wide-area

Internet today require that routers spend more than thirty percent of their CPU cycles [6]

rediscovering and recalculating routes for a network topology in the datacenter that is highly

static and only changed under strict centralized control “ [13]. While datacenters exist to

support interaction with the outside world, studies and the previously mentioned high-level

requirements imply that the predominant traffic in current datacenters is East-West.

Figure 3-3 - Datacenter traffic flow shift: from North-South to East-West

The complex, distributed protocols and network infrastructure grown in traditional

network switches to provide just the de-centralized survivability envisioned by Mr. Baran for

the WANs of the past do not easily facilitate the increasing preponderance of East-West

traffic. The mega-datacenters discussed in this section in fact are different from prior

networks in many different core aspects:

- stability of the topology,

- traffic patterns

- pure scale.

Design of an Enterprise-Grade Software-Defined Datacenter Network

25

Moreover, as shown in the previous paragraph, the services delivered by these datacenters

demand frequent reconfiguration and require a level of agility not needed before. Traditional

networking approach are simply unable to scale to the levels being required by the modern

datacenter.

3.2.5 Centralize the control plane

 A massive amount of unneeded control protocol occupies the control plane of the

DCN:

- as already mentioned, in large scale datacenter networks thirty percent of the router’s

control plane capacity today is spent tracking network topology.

- The Internet-family protocols were also designed to handle routers joining or leaving the

network.

These conditions simply do not represent the scenario of a modern DCN where there is

virtually no unscheduled downtime. The base network is centrally provisioned even though

there are links and nodes in the datacenter that occasionally might fail. In a datacenter, the

endpoints simply do not magically appear or move: most of the time they change when the

central orchestration software dictates so.

Therefore, most changes are done programmatically and intentionally, and this

reduces the benefits of autonomous and distributed protocols, and the scale of the network

is much larger than these protocols were originally designed for, requiring unacceptably long

convergence times. To summarize:

1. The conditions for which the distributed protocols were designed to work simply do

not exist in a modern DCN.

2. Using distributed protocols in this way overcomplicates the network management to

an extent that is entirely avoidable. A simpler approach would be to remove the

control plane from the datacenter switches and centralize it to program the

forwarding tables of all the datacenter switches. The simplicity of this concept arises

from the facts that:

- The topology inside the datacenter is stable and under local control.

- The knowledge of the topology is now centralized and controlled by the same

administrators / orchestration system.

- When a node or a link fails, this knowledge could be used to quickly provision a

consistent set of forwarding tables.

Design of an Enterprise-Grade Software-Defined Datacenter Network

26

3.3 Inadequacies in Today’s Datacenter Networks

Current networking technologies seem to be unable to cope with some of the

requirements presented in the previous chapter, especially in the context of Large Enterprises

and/or mega datacenters. Several issues cause this problem:

- Technical inability to scale to the size of the modern mega-datacenters

- The cost of networking, compared to other equipment (storage, compute) in the

datacenter, seems to be elevated.

- The innovation rate in the networking domain seems to be disconnected from the rate of

innovation in other infrastructure areas like compute and storage.

The potential to easily switch on and off VMs is a radical departure from the physical world

that network managers have traditionally faced. Networking protocols were coupled with

physical ports, but this is not the case anymore: the dynamic nature and sheer number of

VMs in the datacenter have placed demands on the capacity of network components that

were earlier thought to be safe from such pressures. These areas include:

- MAC Address Table Size

- Number of VLANs

- Spanning Tree

3.3.1 MAC Address Explosion

Switches and routers forward frames and packets using the MAC Address Table,

implemented in hardware, so its size has a physical limit. Equipment manufacturers define

the maximum number of in the MAC table based on two different, opposites, drivers:

- control the overall product cost

- store an amount of entries adequate to the demand of the network.

In the past, the maximum number of MAC addresses that would need to be in the MAC

Address Table at any given time was partly attributed to physical limitations of datacenters

and to the maximum number of servers that would-be part of a single layer two / broadcast

domain. The physical layout of the network also affected it. Moreover, physically separated

layer two domains remained logically separated. Nowadays, network virtualization and the

use of Ethernet technology across WANs, are stretching geographically the layer two

networks as never before. Server virtualization has increased the number of servers in a single

broadcast domain. The need of numerous virtual NICs on each virtual server, increases further

the number of MAC addresses.

Design of an Enterprise-Grade Software-Defined Datacenter Network

27

In the event of a MAC table miss, conventional L2 switches flood the frame causing the

miss on all ports except the one(s) receiving the frame. In normal mode of operations, when

receiving that L2 frame, the destination will respond. When the switch sees the response, it

learns the port on which that MAC address was seen and populates its MAC table accordingly.

This mechanism (known as backward learning) works well unless the MAC table is full, in

which case the switch cannot learn the MAC address and must flood (transmit the frame on

all the ports excluding the receiving one) all the frames sent to the destination causing the

table miss. This is a very wasteful use of bandwidth and has significant negative performance

impact. This problem is aggravated in the DCN core and/or in case of traditional non-overlay

designs, where the pressure on the MAC address tables is intense.

Figure 3-4 - MAC Address Table Overflow

In modern layer two networks VLANs are used extensively, and sometimes this is

(wrongly) perceived as a way of mitigating the problem mentioned above: when a VLAN-

tagged frame fails its match, it is flooded out only to all ports on that VLAN, in some way

reducing the inefficiency of flooding. However, hosts might belong to multiple VLANs (i.e.

hypervisors, network appliances, security appliances, etc.) and in this case, they will have one

MAC entry for each VLAN interface (sub-interface), further increasing the chances of MAC

address table overflow.

3.3.2 Number of VLANs

When the IEEE 802.1 working group standardized the 802.1Q [14] extension to the

definition of local area networks, they thought that 4094 VLANs were enough, therefore they

allocated 12 bits to store the VLAN ID. The IEEE 802.1Q Tag for VLANs shown in Figure 3-5

supports 212 − 2 (4094) VLANs (all zeros and all ones are reserved). When the 802.1Q tag was

introduced (in the late 1990s), networks were smaller and the demand for multiple virtual

broadcast domains sharing the same physical network was very small.

Design of an Enterprise-Grade Software-Defined Datacenter Network

28

Figure 3-5 - 12 bits reserved for the VLAN ID (4094 VLANs)

The introduction, and the growth, of datacenters triggered the need to segregate traffic and

enforce separation between the various tenants. 802.1Q/VLAN tagging is the technology

responsible for providing this separation. If datacenters remained single-tenant, then 4094

VLANs seemed enough: expanding this field would have required that different tables in

memory and in the ASICs had to be large enough to accommodate the new size.

However, with datacenters continuing to expand, especially with multitenancy and

server virtualization, this number of required VLANs easily exceeds 4094. Sharing resources

between tenants quickly becomes difficult when there are no more available VLANs. Since

the size of the VLAN tag is hardcoded in CAMs, TCAMs, and in general network equipment

has been built depending on that specific size, expanding this size to accommodate more

VLANs is nontrivial and might have a massive impact on the market (not only switches but

also NICs, OS drivers, etc. would be affected). Therefore, another solution is needed to

overcome this limit1.

3.3.3 Spanning Tree

Figure 3-6 - Redundant links blocking by STP

1 Another approach is the use of overlay techniques (see par. 7.6)

Design of an Enterprise-Grade Software-Defined Datacenter Network

29

In the past, 802.1X bridges were built as transparent devices able to forward frames

from one broadcast domain to another, without explicit configuration of forwarding tables.

Bridges learned the forwarding tables by observing the traffic: they were able to determine if

the network contained loops, break those loops and prevent broadcast storms from bringing

the network down. Switches and bridges accomplished these goals cooperatively by building

a spanning able to identify and enforce a loop-free network topology.

This tree was initially calculated using the Spanning Tree Protocol (STP) [15]. The early

implementations of STP would require dozens of seconds to converge after a change on the

network had taken place. Over time, through improvements to STP, the time needed for

convergence has been reduced. Regardless these convergence improvements, by design, STP

- leaves completely functional links unused (STP “blocked” ports)

- enforces forwarding of frames to the root bridge, which is not always the optimal

path.

Datacenters need to take advantage of the most efficient path between any two nodes

without imposing a pre-defined hierarchy in the traffic patterns, and no using multiple 10G is

a price too high in modern DCN. Moreover, datacenter virtualization has increased the

frequency of changes and disruptions, thus requiring convergence to occur more often, this

putting additional pressure to the already inefficiency of STP in the datacenter. To put it

simply: STP was not built for the modern DCN.

3.4 Agility with Stability

Changes in modern datacenters are made much quicker than in the past. To stay in step

with servers and storage, networks must be able to transform and change with at least the

same speed. Automation, orchestration and agility are key requirements driven by the overall

virtualization of resources and they are becoming a major requirement for the entire

infrastructure, networking included.

On the other hand, a mistake in a network change would potentially impact the entire

datacenter, so quite often in legacy network significant changes require days or week to be

implemented: the amount of time needed to understand the potential impact of a change

increase quickly with the complexity of the network, making the change/impact analyses

process the most time-consuming part of the transformation.

The two factors mentioned above, need for quick changes and impact assessment, drive

another transformation in the datacenter networks: Agility with Stability.

Design of an Enterprise-Grade Software-Defined Datacenter Network

30

3.5 Failure Recovery

Due to their size and scale, recovering modern datacenters from failure is a difficult goal

to be achieved, and the growing scale of datacenters further magnifies the impact of wrong

recovery decisions/design.

Predictability and agility are two of the most important requirements when it comes to

failure recovery. The distributed intelligence model of today’s network failure recovery may

result in erratic behavior. It is advisable that the infrastructure, and the network, move to a

consistent, deterministic, stable state given a failure.

3.6 Dynamic infrastructure Delivery Model

The requirements of an improved efficiency, efficacy, security and all the other high-

level requirements described in the previous paragraphs and chapter push for a better

utilization of resources, more compact, resilient, and scalable.

These requirements have been implemented in other infrastructure domains (i.e.

compute power, storage) by a massive use of resource (compute, storage, etc.) virtualization

and resource-sharing, in a secure way, between different users. The same principle is now

being applied to the datacenter networks, and to the datacenter concept itself with the

colocation, cloud and CNF concepts. Essentially these requirements push for an infrastructure

(compute, storage, network, etc.) able to dynamically adapt and transform in a secure and

reliable way the datacenter minimizing the operating costs and maximizing the efficiency and

efficacy.

3.6.1 Cloud computing Classifications

The NIST Cloud Computing Program defines Cloud computing as “a model for enabling

convenient, on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction” [16]

 Just starting from the simple definition above, it should be clear why, from an

enterprise perspective, adopting the cloud makes perfect sense: it basically moves further the

already discussed virtualization, virtualizing not (only) the infrastructure inside the

datacenter, but the datacenter itself (IaaS) and/or all the backend applications hosted (PaaS)

and ultimately the services provided to the end-user (SaaS)

 Cloud Computing could be classified in many ways, but essentially two classifications

are quite popular nowadays (as an example, see [17]):

Design of an Enterprise-Grade Software-Defined Datacenter Network

31

1. Classification based the service delivery model: Infrastructure as a Service (IaaS), Platform

as a Service (PaaS), Software as Service (SaaS).

2. Classification based on the infrastructure deployment model: public, private and hybrid

cloud.

3.6.2 Service delivery Models

Figure 3-7 - the three main Cloud service delivery models

3.6.2.1 IaaS

Infrastructure as a service (IaaS) is a cloud solution providing the basic infrastructure

able to host virtual servers and/or virtual machines. In this type of solution, the Cloud team

and/or the orchestrator platform, typically has direct access to the operating systems of the

nodes hosted in the cloud, installs the operating systems and delegates choices on the use of

the infrastructure to the users. Amazon Web Services (AWS), and Microsoft Azure (Private

Peering) are two popular offering for modern IaaS solutions.

3.6.2.2 PaaS

With PaaS infrastructure, users can access the applications (i.e. a database server)

without needing to have direct access and/or manage the underlying platform and operating

system. Customers of PaaS manage only the application(s) they deploy and do not need to

take care of the underlying infrastructure providing these applications. Microsoft Azure

(Public Peering) is a popular offering for modern IaaS solutions.

3.6.2.3 SaaS

SaaS is another common, and quite popular solution which basically move to the latest

stage the virtualization. Customers do not manage the infrastructure, not even the

application, they just consume the services provided by the platform (for example, the MS-

Office suite for Office365). SaaS users simply access the software over (typically) an Internet

connection and do not need to manage, install, maintain the software/application or manage

Design of an Enterprise-Grade Software-Defined Datacenter Network

32

it on their local computer. Maintenance, upgrades, patches are completely managed by the

platform provider.

3.6.3 Deployment Models

Figure 3-8 - Cloud Deployment Models

The main advantage of a cloud-hosted service is that the needed resources are pooled

together and used as shared entities, and they can be upgraded, made accessible, managed

and scaled regardless of any physical boundaries. Thus, cloud-based hosting could be

available through basic services on small number of servers for limited group of users or

through publicly offered services deployed in massive datacenters. This diversity drives

different deployment and sharing models, that, as an example, could be based on the

targeted users, type of application, type of service, and scope of access that the deployment

should need. Three general deployment categories could be identified:

- Public Cloud

- Private Cloud

- Hybrid Cloud

3.6.3.1 Public Cloud

Public Cloud solutions offer small and medium companies the opportunity to use

virtualization through public resources. These resources, offered by CSPs, can host computing

power, storage, networks, applications, databases on a cloud infrastructure maintained,

managed, and operated by the CSP. Essentially the choice between a CSP-based public cloud

versus maintaining a private cloud is analogous to renting versus buying a car. With public

cloud, the overhead of maintaining the hardware infrastructure and the operational costs to

manage them, are completely left to the CSP. The user is just a tenant in the CSP’s cloud and

shares the resources with other tenants. Other advantages offered by the public cloud are

usually a broader network access, vendor backed service guarantee and data backup. When

overhead must be kept low, a public cloud is usually the best option.

Design of an Enterprise-Grade Software-Defined Datacenter Network

33

Despite the mentioned advantages, public clouds present some level of hidden/hard

to predict running costs and vulnerabilities, and from an enterprise perspective, pose some

challenges on the overall security model.

Examples of public clouds include Amazon Web Services (AWS), Google Cloud,

Microsoft Azure, Rackspace, and many others.

3.6.3.2 Private Cloud

A private cloud could be described as a virtualized infrastructure situated in one or

multiple locations, directly or indirectly managed, operated, and utilized by the organization

owning the infrastructure itself. This approach offers complete isolation, independence, and

a security model easily compliant with the organization’s policies, but it also brings in the

overhead necessary to acquire, manage, and operate the infrastructure. Large enterprises

may find this model desirable, where the advantages of the cloud outweigh the overhead

cost. Enterprises dealing with sensible (i.e. financial, medical, or military) data may require

higher levels of security and isolation and avoid putting their data and compute in a publicly

accessible domain. While private clouds offer much more control over the level of isolation,

they do not have the cost benefit of offloading the management, maintenance, upgrade, and

deployment of the infrastructure.

Several platforms available today offer implementation and management of privately

hosted clouds. The choice between these could be based on licensing costs, roadmaps,

availability of support, and ease of use. Some of the more commonly used platforms for

deploying private clouds are VMware’s vSphere and OpenStack.

3.6.3.3 Hybrid Cloud

Hybrid clouds offer the best of both public and private offering: they can be setup to

use resources hosted by Cloud Service Providers (CSP) for those services running in the cloud,

whilst continuing to use private cloud services for more delicate applications. This implies that

the hybrid cloud scales much better in comparison to private cloud architectures, yet it still

allows management and control by keeping some portions of data and applications in the

private cloud.

By using the hybrid cloud model, boundaries and differences are managed and

defined basically by the cloud architects. The end-user sees the hybrid cloud as one

environment where applications run, data is stored, and networks configured. Most private

cloud management and deployment tools can interact with public clouds using APIs and

present the hybrid cloud model to the user.

Design of an Enterprise-Grade Software-Defined Datacenter Network

34

3.6.4 Containerization and Micro-segmentation

Containers virtualize the OS, splitting it up into virtual compartments to run isolated

applications or workloads. This allows to run code in smaller, easily transportable pieces that

can be hosted anywhere the host OS is running. The main appeal of containers is that they

speed up the development process allowing applications to be distributed across the cloud

and moved around in a virtual fashion. This has made them a key component of the DevOps

approach.

µ-segmentation is a security technique that enables fine-grained security policies to

be assigned to datacenter applications, down to the workload/container level. This approach

enables security models to be deployed deep inside a datacenter, using a virtualized,

software-only approach, possibly intent-based.

The combination of µ-segmentation and containerization allows the secure

provisioning of virtualized, easy to move, containerized workloads in different environments.

3.6.5 Multitenancy

Consolidation and virtualization combined trigger a more efficient utilization of

resources, which drives the need to host more clients “sharing” the same physical resources

in the same space. These clients (also known as “tenants”) must be kept segregated one from

the other and they must be able to utilize their chunk of resources, being them storage,

compute power, network bandwidth and latency, efficiently and in compliance with the

corresponding SLA.

In these multi-tenancy environments, it is vital to keep separated the resources

belonging to each tenant. For storage, as an example, this implies implement proper

segregation strategy in the vSAN by ACLs and other mechanisms as such. For networks, this

implies for instance segregate the traffic using technologies able to virtualize the network (i.e.

VLANs, VRFs, vDCs, dedicated Tenants) able to guarantee that packets from different tenants

are kept separated one from another, each one with the amount of bandwidth and with the

latency compliant with the SLA.

When the number of tenants in the datacenter was small, it was still possible to arrange

bandwidth and latency per tenant, typically using QoS/traffic shaping strategies, using scripts

or other manual/low level techniques.

Nevertheless, in a modern datacenter, as said, the number of tenants is continuously

growing, and spans from tents (small datacenter) to hundreds (big datacenter) or thousands

Design of an Enterprise-Grade Software-Defined Datacenter Network

35

(cloud) or hundreds of thousands (large cloud providers). In this scenario, a more dynamic

and reliable approach is required.

3.6.6 Resource-location driven network topology

Another constraint on modern network designs is that the physical location of the

network services largely determines the topology of the network and have historically

restricted the placement of the workloads.

End-to-end application traffic flows are often required to traverse various network

service functions such as IDS/IPS, firewalls, WAN Optimizers, and load balancers along a

predetermined path. This results in a static chains of network services that cannot flexibly

cope with dynamic user and service requirements

Figure 3-9 - Traditional Static Network Service path

Modern datacenters and cloud networks, however, need to be able to provide the

required services and policies independently from where the workloads are placed and

regardless of the availability of network service functions.

3.6.7 Infrastructure Automation and Orchestration

The need to adapt and transform triggers per se a requirement of an automation and

orchestration platform able to dynamically plan, schedule, control, implement and maintain

the infrastructure. The orchestration platform essentially must be able to communicate with

all the infrastructure delivery components (Storage, computing, network) and to trigger the

necessary changes depending on external factors (i.e. traffic load, change in operating costs

during the time of the day, etc.).

It is worth noting that the automation and orchestration platform drives not only the

local infrastructure but could also direct changes in delocalized, distributed centers (i.e. cloud

services).

3.6.8 Zero Touch Provisioning (ZTP)

With Zero Touch Provisioning (ZTP) the infrastructure allows automatic provisioning

and configuration of devices, eliminating most of the manual work required to add them to a

network. ZTP reduces the provisioning time and the chances of misconfigurations

Design of an Enterprise-Grade Software-Defined Datacenter Network

36

3.7 Carrier neutrality

An enterprise datacenter should allow interconnection between many co-location and

interconnection providers. Carrier-neutral datacenters are not tied to any service provider

(telecommunications, ISP, or other) and provide diversity and flexibility.

According to a study made by Gartner “Carrier neutrality is an essential factor to look

for when outsourcing the datacenter or seeking interconnection services, as in the end, it

provides the benefit of both cost-efficiency and more connectivity than the Enterprise could

find anywhere else.” [18]

There are (at least) 4 important reasons to select a carrier neutral datacenter over a

carrier specific datacenter:

1. Redundancy – Relying on only one carrier to connect to the Internet, or to the CSP. has

inherent risks. IT best practices generally mandate that a minimum of two carriers be used

to connect critical systems to the Internet just in case one fails. Choices of alternative

carriers in a carrier specific facility are likely to be severely limited.

2. Lower Pricing – competition drives down prices: the availability of multiple carriers will

enable the freedom of choosing between different carriers.

3. Flexibility – Each carrier’s network is unique. Fiber and cables cover different routes and

the equipment can provide different benefits. A datacenter with multiple carriers gives an

intrinsic advantage of routing and feature sets offered by competing carriers at any time.

4. Portability – changing from one carrier to another will be inherently easier, due to the

abundancy of carriers terminated in the facility [19]

Design of an Enterprise-Grade Software-Defined Datacenter Network

37

SECTION II - DATACENTER NETWORK SPECIFICATIONS AND DESIGN TOOLS

4 Design Principles

4.1 Abstract

This chapter presents the main principles that drive the design of an Enterprise

Datacenter Network. These principles descend directly or indirectly from the high-level

requirements described in the previous Section and they will be applied on all the high-level

designs presented in Section III. An introduction to network architecture, providing the

theoretical foundation for the mentioned principles and specifications can be found in [20].

4.2 Architecture principles

The datacenter network must be designed keeping in mind the need to enable

business and increase stability, the ability to change (agility), adapt and transform as fast as

possible. The four principles of IT Architecture could be identified as:

- Business enablement

- Stability increase

- Cost reduction

- Security

Those stated above are high-level principles useful in evaluating/assessing if a specific

design is fit for purpose. In the context of this paper (Enterprise Datacenter networks) the

principles above and the requirements identified in the previous section, mandate the

following features to be available in the design:

- Predictable, hyper-scalable, non-blocking network topology model

- Network and network functions virtualization, the centralization of the control plane, and

the Services function chaining (DCN Virtualization)

- Support of Dynamic resource allocation, orchestration (Software-Defined Datacenter

network)

- Well defined, tested, simple, Datacenter and Business Continuity model

4.3 A model for the Datacenter Network Topology

Most of the modern DCN architectures adopt a topology based on the Clos Network

(see Chap. 5). Modern datacenter networks are comprised of top-of-rack switches and core

switches:

Design of an Enterprise-Grade Software-Defined Datacenter Network

38

- The top of rack (ToR) switches are the leaf switches and they are attached to the

core/spine switches.

- The leaf switches are not connected to each other and the spine switches only connect to

the leaf switches (or an upstream core device).

The current trend is to adopt Clos topologies using the Point of Delivery (Pod) concept as

building block. The Pod is an atomic unit of compute, network and storage. It is designed as a

unit, deployed as a unit, automated as a unit and retired as a unit.

4.4 The three pillars of a modern DCN

As already mentioned in Section I, the modern datacenter requirements together with

the technological constraints and the DCN specifications push towards a:

- Virtualized network model able to securely share different flows and tenants on the same

physical infrastructure (Network is virtualized)

- Dynamic, elastic, simplified, open and centralized network control plane where most of

the complexity is moved from the networking equipment to a centralized controller

(Network is Software-Defined)

- Virtualized network functions (i.e. firewalling, load balancing, etc.) provided through

combination of physical and virtual services and chained together (Network Functions are

virtualized and chained)

The three pillars above are the foundation elements of the solutions that will be presented

in the next chapters of this section.

4.5 Orchestration and dynamic resource allocation

The three pillars identified in the previous paragraph provide a Software-Defined

Datacenter (or DCNaaS, Datacenter Network as a Service) where, through a set of

API/northbound protocols, an orchestrator platform can dynamically trigger the changes,

allocating, updating, releasing the resources, defining the policies on the network

infrastructure.

Design of an Enterprise-Grade Software-Defined Datacenter Network

39

4.6 Distributed Datacenter and Business Continuity Model

In this paper we assume that the Enterprise operates globally in four regions:

- Asia-Pacific (APAC)

- Europe, Middle-East Africa (EMEA)

- Latin America (LATAM)

- North America (NA)

with 2 Datacenters in each region, connected to each other through a dedicated high-speed

low latency regional Datacenter Interconnect (DCI). The Enterprise owns/operates a Wide

Area Network interconnecting Corporate users, partners, and other networks (i.e. Public

Cloud, Internet) to the Datacenters. DR capability is required on a region-based (inter-region

DR is not required) with residual risk handled by offline copy of the data on a different region.

Figure 4-1 - Distributed Datacenter model and BC

Every region has two datacenters, the primary DC hosting PROD and SIT/DEV systems

and the secondary for DR, DR Test and UAT. The two regional datacenters are, by design, very

similar, provided that during real DR invocation the secondary datacenter must be able to

host and handle all the PROD workloads running on the failed primary Datacenter (Sacrificial

DR model). Inter-region DR is not required (region-based datacenter failure domains).

 This paper focuses on the datacenter internal network, not the DCI link connecting

the intra-region or inter-region datacenters, or the WAN network connecting the users.

Design of an Enterprise-Grade Software-Defined Datacenter Network

40

5 Network Topologies for the DCN

5.1 Abstract

This chapter introduces a taxonomy for the datacenter networks, then an overview of

the Clos Networks and POD-based designs is presented, and finally, using publicly available

information, the network topologies of four massively scalable datacenters are briefly

described.

Unfortunately, the details about the SDN implementations for most of the big companies

are not public, however it is worth noting that the probable four biggest datacenter

implementations (Amazon, Facebook, Google, Microsoft) share these design choices: Clos

Pod-based design and a combination of SDN/NFV/NFC on the control and management plane.

For a more complete discussion on the theoretical foundations of this chapter see [21],

[22] provides an introduction to different DCN topologies, and [23] presents a concise

summary of the Clos theorem.

5.2 Datacenter network topologies

5.2.1 Taxonomy of DCN topologies

Several datacenter network topologies have been proposed by researchers, aimed at

addressing many of the shortcomings of the current DCN. This paragraph introduces a

taxonomy of several DCN topologies, then reviews their properties in terms of scale,

performance and hardware redundancy. This paragraph is largely based on the work

described in [22].

Figure 5-1 - Taxonomy of Datacenter network topologies (Fig. 3.1 in [22])

Design of an Enterprise-Grade Software-Defined Datacenter Network

41

“DCNs can be classified as fixed-topology architectures and flexible-topology

architectures, according to whether the network topology is fixed from the time it is deployed.

Fixed-topology architectures based on Fat-trees include the architecture proposed by Al-Fares

et al. [24], Portland and Heeder architectures [25], Clos networks as represented by the VL2

architecture [26], and Recursive topologies such as the DCell [27] and BCube architectures

[28]. Flexible-topology architectures include c-Through [29], Helios [30] and OSA [31]. Other

noteworthy architectures include FiConn [32], MDCube [33], and CamCube [34]” [22]. Figure

5-1 gives a taxonomy of the different datacenter network topologies.

Even though this paper focuses on folded Clos networks (aka spine-leaf topologies)

which have become the de-facto standard for Enterprise Datacenter, the next two paragraphs

(based on the work in [22]) present a brief comparison of different topologies.

5.2.2 Comparison of topologies

5.2.2.1 Comparison of Scale

Table 5-1 - Summary of parameters (Tab. 3.1 in [22])

Table 5-1 presents a comparison of some of the parameters of the topologies introduced

earlier. The flexible-topology architectures are not included. The following parameters are

used when comparing the different topologies:

- Degree of the servers: The (average) number of network ports on the servers in the

datacenter. For the tree-based topologies, only one port is needed on each server.

However, in the recursive topologies, the degree of servers may vary according to the

levels required.

Design of an Enterprise-Grade Software-Defined Datacenter Network

42

- Diameter: The longest of the shortest paths between two servers in a datacenter. A

smaller diameter leads to more effective routing, and lower transmission latency. In

practice for most topologies, the diameter grows logarithmically with the number of

servers.

- Number of Switches: It is assumed that all switches are the same in each topology. BCube

uses the largest number of switches, which may lead to higher cost. The basic tree

topology uses the fewest switches because there is little hardware redundancy in the

architecture.

- Number of Wires: This metric shows the number of wires required when deploying a

datacenter. BCube uses the most wires, followed by DCell. However, it should be noted

that the number of wires only shows the wiring complexity; it does not show the accurate

wiring cost, because not all the topologies use homogeneous wires. E.g., the typical

bandwidth of a link between an aggregation switch and a core switch in fat-tree is 40/50

Gbps, while it is 10/25 Gbps on a link between a server and an edge switch.

- Number of Servers: All the metrics above are computed under the same number of

servers (N), while this one shows the scalability of different topologies with the same n

and k (for recursive topologies only). It is assumed in this row that the tree-based

topologies use 3-level structure. Considering the data in Table 5-1, it is no doubt that DCell

scales up much faster than other architectures for the number of servers in DCell grows

double-exponentially with k.

Table 5-2 - Number of Servers for different DCN topologies (Tab 3.2 in [22])

Design of an Enterprise-Grade Software-Defined Datacenter Network

43

5.2.2.2 Comparison of performances

Table 5-3 - Performance summary (Tab. 3.3 in [22])

Table 5-3 shows the comparison of some performance metrics of different topologies

- Bandwidth: The first four rows of Table 5-3 show the bandwidth that the topologies can

offer under different traffic patterns. “One-to-one” means the maximum bandwidth that

the topology can offer when one arbitrary server sends data to another arbitrary server,

and so on so forth. “All-to-all” bandwidth means every server establishes a flow to all the

other servers. The bandwidths are expressed as the number of links, which implies that

each link in a datacenter has the same bandwidth. It is shown in the table that one-to-

one, one-to-several and one-to-all bandwidths are in fact limited by the number of ports

on the servers, or the degree of servers.

- Bisection Width: The minimum number of wires that must be removed when dividing the

network into two equal sets of nodes. The larger the bisection width, the better fault-

tolerance ability of a topology. A similar metric, the bisection bandwidth is also widely

used, which means the minimum collective bandwidth of all the wires that must be

removed to divide the network into two equal sets of nodes. Basic tree has the smallest

bisection width, which means that it is the most vulnerable of all. A graceful degradation

of performance implies that when more and more components fail in the datacenter,

performance reduces slowly without a steep decline in performance. When building a

new datacenter, it is usual that a partial topology will be built first, and more components

are added based on future need. This partial network can be viewed as a network with

many failures.

Design of an Enterprise-Grade Software-Defined Datacenter Network

44

5.3 Clos Networks

In the mid-1950s Clos networks were created to switch telephone calls. From crossbar

topologies, Clos networks architectures moved to chassis-based Ethernet switches and

nowadays they are used in modern DCN to provide predictable latency, high performance

and resiliency. The Clos design is now a key architectural model for datacenter networking.

5.3.1 The first appearance of Clos Networks: the telephony systems

Charles Clos in [35] described “a method of designing arrays of cross points for use in

telephone switching systems in which it will always be possible to establish a connection from

an idle inlet to an idle outlet regardless of the number of calls served by the system”. The

concept is that there are multiple paths to “route” the call through the network so that the

call will always be connected and not "blocked" by another call.

The key advantage of Clos networks is that the number of cross points (which make

up each crossbar switch) required can be far fewer than would be the case if the entire

switching system were implemented with one large crossbar switch.

The term fabric came about later because the pattern of links looks like threads in a

woven piece of cloth.

Figure 5-2 - "3 stage switching array" (Fig. 3 in [35])

Design of an Enterprise-Grade Software-Defined Datacenter Network

45

5.3.1.2 Clos networks architecture

Clos networks are multistage switching networks. Figure 5-3 below shows an example

of a 3-stage Clos network where n is the number of sources connected to each of the m ingress

stage crossbar switch: there is precisely one link between each ingress switch and each of the

k middle stage switch. And each middle stage switch is connected exactly once to each of the

m egress stage switch.

Figure 5-3 - 3-stage Clos network [35]

5.3.1.3 Clos Theorem

It can be shown that with k ≥ n, a Clos network is equivalent to a crossbar switch (it is

non-blocking). This implies that, for each input-output matching, in the middle-stage there is

a combination of paths connecting inputs and outputs. The Clos theorem shows that to add

a new connection there won’t be any need for rearranging the existing connections provided

that the number of middle-stage switches is big enough.

Clos Theorem: If k ≥ 2n−1, then a new connection can always be added without

rearrangement.

5.3.2 The second appearance of Clos Networks: within Network Switches

With the advent of the first Ethernet switches, in the 1990s, Clos networks came back

to life. The switch needed to transport frames from any port to any other port, and this

“simple” requirement could be implemented with a similar crossbar matrix of connectivity

within the switch. The number of switch ports governed the size of the crossbar fabric. With

the advent of modular switches, to accommodate faster interface speeds, the crossbar fabric

Design of an Enterprise-Grade Software-Defined Datacenter Network

46

needed to be expanded. The crossbar fabric, together with the interconnections between the

line cards inside the chassis, were provided by the switch supervisor card.

Crossbar fabrics became unpopular because they were subject to Head of Line (HOL)

blocking due to input queue limitations. Gradually, input and output queues were added to

all the interfaces of the Ethernet switches. Today, Ethernet switches provide non-blocking

performances with advanced fabric features like priority-based flow control, output queuing,

and others.

5.3.3 The Datacenter Network Journey

Figure 5-4 - The datacenter network Journey [36]

Design of an Enterprise-Grade Software-Defined Datacenter Network

47

5.3.3.1 Fat-tree topology

Gradually, the "fat tree" model of connectivity using the core - distribution - access

architecture has been adopted as a standard approach to network design. To prevent

oversubscription, the aggregated throughput required at each layer became progressively

higher coming closer to the core. As an example, in a server room the access layer could have

been a 100Mbps Fast Ethernet link, the uplinks to the distribution layer could have been

1Gbps Ethernet links, and the uplinks from there to the core would have been 4X1Gbps port

channels. The fat-tree topology however presented the challenges described in Par. 3.3.

Moving up to the Core Layer, traffic engineering in the datacenter becomes

challenging using traditional Ethernet switches. While the links increase in bandwidth getting

closer to the core, these links are usually greatly oversubscribed, and blocking can easily

occur.

Figure 5-5 - Traditional Three-Tier Datacenter Design

5.3.3.2 Design using active/active pair of links

Around 2009, layer two multi-switch redundancy solutions (like Cisco vPC) were

introduced: these technologies provide an active/active pair of links that doubled the

throughput available compared to the STP active/standby solution2. These vPC-like

technologies have been used most commonly in the datacenters in the past years, but the

new trend of designing a datacenter is using a multi-tier spine-and-leaf design, taking full

2 These topologies still use STP as a fail-safe mechanism.

Design of an Enterprise-Grade Software-Defined Datacenter Network

48

advantage of all the links, completely removing the STP and reducing the complexity of the

overall solution.

Figure 5-6 – STP to vPC improvement in the DCN [36]

Since 2003, with the introduction of virtual technology, the computing, networking,

and storage resources that were segregated in pods in Layer 2 in the three-tier datacenter

design can be pooled. This revolutionary technology created a need for a larger Layer 2

domain, from the access layer to the core layer, as shown in Figure 5-7.

Figure 5-7 - Datacenter Design with Extended Layer 3 Domain [37]

5.3.4 The third appearance of Clos Networks: Spine-Leaf Architecture in DCN

With Layer 2 segments stretched across all the pods, the datacenter administrator can

design a centralized, flexible infrastructure that can be reallocated based on needs. Virtual

machines can move freely from one hypervisor to the other without changing the network

Design of an Enterprise-Grade Software-Defined Datacenter Network

49

configuration. With virtualized servers, applications are increasingly deployed in a distributed

fashion, which further increases east-west traffic. This traffic must be handled efficiently, with

low and predictable latency. However, vPCs provide only two active links, and so bandwidth

becomes a bottleneck in this architecture. Another challenge is that latency is not predictable:

server-to-server latency varies depending on the traffic path used.

To overcome these limitations, a new design approach is required: Clos networks

come back to life in their third impersonation, this time as datacenter design called the spine-

and-leaf architecture.

Figure 5-8 - Spine-Leaf Architecture (3-layers Clos)

In this (folded) two-tiers Clos architecture, every leaf switch is connected to each spine

switch in a full-mesh topology. The leaf layer consists of access switches connecting hosts

such as servers, load balancers, etc. The spine layer is the backbone of the network and

interconnects all the leaf switches. Every leaf switch connects to every spine switch in the

fabric. The path is randomly chosen (i.e. using ECMP) so that the traffic load is evenly

distributed between the spines. In the event of a failure of one spine, it would only slightly

degrade performance throughout the datacenter.

Figure 5-9 - Datacenter Design with Extended Layer 3 Domain [37]

In the event of oversubscription (i.e. there is more traffic than what can be aggregated

on the active link at one time), the process for expanding capacity is easy: an additional spine

switch can be added, and uplinks can be extended to every leaf switch, resulting in the

addition of uplink throughput and reduction of the oversubscription. If device port capacity

Design of an Enterprise-Grade Software-Defined Datacenter Network

50

becomes a concern, a new leaf switch can be added by connecting it to every spine switch

and adding the network configuration to the switch. The ease of expansion optimizes the IT

department’s process of scaling the network. If no oversubscription occurs between the

lower-tier switches and their uplinks, then a non-blocking architecture can be achieved.

With spine-and-leaf architectures, no matter which leaf switch a server is connected,

its traffic must always cross the same number of switches to get to another server. This

approach provides predictable (low) latency: between two hosts in the DCN, unless they are

connected to the same leaf, there are always 3 hops (source leaf – spine – destination leaf).

5.3.5 POD-based design

A single large workload can be split into smaller sub workloads, and their output can

be combined, summarized, and reduced to find the overall result. Numerous kinds of

workloads dealing with huge data volumes might benefit from this Divide-and-conquer

approach.

Classic Core--Aggregation--Edge design maximizes north-south traffic, Pod designs is

optimized for datacenter agility. They assume that the datacenter capacity will be built out

over time rather than all at once, and during the lifecycle there will be important changes in

price/performance of the infrastructure.

The core building block is the Point of Delivery (PoD): an atomic unit of compute,

network and storage. It is designed, deployed, automated and decommissioned as a unit.

Pods cannot be “half built” and they cannot be “half upgraded.” In practice, pods are often

marked with a version number (sometimes called a ‘generation’).

The very same concept of Pod can be applied to the spine-leaf Clos network

topologies, where basically a Pod is the “building block” for the full datacenter network.

Figure 5-10 - Pod Design vs traditional [38]

Design of an Enterprise-Grade Software-Defined Datacenter Network

51

5.3.6 Top-Of-Rack (ToR)

The datacenter’s access layer presents the biggest challenge to architects because they

need to choose the cabling architecture to support the ever-growing needs of the DCN [39] .

The spine-leaf design is per se independent from the physical location of the leaf,

however the de-facto standard for this architecture is the ToR model (see Figure 5-11) where

endpoints are connected to Network Access Modules (NAM)3 located in the same racks.

These NAMs are then connected to the leaf or spine switches

Figure 5-11 - ToR model.

 With the ToR approach, leaf, spine, or aggregation can still be connected at the End-

of-Row or Middle-of-Row while drastically reducing the amount of cabling and providing a

scalable model at the rack level.

5.4 Modern Massively Scalable Datacenters examples

In this paragraph five massively scalable datacenter (MSDC) network topologies are

presented: Amazon, Facebook, Google, Microsoft Azure and Oracle Cloud are briefly

introduced and compared. Facebook and Google provide public information for their

network, Amazon topology is based on the public information extracted from a AWS

conference (see [40]), the information for Microsoft Azure is deducted by information

provided on MSDN, and the one for Oracle is based on public sources.

It is worth noting that all five MSDCs are based on rearrangeable Clos networks, pod-

based, and make extensive use of SDN and virtualization.

3 NAM could be provided by Leaf Switches, remote line cards, or Fabric deployed as ToR
switches controlled by leaf switches deployed as MoR or EoR.

Design of an Enterprise-Grade Software-Defined Datacenter Network

52

5.4.1 Amazon Datacenter Network Topology

The topology information presented in this paragraph is deducted from [40] during

which James Hamilton, Vice President and Distinguished Engineer on the Amazon Web

Services (AWS) team, provides some insights about how the Amazon Datacenter network is

organized

5.4.1.1 Design parameters

- AWS provides 25Gbps access to the hosts and 50Gbps links to the backbone.

- All hosts are dual connected (2x25Gbps)

- It uses ASICS Tomahawk with 128P@50Gbps Rearrangeable in non-blocking topologies

- It hosts between 50k and 80k servers in a single datacenter

- It uses SDN (“it is super important (…) we have been using it since the beginning”)

Assuming the DCN connects 65k dual-homed hosts, the amount of 25G ports is around 130k

5.4.1.2 Deployment Unit

F

64

1

D.U. / Fabric

@
50

G

64

1

@
50

G

Figure 5-12 - Amazon basic deployment unit

The basic switch used in AWS datacenter is a 128P@50G switch based on Tomahawk ASICS.

The “Fabric” layer switch provides 128P@50G (see Figure 5-12), 64 Ports to the ToR switches

and 64 Ports to the Spine Switches.

L

128

11

64

TOR Switch

@
25

G

@
50

G

Figure 5-13 - Amazon TOR switch (assumption)

The access layer/ToR switch provides 128P@25G to the hosts, and 64P@50G to the

aggregation (see Figure 5-14). The Aggregation/Spine (see Figure 5-13) switch provides

128P@50G connected to the Aggregation switch

.

Spine

S
1

128

Figure 5-14 - Fabric Switch Configuration (Aggregation Layer)

Design of an Enterprise-Grade Software-Defined Datacenter Network

53

5.4.1.3 Amazon POD

128

L1 F1

F64L64

11

1

128

1

64 64

1

64

1

64

1

64

1

64

4096

1

P
1

8192

POD

@
25

G

@
50

G

Figure 5-15 - AWS POD

The AWS PoD provides 8,192 access ports (128x64) and is connected to the spine layer with

4,096 ports. The PoD has the following main features

- Non-blocking topology

- Switch number per pod Spod=64+64=128

5.4.1.4 AWS DCN

8192

8192

P1 S1

S512P16

11

1

1

4096 128

11

1284096

Figure 5-16 - AWS DCN Topology

The required number of pods to connect 65k hosts is 16 (see below).

- 25G Access Ports number Pacc=8192 x 16 = 131,072  connected hosts = 65,536

- Spine switches number: 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4096 × 16
128

 = 512.

- Each spine is connected to each pod with an 8 x 50Gbps link (128/16=8)

- Bi-section bandwidth: 16 x 4096 @50G = 3,276,800Gbps= 3,276Tbps=3.27Pbps

- Total switch number: Stot=16xSpod + Sspine =2,560

- Total 25G Equivalent ports Ptot,eq = 256 x Stot=655,3604

- Infrastructure Efficiency (25G Access/25G Equivalent Ports) = 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡,𝑒𝑒𝑒𝑒

= 131,072
655,360

= 20%

4 Every building block switch provides 128P@50G, or 256@25G

Design of an Enterprise-Grade Software-Defined Datacenter Network

54

5.4.2 Facebook Datacenter Network Topology

Facebook introduced in 2014 their network switch, Wedge [41], along with FBOSS,

Linux-based software for controlling switches. Thousands of Wedges have now been

deployed throughout Facebook datacenters, and the Wedge design was recently accepted by

the Open Compute Project

Figure 5-17 - FB Datacenter 3D Representation [41]

5.4.2.1 Deployment unit

The basic deployment units are two switching modules, one for the Access (TOR) the

other for Fabric (Aggregation layer) and Spine.

Figure 5-18 - FB DC Deployment unit – Spine and Fabric configuration

Each spine switch provides 96P @ 40G non-blocking

Figure 5-19 - FB DC Deployment unit - TOR configuration

Each Leaf Switch is configured in TOR Mode with 48P @10G for server access and 4 x

40G uplinks, providing 160G total bandwidth to the fabric

Design of an Enterprise-Grade Software-Defined Datacenter Network

55

5.4.2.2 FB Spine switch equivalent

S
1 1

4848

L1,1 L2,1

L2,6L1,6

11 1

8 8

11 1

1

88

1

8 88 8

Figure 5-20 – FB spine – equivalent

To better evaluate the complexity and the efficiency of the network, it is worth noting that a

96P spine switch providing 96P@40G can be built using a 2 stages Clos network made by

16P@ 40G building blocks (see Figure 5-20). In terms of network complexity, a FB spine is

equivalent to a 2-stage folded Clos network made by 12 x 16P@40G Switches.

5.4.2.3 FB POD

A pod is like a layer3 micro-cluster and it is not defined by any hard-physical

properties. it is simply a standard “unit of network” on the fabric. Each pod is served by a set

of four fabric switches.

Figure 5-21 - Facebook DC POD

Each pod has 48 server racks, and this form factor is always the same for all pods. It’s

a building block that fits into various datacenter floor plans, and it requires only basic mid-

size switches to aggregate the TORs. Each PoD has the following characteristics

- blocking topology (Oversubscription 1:4)

- Switch number per pod Spod=48+4Sspine,eq=48+4x12=96

Each pod is equivalent to a Blocking Clos-like two stages topology made using 96 16Ports

switches.

Design of an Enterprise-Grade Software-Defined Datacenter Network

56

5.4.2.4 FB DCN Topology

§
Figure - 5-22 - Facebook DCN Topology

- Total number of connected hosts = Portshosts = 221,184

- Bi-sectional bandwidth = 96 x 192@40G = 737280G=0.73Pbps

- Total 16P switch number: Stot= 96 x Spod + 192 x Sspine,eq = 11,520

- Total 40G port number Ptot = Stot x 16 = 184,320

- Total 10G Equivalent Port Number Ptot,eq = 4 x Ptot =737,280

- Infrastructure Efficiency (10G Access ports/Total 10G equivalent Ports)=
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡,𝑒𝑒𝑒𝑒
= 221,184

737,280
=

30%

It is worth noting that the number above could be used just as an indicative measure, not as

an absolute value, because the assumption of Spine switches made by Leaf Switches is purely

theoretical.

Design of an Enterprise-Grade Software-Defined Datacenter Network

57

5.4.3 Google Datacenter Network Topology

5.4.3.1 Google DCN

Jupiter is the name given to the Year 2015 iteration of Google DCN [42] and needed

to scale more than 6x the size of previous existing fabric (see Table 5-4). Unlike previous

iterations, there was a requirement for incremental deployment of new network technology

because the cost in resource stranding and downtime was too high. Upgrading networks by

simply forklifting existing clusters stranded hosts already in production. With Jupiter, new

technology would need to be introduced into the network in situ. Hence, the fabric must

support heterogeneous hardware and speeds

Table 5-4 - Google DCN generations [42]

5.4.3.2 Deployment unit – Centauri reconfigurable chassis

The unit of deployment is a Centauri chassis, a 4RU chassis housing two line-cards,

each with two switch chips with 16x40G ports controlled by a separate CPU line card. Each

port could be configured in 4x10G or 40G mode. There are no backplane data connections

between these chips; all ports are accessible on the front panel of the chassis.

Centauri units are used in three different configurations, Main Mode, TOR Mode and

Middle Mode.

Figure 5-23 - Centauri in Main Mode

Centauri in Main Mode provide 64 ports @40 Gigabit per seconds and they are used as

building blocks on the aggregation and spine layers.

Figure 5-24 - Centauri in TOR Mode

Design of an Enterprise-Grade Software-Defined Datacenter Network

58

Centauri in TOR Mode are connected to the hosts (provide 48P@10G with reconfigurable

speed @40G) on one side, and to the fabric on the other side (16 ports @10G connected to 8

Main Blocks with double redundant links)

Figure 5-25 - Centauri in Middle Mode

Centauri in Middle Mode provide 128P@10G (connected to the TOR Switches) and 32P@40G

(connected to the Spine) and are used in the construction of the medium block, needed in

the Aggregation layer.

5.4.3.3 Middle Block

The logical topology of a Middle Block is a 2-stage blocking network, with 256x10G links

available for ToR connectivity and 64x40G available for connectivity to the rest of the fabric

through the spine

Figure 5-26 - Middle Block topology

- Each middle block is made by 4 switches a 2-layer non-blocking Clos network

- SMB=4

5.4.3.4 Spine Block

Jupiter employs six Centauris in a spine block exposing 128x40G ports towards the

aggregation blocks. We limited the size of Jupiter to 64 aggregation blocks for dual redundant

links between each spine block and aggregation block pair at the largest scale, for local

reconvergence on single link failure.

Design of an Enterprise-Grade Software-Defined Datacenter Network

59

The available documentation does not specify the internals of the spine block, it states

however that the spine switch provides 128P@40G non-blocking using 6 Centauri. This leads

to the assumption of a 3-layers rearrangeable Clos topology (See Figure 5-27)

Figure 5-27 - Spine Block topology diagram

- SSB=6

5.4.3.5 Aggregation Block - Tier 1

In the aggregation block, Each ToR chip connects to eight MBs with dual redundant

10G links. The dual redundancy aids fast reconvergence for the common case of single link

failure or maintenance. Each aggregation block exposes up to 512x40G links towards the

spine blocks

- SAB=32+8 x SMB=64

The Aggregation block is made by 64 Centauris

Figure 5-28 - Jupiter Aggregation Block

5.4.3.6 The Jupiter DCN Topology

The size of Jupiter is limited to 64 aggregation blocks for dual redundant links between each

spine block and aggregation block pair at the largest scale, for local reconvergence on single

link failure. In its largest configuration, Jupiter supports 1.3Pbps bisection bandwidth among

servers.

Design of an Enterprise-Grade Software-Defined Datacenter Network

60

Figure 5-29 - Jupiter DCN Topology

- Bi-section bandwidth: 64*512*40G = 1,310,720G=1.3Pbps

- Max number of connected Hosts: Pacc =1,536 x 64 = 96,768

- Total number of Centauri switches STOT = 64 x SAB+256x SSB= 5,632

- Total number of 40G ports PTOT = 64 x STOT = 360,448

- Total 10G Equivalent Port Number Ptot,eq = 4 x Ptot = 1,441,792

- Infrastructure Efficiency (10G Access ports/Total 10G equivalent Ports)= 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡,𝑒𝑒𝑒𝑒

=

96,768
1441792

=6.71%

5.4.4 Other topologies

5.4.4.1 Microsoft Azure Network Topology

This paragraph presents a brief summary of the information available in [43] and [44].

The design of Microsoft Azure DCN took place to scale up to 10M endpoints and hundreds of

millions of VMs and VNFs. Other design requirements are: use commodity HW (white box

switches), scale at low operational and computational capacity providing elasticity and service

velocity.

The network technologies in use are MPLS + SDN on a physical Clos POD-Based network

topology.

- MPLS:

o IP lookup only at the edge (Leaf layer) and unify forwarding

o Built-in network Virtualization and ease of scale-up

- SDN

o Decouple control plane from data plane, take ownership of control plane

o Reduce number of protocols, use commodity switches

The solution was to use Hierarchical SDN (HSDN) and it is briefly described in Par. 16.3

Design of an Enterprise-Grade Software-Defined Datacenter Network

61

5.4.4.2 Oracle Cloud

From the available documentation [45] it seems that Oracle is using a non-blocking

Clos network based on interconnected PODs, providing 10Gbps access and using white box

switches with SDN.

5.4.4.2.1 Datacenter network (Availability Domains)

An Availability domain (AD) is a completely independent datacenter, connecting 1M

hosts using a non-blocking full-mesh Clos Topology. The access is provided through

 ASICs are used in the AD’s both on the host layer (as Converged Network Adapters,

providing I/O virtualization and network access) and in the switches.

Figure 5-30 - Oracle DCN Clos Topology [45]

5.4.4.2.2 Regions

Figure 5-31 - Regions in Oracle Cloud [45]

Each region contains 3 fault independent AD’s (availability domains) with a maximum

distance of 40km, and provides <5ms RTT latency, 1Tbps throughput for inter-region traffic.

Design of an Enterprise-Grade Software-Defined Datacenter Network

62

5.4.5 Comparison of the MSDC topologies

This paragraph briefly compares the MSDC networks previously shown. Due to the

lack of publicly available information about of Microsoft Azure and Oracle network

topologies, these two have been excluded from the comparison. It is worth noting that AWS

and Google provide PaaS, IaaS and SaaS services, but Facebook provides only SaaS services:

this implies that FB has better knowledge and control over applications and dataflows, which

in turn allows FB to better “clusterize” their network.

The comparison parameters have been grouped in the following three categories:

- Architecture:

o Topology Type: blocking or non-blocking.

o Oversubscription ratio: how many access ports are connected to a single uplink

port in the access block. In case of non-blocking topology, this parameter is

always 1:1 or better (leaving room to future expansion).

o Stages of the Clos topology: how many stages build the Clos Topology

o Base Building Blocks: physical characteristics of the base deployment unit

o Access and Uplink speed, and Access/ Uplink speed ratio

o Pod size

- Size:

o Total number of switches: how many switches build the network

o Number of Access ports: how many hosts can be connected to the network

o Number of Normalized Access ports: the access ports number normalized

using the access-to-uplink speed ratio

o Total Number of Normalized Network ports: a number describing how many

“normalized” ports exist in the network.

- Performance:

o Access Throughput: the total throughput available for the hosts at the access

o Bi-Sectional Throughput: total throughput between spine switches and Pods

o Network Efficiency: the ratio between normalized access ports and total

normalized ports. This parameter describes the percentage of ports connected

to hosts, and it is equal to 1.0 when 100% of the ports are connected to hosts.

o Infrastructure Overhead: dual of the efficiency above (1- network efficiency),

this is the percentage of network ports not directly connected to hosts, whose

purpose is to move packets from one intermediate stage to the other.

Design of an Enterprise-Grade Software-Defined Datacenter Network

63

Description AWS FACEBOOK Google
Type Non-Blocking Blocking Non-Blocking
Oversubscription (OS) ratio 1:1 3:1 1:1
Stages 3 4 6
Base Building Block Switch 128P@50G 16P@40G 64P@40G
Access (Gbps) 25 10 10
Uplink (Gbps) 50 40 40
Access /Uplink speed ratio 2:1 4:1 4:1
Pod Size 8192x4096 2304x192 1536x512

Total Access Ports 131072 221184 96768
Tot Switch number 2560 11520 5632
Normalized Access Ports 131072 221184 96768
Total Normalized Ports 655360 737280 1441792

Access Bandwidth (Pbps) 3.28 2.21 0.97
Bi-sect Throughput (Pbps) 3.28 0.73 1.31
Infrastructure Overhead 80.00% 70.00% 93.29%
Network Efficiency 20.00% 30.00% 6.71%
Table 5-5- Comparison of AWS, Facebook and Google Jupiter DCNs

5.4.5.1 Architecture

From an architecture perspective, both AWS and Google adopt a non-blocking design

with an Oversubscription ratio equal to 1:1 or better, and Facebook adopt a blocking design

with a 3:1 Oversubscription. Nevertheless, FB has full control over infrastructure, applications

and dataflows inside the MSDC because it does not provide IaaS/PaaS services to customers.

This implies that FB ability to localize applications and to “segregate” their dataflows inside

the pod, avoiding the need to traverse the uplinks, is way better than AWS and Google:

probably this is one of the reasons why FB DC architects decided to adopt a blocking design.

AWS uses the biggest building block switch (128Ports) of the three: this design choice,

together with the smallest stages number of its Pod topology (3 stages for AWS), reduces the

overall number of switches. On the other hand, AWS uses non-standard link speeds

(25G/50G) with the biggest access/uplink ratio (2:1): this indirectly implies5 that AWS is the

solution with the biggest amount of wires connecting the access and the fabric layer.

AWS is the solution with the biggest Pod size: it is worth noting that a Pod is also a

failure domain: a major failure in a Pod would, potentially, impact all the hosts connected to

it, and the bigger the pod, the bigger the impact of its failure.

5 In a non-blocking topology, the access/uplink ratio defines how many access links are
supported by one uplink, and (indirectly) how many wires connect Pod to distribution.

Design of an Enterprise-Grade Software-Defined Datacenter Network

64

5.4.5.2 Size

FB is the “biggest” DCN in terms of access ports and sheer switches number, however

the total number of normalized ports for FB-DCN is nearly half that of Google and AWS: this

is because FB DCN is a blocking architecture, so its overall network “size” is smaller than AWS

and Google.

Google, due to its choice of adopting a 6-stages architecture, its smaller building block,

and the redundancy between main block and ToR switches, has the greatest network

overhead, the smallest efficiency and biggest network in terms of normalized ports number.

5.4.5.3 Performance

AWS provides the greatest bi-sectional throughput, 3.28Pbps, with 20% of the overall

normalized ports connected to services (so, an 80% infrastructure overhead). Google DCN is

the only solution providing a bi-sectional throughput greater than the access bandwidth: this

leaves room for redundancy and future growth, but of course decreases the overall network

efficiency (some ports are, strictly speaking, not required). FB, finally, provides 2.21Pbps at

the access stage but “only” 0.73Pbps Bi-Sectional Throughput: this “small” value (and the

difference between access and bi-sectional throughput), again, is due to the blocking design.

Due to the 3:1 Oversubscription, the bi-sectional throughput is 33% of the access throughput.

The infrastructure efficiency (ports connected to services against overall ports) of a non-

blocking network is a direct function of the building block size and an inverse function of the

number of stages: from a high-level perspective, the bigger the building block, the better the

infrastructure efficiency, and the bigger the number of stages, the worse the infrastructure

efficiency (more stages would require more ports not directly connected to hosts). So, the

combination between the biggest deployment unit (128P) and the smallest number of stages

provides, for AWS, a DCN more efficient than Google DCN6. The tradeoff, though, is again that

a failure of a base deployment unit will impact, in case of AWS, twice the number of hosts

that would be impacted in Google DCN (64P), and a smaller number of stages provides less

resiliency and redundancy in the distribution layers, expanding their failure domains.

Facebook, due to its blocking design, is the solution with the greatest network efficiency

(and the smallest network overhead): again, a blocking topology implies a “smaller” network.

6 The overall Datacenter efficiency is a complex concept, involving power, cooling, and many
other infrastructure components, and it goes way beyond the concept of Datacenter Network
efficiency defined in this paragraph.

Design of an Enterprise-Grade Software-Defined Datacenter Network

65

6 Network Virtualization

6.1 Abstract

This chapter presents the first virtualization technologies that have been introduced in

the networking domain: overlays, tunneling, VRFs and vDCs. These technologies represent

well established tools in the current datacenter designs and are the founding elements of

datacenter networks. A framework for datacenter network virtualization is introduced in

[46], and [47] presents a thorough introduction to the topic.

6.2 Rise of virtualization

The scale and fluidity introduced by server and storage virtualization in the datacenter

pushed forward the need for automation, multitenancy, and multipathing. The general

principle of virtualization consists in creating a higher-level abstraction that runs on top of the

actual physical resource that is being abstracted (storage, compute, etc.).

In case of the network services, Network Virtualization (NV) refers to a solution where

a virtual abstracted network runs on the top of the actual physical network. With

virtualization, network administrators can create a network anytime and anywhere they

want, as well as expand and contract existing networks.

6.3 Properties of network Virtualization in the Datacenter

NV in the datacenter could be seen from many different perspectives; in this paper we

summarize NV with the following features:

- Switch Systems Virtualization

- Link Virtualization

- Broadcast Domain Virtualization (VLAN)

- Virtualization by Overlays and encapsulation

- Virtualization of the internal network processes

6.3.1 Switch systems Virtualization

In network switches the main/core component is often called Supervisor, and it is the

part (combination of software and dedicated ASICs) of the switch managing the core services.

Some network switches support the virtualization of the supervisor. This feature enables

redundancy of the control plane, and is currently implemented using two techniques:

- VSS, Virtual Switching System

- Stacking

Design of an Enterprise-Grade Software-Defined Datacenter Network

66

6.3.1.1 Virtual Switching System (VSS)

Virtual Switching System (VSS) [48] is a system virtualization technology available on

the datacenter-grade Cisco Catalyst switches (i.e. 65xx, 68xx, etc.)7. This solution connects

two switches with a dedicated redundant link called Virtual Switch Link (VSL) and then pools

the pair into one logical virtual switch called VSS. A VSS allows two physical Cisco Switches to

operate as a single logical virtual switch acting a single management unit, supporting multiple-

chassis port-channel and In-Service Software Upgrade (ISSU). In a VSS the control and

management planes of the switches are shared.

Figure 6-1 - Cisco VSS and VSL [49]

6.3.1.2 Stacking

Multiple switches could be connected in a (double) chain to create a single switching

unit through a stack interconnect (see Figure 6-2). Configuration and routing information are

shared by every switch in the stack, creating a logical single switching unit.

Switches can be added to and deleted from a working stack without affecting

performances. The stack is managed as a single unit by a master switch, which is elected from

one of the stack member switches.

Figure 6-2 - Stacking of 4 switches

7 Other manufacturers offer an equivalent feature but use a different name to define it.

Design of an Enterprise-Grade Software-Defined Datacenter Network

67

6.3.2 Access-Link Virtualization

The ability to aggregate multiple interfaces in one logical port could be part of the

virtualization process (it abstracts network resources from physical devices). In this chapter,

two link virtualization techniques are briefly described:

- LACP, to aggregate multiple ports on the same logical switch

- Virtual Port Channel (vPC), to aggregate multiple links on two different switches.

6.3.2.1 LACP

The IEEE802.3ad Link Aggregation Control Protocol (LACP) [50] defines a method to

control the bundling of multiple physical ports to form a single logical channel. LACP allows a

network endpoint to negotiate an automatic bundling of links by sending LACP frames to the

device directly connected that also supports LACP.

Figure 6-3 - LACP aggregation

6.3.2.2 Virtual Port Channel

Virtual Port Channels (vPCs) [51] allow links physically connected to two different

Cisco® Nexus switches to appear to be coming from a single device and a single Port Channel.

Technologies as virtual Port Channel (vPC), Multichassis EtherChannel (MCEC) and virtual

switching system (VSS) also allow a downstream device to attach to a pair of switches. The

main difference between VSS and vPC, though, is that VSS unifies the control and

management planes of the two-member switches, vPC instead keep the control/management

planes of the two switches separated: they just synchronize the required information.

Figure 6-4 STP to vPC improvement [51]

Design of an Enterprise-Grade Software-Defined Datacenter Network

68

6.3.3 VLANs

Instead of wiring a separate physical infrastructure for each group, VLANs [14] can be

efficiently used to segregate the hosts based on the business needs, with a unique identifier

allocated to each logical network (VLAN id). VLANs de-couple Broadcast domains and network

switches, providing the ability, as an example, to configure multiple LANs on the same

physical switch.

In 802.1Q VLANs, usually the access switch enforces the VLAN ID as well as other

security and network settings (e.g., quality of service). The VLAN ID is a 12-bit field, which

allows a theoretical limit of 4094 unique logical networks (tag 0 and tag 4095 are reserved).

Figure 6-5 - VLAN Access and Trunking

6.3.4 Network overlays

Network Overlaying is a mechanism to abstract (decouple) specific resources from the

network devices providing them8. Overlays use abstraction and encapsulation to run multiple

separate, discrete virtualized network layers on top of the physical network that provides

them (often called underlay).

Overlays create a virtual path between multiple endpoints connected to the same

physical network, logically placing them in different segments. This virtualization can be

achieved using routing (L3 or L4 overlays) or switching (L2 overlay, MAC in MAC) protocols

that can apply software tags, labels, and/or encryption to create virtual tunnels running

across the underlay. If encryption is used (i.e. IPSEC), the data can be secured between the

endpoints so that the end-users must be authenticated to use the connection.

By separating host and topology address spaces, overlays provide a level of

abstraction that allows both to grow independently.

8 VLANs can also be a special case of Layer-2 network overlay, but this paragraph focuses on
overlay technologies that provide “full” L2 or L3 encapsulation.

Design of an Enterprise-Grade Software-Defined Datacenter Network

69

6.3.4.1 L2 in L2 - Cisco Fabricpath

Cisco FabricPath [52] is a L2-in-L2 (MAC-in-MAC, or L2 routing) encapsulation which

removes the need of STP in Layer 2 networks. Fabricpath is the Cisco “version” of the TRILL

IETF standard [53] using Layer 2 IS-IS to share topology information between the network

switches. FabricPath switches act “like” routers, building reachability tables and getting all

the advantages of Layer 3 like ECMP. In addition, all the available links are used and provides

optimal forwarding. Figure 6-6 shows the FabricPath header.

Figure 6-6 - FabricPath Header

While FabricPath has been adopted by thousands of Cisco customers, it has been

challenged because it is a Cisco proprietary solution and lacks multivendor support. In

addition, with IP being the de facto standard in the networking industry, a push for an IP-

based overlay encapsulation occurred. As a result, VXLAN was introduced.

6.3.4.2 L2 in L4 – VXLANs

Virtual eXtensible LAN (VXLAN) is a L2 in L4 (MAC-in-IP/UDP) encapsulation protocol

and it is currently the prevalent overlay encapsulation in use in the datacenter space.

Networking vendors have extensively adopted VXLAN as an open standard [54]. Just like

FabricPath, VXLAN addresses all the STP limitations. However, with VXLAN a 24-bit number

identifies a virtual network segment, thus enabling support for up to 16 million broadcast

domains, overcoming the traditional limitation of 4k VLANs imposed by 802.1Q.

Because VXLAN runs over an IP network (L3/L4 underlay), the ECMP feature of Layer

3 networks is innately available for use. In general, an overlay such as VXLAN running on top

of Layer 3 can use hierarchical addressing with IP and any transport.

With VXLAN and its use of IP, DCNs have moved from being transport-dependent to

transport-independent: this implies that the previous flat MAC-based addressing scheme for

the underlay has moved to a hierarchical IP-based addressing scheme.

Design of an Enterprise-Grade Software-Defined Datacenter Network

70

The border switches in a VXLAN network are called edge devices, and they host the

VXLAN Tunnel Endpoint (VTEP). The edge switches are responsible for encapsulation and

decapsulation of the VXLAN header. The core switches interconnecting the various VTEPs are

regular IP routers. Remarkably, these do not need specialized hardware or software.

Moreover, the switches within a VXLAN network learn about each other using regular routing

protocols such as OSPF, Layer 3 IS-IS, and so on.

Figure 6-7 - VXLAN communication

VXLAN is one of the few protocols that can provide both host or a network overlay.

This implies that the encapsulation/decapsulation of the VXLAN header can be performed

both from VXLAN-capable network switches and/or the server hosts themselves (vSwitch or

hardware VTEP in the NICs). This enables highly flexible implementations with transparent

physical-to-virtual integration.

6.3.4.3 Other overlays

Many other overlays/encapsulation protocols exist/are used in the datacenter networks,

notably

- Generic Protocol Encapsulation (GPE) [55]

- Network Service Header (NSH) [56]

- Multi-Protocol Label Switching (used, amongst others, in Azure Cloud) [57] (See par. 16.3)

- Overlay Transport Virtualization (OTV) [58]

However, currently, VXLAN is the de facto (software or hardware based) standard overlay

protocol for datacenter deployments9.

9 It should be noted, though, that MPLS is gaining popularity in the Datacenter space.

Design of an Enterprise-Grade Software-Defined Datacenter Network

71

6.4 Virtualization of the network processes

All the software functions processed by the switch CPU (found in the supervisor) are

included in the switch control plane providing crucial software functions such as the routing

information base, running of various Layer 2 and Layer 3 protocols, and many others. The

control plane runs many different process, manages the data plane and enables many

hardware-accelerated features. These software processes could be “virtualized” to extend

their scope and application domain. The two main techniques to virtualize these processes

are virtual Device Contexts (vDCs) and Virtual Router and Forwarding (VRFs) 10

6.4.1 vDCs

Some DCN switches support virtual device contexts (VDCs). In its default state, the switch

control plane runs a single resource pool, called device context (VDC 1) within which, in a

typical DCN switch, approximately 80 processes will run. Some of these processes can have

other threads spawned, resulting in as many as 250 processes actively running on the system

at a time depending on the services configured [59].

Figure 6-8 - Default Operating Mode with Single Default VDC [59]

This set of processes constitutes what is the control plane for a single physical device.

At the higher level, the virtual Device Contexts are defined, within every VDC, multiple VRFs

and VDCs can be defined.

10 Equivalent features might be called with different names by other manufacturers.

Design of an Enterprise-Grade Software-Defined Datacenter Network

72

Figure 6-9 - vDC Mode [59]

A VDC can be used to virtualize the device itself, presenting the same physical switch

as multiple logical devices. Every VDC can contain its own unique and independent set of

VLANs and VRFs. Each VDC can have assigned to it physical ports, thus allowing for the

hardware data plane to be virtualized as well. Within each VDC, a separate management

domain can manage the VDC itself enabling the virtualization of the management plane itself.

6.4.2 VRFs

Virtualization of the routing/forwarding processes is supported through virtual route

forwarding instances (VRF) (see [60]). A VRF can virtualize forwarding and routing tables

allowing the co-existence of multiple instances of a routing table in a device (router, L3

switch). This allows network paths segmentation without using multiple devices

Figure 6-10 - Multiple VRF instances inside the same physical Router

 VRFs behave like logical routers, but a VRF instance uses a single routing table,

whereas a logical router includes several tables. Moreover, VRFs require a set of rules and

routing protocols controlling the packets forwarding and a forwarding table designating the

next hop for each data packet. These tables enforce the logical segregation inside the single

VRF and keep out traffic that should remain outside the VRF path.

Design of an Enterprise-Grade Software-Defined Datacenter Network

73

7 Software Defined Networking

7.1 Abstract

As mentioned in the previous chapters, the modern datacenter has pushed traditional

networking to the breaking point. This chapter describes the virtualization and the

centralization of the control plane and its separation from the data plane, presents the

classical and alternative definitions of Software Defined Networking (SDN), briefly introducing

three SDN Architectures (Big Switch Big Cloud Fabric® , Juniper Contrail® , Cisco ACI® that

will be used in Section III to build different designs for the Enterprise DCN (for an introduction

on SDN, see [61])

7.2 Data, control and management planes in network switches

A brief introduction of the architecture model of network device is useful to understand

the key features and the core concepts of SDN

Figure 7-1 - Roles of control, management and data plane

As shown in Figure 7-1, a network device can be represented by three planes, with different

roles and responsibilities:

- Data (aka forward) Plane: handles autonomously most of the frames/packets. The data

plane consists of various ports that receive/transmit frames and packets, and contains the

forwarding table needed to perform this communication without the other planes.

- Control Plane: not all packets can be handled only by the data plane, sometimes simply

because the forwarding table doesn’t contain all the required information, or because

Design of an Enterprise-Grade Software-Defined Datacenter Network

74

they belong to a control protocol that must be processed by the control plane. The control

plane main responsibility is to update the forwarding table to maximize the amount of

traffic that the data plane can autonomously handle.

- Management Plane: the switch is managed, configured and monitored through this plane,

which also extracts information from or modifies data in the control and data planes.

7.3 Why SDN?

The traditional model with the control plane distributed on all the switches fails to scale

to the size and complexity of many modern deployments and introduces (extra) complexity

that was originally needed to provide redundancy and distributed intelligence required

improve the overall resiliency. The most important reasons for this failure have been

discussed in Chapter 3 and could be summarized as:

1. Inability to scale up to the size of modern mega-datacenters

2. The TCO of networking equipment is elevate when compared to other equipment

3. A disconnect between the rate of innovation in the areas of compute and storage

virtualization as compared to networking.

The datacenter has been the place where these failings have emerged first and most severely,

and in the DCN the pressure to provide a different, modern, approach drove the design and

implementation of different solutions overcoming the presented issues.

The separation between Control and data planes has been a recurring topic during the

past, not only in the Datacenter area, so in the next paragraph some forerunners of SDN will

be briefly introduced. The purpose of this brief list is to show how SDN is not just a sudden

trend on the market, or a nice catch/buzz word used in pre-sale meetings, but It is actually

the result of a historic process which emerged more than twenty years ago.

Design of an Enterprise-Grade Software-Defined Datacenter Network

75

7.3.1 Forerunners of SDN

Even before the advent of the expression Software Defined Networking, avant-garde

researchers were planning radical changes to the networking model. Table 7-1 shows some

of those early implementations of what was to become SDN.

Year Project Description Ref.
1997 DCAN Separation of forwarding and control planes in ATM [62]
1999 Open Signaling Separation of forwarding and control planes in ATM [63]
Late
1990s

Active
Networking Separate control and programmable switches [64]

Late
1990s IP Switching Control layer two switches as a layer three routing fabric [65]

Late
1990s MPLS Separate control software establishes semi-static

forwarding paths for flows in traditional routers [66]

2003 ForCES Separating the forwarding and control planes [67]
2005 4D Control plane intelligence located in a centralized system [68]

2007 Ethane
Complete enterprise and network access and control
using separate forwarding and control planes, and
utilizing a centralized controller

[69]

2008 Orchestration Use of SNMP and CLI to help automate configuration of
networking equipment

2010 RADIUS, COPS Use of admission control to dynamically provision policy [70]
[71]

2011 Virtualization
Manager

Use of plug-ins to perform network reconfiguration to
support server virtualization [72]

Table 7-1 - Forerunners of SDN (summary from [61])

Just looking at the timeline it is quite clear that, during the last twenty years, the ideas

around advancing networking technology steady progressed to what we call SD today.

 One interesting point is that the idea of separating control and data plane has been

brought back to life during the early development of ATM, and it is intimately connected to

the circuit (cell) switching approach adopted by ATM. The same approach has been later

applied by the precursors of L3 Switching solutions (based on ATM concepts as well).

 The separation of control and data planes is part of the evolution of the control plane

itself, and this evolution had also another main branch: the evolution of the network

equipment, which is briefly presented in the next paragraph. Eventually, these two processes

converged to what we call Classical/SDN with control and data plane separation.

Design of an Enterprise-Grade Software-Defined Datacenter Network

76

7.3.2 The Evolution of Network Switches

Figure 7-2 - Switching and networking functions migrating to Hardware [61]

Different components of the network switches moved to ASICs in the past 20 years. Four

stages can be identified in this migration:

1. Early stage: even the simplest of tasks, such as MAC-level forwarding decisions were

performed by software running inside bridges, switches. This was true even through the

early days of the Internet explosion in the early 1990s.

2. Stage 2: Layer 2 Forwarding moves to Silicon. Switches started to be composed by ASICs,

FPGAs and TCAMs. The combination of these innovations made possible moving Layer 2

forwarding decisions into hardware, massively improving the forwarding capabilities.

3. Stage 3: Routing becomes L3 Forwarding. In the late 1990s, Ipsilon Networks utilized

GSMP (General Switch Management Protocol) to manage ATM connections within their

IP Switch product [73]. The Ipsilon IP Switch showed “standard” Internet router interfaces

externally, but its internal switching fabric utilized ATM switches for persistent flows.

Flows were defined as a somewhat persistent stream of packets between peers identified

by the 4-plet (Source, Destination IP addresses and Source/Destination TCP/ UDP port).

4. Stage 4: with the further evolution in ASICs, TCAMs, classifying features needed for QoS

management and frame/packet evaluation at line speed started to be available, so both

QoS and ACL management started to be implemented in Hardware.

At the end of this process it is quite clear that the separation between control and data

plane inside the switch is mature enough to allow the virtualization of the control plane,

Design of an Enterprise-Grade Software-Defined Datacenter Network

77

which already happens in many traditional high-end switches. The supervisor on these

switches (i.e. Cisco Nexus, 68xx) can already be virtualized and it is usually located on

dedicated modules of the chassis. The next, natural, move would be to completely re-locate

the supervisor on a different box and share it amongst different devices.

7.4 What is SDN?

in the traditional approach the Control Plane is the logic, implemented by software

running on all the switches, that determines optimal paths and responds to outages and new

networking demands. In the previous paragraph, we have seen that the push to centralize the

control plane, and to virtualize the supervisor, has been in the market for the last 20 years.

SDN emerges in this context with the main goal of moving the control software from the

devices to a centrally located resource, called SDN Controller, capable of seeing the entire

network and making decisions which are optimal, given the holistic view of the situation.

Basically, SDN is about moving from a distributed control plane co-resident with the data

plane to a centralized control plane located on a system that connects, manages, and

programs the distributed data planes located on simplified (White box) switches.

Figure 7-3 - From Traditional Networking to Classic SDN

Classic SDN attempts to separate network activities in the following manner:

- Forwarding, Filtering, and Prioritization responsibilities, implemented in hardware tables,

remain on the Data Plane of the device. Other features, like Access Control Lists to

prioritize data flows, are also enforced on the device and usually implemented in

hardware.

- The Control software is removed from the networking device and placed in a centralized

controller, which has a holistic view of the network and it is capable to perform optimal

routing decision and correspondingly program the distributed data planes of the devices.

Design of an Enterprise-Grade Software-Defined Datacenter Network

78

With the control plane no longer embedded, closed, strictly coupled with the hardware,

the forwarding hardware can be programmed by external software on the controllers:

this triggers a “migration to a programming paradigm for the control plane “ [61]

- The network applications run on the SDN controller, implementing higher-level functions

and participating in managing and controlling packet forwarding within the network.

7.4.1 The Five Goals of SDN

The authors, in [61], identify five main goals for SDN:

1. Separate Control and Data Planes: the control plane leaves the switches.

2. Centralize the Control: the control is now centralized in the SDN Controller.

3. Simplify the Device: the switches do not have any more a control plane, they just need to

communicate with the SDN Controller through Southbound protocols.

4. Virtualize and Orchestrate the Network: the network resources are fully virtualized: their

availability is independent from the location and the physical device providing them.

Moreover, the Datacenter Orchestrator platforms, using northbound protocols, could

interface with the SDN controller and drive the necessary changes on the network.

5. Ease the development (Openness): northbound and southbound protocols used in SDN

should be open, to facilitate the interaction with Orchestrator platforms and

eliminate/reduce the risk of vendor lock-in.

The five goals above are somewhat general across all the SDN Solutions, however the degree

by which they are implemented/achieved vary in each solution. For these reason, a possible

classification of SDN is presented in the next paragraph

Design of an Enterprise-Grade Software-Defined Datacenter Network

79

7.4.2 SDN Classification

Figure 7-4 - Classification of SDN

There are different approaches to SDN that accomplish, to different extents, the goals

introduced in Par. 7.4.1. and there are different ways to classify them. The classification

shown in this paragraph is focused on the specific needs of the Enterprise market for DCN

and primarily based on the work presented in [61]:

- Classical/Open SDN: a flow-based, imperative, approach with a control plane fully

centralized on the SDN controller, using OpenFlow as Southbound protocol.

Classical/Open SDN is described in in par 7.5

- SDN via Overlay Networks (Hardware based, or hypervisor based): the control plane is

distributed, and Applications invoke directly functions on the Network devices via

traditional protocols, such as SNMP, CLI, or NETCONF. Alternatively, newer mechanisms

such as RESTful APIs or other Southbound protocols are used (VMWare NSX uses

OpenFlow, Cisco VXLAN uses BGP/EVPN, etc.) may be used. SDN Via Overlay is described

in Par. 7.6

- Hybrid SDN/Programmable API: a class of SDN solutions where different Southbound

Protocols coexist with OpenFlow, and where some functions of the control plane are still

distributed on the network devices. Hybrid SDN is introduced in par. 7.7

Design of an Enterprise-Grade Software-Defined Datacenter Network

80

7.5 Classical SDN

Figure 7-5 - Overview of SDN Operations

From a high-level perspective, the operations on a SDN could be categorized in three different

domains:

- Forwarding Domain

- SDN Controller Domain

- SDN Applications and Orchestration Domain

7.5.1 Forwarding Domain: SDN Switches (using OpenFlow)

The SDN Switches forward the frames based on the content of its Data Block,

containing the Flow Tables populated by the SDN Controllers using OpenFlow as a

Southbound protocol [74]. A SDN Switch is composed by three blocks (see Figure 7-6):

- Forwarding Block, responsible of forwarding frames between two ports

- Abstraction Layer, containing the Flow tables populated by the SDN Controller

- Southbound API, the module in charge of communicating with the SDN Controller using

OpenFlow as a Southbound protocol

Design of an Enterprise-Grade Software-Defined Datacenter Network

81

Figure 7-6 - SDN Hardware Switch Block Diagram

7.5.1.1 Southbound API Layer

The Southbound API Layer is responsible of the communication with the SDN

Controller, and the update/creation of the Flow Tables is based on the commands received

from the SDN Controller.

7.5.1.2 Abstraction Layer and Flow Tables

The abstraction Layer contains one or more Flow tables (populated by the SDN

Controller through the Southbound Protocol Driver). The abstraction layer translates the Flow

tables into commands for the underlying forwarding layer (machine code for a hardware

switch and API calls for a Soft Switch).

A flow is defined by a stream of packets transferred by one endpoint (or a group of

endpoints). The definition of endpoint may vary with the Southbound protocol in use, for

instance an endpoint could be a 4-tuple (Source, Destination IP Addresses and Source,

Destination TCP Ports), or a VLAN tag, a hostname, LLDP information, or many other metadata

extracted from the packet (i.e. some controllers provides the ability of defining a flow using

Application-level information).

Flow tables are the core data structures in a SDN switch: they allow the device to

evaluate incoming packets and take the appropriate action (i.e. drop, flood, forward, mark)

based on the contents of the packet that has just been received.

Flow tables contain many prioritized flow records, each usually containing of two

entries:

Design of an Enterprise-Grade Software-Defined Datacenter Network

82

- match fields: the inbound packet is compared against the match field chain, and the first

full match is selected

- actions: Actions are the directives that the switch should implement if the inbound packet

matches the match fields specified for this entry

Figure 7-7 - Flow Table Entry

If a match is found, the incoming packet is processed locally, unless the action

associated with the match requires that the packet is explicitly forwarded to the controller.

When no match is found, the packet may be sent to the controller for additional

processing. This scenario is defined as the controller consuming the packet. In the case of a

hardware switch (i.e. white box switches discussed in Chapter 7.4) the specialized hardware

implements these mechanisms. In the case of a software switch (i.e. available on a hypervisor)

these same functions are mirrored by software.

7.5.1.3 Forwarding Layer

As already noted, the forwarding layer could be implemented either in hardware or

software. Its responsibility is to forward the frames/packets. The forwarding actions are

implemented by the Packet processing module in case of a vSwitch, or by the switch logic

connecting the TCAM/CAM/ASICs, whose status is updated by the Abstraction layer, in a

hardware switch.

In its early life, OpenFlow provided just a way to use the TCAM tables in existing

switches to implement any flow a programmer wanted. Now, using OpenFlow on any of the

10 fields can define a match and the conforming action space can be selected between an

ever-increasing set (DROP, forward, process, copy, etc.).

7.5.1.4 Network Abstracted model

The mechanism described in the previous paragraph could be a sort of enhanced,

centralized, policy-based routing/forwarding system, decoupling control and data plane, and

pushing a set of flow policies from outside the switch, through a TCP socket, using a messaging

protocol that defines the policy and flow rules that should be put in the TCAM.

Modelling the switch as a set of flow tables, match field and actions, and programming

these objects using a standard protocol, the network can be defined abstracting from its

inherent complexity: this level of abstraction, control, centralization is one of the key element

of the Classical SDN approach.

Design of an Enterprise-Grade Software-Defined Datacenter Network

83

7.5.1.5 Proactive vs reactive Flows

Figure 7-8 - TCAM Matching [75]

When using OpenFlow to populate the switches’ TCAM there are essentially three modes of

operation:

1. Reactive flow instantiation: when the switch identifies a new flow, the OpenFlow

Driver performs a flow table lookup, either a search on a ASIC (in case of a hardware

switch) or a table lookup (in case of a Software Switch). If there is no match for the

flow, the switch contacts the controller for instructions: in this mode the switch reacts

to traffic, consults the controller and creates a rule based on the instruction. The

problem with reactive mode is that today’s hardware does not have enough CPU

power. HW switches outside of NPUs or general-purpose CPU vSwitches don’t do this

over a few thousand packets per second.

2. Proactive flow instantiation: instead of reacting, an OpenFlow controller might

populate the flow tables proactively. Using this approach, the packet-in with NO

match event does not occur: when the flow table is in the TCAM, all packets can be

forwarded at line rate just by a lookup in the flow tables. The proactive instantiation

removes the latency caused by consulting the controller on every new flow.

3. Hybrid flow instantiation: the combination of proactive and reactive instantiations

provides the flexibility of reactive for specific cases and, at the same time, preserves

low-latency forwarding for other pre-populated flows. As an example, in the financial

sector, markets operate in nanoseconds: in this case a reactive flow will be simply not

applicable. However, granular security might be a core feature in some sections of an

Enterprise DCN (i.e. DMZs, sensitive and segregated backends, etc.): in this case the

flexibility of reactive flows might be needed.

http://openvswitch.org/

Design of an Enterprise-Grade Software-Defined Datacenter Network

84

7.5.2 SDN Controller

Figure 7-9 - Block diagram of a SDN Controller

The SDN controller abstracts the network of SDN Switches it controls and presents this

abstracted network to the SDN applications running above it. The controller allows the SDN

applications to define flows on SDN Switches helping the application to respond to packets

forwarded to the controller by the SDN devices. As shown in Figure 7-9, the SDN controller in

its Topology DB keeps a view of the complete network it controls. In this way, the controller

can calculate optimal forwarding solutions for the network in a predictable manner.

Since one controller can control many network devices, these calculations are

normally performed on a (cluster of) high-performance system(s), with an order-of-

magnitude performance advantage over the CPU and memory capacity than is typically

afforded by the network devices themselves.

7.5.2.1 SDN Controller Core operations

Figure 7-9 shows the different blocks composing a SDN Controller:

- Southbound layer, connecting to the SDN Switches

- Core Modules

- Northbound layer

The southbound API is used to interface with the SDN devices. This API is OpenFlow in the

case of Classical SDN or some alternative such as XMPP+OVSDB in Juniper Contrail, or OPFlex

in case of Cisco/ACI. In principle, the same SDN Controller can support more than one

southbound API: for instance, OpenDayLight (ODL) supports different southbound protocols

(OPFlex, NETCONF, BGP, OpenFlow, CLI, SNMP, etc.).

Design of an Enterprise-Grade Software-Defined Datacenter Network

85

The Open Source SDN Community (http:// www.opensourcesdn.org) is proposing a

northbound equivalent to the southbound OpenFlow standard. While the absence of a

standard for the controller-to-application interface is considered a current deficiency in SDN,

organizations like the Open source SDN group are developing proposals to standardize this.

Aside the absence of a standard, northbound interfaces have been implemented in

several forms. For example, the Floodlight controller includes a Java API, and a

Representational State Transfer (RESTful) API. The OpenDayLight controller provides a

RESTful API for applications running on separate machines. The northbound API represents

an outstanding opportunity for innovation and collaboration amongst vendors, developers

and the open source community.

7.5.2.2 Northbound protocols

A crucial feature provided by the SDN controller to the SDN Application is the API to access

the network. Two different interfaces usually provide this key feature:

- A low-level API, providing access to the network devices in the usual and consistent

manner. In this case, the application is aware of individual devices, but is shielded from

their differences.

- A high-level API providing an abstraction of the network, so that the application

developers do not need to concern with discrete devices but see the network as a whole.

Figure 7-10 - Northbound API on Classic SDN controller

Design of an Enterprise-Grade Software-Defined Datacenter Network

86

As shown in Figure 7-10 the controller interacts with the applications with two different

mechanisms: triggering Events, for which the application is registered, and exposing methods

used by the applications. The workflow could be summarized as follows:

- Applications subscribe to an Event (or a set of events) on the controller, and when this

happens, the controller informs the application. Events may be related to a specific packet

received by the controller or to a change in the network topology (i.e. a link going down).

- Upon the receipt of an event, applications may invoke different methods to affect the

network operation, causing the packet to be dropped or forwarded, and/or a flow to be

added, deleted or modified. Applications may also invoke methods independently

without the spur of an event from the controller. The applications could receive these

events from other contexts (Red box, in Figure 7-10)

Even though most of the controllers currently available in the market expose a REST API, there

is currently no standardized Northbound API (also called Northbound Interface, NBI). From a

market perspective, a standard NBI will have many benefits, amongst which:

- SDN application developers would no longer need to support multiple proprietary

interfaces across different SDN controllers.

- SDN applications could be deployed and plugged into different controllers, in the same

way different SDN switches could be used across many different controllers.

- Investments in customizing SDN applications to differentiate their own end services would

be more flexible because of the ability to plug-n-play SDN controllers.

The three benefits above would have, combined, the effect of opening the market for SDN

applications, pushing forward the evolution of SDN.

7.5.3 Applications and Orchestrations Domain

SDN Applications are created on top of the controller. The SDN Applications

communicate with the controller using the NBI that is usually installed through some sort of

driver/plugin on the application. The SDN Application interacts with the environment with

two types of Flows:

1. Proactive Flows: applications using the NB-API, or the controller itself, can set proactive

flows on the SDN Switches and/or receive packets forwarded to the controller. This kind

of flow is known as a static flow.

2. Reactive Flows: these flows could be defined in response to a packet forwarded to the

controller. Upon receiving a packet forwarded to the controller, the SDN application can

Design of an Enterprise-Grade Software-Defined Datacenter Network

87

configure the controller how to respond and, if needed, could establish new flows on the

switch to allow a local response in the event of other packets will be recognized on the

switch. Using this method, it is possible to develop network software to implement load

balancing, firewalling, routing and other functions. Other sources can also create or

modify reactive flows: as an example, other data sources such as Intrusion Prevention

Systems (IPS) or traffic analyzers can trigger events on the Controller causing the creation

of (reactive) flows

7.5.4 Big Switch Big Cloud controller (BCF): an example of Open/SDN Solution

Figure 7-11 - Big Switch – Classical SDN Architecture [76]

Big Switch Big Cloud Fabric (BCF) [76] is a commercial SDN controller based on Project

Floodlight [77]. BCF uses a custom version of OpenFlow as southbound Protocol, supporting

both White box and vSwitches. It uses REST API as NBI: these APIs expose the learned network

state to applications and enable the applications to program the network dynamically and

automatically.

Design of an Enterprise-Grade Software-Defined Datacenter Network

88

Figure 7-12 - Physical topology of a DCN based on Big Switch SDN [76]

BCF is essentially a pure SDN Controller using OpenFlow with extensions as southbound

protocols and leveraging a spine-leaf architecture made with white box switches running Big

Switch Light OS, that have Broadcom ASICs with several types of TCAMs. The OS running on

the switches is Big Switch’s Indigo OpenFlow Agent (Open Network Linux on x86 or ASIC-

based hardware).

7.6 VXLAN and SDN based on Overlays

7.6.1 Introduction

Overlays add a level of indirection, abstracting the existing network technologies and

extending classic network capabilities. The Fundamental theorem of software engineering

states “All problems in computer science can be solved by another level of indirection, except

of course for the problem of too many indirections.” [78]. This principle supports the concept

of network virtualization overlays, briefly described in Par. 6.3.4: an overlay is a static or

dynamic network layer that runs over a physical network layer (underlay).

In the 1990s GRE- and MPLS- encapsulations started to gain popularity and meanwhile

other solutions like as 6in4, IPsec, and L2TPv3 also became popular, typically across the WAN.

These encapsulations were employed either to improve security, simplify routing, or in the

case of 6in4 for example, to create an IPv6 network on top of a standard IPv4.

Design of an Enterprise-Grade Software-Defined Datacenter Network

89

With overlays, the original PDU (packet or frame, depending on the overlay type) is

encapsulated at the source by an edge device adding an outer header, and dispatched toward

the underlay/transport network to an appropriate destination edge device. The intermediate

network devices in the underlay blindly forward the packets based on the outer header and

are completely unaware of the inner payload. At the destination, the edge device strips the

outer header, and forwards the packet based on the inner payload.

7.6.1.1 Main features of Overlays in the DCN

Overlays have been used in datacenter environments for about 10 years now and they

are often called network virtualization overlay. Some specific features must be considered

when considering network virtualization overlays:

1. The first and most important feature of overlays is the ability to separate the location

and the identity of a host. Host Identity defines a specific host, and could be its MAC

address, its IP address, and so on. Location identifies the edge device responsible of

the encapsulation/de-encapsulation of the traffic for that end point11. The outer

header of the overlay usually contains to the source and destination locations, and the

inner header to the source and destination endpoint identities.

2. The other important feature is the service provided by the overlay, and this defines

the overlay type and its header. Overlays are normally offered as either Layer 2

(bridging) or Layer 3 (routing) services; many modern overlays, though, provide both

Layer 2 and Layer 3. The original PDU can be encapsulated into another PDU on the

same layer (i.e. MAC in MAC) or on a different layer (i.e. VXLAN encapsulates L2 in

UDP). This provides potentially four combinations, depending on whether a

packet/frame is carried in another packet/frame, the most common combinations are

i) If the outer header is a Layer 2 frame, the overlay approach is referred to as frame

encapsulation. Examples of overlays that employ frame encapsulation are TRILL,

and Cisco FabricPath.

ii) if the outer header is a Layer 3 packet, the overlay is referred to as packet

encapsulation. Examples of overlays that employ packet encapsulation are LISP,

VXLAN

11 The end points could be virtual machines, bare-metal servers, containers, or any other
workload

Design of an Enterprise-Grade Software-Defined Datacenter Network

90

3. With Overlays defined with different data-plane encapsulations, there is a need to

define a transport service to move the data across the physical network: this service

is called an underlay transport network (or simply the underlay). To define the

underlay, the layer where the encapsulation occurs must be also defined. To a certain

extent, the overlay type determines the transport network. As an example, in VXLAN

environments, the underlay is a Layer 3 network, which transports the UDP VXLAN-

encapsulated packets between the source and destination tunnel edge devices.

7.6.1.2 Classification of overlays

Network virtualization overlays can be initiated from

1. Physical servers (Host overlays)

2. Network switches connected to the servers (Network overlays)

3. Both (Hybrid overlays)

The physical servers (see Figure 7-13) are typically hypervisors running a (distributed)

virtual switch/router (i.e. Distributed Virtual Switch in VMWare vSphere) that has enhanced

capability of encapsulating and de-encapsulating the overlay header. This model requires the

network switches to only provide connectivity between the hypervisors, which in turn permits

transport of data between the virtual hosts

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Hypervisor 1 Hypervisor 3

Overlay Network
(Encap, Decap)

Underlay Network
(Transport)

Hypervisor 2

Figure 7-13 - Host Overlays

For deployments where there is a mix of bare-metal and virtualized workloads, the ToR

switches take care of pushing/popping the overlay headers for all kinds of workloads beneath

them. These are defined network overlays (see Figure 7-14).

Design of an Enterprise-Grade Software-Defined Datacenter Network

91

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Access
Network
(Encap,
Decap)

Core
Network
(Transport)

Figure 7-14 - Network Overlays

Both host overlays and network overlays are very popular and are a common deployed

option to address the challenges mentioned in Chapter 3. Each has pros and cons, but hybrid

overlay environments can realize the best of both worlds, supporting host and network

overlays and enabling optimized physical-to-virtual (P2V) communication (see Figure 7-15)

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Access
Network
(Encap,
Decap)

Core
Network
(Transport)

 Hypervisor 3

Figure 7-15 - Hybrid Overlays

7.6.2 VXLAN Key Concepts

Virtual Extensible LAN (VXLAN) is an overlay technology for network virtualization

providing Layer 2 extension over a shared Layer 3 underlay infrastructure network (typically

a leaf-spine pod-based Clos topology) by using MAC address in IP User Datagram Protocol

(MAC in IP/UDP) tunneling encapsulation (for an introduction on VXLAN see [54], [36] and

[79]). The two key VXLAN concepts are:

- VXLAN Network Identifier (VNI)

- VXLAN Tunnel Endpoint (VTEP)

Design of an Enterprise-Grade Software-Defined Datacenter Network

92

7.6.2.1 VXLAN Network Identifier

Each Layer 2 subnet or segment is uniquely identified by a VXLAN network identifier

(VNI) that segregates the traffic in the same way a IEEE 802.1Q VLAN ID segments traffic. As

is the case with a VLAN, VMs on the same VNI can communicate at layer 2 with each other,

whereas VMs on different VNIs need a L3 device to communicate with each other.

The VNI:

- Improves scalability – Although the VNI performs a similar function to the VLAN ID, it

provides one big advantage over the VLAN ID: the VNI is 24 bits in length, potentially

allowing more than 16 million VXLAN segments. The 12-bit VLAN ID provides only 4094

usable segments. Thus, the VXLAN protocol can support network segmentation to a size

which is the square of 802.1Q’s size, adequate to modern DCNs.

- Simplifies administration – In a VXLAN deployment, a VM is uniquely identified by the

combination of its MAC address and its VNI. Two or more VMs can therefore have the

same MAC address if they are in different VNIs, which helps simplifying the administration

of multi-tenant networks.

7.6.2.2 Host-based VXLAN Tunnel Endpoint

The entity that performs the encapsulation and decapsulation of packets is called a

VXLAN tunnel endpoint (VTEP).

VTEPs can be hardware-based, residing on the Leaf Switches, or software-based

residing in hypervisor hosts, such as VMWare vSphere ESXi hypervisor hosts, or kernel-based

virtual machine (KVM) hosts, as shown in Figure 7-16

Original
Ether Frame

Original
Ether Frame

VXLAN
Header

Original
Ether Frame

VXLAN
Header

Outer
UDP HDR

Outer
IP HDR

Original
Ether Frame

Original
Ether Frame

Original
Ether Frame

Original
Ether Frame

VXLAN
Header

Outer
UDP HDR

Outer
IP HDR

Original
Ether Frame

VXLAN
Header

Node 1 Node 2

VTEP IP Address

VTEP 1

VTEP IP Address

VTEP 2

VXLAN Tunnel

IP Fabric

Original
Ether Frame

VXLAN
Header

Outer
UDP HDR

Outer
IP HDR

Outer
MAC FCS

Figure 7-16 - VXLAN Encapsulation with Host-based VTEPs

Each VTEP has two interfaces: one is a switching interface facing the VMs in the host

and providing the communication between VMs on the local LAN segment. The other is an

Design of an Enterprise-Grade Software-Defined Datacenter Network

93

interface facing the underlay network. Each VTEP has a unique IP address used to route the

UDP packets between VTEPs inside the underlay IP Fabric.

As shown in Figure 7-16, when VTEP1 receives from VM1 an Ethernet frame addressed

to VM3, it uses the VNI and the destination MAC to look up in its forwarding table which VTEP

to send the packet to. VTEP1 then adds a VXLAN header that contains the VNI to the Ethernet

frame, encapsulates the frame in a Layer 3 UDP packet, and routes the packet to VTEP2 over

the Layer 3 network.

VTEP2 decapsulates the original Ethernet frame and forwards it to VM3. VM1 and

VM3 are completely unaware of the VXLAN tunnel and the Layer 3 network between them.

7.6.2.3 Network-based VXLAN Tunnel Endpoint

Non-virtualized, or bare-metal, servers still exist – for example, non-x86 servers (UNIX

and mainframe devices), storage (NAS, iSCSI SANs), and certain database and high-

performance compute instances. These devices typically do not support VXLAN and need to

continue to reside on VLAN segments.

One way to connect these devices is to place at the network edge gateways acting as

VTEPs, as shown in Figure 7-17. VTEP gateways map VLANs to VXLANs and handle the VXLAN

encapsulation and decapsulation so that the non-virtualized resources do not need to support

the VXLAN protocol. This permits the VXLAN and VLAN segments to act as one forwarding

domain across the Layer 3 boundary.

Original
Ether Frame

Original
Ether Frame

VXLAN
Header

Original
Ether Frame

VXLAN
Header

Outer
UDP HDR

Outer
IP HDR

Original
Ether Frame

Original
Ether Frame

Original
Ether Frame

VXLAN
Header

Outer
UDP HDR

Outer
IP HDR

Node 1

VTEP IP Address

VTEP 1

VXLAN Tunnel

IP Fabric

Original
Ether Frame

VXLAN
Header

Outer
UDP HDR

Outer
IP HDR

Outer
MAC FCS

VTEP Gateway VXLAN 43210 =
VLAN 210

Physical
Server

VXLAN 42310

Figure 7-17 - VXLAN Encapsulation with Hybrid VTEPs

For example, as far as the Physical Server 1 in Figure 7-17 is concerned, VM1 and VM2 appear

to be residing in the same VLAN segment in which it resides, VLAN 210, and the VTEP

Gateways acts as a proxy translating VLAN 210 into VXLAN 43210 and vice versa.

Design of an Enterprise-Grade Software-Defined Datacenter Network

94

7.6.2.4 VXLAN pros and cons

This paragraph briefly summarizes pros and cons of VXLAN encapsulation

Figure 7-18 - VXLAN Encapsulation Format

Pros :

- VXLAN encapsulates the L2 frames into a UDP packet adding 54 bytes of overhead

- Leverages Layer3 ECMP taking advantage of the full network topology

- Minimizes flooding and provides Multitenancy by design

- Traditional VLANs are expressed on 12 bits (4096 possible values). VXLAN uses a 24-bit

VNI identifier, which extends the number of possible Broadcast Domains to 16M

- Integrates physical and virtual workloads

- Achieve some of the goals of SDN (Control plane is still distributed, though)

Cons:

- Fabric must support 9216 bytes jumbo frames

- underlay must support multicast

- communication and compute overhead due to the need of handling the outer header

7.6.2.5 Network Discovery and Overlays

In the initial IETF VXLAN standard (RFC 7348) [54] the VTEP peer discovery and remote

end-host learning were defined using a multicast-based flood-and-learn behavior: the overlay

broadcast, unknown unicast, and multicast (BUM) traffic was encapsulated into multicast

VXLAN datagrams and transported to remote VTEP switches through the underlay multicast

forwarding. In this scenario, flooding could be a challenge for the scalability of the solution.

Design of an Enterprise-Grade Software-Defined Datacenter Network

95

Enabling multicast in the underlay could also be problematic because some organizations do

not allow multicast in the datacenter or WAN network. So, although BUM flooding through

multicast in the underlay works, this technique isn’t efficient and doesn’t scale well, and

presents some challenges as:

- there are more possible VNIs (16M) than multicast groups supported by the underlay

network, so at some point it may become necessary to assign multiple VNIs to the same

multicast group, which increases inefficiency.

- the use of multicast requires running PIM and IGMP in the underlay network and creates

administrative overhead in managing IGMP groups, troubleshooting PIM, etc.

7.6.2.6 VXLAN control and management plane

To build a more robust and scalable overlay network, many solutions implement a control

plane for VXLAN. In this section we briefly introduce the two protocols below, used in Juniper

Networks Contrail:

- Open vSwitch Database Management Protocol (OVSDB)

- XMPP + Ethernet VPN (EVPN)

7.6.2.6.1 OVSDB

OVSDB [80] [81] is an OpenFlow configuration protocol designed to manage Open

vSwitch implementations. OpenFlow provides the control plane, managing physical and

virtual switches and determining how packets are forwarded between source and destination

VMs. OVSDB provides a management plane that enable a standard way to configure and

manage switches, even those from different vendors.

Usually OVSDB is combined with an overlay controller, such as Juniper Contrail or

VMware NSX, that uses OVSDB to provision the VTEPs and to handle MAC address learning.

The controller provides the VTEPs with MAC addresses and the VXLAN tunnels over which the

addresses can be reached. In return, the VTEPs inform the controller of any MAC addresses

they learn. This centralized replication of MAC addresses is much more efficient than MAC

learning through multicast.

OVSDB support is not limited to virtual switches. A hardware VTEP gateway (see Figure

7-19) supporting OVSDB can participate in a controller-based overlay network.

7.6.2.6.2 EVPN

In EVPNs [82], MAC address learning is driven by the control plane, rather than by the

data plane, which helps control learned MAC addresses across virtual forwarders, thus

Design of an Enterprise-Grade Software-Defined Datacenter Network

96

avoiding flooding. The forwarders advertise locally learned MAC addresses to the controllers.

The controllers use MP-BGP to communicate with peers. The peering of controllers using BGP

for EVPN results in better and faster convergence. In EVPN, traffic across different virtual

networks is isolated because MAC learning is restricted to the virtual networks to which the

virtual machine belongs: in this way virtual networks can share the same MAC addresses

without any issue.

The result of a MAC address lookup is a next hop, which, like IP forwarding, points to

a local virtual machine or a tunnel to reach the virtual machine on a remote server. The tunnel

encapsulation methods supported for EVPN are MPLSoGRE, MPLSoUDP, and VXLAN. The

encapsulation method selected is based on a user-configured priority.

7.6.2.6.3 XMPP

EXtensible Messaging and Presence Protocol (XMPP) is the management protocol (see

[81]) used by Contrail to program the control plane of the virtual switches in its overlay

networks.

The schema of the messages exchanged over XMPP is described in an IETF draft [draft-

ietf-l3vpn-end-system] in which the control plan protocol specified in BGP/MPLS IP VPNs is

used and extended via the XMPP protocol to provide a Virtual Network service to end-systems

(hosts). These end-systems may be used to provide network services or may host end-user

applications.

Design of an Enterprise-Grade Software-Defined Datacenter Network

97

7.6.3 Juniper Networks Contrail: an example of Overlay-based SDN

Juniper Networks Contrail [83] is a SDN solution that orchestrates the creation,

management and operations of scalable hybrid networks. It provides self-service provisioning

and enables service function chaining for dynamic application environments. For an

introduction on how Contrail uses VXLAN, see [84]. Contrail can be used with open cloud

orchestration systems such as Red Hat OpenStack/OpenShift and private cloud solution like

VMWare vSphere. It can also interact with other operations support systems (OSS) and

business support systems (BSS) using northbound APIs

Contrail is a SDN overlay controller using XMPP/OVSDB as management and control

plane. Contrail vRouters reside in hypervisors and use XMPP to exchange learned MAC

addresses with each other and the controller. To support bare-metal servers, Contrail also

uses OVSDB to exchange learned MAC address information with VTEP gateways, which might

not support XMPP.

Figure 7-19 - Contrail Architecture

Contrail can use VXLAN as overlay and supports MPLS over GRE and UDP as well

Design of an Enterprise-Grade Software-Defined Datacenter Network

98

7.7 Hybrid SDN / SDN on API

Figure 7-20 - Hybrid SDN approaches

One of the goals of SDN is to centralize the control of the network: the approach in

Classical SDN is to simplify the switches, removing the Control Plane from the switches and

using a centralized system to control them. Different approaches could be used to centralize

the control (see Figure 7-20): for instance, network programmability and centralized control

can be achieved by allowing network applications to utilize an API to connect to the policy

engine, to the controller and/or directly to the SDN device and leave the distributed control

plane on the device.

Hybrid SDN via APIs is popular for SDN application developers, since, at the same time

it provides programmability and centralized control and it supports legacy devices and

Classical SDN devices at the same time.

7.7.1 Programmable SDN via Device API

Figure 7-21 - Hybrid SDN via Device API

Design of an Enterprise-Grade Software-Defined Datacenter Network

99

Figure 7-21 shows how in SDN via Device APIs, the devices expose an API by using which

external applications or an optional central controller can control the network behavior. It is

worth noting that in this solution the controller is optional. However, even when the

controller is available it does not provide all the benefits of classical/SDN because:

- The control plane is still on the devices

- The applications can directly invoke the actual API

In this solution the controller, when available, proxies the requests coming from the

application to the devices. However, as already mentioned, the application may communicate

directly with the devices, for instance using protocols such as CLI and SNMP.

These systems, even though they have been available for a long time, are difficult to

maintain and are mainly used by somewhat uncommon static management tasks, not the

dynamic systems required by modern datacenters. Newer protocols and approaches exist:

the most popular of these is the RESTful API. It is worth noting that in Figure 7-21 that

communication to devices using these APIs can be done either through a controller or directly.

In either case, the solution uses improved APIs providing the ability to program the

forwarding plane through proprietary API methods exposed by the device and customized by

the manufacturer.

7.7.2 Programmable SDN via Controller API

Figure 7-22 - Hybrid SDN via Controller API

Design of an Enterprise-Grade Software-Defined Datacenter Network

100

SDN via Controller-level APIs shown in Figure 7-22 provides a platform on which SDN

applications can be built. This type of SDN uses APIs provided by the controller, however, due

to the lack of a standard NBI, applications written for one controller’s set of APIs may not run

on different controllers. The fundamental distinction between this solution and Classical SDN

is the southbound APIs the controller uses:

- in Classical SDN, the southbound protocol is OpenFlow.

- In Hybrid SDN via Controller APIs, the southbound protocol is one (or more) legacy

protocols re-purposed to provide SDN-like features through the controller.

One of the goals to implement APIs on the controller is to provide a level of abstraction

between the devices and the application, hiding the details of each device and each protocol,

and making it possible for the application to interact with the controller at a higher level: a

use case is the presentation via controller API of the network topology information collected

and stored in the controller.

7.7.2.1 Controller API in the WAN: SD-WAN use-case

Many SD-WAN implementations in the market use a controller API. In these solutions,

existing routing protocols such as Border Gateway Protocol (BGP), Border Gateway Protocol

Link State (BGP-LS) are used towards the network core to announce prefixes connecting

remote sites.

Implementations of SD-WAN using these protocols leverage the technology existing

in devices to create SDN applications that can control routes and paths throughout the

network. In other solutions, the SD-WAN controller only processes the messages between the

application and device: an example of this is the classic use of NETCONF as an SDN API.

NETCONF is one of the most popular device management and configuration protocols used

especially in higher-level devices such as core routers. These devices expose their

configurable information via data models defined using the YANG data definition language.

7.7.2.2 Controller API in the Datacenter: OpenDayLight

A SDN controller that fits squarely in the SDN via Controller APIs category is ODL. One

of the most important feature of ODL is its support multiple southbound protocols: amongst

the others, it supports OpenFlow (giving support for Classical SDN), NETCONF (supporting

SDN via APIs), and BGP-LS/ PCE-P (supporting SDN via APIs).

Design of an Enterprise-Grade Software-Defined Datacenter Network

101

7.7.3 Hybrid SDN via Policy API

Figure 7-23 - Hybrid SDN via Policy API

Figure 7-23 shows another approach to SDN: a hybrid SDN using APIs located above the

controller. These APIs expose policies, rather than single devices or network capabilities. The

policies are provided in different flavors and address different domains, but they all manage

the network configuration using a declarative approach, rather than an imperative one,

where the main difference between the two is:

- Imperative approach: with this strategy for systems and APIs, the user must input exactly

how the task should be completed.

- Declarative perspective: with this strategy for systems and APIs, the user must input

exactly what is to be accomplished. The system will resolve how to do it.

In the declarative control model, instead of manually hard-coding a set of basic

instructions, the application requirements instruct, at a high-level, the switches and they

implement how, where, when and what they can. For example, the control tower commands

an airplane where to take off. The pilot of the plane, not the control tower, manages the take-

off process. This is the principle of declarative control model from the promise theory. The

declarative approach introduces a new level of abstraction between the hardware and the

Design of an Enterprise-Grade Software-Defined Datacenter Network

102

software and a methodology to adapt networking across various hardware platforms,

capabilities, and future evolutions.

Figure 7-24 - Declarative vs Imperative approach [85]

These policy-based API solutions are gaining space in both SDN via APIs and Classical

SDN categories. An example of this type of API is the NBI idea of intents, which enhances the

API level of abstraction enabling truly declarative requests. The notion of controlling network

behavior via policy is an active area of research in SDN, and in the next paragraph a Cisco

APIC-DC is presented as an example of this approach12.

7.7.4 Cisco APIC-DC: an example of SDN via Policy API

Cisco ACI fabric [85] [86] is a set of distinct components like switches or routers but

provisioned and monitored as a single entity. The ACI controller, called the Application Policy

Infrastructure Controller (APIC), is the central point of management of the fabric, distributing

policies to all the switches that are part of the fabric.

The Cisco ACI Fabric OS runs on the building blocks of the architecture, which are the

Cisco Nexus 9000 Series nodes. The Cisco ACI Fabric OS is object-oriented and enables

programming of objects for each configurable element of the system. The ACI Fabric OS

renders abstract policies (intents) from the controller into a concrete model that runs in the

physical infrastructure. The concrete model is analogous to compiled software; it is the form

of the model that the switch operating system can execute.

Cisco ACI fabric is managed, monitored, and administered by the Cisco APIC

Controller, which can be configured by a REST NBI managed directly by the API operators

through the built-in GUI, or via REST calls or Python scripts (see Figure 7-25)

12 It is worth mentioning though that in Cisco APIC the concrete policies are mostly
implemented in proprietary hardware, typically on Nexus 9k switches

Design of an Enterprise-Grade Software-Defined Datacenter Network

103

Figure 7-25 - APIC Northbound and Southbound interfaces

7.7.4.1 Cisco APIC model and promise theory

The Cisco APIC policy model is an object-oriented model built on the promise theory

(see Figure 7-26). Promise theory is based on the scalable, declarative management of

intelligent independent objects, handling configuration changes requested by the control

system. These objects also trigger exceptions or faults back to the control system. This

reduces the complexity of the control system and improves scalability. This approach can

scale further, replicating the delegation in a hierarchical, top-down architecture, allowing the

underlying objects to in turn request state changes from one another and/ or lower-level.

Figure 7-26 – Promise Theory Approach [85]

Design of an Enterprise-Grade Software-Defined Datacenter Network

104

7.7.4.2 Physical Topology Model

The physical Cisco ACI fabric is built on a spine-leaf design; its topology is illustrated in

Figure 7-27. For further details on the spine-leaf architecture see Par. 5.3

Figure 7-27 - Cisco ACI Fabric [86]

Design of an Enterprise-Grade Software-Defined Datacenter Network

105

8 Network Functions Virtualization

8.1 Abstract

Network Functions Virtualization (NFV) is a technique that virtualizes entire classes of

network functions to build blocks that may be chained to create network services. For a

thorough view on NFV and SFC see [47] ; [87] provides a historical perspective and [88]

describes some datacenter use cases of NFV and SFC.

This chapter presents the basic concepts behind NFV and shows how they could be used

in an Software-Defined Enterprise Datacenter Network.

8.1.1 The transition to Network Function Virtualization

In modern datacenters, virtualization of servers and storage is an already proven and

well-established technology: many independent server and storage systems have mostly

been replaced by their counterpart on shared hardware.

In the long journey to infrastructure as code, the next step of the infrastructure

virtualization is the virtualization of the network functions. This process widens the scope of

virtualization to the network devices and their functions, triggers the Network Functions

Virtualization (NFV) and enable the (Virtual) Network Functions Chaining (NFC)

Figure 8-1 - Switch to Network Function Virtualization [47]

The acronym NFV references all the services: the virtual network functions, their

management platform, and the infrastructure integrating these components on a hardware

platform. NFV is more accurately defined as “the method and technology that enable the

Design of an Enterprise-Grade Software-Defined Datacenter Network

106

replacement of physical network devices performing specific network functions with one or

more software programs executing the same network functions while running on generic

computer hardware” [47]. In NFV terminology this (virtual) implementation of the network

functions is referred to as virtualized network function (VNF). A VNF provides a specific

network function (e.g. firewall, load-balancer, IPS) as a software component (container, VM,

etc.). Usually, chaining of these VNFs may be required to implement the complete network

pipeline being virtualized: this is chain is referred as Service Functions Chaining (SFC) or

Network Functions Chaining (NFC).

One example of SFC is the replacement of a physical load balancer appliance with a

virtual machine (aka virtual appliance) providing the load balancing function. The VM runs the

same operating system and has the same look and feel of the physical appliance—but runs

on top of a non-dedicated, shared, and generic virtualization platform. With NFV, the network

functions can be implemented on any hardware able to offer the required hardware

resources and virtualize them. Virtualization has reached the point that the physical device

can be masked up to the point that COTS hardware can now provide the infrastructure for

NFV, or in other terms, with virtualization, general purpose hardware can be used to provide

the resources needed by a VNF.

8.1.2 The need of a modern Architectural framework

Traditional network hardware and software used to be customized and tightly

integrated. NFV adopts a different approach, allowing software developed by the vendors to

run on general purpose shared hardware, creating several points for management. The NFV

architectural framework is developed to ensure that these touch points are standardized and

compatible across multiple vendors.

NFV was first introduced at the SDN OpenFlow World Congress in 2012 [89] by a

consortium of service providers, whose goal was to address the major challenges faced by

network operators. One of the main issue was the need to upgrade the hardware when the

operators wanted to provide innovative services to their customers. The group proposed NFV

to tackle these challenges and improve efficiency by “leveraging standard IT virtualization

technology to consolidate many network equipment types onto industry standard high-

volume servers, switches and storage, which could be in Datacenters, Network Nodes and in

the end user premises” [90].

Design of an Enterprise-Grade Software-Defined Datacenter Network

107

To accomplish this objective and identify the specifications needed to move from the

legacy network and vendor centric approach to NFV, seven of the principal TelCo operators

formed an Internet specification group (ETSI ISG)—under the ETSI independent

standardization body [91].

This group officially started in early 2013, defining requirements and an architectural

framework that can support the virtualized implementation of network functions performed

by COTS hardware devices from vendors.

8.2 The NFV Framework

8.2.1 The three criteria of ETSI NFV

The ETSI group used three key criteria for producing the recommendations:

1. Decoupling: complete separation of hardware and software.

2. Flexibility: automated and scalable deployment of the network functions.

3. Dynamic operations: control of the operational parameters of the network functions

through granular control and monitoring of the state of network.

Based on these criteria, a high-level architectural framework was established.

8.2.2 The High Level ETSI NFV Framework

The ETSI working group established a high-level framework, defining the distinct zones of

interest shown in Figure 8-2

Figure 8-2 - High Level NFV Framework [87]

Design of an Enterprise-Grade Software-Defined Datacenter Network

108

This framework, generally referred to as the ETSI NFV framework, forms the foundations of

the standardization and development covering VNFs management, VNFs relationships and

interdependencies, data flows and resource allocation. ETSI ISG categorized these roles into

three high-level blocks, namely:

1. The infrastructure block

2. The Virtualized functions block

3. The management block

In ETSI’s definition, the formal names of these blocks are named as:

- Network Functions Virtualization Infrastructure (NFVI) block: This block is the foundation

of the overall architecture, teaming up the hardware to host the virtual machines, the

software to make virtualization possible, and the virtualized resources.

- Virtualized Network Function (VNF) block: this block uses the virtual machines offered by

NFVI and builds the functions on top of them by adding the software implementing the

virtualized network functions.

- Management and Orchestration (MANO) block: this block co-operates with both the NFVI

and VNF blocks, managing all the resources in the infrastructure layer, the resource

creation and deletion, and their allocation to the VNFs.

8.2.3 NFVI and resource sharing

The two fundamental goals of NFV are the separation of software and hardware of a

network device and the capability to share hardware resources pools among different VNFs.

These two goals are achieved through VNFs running on a NFVI deployed either as standalone

entities or chained together on a chain of network services, each provided by a VNF. The

protocols associated with the function being virtualized within a VNF do not need to be aware

of the virtualized implementation, exactly what happens when applications servers are

virtualized, without any need to change the application layer.

Since these VNFs by design do not need to run on dedicated or customized hardware,

COTS hardware can be used to run them through virtualization platforms allowing also to

share the same hardware among multiple VNFs. These virtualization platforms, hypervisor-

based or container-based, are already mature, having been in use in the datacenters for years.

The NFVI leverages COTS hardware as a shared set of resources creating virtual resource pools

that can be allocated on demand to the VNFs, as shown in Figure 8-5

Design of an Enterprise-Grade Software-Defined Datacenter Network

109

Figure 8-3 - Hardware resources shared between different VNFs [47]

8.2.4 Main advantages of NFV

“NFV proposes a framework to transform the approach to network design, deployment

and operation, at the same time while offering many layers of improvement and efficiency

across these” [87]

Figure 8-4 - Main advantages of NFV [47]

Design of an Enterprise-Grade Software-Defined Datacenter Network

110

8.3 Network Function Chaining

To provide an end-to-end network service, the VNFs must be assembled and their

order and interfaces must be properly defined: this is the process called “Service Function

Chaining” (SFC) or Network Function Chaining (NFC). For a description of the SFC architecture

as defined by IETF, see [92] and [88]

NFC is the process of assembling VNFs into a desired network service. This process

involves 3 steps:

1. Define which VNFs (e.g. firewalls, Load Balancers) are needed in the solution

2. Define the order on which the VNFs should be applied. This order is called the service

chain and specifies the path through which the packets with a certain tag flow. The

VNFs themselves are created through virtualization, with a virtualization software

layer on top of underlying physical hardware, often through use of white boxes.

3. Apply the NFC to the packet process/transport infrastructure (i.e. through a network

Service design defined in a SDN Controller SFC capable)

Figure 8-5 – NFV, VNFs and NFC

Design of an Enterprise-Grade Software-Defined Datacenter Network

111

8.3.1 SFC Architecture

8.3.1.1 SFC Architecture principles

SFC is based on five key architectural principles:

1. Topological independence: the underlay does not need to change to deploy SFC

2. Plane separation: the dynamic realization of Function Paths is separated from packet

handling operations (e.g., packet forwarding).

3. Classification: Traffic that satisfies classification rules is forwarded according to a

specific Service Function Path (SFP). Classification can occur at varying degrees of

granularity.

4. Shared Metadata: Metadata/context data can be shared amongst Service Functions

and classifiers, between Service Functions, and between external systems and Service

Functions (e.g., orchestration). One use of metadata is to provide and share the result

of classification (that occurs within the SFC-enabled domain, or external to it) along a

Service Function Path.

5. Service definition independence: The SFC architecture does not depend on the details

of Service Functions themselves.

8.3.1.2 SFC Service Function Chain Classification and Encapsulation

IETF WG identifies a Network Service Header that could be “inserted onto packets or frames

to realize service function paths, enforced at the packet level” [56]. In this way the service

insertion does not need to be in-path (on layer 3) or provided as L2 transparent service,

but could be completed de-coupled from the data path

Figure 8-6 - SFC Classifier

Design of an Enterprise-Grade Software-Defined Datacenter Network

112

NSH relies on the job completed by a network classifier (see Figure 8-6). When the

classifier identifies the traffic to be forwarded to the service chain path, additional header

information in the data frame is added to it. This additional header is called the service

function chain encapsulation. There are multiple possible encapsulation headers, and existing

overlay techniques, such as Layer 3 Virtual Private Network (VPN) or segment routing (SR),

can be used for this purpose. These overlay methods depend on the presence of an IP

network. IETF is driving standardization for a new SFC encapsulation format under the banner

of network service header (NSH), which can work with various other underlying networks.

8.3.1.3 Network Service Header (NSH)

The Network Service Header (NSH) offers a standard for SFC encapsulation that is

regulated by IETF and supported by multiple vendors in the networking industry. NSH is

composed of two major components:

1. the first provides information about the service path the traffic flow takes in the

network,

2. the second carries additional information about the payload in the form of metadata

Applications and higher-level protocols can use the metadata component of NSH to send their

information along the service path. This information can be helpful in the design making

process for the service path selection and any other special handing the packet may need.

NSH protocol’s header is defined as a set of three types of headers—base header, service

path header, and context header—as shown in Figure 8-7

Figure 8-7 - NSH Protocol Header

Design of an Enterprise-Grade Software-Defined Datacenter Network

113

8.3.1.4 Metadata

A major advantage of SFC is the capability to carry and consume application-level

information provided as metadata containing the contextual information about the data that

is transported through the SFC domain.

The SFC classifier insert metadata in the service header, such as the context header of

NSH. The SFC may extract this information from higher layer protocols, such as the HTTP

method contained in an HTTP transaction or a user-agent contained in the HTTP header. Once

the metadata is added to the SFC protocol’s header, the nodes (containing Service Functions)

in the path can read, process, and react to the data and take the corresponding predefined

action. The exchange of metadata across the SFC elements can be accomplished by different

methods.

8.3.2 SFC Use Cases in the DCN

This paragraph presents 3 use cases for SFC as defined in [93] and in [88]

8.3.2.1 North-South Traffic

North-South traffic originates from outside the datacenter and is typically associated

with flows originated by the Enterprise Users. The traffic may also be associated with Guest

users accessing news, email, social media and other websites. Usually, this traffic is destined

to services hosted in the datacenters. BYOD and social networking applications, amongst the

others, require this traffic to be analyzed, application and users to be identified, transactions

to be authorized, and at the same time security threats must be mitigated or eliminated. To

this end, various service functions, as illustrated in Figure 8-8, are deployed in different VNFs

at various topological locations in the network. The VNFs are selected based on the policy

required for the specific use case

Design of an Enterprise-Grade Software-Defined Datacenter Network

114

Figure 8-8 - SFCs for North-South Traffic

Figure 8-8 shows the ordered list of VNFs, from top to bottom, representing the data

flow from End Point to Workload and vice versa.

Traffic does not always strictly flow through all the VNFs in that order. Traffic flows

through various combinations the VNFs. The connections between VNFs (represented by the

dashed lines on the left) map the network topology required to achieve the traffic flows. Each

permutation represents a SFC. Certain ordering (chains)of the VNFs are intrinsic to the nature

of the VNF applied. For instance, to be effective, the Web Optimization Controller (WOC)

requires the flow to be decrypted first, so the VPN VNF must be applied prior to WOC. Vendor

implementations of VNFs enable choices for various deployments and ordering.

Design of an Enterprise-Grade Software-Defined Datacenter Network

115

8.3.2.2 East-west traffic

 This is the predominant traffic in datacenters today. As mentioned in the previous

chapters, this explosion in east-west traffic is leading to newer datacenter network fabric

architectures. Unlike north-south traffic, where security threats may come from outside the

datacenter, any threat to this traffic comes from within the datacenter.

SFC applied on the east-west traffic id captured in a generalized fashion in Figure 8-9.

ADCs13, although shown as isolated VNF in each of the tiers, are often consolidated into a

smaller number of ADC VNFs and shared between multiple tiers. Virtual IP addresses in these

VNFs represent the single ADC instances. Flows are terminated at the VIPs and reinitiated

towards the load balanced workloads.

Figure 8-9 - SFC for East-West

As an example

1. HTTP GET request arriving at Application Deliver Controller (ADC1) is load balanced to

a webserver pool represented as Workload1 (Light Blue Line).

2. To respond to the GET request, Workload1 generates traffic to an application server

in a pool represented as Workload2 through ADC2, which load balances the

webserver-initiated traffic (Dark Blue Line)

13 An application delivery controller (ADC) is a network device that helps perform common
tasks, such as those done by web sites to remove load from the web servers themselves.
Many also provide load balancing.

Design of an Enterprise-Grade Software-Defined Datacenter Network

116

3. Likewise, the application server, as part of processing the webserver’s request

generates traffic to a DB server pool represented as Workload3 through ADC3, which

load balances the application server-initiated traffic (Green Line).

The traffic arriving at different ADC might arrive to different VIPs, each corresponding to its

tier but belonging to the same ADC. In every tier, the traffic flowing between the ADC and the

designated server is monitored by one or more application firewalls specializing in different

types of threats (i.e. Web Application Firewalls, Network Intrusion Prevention systems, etc.).

Again, steering can enable the sharing of these VNFs (as done for the ADC).

8.3.2.3 Multi-tenancy

Multi-tenancy is relevant in both enterprise and service provider environments. Enterprises

might see internal organizations, partners or business units as tenants, and therefore the

service models they apply must be tenant aware. Multi-tenant service delivery can be

accomplished in two primary ways:

- VNFs themselves are tenant aware: every VNF is built to support multiple tenants.

- VNF instances are dedicated for each tenant

In both cases, the Service Provider manages the VNFs. To support multi-tenant VNFs, traffic

being serviced by a SFC must include a tenant identifier [94] carried along with the traffic to

be serviced. It is typical of tenant assets to be deployed in an isolated layer2 or layer3 domain

such as VLAN, VXLAN or VRF.

Design of an Enterprise-Grade Software-Defined Datacenter Network

117

Figure 8-10 – SFC for Multitenancy

Although this model is feasible, it lacks flexibility needed by the service providers.

Access SFCs focus on servicing inbound and outbound datacenter traffic, while Application

SFCs focus on handling application traffic.

On each tenant, service providers deploy one "Access SFC" and several "Application

SFCs". On the other hand, depending on the enterprise, datacenter operators may not need

Access SFCs. If these Access SFCs are needed, the operator may also deploy a minimal Access

SFC including WOC and VPN functions to support the branch and mobile user traffic, while at

the same time utilizing the security policies in the application SFCs. The latter is the case in

zero-trust network [1] architectures where security policies are applied near the resources

and applications as opposed to the perimeter.

Design of an Enterprise-Grade Software-Defined Datacenter Network

118

9 Datacenter Network as a Service with SDN, NFV and NFC

9.1 Abstract

This chapter shows how SDN, NFV and NFC work together to further expand the

concept of Software-Defined Networking and achieve a dynamic, adaptive DCN able to

provide Network as a Service through an orchestration platform. For a deeper discussion on

the dependencies and interaction between SDN, NFV and NFC see [47] , [95] and [96]

9.2 SDN and NFV

Even though SDN and NFV are two independent approaches, born for different

reasons, they share many objectives and can mutually advantage and support each other

‘adoption. As already discussed in the previous chapters, when traditional network devices

are considered, the control, data, and hardware planes are tightly integrated together, as

shown in Figure 9-1. This makes hard to scale them independently. This architecture doesn’t

offer flexibility to implement new services or the agility to absorb changes. Both SDN and NFV

play a role in breaking this bonding in two different dimensions (see Figure 9-1 below):

1. SDN separates the control plane from the data plane, using a centralized control plane

to manage, manipulate, and monitor the data plane.

2. NFV decouples the network function from the vendor-built hardware, facilitating the

use of generic hardware to run the software implementing the network functions.

Figure 9-1 - SDN and NFV [47]

Design of an Enterprise-Grade Software-Defined Datacenter Network

119

Even though NFV and SDN address differently the problem of a flexible, scalable,

elastic, and agile network deployment, the principles of SDN can be applied to NFV by

separating the control plane from the forwarding plane and virtualizing the network

functions.

Figure 9-2 reflects this blended relationship, and in this scenario NFV uses COTS

hardware and implements the forwarding plane as a VNF, while the control plane function is

delegated to the SDN controller

Figure 9-2 - Combination of SDN and NFV [47]

Applications may stitch this relationship together maximizing the advantages of both

technologies and offering a new approach to networking. As summarized in Figure 9-2, the

combination of these three areas meet cloud scale requirements for on-demand expansion,

optimization, deployment, and speed.

Figure 9-3- Network orchestration for SDN and NFV [47]

Design of an Enterprise-Grade Software-Defined Datacenter Network

120

Figure 9-3 shows SDN working with both physical and virtual devices providing network

functions, while NFV provides the VNFs and manages the physical infrastructure hosting

them. The Orchestration layer, situated at the top performs end-to-end service orchestration

and interacts with both the SDN controller and NFV.

9.3 Network as a Service

9.3.1 Virtual Infrastructure build

To maximize the benefits of NFV and SDN, the network should be provisioned, managed

and maintained enabling, whenever possible, the use of network programmability. These

technologies enable a programmable network which, ultimately, creates a dynamic

infrastructure that can quickly adapt and implement business needs.

This paragraph presents how a network managed by applications and programs boosts

its efficiency while contributing to achieve the goals of SDN and NFV introduced in the

previous chapters. For the sake of simplicity, we assume that NFV infrastructure elements

(computing, storage, and networking), along with underlay network that provides

connectivity, are already deployed and available. Figure 9-4 shows the flow of events in an

environment where NFV, SDN, and application coexist. It is worth noting that in a multi-tenant

environment the impact of the transformation (both on the physical and virtual networks)

triggered by a user will be limited to the tenant to which the user has access.

Figure 9-4 - Programmability Flow in a NFV/SDN enabled network [47]

Design of an Enterprise-Grade Software-Defined Datacenter Network

121

The steps are as follows:

1. The network design and implementation flows are initiated from the application layer

(i.e. from a user/developer opening a ticket on the Service Portal). The Orchestration

layer is on the top the hierarchy and communicates directly with the SDN Controller

through NBI and with the NFV-MANO through its NBI. The orchestration/application

layer may consist of a single application or a group of different cooperating

applications. These applications assume the roles of service orchestrator, network

monitor and manager and may be written in any language that can communicate

using the NBI of the MANO and SDN blocks. The NBI usually provides a REST API other

Open APIs published by the developer of the SDN and MANO tools.

2. Based on the service description, the application asks MANO to instantiate the virtual

machines and the VNFs that are needed for the network service. The VNF and NFVI

communicates using the ETSI-defined reference points (see Chapter 8).

3. Once the VNFs are created, MANO programs the virtual switch to interconnect the

VNFs using the Virtual Link Descriptor information.

4. When the VNFs are provisioned and enabled, this generates a topology for the Virtual

Network Service. At this point, the network forwarding plane is created, and it can be

a pure Layer 2 network, a VXLAN-based network, a Layer-3/IP-based network, or an

MPLS-based network. The network is ready to perform the functions, such as firewall,

load-balancing, NAT, etc. that are all in place. Though the network is using the actual

physical network (part of the NFVI) as its underlay, this network itself may be used as

an underlay for the service layer that uses SFC to provision a service overlay: in other

terms, SFC provides an application-based routing overlay running on top of a network

function virtualization underlay, and the latter “sees” the physical network as its

underlay.

5. The application involves the SDN/Service Function controllers at this point and uses it

to provision the service path for the traffic based on the defined policies. This

communication from the controller to the VNFs uses the SDN southbound protocols

that were introduced in Chapter 7. Network Configuration Protocol (NETCONF),

RESTCONF, and gRPC are the most popular choices. Other protocols, such as XMPP

used by Juniper’s Contrail, PCEP, OpenFlow, or Open APIs may also be used.

The five steps outlined above could also be represented as different stages of a network

topology transformation, as shown below:

Design of an Enterprise-Grade Software-Defined Datacenter Network

122

• Step 1: The starting point is the physical infrastructure, which gives the topology view,

shown in Figure 9-5 and serves as the original underlay for NFV

Figure 9-5 – Step 1: View of the Physical Network-topology [47]

• In Step 2 and 3, the NFV overlay is created on top of the Physical network and presents

the virtual network topology view shown in Figure 9-6: a fully functional network with

all the VNFs interconnected in the desired topology to offer a service.

Figure 9-6 – Step 2 and 3: View of the Virtual Network-topology [47]

• Step 4. To the end user, the interconnection of the VNFs is not significant, but it is

more useful to know what service this offers— shown as virtualized network service

view in Figure 9-7.

Figure 9-7 – Step 4: View of the Network-Service [47]

• Step 5: Finally, when SFC is implemented, the service topologies are logical networks

offering different services to the traffic depending on traffic type, metadata, and other

higher-level information. This is implemented as a policy for traffic forwarding and

processing and can be referred as a virtualized service policy view.

Figure 9-8 – Step5: View of the Service-Policy [47]

Design of an Enterprise-Grade Software-Defined Datacenter Network

123

9.3.2 Enable Network Self-management and monitor

Once the infrastructure is Network-as-a-Service capable, the orchestration layer (more

precisely a set of applications accessing the Northbound API of the MANO and SDN controller)

can take up the role of monitoring the network. The monitoring can be at different levels: for

example, monitoring the VNFs for the functions states and, monitoring the virtual machine

states, and monitoring the infrastructure. These applications can be programmed to take

autonomous decisions based on information in the monitoring data. The following use cases

show how this arrangement could benefit:

- A traffic path change may be required to handle a certain traffic stream, a bandwidth

demand surge, or a network fault. This decision to change the traffic path can be made by

the logic in the application, and it can then be propagated to the device through the SDN

controller. A typical use case could be identified in SD-WAN, where, due to WAN

constraints, some data flows (i.e. videocalls) could be routed on a different path, shaped

or de-prioritized based on application metadata, or Enterprise requirements like

enterprise-wide adaptive call admission control.

- An increase in demand (expected or unexpected) overloading the VNFs resources can be

detected by MANO, and this information can be used to trigger VNF elasticity. This can be

done by the MANO’s blocks or by control applications based on specific global policies.

- A fault in the VNF’s (or host’s) code can result in a potential impact to the network. If the

application is programmed with the intelligence to identify and fix the fault, it can

automatically remediate the error condition and restore or protect the network.

- The application could also allow the user, operating support system/business support

system (OSS/BSS), or other applications to interact with it and request changes to the

network service, scale, or topology. These inputs could result in the application translating

the request to the exact change needed and then send the instructions to MANO or SDN

for implementing the changes.

Design of an Enterprise-Grade Software-Defined Datacenter Network

124

9.4 Security Considerations

Figure 9-9 - SDN and NFV Security Considerations [47]

Some of the basic security requirements are:
- Intra- and inter-VNF communication: The communications traffic between VNFs can take

two paths, one within the same server, using virtual links, and the other between servers,

using the physical links. Security measures must be defined in both scenarios for intra-

and inter-VNF communication.

- NFV infrastructure: The host operating system (OS), hypervisor, firmware, and BIOS must

follow the standard best practices for the System Development Lifecycle. The external

access to the infrastructure must be secured.

- SDN protocol security: The traffic from the SDN controller to the NFV infrastructure must

be secured. Proper measure must be taken and policies for encryption and authorization

must be implemented. As an example, even if OpenFlow encryption is not mandatory, the

use of TLS between the switch or end device and the controller implements a reliable

device authentication, secures the control protocol and prevent eavesdropping and man-

in-the-middle attacks.

- SDN controller security: The SDN controller is an application running on a Host or Virtual

Machine (VM) environment, and this environment can be secured adopting the same

strategies described in the NFV infrastructure.

Design of an Enterprise-Grade Software-Defined Datacenter Network

125

- SDN application security: the application needs to be periodically assessed against any

known vulnerability and proper measures need to be taken. As an example, provided that

Open Daylight Controller (ODL) is based on Java, any security threat and vulnerability in

Java needs to be evaluated and patched to ensure ODL is not vulnerable.

- User and administrator AAA policies and platforms: the AAA platform must support

multiple domains: compute infrastructure, VNF, Orchestrator, SDN components,

hypervisor, and applications. Each of these domains may be managed from different

administrative or operational groups from both regulatory, compliance and operational

perspectives. If the NFV infrastructure is hosting multitenant, then AAA of each tenant

must be incorporated and comply to the required level of security of the corresponding

administrative unit.

- Common security policy: As the multiple domains are tightly connected, a specific user

may need to access multiple domains with different privileges. Security controls, policies

and platforms must provide this flexibility using tools as Single-sign-on authentication,

Role-based access controls, non-repudiation, secure logging and accountability.

Design of an Enterprise-Grade Software-Defined Datacenter Network

126

SECTION III - DESIGN OF AN ENTERPRISE DATACENTER NETWORK

10 The Distributed Datacenter Model (DDC)

10.1 Abstract

IT Infrastructure services are going through a sea of changes in terms of how services are

delivered, managed and consumed. Within Enterprise-level organizations, IT teams are

moving towards IT as a service model. This model offers significant advantages utilizing Cloud

or Cloud-like services which lead to a distributed consumption architecture where the

concept of datacenter itself changes. This chapter presents the “Distributed Data Centre

(DDC)” Model, by which an Enterprise can consume and provide IT infrastructure and IT

services across internal and external providers. This chapter describes the DDC as a founding

architecture for the software-defined enterprise datacenter. An introduction to CNF from the

design standpoint can be found in [97] and in [98].

10.2 Applications and services landscape

Figure 10-1 – Distributed Datacenter Topology – high level

As shown in Figure 10-1, Enterprise applications are split across private cloud, IaaS, and

public SaaS/PaaS. The relative distribution of these three consumption models depends on

how fast the Enterprise is adopting IaaS and SaaS/PaaS services. To improve elasticity,

efficiency and reliability:

Design of an Enterprise-Grade Software-Defined Datacenter Network

127

- Application consumers and providers are terminated in a Carrier Neutral Facility (CNF)

providing connectivity to all the parties (Internet access, Cloud Providers, MPLS WAN,

partners, etc.).

- The CNF interconnects all the providers through a transport network, called Service

Provider Network (SPN).

- The SPN is connected to the Consumers through an Inter-Zone Gateway (IG).

- IG enforces centralized security policies between groups of varying security levels.

- The combination of IG, SPN and links is called Service Access Exchange (SAE) and located

in a (network of) sites located all over the globe and interconnected to each other, called

Carrier Neutral Facility (CNF)

10.2.1 Colocation and Cloud computing in the enterprise

“Cloud computing and colocation to Carrier Neutral Facilities are natural-born allies in

the Enterprise Market. It's not a choice between alternatives, but a case of one supporting and

dragging along the sales of the other. The four points below, among others, drive to an

infrastructure world composed of varying percentages of colocation and cloud “ [99]:

- Cloud computing must be hosted somewhere: while some cloud providers may build and

maintain their own datacenter, they also (unexpectedly) rent a large chunk of space from

colocation companies.

- Only few enterprises expect to go full in the cloud soon. Commit to a strong long-term

investment on a datacenter may have a significant impact on capital: many companies

see colocation as a more-flexible option compared to the long-term investment required

for a Datacenter. As enterprises shrink their datacenters by moving some workloads to

IaaS, PaaS and SaaS clouds, they will reach a point where they must determine whether

it's cost-effective to operate a datacenter that is only partially at capacity.

- As enterprises understand that they will be deploying cloud computing in some way, if

not now, soon, they review their long-term plans for on-premises datacenters.

- For different reasons, mainly ability to change, independence from a single provider,

features differentiation, cost and appeal, Enterprises usually see themselves in a multi-

cloud future. Although there are alternatives to colocation centers for connecting securely

at high speed to the cloud, if an enterprise expects to build applications using the

resources of multiple clouds, for latency and flexibility sake, then colocation is one of the

only viable option to support this transformation.

Design of an Enterprise-Grade Software-Defined Datacenter Network

128

10.2.2 Service Access Exchange

The Service Access Exchange (SAE) shown in Figure 10-2 combines links, local

infrastructure, SPN and IG located in a colocation facility (Carrier Neutral Facility, CNF),

providing reliable interconnections to different providers with the following characteristics:

1. It is a virtualized, orchestrated and automated communications hub where application

consumers and providers meet.

2. It groups connection types by internal, external known with business relationships

(third parties), and external unknown

3. Creates standardized connectivity models for employees, partners, customers, private

datacenters, SaaS clouds, applications, and Internet

4. Orchestrates repeatable connectivity models

5. Publishes connectivity models in a Service Catalogue

6. Provides the agility, scalability and reliability requirements enabling adoption of the

cloud, and at the same time moves the cost model from the Capex to Opex (See 2.2.5)

Figure 10-2 – Service Access Exchange

Design of an Enterprise-Grade Software-Defined Datacenter Network

129

10.3 Distributed Datacenter Topology Diagram

Figure 10-3 - Distributed Datacenter Topology

In the DDC model, SAEs are connected to each other through a redundant inter-regional

network. Each one of the four regions defined in par. 4.6 (EMEA, NA, LATAM, APAC) has (at

least) two private Datacenters, one for PROD/DEV and the other for UAT/DR and each DC is

connected to at least two CNFs in the same region. The SAE could be configured as

Active/Active (i.e. using VXLAN or other overlays) or Active/Standby with status/session

replication over the SAE Global network (see Par. 4.6)

From a high-level perspective, the following flow types could be identified in every region

1. North-south: user to service

2. East west Traffic: service-to service, that could be divided in four different categories

i) Private intra-provider, single location single trust: this traffic does not reach the

SAE, is segregated inside the provider (i.e. east-west inside the private datacenter)

ii) Private inter-provider multiple locations, single trust: this is typically backup or

synchronization traffic through the Datacenter interconnect (i.e. backup traffic, DB

synchronization, etc.): this traffic usually does not traverse the SAE, even though

in some models the DCI is provided through the CNF as well.

Design of an Enterprise-Grade Software-Defined Datacenter Network

130

iii) Private inter-provider multiple locations, multiple trust: this private traffic

traverses the SAE, i.e. PROD traffic going from Private Cloud to IaaS, or 3rd party

provider to Shared Services (i.e. Authentication requests). Depending on the

source trust level and destination trust level this traffic might or might not traverse

the IG.

iv) Hybrid inter-provider: these traffic flows have one leg originated on a Private

network (i.e. IaaS) and the other leg on a Public network (i.e. PaaS). This traffic

traverses the IG.

10.4 Service Space

10.4.1 Private Datacenters

10.4.1.1 Technical Integration and Management (TIAM)

From a technical integration point of view, a Private Data Centre model is required to operate

different service categories:

- Infrastructure services: Network, Storage, Compute

- Security (CIA) Services: Confidentiality, Integrity, Availability (Backup, DR, Monitoring)

- Service Aggregation and Orchestration

The systems inside the datacenter (storage, network, applications) are categorized as

Production (PROD), Development (DEV) and User Acceptance Test (UAT). This segregation is

maintained across all the service categories and all the platforms (typically Wintel, Linux, AIX

and other *nix, and mainframes)

10.4.1.2 Network Services

The Distributed Datacenter model will include the following network services:

- Connectivity: To operate in a Distributed Datacenter model, each provider will be

connected using MPLS or P2P connectivity. This enables seamless connectivity between

each provider.

- Global Server Load Balancing: solutions such as Local Server Load Balancing do not have

much bearing on federation, however, if the applications are distributed across different

providers, then it is recommended to have a GSLB solution from the same vendor (I.e.

standardize) across the providers environments. Solutions such as DNS load balancing can

be considered and standardized, Global Server Load Balancing or GTM. Having the same

vendor across different providers enables the Enterprise to leverage enhanced intelligent

traffic management.

Design of an Enterprise-Grade Software-Defined Datacenter Network

131

- Data Centre Interconnect (DCI): With the SAE model the DCI architecture could be

simplified by leveraging the CNF infrastructure, however a careful planning of this service

would require considering the overall Enterprise’s DC strategy (How the applications are

distributed, Storage replication strategy and DR).

- Software Defined Networking (SDN), NFV and SFC: While Software defined networking is

used to decouple the physical network from the logical network and more in general to

separate control and data plane and provide location independence, different SDN

solutions between the providers will have an adverse impact on workload mobility.

Moreover, introducing a higher-level hierarchy as SAE might require, in the medium/long

term the definition of a Hierarchical SDN model, specifying how/at what level the

software defined SAE network would interact with the private SD-DCN. On the Datacenter

domain, at least three different networks will converge in the CNF: SD-DCN in the private

datacenter, global SD-WAN and SD-SAE component in the CNF.

10.4.1.3 Storage

Most of the storage services are local to a provider. The Enterprise consumes the

storage services from each provider, however, storage replication impacts DR. Technically,

storage replication is achieved between heterogeneous arrays. The Enterprise will devise a

DC strategy. Replication is between the same providers based on The Enterprise’s RPO rather

than devising a strategy to replicate between providers.

10.4.1.4 Security Services

Confidentiality and Integrity: Security is a core function. From a technical standpoint,

The Enterprise consumes some of the security services directly from the vendor, such as

Network and Application security. The Enterprise will ensure that guidelines and polices are

defined and audited centrally. Each provider will adhere to these guidelines and policies.

In a Distributed Datacenter model, The Enterprise owns the Security Operations Centre. The

Enterprise consumes the network and application security services from each provider. The

logs from each of the provider’s environment must be pushed to a central Security Operations

Centre. This ensures The Enterprise has complete visibility of security events and can perform

required analysis.

Availability. In a Distributed Datacenter environment each provider may offer backup

and recovery services. The Enterprise defines the backup policies which the providers will

adhere. However, if applications are distributed across different providers and there is future

workload mobility; then backup of the same application can be in two different backup

Design of an Enterprise-Grade Software-Defined Datacenter Network

132

solutions. If the Enterprise ensures that workload mobility is between the same providers and

not across the backup solution, standardization is not required across the Distributed

Datacenter environment. With this model, The Enterprise will leverage the backup solution

from each provider. In so doing, The Enterprise may also face challenges when exiting the

contract. The Enterprise may have to maintain the backup solution for recovering old data.

One way to address this issue is to understand the risk and ensuring that the provider has a

contractual obligation to recover all the data before exiting the contract.

10.4.1.5 Disaster Recovery model

For the sake of this paper, the private DCs Availability strategy is 1+1 with offline copy

to a third site. The deployment of this Strategy will be accomplished through the operation

of the primary DC designed with 2 Intra-DC HA zones, paired with one DC providing Intra-

Region DR and offline copy to third site.

Figure 10-4- DR Model: Primary (PROD, SIT) and Secondary (DEV, UAT, DR) DC.

Extremely stringent service recovery time objectives (RTOs) and data recovery point

objectives (RPOs) drive Intra-DC HA design, while intra-region DR design is driven more by

survivability of mission-critical applications in case of large regional disaster situations rather

than single DC failure. The residual risk is managed through Offline copy to a third site.

Disaster Recovery Capability.

In each region, only one datacenter will be classified as Primary - production active.

This enables a better cost optimization in allocating the bulk of the efforts and resources to

run smooth and provide the needed high availability or 24 by 7 operations.

Design of an Enterprise-Grade Software-Defined Datacenter Network

133

User Acceptance Test, (UAT), mimics very closely the production environment. It will

not have the full capacity of the production environment but has all the characteristics and

identifying properties of the production environment. The decision on reuse of UAT resources

sacrificing them to recover operations capability is aligned with, and is an example of the

principles presented in par. 4.2

10.4.1.5.1 Sacrificial UAT

UAT systems in the secondary datacenter will be sacrificed to host PROD workloads

both in case of real DR and DR Test invocation

- During DR Test, only the UAT systems under Test scope will be sacrificed

- During Real DR invocation, all the UAT systems hosted in the secondary datacenter will be

sacrificed to host PROD workloads

10.4.1.5.2 ISO DR Section

The secondary DC will host a section, (Isolated DR test Environment) able to host (on

demand) PROD workloads. The UAT systems will be re-purposed to host PROD workloads and

logically connected to this section.

10.4.1.5.3 DR Test

The DR Test context in the secondary DC will share the UAT infrastructure. This implies

that during DR testing, the UAT resources under test are unavailable. It is critical that testing

mimics production. A key point of the testing is that it should include the required complex

changes for successful DR testing. Real disaster procedures should be simplified to reduce

risks. Enough complications will arise from unexpected shortage of human or technical

resources. Another key point is that, to avoid any impact on Prod systems, in Normal Mode

of Operations (NMO):

1. The ISO DR section will be kept fully isolated from the datacenter network

2. Only the staff performing the DR test will be able to access this zone.

3. Only the UAT systems hosting applications whose PROD counterparts are under the

scope of DR test will be shut down, logically connected here, and then re-purposed to

host PROD workloads.

10.4.1.5.4 Real DR invocation

During real DR invocation, (aka DR Mode of Operations, DRMO):

- All the UAT systems will be sacrificed to host PROD Workloads and logically connected to

the ISO DR Test environment

Design of an Enterprise-Grade Software-Defined Datacenter Network

134

- PROD workloads will be brought up in the “ISO PROD” context

- ISO PROD context Isolation will be broken, and this context will become the “new “PROD

brought up in the DR Datacenter.

10.4.2 IaaS Services

As already mentioned in this paper, IaaS (see Par. 3.6.2.1) is a cloud solution providing

the basic infrastructure able to host virtual servers and/or virtual machines. Usually IaaS

services are connected to the CNF through a direct connection to the closes IaaS Datacenter.

As an example, in case of Microsoft Azure, there will be a redundant link (“ExpressRoute

private peering”) connecting the CNF to the closest Microsoft Datacenter.

10.4.3 PaaS/SaaS Services

As mentioned in Par. 3.6.2.2 and 3.6.2.3 with PaaS infrastructure, users can access the

applications (i.e. a database server) without needing to have direct access and/or manage the

underlying platform and operating system. With SaaS Customers do not manage the

infrastructure, not even the application, they just consume the services provided by the

platform (for example, the MS-Office suite in the case of Office365.

In the CNF scenario, PaaS and SaaS will be services accessible on the public network,

usually provided through a dedicated high-speed link with the PaaS/SaaS provider. As an

example, in case of Microsoft Azure/PaaS and Microsoft O365/SaaS, the two services are

usually provided through a redundant link (“ExpressRoute Public/Microsoft peering “)

connecting the CNF to the closest Microsoft Datacenter

10.4.4 Shared Services

10.4.4.1 DNS and IPAM

DNS and IPAM are treated as a horizontal layer cutting across different providers. In other

words, these services are owned directly by the Enterprise or by a single provider, and each

provider consumes them both externally (i.e. public IP allocations) and internally (address

allocation and hostnames)

10.4.4.2 NTP

Time is uniformly synchronized across each of the providers. NTP is seamlessly extended

across the Enterprise environment

10.4.4.3 Authentication, Authorization and Identity Management

The Infrastructure is spread across multiple providers. Depending on the type of service/SLA

or compliance, The Enterprise sets guidance on where the infrastructure is hosted (Ex: Dev

Design of an Enterprise-Grade Software-Defined Datacenter Network

135

on Public Cloud). However, Active Directory and any other user authentication (TACACS,

LDAP, etc.) are treated as a horizontal service handled by The Enterprise

10.4.4.4 Service Aggregation and Orchestration

When services are consumed from multiple providers, which could be a combination of

Traditional (hosted in the Enterprise Datacenter), Cloud or Cloud like services, there is a need

to integrate these services through Cloud aggregation solutions providing a unified view s

from different providers. Polices will be defined on how the services are consumed.

10.5 User Space

10.5.1 Internal Users

Internal users are corporate users (see par.2.4) who access the services from both corporate

network, or any other location, using both corporate and personal devices.

10.5.1.1 MPLS/WAN

The Enterprise WAN is usually managed by a global contractor who provides

connectivity from all remote sites to the CNFs. The WAN was usually provided through a MPLS

network and deployed with WAN Optimization solution on site.

Nowadays, with the advent of SD-WAN, this approach is changing to a hybrid model,

where the remote sites have dual (or more) connections and the dual link, path optimization,

security services, are provided through SD-WAN + NFV solutions deployed on site.

10.5.1.2 VPN/Remote access

Remote users usually connect to the premises through SSL VPN, and /or remote access

solutions using, for instance, Citrix access /VDI. The main difference between the two being

that in the first case the user is terminated on a VPN Concentrator, in the second case instead

the user generates two sessions: one to the Citrix infrastructure (i.e. a Citrix NetScaler with or

without WAN optimizer), the second session from the NetScaler to the target servers.

From the SAE/DDC perspective these flows are provided through standard Internet

access and terminated on specific devices, VNF providing the required services.

10.5.2 3rd Parties/Partners connectivity

3rd parties/partners connect to the Enterprise either to provide services and/or to

access dedicated services provided by the enterprise. Depending on the requirements, this

type of access is usually provided in two ways:

- through dedicated links (usually MPLS, or IPSEC tunnels). This type of access is preferred

when the partner needs to connect an entire site (Site to site VPN) to the enterprise. The

Design of an Enterprise-Grade Software-Defined Datacenter Network

136

Telco provider of these connections usually has a PoP on the CNF and the links are logically

terminated on a dedicated device (physical or VNF) enforcing the access policies.

- through SSL VPN with specific access for external users. These users access the Enterprise

through SSL VPN terminated on a device enforcing specific and granular access policies.

10.5.3 External Users, Customers

External users access the Enterprise through public services accessible on the Internet

(i.e. Web applications, web services, API Gateways, etc.). To reduce the threat surface,

usually, these services are accessible through one or more third parties (i.e. INCAPSULA,

Akamai, etc.) providing DDOS prevention, and only these third parties can establish a

connection to the perimeter.

From the SAE/DDC perspective, these users (or the third parties managing inbound

DDOS prevention) connect to the Enterprise through an Internet link terminated on the SAE.

10.6 Distributed Datacenter Global Network

Figure 10-5 - Distributed Datacenter Global network

Figure 10-5 shows the interconnections of the SAEs in the four regions (APAC, EMEA, LATAM,

NA). Each SAE is also connected to the Regional Private Datacenters, the regional providers

(i.e. AWS, Azure, etc.) and to other external networks (i.e. WAN and Internet) not shown in

the picture. All the SAEs are interconnected through the redundant inter-CNF network, which

is completely managed by the CNF provider and out of the scope of this paper.

Design of an Enterprise-Grade Software-Defined Datacenter Network

137

11 High-Level Design of an Enterprise Grade Software Defined Datacenter

network

11.1 Abstract

This chapter, assuming that the Enterprise datacenter follows the model introduced in

Chapter 10, details the Service Access Exchange (SAE) as a core component of the Distributed

Datacenter Network (DDCN) , with the Inter-Zone Gateway (IG) and the Service Provider

network (SPN), and finally presents a high-level topology for the private datacenters, and the

related Network functions and NFCs that could be used in the private datacenter.

Both the IG and SPN are key components of the designs introduced in the next chapters.

The high-level design for the DCN discussed in this chapter are applicable to the Private

datacenters described in 10.4.1.

11.2 DDC

11.2.1 High Level Design

Figure 11-1 – DDC Network Block model

The block diagram in Figure 11-1 shows the main components of the DDCN described

in Chapter 10. This chapter and the next three will focus on the datacenter network design

for the Regional Private Datacenters (Primary PROD/DEV and Secondary UAT/DR), directly or

indirectly owned by the Enterprise. However, to provide end-to-end Software-Defined

Services, and to consume Datacenter-as-a-Service, the tools described in Section II (SDN, NFV,

SFC, orchestration) should be applied to both SAE and private DC networks.

Design of an Enterprise-Grade Software-Defined Datacenter Network

138

11.2.2 Service Provider Network (SPN)

The SPN connects various (physical and virtual) Service providers within a single SAE

owned by the Enterprise. Within the SAE, different providers would connect their

infrastructure. The SPN is segmented in different zones, as an example:

1. Blue zone: this is the SAE backend network, inter-CNF connecting the SAE with the

other regions.

2. Green Zone: connects all the Providers offering private infrastructure services and/or

facilities directly owned by the Enterprise.

3. Black Zone: connects all the Isolated networks located in different providers and

Needed to provide distributed DR Test capabilities

4. Yellow Zone: connects all the resources provided by third parties managing their own

infrastructure providing services to the Enterprise.

5. Orange Zone: connects all the Providers offering both inbound (i.e. PaaS, Forward or

Reverse proxies) or outbound (i.e. Guest Wireless access) DMZ-located services.

6. Red Zone: connect all the perimeter devices, typically at least the inbound and the

outbound Firewall infrastructure

Depending on the security and visibility requirements, different configurations on the SPN

could be implemented using different Service Insertion Policies:

- If the provider complies with the Enterprise policies, or the infrastructure is directly

owned by the Enterprise, then the policy enforcement point could be the context

firewall. As an example, PROD traffic going from one private datacenter to the

Enterprise/IaaS will need to traverse two context firewalls and these two will enforce

the related security policies. In these cases, though, the SPN could provide a “network

visibility” policy.

- If the provider is a 3rd party (i.e. not compliant with the enterprise security model, or

with a Firewall not managed/trusted by the Enterprise IT SOC), then the SPN could be

used as a policy enforcement point for the intra-zone traffic or, through service

insertion, a policy might force the traffic to the Inter-Zone Gateway. It is worth noting

that inter-zone traffic will always flow through the Inter-Zone Gateway, by design and

by definition of Inter-zone.

Design of an Enterprise-Grade Software-Defined Datacenter Network

139

11.2.3 Inter-Zone Gateway

The Inter-Zone Gateway (IG) provides an inter-segment policy enforcement point to

serve as a “network supervisor” for:

1. Intra-Zone East-West traffic: the IG provides a policy enforcement point for those

flows coming from 3rd parties, in the same zone that for any reason might require

further inspection (i.e. 3rd party traffic to another 3rd party using non-standard ports)

2. Inter-zone East-west: the IG, by design, enforces security policies for data flows

between different providing, isolating fault domains

3. North-south (User-to-Service): the IG enforces security policies for any user-to-service

flow. All Enterprise users in each region must pass through a IG when accessing

different services, regardless their location (IaaS, PaaS, Private DC, etc.).

11.3 Private Datacenter

11.3.1 Summary of the Specifications

As already specified in the previous paragraphs, each region contains two datacenters: the

primary datacenter hosts PROD/DEV traffic, and the secondary hosting UAT and serving DR

purposes. The general specifications are

- For the sake of this paper, every DCN must be able to accommodate initially about 1,500

physical hosts (32 racks with 48 servers each) dual-homed with 10G access links (about

3,000 10G access ports)

- Both datacenters are connected to at least two regional SAEs

- The Private Datacenter does not have any other external connection except those linking

it to regional or national CNFs

11.3.2 DCN Contexts

Every regional DCN contains 4 or 5 contexts (see Figure 11-2): DCI, NONPROD, PROD,

ISO (optional, usually available only in Secondary DC) and DMZ. Each one of these contexts

usually contains more than one segment, one (or more) Context Firewall, one (or more) Load

Balancer acting as pure load balancer, reverse proxies and other network functions (NFs) that,

whenever possible, should be virtualized.

These contexts are connected to the corresponding areas of the SPN defined in Figure

11-1 through a pair (or more) links connecting the regional datacenter with the SAEs.

Design of an Enterprise-Grade Software-Defined Datacenter Network

140

Figure 11-2 - Contexts in the Regional DC

11.3.2.1 CORE

The CORE context does not contain any service: its role is to route all the traffic to/from the

internal contexts (DCI, PROD, NONPROD, and for the Secondary Datacenter also the ISO)

to/from the SAE. All the contexts are connected to the CORE (and to the SAE) through a

context Firewall.

Figure 11-3 - CORE context

11.3.2.2 DCI

The DCI context contains connection to/from DCI (Datacenter interconnect) needed for

synchronous/asynchronous backups, storage replication/deduplication traffic, management,

ILO, etc.

Figure 11-4 - Backend context

Design of an Enterprise-Grade Software-Defined Datacenter Network

141

11.3.2.3 Production

The production context contains all the services needed for PRODuction. The PROD

Context Firewall enforces the access policies on this context allowing communication to/from

other authorized sources.

Due to the need of managing the Lifecycle of Legacy End of Support Systems this

context might or may not also contain one sub-context where all the End of Support systems

are connected.

Figure 11-5 - -Prod Context

11.3.2.4 Non-Production

The non-production context contains the services needed for NON-PROD (UAT in the

secondary datacenter, DEV in the primary Datacenter). The NONPROD Context Firewall

enforces access policies on this context allowing communication to/from other authorized

sources and, as an example, preventing UAT or DEV traffic to access PROD systems.

Due to the need of managing the Lifecycle of Legacy End of Support Systems, this

context might or may not also contain one sub-context where all the End of Support systems

are connected.

Figure 11-6 - Non-Prod Context

Design of an Enterprise-Grade Software-Defined Datacenter Network

142

11.3.2.5 DMZ

The DMZ context contains inbound services accessible from outside. The DMZ context is

connected to the IN DMZ in the SAE. Services located in this context are

Figure 11-7 - -DMZ Context

The DMZ context terminates flows related to PROD/DEV/UAT externally facing

applications. Usually the security requirements mandate that all the externally facing

applications are terminated on a Reverse proxy/Load balancer which, then, can connect to

the actual PROD or DEV server.

Design of an Enterprise-Grade Software-Defined Datacenter Network

143

11.3.2.6 Isolated Test

The ISO Test context is available only in the UAT/DR Datacenter. Its main purpose is

to provide DR Test capabilities. Essentially, this isolated context will provide a DR TEST

environment where services and servers can be brought up to test the readiness of the DR

procedures.

Figure 11-8 - ISO Context

The ISO Context purposes are essentially two:

1. During normal mode of operations: to proof the ability of providing DR for specific

applications. By recovering the PROD applications under DR Test in the ISO Context,

the segregation of these applications (and so the impact of the test) is guaranteed,

and at the same time the Enterprise can perform the (often mandatory) DR Tests

without affecting business flows.

2. In case of failure of the primary Datacenter, the entire infrastructure of the primary

datacenter will be replicated in the DR ISO Context, and its isolation will be “broken”

providing the Primary Datacenter services inside the Secondary Datacenter.

Design of an Enterprise-Grade Software-Defined Datacenter Network

144

11.3.3 PROD/DEV Datacenter network topology

The primary datacenter hosts DCI, PROD, DEV and PROD/DMZ workloads

Figure 11-9 - PROD/DEV Primary DCN

The DCN networks interconnects the four contexts with both the SAEs. Flows depicted in

Figure 11-9 might represent L2, L3 or specific L4 traffic, depending on the actual design. The

DMZ terminates flows related to PROD/DEV externally facing applications. Usually the

security requirements require that all the externally facing applications are terminated on a

Reverse proxy/Load balancer which, then, can connect to the actual PROD or DEV server.

Design of an Enterprise-Grade Software-Defined Datacenter Network

145

11.3.4 UAT/DR Datacenter Network Topology

The secondary datacenter hosts DCI, PROD, UAT, UAT/DMZ and DR TEST workloads

Figure 11-10 - UAT/DR Secondary DCN

The DCN networks interconnects the five contexts with both the SAEs. Flows depicted in

Figure 11-9 might represent L2, L3 or specific TCP traffic, depending on the actual design.

11.3.5 Private DCN Network Functions

Different network functions are needed in the private DC. From a very high-level perspective,

though, they could be summarized in the following list

- Stateful L3/L4 Firewall

- Application-Aware (L7) Firewall

- Load-balancer / Reverse proxy

- Network sensor/TAP

11.3.5.1 Stateful Firewall

The Stateful firewall is a L3/L4 function enabling specific flows based on policies

defining source, destination address, protocol. It is used in the datacenter because it might

be directly implemented in the TCAM of the networking devices and easily controlled by the

SDN Controller.

Design of an Enterprise-Grade Software-Defined Datacenter Network

146

11.3.5.2 Application-Aware Firewall

The Application-aware firewall is a L7 function enabling specific flows based on

application level policies, performing deep packet inspection and other application level logic

(i.e. preventing SQL injections attacks). It is worth noting that the same device might have

one virtual context used as a Stateful firewall and another context used as a L7 firewall.

11.3.5.3 Load Balancer / Reverse Proxy

The load balancer is a L4/L7 function balancing the traffic on a set of target servers.

The Load Balancer usually provides a virtual IP on its Frontend interface and connects to the

backend targets. The load balancer can work

- at layer 4 (TCP): terminates the TCP session coming from the users on the frontend

interface and establishes related sessions on the backend interface.

- At layer 5-7 (Application): the LB frontend terminates the inbound session and establishes

other sessions with the backend. An example of this use is a HTTP/HTTPS forward proxy,

where the users connect to the frontend, and their HTTP/GET request is processed by the

LB that proxies and validates the requests and send them to the actual Web servers.

The load balancer usually has also a monitor component which polls the backend servers and

it is fully aware of their status/load.

11.3.5.4 Tap

This function is needed to replicate the traffic that it sees and send it (usually but not

necessarily) to a security-aware device. Typical examples of this functions are network

monitoring tools used for compliance purposes and/or network traffic recording devices.

11.3.6 DCN Network Function Chains

The NFCs used in the DCN can be summarized as

- MP-FW: Multi-purpose Firewall: L3/L4/L7 Firewall and Tap

- ALG: Application Level Gateway: Tap and Reverse Proxy/Load Balancer

11.3.6.1 Multi-purpose Firewall

This chain can validate a flow correlating different information coming from the

network, transport and application layer. If needed, this function can also send the related

traffic to other target for further inspection/logging.

11.3.6.2 Application-Level Gateway

This Function Chain is a Multi-Purpose Load Balancer, able to send the traffic to a

third-party function for further processing/monitoring/analytics.

Design of an Enterprise-Grade Software-Defined Datacenter Network

147

12 Classical SDN Design using Big Switch Big Cloud Fabric

12.1 Abstract

This chapter presents the “classical” SDN (see Par. 7.4.2) design for (Primary and

Secondary) private datacenters defined in Par. 11.3 using as a building block the Big Switch

Big Cloud Fabric (BCF) ® architecture introduced in paragraph 7.5.4 (the technical solution

presented in this chapter is based on [100]). Big Switch also offers a free demo lab for BCF

[101] that has been used to validate part of the configuration presented in this chapter.

 Despite its name, Big Switch is a pure software company, therefore it does not directly

supply any hardware, and relies on commercial partners (i.e. DELL, Edge-core, etc.) to provide

network gear compatible with BCF specifications and requirements. Even though the design

presented in this chapter adopts DELL equipment, a similar approach could be taken using

any other vendor supported by BCF.

12.2 DCN Physical Topology

Figure 12-1 - BCF DCN Topology (Primary and Secondary DCs)

The proposed architecture is a classical SDN network based on a spine-leaf (3-stages

folded Clos) topology with maximum 32 pods (racks that have servers), at the top of which

there are two leaves connected to up 6 Spines, each with 64 40GbE ports. Each server is dual-

connected to a leaf via 10G links.

Design of an Enterprise-Grade Software-Defined Datacenter Network

148

The leaf switches are the DELL S4048-N with 48x10G access ports and 6x40G uplinks to

the spine, so the maximum number of spines is 6. The spine switches are the DELL S6010-ON

with up to 64x40G ports14, so the maximum number of leaf switches is 64. Considering that

every pod must be connected to two leaf switches, the maximum number of pods is 32.

12.2.1 Oversubscription

In a leaf-spine topology, oversubscription, if any, occurs at the leaf layer.

Oversubscription is equal to the total amount of bandwidth available to all servers connected

to a leaf switch divided by the amount of uplink bandwidth.

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡 𝑂𝑂𝑡𝑡𝑂𝑂𝑏𝑏𝑏𝑏𝑂𝑂𝑏𝑏𝑂𝑂ℎ
𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑢𝑢 𝑂𝑂𝑡𝑡𝑂𝑂𝑏𝑏𝑏𝑏𝑂𝑂𝑏𝑏𝑂𝑂ℎ =

48 𝑥𝑥 10𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂
6𝑥𝑥40𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂 =

480
240 = 2: 1

This implies that the proposed Clos topology is blocking if all the ports are used.

However, if the port-channel on the server is configured only, say, as LACP active/standby

then the network becomes non-blocking (with half the access bandwidth)

12.2.2 Scalability and bi-sectional bandwidth

The presented solution supports up to 64 Leaf Switches, each with 48 10GbE Ports,

which implies that a maximum of 64x48 = 3,072 10GbE active ports can be connected. The

total access bandwidth is 3,072 x 10Gbps=30,720Gbps=30.72Tbps. Each one of the 64 leaf

switches has 6 uplinks @40GbE, which implies that the total bi-sectional bandwidth is

6x64x40Gbps = 15,360Gbps=15.36Tbps. The solution can scale up to 3,072x10GbE ports

(1,536 dual homed servers).

To scale this solution there are two options:

1. Scale up: the available documentation states that a single BCF supports up to 128 racks

on a single BCF, however this size would need spine switches with 256P@40G,

currently 15 not available in the commercial offering.

2. Scale out: another BCF network must be created with a new pair of Controllers and

connected to the existing one through an external tenant. This solution would require,

though, to define how the two (or more) SD-DCNs interact together.

14 At the time of the writing the DELL-6010-ON is a fixed configuration switch with 32 ports,
however the new release will support up to 64 ports.
15 As per February 2018

Design of an Enterprise-Grade Software-Defined Datacenter Network

149

12.2.3 Racks per pod

Every pod provides up to 480Gbps (2x6@40G ports) uplink bandwidth and up to

960Gbps (2x48@10G ports) access bandwidth. The access bandwidth might be provided as

1. 2x10Gbps access to a single server/blade (maximum 48 servers)

2. Multiple 2x1Gbps access links, in which case the actual number of physical servers per

pod could go up to 48016

3. A valid combination of the previous

From a rack perspective, in the first case every pod would be contained in just one single

rack packed with 48 servers (typically blade servers) as shown in Figure 12-2

Figure 12-2 - Single Rack Pod (Front View)

in the second and third case, the pod might contain up to 10 racks with 48 servers each,

all of them connected with 2x1G ports to the leaf switches, and the 2 leaf switches most likely

placed in a Middle-of-Row topology (see Figure 12-3)

16 This would require, of course, to correspondingly increase the number of racks, and provide
an adequate inter-rack connectivity.

Design of an Enterprise-Grade Software-Defined Datacenter Network

150

Figure 12-3 - 10 racks pod with MoR placement (Top View)

12.2.4 Network components

Big Switch business strategy is centered on working with white-box (aka brite box)

switch manufacturers. These white-box switches are delivered with the Open Network Install

Environment (ONIE) boot loader that can discover the controller and download Big Switch’s

Switch Light OpenFlow switch code. Switch Light is based on the Indigo open source

OpenFlow switch software. The idea is to provide a specific architecture to the customer,

placing in the market a bundle of switch, controller, and code is largely auto-configured.

12.3 Logical View of the Enterprise private DCN using BCF

12.3.1 Key logical components

To understand the design based on BCF, some key roles of the architecture must be defined:

• Tenant: an entity providing logical grouping of L2 and/or L3 networks and services, similar

in function to a VRF entity (see Par 6.4.2).

• Logical Segment: a L2 network consisting of logical ports and endpoints and defining a

broadcast domain boundary.

• Logical Router: an entity, defined inside the tenant, providing inter-segment, intra-tenant,

and external network routing and policy enforcement services

• System tenant: the BCF “default” tenant. The logical router in the system tenant is called

System Tenant Router.

• The System Tenant Router has only one type of interface, called a tenant interface, which

enables routing between user-defined tenants

Design of an Enterprise-Grade Software-Defined Datacenter Network

151

12.3.2 Primary Datacenter

From the logical standpoint, the Primary datacenter contains the system tenant

interconnecting external, CORE (with PROD, DCI and DEV) and DMZ Tenants.

Figure 12-4 - Primary DCN with BCF – Logical View

12.3.2.1 Intra-tenant routing

In every tenant, the tenant router performs Intra-tenant routing (aka inter-VLAN

routing). It is worth noting that, if needed, SFC can be deployed in the tenant router to

intercept inter-segment traffic and send it to a VNF performing, for instance, Firewall or load

balancing functions (see par. 12.4.2.1).

12.3.2.2 Inter-tenant routing

The inter-tenant routing is performed in two different ways:

- Inter-tenant routing between CORE, DCI and DEV, which are not directly connected to the

system tenant (Tenants without a system interface): in this case a dedicated Context

Firewall VNF performs inter tenant routing. The insertion of this VNF in the path is

performed through BCF Service insertion (see Par. 12.3.3.1)

- Inter-tenant routing between External, CORE, DMZ which are directly connected to the

system tenant (Tenants with a system interface): in this case the system tenant router

directly performs the inter-tenant routing

Design of an Enterprise-Grade Software-Defined Datacenter Network

152

12.3.3 Secondary Datacenter

From the logical standpoint, the Secondary datacenter contains the system tenant

interconnecting the external tenant (where the SAEs are terminated), the CORE (where PROD,

UAT and DCI workloads are located), DMZ (where UAT externally facing services are located)

and ISO (providing DR capabilities) Tenants.

Figure 12-5 - Secondary DCN with BCF – Logical View

12.3.3.1 Intra-tenant routing

In every tenant, the Logical Tenant Router performs Intra-tenant routing (inter-vlan

routing). It is worth noting that, if needed, a service insertion policy could be deployed to

intercept intra-tenant traffic and send it to a VNF performing, for instance, Firewall or load

balancing functions (see par. 12.4.2.1).

12.3.3.2 Inter-tenant routing

The inter-tenant routing is performed in two different ways:

- Inter-tenant routing between CORE, DCI, UAT, ISO-PROD and ISO-DMZ which are not

directly connected to the system tenant (Tenants without a system interface): in this case

a dedicated Context Firewall VNF performs inter tenant routing. The insertion of this VNF

in the path is performed through BCF Service insertion (see Par. 12.3.3.1)

- Inter-tenant routing between External, CORE, DMZ and ISO which are directly connected

to the system tenant (Tenants with a system interface): in this case the system tenant

router directly performs the inter-tenant routing.

Design of an Enterprise-Grade Software-Defined Datacenter Network

153

12.4 Network Function Chaining

In BCF, Service insertion is provided through IP next-hop forwarding implemented by

policies defined in the logical router. The actual target of the forwarding could be a single VNF

or a group of VNFs (i.e. load balanced at the IP level), the source could be all the traffic coming

from a specific segment in a Tenant and the destination could be a segment on the same

tenant (intra-Tenant NFC) or another tenant (inter-tenant NFC).

BCF does not support micro-segmentation and /or layer 2 service insertion.

Figure 12-6 - Generic Network Function Chaining in BCF

12.4.1 Virtual Network Functions

In this paragraph, the VNFs used in the private datacenter are presented. These VNFs will be

deployed in the BCF through the Service insertion policy mechanism specified above:

- Basic Firewall: provides Stateful L3/L4 functionalities, it is not application aware

- Application Aware Firewall: enables deep packet inspection and application awareness

- Load Balancer: balances workloads at the transport (TCP/UDP) and application level (for

HTTP/HTTPS protocol).

- Load Balancer and Reverse proxy: provides Load balancing and advanced HTTP handling

(terminates HTTP/s sessions, authenticates, validates queries, performs status

monitoring, etc.)

- Virtual Tap: intercepts the network traffic and sends a copy of it to a specific target.

The VNFs specified above can be chained in different ways. For

Design of an Enterprise-Grade Software-Defined Datacenter Network

154

12.4.2 Context Firewall

As specified in Par. 11.3, every tenant is connected to the rest of the network through

a context firewall, that might or might not be application aware. In its simplest form the

context firewall is just a L3/L4 firewall, but the actual number of VNFs involved could be 2 or

more, depending on the actual service chaining internal to the firewall VNF itself: as an

example, once the traffic hits the Firewall there could be a policy intercepting specific flows

(per source, destination, protocol, application, etc.) and sending them to another, internal,

VNF for further processing. And this process could be repeated.

In this case, essentially, BCF will trigger the first function of the NFC, and all the other

functions would be chained by the firewall policies itself. It is worth noting that this principle

might apply to any NFC, not just the firewall/security related.

12.4.2.1 Intra-Tenant Firewall

The intra-tenant firewall could be used to perform inter-segment routing for all or a

subset of the specific segments terminated in the context. A typical use case could be, as an

example, intercepting all the traffic from a VLAN containing hosts with a higher risk profile

(i.e. PROD servers hosted on nearly end of support systems) and validate this traffic against

stricter security policies enforced on the application-aware firewall.

Figure 12-7 - Intra-Tenant Firewall Service Function Chain

Design of an Enterprise-Grade Software-Defined Datacenter Network

155

12.4.2.2 Inter Tenant Firewall

Figure 12-8 – Inter-Tenant Firewall Service Function Chain

12.4.3 Context Firewall + Load Balancing SFC

Figure 12-9 - Load Balancing + Firewall SFC

The load balancer could be deployed standalone, or as part of an advanced Firewall + Load

Balancing SFC. The principle behind this approach would be that the deployment of a service

Design of an Enterprise-Grade Software-Defined Datacenter Network

156

cluster does not require any change on the firewall policy, only a change on the SFC in Tenant

Router.

As an example, let’s assume that a front-end server that was initially standalone needs to be

deployed as, the flow would be

- Inbound traffic destined for the Frontend Server arrives to the CORE Tenant Router

- CORE Tenant router has an insertion policy directing all the traffic destined to the PROD

networks to the PROD Context FW VNF

- PROD Firewall VNF has a rule specifying that if the target is the fronted server it should be

allowed: PROD FW sends the traffic to the PROD Tenant Router.

- PROD Tenant Router has a Redirection policy which forwards all the traffic destined for

the frontend server to the Load Balancer

- Load Balancer receives the inbound traffic and perform its duties accordingly.

12.5 Integration with VMWare vSphere

Figure 12-10 - Big Switch BCF integration with VMWare vSphere [102]

BCF can be integrated with VMware vCenter™ and supports application deployments on its

physical SDN fabric — across both virtual and physical networks. The following aspects of the

network are automated:

- Connectivity of the ESXi host

- Configuration of Layer 2 networks

- Provisioning on BCF of VM/VMkernel endpoint

- Migration of the network policies for vMotion

Design of an Enterprise-Grade Software-Defined Datacenter Network

157

13 Overlay-based Design using Juniper Contrail

13.1 Abstract

This chapter presents the “overlay based” (see par. 7.6) high level design for the

Enterprise (Primary and Secondary) private datacenters defined in Par. 11.3. This design is

built with the Juniper Contrail architecture briefly introduced in paragraph 7.6.3 (for a more

detailed introduction on this architecture see [103], [104], [105] and [106])

Figure 13-1 - Contrail Architecture

This chapter is divided in three sections

1. Design of the underlay DCN

2. Design of the overlay DCN

3. Network Function Chaining

Design of an Enterprise-Grade Software-Defined Datacenter Network

158

13.2 DCN Underlay

In a VXLAN overlay implementation, the core requirement for the underlying physical

network is that it must be a IP routed network. The underlay network must provide

predictable performances and must scale linearly. In this HLD we will use a Clos (spine-leaf)

architecture based on an IP Fabric built using Juniper Networks QFX5100 series switches,

(currently) able to scale to a maximum of eight spine switches.

13.2.1 Physical topology

The proposed topology is a folded three-stage IP fabric using Juniper QFX5100-24S

and QFX5100-96S. The QFX5100-24S is a 32 x 40GbE switch, and the QFX5100-96S is a 96 x

10GbE and 8 x 40GbE switch. An IP fabric of usable 3072 x 10GbE ports, as shown in Figure

13-2 can be created combining the QFX5100-24Q and the QFX5100-96S

Figure 13-2 underlay DCN topology (Primary and Secondary DCs) using Juniper IP Fabric

The leaves are constructed using the QFX5100-96S, and their 8 x 40GbE interfaces are

used as uplinks to the spine. Each leaf has 8 uplinks into the spine, so the maximum width of

the spine is 8.

13.2.1.1 Oversubscription

In a leaf-spine topology oversubscription occurs at the leaf layer. Oversubscription is

equal to the total amount of bandwidth available to all servers connected to a leaf switch

divided by the amount of uplink bandwidth.

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡 𝑂𝑂𝑡𝑡𝑂𝑂𝑏𝑏𝑏𝑏𝑂𝑂𝑏𝑏𝑂𝑂ℎ
𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑢𝑢 𝑂𝑂𝑡𝑡𝑂𝑂𝑏𝑏𝑏𝑏𝑂𝑂𝑏𝑏𝑂𝑂ℎ =

96 𝑥𝑥 10𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂
8𝑥𝑥40𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂 =

960
320 = 3: 1

Design of an Enterprise-Grade Software-Defined Datacenter Network

159

13.2.1.2 Scalability and bi-sectional bandwidth

The presented solution supports up to 32 Leaf Switches (each spine switch has

32x40GbE ports), each with 96 10GbE Ports, which implies that a maximum of 96x32 = 3,072

active ports can be connected.

The total access bandwidth is 3,072 x 10Gbps=30,720Gbps=30.72Tbps. Each one of

the 8 spine switches has 32 links @40GbE, which implies that the total bi-sectional bandwidth

is 8x32x40Gbps = 10,240Gbps=10.24Tbps.

13.2.2 Routing Options for the underlay

The most common routing options for the control plane of an IP fabric are OSPF, IS-IS,

and BGP. Every routing protocol can advertise prefixes, but the protocols vary in terms of

features, convergence time, performances, scale, etc. OSPF and IS-IS use a flooding technique

to send updates (link state packets) and other routing information. Creating areas can reduce

the amount of flooding, but by doing this, one starts losing the benefits of an SPF routing

protocol. In contrast, BGP, by design, supports many prefixes and peering points, as proven

by the same existence of the Internet.

The ability to shift traffic around an IP fabric is a core feature. As an example, one could

route traffic around a specific leaf when the switch is in maintenance. OSPF and IS-IS provide

limited traffic manipulation abilities, and, again, BGP has been built to support extensive

traffic steering and tagging.

Usually, a large IP fabric is built iteratively and over time, and it is common to see device

from multiple vendors co-existing in a single IP fabric. Again, OSPF and IS-IS work well across

multiple vendors, however, again, BGP is the best option when considering multi-vendor

coexistence, as proven by the fact that Internet consists of a massive amount of equipment

from different vendors, all using BGP.

So, to summarize, when selecting a control plane protocol for an IP fabric, due to its

ability to scale up, tag traffic, and multivendor stability, BGP is the best option.

13.2.2.1 eBGP or iBGP

One of the first decisions to make is whether to use iBGP or eBGP. The ability to fully use

all the available links, implies that the IP fabric must support equal cost multipath (ECMP).

One of the key design point is how does each option support ECMP:

- eBGP handles ECMP without a problem.

- iBGP requires a BGP route reflector and the AddPath

Design of an Enterprise-Grade Software-Defined Datacenter Network

160

If using eBGP in an IP fabric, each switch represents a different autonomous system number,

and each leaf must peer with every other spine in the IP fabric, as shown in Figure 13-3

Figure 13-3 - Use of eBGP in an IP Fabric [106]

Using eBGP in an IP fabric is very simple and straightforward, and enabling the use of

local preference and autonomous system padding also provides traffic capabilities.

The use of iBGP, though, is different since iBGP requires the peering between all

switches. To mitigate impact of this “full peering”, the spines can be configured to support

inline BGP route reflectors (RR), as illustrated in Figure 13-4. However, the issue with standard

BGP route reflection is that it only reflects the best prefix and doesn’t support well ECMP. To

enable full ECMP, BGP AddPath feature must be used, which provides additional ECMP paths

into the BGP advertisements between RR spines and leaves.

Figure 13-4 - Use of iBGP in an IP Fabric [106]

The QFX5100 Switches used in the underlay support both BGP design options of iBGP

and eBGP. Both options work equally well. However, from the discussion above, it is quite

clear that design and implementation using eBGP are simpler, therefore, eBGP is the routing

protocol that will be used in the proposed underlay DCN.

13.2.2.2 eBGP Design

The main issue when using eBGP in the underlay is how many BGP autonomous

system numbers will be consumed with the IP fabric. Each switch has its own BGP

autonomous system number. Technically, the BGP private range is 64,512 to 65,535, which

leaves with 1023 BGP autonomous system numbers. If the IP fabric is larger than 1023

Design of an Enterprise-Grade Software-Defined Datacenter Network

161

switches, then the public BGP autonomous system number range must be considered or

move to 32-bit autonomous system numbers.

13.2.2.3 Routing for the Primary and Secondary DCN underlay

Rack 16Rack 1

AS
65101

AS
65102

AS
65103

AS
65104

AS
65105

AS
65106

AS
65107

AS
65108

AS
65201

AS
65202

AS
65232

AS
65231

Spine Layer

Leaf Layer

Fabric

Figure 13-5 - Routing in the DCN underlay using eBGP and dedicated ASNs

For the reasons explained in 13.2.2, the routing protocol used in the DCN underlay will be

eBGP with dedicated ASN number for every switch.

It is also a good practice to align the AS numbers within each layer. As shown in Figure

13-5 the spine layer will use AS numbering in the 651xx range, and the leaf layer will use AS

numbering in the 652xx range.

13.3 DCN Overlay

As shown in Figure 13-1, the key components of DCN Overlay network are

- Virtual Network

- Network Policies

- Gateway Devices: vRouter, Gateway, etc.

- ToR switches and TSNs nodes, proxying virtual and physical workloads

13.3.1 Virtual network

Virtual networks are the domain where the workloads (Containers, VMs, physical

nodes are connected). They are the equivalent of VLANs in classical networking.

13.3.2 Network policies

Network policies define how virtual networks are connected, and can be of two types:

- Virtual network policies: high level of abstraction, applied at the boundary of virtual

networks

Design of an Enterprise-Grade Software-Defined Datacenter Network

162

- Service policies: define how network services are connected and provided to the virtual

networks (through NFC)

13.3.3 vRouter

Contrail implements overlay networking using a function called Contrail vRouter

located in each hypervisor (e.g., KVM with QEMU), operating system supporting containers

(e.g., Linux with Docker) or Contrail ToR Service Nodes. Contrail vRouters implement user-

specified network policies issued by the Contrail Controller.

The Contrail Controller uses the Extensible Messaging and Presence Protocol (XMPP)

to control the vRouters, and a combination of BGP and NETCONF protocols to communicate

with physical devices (except TORs Service Nodes).

13.3.4 Integration with ToR Switches (using OVSDB)

Contrail networks can connect physical nodes via ToR switches running OVSDB [107].

Each physical switch has a set OVSDB tables storing the routes to host MAC addresses; OVSDB

makes copies of the routes between switches via a Contrail element called the ToR Service

Node (TSN).

The TSNs is essentially a proxy between XMPP and OVSDB on switches so that MAC

routes can be exchanged between virtual and physical networks.

Figure 13-6 - Contrail ToR Service Node (TSN) [107]

Design of an Enterprise-Grade Software-Defined Datacenter Network

163

A TSN contains four types of software components:

- OVSDB Client: send/receive Route updates and configuration changes

- ToR Agent: maintains an XMPP session with the Contrail Controller and mediates between

the Contrail XMPP messages and OVSDB.

- vRouter Forwarder: traps and responds to broadcast packets that VTEPs in switches direct

towards the IP address of a TSN inside VXLAN encapsulation.

- ToR Control Agent: a vRouter providing proxy services (DHCP, DNS, and ARP) for broadcast

traffic arriving over VXLAN from servers attached to switches. Response data is provided

by either the ToR Control Agent itself, or by the Contrail Controller via an XMPP session.

When a physical switch learns a new MAC address on an interface configured in a VTEP,

it creates a bridge table entry for the MAC for that interface. A corresponding entry in the

OVSDB table is created, causing a MAC route to be sent via OVSDB protocol to the TSN. The

route specifies a VXLAN encapsulation tunnel where the next hop is the IP address of the

switch, and the VNI will be that of the VTEP on the switch to which the server is connected.

When a route arrives at the TSN, it is converted to an XMPP message that is sent to the

Contrail Controller, which sends the route to vRouters that have VRFs with matching VNI. The

TSN also sends the routes to other switches that are running OVSDB and have VTEPs with the

same VNI.

Similarly, when VMs are created using an orchestrator platform like OpenStack or

VMware vCenter/NSX, routes to the new VMs are sent by the Contrail Controller via the TSN

to each switch with a VTEP with matching VNI. The routes specify VXLAN tunnels with the

next hop being the IP address of the vRouter where the destination VM is running, and where

the VNI value of the Contrail virtual network is being used.

When VXLAN traffic arrives at a vRouter, the VNI is used to identify which VRF should

be used for MAC lookup to find the virtual interface to which the inner Ethernet frame should

be sent.

Design of an Enterprise-Grade Software-Defined Datacenter Network

164

13.4 Logical view of the Enterprise private DCN using Contrail

13.4.1 Primary Datacenter

Figure 13-7 - Primary DCN with Contrail – Overlay Topology Logical View

13.4.1.1 Intra-tenant routing

In every tenant, the corresponding vRouter (and Hardware VTEPs running on ToR

switches in case of workload deployed on legacy or physical servers) performs Intra-tenant

routing (aka inter-VLAN routing). A service insertion policy could be deployed in the tenant

router to intercept inter-VLAN traffic and send it to a NFC (that could be virtual, physical or

hybrid, see 13.5.3) performing, for instance, Firewall or load balancing functions.

13.4.1.2 Inter-tenant routing

The inter-tenant routing will be performed through a hybrid NFC containing, amongst

the others, also a Juniper (Virtual) SRX Firewall

Design of an Enterprise-Grade Software-Defined Datacenter Network

165

13.4.2 Secondary Datacenter

Figure 13-8 - Secondary DCN with Contrail – Overlay Topology Logical View

13.4.2.1 Intra-tenant routing

In every tenant, the corresponding vRouter (and Hardware VTEPs running on ToR

switches in case of workload deployed on legacy or physical servers) performs Intra-tenant

routing (aka inter-VLAN routing). A service insertion policy could be deployed in the tenant

router to intercept inter-VLAN traffic and send it to a NFC (that could be virtual, physical or

hybrid, see 13.5.3) performing, for instance, Firewall or load balancing functions.

13.4.2.2 Inter-tenant routing

The inter-tenant routing will be performed through a hybrid NFC containing, amongst the

others, also a Juniper SRX Firewall

Design of an Enterprise-Grade Software-Defined Datacenter Network

166

13.5 Network Function Chaining

Service chaining can be offered in two ways

- Virtual Network Function (VNF) Chaining: dynamic chains of virtual services running on

virtual machines

- Physical Network Functions (PNF) Chaining: chains physical appliance-based services

- Hybrid Network Functions Chaining: chains that include a combination of VNFs and PNFs.

NFC using Juniper Networks contrail is described in [108].

13.5.1 NFC Modes

Contrail Release 3.0 and greater supports also the creation of service chains that include a

combination of VNFs and PNFs.

Services can be configured in the following modes:

- Transparent or bridge mode: this mode is used for services that do not modify the packet.

Also known as bump-in-the-wire or Layer 2 mode. Examples include Layer 2 firewall, IDP,

and so on.

- In-network or routed mode: Provides a gateway service where packets are routed

between the service instance interfaces. Examples include NAT, Layer 3 firewall, load

balancer, HTTP proxy, and so on.

- In-network-nat mode: Like in-network mode, however, return traffic does not need to be

routed to the source network. In-network-nat mode is particularly useful for NAT service.

13.5.2 NFC Elements

Service chaining requires the following configuration elements in the solution:

- Service template: an object describing the characteristics of all the service instances, their

domain, etc.

- Service instance: an object describing the concrete” implementation object” of a template

- Service policy: an object describing the service insertion rules

13.5.3 Types of Service Chaining

13.5.3.1 VNF Chaining (V-NFC)

Services are offered by instantiating service virtual machines to dynamically apply

single or multiple services to virtual machine (VM) traffic. Figure 13-9 shows the basic service

chain, with a single service. The service VM spawns the service, using the convention of left

interface (left IF) and right interface (right IF). Multiple services can also be chained together.

Design of an Enterprise-Grade Software-Defined Datacenter Network

167

Figure 13-9 – Contrail basic V-NFC

When a virtual service chain is created, Contrail software creates tunnels on the underlay

network that span through all services in the chain. Figure 13-10 shows two end points and

two compute nodes, each with one service instance and traffic going to and from one

endpoint to the other

Figure 13-10 – Contrail V-NFC

13.5.3.2 PNF Chaining (P-NFC)

Contrail Release 3.0 support PNFs in service chains, including:

- service appliance (SA)—represents a single physical appliance

- service appliance set (SA set)—represents a collection of functionally equivalent SAs, all

running the same software with the same capabilities

A service appliance is associated with a physical router that has physical interfaces for the

left, right, management, or other interfaces. There can be more than one service appliance

and associated physical router and physical interface objects representing it.

A physical appliance can host more than one service appliance through a logical system

or other virtualization capability.

Design of an Enterprise-Grade Software-Defined Datacenter Network

168

The service template object supports a physical network function service template (PNF-

ST). The PNF-ST is associated with a service appliance set, which represents a pool of service

appliances that can be used when the PNF-ST is instantiated. Only the transparent service

mode (see 13.5.1) is supported for PNF-STs.

To implement a p-NFC with Contrail the following conditions must be met:

- Before the controller can use a PNF SA, the controller must be connected to a service

control gateway (SCG) router, such as an MX Series router; the Contrail Device Manager

must manage the SCG router.

- The PNF SA must be configured and must operate as an Ethernet bridge. The Contrail

controller does not automatically implement PNF SA configuration.

- Infrastructure interfaces (physical interfaces or aggregated Ethernet interfaces) on the

SCG facing the SA must be preconfigured. The interfaces must be able to support VLAN-

based units.

NETCONF
BGP

Figure 13-11 – Contrail P-NFC

13.5.3.3 Hybrid NFC (H-NFC)

VNFs and PNFs can be combined in a hybrid service chain connecting services provided on a

virtual environment and network services provided through physical appliances.

Design of an Enterprise-Grade Software-Defined Datacenter Network

169

13.6 Integration with VMWare vSphere

The vCenter integrated Contrail solution has the following modes [109]:

- vCenter-only

- vCenter-as-compute

13.6.1 vCenter-only mode

In the vCenter-only mode, vCenter is the main orchestrator, and Contrail is integrated with

vCenter for the virtual networking.

Figure 13-12 Contrail – vCenter-only Mode [109]

13.6.2 vCenter-as-Compute Mode

In the vCenter-as-compute mode, OpenStack is the main orchestrator, and the

vCenter cluster, along with the managed ESXi hosts, act as a nova-compute node to the

OpenStack orchestrator.

Figure 13-13 Contrail – vCenter-as-Compute Mode [109]

Design of an Enterprise-Grade Software-Defined Datacenter Network

170

14 Intent-based design using Cisco ACI

14.1 Abstract

This paragraph presents the SDN policy-based high-level design for enterprise private

datacenter using Cisco ACI Architecture (see Par. 7.7.4) which relies on Cisco APIC Controller

for the SDN Control plane and Cisco Nexus switches for the network plane. An introduction

on APIC, ACI and Intent based networking can be found in [85], [110] and [111]

14.2 Key components

14.2.1 Cisco ACI Operating System

To develop Cisco ACI OS, Cisco has taken the Nexus OS (NX-OS), developed for the

Datacenter Networks, and trimmed to the features essential for a modern datacenter. Cisco

made also profound structural changes so that the Cisco ACI Fabric OS can render policies

defined in the APIC into the physical infrastructure:

- a Data Management Engine (DME) provides the framework that handles the I/O requests

to a shared, object oriented, lockless data store. Each object stored as portions of data,

with each portion owned by one ACI process. Any ACI process can read any data but only

the process owner of the portion can write on it. Simultaneous, concurrent access to the

data simultaneously is provided through API, CLI, or SNMP calls.

- A local policy element (PE) implement the policy model directly in the ACI Fabric OS, as

illustrated in Figure 14-1

Figure 14-1 - ACI OS and NX-OS

14.2.2 Physical Topology

The mandatory DCN topology adopted by Cisco ACI is a spine-leaf providing zero-

touch provisioning, auto-discovery, and an integrated cable plan. The Cisco ACI topology is

made by a set of leaf switches connected to a set of spine switches in a full bipartite graph

Design of an Enterprise-Grade Software-Defined Datacenter Network

171

using 40/100-Gigabit Ethernet links. All leaf switches are connected to all spine switches, all

spine switches are connected to all leaf switches, and links between spines switches or

between leaf switches are disabled if present.

Leaf switches connect any network device or host and enforce the network policies.

Leaf switches are also able to route and bridge external networks: in this case they are

referred to as border leaf switches.

14.2.2.1 APIC Controller Connectivity

RACK XY

LXY-A L-XY-B

Figure 14-2 – APIC Controller Connectivity

A typical ACI infrastructure requires 3 APIC controllers, due the fact that all the

components of ACI are datasets generated and processed by the Distributed Policy Repository

and that data for those APICs functions are partitioned into logically banded subsets called

shards (like DB shard). A Shard is then broken into three copies, one for each APIC, but only

one APIC is the master for a specific copy/shard.

This strategy evenly balances work load and processing across the cluster, also

providing a failsafe in case an APIC goes down. If one of the three APICs goes down, the

remaining two will negotiate who will now be the master for the shards that the down APIC

oversaw. The workload will be then load balanced between the two and the cluster becomes

fully operational again.

Design of an Enterprise-Grade Software-Defined Datacenter Network

172

Working with 2 APICs is not recommended due to the risk of split-brain that occurs

when both APIC 1 and APIC 2 assume to be master of a shard and cannot agree so the shard

is in contention and the cluster is unfit ("data layer partially diverged").

In case of only 1 APIC, that APIC does all the work, it is the leader for all shards but if it

goes down no changes can be made at all: data plane will continue forwarding but due to the

absence of the APIC, there will be no way to create new policies or changes.

14.2.2.2 External connectivity (Border Leaf)

SAE1 SAE2

RACK YZ

LYZ-A L-YZ-B

Figure 14-3 - Border leaf and external connectivity

From the physical standpoint, external connectivity is provided to the ACI through

internetworking devices (i.e. routers, firewalls) connected to a pair of leaf switches. As shown

in Figure 14-3, in the Enterprise Private datacenters the connectivity to the SAE1 and SAE2

could be provided through two gateways connected to two border leaf switches.

At the routing/logical level, Cisco ACI refers to external Layer 3 connectivity as a L3Out

connection: in a standard configuration, route peering and static routing are performed on a

per-VRF basis. External prefixes are learned on a per tenant and per-VRF and are redistributed

in the forwarding tables of the leaf nodes only if the specific VRF is deployed on that leaf

Design of an Enterprise-Grade Software-Defined Datacenter Network

173

Figure 14-4 - External routing on ACI

14.2.2.3 Border Leaf Switch Design Consideration

Any Cisco ACI leaf switch can be a border leaf, and there is no limitation on the number

of leaf switches that can be used as border leaf switches17. The border leaf can also be used

to connect to computing, IP storage, and service appliances. In large-scale design scenarios,

for greater scalability, it may be beneficial to separate border leaf switches from the leaf

switches that connect to computing and service appliances.

Border leaf switches support three types of interfaces to connect to an external

router:

- Layer 3 (routed) interface.

- Sub-interface with IEEE 802.1Q tagging: With this option, multiple sub-interfaces can be

configured on the main physical interface, each with its own VLAN identifier.

- Switched virtual interface (SVI): the same physical interface can be used for Layer 2

connections (called L2out) as well as an Layer 3 connection (called L3out).

Besides providing support to routing protocols, and exchanging routes with external routers,

the border leaf switches can also enforce traffic policies between internal and external

endpoints.

17 The only limitation is physical: in a bipartite Clos Networks, the spine ports must be enough
to connect all the leaf switches.

Design of an Enterprise-Grade Software-Defined Datacenter Network

174

14.2.3 The policy Object model

From a high-level perspective, the Cisco APIC policy model could be identified as a policy

enforcement engine abstracting the underlay network functionalities, focused on the

application. The Cisco APIC policy model is an object-oriented model based on the promise

theory (see par. 7.7.4.1). Promise theory relies on an ordered hierarchy of objects handling

configuration changes originated by the APIC controller and triggering exceptions and faults

back to the controller, when and if needed. It should be noted that this approach reduces the

load and complexity of the control plane and allows for greater scale, but it also moves back

the control plane, or at least a part of it, to the underlying network devices18.

14.2.3.1 Tenants

At the top level, the Cisco APIC policy model defines the Tenant class providing

segregation capabilities for both network administration and traffic19. These tenants can be

used by customers, business units, groups, or management teams, depending on the

requirements.

As an example, an enterprise might use one tenant for the entire organization, while

a cloud provider might have customers using one or more tenants to represent their

organization. A tenant is a logical container or a folder for application policies. It can represent

an actual tenant, an organization, or a domain, or can just be used for the convenience of

organizing information. A normal tenant represents a unit of isolation from a policy

perspective, but it does not represent a private network.

A special tenant named common has sharable policies that can be used by all tenants.

14.2.3.2 Contexts

Tenants further break down into private Layer 3 networks, called contexts, directly

related to Virtual Route Forwarding (VRF) instances or separate IP space.

Each tenant may have one or more private contexts depending on the needs. IP

addressing, routes, etc., can be duplicated in different contexts for multitenancy thanks due

to the isolation of the forwarding instances provided by the contexts. A context is a unit of

routing and policy isolation in the Cisco ACI framework and can be declared within a or in the

mentioned “common” tenant.

18 The more abstract the policies triggered by the controller, the more “intelligent” must be
the underlay device implementing them.
19 Multi-tenancy in ACI is enforced at the packet level (see Par. 7.6.2)

Design of an Enterprise-Grade Software-Defined Datacenter Network

175

This approach provides both multiple private Layer 3 networks per tenant and shared

Layer 3 networks that can be used by multiple tenants (for the contexts defines in the

common tenant). The context object also provides a segregation at the policy level: the

endpoint policy specifies a common Cisco ACI behavior for all endpoints defined within a

given virtual ACI context.

14.2.3.3 Endpoint groups

Inside the context, the Object model provides a class that defines the applications: the

objects are in these class are called endpoint groups (EPG) and represent a collection of

similar endpoints representing an application tier or set of services. Policies interconnect the

EPGs and include a collection of inbound/ outbound filters, traffic quality settings, marking

rules/ redirection rules, and Layers 4– 7 service graphs. The relationship between EPG and

Policy is shown in Figure 14-5: in this environment there are two contexts inside a tenant,

each context containing a series of applications defined as set of EPGs and policies.

Figure 14-5 - Cisco APIC Logical Object Model [85]

14.2.3.4 Contracts

Contracts are ordered set of actions (i.e. permit, deny, QoS, redirect, service graphs)

that can be applied both inbound and outbound to EPGs. Contracts are the ACI equivalent of

ACLs and define the rules based on which a given EPG can communicate with other EPGs.

Cisco ACI, as any intent-based infrastructure based on promise theory, explicitly separates

the “what” and “where” of policy application allowing the creation of a policy independently

from its application or reuse. The policy configured in the fabric is based on the high-level

policy (intent) defined as a contract (the what) and the intersection of EPGs and other

contracts with those policies (the where).

Design of an Enterprise-Grade Software-Defined Datacenter Network

176

14.2.4 The southbound protocol: OPFlex

OpFlex [112] is the southbound protocol used to propagate policies and other information

such as endpoint reachability between the APIC Controller and the leaf switches.

Figure 14-6 - Cisco ACI Propagates Policies to All the Leaf Devices [85]

Through OPFlex, the APIC controller propagates the policies to the leaf switches20, which then

render the policies based on to their local capabilities, as shown in Figure 14-7

Figure 14-7 - Policy Rendering by the Network Devices [85]

20 In Cisco ACI only the leaf switches render the policies, the spines do not implement any
policy

Design of an Enterprise-Grade Software-Defined Datacenter Network

177

14.2.5 ACI Routing and Pervasive Gateway

ACI fabric uses the idea of a pervasive gateway, which is an Anycast gateway. The

subnet default gateway addresses are programmed in all leaves with endpoints present for

the specific tenant subnet.

ACI uses multiprotocol BGP (MP-BGP) [56] [113] between leaf and spine switches to

propagate external routes. All the leaf and spine switches are in the same Autonomous

System (AS): when a border leaf learns external prefixes, it can then redistribute them to a

MP-BGP address family (VPN4 or VPN6). The border leaf advertises through MP-BGP the

prefixes to one of the spine switches (which is also one of its BGP neighbors), configured as a

BGP route reflector (RR). The receiving RR then propagates the learned prefixes to all the

leaves where the VRFs (or contexts in APIC terminology) are instantiated.

Figure 14-8 - MP-BGP routing in ACI for External Networks [85]

14.2.6 ACI Forwarding

Forwarding in ACI is based on VXLAN encapsulation, with some customization applied to the

original VXLAN protocol:

- standard VXLAN uses multicast in the transport network to emulate Layer 2 flooding for

BUM traffic. Unlike traditional VXLAN networks, the ACI preferred mode of operations

does not rely on multicast for learning and discovery but on a mapping database that is

populated upon discovery of endpoints in a way that resembles the LISP Protocol [114]

Design of an Enterprise-Grade Software-Defined Datacenter Network

178

- The ACI VXLAN header is an extension of the LISP protocol (to which adds policy groups,

load and path metrics, counters and ingress ports, and encapsulation information) and it

can identify properties in the frames forwarded through the fabric.

- The VXLAN header is not connected to specific segments of the network and provides a

general-purpose overlay used in the ACI fabric.

Figure 14-9 - ACI VXLAN format

The ACI fabric separates the endpoint address, its “identifier,” from the location of that

endpoint, which is defined by its “locator”, or VTEP address. The ACI uses the VXLAN policy

header shown in Figure 14-9 and, as shown in Figure 14-10, the fabric forwards packet

between VTEPs. The mapping of the internal tenant MAC or IP address to location is

performed by the VTEP using a distributed mapping database.

Figure 14-10 - ACI Forwarding [85]

Design of an Enterprise-Grade Software-Defined Datacenter Network

179

Traffic from all the hosts attached to leaves can be tagged with network virtualization generic

routing encapsulation (NVGRE, see [115]), VXLAN, or VLAN headers and then at the edge is

normalized to the ACI VXLAN (see Figure 14-11)

Figure 14-11 - Encapsulation normalization in ACI

14.2.7 Service Function Chaining

14.2.7.1 Service insertion

As explained in par. 14.2.3.4, a contract connects two or more EPGs, but it also offers

Service insertion capabilities, i.e. the ability to insert in the path L2-L7 network functions such

as traffic filtering, traffic load balancing, and SSL offloading (see Figure 14-12). Cisco ACI can

locate the devices that provide these functions and insert them into the path as defined by

the service graph policy (for details on SFC with ACI see [116])

Figure 14-12 – ACI Service Insertion (Firewall and load balancer) [116]

Virtual appliances can be automatically inserted into the Cisco ACI fabric by the Cisco

Application Policy Infrastructure Controller (APIC).

Design of an Enterprise-Grade Software-Defined Datacenter Network

180

14.2.7.2 Service graph

The concept of service graph is more general than service insertion. A service graph is

the Cisco ACI term for SFC: a concatenation of functions. The service graph identifies the path

from one EPG to another EPG through certain VNFs or PNFs. The Cisco APIC translates

(renders) the definition of the service graph into a path through network functions (i.e.

firewalls and load balancers).

As shown in Figure 14-13, the Cisco APIC is aware of the availability of resources

connected to the Fabric (i.e. load balancers and firewalls) and can use them to translate the

user intentions defined in the service graph.

Figure 14-13 – ACI Service graph concept [116]

The service graph is a sort of template that can be used in different datacenters and

rendered with the resources available on site.

The APIC Controller communicates with the VNFs or PNFs to render the service graph

defined by the user. To communicate with the network appliances (physical or virtual) and

connect them through the service chain designed in the service graph, Cisco APIC needs to

use a so-called “device APIs”: a capability provided by a plug-in (called device package and

provided by the appliance vendor) that must be installed by The APIC Administrator.

Design of an Enterprise-Grade Software-Defined Datacenter Network

181

14.3 DCN Physical Topology

14.3.1 Design options

The high-level design is based on a choice of the Cisco Nexus 9396 leaf switch and

three different design options for the spines:

- Design option “A”: Cisco Nexus 9336: with 36x40G ports,

- Design option “B”: Cisco Nexus 9508, able to provide up to 288x40G ports (line cards with

36 ports each)

- Design option “C”: Cisco Nexus 9516, able to provide up to 576x40G ports (16-line cards

with 36 ports each).

As explained in chapter 5, there is an immediate correlation between the type of spine and

the potential number non-blocking leaf ports shown in the formula displayed in Figure 14-14.

The interconnect between spine and leaf here uses a 40-GE speed. It is expected to have 40-

GE at the leaf port facing level and 100-GE in the spine leaf interconnect in the future.

Figure 14-14 – ACI DCN Design Options with 40-GE Interconnect

Design of an Enterprise-Grade Software-Defined Datacenter Network

182

14.3.2 Oversubscription

The presented design uses as leaf a cisco nexus 9396 providing 48 10G ports and 12

40G ports, and it assumes that all the 12 spine uplinks on the leaf switches are connected to

(at least two21) different non-blocking spine switches.

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡 𝑂𝑂𝑡𝑡𝑂𝑂𝑏𝑏𝑏𝑏𝑂𝑂𝑏𝑏𝑂𝑂ℎ
𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑢𝑢 𝑂𝑂𝑡𝑡𝑂𝑂𝑏𝑏𝑏𝑏𝑂𝑂𝑏𝑏𝑂𝑂ℎ =

48 𝑥𝑥 10𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂
12 𝑥𝑥40𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂 =

480
480 = 1: 1

The oversubscription ratio is 1:1, so there is no oversubscription and the topology is non-

blocking.

14.3.3 Scalability and bi-sectional bandwidth

If we define

- Ns as the number of spine switches

- Ps as the number of ports per spine switch

- Pu as the number of uplink ports per leaf switch

- Pa as the number of access ports per leaf switch

In a maximum occupation scenario, all the spine ports are connected to all the uplinks

ports in the leaf switches and the oversubscription is always 1:1, so if Nl,s is the maximum

number of leaf switches per spine, we have 𝑁𝑁𝑙𝑙,𝑠𝑠 = 𝑃𝑃𝑠𝑠
𝑃𝑃𝑢𝑢

If we define Pa,s as the maximum number of access ports that can be connected to a single

spine, we have that Pa,s = Pa ⋅ Nl,s therefore the total number of 10G access ports Pa,tot is

𝑃𝑃𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑁𝑁𝑠𝑠 ∙ 𝑃𝑃𝑎𝑎,𝑠𝑠 = 𝑁𝑁𝑠𝑠 ∙ 𝑃𝑃𝑎𝑎 ∙
𝑃𝑃𝑂𝑂
𝑃𝑃𝑂𝑂

Table 14-1 shows the scalability (in terms of Pa,tot) of the proposed design for the three

spine models and for different number of spines. The table considers that the leaf switch is a

Cisco Nexus 9396 providing Pa =48 and Pu = 12, and that 2 ≤ Ns ≤ 12 (spines must be redundant,

and all the leaf switches must be connected to all the spines)

Design

Option
Spine Switch Ps Nl,s Pa,s

Pa,tot

Ns = 2 Ns = 3 Ns = 6 Ns = 12

A Nexus 9336 36 3 144 288 432 864 1,728

B Nexus 9508 288 24 1,152 2,304 3,456 6,912 13,824

C Nexus 9516 576 48 2,304 4,608 6,912 13,824 27,648

Table 14-1- ACI DCN scalability

21 Spine chassis must be redundant to provide resiliency at the spine layer

Design of an Enterprise-Grade Software-Defined Datacenter Network

183

The optimal configuration for the requested size (3,072 access ports) is Option “B”

with 3 spine switches. This solution supports the requested number of hosts and the

architecture can scale from 2,304 (using 2 spines) up to 13.824 10G access ports (using 12

spines)

The bi-sectional bandwidth in a non-blocking network is the same of the access

bandwidth, therefore the bi-sectional bandwidth in the proposed design is

3,456 x 10Gbps = 34,560Gbps = 34.56Tbps

14.3.4 DCN Design

The private datacenters must be able to support up to 1,536 dual homed servers with

10G access, and the optimal Design option is “B” with 3 spines. This architecture scales up to

a total amount of 3,456 Access ports, 34.56Tbps of bisectional bandwidth and up to

3,456/48=72 Access switches, i.e. 36 pairs of Leaf ToR Switches (see Figure 14-15)

Figure 14-15 – ACI DCN Topology (Primary and Secondary DCs)

Design of an Enterprise-Grade Software-Defined Datacenter Network

184

14.3.5 ToR to Spine Connection

Figure 14-16 – ACI DCN ToR to Spine connection

Each rack contains 2 ToR switches (Cisco Nexus 9396), and 48 dual homed servers, each

connected to both ToR with 2x10G links.

Each ToR switch has 12 uplinks connecting it to the Spine Layer (Cisco Nexus 9516), with the

uplinks equally distributed on the 3 spines (as shown in Figure 14-16).

In terms of internal and external throughput, per rack/PoD, this design provides

- a total uplink throughput per rack of 2x12x40G=960Gbps

- access throughput per rack of 2x48x10G=960Gbps

- both the intra-pod and uplink connectivity are provided through non-blocking networks

 As expected, access throughput and uplink throughput are the same.

This architecture, as shown in Table 14-1 , can scale up to 13,824 access ports: scaling up

would require increasing the number of spines switches, and to re-cable the leaf switches

according to the number of spines. This cabling activity, though, in modern datacenter could

be fully automated.

Design of an Enterprise-Grade Software-Defined Datacenter Network

185

14.4 Logical View

14.4.1 Tenants

Each private datacenter will have, initially, two tenants:

- Common Tenant: connecting all the tenants

- Production Tenant, processing all the traffic

- Test Tenant: a copy of the production tenant, useful for testing purposes (i.e. test new

features, configurations, etc.)

The connection between Production and Common Tenant will go through the inter-tenant

firewall, able to provide high level of granularity in access to the Test Tenant.

Figure 14-17 – ACI Tenant configuration

The objects described in the paragraphs below will be configured in the production

Tenant, and a copy of the production Tenant will be deployed in the Test Tenant during the

test invocation.

 The common Tenant, as shown in Figure 14-17, will be used essentially as a Transit

Tenant between Test and Production Tenants.

14.4.2 Primary Datacenter

As shown in Figure 14-18, the private Primary datacenter will have the following contexts:

- DCI

- PROD

- DEV

- DMZ

- CORE

The primary datacenter will be connected to the Distributed datacenter network through

SAE1 and SAE2 gateways, physically connected to a border leaf, and logically terminated on a

L3out,

Design of an Enterprise-Grade Software-Defined Datacenter Network

186

CORE

DCI

PRODDEV

DMZ

SAE1 SAE2

Figure 14-18 – ACI Contexts in the Primary Datacenter

The internal VRFs (DMZ, DCI, PROD and DEV) will be connected to the CORE VRF through a

SFC providing application inspection and visibility.

14.4.3 Secondary Datacenter

As shown in Figure 14-19, the private Secondary datacenter will have the following contexts:

- DCI

- PROD

- UAT

- DMZ

- ISO

- CORE

The secondary datacenter will be connected to the Distributed datacenter network through

SAE1 and SAE2 gateways, connected to a border leaf, and routed through the CORE Context.

CORE

DCI

PRODUAT

DMZ

SAE1 SAE2

ISO
Figure 14-19 – ACI Contexts in the Secondary Datacenter

Design of an Enterprise-Grade Software-Defined Datacenter Network

187

14.4.4 PROD and DEV Web Application

PROD, DEV and UAT VRFs can host many different workloads and applications. One of

the key design tool provided by ACI is the Application Network Profile (ANP). This paragraph

introduces a ANP for a generic Web application: we assume that the Enterprise is using a

three-tier web application based on a set of Apache servers providing static content and

acting as reverse proxies for various instances of application servers (i.e. Tomcat,

Apache+PHP, etc.) which, in turn, access a database cluster (i.e. MySQL).

The application must be available to external users and protected through a NFC

providing Application firewalling and load balancing. Figure 14-20 depicts the high level

“design” of this application, showing the intent of the white-list model allowing only the

protocols and ports strictly required.

Figure 14-20 – Web Application network profile

In ACI terminology, the high-level design presented above is called Application

Network Profile, and basically describes the expected dataflow of an application through the

ACI network.

A Firewall VNF will perform application level inspection and probably NAT towards

internal addresses, and the load balancer VNF will be able to off load SSL and provide

advanced load balancing features. It is very possible that these devices are physical and

shared for other applications as well.

The only IP address that needs to be accessible from the outside networks is the VIP

on the load balancer for this application. The load balancer cannot access the database, even

if they are on the same segment, but only to the web machines that are part of the load

balancing pool. Only the Web servers should have access to the DB, and they do not need to

communicate with one another.

Design of an Enterprise-Grade Software-Defined Datacenter Network

188

14.4.4.1 End-to-end access to DEV and PROD

Figure 14-21 shows the north-south (User-to-Service) and East-West (Service-to-service)

dataflow for an end user accessing PROD and DEV workloads from the WAN to the Primary

Datacenter

Figure 14-21 - End-to-end access to PROD and DEV Workloads

In this example an external EPG represents a “default” route with all hosts external to

our application. A contract between that external EPG and the Web-Prod and Web-DEV EPG

will enable users to access the application.

This contract allows any external host to access the VMs in Web-Prod EPG on port TCP/80 by

having the traffic flow before through a NGFW and a LB. This contract allows any external

host to access the VMs in Web-Prod EPG and Web-DEV on port TCP/443 by having the traffic

flow before through a SFC containing a NGFW VNF and a LB VNF. These VNFs are inserted in

the path through a Service Graph.

Design of an Enterprise-Grade Software-Defined Datacenter Network

189

14.5 Integration with VMWare vSphere

Figure 14-22 – Cisco ACI integration with VMWare vSphere [117]

Cisco APIC integrates with the VMware vCenter instances [117] and can extend the ACI

policy to VMware vSphere workloads. Cisco APIC creates a distributed virtual switch (DVS) in

VMware vCenter, through this DVS the APIC can create the virtual networks to which the VMs

are connected. Once the DVS is created on the VMware environment, Cisco APIC can manage

the virtual network infrastructure components.

The APIC administrator creates EPGs and can push them to VMware vCenter as port

groups on the DVS. Server administrators can then associate the virtual machines and

provision them accordingly (Figure 14-22).

Design of an Enterprise-Grade Software-Defined Datacenter Network

190

15 Comparison of the high-level designs

15.1 Abstract

This chapters defines the comparison criteria for the three high level designs presented

in chapters 12,13 and 14, compares their models with a theoretical reference model and show

the benchmarks against the defined criteria. The last paragraph presents a summary of the

Gartner report [118] on datacenter network, showing a different standpoint.

15.2 Criteria

The comparison criteria consider

- Physical infrastructure

- Network Control plane (SD-Model)

- NFV support (L2, L3, physical and virtual SFC)

- Orchestration

- Micro-segmentation, container support

15.3 Physical infrastructure

15.3.1 Evaluation Parameters

The comparison of the physical infrastructure for the three HLDs assumes that

1. The network should be able to support (at least) 1,536 dual homed hosts connected with

2x10G interfaces

2. Oversubscription can vary from 3:1 to 1:1

To benchmark the physical network design of the presented HLDs, a reference model will be

introduced.

The evaluation will consider the following criteria:

- Network size / complexity

o Spine (number of switches, port per switch, total number of ports)

o Leaf (number of switches, port per switch, total number of ports)

o Total number of switches

o Total amount of 10G equivalent ports: every 40G ports will be counted as

4x10G ports.

- Design Quality

o Oversubscription and bi-sectional bandwidth

o Maximum scalability

Design of an Enterprise-Grade Software-Defined Datacenter Network

191

- Cost and ports

o Cost

o Cost per port

o Overall cost

o Percentage of the total cost spent for the fabric

15.3.2 Reference model for the physical DCN

The model must satisfy the following requirements:

1. Scale up to 3,072 ports @10G

2. Non-blocking network, bi-sectional bandwidth 30.72Tbps

48

L1 S1

S12L64

11

1

48

1

12 64

1

64

1

12

L

48

11

12

TOR Switch

@
10

G

@
40

G

S

64

1

Spine

@
40

G

Figure 15-1 – Reference Leaf-Spine topology model

The reference topology shown in Figure 15-1 has the following characteristics

- Leaf/ToR: 48ports @10G + 12P@40G (non – blocking). This implies 64 leaf switches as ToR

for 32 racks with 48 dual homed hosts each

- Spine: 12 Spine switches with 64 ports each

- 3,072 access ports @10G and 64 Leaf Switches

- 768 spine ports@40G and 12 Spine switches, 30.72Tbps Bi-sectional Bandwidth

- 9,216 10G-Equivalent ports (3,072 + 2x768x4)

15.3.3 Design performances

This paragraph introduces the design performances evaluating the parameters

described in Par.15.3.1. The relative weight of the parameters depends on how much the

Enterprise values an aspect (i.e. oversubscription vs overall Price) and it is out of the scope of

the present paper. The price values are taken from the Gartner Report introduced in Par. 15.7

Design of an Enterprise-Grade Software-Defined Datacenter Network

192

BCF Contrail Reference
Model

1536 1536 1536 1536

number 6 4 3 12
ports per switch 64 64 288 64
total Spine ports 384 256 864 768

number 64 32 64 64

40G uplinks 6 8 12 12
total 40G Uplinks 384 256 768 768

10G ports per switch 48 96 48 48
total 10G ports 3072 3072 3072 3072

70 36 67 76

6144 5120 9600 9216

Access Bandwitdh 30720 30720 30720 30720
Bi-sectional BW 15360 10240 30720 30720

3072 3072 3456 3072

Support to 100G spine YES YES YES N/A

Unitary cost per per 10G port 250$ 330$ 375$ 165$

1,536,000$ 1,689,600$ 3,600,000$ 1,522,299$

50% 40% 68% 67%

Description Cisco Opt
"B"

Spine
Switches

Network
Size

Max Dual homed hosts number

Total Switches

10G ports equivalent

Leaf
Switches

Cost

Maximum scalability

Quality
of the

Solution

Total Cost

% of overall cost needed for Fabric
Table 15-1 - Comparison of the physical topologies for the three HLDs

Table 15-1 shows how the three solutions perform on the selected parameters and

depicts also the (hypothetical) performances of the reference model. The cost per-port of the

reference model is the average cost indicated in the mentioned Gartner Report. Next

paragraph will score the three solutions against the refence model.

In terms of access ports, the three solutions provide, by design, the same value, so the

differences in the number of 10G equivalent ports (which is an indirect measure of the

network size or network complexity) are connected only to the Fabric layer (leaf-spine

connectivity) and related to the over-subscription value (in case of BCF and Juniper) or to the

line-card size on the spine switches (Cisco)

15.3.4 Benchmarking

Table 15-2 below shows the score of the three designs respect to the reference model

Description BCF Contrail Cisco Opt B

10G ports equivalent 67% 56% 104% 9216 ports
Bi-sectional BW 50% 33% 100% 30720 Gbps
Maximum scalability 100% 100% 113% 3072 hosts
Cost per 10G Port 151% 200% 227% 165$ USD
Total Cost 101% 111% 236% 1,522,299$ USD

Reference Model
(Actual Values)

Table 15-2 – HLDs Benchmarks for the Physical topology

Design of an Enterprise-Grade Software-Defined Datacenter Network

193

15.3.4.1 Big Switch BCF

BCF network size is 67% of the Reference model but applies an oversubscription ratio

of 2:1, providing half of the reference bi-sectional throughput. In terms of access hosts and

scalability, the BCF solution can scale up to the same value of the reference model and its cost

is aligned with the cost of the model.

15.3.4.2 Juniper Contrail

Juniper network size is 56% of the Reference model but applies an oversubscription

ratio of 3:1, providing one third of the reference bi-sectional throughput.

The solution can scale up to the same value of the reference and its cost is 10% more

expensive than the reference cost. It is worth noting that the cost per port is comparable to

the Cisco solution, so is quite high, but the overall number of ports (network size) is smaller

because of the choice of providing only 1/3 of the reference Bi-sectional bandwidth.

15.3.4.3 Cisco ACI

From a pure network complexity, it is quite clear that Cisco fabric is much more complex

than Juniper and BCF, and even more complex than the reference model, providing 4% more

ports than the reference (1,632 ports against 1,536). From the Design quality standpoint (bi-

sectional BW, scalability), though, the complexity mentioned above can be explained by the

fact that Cisco solution offers better performances than the reference model: it is the only

design providing the maximum theoretical throughput (30.72Tbps) and even better scalability

(up to 3.456 access ports) than the reference model.

Again, network complexity and improved performances have also another effect: from

the cost perspective, Cisco costs 2.36 times more the (hypothetical) reference cost, 2.34 times

more than BCF and 2.11 times the price of Juniper solution.

15.4 Network Control Plane (SD-Layer)

15.4.1 Evaluation parameters

- Control plane separation, simplified device (brite box), centralized control, multi-

vendor devices support through Southbound protocols.

- Network automation and virtualization, Openness

- Intent-based policies, Zero Touch provisioning

Design of an Enterprise-Grade Software-Defined Datacenter Network

194

15.4.2 Benchmarking

Description BCF Contrail ACI
Control plane separation 100% 25% 25%
Simplified device (brite box) 100% 0% 0%
Centralized control 100% 100% 100%
Multi vendor devices (through Southbound) 100% 75% 0%
Network automation and virtualization 100% 100% 100%
openness 100% 100% 100%
Intent-based policies 0% 0% 100%
Zero-touch provisioning 100% 100% 100%
Table 15-3 – HLDs Benchmarks for the Network Control Plane

15.4.2.1 Big Switch BCF

BCF approaches to SDN adopts a “classical” SDN approach with full separation

between control plane and data plane, centralized control, and support of third party devices

(even though it provides a Hardware compatibility list, or a certification for some platform,

see Par 12.2.4)

At the time of the writing (Dec 2017) BCF doesn’t support intent-based policies.

15.4.2.2 Juniper Contrail

Juniper Contrail control plane still resides on the switches and Contrail does not

directly program the data plane, therefore Contrail approach is not a classical/Open SDN.

Contrail supports integration with multivendor environments [83], but not brite box switches

At the time of authoring this paper, Contrail does not support intent-based

networking.

15.4.2.3 Cisco ACI

Cisco ACI approach to SDN relies on a high level/intent-based API controller through a

standard southbound protocol (OPFlex) controls Cisco Nexus 9k switches running in ACI

Mode. The adoption of OPFlex, at the time of this paper, is limited to only Cisco Nexus 9k

switches, therefore this solution supports only this hardware platform.

15.5 Network Function Chaining and micro-segmentation

15.5.1 Evaluation parameters

Support to

- VNF: Layer 2, Layer 3 and Layer 4-7

- NFC: Physical, Virtual and Hybrid

- Micro-segmentation: Layer 2, Layer 3-7

Design of an Enterprise-Grade Software-Defined Datacenter Network

195

15.5.2 Benchmarking

BCF Contrail ACI
Layer 2 0% 100% 100%
Layer 3 100% 100% 100%
Layer 4-7 100% 100% 100%
Physical 100% 100% 100%
Virtual 100% 100% 100%
Hybrid 100% 100% 100%
L2 0% 0% 100%
L3-7 100% 100% 100%

Description

µ-segm

NFC

VNF

Table 15-4 – HLDs benchmarks for the support to NFC and µ-segmentation

15.5.2.1 Big Switch BCF

BCF supports layer 3 service insertion, does not provide any layer 2 functionality (layer

2 segregation can be achieved through another solution from Big Switch Networks: Big

Monitor Fabric). BCF support network layer 3 service function chaining with both virtual and

physical appliances, and provides µ-segmentation functionalities only through the integration

with orchestration/overlay platforms (i.e. OpenStack/OpenShift, VMware NSX)

15.5.2.2 Juniper Contrail

Juniper Contrail supports layer 2 and layer 3 VNF and connecting them through

physical, virtual and hybrid NFC. Juniper fully supports micro segmentation from layer2

upwards

15.5.2.3 Cisco ACI

Cisco ACI supports layer 2 and layer 3 VNF and connecting them through physical,

virtual and hybrid NFC. Juniper fully supports micro segmentation from layer2 upwards

Design of an Enterprise-Grade Software-Defined Datacenter Network

196

15.6 Orchestration

15.6.1 Evaluation parameters

- Orchestration platforms:

o VMWare

o Open Stack

o Open Shift

- API

o North bound REST API support

o South bound Open Protocols (multivendor)

15.6.2 HLD performances

BCF Contrail ACI
VMWare 75% 100% 75%
Openstack 80% 100% 100%
Openshift 80% 100% 100%
Northbound REST 100% 100% 100%
Southbound Open Protocols 100% 100% 25%

Description

Orchestration

API

Table 15-5 – HLDs Benchmarks for the support to Orchestration platforms

15.6.2.1 Big Switch BCF

BCF integrates with VMware, OpenStack and OpenShift but lacks some Layer 2 abilities

(as pointed out in the previous paragraph)

 Both the northbound (REST) and southbound APIs (OpenFlow with some extensions)

are fully supported from different vendors.

15.6.2.2 Juniper Contrail

Juniper contrail offers two different integration modes with VMWare vSphere and

fully integrates with Openstack/OpenShift.

Its REST northbound API is fully documented and the integrates with different

vendors. It supports multiple southbound protocols (OVSDB, XMPP, EVPN, etc.), which,

theoretically opens to different vendors.

15.6.2.3 Cisco ACI

Cisco ACI fully supports and integrates with VMWare, OpenStack and OpenShift. Its

northbound API is open and supported by different vendors.

As already pointed out, the southbound protocol (OPFlex) is supported only by Cisco,

and at the moment of the writing of this paper, only on the Nexus 9k platform.

Design of an Enterprise-Grade Software-Defined Datacenter Network

197

15.7 Gartner Report for Datacenter Networking (2017)

15.7.1 Market Directions

15.7.1.1 The CLI Is Dead; the API Is Cool

In the 2017 report for Datacenter networking [118], Gartner recognizes that the

market is shifting from using device-by-device command line interface (CLI)-driven

configurations to a centralized policy-based mode of operations: the estimation is that, by

2020, only 30% of network operations teams will use the CLI as their primary interface, down

from 85% in 2016. API brings the real innovation on the management plane because it enables

complete automation of repetitive tasks, but also integrates with higher-level infrastructure.

Device-level automation tools (like Ansible, Puppet or Chef) and APIs can also facilitate the

implementation of a DevOps model.

15.7.1.2 Value Continues to Shift Toward Software

Although there is consensus on the growing importance of software, there are still

vendors investing in proprietary hardware (like Cisco and Juniper ASICs). Anyway, most

vendors are now focusing the innovation on software and leveraging white box devices to

build their switching products. Many vendors rely on more than one chip supplier, and the

competition in the merchant silicon market is increasing. This creates a need for the software

to be portable across different chipsets. Gartner believes that merchant-based platforms can

meet the needs of at least 80% of enterprises.

15.7.1.3 Fabrics Are the New Normal

Most vendors offer fabric architectures based on different (and usually proprietary)

solutions, but can provide similar advantages as SDN, at least in terms of centralized point of

control and programmability, if not in terms of lower vendor lock-in and cost. Examples are

Arista Networks Cloud Vision, Juniper Networks Junos Fusion, Cisco ACI and NFM.

15.7.1.4 Analytics and Intent-Based Networking

All vendors put great emphasis on network analytics and streaming network telemetry

data as a new way to feed analytical tools, and scales beyond legacy SNMP. These capabilities

enhance troubleshooting and Application Visibility and Control.

Analytics together with automation are key factors for intent-based networking, a

principle that represents the next frontline for vendors. With intent-based networking, high-

level policies are translated into actual network configuration changes and implemented

through automation. Real network behavior is then compared against the desired behavior

Design of an Enterprise-Grade Software-Defined Datacenter Network

198

to enable any necessary remediation and ensure that the correct policy is actually enforced.

The idea is to build a self-driving network.

Implementation of intent-based networking systems requires data from sensors

(network analytics) to feed the calculation of abstract models built with artificial intelligence

algorithms, and then actuators to implement the intent-based policies.

15.7.1.5 Open Networking

The inclination to move away from proprietary solutions is continuously growing.

Gartner end-user survey indicated that 42% of clients consider open standards and

multivendor interoperability support a mandatory requirement, 34% consider it very

important, and 20% consider it somewhat important, so openness is a relevant buying

criterion for 96% of the end users.

These results are quite impressive, but in addition, 75% of the end users indicated that

they expect an increase in relevance of open networking in their purchasing decisions in the

next 24 months.

15.7.1.6 Disaggregation/Brite Box

Disaggregation of hardware and software can be a first step toward more vendor

independence. Adoption of white-/brite-box switching has increased significantly within

hyperscale datacenters over the past several quarters, and Gartner predicts it to reach 22%

of the total datacenter switch market by 2020.

Enterprise adoption of brite box grows, and Gartner estimates about 1,000 enterprise

customers as of March 2017. This includes some very large accounts in finance and the public

sector. However, established vendors (for example, HPE and Dell) did not generally lead in

enterprise with solutions based on brite box and third-party software so adoption of

disaggregated solutions in mainstream enterprises is still limited.

15.7.1.7 Hyper Converged Integrated Systems (HCISs)

HCISs tightly couple compute, network and storage hardware in a system and are

gaining popularity since they streamline operations and reduce provisioning times. The

networking components of an integrated system are largely prescribed, which results in the

transition of the physical access layer network buying decision to an integrated

server/storage/network decision. Examples are Nutanix and HPE SimpliVity.

Design of an Enterprise-Grade Software-Defined Datacenter Network

199

15.7.1.8 Containers

Container networking is at the maturity stage where VM networking was about five

years ago; it is fast-evolving and fragmented, with all vendors starting to provide solutions

and launching new initiatives. It is difficult to determine which vendors and architectures are

best-suited for their usage scenarios, but at this time, containers have very limited production

deployments in enterprise datacenters.

However, this will be an important decision in the next three years, as containers are

widely used for development of Mode 2 applications22 that sooner or later will need to be

deployed in production

15.7.2 Magic Quadrant

Network offering for datacenters is evolving to improve agility and provide better

cloud architectures, with enterprises needing more integration and orchestration between

the network and the rest of the infrastructure. The datacenter market is being driven by

replacement of legacy switches, expansion of network infrastructure, and the adoption of

new solutions that increase cost-effectivities of the infrastructure and easiness of operations.

According to Gartner price is not the main driver for most enterprise buyers, and the

availability of lower-cost alternatives is frequently not sufficient to cause a supplier change.

Figure 15-2 - Gartner Magic Quadrant for Datacenter Networking (2017)

22 Bimodal IT is the practice of managing two separate, coherent modes of IT delivery, one focused on
stability and the other on agility. Mode 1 is traditional and sequential, emphasizing safety and
accuracy. Mode 2 is exploratory and nonlinear, emphasizing agility and speed.

Design of an Enterprise-Grade Software-Defined Datacenter Network

200

15.7.3 Big Switch BCF

15.7.3.1 Description

Big Switch Networks in 2014 published Big Cloud Fabric (BCF), described in Chapter

12, Big Switch used its network packet broker (NPB) solution called Big Monitoring Fabric

(BMF) as Trojan horse for accounts that were not ready for a white /brite box as a primary

datacenter network but were open to testing technology for a specific application (NPB). Big

Switch contributes to open source communities and its philosophy is to combine open source

components with their modules to provide business-class solutions.

Big Switch should be considered by organizations interested in a commercial fabric

business solution that leverages the white / brite-box hardware platforms and can scale in

very large environments.,

15.7.3.2 Strengths

Big Switch provides a commercial cost-effective SDN fabric solution based on industry-

standard white-/brite-box hardware that is 30% to 60% less expensive than top-brand

hardware, resulting in three years total cost of ownership (TCO) savings that can reach 50%.

BCF can be integrated with leading cloud orchestration platforms (like VMware or Red

Hat Enterprise Linux OpenStack) to provide a highly automated network solution.

15.7.3.3 Cautions

Big Switch is a small company with limited footprint outside North America and limited

experience in integrating with complex business environments with a large legacy estate.

However, it has channel partnerships with companies such as Dell EMC and HPE to extend

market coverage.

While being one of the first Classical SDN and OpenFlow supporters, Big Switch uses

some customization of this protocol within its BCF. Therefore, third-party switches cannot be

integrated into BCF.

In large multi-tenant environments with more logically isolated pods, role-based

access control (RBAC) to enable per-tenant administrative control is limited. We expect this

gap to be resolved by the end of 2017. Big Switch does not support interfaces for converged

storage networks (FC or FCoE); it is suitable for environments using IP storage.

Design of an Enterprise-Grade Software-Defined Datacenter Network

201

15.7.4 Juniper Networks

15.7.4.1 Description

Juniper Networks has a large portfolio of datacenter networks under the Unite Cloud

framework. Contrail and Juniper Networks Overlay are described in Chapter 13

In VMware environments, Juniper switches can be controlled by NSX, enabling

physical and virtual integration. Juniper is positioned as a supplier n. 3, based on the market

share of 2016 revenue, and increased its share in corporate datacenters by introducing new

products into the QFX, DCI, and analytics family and optimizing their marketing messages on

Juniper Unite Cloud. As a result, the supplier recorded strong growth in 2016 at higher market

rates.

All major organizations should consider Juniper in their networking lists for

datacenters, especially those environments that want to have more vendors and solutions

that can interact in multivendor environments.

15.7.4.2 Strengths

Juniper has a portfolio of datacenter solutions based on common building blocks

belonging to two product families (QFX5K and QFX10K), and experience in supporting

mission-critical infrastructures. The vendor favors open solutions that leverage standards (like

EVPN) and enable multivendor interoperability. Juniper's Contrail is a popular commercial

SDN controller for OpenStack, with increasing deployments in the enterprise. The vendor

provides cost-competitive solutions and is an effective option for clients that want to have at

least two network suppliers for their datacenter.

15.7.4.3 Cautions

Juniper still lacks some focus and market presence in the enterprise segment,

although it made significant progress in 2016. Juniper has a partnership with VMware for

integration with NSX but is also competing with Contrail. The two companies pursue their

sales strategies (partnering versus competing) on an account-by-account basis and that might

confuse clients. The vendor makes most of its overall revenue with service providers and large

enterprise clients. Midsize clients should assess its market coverage level and the capabilities

of its local channels. Juniper is a networking and security company and lacks the full

datacenter portfolio of some larger players. Juniper does partner with channel and industry

partners that can provide compute and storage components (for example, for hyper

converged systems).

Design of an Enterprise-Grade Software-Defined Datacenter Network

202

15.7.5 Cisco ACI

15.7.5.1 Description

Cisco is the most visible provider in the datacenter network market, and in 2016 it has

driven the market with a revenue more than five times higher than that of its closest

competitor but had a -3% of revenue share and -6% quarterly share portfolios over 4Q16. The

Cisco Datacenter's peak offering is represented by the Cisco Nexus 9000 switches running

Cisco ACI software, described in Chapter 0, though offering Nexus Fabric Manager (NFM), an

alternative fabric solution, and BGP EVPN.

Gartner has seen a consistent adoption of these offers over the last year and Cisco

now reports over 3,500 ACI customers; however, many use ACI for network automation and

few use the policy-based features. Over the last year, Cisco has released a new line of switches

based on its cloud-based ASIC, a move against the industry's trend toward merchant silicon

Cisco should be considered for all datacenter networking opportunities globally,

especially from those customers who prefer few strategic vendors.

15.7.5.2 Strengths

Cisco has a deep and broad portfolio familiar to its channel partners, global support

capabilities and a large loyal installed base of customers. Cisco ACI provides fabric

automation, policy-based orchestration and service chaining capability, and supports

integration with dozens of partners. Cisco is a full-stack datacenter infrastructure vendor,

providing networking, compute, storage and security, which is desirable for enterprises

looking to reduce their number of suppliers. Cisco supports multiple options for automation

including ACI, Puppet/Chef/Ansible/Python, OpenStack, Yang, and RESTful APIs.

15.7.5.3 Cautions

Cisco customers report that migrating to Cisco ACI is complex, and most clients have

not implemented the ACI policy-based model. The vendor's overall proposals are the most

expensive observed by Gartner: Cisco's cost per 10G port ($307.40) is much higher than the

market average for 2016 ($165.18). Some clients have reported issues on software stability

and on ACI-based micro-segmentation. Cisco currently lacks a fixed form factor ACI spine

switch based on the Cloud Scale ASIC with 25/50/100GbE ports. This forces customers to

make a suboptimal hardware choice when a fixed form factor ACI spine switch is desired,

which Gartner believes is a good fit for most mainstream enterprises. Gartner anticipates that

the vendor will address this in 2017.

Design of an Enterprise-Grade Software-Defined Datacenter Network

203

16 Future Developments

16.1 Abstract

This chapter presents some challenges, (possible) evolutions and lessons on the

Software-defined Datacenter network domain learned by the SDN implementations of

Facebook, Google and Microsoft. The focus of the chapter is more on the Software-defined

part of the SDN paradigm, or the control overlay. The underlay seems to be a done deal, being

basically defined as a variation of a (mostly non-blocking) folded Clos network, Pod-based,

where Amazon first, and now Facebook, use 25G on the access and 50G/100G on the uplink.

The idea behind the chapter is to discuss some of the lessons learned by the biggest

(early) adopters of SDN and apply some of those concepts in the Enterprise domain.

This chapter is organized in six paragraphs

- The four pillars of Google SDN, based on the information presented in [119]

- The need for hierarchy with H-SDN and Microsoft ([120]) [121] and [122])

- Disaggregation and Data Plane programming in Facebook SDN ([123], [129]

- SD-WAN for the Enterprise (with reference to MSDC, see [124] et al)

- Stitching all together: a future for the Enterprise Global DCN

16.2 Google SDN

16.2.1 The four pillars

Amin Vahdat, Fellow & Technical Lead for Networking at Google, during his keynote at

the Open Networking Summit 2017 [125] stated that the question if SDN is a good idea or not

is closed: Software Defined Networking is simply how they do networking, Google builds its

cloud architecture disaggregating storage and compute, spreading them across the entire

datacenter. This approach increases substantially the bandwidth and latency requirements

for accessing anything anywhere, pushing further the pressure on the network infrastructure

within the datacenter.

At Google, SDN started its journey (see Figure 16-1) in 2013 with B4, a wide area

network interconnect for their datacenters, then in 2014, followed Andromeda, their network

virtualization stack that form the basis of Google Cloud. In 2015, Google added Jupiter for

datacenter networking (see Par. 5.4.3).

Design of an Enterprise-Grade Software-Defined Datacenter Network

204

Figure 16-1 – The four pillars of Google SDN [119]

16.2.2 Google Espresso

Nowadays, Google has Espresso, which is the SDN for the public Internet with per-

metro global views and real-time optimization across many routers and many servers (see

Figure 16-2)

Figure 16-2 – Google Espresso Metro [119]

“What we need to be doing, and what we will be doing moving forward, is moving to

Cloud 3.0. And here the emphasis is on compute, not on servers”, Vahdat says. According to

Vahdat, Cloud 3.0 implies:

Design of an Enterprise-Grade Software-Defined Datacenter Network

205

- Storage disaggregation: the datacenter is the storage appliance

- Seamless network telemetry and scale up/down

- Transparent live migration

- Open Marketplace of services, securely placed and accessed

- Applications + Functions (not VMs)

- Policy (not middleboxes)

- Actionable Intelligence (not data processing)

- SLOs (not placement/load balancing/scheduling)

The high-level challenges above are consistent with an agile/proactive/software-defined view

of the infrastructure: datacenter as a code, from servers to containers, from boxes to function

virtualization, from static access control lists to intent-based dynamic policies, and so on.

16.2.3 The six high availability principles

Even though Google’s context is very specific, there is no doubt that its expertise in the

domain might provide some advice in the context of this paper (Enterprise SDN). The main

strategy, from the network infrastructure perspective, could be summarized in the statement

“Evolve or Die” which is also the title of one of the research paper [126] where the authors

define the Six high availability principles, and the challenges, behind Google’s (Software

Defined) Network:

1. Use Defense-in-depth

2. Maintain consistency within and across planes

3. Fail open

4. An ounce of prevention

5. Recover Fast

6. Continuously upgrade the network

Design of an Enterprise-Grade Software-Defined Datacenter Network

206

16.3 Microsoft Azure and HSDN

16.3.1 Challenges

The cloud is growing at an unprecedented rate, and this growth demands an ability to

scale the underlay network to tenths of millions of endpoints and hundreds of millions of VMs

and VNFs (see Figure 16-3)

Figure 16-3 – the scale and growth of Microsoft Cloud [127]

 This growth adds pressure on the infrastructure, with reference to

- Brite boxes switches

- ECMP forwarding

- Overall cloud scaling ability

16.3.1.1 Brite boxes switches

The use of brite box switches to scale the underlay network requires solutions to the

potential explosion of the routing/forwarding tables in the network nodes as the size of

underlay network grows. The FIBs and RIBs of current commodity switches are relatively

small: they typically contain only 16K or 32K entries and are clearly inadequate to support all

the hosts of a hyper-scale cloud. The common strategy to reduce the number of entries is the

IP Address/prefix summarization; however, it doesn’t completely remove the scalability

challenge many reasons:

1. The addresses may not be summarized in a way fully matching the DCN structure

2. The dynamic environment in the DC/cloud might require the handling of granular

prefixes in the network. For example, VM and VNF migration may cause pollution in

the routing table if their addresses are carried in the move, with the result of having

many host-based routes stored in the tables.

Design of an Enterprise-Grade Software-Defined Datacenter Network

207

3. In a DCN based on Clos topology, the ECMP support itself may be a major factor. For

example, if the individual outgoing paths belonging to an ECMP group carry different

outgoing labels, a single destination contributes F entries in the LFIB rather than just

one, with F being the size of the ECMP group corresponding to that destination. Traffic

Engineering tunnels are of course another major contributing factor to the FIB/LFIB

size since each tunnel may require its own entry in the table.

4. Moreover, commodity switches use relatively small buffers, which worsens the

challenge of accomplishing high resource utilization in the DCN. Indeed, since the DC

must be able to support a wide range of traffic loads, it is usually designed with a lot

of spare capacity, and its fabric is not meant to run at full load. At hyper scale,

however, the assumption that “capacity in the DC is plenty and cheap” does not hold

anymore and designing with that principle in mind can make scaling exorbitantly

expensive.

16.3.1.2 ECMP forwarding

Congestion avoidance and traffic management in modern DCN depend deeply on

ECMP forwarding. This solution, however, presents many challenges:

- ECMP approach becomes difficult with certain traffic patterns and does not protect

properly QoS flows.

- To minimize packet re-ordering, ECMP is usually applied per-flow rather than per-

packet, therefore hot spots may still occur for relatively long durations.

Unfortunately, today, any-to-any, end-to-end (server-to-server) Traffic Engineering (TE) does

not scale for several reasons:

1. TE tunnels may cause routing/forwarding table explosion;

2. TE path and bandwidth allocation computation is a NP-complete problem;

3. Establishing TE tunnels takes considerable time, in that it generates a considerable

volume of control traffic and network state that needs to be maintained and

synchronized. TE rapidly becomes unaffordable at scale, and it is hardly applicable to

rapidly changing traffic mixes.

For these reasons, today, TE is used primarily in the DCI/WAN and in general in networks with

relatively small numbers of endpoints, to set up the “highways” between selected

destinations; in the DC, it is used very sparingly for few, sensitive flows that are known to

have long duration

Design of an Enterprise-Grade Software-Defined Datacenter Network

208

16.3.1.3 Cloud Scaling

Scaling the cloud at low cost requires minimizing operational and computational complexity

throughout the network. Many other important design objectives and considerations help

reducing cost and complexity. They include:

1. Removing vendor dependency, using open interfaces;

2. Minimizing number and complexity of protocols and technologies;

3. Unifying forwarding in the DC and DCI, as well as in the underlay and overlay;

4. Simplifying management and reducing likelihood of configuration errors by unifying

toolsets and increasing automation.

16.3.2 Hierarchical SDN goals

Hierarchical SDN (H-SDN) is a solution to the challenges presented in the previous paragraph.

The goals of H-SDN are:

• Scale at low-cost, use commodity HW with relatively small FIBs and LIBs in all network

nodes

• Achieve high resource utilization supporting efficiently ECMP and any-to-any, server-to-

server Traffic Engineering

• Scale at low operational and computational complexity, locally minimizing complexity and

network state, without information loss

• Scale while improving cloud elasticity and service velocity, overcoming current challenges

of NFV scalability and VM/NFV mobility

16.3.3 Microsoft H-SDN Architecture

H-SDN is a framework to decompose many complex hyper-scale problems into more

manageable ones:

- Forwarding

- Control

- Traffic Engineering

- Operation and Management

- Overlay

Design of an Enterprise-Grade Software-Defined Datacenter Network

209

16.3.3.1 Forwarding

Figure 16-4 – H-SDN Forwarding [127]

H-SDN tries to resolve the issues presented in the previous paragraph applying the divide and

conquer principle to the DCN and the DCI/WAN, organizing the DCN in a hierarchically

partitioned structure.

This design is based on three design steps:

1. Identify the DCN topologies that need to be connected through DCI (see Figure 16-5)

2. Define a hierarchical Underlay partitioning (see Figure 16-6)

3. Assign roles and partitions (see Figure 16-7)

Figure 16-5 – H-SDN design step 1 [120]

Design of an Enterprise-Grade Software-Defined Datacenter Network

210

Figure 16-6 – H-SDN design Step 2 [120]

Figure 16-7 – H-SDN design Step 3 [120]

Once the design is completed, the MPLS label can be constructed by stacking all path labels

(one per level of underlay partitioning) plus one VN label(see Figure 16-8)

Figure 16-8 – UPBNs, UPBGs and HDSN label stack [120]

Design of an Enterprise-Grade Software-Defined Datacenter Network

211

16.3.3.2 Control plane

The HSDN Controller (HSDN-C) is horizontally scalable, implemented as a set of local

partition controllers (HSDN-C-UP) following the HDSN hierarchy. Each HDSN-C-UP can

operate independently within the partition, configuring the LFIBs in the network nodes in the

corresponding UP. The individual UP controllers can exchange the labels and construct the

label stacks. In HSDN the labels are static and configuration updates are needed only when

the physical topology changes or endpoints are added or permanently removed, and thus

they are not too frequent. The critical tasks are monitoring network state and assigning traffic

to the most suitable paths, thus steering traffic away from those paths that are experiencing

failures or congestion.

Each HDSN-C-UP at the lowest level of the hierarchy is also in charge of providing the

label stacks to the server’s NICs in the corresponding partition. For this purpose, several label

servers (that may also be arranged in a hierarchy) map between IP addresses and label stacks.

The hierarchical arrangement of the HSDN-C-UP does not simply allow to scale the

“global” SDN controller but also inherently decomposes the SDN control plane in individual

UP control planes largely independent. Redundancy is superimposed to the structure, with

each HSDN-C-UP shadowing controllers in other UPs.

The HSDN-C-UP may also oversee Traffic Engineering and can also be built with a hybrid

approach, in which a distributed routing or label distribution protocol is used to distribute the

HSDN labels. HDSN supports both controller-centric SDN approach and traditional distributed

routing/label distribution protocol approach: this capability can be useful during the

migration from legacy approaches to full SDN.

Design of an Enterprise-Grade Software-Defined Datacenter Network

212

16.4 Facebook SDN

This paragraph briefly presents some of the outcomes of a conference hosted by

Facebook where FB and its partners describe the challenges and the opportunities presented

by a modern, holistic SDN approach [128]. The basic concepts, and principles, we want to

highlight in this paragraph is how Facebook and its partners plan to disaggregate the network

architecture, unleashing the full power of a dynamic infrastructure, software defined at any

layer. Quoting from the presentation “At Facebook, we build our datacenters with fully open

and disaggregated hardware. This allows us to replace the hardware or the software as soon

as better technology becomes available. Because of this, we see compute, storage, and

networking gains that scale with our business” [128].

Figure 16-9 – Disaggregate the network approach [129]

The principles behind the disaggregate approach could be summarized in:

1. Centralize the control (Software defined control plane)

2. Openness (open API, open systems, full compatibility)

3. Avoid vendor lock-in

4. Abstract the network

5. Program the Data/Forwarding Plane (Software is eating the network)

6. Provide full, end-to-end visibility

The first three principles are shared with Classic SDN (See Chapter 7), the last three are

quite new, even though they were already implicit in some SDN architectures. Programming

the Data plane, or the forwarding layer, was not part of the original SDN mandate: the original

idea of SDN was to abstract and separate the control plane from the forwarding plane and

centralize its control. Through this paradigm shift, FB and their partners move the network

programmability one step forward, not only by abstracting and centralizing the control plane,

but also dynamically defining the data plane behavior by programming it.

Design of an Enterprise-Grade Software-Defined Datacenter Network

213

16.4.1 Abstract the network

The need of an abstracted model comes from the observation that when there is a

lack of an abstracted process describing how a task could be performed, then this task could

be completed only using dedicated systems built on-purpose. The typical example is what

happened with Computer Graphics: until the definition of a reliable abstracted model (i.e.

OpenGL, ActiveX) and the development of dedicated DSPs (GPUs), advanced computer

graphics could only be performed by dedicated systems like SGI, IRIS, etc.

 Applying this principle to networking, if we can identify a reliable abstraction model

describing how a Protocol Data Unit (frame, packet, segment) is handled by the network, and

we can write code using this model and compile it on dedicated DSP (or on a general-purpose

CPU with a specific instruction set), then we are able to program the forwarding plane.

Figure 16-10 – Path to the network abstraction [129]

To enable this process, one needs to define

- An abstraction model, a high-level language able to use this abstraction, and its

compiler

- An infrastructure able to run the code

With the right model for data parallelism and the basic underlying processing primitives, using

domain specific language and domain specific tools [129] the conventional wisdom that

dedicated systems process packets faster than programmable processors is not true anymore:

as an example the Fixed Function Broadcom Tomahawk delivers 3.2Tbps, the programmable

Cavium Xpliant achieves the same throughput and Barefoot Tofino can go up to 6.2Tbps

Design of an Enterprise-Grade Software-Defined Datacenter Network

214

16.4.2 Forwarding plane programmability

The Protocol Independent Switch Architecture (PISA) is a general, high level

architecture model, bringing in networking an abstraction layer like RISC is for computing,

providing a simple and very fast pipeline.

Figure 16-11 – Fixed switch model [129]

The goal of PISA is to establish an independent, efficient, reliable, architecture model

(abstraction) that could be used to program the network behavior of inter-networking

devices. In the PISA model, and in the SDN approach, the difference between L2, L3, L4 load

balancer blurs: by using P4 programs, compiled in the PISA switch, it will be possible to

granularly define the role of the device, establishing per-packet rules

Figure 16-12 – Protocol Independent Switch Architecture [129]

Using PISA and P4 programs, it is possible to embed in the data plane network

functions such, for instance, Network Visibility (In Band Network Telemetry) and L4 Load

Balancing.

16.4.2.1 Network visibility (In-band network telemetry)

If one would compare the toolset that a storage, a system and a network engineer must

use to troubleshoot the systems they manage, the network engineer would always be the

one relying mostly on his own expertise and knowledge: during a support call he would be

basically stuck with relatively primitive tools like ping, traceroute and NetFlow at the best.

However, the questions that he would need to answer would be basically

- Which path did the packet take?

- Which rules did the packet follow?

Design of an Enterprise-Grade Software-Defined Datacenter Network

215

- How long did it queue at each switch?

- With whom did the packet share the queue?

All those questions would be easily answered if the network infrastructure was able to

program the packet processing at each device to provide the required information,

performing what is called in-band network telemetry (IBT).

IF the data plane was programmable, though, IBT would be just a piece of code written in P4

running on a device (see Figure 16-13)

Figure 16-13 – Example of IBT program written in P4 [129]

16.4.2.2 L4 Load Balancing

The authors in [130] show that a single modern switching ASIC can replace up to

hundreds of software load balancer (SLB), potentially reducing the cost of load balancing by

over two orders of magnitude.

They use switching ASICs to implement load balancers faster than before, and they

built a system, called SilkRoad, defined in 400 lines of P4 code. When SilkRoad is compiled to

a state-of-the-art switching ASIC, it can load-balance ten million connections simultaneously

at line rate. The authors ran a simulation on FB Datacenter deploying SilkRoad on all the ToR

switches. The simulation showed [131] that SilkRoad was able to:

- Sustain a line rate of multi-Tbps.

- ensure persistent session under frequent DIP pool updates.

- Provide 100-1000x savings in power and capital cost.

Design of an Enterprise-Grade Software-Defined Datacenter Network

216

16.4.3 FB Disaggregated datacenter

The principles outlined in the previous paragraphs are implemented by Facebook in its SDN

stack, which is based on the following components (see Figure 16-14):

- Datacenter: FBOSS, Wedge, and Backpack are the hardware and software that power

the open switches running in the datacenter, a stepping stone on the disaggregated

network.

- Backbone: Express Backbone and Open/R build the SD-WAN, a dedicated private

backbone network using centralized traffic engineering in a global controller coupled

with a new distributed routing system.

- Cross-domain automation/life cycle: Robotron handles every part of the network life

cycle across all network domains, from datacenter to backbone and edge.

- End-to-end flow monitoring provided by fbflow

- Edge: Edge Fabric steers egress user traffic from FB PoPs around the world.

Figure 16-14 – Facebook software defined network components

Design of an Enterprise-Grade Software-Defined Datacenter Network

217

16.5 SD-WAN

16.5.1 Introduction

Figure 16-15 shows the main challenges that Enterprise are facing regarding their WAN [132]

Figure 16-15 – WAN Challenges for the Enterprise [132]

The challenges presented above could be summarized in the following pain points:

- Cloud-unfriendly architecture: Enterprise WAN (EWAN) architecture historically is

based on a hub and spoke topology, which enables centralized dataflows. However,

Cloud access is, by its very nature, not centralized, and a hub and spoke topology poses

some constraints and bottlenecks

- Complexity: EWAN is complex to manage, onerous to configure, maintain and

transform

- Costly and (relatively) inefficient: hub and spoke topologies usually require the

Internet/public SaaS traffic to be backhauled to the main datacenter where security

policies are typically enforced by on-prem security kits. Moreover, with the current

trend in bandwidth grow (30% yearly), expansion costs become quickly prohibitive

16.5.2 Software-Defined WAN

The issues presented in the previous paragraph could be addresses by adopting in the EWAN

environment a software defined approach, so moving from WAN to Software-Defined WAN.

The main SD-WAN elements are:

- Leverage hybrid networks

- Centralized, application- based policy controller

Design of an Enterprise-Grade Software-Defined Datacenter Network

218

- Application visibility and control (AVC)

- Network Telemetry (in band or out of band) per flow, application and user aware

- Use of a software overlay abstracting and securing the underlying networks (being

them MPLS, LTE, plain Internet access, etc.)

- Dynamic path selection to optimize the WAN based on application requirements.

The typical use cases for SDWAN are simplification, cost reduction, improve application

availability and visibility, reducing dependence on legacy MPLS (which is usually connected to

a cost reduction), accelerating WAN deployment, and finally, improve public cloud access

(IaaS, SaaS and PaaS).

16.5.3 SD-WAN as an enabler for the Cloud

According to Enterprise Management Associates (EMA) [133]. 44% of the enterprise

network traffic traces to public cloud, and the hybrid/multi cloud architecture is one of the

main drivers of data-center transformation.

This change in the traffic pattern is driving the provisioning of multiple connectivity options

for the branches: 55% of the enterprise connect the branches directly to the cloud.

Branches connectivity is shifting from a traditional Hub & Spoke topology to a decentralized

solution, with the branches becoming more “intelligent“ and connected to the Corporate

networks, the cloud, and the external networks through a fabric of different links managed

by a SD-WAN Controller (see Figure 16-16). Essentially, the branches themselves are

becoming “Software-defined”, connected to the Software-Defined WAN where a SD-WAN

controller:

- enforces the intent-based security policies on a flow-basis

- authenticates/validates endpoints (being them corporate, BYOD, mobiles, etc.)

- provides application visibility and control (AVC) capabilities, and advanced Traffic

Engineering techniques

- decides which link should be used for which type of traffic (i.e. local Internet for Best

effort, MPLS breakout to the CNF for connection to the private datacenter/public

cloud)

- provides network segmentation end-to-end within and across IaaS environments

Design of an Enterprise-Grade Software-Defined Datacenter Network

219

IaaS/PaaS SaaS

SD-WAN Controller SD-WAN Controller

Figure 16-16 – SD-WAN as enabler for Cloud access

16.5.4 The future of SD-WAN

Some of the advances in SD-WAN are obviously directly connected to the

development of the SDN world:

- intent-based networking

- standardization of the NBI of the controller,

- orchestration, self-provisioning and auto-sizing networks

- machine learning and AI triggered events

- Hierarchical SDN

- NFV orchestration and cooperation

- Data-plane programming

Specific to the Enterprise SD-WAN, though, there is a transformation of the branch: from

a static branch to a SD-Branch containing multiple links controlled by the SD-WAN controller

that, using NFV and SFC, will steer the traffic to the proper target, in a completed distributed

multi-homed environment. Essentially, the control will be centralized, but the topologies will

be distributed. The SD-WAN controller will be able to decide which link to use, for which user

and application, and if needed apply a chain of network functions to inspect the traffic,

validate it, enforcing local policies based on high-level intents.

This change will have impacts at different levels, it is worth noting that network security

will move from a Castle-type defense (perimeter security) to a Casino-approach (distributed

security, sensors based, with centralized control).

Design of an Enterprise-Grade Software-Defined Datacenter Network

220

16.6 Stitching all together: a future Enterprise Software-Defined Network

In a rapidly and constantly evolving environment, dynamic in its very nature, it is quite

hard to define how the Enterprise Datacenter network of the future will look like; however,

even if the technical solutions will probably change, most of the requirements, trends and

principles discussed in Section I and II of this paper will still be valid.

This paragraph, considering the points introduced previously in this chapter, and the

overall discussion of this paper, briefly presents a possible future of the Enterprise Network,

introducing a mesh topology and explaining its main building blocks.

16.6.1 Evolutions of the Enterprise SDN

As already discussed, SDN is another iteration of the patterns seen in several domains of

the IT infrastructure (storage, graphics, compute, etc.), and, by looking at those domains, one

could predict that software definition, virtualization, simplification will continue to grow, to

eventually provide a dynamic (nearly) self-managed infrastructure able to change, adapt and,

to certain extent, evolve.

As shown in Figure 16-17, the move to public cloud, and, in the cloud, the shift from IaaS

to SaaS/PaaS consumption models, is another growing trend, but in highly regulated markets

(like Finance for instance) some services/data will always require the Enterprise to

directly/indirectly manage the infrastructure providing them.

Figure 16-17 – Trend of Compute instances distribution in Private vs public vs non-cloud –
source: Cisco© Global Cloud index 2016-2021

Design of an Enterprise-Grade Software-Defined Datacenter Network

221

This implies that the Enterprise-owned datacenters (at least the virtual ones) are not going

to disappear soon: their role is already changing, and will change even more, but the need of

a privately/directly owned infrastructure is going to stay. This fact will trigger the need, from

the network orchestration perspective, to interact with different DCN models, providing a

common platform to manage/monitor/provision datacenter services.

Inside the DCN, the different SDN architectures (pure overlay, hardware or software

based, classical SDN, API-based, etc.) will still coexist, but the push to software-define control,

management and data planes will continue to grow, and with them the need to virtualize

network and network functions will be even higher. The software definition paradigm will be

applied not only to the control and management plane but also to the forward/data plane, as

explained in 16.4. It is impossible to say which solution will “win” in the DCN market, however

network virtualization, software-definition, end-to-end application visibility and control,

policy abstraction using intents, interoperability, openness, agility and elasticity will become

even more important in the future networks.

The Enterprise WAN is also changing, and this triggers a design change in the Enterprise

Global network: from a hub-and-spoke topology, the Enterprise network is moving to hybrid

mesh topologies, where Software-defined branches will be connected to cloud providers,

Internet, and Service Access Exchanges interconnecting datacenters, 3rd parties, etc.

16.6.2 A possible topology for the future Enterprise DCN

The Future Enterprise DCN shown in Figure 16-19, will be probably based on the following

building blocks:

- Physical and/or virtual Software-defined datacenters (typically, at least two per

region)

- Software-Defined Service Access Exchanges (typically, at least two per region)

- A Software-defined WAN connecting SD-branches and SD-SAEs

- Intent-based Policies integrating SD-WAN and SD-DCNs

- Enterprise Network Orchestrator

Design of an Enterprise-Grade Software-Defined Datacenter Network

222

SD-BRANCH-N

SD-BRANCH-2

SD-BRANCH-1

SD-WAN Controller

ENTERPRISE
SD-SAE

INTERNET
Other
SaaS

Hierarchical SD-DCN Controller

NBI
SD-DCN

Southbound
SD-WAN

Orchestrator
Figure 16-18 – A (possible) topology of the Enterprise Software-defined Network

16.6.3 SD-DCNs and SD-SAE

As described in Chapters 11,12, 13 and 14, regional Software-defined datacenter

networks (SD-DCNs) could be managed by local SDN Controllers which can be logically

connected together through a higher level regional SDN controller. The definition itself of

DCN is expanding: some network manufacturers are already extending their Software-defined

DCN to the public cloud, with the same SDN controller managing both physical and virtual leaf

switches regardless of their location.

An example of this approach, adopted in Cisco ACI 3.2+ (released by Q2/2018) is

shown in Figure 16-19, where a multi-site ACI appliance is controlling one private datacenter

and three virtual DCNs located in Google Cloud, Azure and AWS.

Design of an Enterprise-Grade Software-Defined Datacenter Network

223

Figure 16-19 – Multi-site DCN with Cisco ACI for private and public DCNs

This solution, or its equivalent from other manufacturers, provides some insights on the

requirements for the next generation software-defined datacenters:

- Consistent Network and Policy across private, public and hybrid clouds

- Seamless Workload Migration

- Single Point of Orchestration

- Secure Automated Connectivity

The Secure Access Exchange itself will be software-defined and could host a higher level SDN

controller (see Chapter 10). The SD-SAE will interconnect private resources, third parties,

shared infrastructures and the SD-branches coming from the SD-WAN links. Figure 16-20

shows an example of a SD-SAE using the Equinix Cloud Neutral Facilities solution.

Figure 16-20 – Software Defined Cloud Connect using Equinix Platform (© Equinix, 2018)

Design of an Enterprise-Grade Software-Defined Datacenter Network

224

16.6.4 SD-WAN

The (overlay) network of Software-defined branches is connected to hybrid links

(private MPLS, Internet, LTE, etc.) through a SD-CPE where different VNFs are interconnected

to one (or more) NFC.

Figure 16-21 details how the Software-defined branches connect to the WAN: every

branch connects to a SD-CPE providing multi-link connectivity but also different network

functions (i.e. security kit, multi-link capability, traffic shaping, application visibility and

control). The SD-CPE is controlled by a SD-WAN controller able to define the policies for the

different regional branches, providing application visibility and control for the different flows,

and enforcing Traffic Engineering per branch and class of service.

SD-WAN Controller

Figure 16-21 – Software-defined WAN and SAE

16.6.5 Integrate SD-WAN and SD-DCN policies

SD-DCN and SD-WAN are currently two disjointed SD domains: this might lead to

unwanted segregation and inconsistencies between the WAN user policies and the DCN

access policies (see Figure 16-22). The ability to control and monitor end-to-end traffic (in

band network telemetry) and to monitor/maintain/update end-to-end flows and policies

require an interaction between the SD-WAN controller and the distributed SD-DCN.

Design of an Enterprise-Grade Software-Defined Datacenter Network

225

Figure 16-22 - Disjoint Polices between WAN and DCN (©Cisco Systems, Inc.)

This requirement could be implemented in different ways, and up to different extents.

Currently the market seems to offer mainly routing, network-level integration (i.e. through

MP-BGP). However, some manufacturers are starting to work on integrations at the NBI level

and/or at the application layer (i.e. Identity and management).

One example of this integration between SD-DCN and SD-WAN is offered by Cisco: their

Identity and Services Engine (ISE) could improve the consistency between SD-WAN and SD-

DCN policies (Figure 16-23)

Figure 16-23 Cisco ISE as the glue between SD-WAN and SD-DCN (©Cisco Systems, Inc.)

 In this scenario, the User Authentication/Authorization processes are managed by the

ISE engine, which, depending on the Authentication/Authorization policies, pushes the

corresponding configuration on the Network Access Device (NAD). The NAD is then

responsible of enforcing the access policies, providing user segmentation at the access layer,

and, finally, NADs are also in charge of marking the data flows using, for instance, Cisco

TrustSec © technology. The marked flows can then be applied to define policies at the DCN

level using, for instance, constructs inside the ACI contracts and Endpoint groups.

Design of an Enterprise-Grade Software-Defined Datacenter Network

226

16.6.6 Enterprise Network Orchestrator

The Enterprise Network Orchestrator manages the Software Defined Datacenter

(Storage, compute, network, and all the other resources) and/or to provide a common NBI to

other applications like a SD-Datacenter management system, a Service Portal (i.e.

ServiceNow), etc.

The orchestrator itself might support multiple “southbound” protocols from/to the SD-

WAN, SD-DCN and SD-SAEs, and multiple northbound protocols to integrate the different

Datacenter/service management solutions. The orchestrator will basically provide an

interface to one or more systems, where the datacenter operators will decide/ react/

implement changes to the infrastructure.

 With the massive advent of AI, neural networks and the application of predictive models,

the orchestrator could be driven, at least partly, from one or more AIs, and this will bring us

to the frontier of this paper: the self-managed software defined datacenter.

16.6.7 The frontier: Self-managed software-defined datacenter

As shown in this chapter, the demand for a generalized, consistent, standardized

approach to software-defined infrastructures (“Software is eating the world” [134]) is growing

fast, and in the medium/short term the trend will continue to add (artificial) intelligence to

the datacenter orchestrator(s), which eventually will be able to predict the workload

requests, place them in the optimal location, and correspondingly interact with the

specialized controllers to configure the domain they manage.

In this fully dynamic, self-managed and automated scenario, the datacenter network, as

any other part of the IT infrastructure, will be completely software-defined and its multiple

SDN controllers will interact via their NBI with the orchestrator(s) providing the ability to

dynamically define the network plane.

For the network infrastructure to be fully dynamic, the barriers between different

domains (i.e. DCN, WAN, branches, CDN, etc.) will need to be broken, and the SDN controllers

of different domains will need to converge, or at least to interact with one another. Soon,

probably, an orchestrator (i.e. an expert system based on neural networks and/or other AI or

autonomous processes) will be able to proactively manage the entire datacenter

infrastructure, allocating resources, moving workloads across different domains, providing

dynamic networks, chaining the corresponding network functions, pushing code to the data

plane to customize the packet forwarding (i.e. load balancing, inspecting flows, etc.).

Design of an Enterprise-Grade Software-Defined Datacenter Network

a

17 Bibliography

[1] Evan Gilman et al. Zero Trust Networks: Building Secure Systems in Untrusted Networks.

s.l. : O'Reilly Media. , 2017, 2017.

[2] Priestley, Angela. Work’: It’s a verb not a noun, so find somewhere else to get it done.

[Online] [Cited: 11 25, 2017.] https://womensagenda.com.au/latest/eds-blog/work-it-s-a-

verb-not-a-noun-so-find-somewhere-else-to-get-it-done/.

[3] IDG Enterprise. Consumerization of IT in the Enterprise Study . s.l. : IDG Enterprise, 2014.

[4] Morris, Kief. . Infrastructure as Code . s.l. : O'Reilly, 2016.

[5] Loukides, Mike. What is DevOps? . s.l. : O'Reilly Media, 2012.

[6] NIST. Minimum Security Requirements for Federal Information and Information Systems.

s.l. : NIST, 2006.

[7] European Parliament. GDPR Portal. [Online] [Cited: 11 26, 2017.]

https://www.eugdpr.org.

[8] PCI Security Standards Council . PCI SECURITY. PCI SECURITY. [Online] [Cited: 11 29, 2017.]

https://www.pcisecuritystandards.org/pci_security/.

[9] John Liebman et al. United States Export Controls. s.l. : Aspen Publishers, 2011.

[10] Wassenaar Arrangemen Secretariat. The Wassenaar Arrangement (WA). [Online] [Cited:

11 26, 2017.] http://www.wassenaar.org.

[11] Paul Baran. On Distributed Communication Networks. 1962 : The Rand Corporation,.

[12] Leah A Lievrouw, Sonia Livingstone. Handbook of New Media: Student Edition. s.l. :

SAGE, 2005.

[14] IEEE. 802.1Q-Rev - 802.1Q Revision - Bridges and Bridged Networks. [Online] [Cited: 12

12, 2017.] http://www.ieee802.org/1/pages/802.1Q-rev.html..

[15] —. 802.1D MAC Bridges. [Online] [Cited: 12 13, 2017.]

http://www.ieee802.org/1/pages/802.1D-2003.html..

[16] NIST. NIST Cloud Computing Program - NCCP. [Online] [Cited: 12 12, 2017.]

https://www.nist.gov/programsprojects/.

[17] Jaydip Sen . Security and Privacy Issues in Cloud Computing. Security and Privacy Issues

in Cloud Computing. [Online] TATA Consulting. [Cited: 12 02, 2017.]

https://pdfs.semanticscholar.org/4dc3/70d253020947a8e66b701e12dd0233161229.pdf.

[18] Maverick Research . The Edge Will Eat the Cloud. . s.l. : Gartner Inc., 2017.

Design of an Enterprise-Grade Software-Defined Datacenter Network

b

[19] Christine Currie. 4 REASONS TO PICK A CARRIER NEUTRAL DATA CENTER. 4 REASONS TO

PICK A CARRIER NEUTRAL DATA CENTER. [Online] 365DataCenters.

http://www.365datacenters.com/blog/4-reasons-pick-carrier-neutral-data-center/.

[20] White, Russ and Denise, Donohue. The Art of Network Architecture. s.l. : Cisco Press,

2016.

[21] Giaccone, Paolo. Switching technologies for datacenters. Torino : Politecnico di Torino,

2017.

[22] Liu, Yang and et , al. Data Center Networks Topologies, Architectures and Fault-

Tolerance. s.l. : SpringerBriefs in Computer Science, 2013.

[23] Stanford University. Introduction to Clos Networks. . s.l. : Stanford University Press, 2006.

[24] A scalable, commodity data center network architecture. Al-Fares, M., Loukissas, A.,

Vahdat, A.:. 2008. ACM SIGCOMM 2008 Conference on Data Communication,.

[25] a scalable fault-tolerant layer 2 data center network fabric. Niranjan Mysore, R.,

Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S., Subramanya, V., Vahdat,

A.: Portland:. 4, 2009, ACM SIGCOMM Comput. Commun. Rev., Vol. 39, pp. 39-50.

[26] VL2: a scalable and flexible data center network. Greenberg, A., Hamilton, J.R., Jain, N.,

Kandula, S., Kim, C., Lahiri, P., Maltz, D.A., Patel, P., Sengupta, S.:. 4, 2009, SIGCOMM

Comput. Commun. Rev., Vol. 39, pp. 51-62.

[27] DCell: a scalable and fault-tolerant network structure for data centers. Guo, C., Wu, H.,

Tan, K., Shi, L., Zhang, Y., Lu, S.:. 4, 2008, ACM SIGCOMM Comput. Commun. Rev., Vol. 38,

pp. 75-86.

[28] BCube: a high performance, server-centric network architecture for modular data centers.

Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.:. 4, 2009, ACM

SIGCOMM Comput. Commun. Rev., Vol. 39, pp. 63-74.

[29] c-Through: part-time optics in data centers. Wang, G., Andersen, D., Kaminsky, M.,

Papagiannaki, K., Ng, T., Kozuch, M., Ryan, M.:. 2010, ACM SIGCOMM Computer

Communication Review,, Vol. 40, pp. 327-338.

[30] Helios: a hybrid electrical/ optical switch architecture for modular data centers.

Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H., Subramanya, V., Fainman, Y.,

Papen, G., Vahdat, A.:. 2010, ACM SIGCOMM Computer Communication Review,, Vol. 40, pp.

339-350.

Design of an Enterprise-Grade Software-Defined Datacenter Network

c

[31] an optical switching architecture for data center networks with unprecedented flexibility.

Chen, K., Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y., Wen, X., Chen, Y.:. 2012.

9th USENIX Conference on Networked Systems Design and Implementation,.

[32] Ficonn: using backup port for server interconnection in data centers. Li, D., Guo, C., Wu,

H., Tan, K., Zhang, Y., Lu, S.:. 2009. IEEE INFOCOM.

[33] MDCube: a high performance network structure for modular data center interconnection.

Wu, H., Lu, G., Li, D., Guo, C., Zhang, Y.:. Rome : s.n., 2009. 5th International Conference on

Emerging Networking Experiments and Technologies,.

[34] Symbiotic routing in future data centers. 5th International Conference on Emerging

Networking Experiments and Technologies. 4, 2010, ACM SIGCOMM Comput. Commun.

Rev., Vol. 40, pp. 51-62.

[35] Clos, Charles. A Study of Non-Blocking Switching Networks. s.l. : Bell Laboratories, 1952.

[36] Krattiger, Lukas , Kapadia, Shyam and Jansen,, David . Building Data Centers with VXLAN

BGP EVPN - A Cisco NX-OS Perspective. s.l. : Cisco Press, 2017.

[37] Cisco Systems. Cisco Data Center Spine-and-Leaf Architecture: Design Overview. s.l. :

Cisco Systems, 2017.

[38] Big Switch Networks. Core and Pod Data Center Design. Core and Pod Data Center

Design. [Online] [Cited: 12 02, 2017.] http://go.bigswitch.com/rs/974-WXR-

561/images/Core-and-Pod%20Overview.pdf.

[39] Cisco Systems. Data Center Top-of-Rack Architecture Design. s.l. : Cisco Systems, 2014.

[40] Amazon AWS . (AWS re: Invent 2016: Tuesday Night Live with James Hamilton). [Online]

[Cited: 12 12, 2017.] https://www.youtube.com/watch?v=AyOAjFNPAbA..

[41] J. Bagga et al. Open networking advances with Wedge and FBOSS. s.l. . [Online] [Cited:

12 12, 2017.] https://code.facebook.com/posts/145488969140934/open-networking-

advances-with-wedge-and-fboss/.

[42] Seb Boving et al. Jupiter Rising: A Decade of Clos Topologies and Centralized Control in

Google’s Datacenter. s.l. : Google Inc, 2017.

[43] Greenberg, Albert et al. Microsoft Showcases Software Defined Networking Innovation

at SIGCOMM. [Online] [Cited: 12 12, 2017.] https://azure.microsoft.com/en-

gb/blog/microsoftshowcases-.

[44] Fang, Luyuan. Hierarchical SDN to Scale the DC/Cloud to Tens of Millions of Endpoints at

Low Cost. [Online] [Cited: 12 12, 2017.]

https://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ve

Design of an Enterprise-Grade Software-Defined Datacenter Network

d

d=0ahUKEwiaxbmwyILYAhUFCcAKHdF0Di4QFggpMAA&url=https%3A%2F%2Fwww.ietf.org

%2Fproceedings%2F91%2Fslides%2Fslides-91-sdnrg-

7.pdf&usg=AOvVaw1knh_WG4kQ4K4v0Qpu77qD.

[45] Lajos, Sárecz. . Oracle Cloud Platform: Modern Cloud Infrastructure. s.l. : Oracle, 2017.

[46] IETF. RFC 7365 - Framework for DC Network Virtualization. [Online] [Cited: 09 25, 2017.]

https://tools.ietf.org/html/rfc7365.

[47] Hassan, Syed Farrukh, Rajendra , Chayapathi and Paresh , Shah. Network Functions

Virtualization (NFV) with a Touch of SDN. s.l. : Pearson Education, 2016.

[48] Cisco Systems. Configuring VSS. [Online] Cisco. [Cited: 09 25, 2017.]

https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-

2SX/configuration/guide/book/vss.pdf.

[49] —. Virtual Switching System (VSS) Q&A. Virtual Switching System (VSS) Q&A. [Online]

[Cited: 11 27, 2017.] Virtual Switching System (VSS) Q&A.

[50] IEEE P802.3ad Link Aggregation Task Force. IEEE P802.3ad Link Aggregation Task Force -

Public Area. [Online] [Cited: 11 26, 2017.] http://www.ieee802.org/3/ad/public/index.html.

[51] Cisco Systems. Configuring Cisco vPC. [Online] Cisco. [Cited: 09 25, 2017.]

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5000-series-

switches/design_guide_c07-625857.html.

[52] —. Cisco FabricPath. [Online] [Cited: 11 26, 2017.]

https://www.cisco.com/c/en/us/solutions/data-center-virtualization/fabricpath/index.html.

[53] IETF Trill WG. Transparent Interconnection of Lots of Links (TRILL) Use of IS-IS. [Online]

[Cited: 11 25, 2017.] https://tools.ietf.org/html/rfc6326.

[54] IETF. Virtual eXtensible Local Area Network (VXLAN): A Framework. [Online] [Cited: 11

25, 2017.] https://tools.ietf.org/html/rfc7348.

[55] IETF - LISP Working Group . GPE-VPN: Programmable LISP-based Virtual Private

Networks - draft-maino-gpe-vpn-00. GPE-VPN: Programmable LISP-based Virtual Private

Networks - draft-maino-gpe-vpn-00. [Online] [Cited: 11 28, 2017.]

https://tools.ietf.org/html/draft-maino-gpe-vpn-00.

[56] IETF. Multiprotocol Extensions for BGP-4 - RFC 4760. Multiprotocol Extensions for BGP-4.

[Online] [Cited: 12 11, 2017.] https://tools.ietf.org/html/rfc4760.

[57] IETF MPLS Working Group. Mpls Status Pages. Mpls Status Pages. [Online] [Cited: 11 28,

2017.] https://tools.ietf.org/wg/mpls/.

Design of an Enterprise-Grade Software-Defined Datacenter Network

e

[58] Cisco Systems. Overlay Transport Virtualization. Overlay Transport Virtualization.

[Online] [Cited: 11 28, 2017.] https://www.cisco.com/c/en/us/solutions/data-center-

virtualization/overlay-transport-virtualization-otv/index.html.

[59] —. Technical Overview of Virtual Device Contexts. [Online] [Cited: 11 26, 2017.]

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-10-slot-

switch/White_Paper_Tech_Overview_Virtual_Device_Contexts.html.

[60] —. Virtual Route Forwarding Design Guide. s.l. : Cisco Press, 2008.

[61] Paul Goransson, Chuck Black, Timothy Culver. Software Defined Networks: A

Comprehensive Approach. . s.l. : Morgan Kaufmann. 2016.

[62] Laboratory, Cambridge Computer. DCAN - Devolved Control of ATM Networks. [Online]

[Cited: 11 26, 2017.] https://www.cl.cam.ac.uk/research/srg/netos/projects/archive/dcan/.

[63] Open signaling for ATM, internet and mobile networks (OPENSIG'98). Andrew T.

Campbell, Irene Katzela, Kazuho Mika, John Vicente. 1, s.l. : ACM SIGCOMM Computer

Communication Review, 1999, ACM SIGCOMM Computer Communication Review, Vol. 29 ,

pp. 97-108 .

[64] A survey of active network research. Tennehouse D., Smith J., Sincoskie W.,Wetherall

D., Minden G. 1, 1997, IEEE Commun Mag., Vol. 35, pp. 80-86.

[65] University of Washington. A comparison of IP switching technologies from 3Com,

Cascade, and IBM. [Online] 1997. [Cited: 11 26, 2017.] http:// www.cs.washington.edu/

education/ courses/ csep561/ 97sp/ paper1/ paper11. txt..

[66] Johnson, Johna Till. MPLS explained. [Online] [Cited: 11 26, 2017.]

https://www.networkworld.com/article/2297171/network-security/network-security-mpls-

explained.html.

[67] IETF. Forwarding and Control Element Separation (ForCES) Protocol Extensions - RFC

7391. [Online] [Cited: 11 26, 2017.] https://tools.ietf.org/html/rfc7391.

[68] A clean slate 4D approach to network control and management. Albert Greenberg, Gisli

Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin

Zhan, Hui Zhang. 5, 2005, ACM SIGCOMM Computer Communication Review, Vol. 35, pp. 41-

54.

[69] Stanford University - Clean State Project Team,. Ethane: A Security Management

Architecture. [Online] [Cited: 11 26, 2017.] http://yuba.stanford.edu/ethane/.

[70] Rigney C., Willens S., Rubens A., Simpson W. Remote Authentication Dial In User Service

(RADIUS). s.l. : Internet Engineering Task Force;, 2000.

Design of an Enterprise-Grade Software-Defined Datacenter Network

f

[71] Durham D., Boyle J., Cohen R., Herzog S., Rajan R., Sastry A. The COPS (Common Open

Policy Service) Protocol. s.l. : Internet Engineering Task Force;, 2000.

[72] G., Ferro. Automation and orchestration. Network Computing,. [Online] 2011. [Cited: 11

26, 2017.] http:// www.networkcomputing.com/ private-cloud-tech-center/ automation-

and-orchestration/ 231600896..

[73] Inside, Technology. The phenomenon of Ipsilon. [Online] [Cited: 09 25, 2017.]

https://technologyinside.com/2007/02/08/networks-part-2-the-flowering-and-dying-of-

ipsilon/.

[74] Azodolmolky, Siamak. Software Defined Networking with OpenFlow. s.l. : Packt

Publishing, 2017.

[75] Brand Salisbury. TCAMs and OpenFlow – What Every SDN Practitioner Must Know.

SDXCentral. [Online] [Cited: 12 12, 2017.]

https://www.sdxcentral.com/articles/contributed/sdn-openflow-tcam-need-to-

know/2012/07/.

[76] Big Switch Networks. Big Switch Big Cloud Fabric. [Online] Big Switch Networks. [Cited:

09 25, 2017.] http://www.bigswitch.com/products/SDN-Controller.

[77] Project Floodlight. http://www.projectfloodlight.org/floodlight/. [Online] [Cited: 11 25,

2017.] http://www.projectfloodlight.org/floodlight/.

[78] Wikipedia. Fundamental theorem of software engineering. [Online] [Cited: 11 25, 2017.]

https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering.

[79] Jensen, David. Building Data Centers with VXLAN BGP EVPN: A Cisco NX-OS Perspective

(Networking Technology). s.l. : Pearson Education, 2017.

[80] Pfaff, B. and B. Davie. RFC 7047 - The Open vSwitch Database Management Protocol.

[Online] [Cited: 11 26, 2017.] https://tools.ietf.org/html/rfc7047.

[81] Jabber open-source community. XMPP.org. [Online] [Cited: 11 26, 2017.]

https://xmpp.org.

[82] IETF L2VPN Workgroup . A Network Virtualization Overlay Solution using EVPN. [Online]

IETF. [Cited: 11 25, 2017.] https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-01.

[83] Juniper Networks. Contrail Data Sheet. Juniper Networks. [Online] [Cited: 12 02, 2017.]

https://www.juniper.net/assets/us/en/local/pdf/datasheets/1000521-en.pdf.

[84] —. Learn About VXLAN in Virtualized Data Center Networks. Learn About VXLAN in

Virtualized Data Center Networks. [Online] [Cited: 12 02, 2017.]

https://www.juniper.net/documentation/en_US/learn-about/LA_VXLANinDCs.pdf.

Design of an Enterprise-Grade Software-Defined Datacenter Network

g

[85] Portolani, Lucien Avramov. Maurizio. The Policy Driven Data Center with ACI:

Architecture, Concepts, and Methodology. s.l. : Cisco Press, 2016.

[86] Cisco Systems. isco Application Centric Infrastructure Release 2.3 Design Guide White

Paper. isco Application Centric Infrastructure Release 2.3 Design Guide White Paper. [Online]

[Cited: 12 08, 2017.] https://www.cisco.com/c/en/us/solutions/collateral/data-center-

virtualization/application-centric-infrastructure/white-paper-c11-737909.html.

[87] Rajendra Chayapathi, Syed F. Hassan, Paresh Shah. The Journey to Network Functions

Virtualization (NFV) Era. InformIT. [Online] [Cited: 12 08, 2017.]

www.informit.com/articles/article.aspx?p=2755705&seqNum=2.

[88] IETF. Service Function Chaining (SFC) Use Cases. [Online] [Cited: 11 25, 2017.]

https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06.

[89] Open Networking Foundation. Network Functions Virtualization group. [Online] [Cited:

11 28, 2017.] https://www.opennetworking.org/news-and-events/blog/our-work-with-the-

new-network-functions-virtualisation-group/?option=com_wordpress&Itemid=72.

[90] ETSI. NFV White PAper. 2012.

[91] —. Leading operators create ETSI standards group for network functions virtualization.

[Online] [Cited: 11 28, 2017.] http://www.etsi.org/index.php/news-events/news/644-2013-

01-isg-nfv-created.

[92] IETF. Service Function Chaining (SFC) Architecture. Service Function Chaining (SFC)

Architecture. [Online] [Cited: 12 08, 2017.] https://tools.ietf.org/html/rfc7665.

[93] —. Service Function Chaining (SFC) Architecture. [Online] [Cited: 11 25, 2017.]

https://tools.ietf.org/html/rfc7665.

[94] IETF . VNF Pool Orchestration For Automated Resiliency in Service Chains - draft-bernini-

nfvrg-vnf-orchestration-02. [Online] [Cited: 12 08, 2017.] https://tools.ietf.org/html/draft-

bernini-nfvrg-vnf-orchestration-02.

[95] SDXCentral. Which is Better – SDN or NFV? Which is Better – SDN or NFV? [Online] [Cited:

12 08, 2017.] https://www.sdxcentral.com/nfv/definitions/which-is-better-sdn-or-nfv/.

[96] ETSI. Network Functions Virtualisation. Network Functions Virtualisation. [Online] [Cited:

12 10, 2017.] http://www.etsi.org/technologies-clusters/technologies/nfv.

[97] Cisco Systems. Cisco Secure Agile Exchange - Solution Overview. s.l. : Cisco Live 2017,

2017.

[98] Anderson, Gunnar. Secure Agile Exchange Revealed. [Online] [Cited: 11 25, 2017.]

https://blogs.cisco.com/cloud/secure-agile-exchange-revealed.

Design of an Enterprise-Grade Software-Defined Datacenter Network

h

[99] Gill, Bob. Eight Trends Will Shape the Colocation Market in 2016. s.l. : Gartner Inc., 2016.

[100] Dell EMC Networking Solutions Engineering. Architecting a software-defined

datacenter with Big Cloud Fabric and Dell EMC ScaleIO. s.l. : Dell EMC, 2017.

[101] Big Switch . Big Switch Demo Lab. [Online] [Cited: 11 29, 2017.]

https://labs.bigswitch.com/users/login.

[102] Big Switch Networks. Next-Generation Data Center Networking at the Speed of

Virtualization. Next-Generation Data Center Networking at the Speed of Virtualization.

[Online] Big Switch Networks. [Cited: 12 10, 2017.] https://www.bigswitch.com/bringing-

physical-network-automation-and-visibility-to-vmware-virtualization-environments.

[103] Deepti Chandra. This Week: Data Center Deployment with EVPN/VXLAN. s.l. : Juniper

Networks Books, 2017.

[104] Hanks, Douglas Richard. Juniper QFX 5100 Series. s.l. : O'Reilly, 2015.

[105] Juniper Networks. Solution Guide - Infrastructure as a Service: Contrail and OVSDB. s.l. :

Juniper Networks.

[106] —. Clos IP Fabrics with QFX5100 Switches. Clos IP Fabrics with QFX5100 Switches.

[Online] [Cited: 12 12, 2017.]

https://www.juniper.net/assets/fr/fr/local/pdf/whitepapers/2000565-en.pdf.

[107] —. Using Contrail with OVSDB in Top-of-Rack Switches. s.l. : Juniper Networks, 2017.

[108] —. Contrail Service Chaining. Contrail Manual. [Online] [Cited: 11 25, 2017.]

https://www.juniper.net/documentation/en_US/contrail3.1/topics/task/configuration/servi

ce-chaining-vnc.html.

[109] —. Installing and Provisioning VMware vCenter with Contrail. Juniper Networks. [Online]

[Cited: 12 02, 2017.]

https://www.juniper.net/documentation/en_US/contrail3.0/topics/task/configuration/vcen

ter-integration-vnc.html.

[110] Cisco Systems. Cisco Application Centric Infrastructure Release 2.0 Design Guide. s.l. :

Cisco Press, 2017.

[111] Tom Edsall . ACI Aniwhere! [Online] Cisco Systems. [Cited: 11 25, 2017.]

https://blogs.cisco.com/news/aci-anywhere.

[112] IETF . OpFlex Control Protocol. OpFlex Control Protocol. [Online] [Cited: 12 02, 2017.]

https://tools.ietf.org/html/draft-smith-opflex-00.

[113] Cisco Systems. Multi Protocol BGP . Multi Protocol BGP . [Online] [Cited: 12 11, 2017.]

https://www.cisco.com/networkers/nw00/pres/3200/3200_c1_Mod5_rev1.pdf.

Design of an Enterprise-Grade Software-Defined Datacenter Network

i

[114] IETF Network Working Group . Layer 2 (L2) LISP Encapsulation Format - draft-smith-

lisp-layer2-01. Layer 2 (L2) LISP Encapsulation Format - draft-smith-lisp-layer2-01. [Online]

[Cited: 11 29, 2017.] https://tools.ietf.org/html/draft-smith-lisp-layer2-01.

[115] Sridharan M, et al. NVGRE: network virtualization using generic routing encapsulation.

s.l. : Internet Draft, IETF, 2012.

[116] Cisco Systems. Service Insertion with Cisco Application Centric Infrastructure. Service

Insertion with Cisco Application Centric Infrastructure. [Online] [Cited: 12 12, 2017.]

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-

centric-infrastructure/white-paper-c11-732493.html.

[117] —. Cisco Application Centric Infrastructure and VMware Integration . Cisco Application

Centric Infrastructure and VMware Integration . [Online] [Cited: 12 02, 2017.]

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-

centric-infrastructure/white-paper-c11-731961.pdf.

[118] Danilo Ciscato, Mark Fabbi, Andrew Lerner. Magic Quadrant for Data Center

Networking. s.l. : Gartner , 2017.

[119] Vahdat, Amin. ONS Keynote Vahdat 2017. [Online]

http://events17.linuxfoundation.org/sites/events/files/slides/ONS%20Keynote%20Vahdat%

202017.pdf.

[120] Fang, et al. Hierarchical SDN for the Hyper-Scale, Hyper-Elastic Data Center and Cloud

(Article 7). SOSR 15 , Proceedings of the 1st ACM SIGCOMM Symposium on SDN Research.

Santa Clara, CA : ACM, 2015.

[121] Yonghong Fu, Jun Bi, Senior Member, IEEE, Ze Chen, Kai Gao, Baobao Zhang, Guangxu

Chen, and. A Hybrid Hierarchical Control Plane for Flow-Based Large-Scale Software-Defined

Networks. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. 2015, Vol. 12, 2.

[122] TOCA: A Tenant-Oriented Control Architecture for Multi-domain Cloud Networks. The

18th Asia-Pacific Network Operations and Management Symposium (APNOMS). 2016.

[123] Facebook Code. Facebook Open/R - Open Routing for moder networks. Facebook

Code. [Online] [Cited: 01 02, 2018.]

https://code.facebook.com/posts/291641674683314/open-r-open-routing-for-modern-

networks/.

[124] ACM SIGCOMM 2013 - B4: experience with a globally-deployed software-defined

WAN . Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh,. s.l. : SIGCOMM13, 2013.

Design of an Enterprise-Grade Software-Defined Datacenter Network

j

[125] Vahdat, Amin. Networking Challenges for the Next Decade. [Online] Google, 2017.

http://events17.linuxfoundation.org/sites/events/files/slides/ONS%20Keynote%20Vahda

t%202017.pdf.

[126] 2016 ACM SIGCOMM - Evolve or Die: High-Availability Design Principles Drawn from

Googles Network . Ramesh Govindan, Ina Minei. Mahesh Kallahalla, Bikash Koley. Amin

Vahdat. Florianopolis, Brazil : ACM, 2016. 978-1-4503-4193-6 .

[127] Fang, Luyuan. Hierarchical SDN to Scale the DC/Cloud to Tens of Millions of Endpoints

at Low Cost. IETF 91, SDNRG. 2014.

[128] Code, FB. Disaggregate: Networking recap. FB Code. [Online] Facebook, 2017. [Cited:

01 02, 2018.] https://code.facebook.com/posts/1887543398133443/disaggregate-

networking-recap/.

[129] McKeown, Nick. Programming the Forwarding Plane. Stanford University Forum.

[Online] Stanford University. [Cited: 01 20, 2018.]

https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf.

[130] SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching

ASICs. Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, Minlan Yu. Los Angeles :

Proceedings of SIG- COMM ’17, 2017.

[131] Making Stateful Layer-4 Load Balancing Fast and Cheap . Making Stateful Layer-4 Load

Balancing Fast and Cheap . [Online]

http://conferences.sigcomm.org/sigcomm/2017/files/program/ts-1-2-silkroad.pptx.

[132] IDC. Software-Defined WAN (SD-WAN) Survey,. s.l. : IDC, 2017.

[133] McGillicuddy, Shamus. Establishing a Path to the network-ready SD-WAN. [Online]

EMA, 2018. [Cited: 02 02, 2018.]

https://d3v6gwebjc7bm7.cloudfront.net/event/15/66/20/0/rt/1/documents/resourceList

1516642391548/emafuturewanfinal1516642428742.pdf.

[134] Andreessen, Marc. Why Software Is Eating The World. The Wall Street Journal.

[Online] The Wall Street Journal, August 20, 2011. [Cited: 03 27, 2018.]

https://www.wsj.com/articles/SB10001424053111903480904576512250915629460.

[135] A Koshibe, A Baid, I Seskar. Towards Distributed Hierarchical SDN Control Plane. First

International Conference in Modern Networking Technologies (MoNe Tec). 2014.

[136] A Purpose-built global network: Google's move to SDN - A discussion with Amin

Vahdat,David Clark, and Jennifer Rexford. ACM Queue. 3, s.l. : Communications of the ACM,

2016, Vol. 59.

Design of an Enterprise-Grade Software-Defined Datacenter Network

k

[137] Bin Zhang, Pengfei Zhang, Y. Zhao, Yongkun Wang, Xuan Luo, Yaohui Jin,. Co-Scaler:

Cooperative scaling of software-defined NFV service function chain. 2016 IEEE Conference

on Network Function Virtualization and Software Defined Networks (NFV-SDN),. 2016.

[138] Vahdat, Amin. Google's Networking Lead Talks SDN Challenges for the Next Decade.

Linux.com. [Online] [Cited: 01 20, 2018.] https://www.linux.com/blog/event/open-

networking-summit/2017/5/networking-challenges-next-decade.

[139] Pat Bosshart†, Dan Daly*, Glen Gibb†, Martin Izzard†, Nick McKeown‡, Jennifer

Rexford**, Cole Schlesinger**, Dan Talayco†, Amin Vahdat¶, George Varghese§, David

Walker**. P4: Programming Protocol-Independent Packet Processors. ACM SIGCOMM

Computer Communication Review. July, 2014, Vol. 4, 3.

	Table of Figures
	List of Tables
	1 Introduction
	1.1 Abstract
	1.2 Organization of the document
	1.3 Scope of the document
	1.4 Abbreviations, acronyms and Descriptions
	1.5 Main Revisions and Release Plan

	SECTION I - DATACENTER NETWORK REQUIREMENTS
	2 High level Requirements
	2.1 Abstract
	2.2 Business requirements
	2.2.1 Effective and efficient
	2.2.2 Ability to change
	2.2.3 Improve business operations
	2.2.4 Secure
	2.2.5 Cost Effective
	2.2.5.1 CAPEX and OPEX

	2.3 Enterprise Requirements
	2.3.1 IT Service Management
	2.3.2 Service Catalogue
	2.3.3 Service monitoring / Reporting
	2.3.4 Information/lifecycle management

	2.4 Business User requirements
	2.4.1 The disappear of the work-place
	2.4.1.1 Consumerization of IT and BYOD
	2.4.1.2 From Location-based to Mobile-Centric

	2.5 Software Development requirements: Dev/OPS and Infrastructure as Code
	2.5.1 From Waterfall to CI/CD
	2.5.1.1 Continuous Integration
	2.5.1.2 Continuous Delivery
	2.5.1.3 Continuous Deployment
	2.5.1.4 How They Work Together

	2.5.2 The Dev/Ops approach
	2.5.2.1 Dev Vs Ops
	2.5.2.2 Infrastructure as code

	2.6 Security
	2.6.1 Security Controls

	2.7 Business Continuity
	2.7.1 Disaster Recovery

	2.8 Other requirements
	2.8.1 Government Regulations
	2.8.2 Regulatory and other compliance Requirements
	2.8.3 Support to Legacy Systems
	2.8.4 Restrictions on Encryption
	2.8.4.1 Use of Cryptography
	2.8.4.2 Import of Cryptography
	2.8.4.3 Export of Cryptography

	2.8.5 Restrictions on specific Data flows

	3 Datacenter network-specific Requirements
	3.1 Abstract
	3.2 From Distributed to Centralized Networking in the Datacenter
	3.2.1 Historical background
	3.2.2 Distributed vs centralized networking in the datacenter
	3.2.3 The need of a new approach to network management
	3.2.4 The shift in datacenter traffic pattern: from North-South to East-West
	3.2.5 Centralize the control plane

	3.3 Inadequacies in Today’s Datacenter Networks
	3.3.1 MAC Address Explosion
	3.3.2 Number of VLANs
	3.3.3 Spanning Tree

	3.4 Agility with Stability
	3.5 Failure Recovery
	3.6 Dynamic infrastructure Delivery Model
	3.6.1 Cloud computing Classifications
	3.6.2 Service delivery Models
	3.6.2.1 IaaS
	3.6.2.2 PaaS
	3.6.2.3 SaaS

	3.6.3 Deployment Models
	3.6.3.1 Public Cloud
	3.6.3.2 Private Cloud
	3.6.3.3 Hybrid Cloud

	3.6.4 Containerization and Micro-segmentation
	3.6.5 Multitenancy
	3.6.6 Resource-location driven network topology
	3.6.7 Infrastructure Automation and Orchestration
	3.6.8 Zero Touch Provisioning (ZTP)

	3.7 Carrier neutrality

	SECTION II - DATACENTER NETWORK SPECIFICATIONS AND DESIGN TOOLS
	4 Design Principles
	4.1 Abstract
	4.2 Architecture principles
	4.3 A model for the Datacenter Network Topology
	4.4 The three pillars of a modern DCN
	4.5 Orchestration and dynamic resource allocation
	4.6 Distributed Datacenter and Business Continuity Model

	5 Network Topologies for the DCN
	5.1 Abstract
	5.2 Datacenter network topologies
	5.2.1 Taxonomy of DCN topologies
	5.2.2 Comparison of topologies
	5.2.2.1 Comparison of Scale
	5.2.2.2 Comparison of performances

	5.3 Clos Networks
	5.3.1 The first appearance of Clos Networks: the telephony systems
	5.3.1.1
	5.3.1.2 Clos networks architecture
	5.3.1.3 Clos Theorem

	5.3.2 The second appearance of Clos Networks: within Network Switches
	5.3.3 The Datacenter Network Journey
	5.3.3.1 Fat-tree topology
	5.3.3.2 Design using active/active pair of links

	5.3.4 The third appearance of Clos Networks: Spine-Leaf Architecture in DCN
	5.3.5 POD-based design
	5.3.6 Top-Of-Rack (ToR)

	5.4 Modern Massively Scalable Datacenters examples
	5.4.1 Amazon Datacenter Network Topology
	5.4.1.1 Design parameters
	5.4.1.2 Deployment Unit
	5.4.1.3 Amazon POD
	5.4.1.4 AWS DCN

	5.4.2 Facebook Datacenter Network Topology
	5.4.2.1 Deployment unit
	5.4.2.2 FB Spine switch equivalent
	5.4.2.3 FB POD
	5.4.2.4 FB DCN Topology

	5.4.3 Google Datacenter Network Topology
	5.4.3.1 Google DCN
	5.4.3.2 Deployment unit – Centauri reconfigurable chassis
	5.4.3.3 Middle Block
	5.4.3.4 Spine Block
	5.4.3.5 Aggregation Block - Tier 1
	5.4.3.6 The Jupiter DCN Topology

	5.4.4 Other topologies
	5.4.4.1 Microsoft Azure Network Topology
	5.4.4.2 Oracle Cloud
	5.4.4.2.1 Datacenter network (Availability Domains)
	5.4.4.2.2 Regions

	5.4.5 Comparison of the MSDC topologies
	5.4.5.1 Architecture
	5.4.5.2 Size
	5.4.5.3 Performance

	6 Network Virtualization
	6.1 Abstract
	6.2 Rise of virtualization
	6.3 Properties of network Virtualization in the Datacenter
	6.3.1 Switch systems Virtualization
	6.3.1.1 Virtual Switching System (VSS)
	6.3.1.2 Stacking

	6.3.2 Access-Link Virtualization
	6.3.2.1 LACP
	6.3.2.2 Virtual Port Channel

	6.3.3 VLANs
	6.3.4 Network overlays
	6.3.4.1 L2 in L2 - Cisco Fabricpath
	6.3.4.2 L2 in L4 – VXLANs
	6.3.4.3 Other overlays

	6.4 Virtualization of the network processes
	6.4.1 vDCs
	6.4.2 VRFs

	7 Software Defined Networking
	7.1 Abstract
	7.2 Data, control and management planes in network switches
	7.3 Why SDN?
	7.3.1 Forerunners of SDN
	7.3.2 The Evolution of Network Switches

	7.4 What is SDN?
	7.4.1 The Five Goals of SDN
	7.4.2 SDN Classification

	7.5 Classical SDN
	7.5.1 Forwarding Domain: SDN Switches (using OpenFlow)
	7.5.1.1 Southbound API Layer
	7.5.1.2 Abstraction Layer and Flow Tables
	7.5.1.3 Forwarding Layer
	7.5.1.4 Network Abstracted model
	7.5.1.5 Proactive vs reactive Flows

	7.5.2 SDN Controller
	7.5.2.1 SDN Controller Core operations
	7.5.2.2 Northbound protocols

	7.5.3 Applications and Orchestrations Domain
	7.5.4 Big Switch Big Cloud controller (BCF): an example of Open/SDN Solution

	7.6 VXLAN and SDN based on Overlays
	7.6.1 Introduction
	7.6.1.1 Main features of Overlays in the DCN
	7.6.1.2 Classification of overlays

	7.6.2 VXLAN Key Concepts
	7.6.2.1 VXLAN Network Identifier
	7.6.2.2 Host-based VXLAN Tunnel Endpoint
	7.6.2.3 Network-based VXLAN Tunnel Endpoint
	7.6.2.4 VXLAN pros and cons
	7.6.2.5 Network Discovery and Overlays
	7.6.2.6 VXLAN control and management plane
	7.6.2.6.1 OVSDB
	7.6.2.6.2 EVPN
	7.6.2.6.3 XMPP

	7.6.3 Juniper Networks Contrail: an example of Overlay-based SDN

	7.7 Hybrid SDN / SDN on API
	7.7.1 Programmable SDN via Device API
	7.7.2 Programmable SDN via Controller API
	7.7.2.1 Controller API in the WAN: SD-WAN use-case
	7.7.2.2 Controller API in the Datacenter: OpenDayLight

	7.7.3 Hybrid SDN via Policy API
	7.7.4 Cisco APIC-DC: an example of SDN via Policy API
	7.7.4.1 Cisco APIC model and promise theory
	7.7.4.2 Physical Topology Model

	8 Network Functions Virtualization
	8.1 Abstract
	8.1.1 The transition to Network Function Virtualization
	8.1.2 The need of a modern Architectural framework

	8.2 The NFV Framework
	8.2.1 The three criteria of ETSI NFV
	8.2.2 The High Level ETSI NFV Framework
	8.2.3 NFVI and resource sharing
	8.2.4 Main advantages of NFV

	8.3 Network Function Chaining
	8.3.1 SFC Architecture
	8.3.1.1 SFC Architecture principles
	8.3.1.2 SFC Service Function Chain Classification and Encapsulation
	8.3.1.3 Network Service Header (NSH)
	8.3.1.4 Metadata

	8.3.2 SFC Use Cases in the DCN
	8.3.2.1 North-South Traffic
	8.3.2.2 East-west traffic
	8.3.2.3 Multi-tenancy

	9 Datacenter Network as a Service with SDN, NFV and NFC
	9.1 Abstract
	9.2 SDN and NFV
	9.3 Network as a Service
	9.3.1 Virtual Infrastructure build
	9.3.2 Enable Network Self-management and monitor

	9.4 Security Considerations

	SECTION III - DESIGN OF AN ENTERPRISE DATACENTER NETWORK
	10 The Distributed Datacenter Model (DDC)
	10.1 Abstract
	10.2 Applications and services landscape
	10.2.1 Colocation and Cloud computing in the enterprise
	10.2.2 Service Access Exchange

	10.3 Distributed Datacenter Topology Diagram
	10.4 Service Space
	10.4.1 Private Datacenters
	10.4.1.1 Technical Integration and Management (TIAM)
	10.4.1.2 Network Services
	10.4.1.3 Storage
	10.4.1.4 Security Services
	10.4.1.5 Disaster Recovery model
	10.4.1.5.1 Sacrificial UAT
	10.4.1.5.2 ISO DR Section
	10.4.1.5.3 DR Test
	10.4.1.5.4 Real DR invocation

	10.4.2 IaaS Services
	10.4.3 PaaS/SaaS Services
	10.4.4 Shared Services
	10.4.4.1 DNS and IPAM
	10.4.4.2 NTP
	10.4.4.3 Authentication, Authorization and Identity Management
	10.4.4.4 Service Aggregation and Orchestration

	10.5 User Space
	10.5.1 Internal Users
	10.5.1.1 MPLS/WAN
	10.5.1.2 VPN/Remote access

	10.5.2 3rd Parties/Partners connectivity
	10.5.3 External Users, Customers

	10.6 Distributed Datacenter Global Network

	11 High-Level Design of an Enterprise Grade Software Defined Datacenter network
	11.1 Abstract
	11.2 DDC
	11.2.1 High Level Design
	11.2.2 Service Provider Network (SPN)
	11.2.3 Inter-Zone Gateway

	11.3 Private Datacenter
	11.3.1 Summary of the Specifications
	11.3.2 DCN Contexts
	11.3.2.1 CORE
	11.3.2.2 DCI
	11.3.2.3 Production
	11.3.2.4 Non-Production
	11.3.2.5 DMZ
	11.3.2.6 Isolated Test

	11.3.3 PROD/DEV Datacenter network topology
	11.3.4 UAT/DR Datacenter Network Topology
	11.3.5 Private DCN Network Functions
	11.3.5.1 Stateful Firewall
	11.3.5.2 Application-Aware Firewall
	11.3.5.3 Load Balancer / Reverse Proxy
	11.3.5.4 Tap

	11.3.6 DCN Network Function Chains
	11.3.6.1 Multi-purpose Firewall
	11.3.6.2 Application-Level Gateway

	12 Classical SDN Design using Big Switch Big Cloud Fabric
	12.1 Abstract
	12.2 DCN Physical Topology
	12.2.1 Oversubscription
	12.2.2 Scalability and bi-sectional bandwidth
	12.2.3 Racks per pod
	12.2.4 Network components

	12.3 Logical View of the Enterprise private DCN using BCF
	12.3.1 Key logical components
	12.3.2 Primary Datacenter
	12.3.2.1 Intra-tenant routing
	12.3.2.2 Inter-tenant routing

	12.3.3 Secondary Datacenter
	12.3.3.1 Intra-tenant routing
	12.3.3.2 Inter-tenant routing

	12.4 Network Function Chaining
	12.4.1 Virtual Network Functions
	12.4.2 Context Firewall
	12.4.2.1 Intra-Tenant Firewall
	12.4.2.2 Inter Tenant Firewall

	12.4.3 Context Firewall + Load Balancing SFC

	12.5 Integration with VMWare vSphere

	13 Overlay-based Design using Juniper Contrail
	13.1 Abstract
	13.2 DCN Underlay
	13.2.1 Physical topology
	13.2.1.1 Oversubscription
	13.2.1.2 Scalability and bi-sectional bandwidth

	13.2.2 Routing Options for the underlay
	13.2.2.1 eBGP or iBGP
	13.2.2.2 eBGP Design
	13.2.2.3 Routing for the Primary and Secondary DCN underlay

	13.3 DCN Overlay
	13.3.1 Virtual network
	13.3.2 Network policies
	13.3.3 vRouter
	13.3.4 Integration with ToR Switches (using OVSDB)

	13.4 Logical view of the Enterprise private DCN using Contrail
	13.4.1 Primary Datacenter
	13.4.1.1 Intra-tenant routing
	13.4.1.2 Inter-tenant routing

	13.4.2 Secondary Datacenter
	13.4.2.1 Intra-tenant routing
	13.4.2.2 Inter-tenant routing

	13.5 Network Function Chaining
	13.5.1 NFC Modes
	13.5.2 NFC Elements
	13.5.3 Types of Service Chaining
	13.5.3.1 VNF Chaining (V-NFC)
	13.5.3.2 PNF Chaining (P-NFC)
	13.5.3.3 Hybrid NFC (H-NFC)

	13.6 Integration with VMWare vSphere
	13.6.1 vCenter-only mode
	13.6.2 vCenter-as-Compute Mode

	14 Intent-based design using Cisco ACI
	14.1 Abstract
	14.2 Key components
	14.2.1 Cisco ACI Operating System
	14.2.2 Physical Topology
	14.2.2.1 APIC Controller Connectivity
	14.2.2.2 External connectivity (Border Leaf)
	14.2.2.3 Border Leaf Switch Design Consideration

	14.2.3 The policy Object model
	14.2.3.1 Tenants
	14.2.3.2 Contexts
	14.2.3.3 Endpoint groups
	14.2.3.4 Contracts

	14.2.4 The southbound protocol: OPFlex
	14.2.5 ACI Routing and Pervasive Gateway
	14.2.6 ACI Forwarding
	14.2.7 Service Function Chaining
	14.2.7.1 Service insertion
	14.2.7.2 Service graph

	14.3 DCN Physical Topology
	14.3.1 Design options
	14.3.2 Oversubscription
	14.3.3 Scalability and bi-sectional bandwidth
	14.3.4 DCN Design
	14.3.5 ToR to Spine Connection

	14.4 Logical View
	14.4.1 Tenants
	14.4.2 Primary Datacenter
	14.4.3 Secondary Datacenter
	14.4.4 PROD and DEV Web Application
	14.4.4.1 End-to-end access to DEV and PROD

	14.5 Integration with VMWare vSphere

	15 Comparison of the high-level designs
	15.1 Abstract
	15.2 Criteria
	15.3 Physical infrastructure
	15.3.1 Evaluation Parameters
	15.3.2 Reference model for the physical DCN
	15.3.3 Design performances
	15.3.4 Benchmarking
	15.3.4.1 Big Switch BCF
	15.3.4.2 Juniper Contrail
	15.3.4.3 Cisco ACI

	15.4 Network Control Plane (SD-Layer)
	15.4.1 Evaluation parameters
	15.4.2 Benchmarking
	15.4.2.1 Big Switch BCF
	15.4.2.2 Juniper Contrail
	15.4.2.3 Cisco ACI

	15.5 Network Function Chaining and micro-segmentation
	15.5.1 Evaluation parameters
	15.5.2 Benchmarking
	15.5.2.1 Big Switch BCF
	15.5.2.2 Juniper Contrail
	15.5.2.3 Cisco ACI

	15.6 Orchestration
	15.6.1 Evaluation parameters
	15.6.2 HLD performances
	15.6.2.1 Big Switch BCF
	15.6.2.2 Juniper Contrail
	15.6.2.3 Cisco ACI

	15.7 Gartner Report for Datacenter Networking (2017)
	15.7.1 Market Directions
	15.7.1.1 The CLI Is Dead; the API Is Cool
	15.7.1.2 Value Continues to Shift Toward Software
	15.7.1.3 Fabrics Are the New Normal
	15.7.1.4 Analytics and Intent-Based Networking
	15.7.1.5 Open Networking
	15.7.1.6 Disaggregation/Brite Box
	15.7.1.7 Hyper Converged Integrated Systems (HCISs)
	15.7.1.8 Containers

	15.7.2 Magic Quadrant
	15.7.3 Big Switch BCF
	15.7.3.1 Description
	15.7.3.2 Strengths
	15.7.3.3 Cautions

	15.7.4 Juniper Networks
	15.7.4.1 Description
	15.7.4.2 Strengths
	15.7.4.3 Cautions

	15.7.5 Cisco ACI
	15.7.5.1 Description
	15.7.5.2 Strengths
	15.7.5.3 Cautions

	16 Future Developments
	16.1 Abstract
	16.2 Google SDN
	16.2.1 The four pillars
	16.2.2 Google Espresso
	16.2.3 The six high availability principles

	16.3 Microsoft Azure and HSDN
	16.3.1 Challenges
	16.3.1.1 Brite boxes switches
	16.3.1.2 ECMP forwarding
	16.3.1.3 Cloud Scaling

	16.3.2 Hierarchical SDN goals
	16.3.3 Microsoft H-SDN Architecture
	16.3.3.1 Forwarding
	16.3.3.2 Control plane

	16.4 Facebook SDN
	16.4.1 Abstract the network
	16.4.2 Forwarding plane programmability
	16.4.2.1 Network visibility (In-band network telemetry)
	16.4.2.2 L4 Load Balancing

	16.4.3 FB Disaggregated datacenter

	16.5 SD-WAN
	16.5.1 Introduction
	16.5.2 Software-Defined WAN
	16.5.3 SD-WAN as an enabler for the Cloud
	16.5.4 The future of SD-WAN

	16.6 Stitching all together: a future Enterprise Software-Defined Network
	16.6.1 Evolutions of the Enterprise SDN
	16.6.2 A possible topology for the future Enterprise DCN
	16.6.3 SD-DCNs and SD-SAE
	16.6.4 SD-WAN
	16.6.5 Integrate SD-WAN and SD-DCN policies
	16.6.6 Enterprise Network Orchestrator
	16.6.7 The frontier: Self-managed software-defined datacenter

	17 Bibliography

		Politecnico di Torino
	2018-04-02T07:46:28+0000
	Politecnico di Torino
	Marco Giuseppe Ajmone Marsan
	S

