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Chapter 1

Introduction

The effects of external radiations on electronic systems are becoming more and more evident
with the scaling of the technologies used to produce integrated circuits; in order to reduce
these effects, particular techniques are applied during the design and the production of the
electronic devices. These problems are crucial for the following fields:

❼ Automotive;

❼ Space;

❼ High Energy Physics;

Because of the low cost and the high versatility of FPGAs, these devices are replacing
custom solutions and radiation hardened microcontrollers in electronic systems working in
harsh radiation environments; especially for what concerns the high energy physics experi-
ments, the high bandwidth guaranteed by commercial SRAM-based FPGAs is particularly
useful for the Readout electronics.

Despite these advantages, a microcontroller able to easily perform common automation
jobs, like communicating with other systems, could be necessary in order to avoid the
growing of firmware complexity for FPGAs-based systems; for this reason, Soft Cores are
programmed on FPGAs.

The usage of soft microcontrollers in harsh radiation environments requires the appli-
cation of specific techniques with the object of reducing the possibility of a misbehavior
during the operational time of the device.

The purpose of this study is, starting from a core already designed and tested at func-
tional level, to explore the techniques that could be applied in order to harden the core using
both commercial tools and custom approaches. The whole research has been performed in
the framework of the ITS (Inner Tracking System) Detector update for the ALICE experi-
ment; the design has been developed and tested on a Kintex Ultrascale XCKU040 FPGA
from Xilinx.
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1 – Introduction

1.1 Basic concepts on SRAM-based FPGA

A Field Programmable Gate Array (FPGA) is a programmable device with the peculiarity
of guaranteeing a huge quantity of available logic with respect to the previous technologies;
there are different types of technologies used to produce an FPGA:

❼ Antifuse technology: one-time programmability, the antifuse is naturally acting as
open circuit and when programmed it turns into a short circuit;

❼ Flash tecnology: same tecnology as Nand Flash, it is reprogrammable but for a limited
amount of time. The programmed firmware is mantained even with power cycle;

❼ Static RAM (SRAM) technology: same technology as Static Ram, reprogrammable
an infinite amount of time but the programmed firmware is volatile with respect to
power cycles;

A huge percentage of modern FPGAs are based on SRAM technology because it’s
cheaper and guarantees higher performances; in order to remove the problem of the firmware
volatility some on-board solution can be applied, like automatically programming the FPGA
at power-up using a memory chip to store the bitstream.

The general architecture of an SRAM-based FPGA is composed by:

❼ IOBs: Input/Output Blocks of the system, at least composed by the pins needed to
reprogram the FPGA;

❼ CLBs: Configurable Logic Blocks, used to implement the logic functions. Their
architecture may differ depending on the FPGA used;

❼ Routing resources: used to connect CLBs to CLBs and CLBs to IOBs;

Because the testing platform for the final design will be a Kintex Ultrascale, the internal
structure of this FPGA family will be discussed.

1.1.1 Kintex Ultrascale

The Ultrascale family is similar to the other Xilinx FPGAs in the general blocks organiza-
tion; the CLBs are disposed in arrays, surrounded by IOBs and everything is interconnected
through routing switches, usually made with pass transistor technology, that form the Gen-
eral Routing Matrix (GRM); in each intersection between a vertical and an horizontal
channel a routing resource is inserted. There are other types of logic elements composing
common Xilinx FPGAs arhictectures like:

❼ Block RAM (BRAM): particularly useful when huge amounts of memory are required;

❼ Delay-Locked Loops (DLL): used for delay compensation in clock distribution;

❼ Phase-Locked Loops (PLL): used to obtain different clock frequencies and reduce skew
problems in clock distribution;

8



1 – Introduction

❼ Digital Signal Processor (DSP): used to implement complex arithmetic functions with
high performances;

The particularity of the Ultrascale family with respect to other FPGAs from Xilinx
is the structure of the CLB block; the number of inputs is dependent on the number of
outputs defined, if there is only one output then the inputs are 6 while if there are 2 outputs
the maximum number of inputs is 5. The internal resources of a single CLB are shown in
the image below:

Figure 1.1. Internal structure of a CLB cell [11].

Another important circuit is the one that composes a routing resource, even called switch
point; usually, a programmable routing element is implemented using 6 pass transistor in
order to allow all the output directions. The image below shows the typical structure of a
unit:

Figure 1.2. Internal structure of a switch point, the gate of each switch is driven by the
content of a configurable SRAM memory cell

9



1 – Introduction

1.2 Radiation effects on electronics

The effects of the external radiations on electronic circuits are chategorized in the following
way:

❼ Cumulative Effects:

– Total Ionizing Dose;

– Cumulative Displacement;

❼ Single Event Effects (SEE):

– Soft Errors:

✯ Single Event Upset (SEU):

➲ Single Bit Upset (SBU);

➲ Multiple Bit Upset (MBU);

➲ Single Error Functional Interrupt (SEFI);

✯ Single Event Transient (SET);

– Hard Errors:

✯ Single Event BurnOut (SEBO);

✯ Single Event Gate Rupture (SEGR);

✯ Single Event Latchup (SEL);

1.2.1 Cumulative Effects

TID The first type of cumulative effects are taking place for the whole lifetime of the
device and they will produce a misbehavior only if the total ionizing radiaton received
(TID) is higher than the maximum tolerated from the device. The TID is the measure of
the ionizing energy deposited by the radiation that passes through the device, the official
measurement unit is Gray (Gy) even if in many applications is used the rad; the equivalence
between the two units is: 1Gy = 100rad.

The effects of TID are the following:

❼ Accumulation of electron-hole pairs in the oxide part of the MOS structure because of
the ionizing energy deposited by the radiation; the recombination rate of these pairs is
low in the oxide structure and even lower if the MOS is polarized, for these reasons the
particles start to drift inside the electric field until the electrons will leave the oxide
while the holes will be trapped creating defects in the structure. The accumulation
of the holes will polarize, negatively or positively depending on the type of transistor,
the MOS structure modifying its behavior;

❼ Accumulation of defects in the interface between the semiconductor and the oxide.
This effect will modify the mobility of the electrons inside the conductive channel of
the MOS structure and modify the threshold voltage of the transistor;

10



1 – Introduction

The main difference between the two effects is that the first one generates very fast and
can be reduced heating up the material to 400◦C while the second one generates slowly but
cannot be reduced with high temperatures.

Figure 1.3. The first three images show the effect of the pairs generation inside the oxide,
the last one the defects generation at the interface between oxide and silicum

Cumulative Displacement Another type of cumulative effects is called displacement, it
is based on the quantity of energy transferred by the impact of particles to the semiconduc-
tor lattice; if the energy tranferred is higher than the displacement energy than the atom
will be removed from its original position in the lattice and this will change the electrical
parameters of the electronic device, worsening the performances.

1.2.2 Single Event Effects

SEEs are taking place because of a single particle hitting the device and generating an error
in the circuit, not because of the cumulation of the radiation effects. The rising of a SEE
error is directly dependent on the quantity of energy transferred by the particle that is
hitting the silicum, this quantity is called Linear Energy Transfer (LET ) and is expressed
as MeV cm2 g−1; the maximum quantity of energy that is not creating a bit flip is named
LETth.
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1 – Introduction

These effects can be divided in two categories:

❼ Soft Errors: bit flip in the value stored by a memory cell, this cell could be both related
to logic or configuration memory. Some particular techniques can be implemented in
order to detect and mask this errors and in any case, after a power cycle, the system
returns to work correctly;

❼ Hard Errors: permanent damage to the device, the device cannot work properly
anymore;

Figure 1.4. Effects of a particle when hits a MOSFET, the image shows the
electron-hole pairs generated.

Soft Errors

SET The SET is a current or voltage spike produced by a particle hitting the material,
this kind of event causes an error only if the transient change of logic value in the circuit is
sampled by a memory element. Because the arising of a SET is strongly dependent on the
timing of the event, it is hard to estimate the probability of an error.

SEU The SEU is produced by a particle hitting the depletion region of a p-n junction,
this event will generate electron-hole pairs that means a current spike flowing in the struc-
ture. An SRAM cell is composed by two inverters, both composed by two transistors; a
particle hitting one of the MOS transistor provokes a state change that will force the same
effect on the opposite inverter and this will produce a flip of the stored content value. The
probabilty of having a SEU in a device is called Cross-Section, it is expressed as σ = Nevents

Φ
,

where Φ is the fluence, and is measured in cm2. The value used for the fluence depends on
the type of particles that hit the device:

❼ If the particles are protons than the fluence is independent from the angle of incidence;
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1 – Introduction

❼ If the particles are heavy ions than the fluence is dependent from the angle of incidence
and the new fluence used to evaluate the Cross-Section is: Φs = Φcos(θ);

SEUs are classified depending on the effects that they have on the memory content of
the affected device:

❼ Single Bit Upset: the particle flips the content of only one memory cell;

❼ Multiple Bit Upset: the particle flips the content of more than one memory cell. The
reasons could be:

– A particle that hits more than one memory cell in sequence;

– A particle that hits a region common to many memory cells;

– The secondary particles generated from the first hit generate a second event on
another memory cell;

❼ Single Event Functional Interrupt: the particle creates an event on the circuitry
related to power-on, reset or Joint Test Action Group (JTAG) interface;

Hard Errors

SEL The SEL is produced by a particle hitting a CMOS structure and activating the
positive feedback structure formed by the parasitic BJTs shown in the image below.

Figure 1.5. Parasitic BJTs in a CMOS structure. The first is a pnp based on the p-mos
source and on substrate while the second one is a npn with collector corresponding to
CMOS well, base to substrate and emitter to the n-mos one.

An increase of the collector current of the pnp transistor rise up the base current for
the npn transistor that is directly connected to the base of the pnp one, this mechanism is
a positive feedback that will increase the current. The effect of a SEL is dependent on the
resistance of the parasitic structure, it can be:

❼ Fatal: current density exceeds the maximum safe value;

❼ Temporal: higher heat imply higher current consumption, in this case a power cycle
can restore the circuit;
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1 – Introduction

SEBO The SEBO is an effect related to the presence of Bipolar Junction Transistor
(BJT) in the device analyzed; usually this problem can be related to power MOSFETs
because of the parasitic BJT present right under the source. A particle, hitting the p-type
substrate right under the source, will generate a base current turning on the device and
will lead to overheat and destruction of the structure.

Figure 1.6. Typical Structure of a Vertical Power MOSFET

SEGR The Single Event Gate Rupture (SEGR) is caused by an accumulation of
charges in the semiconductor beneath the oxide of a MOSFET; this process will enhance the
electric field through the silicum dioxide, the leakage current will raise and the overheating
process, caused by the high current density, could damage the insulator and the device in
a permanent way.

1.2.3 SEE in SRAM-based FPGA

The SRAM-Based FPGAs CRAM and BRAMs are composed by a huge quantity of memory
cells that can be affected by external radiations, for this reason this type of devices is
particularly susceptible to SEEs. Considering a particle hitting an SRAM cell, an upset
could affect:

❼ Routing Logic: one of the SRAM cells driving a pass transistor;

❼ CLBs LUT: one of the SRAM cells related to the internal functional logic resulting
in a behavioral change;

❼ User memory: one of the SRAM cells used for data storage;

❼ IOBs: an upset could change the driver behavior related to an I/O pin;

Even if most of an SRAM-based FPGA resources are susceptible to SEEs, a huge part of
the configuration memory is not used, for this reason a lot of events will not compromise
the correct behavior of the design. The configuration memory bits significants for a design
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1 – Introduction

are called essential bits and are, usually, a low percentage of the whole CRAM; this means
that the probability of having a SEU must be weighted in order to estimate the effects on
the design used.

Using extensive characterization, the CRAM and the BRAMs cross-sections have been
evaluated for 20 nm Ultrascale technology:

CRAM BRAM

σ( cm
2

bit
) 2.55E-15 4.43E-15

Table 1.1. Ultrascale Cross-Sections
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1 – Introduction

1.3 Inner Tracking System (ITS)

The ITS is a complex electronic system part of LHC ALICE experiment that aims to study
heavy-ions collisions, at a centre-of-mass energy of ∼ 5.5TeV per nucleon [8]. It has the goal
of studying the behavior of dark matter at high densities and temperature. Inner Tracking
System is devoted to the data taking part. During the next years an update of the system
will be performed to reach the following structure composed by 3 regions of sensors:

❼ Inner barrel: 3 internal layers;

❼ Middle barrel: 2 internal layers;

❼ Outer barrel: 2 internal layers;

Each part is characterized by a specific mechanical arrangement of the sensors around the
beam axis. This sensing region communicates with the external world using dedicated
busses. The Readout Electronics (RE) works as interface between staves and readout, con-
trol and trigger system of ALICE experiment. From the experiment point of view, it aims
to collects the data from the sensors, organizes them in order to be easily readable and sends
them through e-links (fiber optical communication protocol) to the Common Readout Unit
(CRU). A more detailed explanation of the Readout Electronics is performed in appendix
A.2.1.

RE will be positioned in the cavern close to particles accelerator and sensing electron-
ics, this means that is needed to verify its behavior in an harsh radiation environment.
Depending on the type of components and instruments considered, the main effects caused
are different. The Readout Electronics will use Kintex Ultrascale XCKU060 FPGA as main
component of the system. For SRAM-based FPGAs the main problems are caused by SEUs
and not by TID [9], this means that some techniques must be applied in order to reduce
the impact of events during the operational life of the design.
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Chapter 2

Core selection and implementation

The main topic of this chapter is to select an Instruction Set Architecture (ISA) and then
a core compliant with the specifications received. At first the specifications considered
during the selection process are discussed, then some open-cores will briefly described and
compared in order to select the targeted device. To reduce the time needed to design, test
and validate the core, the research will focus on an already implemented netlist based on
the chosen ISA. In order to ease the usage of this design on the targeted FPGA, a toolchain,
that performs all the operations needed to obtain a working bitstream, is built.

2.1 Core specifications

The object is to obtain a core with the following characteristics:

❼ Low resource utilization: in order to reduce the quantity of essential bits related to
the core implementation, is fundamental to use a small core;

❼ Automation purposes: because the processor should be used only to run simple appli-
cation, complex units like Floating Point Unit (FPU) or Coprocessors are not needed.
However, in order to target future applications, it would be good to have a core easily
extendable in his functions;

❼ C compiler available: in order to easily program the core, an already available C
compiler is fundamental;

❼ Free from patents: not only the core but even the ISA must be completely open;

2.1.1 Survey on available architectures

A lot of different open cores already implemented are available for the usage, the analysis
will focus only on some of them. Targeting very poor cores in terms of resources leads to
low parallelisms, like 8 or 16 bits; the problem of this architectures is that many of them
are owned by companies or that no C compiler is available.
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Atmel AVR An example of 8-bit microcontroller is the one developed by Atmel in ’96;
the AVR family is based on a Reduced Instruction Set Computer (RISC) architecture.
These microcontrollers were particularly popular because one of the firsts implementing
flash-based memory instead of the previous technologies used for non-volatile applications.
A C compiler is present for these devices. Some RTL netlists have been designed and
published as open-cores.

MIPS MIPS processors are based on a superscalar, RISC architecture and the parallelism
of the busses could be 32 or 64 bits; these types of devices were particularly popular
during the 90’s where a lot of general computing systems used processors based on this
architecture, lately the usage reduced to some particular applications. Around the end
of the 90’s, these devices were dominant in the embedded market. Since the release of
the first version, many upgrades have been published reaching the actual implementation
called MIPS32/64. For this latest release a superset architecture has been designed, it
is called microMIPS32/64 and adds the support to 16-bits instructions. There are a lot
of Application Specific Extensions that are used to introduce functionalities related to
particular applications, to this category are related, for example, MIPS implementation
for multi-threading, microcontrollers and DSPs. The license for MIPS architectures is now
owned by Imagination Techlogies, that acquired MIPS technologies.

OpenSPARC The OpenSPARC project is based on a family of microprocessors RISC-
based with a parallelism of 64-bits, these processors are particularly used in applications
where multi-threading is particularly important, such as servers. The first core belonging to
this family is based on the UltraSPARC T1, a device commercialized by Sun Microsystems
in 2005; after some months the company decided to publish, with an open-source license, the
design files related to the core creating the OpenSPARC T1. In the 2007 the UltraSPARC
T2 has been developed and again the design files were published, the related core is called
OpenSPARC T2.

MSP430 The MSP430 is a family of microcontrollers with a parallelism of 16-bits, the
architecture is not considered as fully RISC because, in some cases, the result of the com-
putations are directly stored in the memory. This type of processors is usually used in the
field of embedded systems thanks to their low power consumption. Different versions of the
same architecture are implemented for different applications. The MSP430 is completely
open-source, from the ISA to the CADs needed for the development boards, for this reason
a lot of different open-cores, based on this architecture, have been designed; one of the most
important is the openMSP430, it is completely compatible with the specifications and the
development tools produced by Texas Instruments. A fault tolerant version of this core has
already been implemented by Thales Alenia for space applications.

OpenRISC 1000 The OpenRISC 1000 is an architecture that characterizes a family of
processors RISC-based and with a parallelism of 32 bits; there are different cores imple-
mented targeting different applications, from network services to embedded systems. This
is an open-source project with the object of creating a completely free platform for hardware
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developing. Among the different open-cores implemented there is a fault tolerant System
on a Chip (SoC) designed by Microtec.

RISC-V The RISC-V is an ISA designed by the Berkeley Foundation and it is based
on the first RISC architectures for processors. This Instruction Set Architecture has been
developed to have a completely free, customizable and simple framework for both academ-
ical and commercial purposes. The target of this project is to have a common platform
that can be adapted to different fields, like embedded systems or servers, without changes
in the main architecture but expanding the functionalities of the system starting from the
basic ones. The core of this ISA is only composed by standard computational, memory
and control-flow instructions; for more complex operations, standard or custom extensions
could be used to enlarge the instruction set. There are a lot of different RISC-V open-cores
that implement fault tolerant designs in order to protect the processor from radiations. A
full description of this ISA is written in appendix B.2

Core selection To select one core some considerations must be done on the architectures
previously analyzed:

❼ AVR: a way to reduce the number of resources used to implement the core is to
use architectures with small widths of the busses. 8-bits AVR cores from Atmel are
especially used in embedded applications and meet this characteristic. The main
problem in targeting this family of devices is related to the licenses that could restrict
their usage;

❼ MIPS: the same considerations can be done for MIPS architectures. Even if these
processors have a minimum parallelism of 32 bits, the huge flexibility of the architec-
ture helps in finding already designed solutions for a lot of different application fields.
However, MIPS is a licensed product, this means not considerable as open-source,
and, for this reason, has been discarded from the possible choices;

❼ OpenSPARC: this architecture is different from the previous two because is open-
source. The main problem is related to the fact that the target application related
to these devices requires much more resources than the ones needed for automation
purposes and this means that is not a good choice;

❼ openMSP430: this is the first architecture described that is both open-source and
targets an embedded application; it has the smallest parallelism between the open-
core considered, is compatible with the toolchain developed by Texas Instruments to
compile the software and has a huge set of available CADs for the development kits.
In addition, Thales Alenia developed a radiation hardened version of the processor.
However, because of the low architecture flexibility, is discarded from the possible
choices;

❼ OpenRISC: as the previous one, this family of processors is open-source and has some
particular implementations targeting embedded applications. The lower parallelism
available is 32-bits and the GNU toolchain has been ported on this architecture in
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order to allow the C and C++ code developing. As for the other open-cores, a lot of
different fault tolerant versions have been designed;

❼ RISC-V: Among the options considered, this ISA is the most recent, it has a par-
allelism of 32-bits and has different cores designed to target applications that need
simple resources. The C compiler is an adapted version of GCC. Similarly to other
open solutions, is easy to find versions of the core implementing high reliability tech-
niques in order to improve the resistance against radiations.

All the last three architectures can be considered as good choices for the project, however the
simple structure and modularity of the RISC-V, that allows to easily extend the standard
ISA, is the reason why this one will be the targeted family of devices.

2.1.2 VexRiscv

Among the huge amount of available cores that refers to the RISC-V ISA, the selected
one is the VexRiscv with the Murax SoC. The related netlist is automatically generated
through an high-level language called SpinalHDL were additional resources, instructions
and features can be added to the core. Some of the specifications related to the VexRiscv
processor are:

❼ Instruction set: RV32IM that includes standard integer instructions;

❼ 5 stages pipeline;

❼ Architecture optimized for FGPA;

❼ AXI4 and Avalon ready;

❼ Optional extension for hardware MUL/DIV instructions;

❼ Optional instructions and data caches;

❼ Optional MMU;

While the features implemented by the Murax SoC are:

❼ JTAG debugger;

❼ On-Chip RAM with 8 kB dimension;

❼ Interrupt support;

❼ APB bus for peripherals;

❼ 32 GPIO pins;

❼ One 16-bits prescaler, two 16-bits timers;

❼ One UART peripheral;

Because is particularly useful to the testing process, that will be discussed in chapter 4, the
quantity of RAM has been reduced to 4kB. The license used for this core is MIT, it allows
to use the core without restrictions similarly to the BSD license.
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2.2 Implementation flow

The flow chart in image 2.2 represents the steps used to implement the final bitstream for
the FPGA starting from the HDL files.

Figure 2.1. Top entity block diagram, the PLL receives in input the single-ended clock
generated by IBUFDS and produces the 40MHz one supplied to the core.

2.2.1 Description

Being the test architecture a Xilinx FPGA, the tool normally used to synthesize and imple-
ment the design in a programmable bitstream is Vivado. Even if this program fully supports
the XCKU040, Synplify from Synopsys has been used for the synthesis of the netlist, this
is because is able to insert automatically inside the design the fault tolerance as explained
in chapter 3. The file containing a full description of the core is core.v, the synthesis tool
takes in input this document and produces a .edif file. This representation maps the whole
circuit on the available resources of the FPGA. In order to reduce the quantity of hardware
used, a directive is given to the compiler to map on BRAMs the hugest quantity of stor-
age elements. Another advantageous aspect is that, having the RAM of the core mapped
on this type of resources, is easier to initialize the instruction memory directly from the
implementation flow and using tools specifically provided by Vivado. The other two units
mapped on BRAMs are the streaming FIFOs of the serial interface and the register file
of the core. A further directive imposed to the compiler removes the insertion of the I/O
buffers, this allows to export the whole synthesized netlist and to import and use it directly
in other designs. Synplify exports both the edif and the constrains generated post-synthesis
in a .xdc file.

After that the core synthesized netlist is generated, a new project needs to be opened
on Vivado; this second flow synthesizes the top entity where the PLL and the I/O buffers,
needed to have the design working on the FPGA are declared. Because this project is
developed in the framework of the ITS upgrade and will be tested even on the Readout
Unit used to collect data from the experiment, the chosen operating frequency is 40MHz,
the same used on the board. Finally, the core entity is synthesized as black box. To insert
the core synthesized netlist inside the design compiled by Vivado, the black box is updated
with the edif file generated by Synplify. Once that the project is completed with all his
sub-components, the Place&Route process starts. The implementation phase place all the
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cells to the related resources, on the targeted FPGA, then generates the routing logics
needed to connect the different blocks inside the device. In order to program the FPGA
and load the compiled code, the following files are needed:

❼ Memory Map Information (MMI) file: this file is an XML that preserves the infor-
mations on the BRAMs used for the RAM of the processor. It is composed by the
following fields:

– AddressSpace: defines a contiguous address space. The characterizing param-
eters are: name, begin, end. The name is the value used to distinguish each
single AddressSpace while begin and end define the address space range. More
AddressSpace can refer to the same address space but the name must be unique
for each one of them;

– BusBlock: an AddressSpace is composed by a finite number of BusBlocks. Each
block refers to a part of the address space and the whole range is filled using the
declaration order of the BusBlocks;

– BitLane: each BusBlock is defined by the BitLanes. This parameter gives de-
tailed informations on the BRAM mapped and on how the processor access the
memory. The following values must be set for a single BitLane:

✯ MemType: refers to the type of BRAM targeted, for Ultrascale technology
can be RAMB36 and RAMB18;

✯ Placement: locates the specific resource on the FPGA;

✯ DataWidth: defines which portion of the data is related to the BRAM and
is characterized by MSB and LSB variables;

✯ AddressRange: set the address space portion for the BitLane;

✯ Parity: set if the parity bits of the memory are used;

❼ Bitstream (BIT) file: contains the configuration bits for the CRAM of the FPGA.
Through the bitstream every programmable resource of the device can be configured,
not only the SRAM cells related to the LUTs, the routing logic or the I/O but even
the initial values stored in the memory used;

❼ Memory (MEM) file: composed by the hexadecimal conversion of the binary generated
by the C compiler. Each ith line of the file is related to the word in the corresponding
position of the BRAM;

Starting from the bitstream generated by Vivado, the configuration bits, related to the
content of the BRAMs indexed by the MMI file, must be updated with the values of the
MEM file. Usually, in order to program a microcontroller, the binary file generated by
the software compiler is flashed inside the ROM memory of the device. For a soft-core the
same mechanism could be used, a JTAG interface is provided and can be externally accessed
using some of the FPGA I/O pins. However, the Updatemem tool from Xilinx allows to
write program code inside the bitstream, this means that the access to the programming
interface is not anymore needed to have the core correctly working and the related additional
hardware can be removed. Another benefit is that, in the case of standalone systems without
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an easy access of the internal resources, reprogramming the FPGA means automatically
have all the resources of the processor correctly initialized; this is a very important feature
for systems targeting high reliabilty. The C compiler related to the RISC-V ISA is GCC
while the hexadecimal conversion is done using a custom C code.
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2.3 Core verification and implementation results

The following table lists the resources occupied by the core and by the entity used to place
the design on the FPGA:

Resource Used (%)
LUTLUT 915 (0.4%)

FF 1008 (0.2%)
BRAM 3 (0.5%)

IO 14 (4.5%)
BUFG 1 (0.2%)
PLL 1 (5.0%)

Table 2.1. Resources used for Murax core with related percentages compared
to XCKU040 resources.

These data state that the percentage of resources used is low and this helps to improve the
cross-section of the core. The maximum frequency of the design is 213MHz, so, because the
target frequency is 40MHz, the performances are compliant with the specifications. The
3 BRAMs are used for: processor RAM, serial interface FIFO and processor register file.
The BUFGs and the PLL works for clock conditioning and distribution. Only one BRAM
is used to implement the whole RAM, this is because one resource is able to store 4kB of
data that is equal to the whole primary memory of the design.

To verify the correct behavior of the core, because is an already fully tested design in
terms of RTL description errors, only the correct execution of a test code is checked. This
software is a counter that writes the value in output using the I/O lines. The platform used
for the verification process is provided by Vivado and called Debug Core, this powerfull
tool gives the possibility to scope the internal signals of each design linking the desired nets
to the Debug Core after the synthesis process and without changes in the RTL netlist. An
added programming file with .ltx extension is provided and must be downloaded during
the configuration process together with the bitstream. Using the scope interface provided
by Xilinx, the waveforms are sampled and automatically sent to the PC thanks to the in-
tegrated serial interface. The sampling process can be triggered using the manual interface
provided or the automatic functions available. The signals monitored to check the behavior
of the system are the following:

❼ Program Counter: stores the address of the instructions read from the IRAM;

❼ Read data: the output data from the RAM;

❼ Output lines: the GPIO lines of the microcontroller;

The debug core is useful during the verification process but is a resources wasting method,
for this reason it must be removed when the validation is finished.
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Figure 2.2. Core implementation flow diagram. It is both including netlist and
software compile processes.
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Chapter 3

Fault Tolerance

Once that the development flow needed to implement the processor on the target FPGA,
in this case the XCKU040 from Xilinx, is designed and tested, the fault tolerance must be
inserted in the core. The idea is to work on the synthesized netlist without affecting the
RTL description, this is why the object will be to modify the design flow and to use some
commercial tools, together with custom solutions, to ease this process. In this chapter at
first there is a description of the most common techniques for hardware high reliability,
then the modified design flow is presented and finally the results, in terms of validation of
the new processors and of resources occupancy, are shown.

3.1 Fault Tolerance

In order to correctly describe the techniques used to harden the behavior of a design against
external radiations, some concepts must be defined:

❼ Dependable system: able to mitigate a failure that has rate of appearance and effects
too dangerous and not compliant with the specifications. This characteristic is divided
in:

– Reliability: ability to provide correct services after the failure;

– Safety: ability to avoid catastrophic consequences on the users or on the envi-
ronment;

❼ Reliable system: is the concept that better defines the fault tolerance, consists in
the idea that each fault could manifest as system failure, for this reason it should be
masked and, if possible, removed in order to avoid system misbehaviors;

❼ Safe system: similar to a reliable system because it acts detecting and, whenever
possible, removing the fault. The main difference consists in the idea that some
faults could produce an unexpected but harmless behavior;

An example could be useful to better understand the differences between the three concepts.
Considering a general system that produces the outputs depending on some inputs and a
general fault in the internal logic:
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❼ A system that is not dependable would produce the wrong outputs;

❼ A safe system would produce the wrong outputs communicating the misbehavior to
the user;

❼ A reliable system would produce the correct outputs;

In order to transform a non dependable system in a reliable one, some techniques can be
applied to the technology used to implement the hardware or, during the design flow, mod-
ifying the netlist produced.

Having an hardened technology, able to withstand the external interference and to avoid
the faults raising, guarantees to the designers that no SEU can arise on the hardware,
this means that the design flow is independent from the application targeted. The main
problems of this technique are related to:

❼ High costs needed to manufacture a radiation hardened component;

❼ Usually the technologies used are not advanced;

The techniques applied at design time are cheaper by order of magnitudes with respect
to the previous ones and can use commercial powerful technologies for the realization of the
final product. They are based on the concept of redundancy and are divided in subgroups
depending on the type of resources that produces the overhead.

3.1.1 Hardware redundancy

The basic idea is to use more hardware to reach fault tolerance. There are three related
subtechniques:

❼ Passive redundancy: the simpler scheme consists in having three different modules
doing the same job, this is called Triple Modular Redundancy (TMR); the output
of the system is obtained majority voting partial ones. If a module fails because of
an upset in his internal logic than the error is masked thanks to the correct output
provided by the other two blocks. When there is faults accumulation, because no
technique is applied to correct them, then there could be multiple events arising in
the internal logic of the modules and, finally, the system could output wrong values.
Figure 3.1 shows a block diagram representing TMR;

❼ Active redundancy: another simple scheme built upon two replicas of the same mod-
ule. One core is providing the outputs of the whole system while the second one
is used as spare copy in order to check that no errors arise in the structure. To
communicate this event, a comparator, that takes in input the outputs of the two
module and that returns as result the presence of a misbehavior, is used. This tech-
nique implements error detection without error masking and consumes less area. This
architecture is called Duplicate With Comparison (DWC). A more complex usage of
active redundancy is called standby sparing and is divided in two different techniques:
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input output

Module 1

Module 2

Module 3

Voter

Figure 3.1. Block scheme of a system implementing Triple Modular Redundancy. Three
hardware replica are shown together with output voter.

– Active standby: N DWC blocks work in parallel, taking the same inputs and
providing the same outputs, and the output of one between them is used as
return value of the system. Once that the selected module fails, another working
module takes his place as ”main” block. This method produces better results
with respect to TMR in terms of error masking, because is able to mask N-1
permanent faults; the disadvantage is that introduces 2*N modules, against 3,
not considering the overhead of the comparators and of the switch.

– Cold standby: N DWC blocks compose the system, one is working and the others
are off. Once that an error is detected at an active module output, one of the
switched-off blocks is turned on, the context is restored and it’s selected as main
component. It is better with respect to active standby for what concerns the
power consumption but introduces overhead in the time reponse because of the
restoring process;

input output

mismatch

Module 1

Module 2 =

Figure 3.2. Block scheme of a system implementing Duplicate With Comparison. Two
hardware replica are shown together with mismatch comparator.

❼ Hybrid redundancy: based on the two previous architectures mix, is composed by:

– N active modules implementing DWC;

– M spare modules implementing DWC;
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– 1 output switch that selects three of the active modules;

– One output voter that takes in input the lines selected by the switch;

– A block containing the smart logic useful to substitute, when it fails, an active
module with a spare one;

This solution is better than active and passive redundancy, for what concerns the
resistance to SEUs, but introduces an high overhead in terms of resources used and
power consumption.

3.1.2 Information redundancy

Information redundancy consists in adding informations to a stored data in order to detect
and correct an upset that could affect the value, the redundant part will be a function
of the original one. Usually the main system is composed by one block implementing the
encoding part, the data is stored together with the redundant value in the memory and
anytime that is read a decoder returns the correct value.

input output

mismatch

Encoder Memory Decoder

Figure 3.3. Block scheme of a system implementing Error Correcting Code. Memory
inputs and outputs are elaborated by the encoder and the decoder, the latter produces
final mismatch lines.

There are many techniques that differ in the algorithm used and the quantity of bits
needed for the data redundancy. Two simple and known algorithms are:

❼ Parity: 1 redundant bit is added. The parity bit has positive value when the data,
depending on the implementation, has an even or odd number of ones. This algorithm
is only able to detect single errors in the frame;

❼ Hamming: the number of redundant bits is growing logarithmically with the width.
Given an error in the stored value, once that it is read and the redundant bits are
recomputed they will be different from the original ones. Comparing the two redun-
dancies, the error can be located in the frame. This algorithm is a SEC-DED, this
means that is able to correct a single error in the data and to detect them in the case
of a double event;
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3.1.3 Time redundancy

It is based on the idea of introducing overhead reiterating the computation of the results.
A simple algorithm introducing time redundancy is the following:

❼ Taking input values;

❼ Evaluating the outputs and storing them as O1;

❼ Evaluating again the outputs and storing them as O2;

❼ Comparing them;

❼ Raising an error signal if a mismatch is detected;

This technique can be easily implemented in software, for this reason is considered as the
best, in terms of power consumption, among the presented ones.

3.1.4 Design choices

Depending on the intensity of the flux hitting the device during the service life, specific
techniques must be applied in order to harden the design against external radiations. Ana-
lyzing carefully these data allows to avoid the overdesign that would waste resources on the
FPGA. At first the SEU arising rate in the device must be estimated, the following data
are needed:

❼ Device cross-section: for Xilinx Ultrascale FPGAs the CRAM and BRAMs cross-
sections are expressed in section 1.2.3;

❼ Radiation Flux: the flux generated by the LHC and hitting the device;

❼ Operating time interval: total time in which particles are hitting the device;

❼ Number of bits: number of configuration bits for the FPGA;

The formula used to evaluate the number of events given the previous conditions is

Nevents = σ ·
Z ∆t

0

Φdt · nbits (3.1)

integrating flux over time the fluence (Φt) is obtained:

Nevents = σ · Φt · nbits (3.2)

considering a constant flux over the time interval:

Φt = Φ · ∆t (3.3)

Using the following data and the previously mentioned formula the SEU rate can be eval-
uated for the targeted device:
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❼ Flux equal to 1kHz cm−2;

❼ Operating time interval of 24hour;

❼ Number of bits equal to 1.28 · 108bits (considering the XCKU040);

∆t =
1

σ · Φ · nbits
= 51.06min (3.4)

This means that is hard to accumulate errors inside one FPGA. Having normally just one
error affecting the device, TMR technique should be enough to protect the core. If one
error compromises the behavior of a module, the other two continue to work properly.
Obviously, there are sensitive points that would break the design if a SEU happens in the
related CRAM but their cross-sections are a lower percentage of the total one. Even if
the TMR should protect sufficiently the processor memory, in order to fully protect the
instructions stored, Hamming code is used for SEC-DED implementation. The target is
only the IRAM because the other modules using storage elements, like the pipeline or the
internal register file, are using much less resources and so have a lower σ. In any case, the
content of these storage elements is not fixed as for the code memory but, most of the times,
is rewritten during the execution of the program and this means that the real interval of
time in which the errors could accumulate inside the device is lower than the one of the
general design. To implement the ECC two methods could be used, through the internal
circuitry of the BRAMs or designing the memory system by scratch.

Internal ECC Xilinx is providing all the BRAMs with an input encoder and an output
decoder implementing a SEC-DED algorithm to protect data. This solution is for sure the
one that uses less resources to preserve values but has the following problems:

❼ The width of a single word must be 64-bits;

❼ It is not allowed to use the byte write mode of the BRAMs;

❼ It’s not possible to initialize the parity bits using the Updatemem tool from Xilinx;

A complex circuitry could be needed to solve the first two problems, this is because is
necessary to perform the write process handling at runtime while, the initialization process
of the memory, requires a custom circuitry that writes the instructions inside the BRAMs
when the system is restarted. A block diagram representing the built-in ECC is shown in
picture 3.4

Custom ECC The Hamming code is implemented using custom circuitry and parity bits
are stored in a dedicated memory. A lot of open designs are implementing ECC algorithms
and can be easily cloned, this means that only the modules needed to handle the byte wide
write process and the update of the redundant bits must be designed. Using this approach
both the instructions and Hamming bits can be initialized using the Updatemem tool. This
solution is more flexible than the previous one and independent from the FPGA used.
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Figure 3.4. Internal structure of the built-in ECC for Ultrascale BRAMs, the input
and output data have a 64 bits parallelism. The scheme implemented by Xilinx is
similar to the one in figure 3.3

3.1.5 Design automation

Synplify is a powerful tool able to automatically implement fault tolerance techniques in
the design, the limits of this program are related to the technology targeted. The following
solutions are available for Ultrascale family:

❼ Hardware redundancy:

– Distributed TMR: triplicates the modules, insert a voter in each sequential loop
and at the outputs. Allows optional voting for each internal register;

– Block TMR: triplicates the modules and insert a voter at the outputs;
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– Local TMR: triplication applied on sequential elements with the output voter;

– DWC;

❼ Information redundancy: the ECC can be automatically inserted with some limita-
tions:

– Byte wide write enable is not supported;

– The set/reset signal of the BRAMs must be aynchronous;

– The clock enable for the output register must be removed;

– Block RAMs explicitly instantiated with built-in parity bits enabled;

The hardware redundancy will be inserted using Synplify while the information redundancy
will depend on a custom design and then will be added replacing the normal memory system
with the netlist of the protected one. The technique used to protect the core is distributed
TMR, this is because it automatically implements the logic needed to restore the state of
the circuit after an event hits the sequential blocks.

Figure 3.5. Distributed TMR with sequential loop voting. The main difference
with the scheme shown in figure 3.1 is the double step voting logic that includes
even the sequential loops.
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3.2 Memory design

The purpose of this memory system is to implement information redundancy with custom
circuitry, the design differs from the simple scheme presented in figure 3.3 because some
logic is added in order to support byte wide write process. Analyzing the post-synthesis
netlist, some characteristics can be derived for the processor RAM:

❼ Data are accessed through only one port that is in read first mode, this means that
if a read and a write are enabled than the output value will be the content of the cell
before the change;

❼ Synthesizing the processor with a RAM of 4 kB, only one BRAM is used and the port
allows to acces frames of 32 bits;

❼ Byte wide write enable is supported and each byte of the input line will be a replica
of the targeted value. The single byte in a frame is addressed using the write enables
of the BRAM;

❼ The Read Enable is tied to ’1’;

The new memory system needs these characteristics in order to replace the old one and
must implement the ECC trasparently to the read and write processes. A block diagram
of the design is shown in image 3.6.

Both memories used to store the data and the parity bits are implemented using BRAMs
but they have different behavior, the first one is a Simple Dual Port memory, where port
A is used and the other one is disabled, the second one is a True Dual Port memory, where
both the accesses to the component are used independently. The usage of a more complex
structure for the ECC memory allows a real time evaluation of the parity bits, here is how
the two ports control circuitries behave:

❼ Port A: the first output port is directly connected to the input of the decoder, this
means that is basically used only for read operations except when the same location
is addressed for both read and write processes. In this particular case the new value
is written through Port A and will be forwarded to the output, for this reason is
configured in WRITE FIRST mode;

❼ Port B: the second output port is left floating, this means that is used only in write
mode. This access to the memory is not used if no data must be stored and if the
parity bits are needed the same clock cycle, in this case the other port is used because
is considered as a violation trying to obtain a value from a port writing through the
other one;

Here is a description of read and write operations:

❼ Write:

– Cycle 1: the input value is directly written inside the data memory and is stored
in a register, WEA values are preserved inside flip-flops;
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Figure 3.6. Memory system schematic, the output data is depending on values read
from DATA and ECC BRAMs.

– Cycle 2: the output of the data memory is looped back, an array of multiplexers
merges the old data and the one stored in the register to recreate the written
value, the result is given in input to the encoder. Finally the parity bits are
evaluated and stored inside the ECC memory, the write port is enabled using a
signal generated from the bit by bit or of stored WEA lines;

❼ Read: the value read is the output of the decoder that takes in input the frames
obtained from data and ECC memories;

Because the first memory is READ FIRST, by specifications, when a write operation is
performed the new value can be read only after one cycle; using this mechanism to store
the parity bits allows to have them available as soon as the related frame can be read.

The selected Error Correction Code is a SEC-DED that uses 7 redundant bits, it is imple-
mented through the usage of the Encoder and the Decoder shown in the previous schematic.

Encoder Given d as the input data and p as the output parity bits, these tables are
representing the logic functions implemented by the encoder. Each result bit is the xor of
all input bits signed with an ”x”.
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p0 p1 p2 p3 p4 p5 p6
d0 x x x
d1 x x x
d2 x x x
d3 x x x x
d4 x x x
d5 x x x
d6 x x x x
d7 x x x
d8 x x x x
d9 x x x x
d10 x x x x x
d11 x x x
d12 x x x
d13 x x x x
d14 x x x
d15 x x x x
d16 x x x x
d17 x x x x x
d18 x x x

p0 p1 p2 p3 p4 p5 p6
d19 x x x x
d20 x x x x
d21 x x x x x
d22 x x x x
d23 x x x x x
d24 x x x x x
d25 x x x x x x
d26 x x x
d27 x x x
d28 x x x x
d29 x x x
d30 x x x x
d31 x x x x
p1 x
p2 x
p3 x
p4 x
p5 x
p6 x

Table 3.1. ECC equations, all the bits marked with ’x’ are associated to the column parity bit.

Decoder The decoder works in the following way:

❼ The input data is encoded again;

❼ The syndrome is computed:

– Bit 1 - Bit 6: computed as the differences between the new and the stored
redundant values

– Bit 0: negative if the parities of the redundant values are equal;

❼ If bit 0 is equal to 1 then this means that just one error affected the data while, if it
is 0 and the others are not 0, then there is a double fault;
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3.3 Implementation flow

To insert the new memory system inside the core structure, a modified version of the
previous flow, shown in image D.1, is used.

3.3.1 Description

The new developed framework allows to choose which of the four possible configurations,
depending on the fault tolerance techniques selected, is synthesized. TMR addition is not
changing the implementation flow because the whole netlist elaboration is automatically
performed by Synplify, the ECC, instead, introduces some additional steps:

❼ A second synthesis is performed with Synplify in order to obtain the netlist of the
protected memory system, the generated circuit will substitute the BRAMs used in
the raw processor through some scripts that automatically recognize the RAM and
perform the cut and paste process;

❼ In order to correctly update the new RAM, not only the compiled code but even the
related parity bits for each words must be at first computed and then added in the
initialization process. To generate the memory content for ECC BRAMs the binary
program is taken, parsed and encoded using the same logic functions implemented by
the hardware components;

3.3.2 Implementation results

The next table shows the results in terms of resources usage for the different core configu-
rations:

Resource None ECC DTMR DTMR-ECC Available
LUTLUT 915 (0.4%) 942 (0.4%) 7965 (3.3%) 8129 (3.4%) 242400

FF 1008 (0.2%) 1022 (0.2%) 3374 (0.7%) 3440 (0.7%) 484800
BRAM 3 (0.5%) 4 (0.7%) 9 (1.5%) 12 (2.0%) 600

IO 14 (4.5%) 14 (4.5%) 14 (4.5%) 14 (4.5%) 312
BUFG 1 (0.2%) 1 (0.2%) 1 (0.2%) 1 (0.2%) 480
PLL 1 (5.0%) 1 (5.0%) 1 (5.0%) 1 (5.0%) 20

Table 3.2. Resources used by the different core versions with percentages referred
to XCKU040 FPGA.

No significant overhead is introduced by the ECC in the design, a low amount of LUTLUT
and Flip-Flops is used with the addition of just one BRAM, as expected. The Distributed
TMR is generating a huge overhead, this is because, with respect to other TMRs, this
technique votes all the internal registers and the sequential loops, in order to restore the
processor state. Flip-flops are three times the original ones while LUTLUTs are more than
eigth times the ones of the normal processor, this parameter expresses the huge amount of
resources needed by the voting logic. As expected, even the BRAMs are three times the
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original ones considering both the DTMR and the DTMR-ECC versions. The overhead
introduced by the protected memories is low even in the DTMR core version.
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Figure 3.7. Core protection implementation flow diagram. Both hardware and software
compile processes are taking into account the new memory system.
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Chapter 4

Core characterization

Obtained the final flow able to synthesize fault tolerant cores, with different techniques, the
next step is to describe how these designs can be characterized in terms of ability to resist
against external radiations. At first the metrics, that means how the different processors
statuses are classified and which algorithm is executed, are defined. The second topic covers
the design of the testing circuitry and the related implementation flow, then the different
environments used for cores characterization are described. Finally the results are reported
and discussed comparing the data obtained for RISC-V cores with the one collected for the
radiation hardened version of Microblaze processor, designed by Xilinx.

4.1 Metrics

The reliability of a system is usually modeled by the following exponential equation:

R(t) = e−λt : (4.1)

where λ is the failure rate and t is the time instant considered. To evaluate the Mean Time
To Failure (MTTF) the expression used is:

MTTF =
1

λ
(4.2)

For each processor version a reliability function is estimated, to reach this object the MTTF
will be obtained through experimental measures using different testing tehcniques. The
Mean Time To Failure is the expected quantity of time between two different system mis-
behaviors and its measurements will depend on the test environment where data are col-
lected. Before data taking process discussion, the possible processor statuses in radiation
environments are described. They will be classified in the following way:

❼ Run: the processor is correctly running and no error is produced in output;

❼ Failure: the processor continues to execute the algorithm but the output values are
not correct;

❼ Critical failure: the processor stops or is in failure state for a not negligible amount
of time;
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The experimental MTTF is measured as the time between two critical failures. In order to
have a reliable estimation of this value, an extensive testing process, that allows to take a
lot of data, is needed.

4.1.1 Test environments

As stated before the data taking process and the related statistics depends on the test
environment. There are basically two different methods used to characterize the design:

❼ Fault Injection;

❼ Test with particles beam;

In both cases the system will recreate the same operating conditions of the Readout Unit
designed for ITS upgrade. These are the most important characteristics:

❼ The fault rate for the design is of 1 each 51.06min with an external flux equal to
1 · kHz cm−2;

❼ Scrubbing, that means rewriting the FPGA CRAM during the system operational life
to avoid faults accumulation, is performed each 3 s

❼ A complete FPGA reprogramming process is done each 30 min;

There are two different types of scrubbing:

❼ Blind scrubbing: the whole CRAM is continously rewritten;

❼ Partial reconfiguration: if a SEU happens in a particular section of the CRAM, it is
corrected addressing the single memory location;

For Xilinx FPGAs the smallest amount of CRAM that can be addressed externally is a
frame. Depending on the family considered, the width, in terms of 32-bits words containted,
is different. For Ultrascale technology is 123 words.

Fault Injection It means to manually flip a bit in the configuration memory, this method
is used to emulate SEUs in FPGAs CRAM (Maybe even BRAMs). Ultrascale family allows
to access directly this memory through different interfaces, a detailed explanation is present
in appendix A.1. An external device called JTAG Configuration Manager (JCM), produced
by the BYU group, allows to use the JTAG interface for fault injection purposes. Starting
by the bitstream related to the design that will be tested, the fault injection process works
in the following way:

1. A frame, a word and a bit are selected randomly;

2. The bit value is flipped inside the golden bitstream;

3. The corrupted configuration is programmed inside the CRAM of the device through
the JTAG port;
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4. Restarts from point 1;

The stated operational conditions are implying the presence of a scrubbing process each 3
s. Because considering the previously detailed operating conditions there is one fault each
51.06min, is safe to assume that at least one scrubbing process happens between a SEU
and the following one. To emulate this behavior during the fault injection process, blind
scrubbing is performed after the bit flip. To increase the quantity of data taken for each
processor typology and avoid FPGA systematic effects, for each fault injection session N
processors will run in parallel on the device. The testing process will work in the following
way:

1. The FPGA is programmed with the targeted bitstream;

2. The JCM injects a fault;

3. The JCM scrubs the CRAM;

4. The processors statuses are monitored:

❼ If all of them are not working anymore or if the testing circuitry implemented
has problems the test stops, data on the number of faults survived by each DUT
are stored and the process restarts from point 1.

❼ If at least one of the core tested is still correctly behaving, the process continues
from point 2.

An iteration of the previous loop that starts from point 1 is called run. Each fault survived
is corresponding, statistically, to an interval of time equal to 51.06 min. For each core
replica the total time survived is:

∆ti = Ni · ∆tf (4.3)

where N is the number of faults survived and ∆tf is the time between two faults. The
MTTF can be experimentally evlauated in the following way:

MTTF =

PM
i=1 ∆ti
M

= ∆tf ·
PM

i=1 Ni

M
(4.4)

where M is the number of replica tested.

Once that MTTF is computed both the reliability function and cores cross-sections will
be evaluated. The testing system structure is shown in picture 4.1.

Test with particles beam This methodology is using a real flux of neutrons to test
design strength. In order to perform this test the design must be integrated in the RUv1
firmware, the main differences are:

❼ The FPGA is already full so only one replica for each core type can be inserted inside
the design, this reduce the quantity of taken data;
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Figure 4.1. System architecture for tests with fault injection, the external devices used
are talking to the FPGA using SPI, for the PC, and JTAG, for the JCM.

❼ The SPI interface will communicate with SCA SPI controller, so needs new low level
drivers.

❼ Data will not be composed only by run counters and error counters but even by time
instants, this means that MTTF will depend on real values;

❼ The quantity of SEUs affecting the FPGA is not known but will be statistically
evaluated;

During test execution the flux will not be constant during each session, for this reason the
measured fluence is used to obtain the quantity of events (equation 3.2). Starting from
Nevents estimation the previous formula can be used to evaluate the MTTF under beam
conditions proper to the ALICE experiment. The whole setup is compliant with the same
specifications stated for fault injection process and is represented by the image below:

Figure 4.2. System architecture for tests with particles beam, the main differ-
ence with respect to fault injection architecture is the usage of SCA and CRU to
communicate with central PC.
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Algorithm Because the monitoring process is performed only through outputs reading,
an algorithm that is strongly stressing the internal resources of the core is needed, this is
because an error in the internal logic would be easily propagated and observed if all the
processor units are frequently used. An algorithm that respects all these features is the
Advanced Encryption Standard. The version implemented is encrypting a 128 bits word
starting from a 128 bits key that remains constant for each data word, output frame width
is equal to the previous ones. A more detailed explanation of the algorithm is performed
in Appendix C.1.
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4.2 Testing circuitry

In order to correctly implement the chosen algorithm for tests, a specific architecture is
necessary. The following picture shows a block diagram of the testing circuitry:

Figure 4.3. Test circuitry block diagram, the FSM is communicating with BRAMs and
handling both output registers, to SPI, and data for processor testing.

Looking at the schematic, is easy to divide the design in four different areas:

❼ Device Under Test (DUT): a processor;

❼ Storage Elements (SE): components containing the text that will be encrypted and
the encoded version;

❼ Finite State Machine (FSM): handling data exchange with the processor and state
counters;

❼ Communication: circuitry implementing the communication interface needed to re-
trieve data;

In order to fully protect the testing circuitry against external radiations, the design is
triplicated using the same technique implemented for RISC-V cores, that is DTMR.

Storage Elements The different data are contained in two different BRAMs, one for
source data and the other containing the golden results of the encryption process. These
resources are directly driven by the FSM that is addressing the different memory locations.
Both the components are only in read mode, no data is written inside during the testing
process. DTMR is used to protect the whole design, this means that even BRAMs are
triplicated and voted in output. In addition to the previous technique, the two storage
elements are replaced with ECC protected memories equal to the ones used to protect the
cores IRAM. Hardening the testing circuitry this much is fundamental because it should
not fail frequently during tests, but introduces the disadvantage of having a huge overhead
in terms of BRAMs used; this will limit the processors tests parallelization.
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Finite State Machine It is the smart part of the testing circuitry able to provide data
to the processor, to retrieve the encrypted one and to increase the error and run counters
read. The algorithm implemented by the FSM and the processor is the following:

1. The circuit is idle, waiting that the processor activates output enable lines;

2. The core writes those outputs, the FSM reads one 32 bits word from the source BRAM
and returns it to the processor. This step is repeated 4 times;

3. The circuit is idle, waiting for the encryption process end;

4. The core writes those outputs, the FSM reads one 32 bits word from the destination
BRAM and compares it to the one returned by the processor. This step is repeated
4 times;

5. The result of the comparison process is taken, and accordingly both the run counter
and the error counter are incremented. The former increments each time an encryption
ends while the latter each time there is a mismatch between the data provided by the
processor and the golden value;

6. Restarts from point 1;

The FSM is protected by DTMR technique.

Communication The communication protocol used to retrieve data from the FPGA
is the Serial Peripheral Interface (SPI), that is one of the most common standard for
wired communication. There aren’t particular specifications related to the minimum bitrate
required, this protocol has been selected because allows an easy integration in the structure
of the Readout Unit. As described in A.2.1, the Slow Control Adapter (SCA) is a radiation
hardened Integrated Circuit (IC) used to implement high speed communication between
the external readout electronics and the components on the Readout Unit. SPI is one
of the available controllers. This controller is used for test sessions in environments with
radiations. When fault injection is used, together with the development kit, some GPIOs
are programmed as SPI pins and used together with a USB to SPI dongle. The interface
inserted in the FPGA firmware is directly taken from an open design and is adapted in order
to use it properly in the test architecture, this means that is reading 2 counters for each
one of the processors present in the design. Appendix ?? is providing a detailed description
of this unit. The algorithm implemented, by the FSM handling the SPI interface, allows
to use a full duplex communication where the master, that is the external device, sends a
register address that refers to a counter and, in the meanwhile, the slave, that is the design
contained in the FPGA, returns the value referred to the previously addressed data. This
module is protected through DTMR.
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4.3 Implementation Flow

The flow used to obtain a running test architecture on the FPGA is similar to the one
obtained for fault tolerant cores and is shown in image 4.4

4.3.1 Description

The main flow characteristics are:

❼ DUT netlist is changing depending on the type of test:

– Fault injection: as discussed before, a huge parallelization of data taking process
is introduced using multiple instances of the same core in the design. The DUT
entity is composed by a SPI interface and twenty submodules each one including
one testing circuitry;

– Particles beam: because of the previously mentioned problems with the available
resources on the FPGA, DUT entity is composed by one test module for each
core;

Core netlists depend on the test implemented;

❼ The testing circuitry storage elements use the same protected memory designed for
processors. The content must be initialized to store the source data and the encrypted
ones. Differently from core implementations, this BRAMs content is static. To remove
the time overhead, introduced during bitstream update, memories are synthesized
directly with initial words already configured, this means that edif files already contain
all the informations required.

❼ Because a reliable process is needed, the testing circuitry is protected with Distributed
TMR similarly to processors.

This complex implementation flow is optimized in terms of performances, only FSMs, the
SPI interface and some glue logic is really synthesized. All the BRAMs and the processors
are configured as black box, this means that the huge percentage of the compilation load
is removed because they are all pre-synthesized netlists.
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4.4 Results

Extensive Fault Injection usage allows to create a good statistic. The total number of runs
(Nr) performed for each design is 1000, and one single run contained 20 processors (Np).
Considering the equation 4.4:

MTTF = ∆tf ·
PNr·Np

i=1 Ni

Nr ·Np

(4.5)

To estimate the relability curve λ is needed:

λ =
1

MTTF
(4.6)

And the reliability function depending on this parameter is expressed by formula 4.1. The
table below shows the MTTF obtained for the different versions of the core using fault
injection:

None ECC DTMR ECC-DTMR
%faulty 35 % 37 % 39 % 47 %
%stopped 65 % 63 % 61 % 53 %

MTTF (103min) 30.06 53.19 45.18 67.85

Table 4.1. Murax core characterization with fault injection, the table is showing percent-
ages related to faulty and stopped processors added to MTTF evaluation.

The graph below shows the reliability curves:
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Tests on a real environment have just one processor present in FPGA firmware, this
means that the total cores replica are the same as the number of runs. Having a low amount
of data from particles beam tests, MTTF won’t be estimated but the other parameters are
shown in the following table:
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None ECC DTMR ECC-DTMR
%survived 54.54 % 69.31 % 93.06 % 99.01 %
%faulty 28.28 % 18.81 % 5.94 % 0 %
%stopped 17.17 % 11.88 % 0 % 0.99 %

Table 4.2. Murax core characterization with particles beam, differently from fault injection
the percentages of cores that survived each run is shown.

4.4.1 Results evaluation

The quantity of data taken with fault injection is a lot higher than the ones obtained
through testing with particles beam, so statistics obtained with the former method should
be more reliable than the other ones. Looking at MTTFs, the results are compliant with
expectations, all the protected versions are resisting better to SEUs than the basic one.
However, the low quantity of resources used by the not radiation hardened version allows
an MTTF that is higher than expected and states that it could be used in environments
with this flux intensity. Talking about the protected versions, the DTMR is behaving worst
than the ECC. Using a technique such as Distributed TMR could be really weigthful in
terms of logic overhead, instead the ECC technique is adding a small quantity of blocks to
the synthesized netlist. All these considerations explain why the DTMR design is behaving
worse than the ECC one. However the situation is reversed looking at the statistics obtained
through tests with particles beam, the triplicated version is lasting much more than the
one implementing only information redundancy. These differences between data obtained
could possibly be caused by:

❼ Sistematic effects: this means that having just one replica synthesized that uses always
the same resources on the FPGA could lead to some constant weaknesses in each core.
To correctly test each processor it is needed to distribute it through the whole FPGA,
as done for fault injection tests.

❼ BRAMs errors: theoretically, the probability of having an error in a Block RAM is
higher than the one related to CRAMs, almost two times. The JCM is injecting faults
through the whole FPGA with the same probability, this means that the quantity of
errors happening inside core memories is different with respect to the real one.

4.4.2 Comparison with other projects

The behavior of the obtained netlist is compared with the MicroBlaze designed by Xilinx
in terms of reliability. Results are weighted with respect to quantity of resources occupied.
Table 4.3 is showing some core implementation data. The blocks used by the protected
solution are higher compared to the ECC-DTMR version of murax core, however BRAMs
are lower considering that the total RAM has a double storage capability. Table 4.4 shows
the related MTTFs obtained with fault injection for Microblaze, while the table 4.5 shows
the results obtained with particle beams tests.
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Resource None (%) TMR
LUTLUT 2665(1.1%) 9933(4.10%)

FF 3086(0.64%) 11652(2.40%)
BRAM 2(0.33%) 6(1.00%)
DSP 3(0.16%) 9(0.47%)

Table 4.3. Resources used for MicroBlaze processor and related percentages
related to XCKU040 FPGA.

None TMR (M)
%faulty 45.82 % 0.02 %
%stopped 54.18 % 99.98 %

MTTF (103min) 29.75 11.11

Table 4.4. Microblaze characterization with fault injection

None (M) TMR (M)
%survived 52.53 % 45.55 %
%faulty 34.34 % 5.94 %
%stopped 13.13 % 48.51 %

Table 4.5. Microblaze characterization with particles beam

Generally the Microblaze is able to fastly execute the algorithm, however this difference
is vanished by the greater endurance of Murax protected versions. From MTTF results
is easy to say that the custom core is lasting more than the solution proposed by Xilinx,
however most of the times the latter is stopping without producing faulty results; this
means that it is a safer solution.
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Figure 4.4. Test circuitry implementation flow diagram
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Chapter 5

Conclusions and future work

This work started with a survey on the radiation effects in electronic devices and on the
available architectures for open-cores. After the core selection process ended the design
was adapted to fit the targeted FPGA using Synplify for synthesis process and Vivado for
place&route and bitstream generation. Last steps were dedicated to:

❼ Design protection against radiations using Synplify and custom solutions to overcome
some tool limits;

❼ Test the design and characterize it;

The object of introducing an automized method to protect a processor against radiations is
reached, the characterization of different core types shows that design protection increases
the MTTF with respect to the basic version. In order to improve both the radiation
hardness for this core and to increase the flexibility of this methodology, the future work
will be organized in:

❼ Research of other techniques that could be handled by the implementation flow and
automatically applied to the core structure;

❼ Application of the same implementation flow to another core, increasing the number
of designs targeted the flexibility will be improved;

❼ Application of the same implementation flow to other FPGA families, obviously using
the proper tool used for place&route and bitstream generation;

A first improvement could be applied to the memory system. For applications that need
a longer MTTF, a way to avoid faults accumulation in IRAM is fundamental. BRAM
scrubbing is good to correct SEUs that happened in memory content. This method is not
necessary for the targeted environment, this is the reason that brought to not implement
this mechanism. Another improvement could try to increase core safety, this means to stop
core jobs when some not correctable SEU affects his behavior. Even if some more steps are
necessary to have a fully reliable and safe processor, the results obtained by this work are
enough to slightly improve the behavior of murax core under radiations effects.
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Appendix A

This appendix is focused on the hardware resources targeted for cores implementation and
tests.

A.1 Kintex Ultrascale FPGA Architecture

Xilinx Ultrascale architecture is targeting different application fields and focuses on lowering
power consumption, using advanced technologies, together with system high performances.
There are different families of Ultrascale devices. Kintex Ultrascale comprises a set of
FPGAs designed to reach the optimal ratio between price and performance. The following
table resumes some general characteristics of this familiy in terms of resources available
and related operating speed:

Resources Value
Logic cells (K) 318-1451
Block Memory (Mb) 12.7-75.9
DSP (Slices) 768-5520
DSP Performances (GMAC/s) 8180
Transceivers 12-64
Max. Transceivers Speed (Gb/s) 16.3
Max. Serial Bandwidth (full duplex) (Gb/s) 2086
Memory Interface Performance (Mb/s) 2400
I/O Pins 312-832

Table A.1. Resources related to Ultrascale family [12]

During the thesis work two particular FPGAs, belonging to this family, were used to test
the design:

❼ XCKU040: contained in the development kit AES-KU040-DB-G designed by AVNET;

❼ XCKU060: used in the Readout Unit designed for ITS upgrade;

The following table states the differences in resources between the two devices:
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Resources KU040 KU060
Logic cells 530250 725550
CLB Flip-Flops 484800 663360
CLB LUTs 242400 331680
Maximum Distributed RAM (Mb) 7.0 9.1
Block RAM Blocks 600 1080
Block Memory (Mb) 21.1 38.0
CMTs (1 MMCM, 2 PLLs) 10 12
I/O DLLs 40 48
Maximum HP I/Os 416 520
Maximum HR I/Os 104 104
DSP (Slices) 1920 2760
System Monitor 1 1
PCIe Gen3 x8 3 3
GTH 16.3Gb/s Transceivers 20 32

Table A.2. KU040 and KU060 resources [12]

The FPGA used in the devkit has a lower amount of resources with respect to the other
one but is considerable as a good device to test the design because the technology used is
the same.

A.1.1 Ultrascale resources

To fully understand the functionalities of Ultrascale devices an overview on the different
resources characteristics is necessary, the remaining part of this section will focus only on
the ones used during development process.

Configurable Logic Block (CLB) This is the main type of resources used to implement
general-purpose combinational and sequential circuits. Each CLB is composed by one slice,
each slice contains:

❼ 8 programmable LUTs;

❼ 16 Flip Flops;

These components are grouped in an array of sub-circuits each one organized as shown in
figure 1.1. Depending on the way the device is programmed, CLBs can behave in different
ways:

❼ 6 input LUTs;

❼ Dual 5 input LUTs;

❼ Distributed Memory and Shift Register Logic. Slices are divided in two types:

– SLICEL;
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– SLICEM: can be organized as memory elements and shift registers. Combining
the resources of a SLICEM together, tha maximum quantity of memory obtained
is 512 bits while the shift register has a width of 256 bits;

❼ High-speed carry logic for arithmetic functions, used only for small ones because for
complex computations DSPs are more optimized;

❼ Wide multiplexers for efficient utilization. Each 6-input LUT is able to implement a
4 to 1 multiplexer, all the LUTs in a slice can be combined in order to form a 32 to
1 mutliplexer;

❼ Dedicated storage elements that can be configured as flip-flops or latches with control
signals;

Block RAM This primitive is very useful when a huge amount of memory is needed in
the design, the usage of these resources allows to reduce the quantity of CLBs dedicated to
store data. These are the main characteristics related to this component:

❼ Two different access ports, they are configured in order to handle concurrent read
and write requests:

– WRITE FIRST: data written is directly forwarded to the output lines;

– READ FIRST: data read is the stored one;

– NO CHANGE: data remains equal;

❼ Able to store up to 36kb;

❼ Can be organized in the following ways:

– 32kw of 1 bit;

– 16kw of 2 bits;

– 8kw of 4 bits;

– 4kw of 9 bits;

– 2kw of 18 bits;

– 1kw of 36 bits;

– 512 words of 72 bits;

❼ Can be divided in two different sub-blocks, each one can store up to 18 kb;

❼ Two different ways to behave:

– Simple Dual Port (SDP): both ports are used together for read and write pro-
cesses in parallel, maximum data width is doubled to 72 bits;

– True Dual Port (TDP): each port is independent and can be used for read and
write processes. Conflicts in memory accesses to the same address are the main
problem. They are handled in the following way:
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Figure A.1. Block representation of BRAM used in SDP mode [13]

✯ Two reads complete successfully;

✯ Two writes produce not deterministic data in the memory cell;

✯ One write concurrent to one read process produces a deterministic result
only if write port is in READ FIRST mode;

❼ Read and write processes are performed in one clock cycle;

❼ Block RAMs can be cascaded to obtain larger memory blocks, using built-in output
registers the read process can be pipelined in order to increase performances;

❼ Synchronous set/reset for memory content and the output register;

❼ Built-in ECC for 64-bits data. If BRAMs are using this feature, they must be config-
ured in SDP mode and byte wide write process is not allowed;

❼ Block RAM primitives for Ultrascale technologies are RAMB36E2 and RAMB18E2;

PLL These components are used as:

❼ Frequency synthesizer;

❼ Phase shifter;

❼ Duty cycle programming;
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Figure A.2. Block representation of BRAM used in TDP mode [13]

❼ Clock Deskew;

For Ultrascale technologies PLLs have two different primitives, PLLE3 BASE and PLLE3 ADV.
The latter implements even the Dynamic Reconfiguration Protocol to change PLL settings
runtime. A complete description of all the available configuration attributes is present in
reference [14].

Figure A.3. PLLs block diagrams [14]

The primitive used to obtain the targeted clock frequency is PLLE3 BASE. Starting from
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the input CLKIN, the outputs CLKOUT0 and CLKOUT1 are obtained through the fol-
lowing equation:

fCLKOUT0 = fCLKIN · CLKFBOUT MULT

CLKOUT0 DIV IDE ·DIV CLK DIV IDE
(A.1)

fCLKOUT1 = fCLKIN · CLKFBOUT MULT

CLKOUT1 DIV IDE ·DIV CLK DIV IDE
(A.2)

The parameters used in these equations are defined as primitive attributes and has the
following characteristics:

❼ CLKFBOUT MULT: all output clocks are multiplied by this integer value. For ultra-
scale technology and considering the targeted primitive the range of possible values
is from 1 to 19;

❼ DIVCLK DIVIDE: all output clocks are divided by this integer value. For ultrascale
technology and considering the targeted primitive the range of possible values is from
1 to 15;

❼ CLKOUT(0/1) DIVIDE: only the related clock output is divided by this integer value.
For ultrascale technology and considering the targeted primitive the range of possible
values is from 1 to 128;

IBUFDS Both in the development kit and in the Readout Unit designed for ITS upgrade
the clock is provided through two differential lines, in order to obtain a single-ended signal
IBUFDS primitive is used. The image below shows a block diagram representation of this
component.

Figure A.4. Block representation of an IBUFDS [10]

The output clock is equal to I if the inputs are different and is remaining the same if they
are equal.

IBUF Driver needed for all input signals to the FPGA, receives in input a single-ended
signal and provides it to the design programmed.
Some attributes can be defined for this primitive. The only one used to place cores and
testing designs on the FPGA is IOSTANDARD, it defines the standard for logic levels.
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Figure A.5. Block representation of an IBUF [10]

Figure A.6. Block representation of an IBUF [10]

OBUF Driver needed for all outputs of the FPGA, receives in inputs a single-ended signal
internal to the design and provides it to the external environment.
Some attributes can be defined for this primitive. The only one used to place cores and
testing designs on the FPGA is IOSTANDARD, it defines the standard for logic levels.
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A.1.2 Development Kit

The development kit designed by AVNET contains a Xilinx XCKU040-1FBVA676 FPGA
and provides different high-speed communication interfaces to the FPGA together with
some specific features needed to use all the functions provided by the device. Because
many of the available board characteristics were not used, only some resources will be
described. For a more detailed documentation there is the manual provided by AVNET
[15].

System clock The system clock provided to the FPGA has an associated frequency
of 250 MHz. Silicon Labs Si510 oscillator is used to generate the periodic signal, some
conditioning circuitry is used to provide the Ultrascale with a cleaner squarewave.

Figure A.7. Conditioning circuitry schematic [15]

H22 and H23 are the two pins used for positive and negative signals of the clock differential
pair.

JTAG Programmer AVNET provides basically two methods to program the FPGA,
the first uses the standard header provided by Xilinx while the other uses USB connection
through Digilent JTAG-SMT2 module. To check if the configuration process ends there is
a blue led called DONE LED (FPGA pin D16). In order to take out from the JTAG chain
the FMC HPC module a jumper is used.

Pushbuttons There are 4 user available pushbuttons

Pushbutton Pin
3 K20
2 K21
1 L18
0 K18

Table A.3. LEDs pins mapping [15]
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Figure A.8. JTAG Chain schematic [15]

LED There are 8 user available LEDs connected to the FPGA, they are on when the
input lines are driven high. This table shows the pins connected to LEDs:

LED Pin
7 H17
6 H18
5 E16
4 E17
3 E18
2 H16
1 G16
0 D16

Table A.4. LEDs pins mapping [15]
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A.2 ITS

The Inner Tracking System is used to collect data for the ALICE experiment. It is composed
by a sensing structure divided in Inner, Middle and Outer Barrels.

Inner Barrel The three layers of the Inner Barrel are composed by a different number of
identical staves each one based on a structure of nine chips. The communication between
the Readout Electronics and the sensors is performed by dedicated bus lines, control and
data, one for each chip and all going to the Readout Unit. There are two operating modes
for each sensor:

❼ Acquisition mode: the chips are taking data and sending them through the dedicated
line. Control line will carry only the trigger and some slow control commands;

❼ Setup and Contol mode: the chips are not taking data, control lines are carrying
informations on their status and parameters for setup.

The maximum communication speed for data link is 1.2Gbps.

Middle and Outer Barrel The Middle and Outer Barrel has a structure similar to
the Inner one, they are both composed by two layers, each one composed by some staves
structured in an array of modules. Each module is divided in two rows of 7 elements. The
interface between sensors and Readout Unit is equal to the ones implemented for Inner
Barrel chips and the maximum speed for data link is 400Mbps.

A.2.1 Readout Unit

It is the board that collects, elaborates and sends to the CRU all the data coming from
staves. The main functions provided by this system are:

❼ Monitor power supplies, to deal with eventual latch-ups;

❼ Handles the trigger, clock and control signals needed to communicate with sensors/-
modules;

❼ Monitor sensors status;

❼ Formats data before sending them to CRU;

The components used during the test with real particles flux are:

❼ SRAM FPGA: as stated before, the FPGA used is from KU060 family;

❼ GBT-SCA: is the Giga-Bit Transceiver Slow Control Adapter, it is composed by some
controllers implementing different communication protocols;

To remotely control all the devices on the board and to exchange data, fiber optic links are
used together with the Giga-Bit transceiver system reaching a very high bandwidth useful
to transfer the huge quantity of data coming from LHC experiments.
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A.2.2 GBT-SCA

Before detailing the Slow Control Adapter structure, a basic description of the GigaBit
Transceiver system is needed. It was developed to communicate through the optical link
the three following informations required by High Energy Physics experiments:

❼ Readout Data;

❼ Trigger and Clock informations;

❼ Detector control and monitoring informations;

In order to control the front-end board devices, that means the components mounted on the
boards close to radiation fluxes, the GBT-SCA was designed. It contains some controllers
useful to communicate using some of the most widespread protocols. The particularity
of this chip is that it is radiation hardened by design implementing dedicated techniques
useful for protection. It is using a commercial 130nm CMOS technology and designed to
work in parallel with the GBT transceivers. Starting from the electrical signals got from
transceivers, it receives some commands and redirects them to the targeted devices. The
available interfaces are:

❼ 1 SPI master;

❼ 16 I2C master;

❼ 1 JTAG master;

❼ 32 GPIO;

❼ 31 analog inputs multiplexed to an internal 12-bits ADC;

❼ 4 8-bits DACs;

Image A.9 shows a block diagram of the internal SCA structure. In order to drive each
single interface some commands are addressed using the fiber optic bus, it is based on two
different protocol layers:

❼ E-link protocol: low level protocol implemented by the GBT system;

❼ SCA commands protocol: communication controllers are externally seen as indepen-
dent destinations of messages and composed by a set of registers that can be written
or read;

After that one complete message is sent to the SCA chip, it returns an answer that is
composed by different informations depending on the type of command communicated.
Each command frame is divided in the following fields:

❼ ID: message identification number, returned equal by the answer packet sent by the
SCA;
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Figure A.9. GBT-SCA block diagram [16].

❼ Channel: decides which set of interface registers is addressed. These are the available
ones:

– CTRL;

– SPI;

– GPIO;

– I2C0-16;

– JTAG;

– ADC;

– DAC;

❼ Length: specifies the number of bits associated to the data field;

❼ Command/Error: if the packet goes towards the SCA it contains the info on the
specific register addressed and on the operation required, else this field carries info on
errors that happened during controller operations;

❼ Data: depending on the operation performed it could contain read/written values;

The interface used during the test with particles beam is the SCA SPI master.
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A.2.3 SPI interface

The GBT-SCA includes a full-duplex synchronous SPI master interface with the following
characteristics:

❼ 8 slave select lines;

❼ Maximum single transaction length of 128 bits;

❼ Transfer rate range from 156kHz to 20MHz;

❼ Supports all different settings for bus operating modes;

These are the steps used to initialize and perform a communication over the bus:

❼ Control register is set with the following characteristics:

– Maximum 128 bits length;

– Serial clock is low in idle state;

– Both MISO and MOSI lines works on the rising edge;

– Bits are transmitted from MSB to LSB;

– Slave Select line is automatically controlled each time a transaction is performed;

❼ Frequency divider register is set to reach 1MHz;

❼ Data register is set;

❼ SPI transaction is triggered;

❼ Readback message is obtained with information on the previous communication pro-
cess;

A detailed commands description is present in [16].
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This appendix is focused on the theoretical concepts related to core selection process and
to the finally targeted architecture.

B.1 Hardware Licenses

There are many types of open-source licenses and the main difference is related to the
possibility of redistribution of a project derived from a licensed one. Before listing some of
the most important ones, these concepts must be defined:

❼ Copyright: is the property that protects an author’s work from being copied, dis-
tributed or used;

❼ Permission: right to use a design/product covered by copyright;

❼ Disclaimer:

The following criteria are used to characterize the licenses:

❼ Creator attribution of derived works;

❼ Derived works must remain open source;

❼ Derived works can have a different license type;

❼ Derived work can be sold for profit;

❼ Patent restrictions;

These are some of the most common open licenses:

❼ MIT license;

❼ Simplified BSD license;

❼ Modified BSD license;

❼ Creative Commons Attribution 3.0 license;

❼ Creative Commons Attribution Sharealike 3.0 license;
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❼ TAPR Open Hardware License;

❼ GPL/LGPL;

This table synthesizes the informations on considered licenses types:

License MIT Simplified BSD Modified BSD

Creator Attribution Optional Optional Not permitted
Open Source No No No
Derived works must remain open source No No No
Derived works can have a different license type Yes Yes Yes
Derived works can be sold for profit Yes Yes Yes
Patent restrictions No No No

License CCA 3.0 CCA SA 3.0 TAPR OHL GPL/LGPL

Creator Attribution Required Required Optional Not permitted
Open Source No Yes Yes Yes
Derived works must remain open source No Yes Yes Yes
Derived works can have a different license type Yes Yes No No
Derived works can be sold for profit Yes Yes Yes Yes
Patent restrictions No No No Yes

Table B.1. Summary of the licenses considered
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B.2 RISC-V

The RISC-V Instruction Set Architecture is developed by the CS division internal to the
EECS department related to Berkeley and aims to provide a supported ISA for accademical
and commercial purposes. It is a RISC-based solution with a strong modularity that allows
to extend the offered functionalities. Despite the targeted applications, this ISA is now a
standard for industrial products based on open-source platforms. The following RISC-V
description is based on the specifications detailed in the reference manual [17]

As already stated, it is a modular ISA that allows to extend the basic functionalities
implemented. The common part among all the possible versions is integer based and very
similar to the one of the first RISC architectures without the branch delay slot1 and with
the additional support to variable instructions length. Each different version is named in
the following way:

1. RV followed by the architecture parallelism;

2. I that is the basic instruction set integer part;

3. All the other additional functions indexed by a letter;

These are the standard extensions detailed in the RISC-V specifications:

❼ M: includes the integer multiplication and division;

❼ A: adds instructions that perform atomic operations on memories;

❼ F: standard single-precision floating point instructions, registers, load instruction and
store instrucion;

❼ D: similar to F with the difference that expands the already present floating point
registers;

❼ G: general purpose extension that includes all the previous ones;

The architecture targeted by this project is RV32IM.

1The Branch Delay Slot defines the positions related to instructions successive to a jump that are,
independently from the result, always executed by the processor.
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C.1 AES algorithm

Advanced Encryption Standard is an algorithm used to protect data in systems that need
high security. The original name is Rijndael and was developed by Joaen Daemen and
Vincent Rijmen with the object of a standard way to preserve frames from external attacks
better than Data Encryption Standard (DES). These are the main characteristics:

❼ Variable widths available for key and data: 128, 192 and 256 bits;

❼ All data are processed in parallel;

❼ The number of rounds is different depending on the key size, for 128 bits the algorithm
core is repeated ten times;

❼ The word that must be encrypted is organized in a matrix were each byte is addressed
by a row and column number. Generally it is organized by columns;

❼ Each round, except the tenth, is composed by the following steps:

– Encryption:

✯ Substitute bytes: this process is simply based on a 16x16 lookup table, called
s-box, were each position is composed by a byte, this means that the whole
matrix is able to contain all the 256 combination with an 8 bits value. The
substitution process is done dividing the byte in nibbles 1 were the lowest
nibble is addressing rows and the other one columns of the s-box. Usually the
lookup table is formed with the object of having a low correlation between
inputs and outputs;

✯ Shift rows: considering an input data of 128 bits composed by 16 bytes, the
obtained matrix dimension is 4x4. In this case the algorithm is:

➲ The second row is shifted left one time;

➲ The third row is shifted left two times;

➲ The fourth row is shifted left three times;

1A nibble is composed by four bits
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✯ Mix Columns: this process is based on matrices multiplication, the result is
just the product between data matrix and trasformation one;

✯ Add Round Key: the encrypted data is transformed in an array of 44 words
each one composed by 128 bits. This vector is evaluated in the following
way:

➲ The first word is a key replica;

➲ Each successive word is the result of the xor operation between the four
back one and a temp value formed in two different ways:

1. If the word index module 4 does not return 0, the temp value is equal
to the previous word;

2. Else, before the last xor operation, the following functions are applied:

(a) One byte left shift;

(b) S-box substitution;

(c) The xor between (a) and (b) produces temp;

– Decryption:

✯ Inverse Shift Rows: is doing opposite operations with respect to Shift Rows;

✯ Inverse Substitutes bytes: is composed by a lookup table designed to be the
inverse matrix of the s-box;

✯ Inverse Add Round Key: inverse operations with respect to Add Round Key
step;

✯ Inverse Mix Columns: multiplication of encrypted data with the inversed
matrix used in step Mix Columns;
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Design Automation

The part related to design automation is important for the flow that finally produces the
fault tolerant core. There are two specific processes that required specific scripting to reach
the desired results:

❼ Memory substitution;

❼ Memory mapping;

D.1 Memory substitution

This function takes in input the following netlists:

❼ Core;

❼ Protected memory system;

The output is composed by the post-synthesis netlist including the protected memory sys-
tem. To automize this operation some considerations are needed on the possible processor
starting architecture, both the radiation hardened and the not protected designs are valid
starting points for this procedure. The main difference between the two structures is related
to the output mismatch lines 1:

❼ Single core: there is just one RAM instance, this means that the mismatch lines are
directly forwarded to processor outputs. As analyzed before the decoder is able to
provide informations on the presence of a single bit error and of a double bit error,
to handle them two signals are added to core interface;

❼ TMR core: there are three RAM instances but, to mantain the same interface de-
scribed for the not triplicated version, the single bit error and the double bit error
lines are high if an error is detected in one of the internal mismatch signals;

1These lines were not used in the testing architecture because it was shared by both the Murax core
and the MicroBlaze from Xilinx
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The substitution script is written using TCL language, executed by Vivado and performed
through the following steps:

❼ The different core instances paths are stored in a list:

– Single core: path to the top wrapper;

– TMR core: path to the three instances, Synplify is instantiating each replica
using the name TMRn where n is the related number;

❼ All the BRAMs used are listed using all rams command;

❼ Processors RAM are selectd using regular expressions, specifically each BRAM path
is compared with each core instance and ram symbol 2 string.

❼ If one path matches the conditions:

– The following nets names are stored:

✯ Clock;

✯ Data In;

✯ Data Out;

✯ Address;

✯ Write Enables;

✯ Read Enable;

– All the previous signals are disconnected from the BRAM that is removed from
the design;

– A black-box cell is instantiated and updated with the protected memory system
netlist;

– All stored signals are connected to the new RAM interface;

❼ The mismatch lines are directly connected to the core interface or provided in input
to a tree of or gates;

The flow diagram in figure D.1 is representing the substitution process.

2It is a string common to single processor, TMR processor and the name used for protected memory
top entity.
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D.2 Memory mapping

This process is useful to isolate and store all the informations needed by Updatemem tool in
memory content update procedure. The first part is common to the memory substitution
process, all the BRAMs internal to processor RAMs are selected and the related paths are
stored in a list. There are four different memory systems depending on the core version:

❼ Not protected: only one data BRAM, bytes at lower addresses are indexing least
significant positions;

❼ ECC: two BRAMs, one for data and the other for redundant bits, the former is exactly
as the not protected one while the latter is following the same mapping order with a
lower input data widths;

❼ TMR: three BRAMs, all of them for data. The particularity with respect to the first
case is that Synplify is swapping bytes positions for single 32-bits frames inside the
memory;

❼ TMR-ECC: exactly as for the single ECC version, the memory system is similar to the
counterpart without information redundancy. Because bytes endianness is reversed,
the ECC BRAM content is evaluated with changed data;

For versions implementing hardware redundancy the content bytes swapping is performed
during code compiling. As stated in chapter 3, the result of this script is a .mmi file carrying
all the needed informations to update targeted BRAMs. This is the algorithm used:

❼ BRAMs are stored in a list through all rams command;

❼ Processors related blocks are selected in the following way:

– If ECC is not applied, the generic ram symbol expression is used for regular
expression research;

– If ECC is present, a distinction is done between data and redundant memory
through data mem and ecc mem patterns.

❼ The list of BRAMs obtained is parsed and one .mmi file is written for each block;

Similarly to memory substitution, this procedure is executed through a TCL script by
Vivado and it is listed in next page.
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Listing D.1. Memory mapping script

# Obtain RAM l i s t s

set gram [ sp l i t [ a l l r a m s ] ” ” ]

# Se l e c t s only RAMB36 type and sav ing the s i t e s in an array

set bram [ l i s t ]
set brams i te s [ l i s t ]

set c 0
set nram 0

foreach ram ✩gram {
set temp [ ge t p rope r ty PRIMITIVE TYPE [ g e t c e l l s ✩ram ] ]
i f {✩temp == ”BLOCKRAM.BRAM.RAMB36E2” && [ regexp ”✩{ s o c i n s t } ram symbol” ✩ram ] } {

incr nram
}

}

i f { ! ✩nram} {
puts ”ERROR: no BRAM has been found core ✩{ s o c i n s t } i n s t a n t i a t i o n ”

}

while {✩c ! =✩nram} {
foreach ram ✩gram {

set temp [ ge t p rope r ty PRIMITIVE TYPE [ g e t c e l l s ✩ram ] ]
i f {✩temp == ”BLOCKRAM.BRAM.RAMB36E2” && [ regexp ”✩{ s o c i n s t } ram symbol” ✩ram ] } {

set length [ string length ✩ram ]
set i [ string index ✩ram [ expr ✩ l ength − 3 ] ]
i f {✩i==✩c} {

set s i t e [ lindex [ sp l i t [ g e t s i t e s −o f ob j e c t s [ g e t c e l l s ✩ram ] ] ” ” ] 1 ]
puts ”INFO: Mapping ✩ram with s i t e ✩ s i t e ”
set bram [ lappend bram ✩ram ]
set brams i te s [ lappend brams i te s ✩ s i t e ]
incr c

}
}
# puts ✩c

}
}

set MSB 31
puts ”INFO: MSB of the data i s ✩MSB”

set addre s s space 65535
set ram address space [ expr ✩addre s s space / [ expr [ expr ✩MSB + 1 ] ✯ ✩nram ] ]

set fp [open ” . . / n e t l i s t /murax tmr✩{tmr} e c c✩ { ecc } co r e✩ { core } .mmi” ”w” ]

puts ✩ fp ”<?xml version= \”1 . 0 \” encoding=\”UTF−8\”?>”
puts ✩ fp ”<!−− The time i s : [ c l o ck format [ c l o ck seconds ] −format %H:%M:%S ] −−>”
puts ✩ fp ”<MemInfo Version=\”1\” Minor=\”1\”>”
puts ✩ fp ” <Proces sor Endianness=\” L i t t l e \” InstPath=\” s o c i n s t \”>”
puts ✩ fp ” <AddressSpace Name=\” soc inst mem \” Begin=\”0\” End=\” [ expr ✩addre s s space −1]\ ”>”
puts ✩ fp ” <BusBlock>”

set n 0

foreach bram 1bit ✩bram {
set length [ string length ✩bram 1bit ]
puts ✩ fp ” <BitLane MemType=\”RAMB36\” Placement=\” [ lindex ✩bramsi tes ✩n ]\ ”>”
puts ✩ fp ” <DataWidth MSB=\”✩MSB\” LSB=\”0\”/>”
puts ✩ fp ” <AddressRange Begin=\” [ expr ✩ ram address space ✯ ✩n ]\ ”
End=\” [ expr [ expr ✩ ram address space ✯ [ expr ✩n + 1 ] ] −1]\ ”/>”
puts ✩ fp ” <Par i ty ON=\” true \” NumBits=\”0\”/>”
puts ✩ fp ” </BitLane>”
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incr n
}
puts ✩ fp ” </BusBlock>”
puts ✩ fp ” </AddressSpace>”
puts ✩ fp ” </Processor>”
puts ✩ fp ” <Config>”
puts ✩ fp ” <Option Name=\”Part\” Val=\”xcku040−fbva676−1−c\”/>”
puts ✩ fp ” </Config>”
puts ✩ fp ”</MemInfo>”
close ✩ fp
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Figure D.1. Protected memory insertion flow diagram
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VHDL files

E.1 Core files

Listing E.1. Top entity
l ibrary s y n p l i f y ;
use s y n p l i f y . a t t r i b u t e s . a l l ;
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . numer ic std . a l l ;
−− use work . s yn a t t r . a l l ;
−− use work . h r e l a t t r . a l l ;
use work . a r i t h . a l l ;
−− use work . a l l ;

l ibrary unisim ;
use unisim . vcomponents . a l l ;

entity top i s
generic (

RAMDIM: i n t e g e r
) ;
port (

i o a syncRese t : in s t d l o g i c ;
io mainClk : in s t d l o g i c ;
i o gp ioA read : in s t d l o g i c v e c t o r (31 downto 0 ) ;
i o g p i o A w r i t e : out s t d l o g i c v e c t o r (31 downto 0 ) ;
i o gp ioA wr i t eEnab le : out s t d l o g i c v e c t o r (31 downto 0 ) ;
ob ram er r sb i t : out s t d l o g i c ;
obram err db i t : out s t d l o g i c ;
i o u a r t t x d : out s t d l o g i c ;
i o u a r t r x d : in s t d l o g i c

) ;
end entity ;

architecture soc noecc of top i s

component murax wrapper i s
port (

i o a syncRese t : in s t d l o g i c ;
io mainClk : in s t d l o g i c ;
i o j t a g t m s : in s t d l o g i c ;
i o j t a g t d i : in s t d l o g i c ;
i o j t a g t d o : out s t d l o g i c ;
i o j t a g t c k : in s t d l o g i c ;
i o gp ioA read : in s t d l o g i c v e c t o r (31 downto 0 ) ;
i o g p i o A w r i t e : out s t d l o g i c v e c t o r (31 downto 0 ) ;
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i o gp ioA wr i t eEnab le : out s t d l o g i c v e c t o r (31 downto 0 ) ;
i o u a r t t x d : out s t d l o g i c ;
i o u a r t r x d : in s t d l o g i c

) ;
end component ;

component j t a g c o n t r o l l e r i s
port (

i o a syncRese t : in s t d l o g i c ;
i o j t a g t m s : out s t d l o g i c := ’1 ’ ;
i o j t a g t d i : out s t d l o g i c ;
i o j t a g t d o : in s t d l o g i c ;
i o j t a g t c k : out s t d l o g i c ;
io mainClk : in s t d l o g i c ;
j tag mainClk : in s t d l o g i c

) ;
end component ;

signal i o j t a g t m s : s t d l o g i c ;
signal i o j t a g t d i : s t d l o g i c ;
signal i o j t a g t d o : s t d l o g i c ;
signal i o j t a g t c k : s t d l o g i c ;
signal j tag mainClk : s t d l o g i c ;

begin

j t a g i n s t : j t a g c o n t r o l l e r
port map (

i o a syncRese t => i o asyncReset ,
io mainClk => io mainClk ,
i o j t a g t m s => i o j t ag tms ,
i o j t a g t d i => i o j t a g t d i ,
i o j t a g t d o => i o j t a g t d o ,
i o j t a g t c k => i o j t a g t c k ,
j tag mainClk => j tag mainClk

) ;

s o c i n s t : murax wrapper
port map (

i o a syncRese t => i o asyncReset ,
io mainClk => io mainClk ,
i o j t a g t m s => i o j t ag tms ,
i o j t a g t d i => i o j t a g t d i ,
i o j t a g t d o => i o j t a g t d o ,
i o j t a g t c k => i o j t a g t c k ,
i o gp ioA read => i o gp ioA read ,
i o g p i o A w r i t e => i o gp ioA wr i t e ,
i o gp ioA wr i t eEnab le => i o gp ioA wr i teEnable ,
i o u a r t t x d => i o ua r t txd ,
i o u a r t r x d => i o u a r t r x d

) ;

end soc noecc ;

architecture s o c e c c of top i s

component murax wrapper i s
port (

i o a syncRese t : in s t d l o g i c ;
io mainClk : in s t d l o g i c ;
i o j t a g t m s : in s t d l o g i c ;
i o j t a g t d i : in s t d l o g i c ;
i o j t a g t d o : out s t d l o g i c ;
i o j t a g t c k : in s t d l o g i c ;
i o gp ioA read : in s t d l o g i c v e c t o r (31 downto 0 ) ;
i o g p i o A w r i t e : out s t d l o g i c v e c t o r (31 downto 0 ) ;
i o gp ioA wr i t eEnab le : out s t d l o g i c v e c t o r (31 downto 0 ) ;
i o u a r t t x d : out s t d l o g i c ;
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i o u a r t r x d : in s t d l o g i c
) ;

end component ;

component j t a g c o n t r o l l e r i s
port (

i o a syncRese t : in s t d l o g i c ;
i o j t a g t m s : out s t d l o g i c := ’1 ’ ;
i o j t a g t d i : out s t d l o g i c ;
i o j t a g t d o : in s t d l o g i c ;
i o j t a g t c k : out s t d l o g i c ;
io mainClk : in s t d l o g i c ;
j tag mainClk : in s t d l o g i c

) ;
end component ;

component emip i s
generic (

RAMDIM: i n t e g e r
) ;
port (

c l k : in s t d l o g i c ;
r s t i : in s t d l o g i c ;
ob ram er r sb i t : out s t d l o g i c ;
obram err db i t : out s t d l o g i c

) ;
end component ;

signal i o j t a g t m s : s t d l o g i c ;
signal i o j t a g t d i : s t d l o g i c ;
signal i o j t a g t d o : s t d l o g i c ;
signal i o j t a g t c k : s t d l o g i c ;
signal j tag mainClk : s t d l o g i c ;

attribute syn keep of obram er r sb i t : signal i s t rue ;
attribute syn keep of obram err db i t : signal i s t rue ;

begin

j t a g i n s t : j t a g c o n t r o l l e r
port map (

i o a syncRese t => i o asyncReset ,
io mainClk => io mainClk ,
i o j t a g t m s => i o j t ag tms ,
i o j t a g t d i => i o j t a g t d i ,
i o j t a g t d o => i o j t a g t d o ,
i o j t a g t c k => i o j t a g t c k ,
j tag mainClk => j tag mainClk

) ;

s o c i n s t : murax wrapper
port map (

i o a syncRese t => i o asyncReset ,
io mainClk => io mainClk ,
i o j t a g t m s => i o j t ag tms ,
i o j t a g t d i => i o j t a g t d i ,
i o j t a g t d o => i o j t a g t d o ,
i o j t a g t c k => i o j t a g t c k ,
i o gp ioA read => i o gp ioA read ,
i o g p i o A w r i t e => i o gp ioA wr i t e ,
i o gp ioA wr i t eEnab le => i o gp ioA wr i teEnable ,
i o u a r t t x d => i o ua r t txd ,
i o u a r t r x d => i o u a r t r x d

) ;

emip in s t : emip
generic map(
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RAMDIM => RAMDIM
)
port map (

c l k => io mainClk ,
r s t i => i o asyncReset ,
ob ram er r sb i t => obram err sb i t ,
obram err db i t => obram err db i t

) ;

end s o c e c c ;

configuration noTMR ECC of top i s
for s o c e c c

for s o c i n s t : murax wrapper
use entity work . murax wrapper ( wrapper ) ;

end for ;
for emip in s t : emip

use entity work . emip ( notmr ) ;
end for ;

end for ;
end configuration noTMR ECC;

configuration noTMR noECC of top i s
for soc noecc

for s o c i n s t : murax wrapper
use entity work . murax wrapper ( wrapper ) ;

end for ;
end for ;

end configuration noTMR noECC;

configuration TMR ECC of top i s
for s o c e c c

for s o c i n s t : murax wrapper
use entity work . murax wrapper ( wrappe r d i s t r i bu t ed ) ;

end for ;
for emip in s t : emip

use entity work . emip ( tmr ) ;
end for ;

end for ;
end configuration TMR ECC;

configuration TMR noECC of top i s
for soc noecc

for s o c i n s t : murax wrapper
use entity work . murax wrapper ( wrappe r d i s t r i bu t ed ) ;

end for ;
end for ;

end configuration TMR noECC;

80



E – VHDL files

Listing E.2. Error monitoring IP

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . numer ic std . a l l ;
use work . s y n a t t r . a l l ;
use work . h r e l a t t r . a l l ;

−− Here must be de f ined the por t s f o r the error check ing .
−− In order to d e t e c t the co r r ec t working o f the device ,
−− the f o l l ow i n g informat ion w i l l be monitored :
−− − ECC codes o f the BRAMs

entity emip i s
generic (

RAMDIM: i n t e g e r
) ;
port (

c l k : in s t d l o g i c ;
r s t i : in s t d l o g i c ;
ob ram er r sb i t : out s t d l o g i c ;
obram err db i t : out s t d l o g i c

) ;
end entity ;

architecture notmr of emip i s

attribute syn noprune of notmr : architecture i s t rue ;
attribute syn pr e s e rve of notmr : architecture i s t rue ;

signal obram er r sb i t sy s ram : s t d l o g i c ;
signal obram err db i t sysram : s t d l o g i c ;

attribute syn keep of obram er r sb i t sy s ram : signal i s t rue ;
attribute syn keep of obram err db i t sysram : signal i s t rue ;

component emip bram i s
generic (

N: i n t e g e r
) ;
port (

c l k : in s t d l o g i c ;
r s t i : in s t d l o g i c ;
i b r a m e r r s b i t : in s t d l o g i c v e c t o r (N−1 downto 0 ) ;
i b r a m e r r d b i t : in s t d l o g i c v e c t o r (N−1 downto 0 ) ;
ob ram er r sb i t : out s t d l o g i c ;
obram err db i t : out s t d l o g i c

) ;
end component ;

begin

obram er r sb i t <= obram er r sb i t sy s ram ;
obram err db i t <= obram err db i t sysram ;

SYSRAM: emip bram
generic map(

N => RAMDIM
)
port map(

c l k => c lk ,
r s t i => r s t i ,
ob ram er r sb i t => obram err sb i t sys ram ,
obram err db i t => obram err dbit sysram ,
i b r a m e r r s b i t => open ,
i b r a m e r r d b i t => open

) ;

end notmr ;
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architecture tmr of emip i s

attribute syn noprune of tmr : architecture i s t rue ;
attribute syn pr e s e rve of tmr : architecture i s t rue ;

signal obram err sb i t sy s ram0 : s t d l o g i c ;
signal obram err db i t sysram0 : s t d l o g i c ;

signal obram err sb i t sy s ram1 : s t d l o g i c ;
signal obram err db i t sysram1 : s t d l o g i c ;

signal obram err sb i t sy s ram2 : s t d l o g i c ;
signal obram err db i t sysram2 : s t d l o g i c ;

attribute syn keep of obram err sb i t sy s ram0 : signal i s t rue ;
attribute syn keep of obram err db i t sysram0 : signal i s t rue ;

attribute syn keep of obram err sb i t sy s ram1 : signal i s t rue ;
attribute syn keep of obram err db i t sysram1 : signal i s t rue ;

attribute syn keep of obram err sb i t sy s ram2 : signal i s t rue ;
attribute syn keep of obram err db i t sysram2 : signal i s t rue ;

attribute syn radha rd l ev e l of tmr : architecture i s ” d i s t r i b u t e d t m r ” ;

component emip bram i s
generic (

N: i n t e g e r
) ;
port (

c l k : in s t d l o g i c ;
r s t i : in s t d l o g i c ;
i b r a m e r r s b i t : in s t d l o g i c v e c t o r (N−1 downto 0 ) ;
i b r a m e r r d b i t : in s t d l o g i c v e c t o r (N−1 downto 0 ) ;
ob ram er r sb i t : out s t d l o g i c ;
obram err db i t : out s t d l o g i c

) ;
end component ;

begin

obram er r sb i t <= obram err sb i t sy s ram0 or obram err sb i t sy s ram1 or obram err sb i t sy s ram2 ;
obram err db i t <= obram err db i t sysram0 or obram err db i t sysram1 or obram err db i t sysram2 ;

SYSRAM0: emip bram
generic map(

N => RAMDIM
)
port map(

c l k => c lk ,
r s t i => r s t i ,
ob ram er r sb i t => obram err sb i t sys ram0 ,
obram err db i t => obram err dbit sysram0 ,
i b r a m e r r s b i t => open ,
i b r a m e r r d b i t => open

) ;

SYSRAM1: emip bram
generic map(

N => RAMDIM
)
port map(

c l k => c lk ,
r s t i => r s t i ,
ob ram er r sb i t => obram err sb i t sys ram1 ,
obram err db i t => obram err dbit sysram1 ,
i b r a m e r r s b i t => open ,
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i b r a m e r r d b i t => open
) ;

SYSRAM2: emip bram
generic map(

N => RAMDIM
)
port map(

c l k => c lk ,
r s t i => r s t i ,
ob ram er r sb i t => obram err sb i t sys ram2 ,
obram err db i t => obram err dbit sysram2 ,
i b r a m e r r s b i t => open ,
i b r a m e r r d b i t => open

) ;

end tmr ;
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Listing E.3. Error monitoring IP BRAM

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . numer ic std . a l l ;
use work . s y n a t t r . a l l ;

−− This i s a gener i c component f o r the eva lua t i on o f ECC f l a g s f o r BRAM

entity emip bram i s
generic (

N: i n t e g e r
) ;
port (

c l k : in s t d l o g i c ;
r s t i : in s t d l o g i c ;
i b r a m e r r s b i t : in s t d l o g i c v e c t o r (N−1 downto 0 ) ;
i b r a m e r r d b i t : in s t d l o g i c v e c t o r (N−1 downto 0 ) ;
ob ram er r sb i t : out s t d l o g i c ;
obram err db i t : out s t d l o g i c

) ;
end entity ;

architecture r t l of emip bram i s

attribute syn noprune of r t l : architecture i s t rue ;
attribute syn pr e s e rve of r t l : architecture i s t rue ;

signal obram err sb i t tmp : s t d l o g i c v e c t o r (N−1 downto 0 ) ;
signal obram err dbit tmp : s t d l o g i c v e c t o r (N−1 downto 0 ) ;
signal i b ram er r sb i t tmp : s t d l o g i c v e c t o r (N−1 downto 0 ) ;
signal i b ram err db i t tmp : s t d l o g i c v e c t o r (N−1 downto 0 ) ;

−− a t t r i b u t e syn keep o f obram err sb i t tmp : s i g n a l i s t rue ;
−− a t t r i b u t e syn keep o f obram err db i t tmp : s i g n a l i s t rue ;

begin

REG i : process ( c lk , r s t i , i b r a m e r r s b i t , i b r a m e r r d b i t )
begin

i f r s t i = ’1 ’ then
i b ram er r sb i t tmp <= ( others => ’ 0 ’ ) ;
ib ram err db i t tmp <= ( others => ’ 0 ’ ) ;

e l s i f c lk ’ event and c l k = ’1 ’ then
i b ram er r sb i t tmp <= i b r a m e r r s b i t ;
ib ram err db i t tmp <= i b r a m e r r d b i t ;

end i f ;
end process ;

obram err sb i t tmp (0) <= ibram er r sb i t tmp ( 0 ) ;

SBIT : for i in 1 to N−1 generate
obram err sb i t tmp ( i ) <= obram err sb i t tmp ( i −1) or i b ram er r sb i t tmp ( i ) ;

end generate ;

obram err dbit tmp (0) <= ibram err db i t tmp ( 0 ) ;

DBIT: for i in 1 to N−1 generate
obram err dbit tmp ( i ) <= obram err dbit tmp ( i −1) or i b ram err db i t tmp ( i ) ;

end generate ;

REG o : process ( c lk , r s t i , obram err sb i t tmp (N−1) , obram err dbit tmp (N−1))
begin

i f r s t i = ’1 ’ then
obram er r sb i t <= ’ 0 ’ ;
obram err db i t <= ’ 0 ’ ;

e l s i f c lk ’ event and c l k = ’1 ’ then
obram er r sb i t <= obram err sb i t tmp (N−1);
obram err db i t <= obram err dbit tmp (N−1);
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end i f ;
end process ;

end r t l ;
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E.2 Memory files

Listing E.4. Memory top entity
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . numer ic std . a l l ;
use work . a r i t h . a l l ;
use work . h r e l a t t r . a l l ;
use work . s y n a t t r . a l l ;
use work . comp pkg . a l l ;

entity ram i s
generic (

width : i n t e g e r :=1024;
word width : i n t e g e r :=32;
i n i t : s t r i n g ;
i n i t e c c : s t r i n g

) ;
port (

c l k : in s t d l o g i c ;
r s t : in s t d l o g i c ;
din : in s t d l o g i c v e c t o r (31 downto 0 ) ;
addr : in s t d l o g i c v e c t o r ( log2 ( width)−1 downto 0 ) ;
ren : in s t d l o g i c ;
wen : in s t d l o g i c v e c t o r (3 downto 0 ) ;
dout : out s t d l o g i c v e c t o r (31 downto 0 ) ;
s b i t e r r : out s t d l o g i c ;
d b i t e r r : out s t d l o g i c

) ;
end entity ;

architecture e c c s e cded of ram i s

component r am ct r l i s
generic (

width : i n t e g e r :=1024
) ;
port (

c l k : in s t d l o g i c ;
r s t : in s t d l o g i c ;
din : in s t d l o g i c v e c t o r (31 downto 0 ) ;
addr : in s t d l o g i c v e c t o r ( log2 ( width)−1 downto 0 ) ;
ren : in s t d l o g i c ;
wen : in s t d l o g i c v e c t o r (3 downto 0 ) ;
dout noenc : in s t d l o g i c v e c t o r (31 downto 0 ) ;
dout ecc : in s t d l o g i c v e c t o r (7 downto 0 ) ;
dout : out s t d l o g i c v e c t o r (31 downto 0 ) ;
d i n e c c : out s t d l o g i c v e c t o r (7 downto 0 ) ;
wen1 ecc : inout s t d l o g i c ;
wen2 ecc : out s t d l o g i c ;
addr ecc : out s t d l o g i c v e c t o r ( log2 ( width)−1 downto 0 ) ;
s b i t e r r : out s t d l o g i c ;
d b i t e r r : out s t d l o g i c

) ;
end component ;

attribute black box of r am ct r l : component i s ” true ” ;

signal dout noenc : s t d l o g i c v e c t o r (31 downto 0 ) ;
signal dout ecc : s t d l o g i c v e c t o r (7 downto 0 ) ;
signal d i n e c c : s t d l o g i c v e c t o r (7 downto 0 ) ;
signal wen1 ecc : s t d l o g i c v e c t o r (0 downto 0 ) ;
signal wen2 ecc : s t d l o g i c v e c t o r (0 downto 0 ) ;
signal addr ecc : s t d l o g i c v e c t o r ( log2 ( width)−1 downto 0 ) ;
signal addr shecc : s t d l o g i c v e c t o r ( log2 ( width)+1 downto 0 ) ;
signal addr sh : s t d l o g i c v e c t o r ( log2 ( width)+1 downto 0 ) ;
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begin

r a m c t r l i n s t : r am ct r l
generic map(

width => 1024
)
port map(

c l k => c lk ,
r s t => r s t ,
din => din ,
addr => addr ,
ren => ren ,
wen => wen ,
dout noenc => dout noenc ,
dout ecc => dout ecc ,
dout => dout ,
d i n e c c => din ecc ,
wen1 ecc => wen1 ecc ( 0 ) ,
wen2 ecc => wen2 ecc ( 0 ) ,
addr ecc => addr ecc ,
s b i t e r r => s b i t e r r ,
d b i t e r r => d b i t e r r

) ;

data mem inst : bram sdp
generic map(

DATA => 32 ,
ADDR => l og2 ( width ) ,
i n i t => i n i t

)
port map(

a c l k => c lk ,
a wr => wen ,
a en => ren ,
a addr => addr ,
a d in => din ,
a dout => dout noenc

) ;

addr shecc <= ”00” & addr ecc ;
addr sh <= ”00” & addr ;
ecc mem inst : bram tdp
generic map(

DATA => 8 ,
ADDR => l og2 ( width )+2 ,
i n i t => i n i t e c c

)
port map(
−− Port A
a c l k => c lk ,
a wr => wen1 ecc ,
a en => ren ,
a addr => addr sh ,
a d in => din ecc ,
a dout => dout ecc ,
b c l k => c lk ,
b wr => wen2 ecc ,
b en => ’ 1 ’ ,
b addr => addr shecc ,
b din => din ecc ,
b dout => open

) ;

end e c c s e cded ;
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Listing E.5. Ram control circuitry

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . numer ic std . a l l ;
use work . a r i t h . a l l ;
use work . h r e l a t t r . a l l ;
use work . comp pkg . a l l ;

entity r am ct r l i s
generic (

width : i n t e g e r :=1024
) ;
port (

c l k : in s t d l o g i c ;
r s t : in s t d l o g i c ;
din : in s t d l o g i c v e c t o r (31 downto 0 ) ;
addr : in s t d l o g i c v e c t o r ( log2 ( width)−1 downto 0 ) ;
ren : in s t d l o g i c ;
wen : in s t d l o g i c v e c t o r (3 downto 0 ) ;
dout noenc : in s t d l o g i c v e c t o r (31 downto 0 ) ;
dout ecc : in s t d l o g i c v e c t o r (7 downto 0 ) ;
dout : out s t d l o g i c v e c t o r (31 downto 0 ) ;
d i n e c c : out s t d l o g i c v e c t o r (7 downto 0 ) ;
wen1 ecc : inout s t d l o g i c ;
wen2 ecc : out s t d l o g i c ;
addr ecc : out s t d l o g i c v e c t o r ( log2 ( width)−1 downto 0 ) ;
s b i t e r r : out s t d l o g i c ;
d b i t e r r : out s t d l o g i c

) ;
end entity ;

architecture r e a d f i r s t of r am ct r l i s

signal a d d r e c c i : s t d l o g i c v e c t o r ( log2 ( width)−1 downto 0 ) ;
signal dout i : s t d l o g i c v e c t o r (31 downto 0 ) ;
signal dout r : s t d l o g i c v e c t o r (31 downto 0 ) ;
signal d i n r : s t d l o g i c v e c t o r (31 downto 0 ) ;
signal d i n e c c i : s t d l o g i c v e c t o r (7 downto 0 ) ;
signal d o u t e c c i : s t d l o g i c v e c t o r (6 downto 0 ) ;
signal e r r : s t d l o g i c v e c t o r (1 downto 0 ) ;
signal wen r : s t d l o g i c v e c t o r (3 downto 0 ) ;
signal wen i : s t d l o g i c ;
signal wend i : s t d l o g i c ;
signal addr eq w : s t d l o g i c ;
signal outmux : s t d l o g i c ;
signal addr xor : s t d l o g i c v e c t o r ( log2 ( width)−1 downto 0 ) ;

begin

a d d r r e g i s t e r n i n s t : r e g i s t e r n
generic map(

n => l og2 ( width )
)
port map(

c l k => c lk ,
r s t => r s t ,
en => ’ 1 ’ ,
d => addr ,
q => a d d r e c c i

) ;

addr xor <= ( others => wen1 ecc ) ;
addr ecc <= a d d r e c c i xor addr xor ;

addr eqcomparator ins t1 : eqcomparator
generic map(

n => l og2 ( width )
)
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port map(
a => addr ,
b => a dd r e c c i ,
e => addr eq w

) ;

wen i <= (wen (0) or wen (1) or wen (2) or wen ( 3 ) ) and ren ;

w e n f f d i n s t : f f d
port map(

c l k => c lk ,
r s t => r s t ,
en => ’ 1 ’ ,
d => wen i ,
q => wend i

) ;

w e n r e g i s t e r n i n s t : r e g i s t e r n
generic map(

n => 4
)
port map(

c l k => c lk ,
r s t => r s t ,
en => ’ 1 ’ ,
d => wen ,
q => wen r

) ;

d i n r e g i s t e r n i n s t : r e g i s t e r n
generic map(

n => 32
)
port map(

c l k => c lk ,
r s t => r s t ,
en => ’ 1 ’ ,
d => din ,
q => d i n r

) ;

d o u t r g e n e r a t e i n s t : for i in 0 to 3 generate
dout r mux21gen inst : mux21gen
generic map(

n => 8
)
port map(

a => dout noenc ( ( 8✯ ( i +1))−1 downto 8✯ i ) ,
b => d i n r ( ( 8✯ ( i +1))−1 downto 8✯ i ) ,
s => wen r ( i ) ,
c => dout r ( ( 8✯ ( i +1))−1 downto 8✯ i )

) ;
end generate ;

wen1 ecc <= wend i and ( addr eq w and ren ) ;

wen2 ecc <= wend i and (not ( addr eq w ) or not ( ren ) ) ;

outmux <= ’ 0 ’ ;

d i n e c c e n c o d e r i n s t : encoder
port map(

din => dout r ,
dout => d i n e c c (6 downto 0)

) ;
d i n e c c (7 ) <= ’ 0 ’ ;

d o u t d e c o d e r i n s t : decoder
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port map(
din => dout noenc ,
p => dout ecc (6 downto 0) ,
e r r => err ,
dout => dout i

) ;

dout mux21gen inst : mux21gen
generic map(

n => 32
)
port map(

a => dout i ,
b => dout noenc ,
s => outmux ,
c => dout

) ;

s b i t e r r <= e r r (0 ) and not ( outmux ) ;
d b i t e r r <= e r r (1 ) and not ( outmux ) ;

end r e a d f i r s t ;
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Listing E.6. ECC encoder
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . numer ic std . a l l ;
use work . a r i t h . a l l ;
use work . h r e l a t t r . a l l ;

entity encoder i s
port (

din : in s t d l o g i c v e c t o r (31 downto 0 ) ;
dout : out s t d l o g i c v e c t o r (63 downto 0)

) ;
end entity ;

architecture s t r u c t u r a l of encoder i s

attribute syn radha rd l ev e l of s t r u c t u r a l : architecture i s ”none” ;

signal by : byte word ;
signal c : h o r p a r i t y ;
signal p : s t d l o g i c v e c t o r (7 downto 0 ) ;

begin

HPA: for i in 0 to 3 generate
by ( i ) <= din ( ( 8✯ ( i +1))−1 downto 8✯ i ) ;
c ( i ) ( 0 ) <= by ( i ) ( 0 ) xor by ( i ) ( 1 ) xor by ( i ) ( 3 ) xor by ( i ) ( 4 ) xor by ( i ) ( 6 ) ;
c ( i ) ( 1 ) <= by ( i ) ( 0 ) xor by ( i ) ( 2 ) xor by ( i ) ( 3 ) xor by ( i ) ( 5 ) xor by ( i ) ( 6 ) ;
c ( i ) ( 2 ) <= by ( i ) ( 1 ) xor by ( i ) ( 2 ) xor by ( i ) ( 3 ) xor by ( i ) ( 7 ) ;
c ( i ) ( 3 ) <= by ( i ) ( 4 ) xor by ( i ) ( 5 ) xor by ( i ) ( 6 ) xor by ( i ) ( 7 ) ;
c ( i ) ( 4 ) <= by ( i ) ( 0 ) xor by ( i ) ( 1 ) xor by ( i ) ( 2 ) xor by ( i ) ( 3 ) xor \

by ( i ) ( 4 ) xor by ( i ) ( 5 ) xor by ( i ) ( 6 ) xor by ( i ) ( 7 ) ;
end generate ;

VPA: for i in 0 to 7 generate
p( i ) <= by ( 0 ) ( i ) xor by ( 1 ) ( i ) xor by ( 2 ) ( i ) xor by ( 3 ) ( i ) ;

end generate ;

dout (31 downto 0) <= din ;
dout (39 downto 32) <= p ;
dout (44 downto 40) <= c ( 0 ) ;
dout (49 downto 45) <= c ( 1 ) ;
dout (54 downto 50) <= c ( 2 ) ;
dout (59 downto 55) <= c ( 3 ) ;
dout (63 downto 60) <= ”0000” ;

end s t r u c t u r a l ;
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Listing E.7. ECC decoder

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . numer ic std . a l l ;
use work . a r i t h . a l l ;
use work . h r e l a t t r . a l l ;

entity decoder i s
port (

din : in s t d l o g i c v e c t o r (63 downto 0 ) ;
dout : out s t d l o g i c v e c t o r (31 downto 0)

) ;
end entity ;

architecture s t r u c t u r a l of decoder i s

component encoder i s
port (

din : in s t d l o g i c v e c t o r (31 downto 0 ) ;
dout : out s t d l o g i c v e c t o r (63 downto 0)

) ;
end component ;

attribute syn radha rd l ev e l of s t r u c t u r a l : architecture i s ”none” ;

signal by : byte word ;
signal by se r : byte word ;
signal mask ser : byte word ;
signal sp med : byte word ; −− Syndorme pa r i t y b i t s xored with med
signal c i : h o r p a r i t y ;
signal cr : h o r p a r i t y ;
signal c s e r : h o r p a r i t y ;
signal sc : h o r p a r i t y ; −− Syndrome check b i t s
signal s c s e r : h o r p a r i t y ; −− Syndrome check b i t s
signal med : s t d l o g i c v e c t o r (3 downto 0 ) ; −− Mul t i p l e error de t e c t i on b i t s
signal pi : s t d l o g i c v e c t o r (7 downto 0 ) ;
signal pser : s t d l o g i c v e c t o r (7 downto 0 ) ;
signal sp : s t d l o g i c v e c t o r (7 downto 0 ) ; −− Syndorme pa r i t y b i t s
signal d in enc : s t d l o g i c v e c t o r (63 downto 0 ) ;
signal d i n s e r : s t d l o g i c v e c t o r (31 downto 0 ) ;
signal tmp ser : s t d l o g i c v e c t o r (63 downto 0 ) ;

begin

e n c i n s t 0 : encoder
port map(

din => din (31 downto 0) ,
dout => d in enc

) ;

e n c i n s t 1 : encoder
port map(

din => d i n s e r (31 downto 0) ,
dout => tmp ser

) ;

p i <= din (39 downto 3 2 ) ;
c i ( 0 ) <= din (44 downto 4 0 ) ;
c i ( 1 ) <= din (49 downto 4 5 ) ;
c i ( 2 ) <= din (54 downto 5 0 ) ;
c i ( 3 ) <= din (59 downto 5 5 ) ;

c r (0 ) <= din enc (44 downto 4 0 ) ;
c r (1 ) <= din enc (49 downto 4 5 ) ;
c r (2 ) <= din enc (54 downto 5 0 ) ;
c r (3 ) <= din enc (59 downto 5 5 ) ;

pser <= tmp ser (39 downto 3 2 ) ;

92



E – VHDL files

c s e r (0 ) <= tmp ser (44 downto 4 0 ) ;
c s e r (1 ) <= tmp ser (49 downto 4 5 ) ;
c s e r (2 ) <= tmp ser (54 downto 5 0 ) ;
c s e r (3 ) <= tmp ser (59 downto 5 5 ) ;

−− Generate syndrome fo r check b i t s and s i n g l e error co r r ec t i on in the rows

CORR: for i in 0 to 3 generate
sc ( i ) <= cr ( i ) xor c i ( i ) ;
by ( i ) <= din ( ( 8✯ ( i +1))−1 downto 8✯ i ) ;

MASK PROC: process ( sc )
variable mask ser var : byte word ;

begin
mask ser var ( i ) := ( others => ’ 0 ’ ) ;
mask ser var ( i ) ( 3 ) := sc ( i ) ( 0 ) and sc ( i ) ( 1 ) and sc ( i ) ( 2 ) and sc ( i ) ( 4 ) ;
i f ( mask ser var ( i ) (3 )= ’0 ’ ) then

mask ser var ( i ) ( 6 ) := sc ( i ) ( 0 ) and sc ( i ) ( 1 ) and sc ( i ) ( 3 ) and sc ( i ) ( 4 ) ;
i f ( mask ser var ( i ) (6 )= ’0 ’ ) then

mask ser var ( i ) ( 0 ) := sc ( i ) ( 0 ) and sc ( i ) ( 1 ) and sc ( i ) ( 4 ) ;
i f ( mask ser var ( i ) (0 )= ’0 ’ ) then

mask ser var ( i ) ( 1 ) := sc ( i ) ( 0 ) and sc ( i ) ( 2 ) and sc ( i ) ( 4 ) ;
i f ( mask ser var ( i ) (1 )= ’0 ’ ) then

mask ser var ( i ) ( 2 ) := sc ( i ) ( 1 ) and sc ( i ) ( 2 ) and sc ( i ) ( 4 ) ;
i f ( mask ser var ( i ) (2 )= ’0 ’ ) then

mask ser var ( i ) ( 5 ) := sc ( i ) ( 1 ) and sc ( i ) ( 3 ) and sc ( i ) ( 4 ) ;
i f ( mask ser var ( i ) (5 )= ’0 ’ ) then

mask ser var ( i ) ( 4 ) := sc ( i ) ( 0 ) and sc ( i ) ( 3 ) and sc ( i ) ( 4 ) ;
i f ( mask ser var ( i ) (4 )= ’0 ’ ) then

mask ser var ( i ) ( 7 ) := sc ( i ) ( 2 ) and sc ( i ) ( 3 ) and sc ( i ) ( 4 ) ;
end i f ;

end i f ;
end i f ;

end i f ;
end i f ;

end i f ;
end i f ;
mask ser ( i ) <= mask ser var ( i ) ;

end process ;

−−by s e r ( i ) <= by ( i ) ;
by se r ( i ) <= by ( i ) xor mask ser ( i ) ;
d i n s e r ( ( 8✯ ( i +1))−1 downto 8✯ i ) <= by se r ( i ) ;

−− Generate mu l t i p l e r error d e t e c t i on b i t s

s c s e r ( i ) <= c s e r ( i ) xor c i ( i ) ;
med( i ) <= s c s e r ( i ) ( 0 ) or s c s e r ( i ) ( 1 ) or s c s e r ( i ) ( 2 ) or s c s e r ( i ) ( 3 ) or s c s e r ( i ) ( 4 ) ;

SPMED: for j in 0 to 7 generate
sp med ( i ) ( j ) <= med( i ) and sp ( j ) ;

end generate ;

dout ( ( 8✯ ( i +1))−1 downto 8✯ i ) <= by se r ( i ) xor sp med ( i ) ;
end generate ;

−− Generate syndrome fo r pa r i t y b i t s and mu l t i p l e error cor r ec t i on between rows

sp <= pi xor pser ;

end s t r u c t u r a l ;
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