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Chapter 1

Introduction

Field-Programmable Gate Arrays have become more and more actractive to the
developers of mission-critical and safety-critical systems. Thanks to their reconfig-
urability properties, as well as their I/O capabilities these devices are often employed
as core logic in many different applications, like:

• Aerospace and Defense;

• ASIC Prototyping;

• Audio;

• Automotive;

• Broadcast;

• Consumer Electronics;

• Distributed Monetary Systems;

• Data Center;

• High-Energy Physics;

• High Performance Computing;

• Industrial;

• Medical;

• Scientific Instruments;

• Security systems;

1



1 – Introduction

• Video and Image Processing;

• Wired Communications;

• Wireless Communications.

On top of that, the use of soft microcontrollers can ease the complexity related
to the some of the control logic of these devices, allowing to easily develop new
features without having to redesign most of the control logic involved.

However, for application safety-critical and mission-critical like Aerospace and
High-Energy Physics these devices require a further analisys on radiation effects.
The main matter of this thesis, that has been developed in collaboration with the
Conseil Européen pour la Recherche Nucléaire (CERN) A Large Ion Collider Experi-
ment (ALICE), for the planned Inner Tracking System (ITS) Upgrade, are discussed
the fault tolerance metrics and the testing methodologies that can be applicable to
soft microprocessor cores running on FPGAs.

In Chapter 2 are discussed the effects of radiation on FPGAs, as well as the main
units of measure involved. Particular attention is then dedicated to the so-called
Single Event Effects.

In Chapter 3 are discussed the main techniques employed to protect digital de-
signs load onto FPGAs.

In Chapter 4 are discussed the main metrics that are available to classify the
effects of faults in these devices, with particular emphasis to the ones employed for
Single Event Effects.

In Chapter 5 are discussed the available techniques for radiation hardness design
validation. In particular, are presented the working schemes for tabletop testing and
ground testing.

In Chapter 6 are introduced the metrics and the testing methodologies that have
been used to characterize the Xilinx TMR Subsystem against radiation effects.

Finally, in Chapter 7 are presented the results of the characterization process
and the conclusions, as well as the possible future work associated to this matter.
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Chapter 2

Radiation Effects on
Field-Programmable Gate Arrays

Field-Programmable Gate Array (FPGA)s are becoming more and more attractive
in many fields of applications due to their reconfiguration capabilities. FPGAs,
however, are highly sensible to ionizing radiation. This weakness makes them very
prone to radiation-induced memory upsets.

2.1 FPGA Technologies

There are three major types of FPGA technologies on the market:

• Antifuse-based;

• Flash-based;

• Static RAM (SRAM)-based.

Antifuse-based FPGAs

Antifuse-based FPGAs were the most used technology in radiation environments.
This family of Field-Programmable Gate Arrays are characterized by having a One-
Time Programmable (OTP) memory, thus making the configuration permanent after
the first programming. The fuse technology is the less susceptible to radiation
effects: once a fuse is "blown", the change is permanent. The price to pay for this
technology is high. First of all, there is no reconfiguration capability: every time
that the firmware changes, the device have to be changed. Secondly, the capabilities
are very limited for its economic price: the technology involved in antifuse-based
FPGAs is often very old.

3



2 – Radiation Effects on Field-Programmable Gate Arrays

Flash-based FPGAs

Flash-based Field-Programmable Gate Arrays are a point in the middle between
antifuse-based and SRAM-based. The configuration memory bits are stored in a
flash memory that provided an highly -but limited- number of reprogramming cy-
cles. Like the antifuse technology, this technology is also non-volatile. While the
radiation susceptibility is higher than antifuse-based FPGAs, the hardware capabil-
ities are less restricted. Their use in radiation environments, though, is limited by
the flash memory technology adopted, floating gate. The transistors used for this
technology are easily degraded by the presence of charges in their gates, this is a
strong limitation if the memory is hit by radiation particles that can easily move
charges in this location.

Figure 2.1: Floating Gate NMOS Transistor: The accumulation of charges in the
Floating Gate prevents the transistor from working as expected, eventually, the
value stored is changed when the charge exceed the threshold.

Static RAM-based FPGAs

Finally, SRAM-based FPGAs are characterized by having all the configuration bits
stored in a Static RAM. Although this choice leads to potentially an infinite number
of reconfiguration cycles, the memory itself is volatile and it is the most susceptible
to radiation effects among the others. The strength of this family of devices resides
in the technology adopted, that is the best available on the market. It is also
important to note that an external memory has to be present in order to reprogram
the Configuration RAM in case of power loss.

4



2.2 – Radiation Effects

Figure 2.2: SRAM Cell: the effect of a particle striking through one of the M1..M4
transistors could flip the value stored the memory cell by the positive feedback of
the structure.

Feature SRAM Flash Antifuse
Reprogrammability High Medium-Low One-Time

Volatile Yes No No
Memory Size High Medium Small

Radiation Sensitivity High Medium-Low Low-None
Total Dose Tolerance Medium-High Low High

Table 2.1: Comparison of FPGA technologies in terms of the main considered pa-
rameters in radiation environments.

2.2 Radiation Effects

Radiation is very common in many different environments, it can be emitted by
natural sources as well as artificial sources. This section will give a brief description
of the theory and the various units of measure used later on.

5
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2.2.1 Ionizing Radiation

Ionizing Radiation identifies any kind of radiation that is able to produce, directly
or indirectly, the ionization of atoms or molecules of the material that cross, i.e. the
extraction of one or more electrons from them.

It is defined Directly Ionizing Radiation the kind of radiations that is composed
by charged particles, like:

• electrons;

• protons;

• α-particles;

• β-particles;

• heavy ions.

On the other hand, Indirectly Ionizing Radiation could be caused by particles
without charge, like neutrons, and high-energy electromagnetic radiation, like pho-
tons, γ rays and X-rays.

Ionization radiation is hazardous for an electronic circuit, since the effect of ion-
izing an atom or a molecule can change the behavior of an electronic circuit. Finally
all the moving charged particles are influenced by the effect of an electromagnetic
field, where it is present, due to the Lorentz force.

α-particles

An α-particle is an Helium nucleus, made of two neutrons and two protons and is
a very highly ionizing particle. For this reason the α-particle lose their energy in a
short path inside the material and can be easily shielded with a few centimeters of
air or a thin thickness shielding material like a sheet of paper.

β-particles

The β-particles are electrons or positrons emitted from radioactive atoms. Their
energy spectrum can vary from a few keV up to 10 MeV and it is dependent by
the emitting atoms. As the other ionizing radiations, a simple and low-cost Geiger
counter can detect beta particles, although without the information about their
energy. Beta particles can be easily stopped in the material: for instance, a 1 MeV
beta particle can be stopped by a thin (∼ 1 mm) Aluminum foil. On the other

6
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hand, β-particles crossing materials with high atomic numbers (Z) can produce
Bremsstrahlung radiation (photons) that can easily penetrate the material. Besides,
the positrons can annihilate and produce two photons of 0.511 MeV.

Neutrons

Neutrons, per se, are not able to cause direct ionization having zero electrical charge.
Their interaction with the material, instead, can cause recoil in the nuclei present;
finally, the nuclei’s can cause subsequent ionization in other atoms. Having zero
electrical charge, these particles have a greater penetration capability with respect
to the particles discussed above.

2.2.2 Radiation Measurements

In order to identify its effects, radiation has to be measured. In the following section
are discussed briefly the main units of measure used.

Total Ionizing Dose

One of the most common units of measure that are used for radiation is the so
called absorbed dose or Total Ionizing Dose (TID). This quantity is often measured
in Gray (Gy) or, less frequently, in radians (1 Gy = 100 rad). The TID has a direct
correlation with the energy that has been absorbed by the material: in fact, an
absorbed dose of 1 Gy corresponds to an absorbed energy of 1 J

kg .
The absorbed dose has also a biological significance, but it is also necessary

to take into account the type of radiation considered. This operation requires the
definition of a weighting factor, wr, for each radiation type. Using the previously
defined weighting factors, each pair of radiation type and energy is multiplied by
the correspondent weighting factor, therefore obtaining a "weighted" absorbed dose,
called equivalent dose and measured in Sievert (Sv).

Linear Energy Transfer

Another important unit of measure to describe is called Linear Energy Transfer
(LET). This quantity models the interaction between different radiation types and
materials: it represents the quantity of energy that has been released on the material
by an incoming radiation.

LET is defined as the amount of energy that an ionizing particle transfers to the
material traversed per unit length. It can be defined using the following formula:

7
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LET = dE

dx
(2.1)

Where dE is represents the quantity of energy that has been transferred and dx
represents the distance traveled in the material. Although it can be expressed in
Newton (N), most often the unit of measure used to express this quantity is MeV

cm .

Different particles have different Linear Energy Transfer. For instance, α-particles
are often referred as High-LET, while others –like β-particles– are defined as Low-
LET.

Finally, Effective Linear Energy Transfer (LETeff) is often used when the LET
has been already characterized using a perpendicular beam to the material. This
quantity is expressed as follows:

LETeff = LET
cos(θ) (2.2)

Fluence

Fluence is the Flux integrated over a period of time. The particle fluence defines the
number of particles passing through a spherical surface during a specified period of
time ∆T .

Φ =
Ú

∆T
φ dt (2.3)

Where Φ is the fluence, φ is the flux.

2.3 Single Event Effects

Single Event Effect (SEE) is a generic term that describe the type of effects that
can be caused by a single particle striking a silicon device. Necessary condition for
a Single Event Effect to come true is that the penetrating particle has a sufficient
LET to cause a ionization.
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(a) Heavy Ion striking through a transistor
and creating a ionization path

(b) Proton inducing nuclear reactions in a
transistor

Figure 2.3: Single Event Effects on transistors: the effect of striking particles can
activate the transistors.

In particular, there are four main forms of Single Event Effect:

• Single Event Upset (SEU);

• Single Event Transient (SET);

• Single Event Induced Burnout (SEB);

• Single Event Gate Rupture (SEGR);

• Single Event Latchup (SEL);

• Single Event Snap-Back (SESB);

• Single Event Hard Error (SEHE).

The first two families of errors are often referred to as Soft Errors; the term
derives from the fact that this type of errors can be cleared by power cycling the
circuit.

The last five families, instead, are examples of Hard Errors: these errors lead to
a permanent misbehavior of the circuit; to recover from an hard errors it is often
necessary to replace the whole device.

9
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2.3.1 Single Event Upsets

Single Event Upsets are a special form of Single Event Effects: they model the effect
of a striking particle that hits a memory element in a sequential circuit and flip its
value. Among the other types of SEEs, SEUs are the less destructive events that
can be caused by striking particles.

These errors manifest themselves with a high probability in devices that contain
large memory elements: this is a common denominator in FPGAs.

Single Event Functional Interrupts

Single Event Functional Interrupt (SEFI) is a particular type of SEU that takes place
when one of the basic functionality of the circuit is interrupted due to the upsed.
Common examples of SEFIs are particles that hits the clock tree configuration bits
in FPGAs.

Multiple-Cell Upsets and Multiple-Bit Upsets

With Multiple-Cell Upset (MCU) identifies a special type of SEU that change the
state of two or more logic cells. These cells are usually physically adjacent, so that
a single particle can hit partially all of them.

A particular case of MCU is represented by a Multiple-Bit Upset (MBU): in this
case the cells whose value have been flipped by the particle are inscribed by being
part of the same word. These effects are very destructive in terms of functional
behavior of the circuit: in fact, error correction codes are usually not able to correct
more than one bit flip per word. For this reason, many hardware manufacturers
produce their own memory where cells of the same word are interleaved by cells of
other words, so that the possibility of having an MBU is greatly reduced.

2.3.2 Single Event Transients

Another special kind of SEE is represented by the SET. This type of soft errors
models a change in the timing of a signal. The circuit behavior induced by a SET
can be easily modeled as a glitch in a signal propagating through the circuit. [4]

If the voltage transient caused by the particle striking through a node in the
combinational logic is captured by a storage element, it can lead to a state change.
In this case the SET resulted in a SEU in a memory element.

10



2.3 – Single Event Effects

2.3.3 Destructive Single Event Effects

In this category are included all the SEEs that can cause permanent damage to the
integrated circuits on which they arise.

Single Event Induced Burnout

Single Event Induced Burnouts affects usually the power transistors present in a
circuit. It corresponds to a trigger of their parasitic bipolar structure, that is followed
by a positive feed-back. The feedback increase rapidly the current flowing therefore
producing a burnout in the transistor affected.

Figure 2.4: Single Event Induced Burnout on a MOS Transistor: the parasitic
bipolar structure is excited, the followed by a positive feedback that increase the
temperatures.

This type of effect is quite rare in both ASICs and FPGAs.

Single Event Gate Rupture

A Single Event Gate Rupture, also called Single Event Dielectric Rupture (SEDR),
represent the destructive rupture of the dielectric present in a transistor (usually is
the gate oxyde). The rupture of the dielectric cause the formation of a conducting
path, in the case of SEGR a permanent leakage gate current is added.

11
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Figure 2.5: Single Event Gate Rupture on a MOS transistor: the dielectric present
in the gate of the transistor is pierced.

This hard errors are always destructive, and the only way to protect a component
against these effects is to force electrical conditions such that their generation is not
possible.

Single Event Latch-Up

Single Event Latchup, unlike the previous, is a potentially destructive effect. It
consists of the triggering of a parasitic PNPN thyristor structure in the device.
The effect alone is not destructive per se, however, the current generated tends to
increase over time due to the rising temperature. If not stopped by powering off the
device soon enough, a thermal destruction is likely to occur.

Figure 2.6: Single Event Latch-Up on a PNPN thyristor structure: the particle
excites the implicit thyristor structure that starts conducting due to the positive
feedback.

12
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Single Event Snap-Back

Single Event Snap-Back is very similar to the effect produced by a SEL, the only
difference is that it occurs withing a single MOS structure. Similary, an high current
is generated between drain and source region, amplified by the intrinsic bipolar
transistor placed in between. The high current, as in the other, generates a localized
heating that could lead to permanent damage if the device is not power down.

Single Event Hard Error

Finally, the outcome caused by a Single Event Hard Error is very similar to a SEU: a
memory cell’s bit flips its value. The difference is that the change is semi-permanent
or permanent, for this reason a SEHE is often called stuck bit error or hard fault.

2.4 Single Event Effects on SRAM-based FPGAs

As discussed in Section 2.1, the different technologies used for FPGAs are charac-
terized by different tolerance to radiation. The lack of functionality of antifuse- and
flash-based devices forces the usage of SRAM-based FPGAs to implement complex
designs with strict requirements. These devices, though, presents a strong suscep-
tance to Single Event Effects.

The most common type of SEE present in SRAM-based FPGAs, as discussed in
Section 2.3.1, are indeed the Single Event Upsets. These special type of soft-errors
can result in a number of error modes in different parts of the FPGA.

2.4.1 Configuration RAM Upsets

In a SRAM-based FPGA, the most sensible component to SEUs is surely the Con-
figuration RAM (CRAM). This memory holds information about:

• Look-Up Table (LUT) contents;

• User Data contents;

• Input/Output (I/O) configuration;

• Routing configuration.

13
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It is important to note that non all SEUs lead to errors: for instance, there may
be some configuration bits that are either not used or even disabled. Xilinx defined
a set of special bits, called essential bits, as a subset containing only the bits that are
essential for the specific design that is loaded onto the FPGA. Flipping a Xilinx’s
essential bit value leads to misbehavior(s) in the design.

Finally, errors affecting this memory are often called static errors because they
will not disappear until actively corrected by either scrubbing or complete reconfig-
uration.

LUT Contents Errors

LUTs are used to configure the logic function of combinational logic inside the
FPGA. Every bit in these memory elements defines the output of the combinational
block given a particular input. In case of an upset, the logic function implemented
changes, modifying the behavior of the circuit described.

Figure 2.7: Single Event Upset in a LUT: the logic function implemented is changed

User Data Errors

In a FPGA, the user data memory is composed of all the memory elements that are
used inside the design. These memory elements usually include:

• D Flip-Flop (DFF);

• Block RAM (BRAM);

• Distributed RAM (DRAM).

The contents of these components can change at any time during the operating
time of the design; for this reason, errors affecting these configuration bits are not
even considered permanent. To correct errors present in the user data space it is
necessary to employ techniques for design mitigation, discussed in Chapter 3.

14
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I/O Configuration Errors

FPGAs have many different I/O configuration capability. Usually, all the pins avail-
able are configurable as input, output, and bidirectional buffers. An error affecting
the configuration bits responsible for this feature can potentially lead to permanent
damage of the device: for instance, a pin that was previously configured as an input
could be reconfigured as output, leading to short circuits.

Routing Configuration Errors

Three main categories of routing elements can be affected by SEUs:

• Programmable Interconnect Point (PIP);

• Multiplexers;

• Buffers.

A PIP is the simplest interconnection available in an FPGA, it connects point
A to point B using a transistor that is driven by a single configuration bit. A SEU
on a PIP interconnection could create an unwanted open or short circuit.

Figure 2.8: SEU on a PIP: an high impedance path is now connected

Multiplexers are one of the most widely used components in FPGAs. Similarly
to PIPs, their select signal is driven by one or more configuration bits. The effect
of an error on one of these elements could lead to an undefined behavior of the
design: for example, an upset could change a MUX configuration in such a way that
it selects now the input from an unused, unconnected component.

15
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Figure 2.9: SEU on a MUX: another input is selected

Finally, buffers are similar to PIPs. Buffers are often used to propagate clocks or
for I/O purposes. An error on one of these elements could cause a variety of different
effects, ranging from the interruption of the clock distribution to more severe errors,
like a wire driven by two buffers at the same time (short circuit).

Figure 2.10: SEU on a Buffer: an high impedance output is now driven

16



Chapter 3

Available Techniques for Fault
Tolerance

To overcome the problems caused by radiation effects on integrated circuits, there
are multiple techniques that can be exploited.

Currently, there are many solutions applicable at different levels of abstraction
from the silicon that can be identified in two major categories:

• Hardened Technologies;

• Mitigation Techniques.

The following sections briefly describe some of the system-level mitigation tech-
niques that are applicable to a digital design in order to increase its reliability; those
techniques are not mutually exclusive, meaning that they can be mixed in order to
obtain better results.

3.1 Spatial Redundancy

Spatial Redundancy, also called Hardware Redundancy, encloses all the mitigation
techniques that trade hardware area occupation to achieve better performances in
terms of reliability against non-destructive Single Event Effects (SEE).

The concept that pools all the Hardware Redundancy techniques is based on:

• the replication of the same hardware block;

• the comparison/voting of the outputs.

17
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The replication leads not only to increased area, but as well as power occupation
and routing difficulty overheads.

It is important to notice that the weak element of this configuration is the com-
parator/voter placed at the end of the two hardware blocks: the presence of a fault
in this component completely defeat the purpose of duplicating the design. With
that said, in the vast majority of digital design, the cross section (i.e. the probability
that a single event can manifest) of this component is several orders of magnitude
less than the probability of the presence of a fault in the original hardware block.

Depending on the level of replication, these techniques may provide:

• Error Detection;

• Error Detection and Error Correction.

3.1.1 Duplex Architectures

Duplex architecture, also called Duplicate With Comparison, uses only two instances
of the same hardware block to produce two outputs from the same inputs. Only one
of the two blocks is actually used to provide to the environment the output value,
the other one is just compared with the first one.

If, for instance, there is a mismatch between the two values, the comparator will
notify it to the external world. At this point, being unable to recognize which is the
correct output and which is not, the operation is usually retried.

The ability to detect the presence of a fault in one of the two duplicated hardware
blocks is called Error Detection.

This approach is often not used due to the inability to self recover from the pres-
ence of an error: additional management logic must be added in order to properly
handle the correction process.

3.1.2 Majority-Voting Architectures

Majority-Voting Architectures are identified by the presence of an odd number N
of hardware blocks, being N ≥ 3.

The underlying idea is to feed all the replicated blocks with the same input, then
use a majority voter that decides the correct output based on the value to which
most of the blocks agree.

This family of techniques provide the ability not only to detect the presence
of an error (Error Detection) but also to automatically correct it and provide the
expected value at the output (Error Correction).
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Figure 3.1: Duplicate with Comparison scheme: the systems are duplicated and
their outputs compared for errors

Figure 3.2: N-Modular Redundancy scheme: the systems are replicated N times,
the voter decides the correct output using a majority voter scheme

Triple Modular Redundancy

A special set of these architectures is called Triple Modular Redundancy (TMR),
where the number N of replicated hardware blocks is fixed to 3.

The error detection and correction capabilities, combined to the smallest area
overhead among the majority-voting architectures, have made the TMR the most
common technique used for design mitigation.

19



3 – Available Techniques for Fault Tolerance

For the sake of simplicity, the following considerations are focused on this par-
ticular kind of architecture, but they can easily expanded to any value of N .

Block TMR (BTMR)

To introduce the first problem of this approach, that is in general the main issue of
all the error correction techniques, let’s first introduce the simpler version.

Its working principle is the simplest: the input data is triplicated and feeds all
the blocks, than their outputs are voted by the majority voter.

Figure 3.3: Block TMR scheme: a block is triplicated, including its memory ele-
ments, and then a voter decides the correct output using a majority voter scheme

The main problem of this scheme shows itself when the various replicas of the
hardware block contain registers, a common scenario in all synchronous designs.
The presence of a memory element in the replicated block imply an internal state;
in case of an error, the internal state may drift from the correct state, leading to
permanent errors at the output.

Having one block that always provide wrong results defeats completely the Error
Correction capabilities of the system: in case another error occurs in one of the non-
faulty blocks, the voter will not be able anymore to mask its presence.

A direct consequence can be highlighted by modeling the non-protected system
and the one that encompasses Block TMR. The reliability of the non-protected
system can be expressed as follow:

R(t) = e−λt

Where R(t) is the Reliability function of time t, λ is the failure rate of the system.
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Similarly, for the triplicated system:

R(t) = 3e−2λt − 2e−3λt

The plot shown in Figure 3.4 highlights the problem: as the time passes, the
probability to have a fault that alters the state of one memory element increase,
thus reducing the reliability of the system. Block TMR is valid if the system is
periodically reconfigured and reset, otherwise after a given amount of time τ(λ), the
non-protected system will offer a greater reliability compared to the triplicated one.

Time

R
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ia
bi
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y

Single system
Triplicated system

Figure 3.4: Reliablity comparison between a single system and a triplicated system
with BTMR, the triplicated system is more likely to fail after a period of time

Distributed TMR (DTMR)

The solution to the problem presented above presents overhead in terms of area and
routing difficulty.

Every flip-flop is triplicated, as well as the combinational logic; voters are added
after every tuple of memory elements to vote and restore their state. With this
method, the fault is masked internally, and the state of the hardware block is always
restored the next clock cycle by the feedback network.

Distributed TMR always offers a greater reliability compared with the non-
mitigated single block system.
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Figure 3.5: Distributed TMR scheme: the block is triplicated at each step, the
inputs to the next step are always voted and the correct state is always restored
from the voted output

3.2 Information Redundancy

While Information Redundancy techniques are often employed in data transmission
and storage to improve the bit error rate, they have some applications in design
mitigation. These techniques rely on the presence of additional, redundant, data
bits that can be used to:

• identify the presence of an error in the non-redundant bits; (Error Detection)

• correct one or more errors (Error Correction).

The process that stands behind all the information redundancy techniques uses:

• an encoding function F (D) that takes as input the original data D and returns
the encoded value K;
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Figure 3.6: Information Redundancy technique: a redundant part is added to the
original data

• a decoding function F−1(K) that takes as input the encoded value K and
returns the original data D.

The data is stored only in its encoded version K. The function F (D) is tuned
to maximize the possibility to identify an error in the unique data.

3.2.1 Parity Code

Parity code is the simplest among the possible information redundant techniques,
as it adds only one bit of redundant data. This bit, called parity bit gets a different
interpretation depending on the parity version used:

• Even Parity: the parity bit is asserted when the number of ones present in the
data word, excluding the parity bit itself, is odd.

• Odd Parity: the parity bit is asserted when the number of ones present in the
data word, excluding the parity bit itself, is even.

This technique is employed in many serial communication problems, and in gen-
eral in applications where the probability of an error in the data transmitted or
stored is negligible.

Moreover, the error detection capability of this technique is limited only to an
odd number of errors: if, for instance, there are two errors in the same words that
flip two bits, this technique will not detect any data corruption, since the parity bit
value is consistent with the number of ones present in the word.

Cyclic Redundancy Check

Cyclic Redundancy Check (CRC) is the generalized version of Parity Code tech-
nique, where instead of only one redundant bit there are more. Like its simpler
version, CRC is only able to provide error detection capabilities.
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The technique define a simple hash function that is designed to maximize the
error detection capabilities. Unlike Parity Code, using more than one redundant bit
allows to detect different families of errors.

Cyclic codes are in general easy to implement, with a relative low hardware
overhead, making them a preferable solution in many applications. However, the lack
of error correction capability do not make CRC suitable for time-critical applications,
where there is not the possibility of data recovery by retry.

3.2.2 Hamming Code

Hamming Code, also called Error Correction Code (ECC), was introduced by Richard
Hamming in 1950. This redundant technique allows both error detection and error
correction in the non-redundant bits.

As of today, Hamming Code refers to a specific (7,4) code that uses 3 redundant
parity bits to encode 4 data bits in a word of 7 bits. In this particular configuration,
often called Hamming(7,4)-code, the additional bits are capable of Single Error
Correction (SEC).

While discussing the Hamming Code, it is important to introduce a new concept:
the Hamming Distance. The Hamming Distance between two strings s1 and s2,
of equal length, is defined as the number of positions at which the corresponding
symbols are different.

In other words, the Hamming(7,4)-code is able to detect and correct errors up
to an hamming distance of one.

Single Error Correction/Double Error Detection

Although Hamming Code is able to detect and correct single bit errors, the original
implementation is not able to detect if more than one error is present in the original
word. Note that if an error correction is tried on a word that presents two errors, the
result of this operation is still an incorrect word. To overcome this problems, during
the last years there were presented various extensions to the original Hamming Code
that enable the Double Error Detection (DED) capability. The most common one
adds a parity bit to the original (7,4) code to enable this feature.

This family of extensions to the original Hamming Code is called Single Error
Correction/Double Error Detection (SECDED) and it is often employed in memory
designs.
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3.3 Temporal Redundancy

Temporal Redundancy techniques are based on the idea of sampling the result of an
operation at different instants of time, and then proceed with a comparison between
the sampled data. This category of techniques is more often employed in software
application rather that in hardware, due to its area overhead required for the latter.

The software implementation is quite straightforward: the same operation is
repeated multiple times, storing the results in different memory locations. When
the needed number of operation is reached, a comparison is performed to detect and
even correct the presence of an error.

Figure 3.7: Time Redundancy in Software: the same operation is repeated multiple
times and then the result is compared and voted

In the case of hardware implementation, the approach is slightly different and
requires the data to be stable at the input of the circuit for a period that is N
times longer the original one, being N the number of comparisons. Depending on
the complexity of the function that has to be replicated, there are two possible
implementations.

• An additional circuit is added to replicate the same operation N times, reusing
the same hardware for consecutive cycles; this is usually suited for complex,
area-expensive, functions that are difficult to replicate.

• The entire hardware is replicated N times and the clock is delayed properly,
such that the N independent hardware blocks are queried at different time
instants.

Temporal Redundancy techniques are often not employed due to the high com-
putational time and area overhead.
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Figure 3.8: Time Redundancy in Hardware: delays are added to repeat the same
operation at different time instants
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Chapter 4

Metrics for Fault Tolerance

A fundamental task when working on fault tolerance is the definition of the so-called
metrics: a standard of measurement that can provide informations on how well the
system is performing.

Before defining what are the metrics for fault tolerance it is necessary to describe
what is the mission of a product, that is, in short, its purpose. The mission can be
characterized by:

• a function, that is what is the system expected to produce;

• a duration, that is the amount of time during which the system should perform
its task.

In the following sections are presented some of the main metrics that are available
to classify systems and provide standardized benchmarks.

4.1 Dependability

Dependability is one of the key parameters used to assess the quality of a product.
Dependability is the property that characterize a dependable system, and it is defined
as:

“The trustworthiness of a computing system which allows reliance to be
justifiably placed on the service it delivers.” [9]

This property is used in many different fields, and it can be defined using three
different class of parameters:
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• Attributes – to assess the dependability of a system;

• Threats – to affect the dependability of a system;

• Means – to increase the dependability of a system.

Figure 4.1: Dependability graph: the internal structure of dependability, divided by
class

4.1.1 Dependability Attributes

Attributes are used to asses the dependability of a system using a scientific, analyt-
ical, repeatable approach. Some of the main attributes include:

• Reliability;

• Maintainability;
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• Availability;

• Safety.

Reliability, MTTF, Failure Rate, FIT

Reliability is the attitude of an object to behave as expected, in defined conditions,
for a certain amount of time. It is defined as the probability that a system will
satisfactorily perform its intended function under given circumstances for a specified
period of time.

The reliability function R(t) is defined as the conditional probability that a
system is in operational conditions after the time instant t.

R(t) = Pworking(τ > t) =
Ú ∞

t
f(x) dx (4.1)

Where Pworking(t) represents the probability of being in a working state at time
t, τ is a random variable and f(t) represents the failure probability density function.

Another unit of measure to quantify the reliability of a system is defined by the
Mean Time to Failure (MTTF). This quantity represents the average time before a
failure occurs in the system.

MTTF = E[τ ] =
Ú ∞

0
t · f(t) dt (4.2)

Where E[τ ] is the expected value of the random variable τ , defined in Equation
4.1.

Finally, failure rate (also called hazard rate) is defined as the number of failures
over a period of time.

λ = #FAILURES
∆t (4.3)

Where λ is the failure rate, ∆t is the period of time considered.

Failure rate is usually expressed in terms of Failure in Time (FIT), that repre-
sents the number of failures over a period ∆t = 109 h.
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Figure 4.2: The product life cycle of a repairable system: it transitions from working
to failure state and vice versa using failure and repair transitions

Repairable Systems, MTBF and MTTFF

The following attributes can be defined when dealing with a subset of all the possible
systems, called repairable systems. A repairable system is characterized by the ability
of being repairable, and its life cycle can be modeled as a diagram with two states:
working state and failure state.

The transitions between these two states are regulated by the alternation of two
processes: repair-to-failure and failure-to-repair. The former is regulated by the
random variable τ (defined in Equations 4.1 and 4.2), that represents the time-to-
failure of the system; the latter is instead related to another random variable, θ,
that represents the time-to-repair.

Similarly to non-repairable systems, can be characterized using a quantity similar
to MTTF, the Mean Time Between Failures (MTBF): it represents the average
amount of time between a failure and the consequent one.

This capability could have consequences depending on the truthfulness of the
assumption “system good as new after repair”. If the assumption is not considered
true, another parameter has to be accounted: Mean Time to First Failure (MTTFF).
From now on, the aforementioned assumption will be considered true, therefore the
following condition holds.

MTTF = MTBF = MTTFF (4.4)

Maintainability and MTTR

Another useful attribute to characterize dependability is represented by the Main-
tainability. This quantity represents the probability that a reparable system can be
repaired in a defined environment within a specified amount of time.

M(t) = Prepaired(θ < t) (4.5)
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WhereM(t) represents the maintainability as a function of time t, θ is a random
variable representing the time to repair.

Similarly to reliability, this quantity can also expressed in terms of Mean Time
to Repair (MTTR): it represents the average time required to repair a system.

MTTR = E[θ] =
Ú ∞

0
t ·m(t) dt (4.6)

Where E[θ] is the expected value of the random variable θ, m(t) is the repairabil-
ity probability density function (m(t) = dM(t)

dt
).

Another useful parameter used is represented by the repair rate, defined as the
number of repairs over a period of time.

µ = #REPAIRS
∆t (4.7)

Availability

Availability represents the ability for a repairable system to be operational at a
generic instant of time. It differs from reliability since it does not refer to a period
of time, but rather to a single instant of time.

A(t) = Pworking(t) (4.8)

It is important to notice that the availability is independent on the failure-repair
cycles already occurred, meaning that this attribute reflects also what is the behavior
of the system with respect of its repairability.

To better define it, it is necessary to review the two state process that models a
repairable system. This process can in fact be modeled by a Markov chain, where
the probability of moving from the Available State to the Unavailable State is related
to the failure rate λ, and the opposite is related to the repair rate µ.

The state change is modeled with the following formula:

pÍ(t) = p(t) ·Q (4.9)

Where pÍ and p represent respectively the current and the next state of the
Markov chain and Q is the transition matrix.

Q =
C
−λ λ
µ −µ

D
(4.10)
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Figure 4.3: Markov chain representation of a repairable system: the transition prob-
abilities are defined by the failure rate (λ) and the repair rate (µ)

Substituting the value of Q in the Equation 4.9 leads to the following system of
equations.


dpw(t)
dt

= −λ · pw(t) + µ · pf(t)
dpf(t)
dt

= λ · pw(t)− µ · pf(t)
(4.11)

Where pw(t) = A(t) and pf(t) = 1−A(t) = U(t), also called Unavailability. The
initial conditions for the above system of equations assume that the Markov chain
starts from the working state, so pw(0) = 1 and pf(0) = 0.

By solving the system of Equation 4.11 allow to express the Availability, A(t),
and the Unavailability, U(t), as function of the failure and repair rate.

A(t) = pw(t) = µ

λ+ µ
+ λ

λ+ µ
· e−(λ+µ)t = A∞ + Atrans (4.12)

U(t) = pf(t) = λ

λ+ µ
− λ

λ+ µ
· e−(λ+µ)t = U∞ − Atrans (4.13)

These two equations are characterized by a constant term, often called steady-
state term, and a transient one, that is multiplied by an exponential. A common
condition for a repairable system is that the time required to repair it is negligible
compared to the time required to experience a failure.

MTTF >> MTTR =⇒ λ << µ (4.14)

For this reason, the Equations 4.12 and 4.13 can be simplified with the following.

A(t) = A∞ = µ

λ+ µ
= MTTF

MTTF + MTTR (4.15)
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U(t) = U∞ = λ

λ+ µ
= MTTR

MTTF + MTTR (4.16)

Finally, availability is often also expressed in terms of ratio between the uptime
and the total time elapsed.

A(t) = UPTIME
UPTIME + DOWNTIME (4.17)

4.1.2 Dependability Threats

Threats are phenomenas that can affect the mission of a system by interfering with
its components. First of all, it is important to define the possible outcome of a threat
present in a digital circuit. In fact, it can manifest itself differently depending on
its type, on the structure of the circuit and on the mission accomplished by the
application. The following list provides the four possible outcomes that can be
related to the presence of a threat.

• Fault;

• Error;

• Misbehavior;

• External Effect.

Figure 4.4: Fault life cycle: the fault is activated into an error, the error is prop-
agated into a misbehavior, depending on the type of the misbehavior the external
effects can be different
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Faults

A fault is simply the presence of a defect in a system. In Chapter 2, for instance,
are discussed the possible outcomes of Single Event Effects on FPGAs: in this case,
the presence of a bit in the Configuration RAM whose value is flipped with respect
to its nominal condition can be considered a fault in the system.

Attention has to be paid to the fact that a fault may or may not be activated,
so in some cases its presence can be masked (for instance, the CRAM bit flipped
could be unused) and an error is never triggered. Finally, faults are in general not
observable without using expensive techniques.

Errors

Errors represent an internal discrepancy between the expected behavior and the ac-
tual one. Its presence is dictated by the activation of the fault present in the circuit.
An example of an error could be an internal component whose state has drifted away
from the correct one. Errors can be observed using specialized mechanisms, like an
hardware debugger.

Similarly to what has been said for faults, errors may or may not be propagated
into an actual misbehavior.

Misbehaviors

A misbehavior, also called failure, represent an external discrepancy between the
expected behavior and the actual one. To have a misbehavior in a system most of
the time imply a failure in its mission.

External Effects

The external effects are cause by the presence of a failure in a system. Depending
on its the severity, the impact on the service delivered can be different: for instance,
having an error at the output that is not distinguishable from a good one can
severely impact on the mission, while a detectable misbehavior can be identified
and corrected, therefore reducing its effect.

Latency and Inertia

When discussing about dependability threats, a special analysis has to be performed
on two timing parameters: latency and inertia.
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Latency of a fault is defined as the amount of time between its occurrence and
its manifestation as a misbehavior on the system. This quantity can be influenced
by many different factors:

• The utilization frequency of the component affected: an highly utilized one
have in general a lower latency.

• The time of occurrence: a fault that occurs during an active time of a compo-
nent has higher chances of being propagated.

• The observation level: depending on how the component is observed, the fault
propagation may be delayed.

In general, latency should be as small as possible: higher values of latency can
lead to the accumulation of many unspotted faults in the system.

On the other hand, inertia represents the quantity of time that elapses from the
manifestation of a failure and the beginning of its consequences on the mission. High
values for inertia are preferred, since the large time window gives more time for the
correction of the system.

4.1.3 Dependability Means

The techniques adopted to increase the dependability of a system are called means.
The following four techniques are complementary:

• Fault Prevention, that defines techniques adopted to prevent faults from oc-
curring;

• Fault Removal, that defines techniques used to remove a fault from the system;

• Fault Tolerance, that defines techniques utilized to deal and mask the presence
of a fault (discussed in Chapter 3);

• Fault Forecasting, that defines techniques to forecast the presence of faults, so
that their effects can be circumvented.

4.2 Fault Classification

To complete the characterization analysis of a system, faults have to be classified
using various parameters:
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• Type: that identify the class the fault belongs to, for example a fault that is
changing the value of a memory location is called a memory fault, while a fault
that modify the logic function of a block is called logic fault.

• Locality: that is the location in which the fault is placed. Faults in critical
components can impact severely the mission of the system.

• Latency: the interval of time from its occurrence and its manifestation as a
misbehavior, as discussed in Section 4.1.2.

• Frequency: that represents the average time of occurrence of the same fault.

• Severity: that is the magnitude of the fault’s effect on the system’s mission.
This parameter is strongly dependent on the fault type and the fault locality.

Depending on the severity level, a fault can be classified as:

• Critical fault: that represents a fault that prevents the system’s mission to be
carried out until the repair is completed. The frequency of these category of
faults have to be very low or non-existent.

• Major fault: this type of fault is very similar to a critical fault with the
difference that a temporary workaround can be applied in order to avoid strong
consequences on the mission. Major faults can manifest themselves with a
slightly higher frequency compared to the critical ones.

• Minor fault: this category includes all the faults that have few secondary
effects on the system’s behavior, that usually don’t affect the mission carried.

4.3 Metrics for Single Event Effects on FPGAs

As discussed in Chapter 2 (Section 2.4), Single Event Effects are a common denom-
inator in FPGAs that have to work in radiation environments. There is therefore
the need to be able to classify the sensitivity of the device against SEEs.

These properties are strongly dependent on technology parameters used to pro-
duce the integrated circuit on which the Configuration RAM is implemented. In
the following sections some of the main quantities to consider are explained and
discussed.
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4.3.1 Cross Section

To characterize the immunity of a digital circuit against SEUs, it is necessary define
the Cross Section.

The cross section represents the probability of having a SEE on an integrated
circuit, and it is proportional on the area occupied. This quantity is experimentally
measured by counting the number of events per unit fluence. The cross section is
highly affected by:

• the particle type;

• the Linear Energy Transfer of the particles;

• the angle of incidence of the beam.

More on these parameters in Chapter 2.
Cross section is generally a function of LET for fluxes that are composed mainly

of ions, while for for protons and neutrons it is usually expressed as a function of
energy.

σion(LET) = #EVENTS
Φion

(4.18)

σn,p(E) = #EVENTS
Φn,p

(4.19)

Where σ is the cross section, Φ is the fluence.
When this quantity is referring to Single Event Effects in general, it is expressed

in terms of cm2
device . In the special case of Single Event Upsets, however, is expressed

in terms of cm2
bit and usually denoted as σbit.

4.3.2 Measurement of SEE Sensitivity

To identify the so-called SEE Sensitivity of a device, one or more of them have to
be placed under beam, while keeping the other operational conditions to normal.
The test performed consists in an irradiation of these devices in such a way that the
number of events can be counted. Since all the flux parameters are actors during
these tests, their values are recorded as well.

A raw indication of the cross section could be the following:
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σ = Navg

Φ · cos(θ) (4.20)

Where Navg is the average number of events per device, Φ is the fluence and θ is
the incidence angle (0° if the beam is perpendicular to the device).

Influencing Factors

The Equation 4.20 takes into account only few affecting factors, the cross section,
actually, is influenced on many more parameters:

• Particle Energy;

• Angle of Incidence (θ);

• Temperature;

• Total Ionizing Dose;

• Operational Mode;

• Stored Data Pattern;

• Clock Frequency;

• Static or Dynamic Test;

• Electrical Bias applied to the device;

• Current-limiting conditions;

• Reset conditions;

• Device Portion tested.

4.3.3 SEU Sensitivity on FPGAs

As discussed in previous sections, the cross section in an indication of the sensitivity
of integrated circuit to radiation effects. As stated in Section 4.3.1, a cross section
per bit (σbit) is used for Single Event Upsets. Starting from here, it is possible to
evaluate the cross section of a device by simply multiply its value by the number of
memory bits present:
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σdevice = σbit ·Nbits (4.21)

From this calculation, it is possible to evaluate the number of Single Event Upsets
as function of the fluence.

U = Φ · σdevice (4.22)

Where Φ is the integrated flux: fluence, defined in Equation 2.3.
For other purposes, it is also convenient to calculate the upset rate of the circuit,

as a function of the average flux, φavg:

FU = φavg · σdevice (4.23)

The upset rate is useful to calculate the various requirements in terms of correc-
tion rate.
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Chapter 5

Radiation Hardness Design
Validation

Once the design part is completed and all the mitigation techniques have been
implemented in the design, it is important to validate it to ensure a correct behavior
in radioactive environments. There are multiple techniques to simulate the effect of
a particle beam that hits a FPGA.

5.1 Fault Injection

Fault Injection (also called Tabletop Testing) is the simplest, yet incomplete, method
to estimate the reliability of the design under any given beam.

Fault Injection is a technique that uses internal and/or external peripherals to
inject errors in the CRAM of the FPGA. The procedure of injecting an error do
accurately simulate the effect of a Single Event Upset caused by a particle hitting
the silicon integrated circuit.

FPGA Configuration RAM Structure

Before discussing what is the mechanism behind the process of fault injection it
is necessary to explain the internal structure of the Configuration RAM present in
FPGAs.

The CRAM is organized as an array of frames, similarly to a wide Static RAM.
Each frame is subdivided into words, that are usually 32bit each. Each bit present
into these words represent a specific configuration bit used to configure the various
parts present in the FPGA.
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Due to the high density of these memories, information redundancy techniques
are often employed in order to reduce the probability of errors in the configuration.
Almost all the devices have a CRC protection, some others instead, have a much
more effective ECC protection.

Some FPGA vendors, on top of this information redundancy techniques, often
organize the memory cells so that those of the same word are not physically adjacent.
In the example of Xilinx’s Ultrascale Field-Programmable Gate Arrays the word bits
for CRAM are interleaved by one bit of other words.

5.1.1 Fault Injection Procedure

The Fault Injection procedure works as follows:

1. A configuration frame is read from the FPGA’s Configuration RAM;

2. Within the configuration frame, one or more bits are flipped using the xor
logic function, therefore making it a faulty frame.

3. The faulty frame is wrote back to the Configuration RAM, replacing the orig-
inal one.

When performing fault injection, it is usual to randomize the frames, words, and
bits in order to simulate better the effect of a particles hitting the FPGA without a
defined pattern, that is close to what happens if the device is put under a particle
beam.

With this technique, however, it is possible to force an ECC error by selecting
properly two bits of the same word to simulate a worst case scenario where the bits
are not correctable automatically.

5.1.2 Limitations of Fault Injection

Although Fault Injection is a valid method to estimate the reliability of a design, it is
not able to simulate all the effects that a striking particle could cause; the following
lines provide a brief description of the benefits and limitations of this technique.

First of all, it is important to mention that some configuration frames present
in the Configuration RAM are write-protected until a complete reprogram of the
memory contents. These locations usually holds the values of the internal memory
elements, such as registers, Distributed RAM and Block RAM. This is a big limi-
tation of this method: to simulate the presence of an error in these locations, it is
necessary to reprogram completely the FPGA.
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With that said, taking into account the fact that these memory elements repre-
sent a small percentage of the total configuration RAM size, this technique is able
to predict the behavior under beam with a sufficient enough confidence level.

5.1.3 The Xilinx Soft Error Mitigation IP

The Xilinx Soft Error Mitigation (SEM) IP is a solution provided by Xilinx to
detect, correct and inject faults on Ultrascale FPGAs. This patent does not prevent
the arise of soft errors, but rather it provides a method to better manage them at
system level. [13]

This Intellectual Property is a valid example of what is called an internal scrub-
ber: it is, in fact, configured as a peripheral on the FPGA, and it utilizes a dedicated
interface to addess directly the Configuration RAM of the device on which it is con-
figured.

Error Classification on SEM IP

The SEM IP, among all its features, have the possibility of classify the faults that
are present on the CRAM of the device. This is a proprietary technology of Xilinx,
called Xilinx Essential Bits Technology, that uses an algorithm to identify which
are the essential bits for a design. Essential bits are, in short, a subset of all the
configuration bits available: they are essential in the sense that a changing a value
of these bits changes the function implemented by the design. [5]

Xilinx also defines the so-called prioritized essential bits, a subset of the essential
bits that are weighted by metrics defined by the user. An example of this could be
the configuration bits of a device with an high utilization rate. On top of that, there
are the critical bits: those are bits whose change is likely to kill the entire design,
like the configuration bits for the clock distribution. [5]

The Soft Error Mitigation supports error classification using an external Read-
Only Memory (ROM), interfaced using the built-in SPI interface, that contains a
list of only the essential bits for the design. In this way, in case of an uncorrectable
error, it is possible to identify if this error involves essential bits or not, and act
consequently.

Features and Capabilities

This Intellectual Property can be generated in various different modes, depending
on the requirements:
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Figure 5.1: SEM IP block description: all the input and outputs ports are listed

• Mitigation and Testing;

• Mitigation only;

• Detect and Testing;

• Detect only;

• Emulation;
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Figure 5.2: Xilinx Essential Bits: configuration bits can be classified based on their
priority levels

• Monitoring only.

The mitigation modes enable error detection, correction and classification. In
the case of Mitigation and Testing, it is also possible to perform error injection on
almost all the CRAM configuration bits. The detect modes are similar to mitigation,
with the only difference that error correction is disabled. Finally, emulation mode is
useful to evaluate the effects of SEUs on the system, in this case only error injection
is possible.

This peripheral have a command interface to receive commands from other com-
ponents present on the FPGA. A common solution is to provide an UART interface
to the external world, so that it is possible to monitor the current status of the
device with a dedicated interface.

Working Principle

Assuming to have generated the SEM IP with the most feature-rich mode, Mitigation
and Testing, it is possible to:

• detect errors;

• correct errors;
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• inject errors.

All of these operation are possible thanks to a dedicated interface to the Configu-
ration RAM, the Internal Configuration Access Port (ICAP). This interface enables
a direct, fast communication from FPGA to the configuration memory. For this rea-
son the SEM IP can detect errors present with a latency between 22ms and 58ms,
depending on the size of this memory. [13]

To ensure error detection and correction capabilities, the addressable memory
location are continuously read as fast as possible. In case one frame presents a CRC
error, correction has to be performed: in the case of a single bit error with ECC
enabled, the correction is automatic, and the IP only takes care of rewriting the
correct value in the corrupted memory location. If, instead, a multiple bit error is
present, the Hamming codes implemented are not able to correct its value: in this
case it is necessary to classify the bits affected using the error classification capability,
if enabled. If one or more bits are classified as essential, or if the classification is
disabled, the IP will show an uncorrectable error message that states that recovery
is impossible: in this case it is necessary to reprogram either the configuration frame
or, directly, the entire device, in order to restore the original configuration.

Fault injection, on the other hand, can be performed using two different type of
addressing:

• Linear Frame Address (LFA);

• Physical Frame Address (PFA).

The difference between the two is that the former have the property of being
linear, from 0 to a maximum value that depends on the size of the FPGA CRAM.
The latter instead is closer to the actual cell placement: in fact, internally, LFAs
are translated into PFAs. Removing this level of abstraction create intrinsic "holes"
in the address space, trying to inject an error to these locations is simply discarded,
and no action is taken.

5.1.4 The JTAG Configuration Manager

The JTAG Configuration Manager (JCM) is a custom platform that features an
application processor connected to FPGA fabric, developed at Brigham Young Uni-
versity (BYU). It is composed of two parts, a Linux software library that runs on the
embedded ARM core present, and a custom JTAG controller that is implemented
as a custom IP on its FPGA. With this platform it is possible, by connecting to
the JTAG ports of a Xilinx FPGA, to implement the blind scrubbing and the fault
injection. [14].
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Blind Scrubbing Procedure

Blind scrubbing refers to the operation of continuously rewriting the configuration
frames present on a FPGA in order to correct the eventually present errors. It is the
simplest, yet the most effective method to increase the reliability of those devices,
especially when an high upset rate is expected from the field application.

This technique is often employed when external devices are used, like in the case
of the JCM, but the same functionality can be accomplished if a custom peripheral
is designed and implemented directly on the target FPGA.

First of all, the golden configuration bitfile is uploaded to a dedicated memory
used by the blind scrubber either directly or indirecly, by reading back the contents of
the freshly programmed CRAM (this procedure is called readback). Once the golden
bitfile is loaded into the memory the blind scrubbing can be started: it consists of an
infinite loop that addresses all the words available on the target FPGA. The process
is repeated until there is the need of resetting the target device: in this case, the
process is stopped and the device have to be reconfigured completely.

The blindness of this process, however, have its own disadvantages. The first one
is that an external golden memory has to be provided, and an error on this memory
is likely to cause catastrophic effects on the device that it is supposed to protect. A
second disadvantage is given by the fact that, independently of the correctness of the
data stored in memory location, it has to be overwritten at every scrub cycle: this
has strong consequences on the fault correction latency that are strongly dependent
on the speed of the interface used and on the size of the configuration memory.

Fault Injection on JCM

Using an external device that manages the fault injection on the configuration bits
presents various advantages with respect to an internal peripheral.

First of all, being the internal peripheral able to faults on virtually the whole
device, while performing sessions of random fault injection there is the possibility
that the error injected can break the peripheral itself, forcing to reconfigure the
FPGA to regain the control. This problem does not subsist in the case of external
platforms like the JCM, the advantage, then, is that it is possible to inject an
arbitrary number of faults without having to continuously check the working status
of the fault injector, therefore easing the process.

Secondly, the external platform does not consume resources on the FPGA: im-
plementing an internal scrubber requires the utilization of internal resources like
LUTs, D Flip-Flops, Block RAMs and Distributed RAMs. This point is also im-
portant since additional utilization of resources could make a difference in terms of
routing difficulty, that in the specific case of fault injection can alter the results.
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This approach have also drawbacks: similarly to what has been discussed for the
blind scrubbing, the interface speed can be a problem, even though usual rates for
fault injection are slow enough not to notice any difference using the JTAG interface.

5.2 Ground Testing

After a longer session of fault injection, usually the designs are placed under a
particle beam to evaluate their performances in real life scenarios.

For this type of test, called ground testing, can give accurate results if the beam
to which the FPGA is exposed to is equivalent to the final operational conditions
in which the system have to work. As stated in Chapter 2, different particles have
a different interaction with the silicon integrated circuit of the device: for example,
neutrons are more likely to cause multiple upsets with a strike of a single particle.

5.2.1 Testing Methodology

To have a comprehensive overview of the performances of a design on a FPGA,
however, multiple beam tests take place, with different fluxes that are usually orders
of magnitude higher than the operating ones. The reason for this choice is that a
reasonable higher flux is increasing the statistics in terms of upset rate: a device
that is supposed to work for one day under a proton particle flux of 103 1/s can be
simulated for 1000 days if it is put under a beam of 106 1/s of the same particles.

During these tests the status of the Device Under Tests is constantly monitored.
The first scope of interest is represented by the functional behavior of the board, to
allow the retrieval of the data some test points are placed in the design in order to
verify its correct behavior over time. The second scope of interest is instead repre-
sented by physical parameters concerning the electrical conditions and temperature
of the DUT: the reason for this choice is to detect and prevent destructive effects like
Single Event Latchup before they can damage permanently the integrated silicon.

To have an accurate prediction and statistic of the behavior of the system under
test, it is usual to put more than one prototype of the same final product under
particle flux. In this way, it is in fact possible to "multiply" the number of hours of
beam time by the number of prototypes that are employed for the test.

5.2.2 Radiation Decay

After the radiation campaign, the prototypes that have been exposed to the particle
flux have to be stored in a controlled room where the radioactive elements can
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complete their radioactive decay process. During this period only a small group of
specialized people can access to that room, for this reason it is usually necessary to
wait until the radioactive decay can be considered complete. An usual period for
this process is around two weeks (14 days) after which it is possible to retrieve the
prototype(s).

5.2.3 Tests after Retrieval

After the retrieval, more intensive tests are performed using dedicated instruments
to verify that all the prototypes are still fully functional in all of their parts. For
complex boards, it is necessary to verify everything starting form the power distri-
bution to the functional behavior of all the components placed onto them.

Once all the tests are completed, assuming that no component showed any func-
tional failure after the beam test, it is possible to ooze the results of the radiation
campaign. After that, in case the results are not filling the requirements in terms
of reliability and/or availability, it is necessary to review some steps in the design
in order to increase these statistics.
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Chapter 6

Characterization of the Xilinx
Triple Modular Redundancy
Subsystem

The main matter of this thesis is represented by the characterization of the Xilinx
Triple Modular Redundancy (TMR) Subsystem, an Intellectual Property developed
by Xilinx that is made to increase the dependability of their soft microprocessor
core, the Microblaze. In the following sections are presented the main structure of
the TMR Subsystem, the testing procedure and the testing architecture employed
to characterize and compare the performances against radiation effects.

6.1 Xilinx Microblaze and TMR Subsystem

As stated in the introduction, Xilinx has developed over the years a soft micro-
processor core called Microblaze. It is a Reduced Instruction Set Computer (RISC)
optimized for implementation on Xilinx FPGAs, and has the property of being
highly customizable using generation scripts. [15]

For the sake of this thesis, the base core has been configured with the most
conservative settings in terms of area:

• 40 MHz Clock;

• No Instruction and Data Cache;

• No Branch Target Cache;

• No Memory Management Unit (MMU);
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• No Barrel Shifter;

• No Integer Multiplier and Divider;

• No Floating Point Unit (FPU);

• 8 kB for Instruction and Data Memory.

This core serves as the base to build the Triple Modular Redundancy Subsystem,
that is, in short, a set of IPs developed by Xilinx that are designed in order to be
able to manage automatically and mask the presence of the faults that affects the
Microblaze soft core. [16]

Similary to what said for the Microblaze embedded core, there are many configu-
ration options that can be used to generate the Subsystem, that has been configured
to triplicate the soft core and its peripherals, without a Watchdog counter and the
Soft Error Mitigation Interface. The reason for the lack of this interface is dictated
by the fact that the SEM IP shows an comparable susceptibility to soft errors than
the core itself, therefore making its presence not useful for testing purposes.

6.1.1 Recovery of the Microblaze Subsystem

An important role in the TMR Subsystem IP is played by the TMR Manager com-
ponent. This is the core component of the subsystem: it handles the presence
of faults by continuously analyzing the comparator statuses. In case one of them
presents a mismatch, a special interrupt-like signal, called Break is asserted and the
Microblazes present in the design are forced to start the recovery process.

During this process the cores are forced to perform the following list of operations:
[16]

1. the software is interrupted by the break signal, that cause the call of the
software break handler function.

2. the break handler stores all the internal registers to the data RAM. during
this process, the data is automatically corrected by the voters present at the
output of each processor.

3. the break handler resets all the microblaze cores present by executing a special
instruction that resets also the status of the TMR manager.

4. after reset, the values of the registers placed in RAM are read and restored.
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Figure 6.1: TMR Subsystem block diagram: the Microblaze core is triplicated as
well as its peripherals and its memory, the outputs are voted

5. a special return resumes the execution exactly at the place where the break
occurred.

During this process, the processor subsystem is unavailable. The shortness of the
recovery process ensures high levels of availability for the core. For real time appli-
cations there is also the possibility of masking the break signal during time-critical
parts of the code executed, de facto delaying the restore of the subsystem, that
works with a working scheme similar to the Duplicate with Comparison (Lockstep).
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Figure 6.2: TMR Manager state transition in case of an error: starting from Voting
mode, an error move the state to Lockstep mode, where the only two out of three
processors are working with a Duplicate with Comparison scheme

6.2 Benchmarks for Radiation Testing

The first step towards the characterization of the behavior of a microprocessor
against radiation effects is represented by the choice of the algorithm running on
it. A microprocessor, indeed, always require a software running on it to produce
meaningful results.

In the particular case of radiation benchmarking, the results produced by the
core processor play an important role to to identify if it is behaving correctly or
not. Although there are present many performance benchmarks for processors,
like the Dhrystone or Whetstone synthetic benchmarks, there are no standardized
equivalents for radiation testing. For this reason, in many cases, already available
performance benchmarks are used in place of dedicated radiation benchmarks. [17]

Benchmarks for radiation testing have different requirements to meet, since the
performance that have to be measured is not related to the number of operations
executed over a time interval. The main interest during radiation benchmarks is
instead represented by the assessment of the working status of the microprocessor
tested. An ideal radiation benchmark algorithm should meet the following require-
ments:

• Fast: the benchmark should be able to highlight the presence of errors in the
microprocessors on which it runs onto as soon as possible, therefore reducing
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the fault latency. This requires the continuous production of results to compare
against.

• Exhaustive: the benchmark should be able to stress completely every compo-
nent composing the microprocessor. In this way it is possible to propagate the
error into a misbehavior of the system.

• Small: due to the memory limitations of embedded microprocessors, the bench-
mark should occupy as few memory locations as possible for both code and
data memory.

• Generic: the benchmark should be “universal”, meaning that it should be
easily portable to different microprocessor architectures.

Excluding the last requirement, the first three are easily covered if an algorithm
to detect stuck-at faults is employed for this type of test. Although this type of
algorithm is able to maximize is proven to give the best results in terms of speed,
exhaustiveness and size, it is strongly affected by the architecture of the micropro-
cessor tested and definitively not portable to other’s.

6.2.1 The Algorithm of Choice

After careful consideration the solution for the radiation benchmark coincided with
the Advanced Encryption Standard (AES) algorithm. The reasons for this choice
are presented in the following paragraphs.

First of all, it is a fast algorithm that works on small chunks (128 bit) of data
at a time and produces continuously results to be compared against. It works by
reading a block of data to be encoded, and it outputs it right after the encoding;
the reduced size of the block allows it to produce results at high rate.

Secondly, for the purpose of testing an integer-only microprocessor it is exhaus-
tive: this is the case for the configured Microblaze core. The operations performed
are able to test most of the core on which it runs on, allowing to easily highlight the
presence of errors in these components. In a cryptographic algorithm every bit in a
stored in a register is used and it matters for the successfulness of the encoding.

Finally, there are many open source implementations of this algorithm available
online, some of them already optimized to run on microprocessors. AES can be
found implemented in many different programming languages, including the omni-
present C language used for microprocessor programming, that are easily portable
and architecturally independent.
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6.3 Microprocessor Testing Metrics

After the definition of the algorithm of choice for radiation benchmarks, it is nec-
essary to define the metrics and the procedure used to characterize the micropro-
cessors. In the following sections are discussed the main actors involved in these
subjects.

The first step toward characterization process requires to be able to identify if
a core is behaving correctly or not. If it is not, it is also important to be able to
distinguish between the different possible outcomes and assign severity based on the
potential consequences that they can cause on the mission. In the next sections are
discussed these two topics.

6.3.1 Working status of a processor

For the type of the test that have to be performed, that is representative of the
worst case scenario for the processor, there are only four possible working statuses
for it:

• Active and Working – that represents the nominal conditions: the processor
is both in running state and it is producing the correct results at the outputs.

• Active and Not Working – that represents the conditions where the processor
is in running state but it is not producing the correct results.

• Not Active and Working – that represents the conditions where the processor
is not in running state (i.e. it is not producing any output) but it was working
correctly up to that point.

• Not Active and Not Working – that represents the conditions where the pro-
cessor was already not producing the correct results, and it stopped producing
any. This state is not really meaningful for the analysis performed but it is
indeed one of the possible outcomes.

6.3.2 Severity Analysis

Now that the possible working statuses of a processor are defined, it is important
to identify what are the threats associated with each working state.

As said previously, Active and Not Working represents the conditions correspon-
dent to a processor that seems to run correctly, but the results that it produces are
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not correct. This status is definitively the most hazardous among all of them: the
fact that the core is produce what seem to be correct results, but in reality they are
not, can have serious consequences on the mission carried. In fact, the only method
to verify the correctness of the data that is produced by a core is to have already
the expected values stored, or to produce them at runtime with an error-free circuit.
These two solutions completely defeat the purpose of use of a microprocessor from
the beginning. As said, the consequences of a bad output can be catastrophic in
systems that require an high reliability of their components; for instance, a core
could be utilized to control the opening of an airplane door: a wrong output value
can potentially open it during a flight, causing a catastrophe.

On the other hand, Not Active and Working status can be detected more easily
and usually there is also the possibility of performing corrective actions before the
system’s mission is affected; for these reasons, the severity associated to this status is
lower than the previous one. The detection of this kind of status can be implemented
both at hardware level and at software level. The first one consists in the monitoring
of a so-called heartbeat signal coming from the processor: this is a non-constant
periodic signal that indicates the normal operation of the core. When this signal
stops, corrective actions have to be performed in order to restore the working state.
A second one, instead, make use of a watchdog counter : this counter is usually
designated to generate a reset when it reaches zero, task of the software running on
the core is to periodically reset it to the original value.

6.3.3 Mean Time to Failure Evaluation

To complete the characterization of an embedded core, it is necessary to evaluate
its Mean Time to Failure. This quantity, as stated in Chapter 4, represents the
average time required to experience a failure on one system; it is now necessary to
be able to express it by counting the failures on the cores tested in relation to the
number of faults present on the board. Starting from the number of faults, then,
it is possible to evaluate the time required to experience them, allowing to express
them as MTTF.

For this purpose there is no distinction between a core that stopped running (Not
Active and Working) and a core that produces wrong results (Active and Not Work-
ing): although there are difference in terms of severity, the failure is still perceived
in both cases. By keeping track then of the number of non-operational cores over an
extensive test in which the number of faults present can be counted, it is possible
to evaluate the average number of upsets required to experience a misbehavior.

Uavg =
qc−1
i=0 Ei
c

(6.1)
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Where c represents the number of cores tested, Ei represents the quantity of
errors required to produce a misbehavior for i-th core tested.

From this point it is possible, by revisiting Equation 4.22, to express the time
required to experience an upset, as function of flux.

tupsetavg = U = 1
φavg · σdevice

(6.2)

Considering Equation 6.1 and substituting the value of U , it possible to express
the average time to experience a misbehavior as a function of flux, that is corre-
spondent to the MTTF of the core.

tfailureavg = tupsetavg · Uavg =
qc−1
i=0

c · φavg · σdevice
= MTTF (6.3)

6.4 Testing Procedure and Architecture

After the definition of the metrics used to evaluate the performances against radia-
tion effects for the embedded cores, it is necessary to define a testing procedure to
follow.

The testing procedure have slight differences depending on its type, tabletop
testing or ground testing. The former, as described in Section 5.1 is in general faster
than the latter due to the possibility to inject faults at an almost arbitrary rate.
The latter, instead, as described in Section 5.2, is able to produce more accurate
results. The differences on the procedures reflect the ones on the architectures, for
this reason two different architectures have been developed.

6.4.1 Single Module Testing

To be able to highlight the operational status of a microprocessor core, there are
requirements that have be to be met. In the following paragraphs are discussed the
main components required to accomplish this task.

First of all, there is the need of both the source data and the golden result for
each processor: they store respectively the input and output (expected) patterns for
each core tested. They could not even be present on board, therefore relying on a
communication to the outside world: although this approach can save area, it slow
all the operation down to the speed of the link employed. For this reason, these two
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components are implemented using a triplicated BRAM with ECC enabled: this
ensure to be able to work at the operational speed of each core.

As said before, the source data is a set of the input patterns required by the
core; in the specific case of the AES algorithm, the source data is composed by:

• the key used to encode the data;

• a plaintext that represents the input patterns for the processor.

The golden result is instead required to have a reference to compare against. In
the specific case of the AES algorithm, it is composed by the ciphertext, that is the
result of the encoding of the plaintext with the key provided.

Based on the comparison between the value produced by the Device Under Test
(DUT), i.e. the core tested, and the expected value coming from the golden re-
sult memory, it is possible to identify its operational status. For this reason, two
saturating up-counters are added:

• a Loop Counter ;

• an Error Counter.

The former is incremented every time that a comparison between the result from
the processor and its respective “golden” is performed. By continuous reading this
counter it is possible to identify if a core is active or not based on the history of the
values. When a core is active this counter counts up until it saturates, while if the
core is stalled it remains constant over time. Based on the speed of the interface and
the frequency of the output of the algorithm it is impossible to read consecutively
two identical values.

The latter is instead incremented every time that a comparison is performed,
but there was a mismatch between the values at the output. This counter holds the
value 0 until an error occurs: in this case two are the possible outcomes:

• the error counter starts counting up, that is representative of the Active and
Not Working status;

• the error counter increase and stop counting afterwards, that is representative
a non-permanent error.

With these two counters it is then possible to evaluate the four possible opera-
tional statuses of a core in real time, by reading continuously the values that they
holds.

Finally, there is also the need for an interface used to communicate these values
to the external world, where they are analyzed and stored to complete the charac-
terization. For this purpose, a SPI interface was used.
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Figure 6.3: Single Module architecture: the source data is read by the DUT, and
compared with the golden results. Counters are placed to verify the operational and
working state of the DUT.

6.4.2 Tabletop Testing

The first round of irradiation is performed during tabletop testing. During this
phase a design containing multiple copies (20) of each core tested have been loaded
onto the FPGA, then a fault injection campaign have been started. Having multiple
copies of each core can improve two aspects of this test:

• The speed of the simulation – the increased number of cores running in parallel
reduces the number of tests that have to be performed;

• The systematic effects given by the placement of the processor core on the
FPGA.

For fault injection purposes, and to ease the complexity and improve the speed
of the tests, an external JCM device was connected to the JTAG port of the FPGA.
On the remote PC, acting as an SPI master, instead, a script was in charge of the
following actions:

1. Configuring the FPGA with a clean, correct bitstream;

2. Start reading valued from the core counters present;

3. Start fault injection, injecting one fault every 100 ms;
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4. Keeping track of the current status of every core present in the design: when
a core changes its operating status the following operations are performed:

(a) Stop the fault injection;
(b) Save the state of all counters present in the design;
(c) Save the current number of faults injected;
(d) Resume the fault injection;

5. Stopping the procedure and restarting the process when one of the following
conditions was met:

• All the microprocessors present were either in Not Available state or in
Not Working state;

• The testing circuitry failed, meaning that a fault have been registered on
one of the components responsible for the data transferred to the PC.

Figure 6.4: Tabletop testing block diagram: the single modules are interfaced using
SPI from a remote PC, that controls the fault injection procedure using JCM

6.4.3 Ground Testing

For ground testing the approach is different. First of all, being a part of a more
complex system containing more elements not correlated to the microprocessors that
had to be tested, the number of cores placed on the FPGA had been reduced to 1
per type, instead on 20.

The FPGA used was mounted on a custom board developed for the ALICE
Experiment, called Readout Unit. This board features a custom chip, called Giga-
Bit Transceiver - Slow Clock Adapter (GBT-SCA) that was used to enable the SPI
communication over optical fiber. [18]

61



6 – Characterization of the Xilinx Triple Modular Redundancy Subsystem

Figure 6.5: Ground testing block diagram: the single modules are interfaced using a
custom chip called SCA, that allows SPI communication over optical fiber. A remote
PC serves for data storage, and it uses a Common Readout Unit to communicate
over optical fiber.

The remote PC had a different task, while before it was actively used in the pro-
cess of controlling the fault injection process and the reconfiguration of the FPGA,
now it only serves the purpose of data storage. The values of the counters are,
in fact, read with many more other values coming from different components and
peripherals involved in the project.

After the data taking process, the available data is analyzed by cross-checking
with the values of the fluence irradiating the FPGA and the timestamps of counter
values. Starting from this point it is possible, using the equations discussed in
Chapter 4, to evaluate the equivalent number of upsets registered on the device.
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Chapter 7

Results, Conclusions and Future
Work

In this thesis have been presented techniques and architectures that can be em-
ployed for radiation testing of microprocessors, in collaboration with the CERN
ALICE ITS group. In the following sections are presented the results relative to the
characterization of the Xilinx Microblaze and TMR Subsystem.

Furthermore, the same testing procedure and architecture have been employed
for the characterization of an open source microprocessor soft core: the Murax
VexRiscv SoC. On top of this implementation have been applied custom mitigation
techniques using Synopsys Synplify. The results were finally compared in terms of
reliability, being the two alternatives similar in features, resource occupation and
performances.

In Table 7.1 are presented:

• a list of the core tested, comprehensive of the mitigation techniques employed;

• the FPGA main resources utilized for each resource type.

Resource
Type

Xilinx Microblaze Murax VexRiscv
Single TMR Single ECC TMR TMR+ECC

LUTLUT 2665 9933 915 942 7965 8129
FF 3086 11652 1008 1022 3374 3440

BRAM 2 6 3 4 9 12

Table 7.1: Comparison between resource utilization of each core flavor
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7.1 Results

In this section are presented the results of both tabletop and ground testing, first
in terms of average number of upsets required to change the operational status, and
then in terms of Mean Time to Failure, considering the nominal flux for the ALICE
Experiment:

φavg = 103 Hz (7.1)

Considering the Xilinx Ultrascale XCKU040 FPGA as reference for the cross
section and making use of Equation 6.2, the following average upset period can be
calculated:

tupsetavg = U = 1
φavg · σdevice

= 3690 s (7.2)

Where σdevice = σbit ·Nbits = 2.55−15 · 106269009 = 2.71−7.

7.1.1 Tabletop Testing Results

For tabletop testing purposes, six different designs were produced, one for each core
tested as in Table 7.1. Each one of them contained 20 replicas of the same core, as
explained in Chapter 6, on which fault injection have been performed using JCM.

During these tests, a total of 75881726 faults have been injected on the six
different designs produced, that yielded a total of 102550 cores in either Operational
and Not Working (F) or Not Operational and Working (S) state. The following
table presents the results in terms of average number of upsets required, and the
correspondent MTTF with the particle flux of Equation 7.1.

Xilinx Microblaze Murax VexRiscv
Single TMR Single ECC TMR TMR+ECC

Uavg 583 286 599 885 1042 1329
%F 45.82 3.76 35.31 39.07 37.61 47.04
%S 54.18 96.24 64.69 60.93 62.39 52.96

MTTF [h] 598 293 614 907 1068 1362

Table 7.2: Tabletop testing results
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7.1.2 Ground Testing Results

For the purpose of ground testing, differently from tabletop testing, due to limited
resource requirements, only one single peripheral containing one copy of each core
subsystem was integrated into the ReadOut Unit firmware. For this reason, due to
both possible systematic effects and not sufficient beam time, the results are not
presented in terms of equivalent Mean Time to Failure.

During these tests, only 125 cores per core type have been tested, and in many
occasions it was not possible to establish the number of faults required to break
them, as they were still working at the end of the beam test. In the following table
are presented cores in Operational and Working (W), Operational and Not Working
(F) and Not Operational and Working (S) state.

Xilinx Microblaze Murax VexRiscv
Single TMR Single ECC TMR TMR+ECC

Uavg 1403 1025 1984 3117 21524 114343
%F 19.80 2.97 17.82 13.86 0.00 0.99
%S 25.74 50.50 21.78 12.87 5.00 0.00
%W 54.46 46.53 60.40 73.27 95.00 99.01

Table 7.3: Ground testing results

7.2 Conclusions and Future Work

As shown in the previous section, the results of the characterization of the Xilinx
Microblaze and TMR Subsystem IPs do not match the open source counterpart,
especially in the case of the Triple Modular Redundancy Subsystem.

Speaking in terms of pure reliability, the TMR Subsystem is completely out-
performed by even the single Microblaze core, that takes advantage of its reduced
resource usage. On the other hand, analyzing the results from a security point of
view, as discussed in Section 6.3.2, the Subsystem is without doubt the most secure
solution among the possible options.

There are many possible solutions that may be implemented to improve the
reliability of this IP, that have been tested in its first official release to the public.
First of all, the internal Soft Error Mitigation IP could be employed to improve
the error correction latency. Secondly, there are many software-based solutions, as
discussed in Chapter 3, that may be implemented to further improve the reliability
of the system. Finally, another path could be represented by the employment of
Synopsys Symplify to provide a custom solution to be compared against.
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For what concerns instead the testing procedure and, consequently, the testing
architecture, there are possible future improvements that include:

• The use of other algorithms for radiation benchmarking; one of the possible
solution may be the development of a dedicated benchmark for this purposes.

• The use of a more sophisticated testing procedure, that has not been imple-
mented due to limitations in terms of data bandwidth.

• The employment of different FPGA families from different vendors, to possibly
compare the same core on different platforms.
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Appendix A

A Large Ion Collider Experiment

CERN’s A Large Ion Collider Experiment (ALICE) is one of the largest experiments
in the world devoted to research in the physics of matter at an infinitely small scale.
Located at the Large Hadron Collider (LHC), this experiment is committed to the
study of heavy ion collisions, with a center of mass energy of approximately 5.5 TeV
per nucleon. The main objective of the experiment is represented by the study of
dark matters at high densities and temperatures.

To achieve this objective, the ALICE detector is composed of two main compo-
nents:

• a central part, called Inner Tracking System (ITS) – mainly composed of
detectors used to study hadronic signals and dielectrons;

• a forward muon spectrometer – used to study quarkonia behavior in dense
matter.

A.1 Upgrade of the Inner Tracking System

As said in the introduction, the ITS represents the central part of the ALICE de-
tector. It is embedded in a large magnet and it covers ±45° over the full azimuth.
Its basic functions are the following:

• determination of the primary vertex and of the secondary vertices necessary
for the reconstruction of charm and hyperon decays;

• particle identification and tracking;
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• improvement of the momentum and angle measurements for the Time Projec-
tion Chamber (TPC).

The ALICE Experiment is planning to upgrade the ITS during the second LHC
shutdown, in the years 2019-2020. The new ITS will be composed of 7 concentric
layers of pixel detectors, each layer will be 1.5 m long, with the outer radius of 40
cm. This arrangement of sensors will create a 12.6 Gpx camera. [19]

Figure A.1: Sensors layout of the upgraded ALICE-ITS: 2 outer layers, 2 middle
layers and 3 inner layers

All the seven layers will be equipped with the ALPIDE chip, that embeds the
sensitive part and the read-out electronics within the same piece of silicon. This
chips are organized in staves, each stave is composed by a different number of aligned
ALPIDE chips:

• Innner Barrel stave: 9 ALPIDE chips;

• Middle and Outer Barrel stave: 14 ALPIDE chips, organized in two half-staves.
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Figure A.2: The Inner Barrel stave readout architecture: 9 ALPIDE chips are or-
ganized in a straight line, operating at 1.2 Gbit/s

Figure A.3: The Outer Barrel stave readout architecture: 14 ALPIDE chips are
organized in two half-staves, each one composed by 7 sensors operating at 0.4 Gbit/s

A.1.1 Readout Electronics

To carry out the incoming data from the sensors present in the ITS, a set of dedicated
hardware (Readout Electronics) is placed nearby them. [20]

The readout electronics plays a fundamental role in this scheme. Being close
the beam collision, it is strongly affected by radiation effects. The core logic of the
readout electronics is composed by the Readout Unit (RU), that is custom board
that features a Xilinx XCKU060 FPGA. This board takes care of interfacing multiple
ALPIDE chips to the Common Readout Unit (CRU) while syncing with the triggers
coming from the ALICE Trigger System. In particular, one single RU is connected
to:

• 9 Inner Barrel ALPIDE chips, operating at 1.2 Gbit/s;

69



A – A Large Ion Collider Experiment

Figure A.4: High level architecture of the upgraded ITS: the sensors are directly
interfaced by the readout electronics, that is connected to Common Readout Units
and synchronized with the ALICE Trigger System

• 8 or 14 Middle Barrel ALPIDE chips, operating at 0.4 Gbit/s;

• 8 or 14 Outer Barrel ALPIDE chips, operating at 0.4 Gbit/s;

• the Common Readout Unit, that receives the data coming from the sensors;

• the ALICE Tigger System, that sends triggers synchronized with the LHC
clock.

Figure A.5: Readout Unit architecture, it interface various sensors operating a dif-
ferent speeds with the Common Readout Unit, while being synchronized with the
triggers coming from the ALICE Trigger System
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Appendix B

Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a specification for the encryption of
electronic data. AES is a subset of the so-called Rinjdael cipher, a family of ciphers
with different key and block sizes. AES is a fast algorithm to implement both in
software and in hardware, that defines a block size of 128 bit and a key size of 128,
192 or 256 bit, depending on the version used.

B.1 Working Principle

The algorithm works using a substitution-permutation network, that is a series of
linked mathematical operations. This network takes two inputs, a plaintext and a
key, and applies several rounds of substitution boxes (S-boxes) and permutation boxes
(P-boxes); the result obtained is called ciphertext. A S-box takes care of substituting
a small block of bits with another one; the operation must be invertible to ensure the
possibility of decryption. A P-box, instead, takes care of performing a permutation
of the bits present in a small block. After the application of the substitution and
permutation boxes, a round key is obtained by employing some group operations,
typically xor.

B.2 AES Versions

AES operates on a 4x4 matrix of bytes, called state, on which are applied the same
operations for a number of cycles that depends on the key size.

• 10 cycles for 128 bit keys (AES-128);
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• 12 cycles for 192 bit keys (AES-192);

• 14 cycles for 256 bit keys (AES-256).

Finally, there are many modes of operation for the cipher. The simplest one is
called Electronic Codebook (ECB): in this case each block is encrypted separately,
by applying the same set of operations to each block encoded. An alternative to
this solution is called Cipher Block Chaining (CBC): in this case the product of the
previous encoding is combined to the plaintext of the next one. [23]

Figure B.1: AES ECB Encryption: the same set of operations are applied to different
blocks of the input data, treating them separately.

Figure B.2: AES CBC Encryption: the output of the previous encoding is combined
with the block of data encoded at the next step.

B.3 Implemented Algorithm

In this section is presented the implemented lightweight version of the AES algo-
rithm, written in C language.
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B.3.1 aes.h

# ifndef _AES_H_
# define _AES_H_

# include <stdint .h>

/* Name definitions :
* - Nb: The number of columns comprising a state in AES.
* - Bs: Block size in bytes AES is 128 b block only .
* - Nk: Number of 32- bit words in a key.
* - Nr: Number of rounds of for encryption .
* - Ks: Ik size in bytes .
* - Ke: Expanded Ik size in bytes .
* - Rk: Round Ik.
* - Ik: Input Ik.
* - Iv: Input Vector .
* - St: State .
*/

# define AES128 1
# define ECB_ENC 1

# define Nb 4
# define Bs (Nb * Nb)

#if AES128

# define Nk 4
# define Nr 10
# define Ks 16
# define Ke 176

# elif AES192

# define Nk 6
# define Nr 12
# define Ks 24
# define Ke 208

# elif AES256

# define Nk 8
# define Nr 14
# define Ks 32
# define Ke 240

# else

# error "No AES version defined !"

# endif /* AES */

#if ECB | ECB_ENC
void ecb_encrypt ( uint8_t * dst , const uint8_t * src , const uint8_t * key );
# endif /* ECB | ECB_ENC */

#if ECB | ECB_DEC
void ecb_decrypt ( uint8_t * dst , const uint8_t * src , const uint8_t * key );
# endif /* ECB | ECB_DEC */
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#if CBC | CBC_ENC
void cbc_encrypt ( uint8_t * dst , const uint8_t * src , const uint8_t * key ,

const uint8_t * iv );
# endif /* CBC | CBC_ENC */

#if CBC | CBC_DEC
void cbc_decrypt ( uint8_t * dst , const uint8_t * src , const uint8_t * key ,

const uint8_t * iv );
# endif /* CBC | CBC_DEC */

typedef uint8_t state_t [Nb ][ Nb ];

# endif // _AES_H_
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B.3.2 aes_constants.h

# ifndef AES_CONST_H
# define AES_CONST_H 1

static const uint8_t sbox [256] = {
0x63 , 0x7c , 0x77 , 0x7b , 0xf2 , 0x6b , 0x6f , 0xc5 ,
0x30 , 0x01 , 0x67 , 0x2b , 0xfe , 0xd7 , 0xab , 0x76 ,
0xca , 0x82 , 0xc9 , 0x7d , 0xfa , 0x59 , 0x47 , 0xf0 ,
0xad , 0xd4 , 0xa2 , 0xaf , 0x9c , 0xa4 , 0x72 , 0xc0 ,
0xb7 , 0xfd , 0x93 , 0x26 , 0x36 , 0x3f , 0xf7 , 0xcc ,
0x34 , 0xa5 , 0xe5 , 0xf1 , 0x71 , 0xd8 , 0x31 , 0x15 ,
0x04 , 0xc7 , 0x23 , 0xc3 , 0x18 , 0x96 , 0x05 , 0x9a ,
0x07 , 0x12 , 0x80 , 0xe2 , 0xeb , 0x27 , 0xb2 , 0x75 ,
0x09 , 0x83 , 0x2c , 0x1a , 0x1b , 0x6e , 0x5a , 0xa0 ,
0x52 , 0x3b , 0xd6 , 0xb3 , 0x29 , 0xe3 , 0x2f , 0x84 ,
0x53 , 0xd1 , 0x00 , 0xed , 0x20 , 0xfc , 0xb1 , 0x5b ,
0x6a , 0xcb , 0xbe , 0x39 , 0x4a , 0x4c , 0x58 , 0xcf ,
0xd0 , 0xef , 0xaa , 0xfb , 0x43 , 0x4d , 0x33 , 0x85 ,
0x45 , 0xf9 , 0x02 , 0x7f , 0x50 , 0x3c , 0x9f , 0xa8 ,
0x51 , 0xa3 , 0x40 , 0x8f , 0x92 , 0x9d , 0x38 , 0xf5 ,
0xbc , 0xb6 , 0xda , 0x21 , 0x10 , 0xff , 0xf3 , 0xd2 ,
0xcd , 0x0c , 0x13 , 0xec , 0x5f , 0x97 , 0x44 , 0x17 ,
0xc4 , 0xa7 , 0x7e , 0x3d , 0x64 , 0x5d , 0x19 , 0x73 ,
0x60 , 0x81 , 0x4f , 0xdc , 0x22 , 0x2a , 0x90 , 0x88 ,
0x46 , 0xee , 0xb8 , 0x14 , 0xde , 0x5e , 0x0b , 0xdb ,
0xe0 , 0x32 , 0x3a , 0x0a , 0x49 , 0x06 , 0x24 , 0x5c ,
0xc2 , 0xd3 , 0xac , 0x62 , 0x91 , 0x95 , 0xe4 , 0x79 ,
0xe7 , 0xc8 , 0x37 , 0x6d , 0x8d , 0xd5 , 0x4e , 0xa9 ,
0x6c , 0x56 , 0xf4 , 0xea , 0x65 , 0x7a , 0xae , 0x08 ,
0xba , 0x78 , 0x25 , 0x2e , 0x1c , 0xa6 , 0xb4 , 0xc6 ,
0xe8 , 0xdd , 0x74 , 0x1f , 0x4b , 0xbd , 0x8b , 0x8a ,
0x70 , 0x3e , 0xb5 , 0x66 , 0x48 , 0x03 , 0xf6 , 0x0e ,
0x61 , 0x35 , 0x57 , 0xb9 , 0x86 , 0xc1 , 0x1d , 0x9e ,
0xe1 , 0xf8 , 0x98 , 0x11 , 0x69 , 0xd9 , 0x8e , 0x94 ,
0x9b , 0x1e , 0x87 , 0xe9 , 0xce , 0x55 , 0x28 , 0xdf ,
0x8c , 0xa1 , 0x89 , 0x0d , 0xbf , 0xe6 , 0x42 , 0x68 ,
0x41 , 0x99 , 0x2d , 0x0f , 0xb0 , 0x54 , 0xbb , 0x16

};

static const uint8_t rsbox [256] = {
0x52 , 0x09 , 0x6a , 0xd5 , 0x30 , 0x36 , 0xa5 , 0x38 ,
0xbf , 0x40 , 0xa3 , 0x9e , 0x81 , 0xf3 , 0xd7 , 0xfb ,
0x7c , 0xe3 , 0x39 , 0x82 , 0x9b , 0x2f , 0xff , 0x87 ,
0x34 , 0x8e , 0x43 , 0x44 , 0xc4 , 0xde , 0xe9 , 0xcb ,
0x54 , 0x7b , 0x94 , 0x32 , 0xa6 , 0xc2 , 0x23 , 0x3d ,
0xee , 0x4c , 0x95 , 0x0b , 0x42 , 0xfa , 0xc3 , 0x4e ,
0x08 , 0x2e , 0xa1 , 0x66 , 0x28 , 0xd9 , 0x24 , 0xb2 ,
0x76 , 0x5b , 0xa2 , 0x49 , 0x6d , 0x8b , 0xd1 , 0x25 ,
0x72 , 0xf8 , 0xf6 , 0x64 , 0x86 , 0x68 , 0x98 , 0x16 ,
0xd4 , 0xa4 , 0x5c , 0xcc , 0x5d , 0x65 , 0xb6 , 0x92 ,
0x6c , 0x70 , 0x48 , 0x50 , 0xfd , 0xed , 0xb9 , 0xda ,
0x5e , 0x15 , 0x46 , 0x57 , 0xa7 , 0x8d , 0x9d , 0x84 ,
0x90 , 0xd8 , 0xab , 0x00 , 0x8c , 0xbc , 0xd3 , 0x0a ,
0xf7 , 0xe4 , 0x58 , 0x05 , 0xb8 , 0xb3 , 0x45 , 0x06 ,
0xd0 , 0x2c , 0x1e , 0x8f , 0xca , 0x3f , 0x0f , 0x02 ,
0xc1 , 0xaf , 0xbd , 0x03 , 0x01 , 0x13 , 0x8a , 0x6b ,
0x3a , 0x91 , 0x11 , 0x41 , 0x4f , 0x67 , 0xdc , 0xea ,
0x97 , 0xf2 , 0xcf , 0xce , 0xf0 , 0xb4 , 0xe6 , 0x73 ,
0x96 , 0xac , 0x74 , 0x22 , 0xe7 , 0xad , 0x35 , 0x85 ,
0xe2 , 0xf9 , 0x37 , 0xe8 , 0x1c , 0x75 , 0xdf , 0x6e ,
0x47 , 0xf1 , 0x1a , 0x71 , 0x1d , 0x29 , 0xc5 , 0x89 ,
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0x6f , 0xb7 , 0x62 , 0x0e , 0xaa , 0x18 , 0xbe , 0x1b ,
0xfc , 0x56 , 0x3e , 0x4b , 0xc6 , 0xd2 , 0x79 , 0x20 ,
0x9a , 0xdb , 0xc0 , 0xfe , 0x78 , 0xcd , 0x5a , 0xf4 ,
0x1f , 0xdd , 0xa8 , 0x33 , 0x88 , 0x07 , 0xc7 , 0x31 ,
0xb1 , 0x12 , 0x10 , 0x59 , 0x27 , 0x80 , 0xec , 0x5f ,
0x60 , 0x51 , 0x7f , 0xa9 , 0x19 , 0xb5 , 0x4a , 0x0d ,
0x2d , 0xe5 , 0x7a , 0x9f , 0x93 , 0xc9 , 0x9c , 0xef ,
0xa0 , 0xe0 , 0x3b , 0x4d , 0xae , 0x2a , 0xf5 , 0xb0 ,
0xc8 , 0xeb , 0xbb , 0x3c , 0x83 , 0x53 , 0x99 , 0x61 ,
0x17 , 0x2b , 0x04 , 0x7e , 0xba , 0x77 , 0xd6 , 0x26 ,
0xe1 , 0x69 , 0x14 , 0x63 , 0x55 , 0x21 , 0x0c , 0x7d

};

static const uint8_t Rcon [11] = {
0x8d , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 ,
0x80 , 0x1b , 0x36

};

# endif /* ifndef AES_CONST_H */
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B.3.3 aes.c

# include <stdint .h>

# include "aes.h"
# include " aes_constants .h"

static void SubWord ( uint8_t * word) {
word [0] = sbox[word [0]];
word [1] = sbox[word [1]];
word [2] = sbox[word [2]];
word [3] = sbox[word [3]];

}

static void RotWord ( uint8_t * word) {
uint8_t tmp;
tmp = word [0];
word [0] = word [1];
word [1] = word [2];
word [2] = word [3];
word [3] = tmp;

}

static void IkExpand ( uint8_t * Rk , const uint8_t * Ik) {
int i;
uint8_t word [4];

// The first round key is the key itself .
for (i = 0; i < Nk; ++i) {

Rk [(i * 4) + 0] = Ik [(i * 4) + 0];
Rk [(i * 4) + 1] = Ik [(i * 4) + 1];
Rk [(i * 4) + 2] = Ik [(i * 4) + 2];
Rk [(i * 4) + 3] = Ik [(i * 4) + 3];

}

// All other round keys are found from the previous round keys .
//i == Nk
for ( ; i < Nb * (Nr + 1); ++i) {

word [0] = Rk [(i -1) * 4 + 0];
word [1] = Rk [(i -1) * 4 + 1];
word [2] = Rk [(i -1) * 4 + 2];
word [3] = Rk [(i -1) * 4 + 3];

if (i % Nk == 0) {
RotWord (word );
SubWord (word );
word [0] = word [0] ^ Rcon[i/Nk ];

}
#if defined ( AES256 ) && ( AES256 == 1)

if (i % Nk == 4) {
SubWord (word );

}
# endif

Rk[i * 4 + 0] = Rk [(i - Nk) * 4 + 0] ^ word [0];
Rk[i * 4 + 1] = Rk [(i - Nk) * 4 + 1] ^ word [1];
Rk[i * 4 + 2] = Rk [(i - Nk) * 4 + 2] ^ word [2];
Rk[i * 4 + 3] = Rk [(i - Nk) * 4 + 3] ^ word [3];

}
}
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static void AddRk ( state_t * St , uint8_t * Rk , int round ) {
int i, j;

for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {

(* St )[i][j] ^= Rk[ round * Nb * 4 + i * Nb + j];
}

}
}

static void SubBytes ( state_t * St) {
int i, j;

for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {

(* St )[j][i] = sbox [(* St )[j][i]];
}

}
}

static void ShiftRows ( state_t * St) {
uint8_t temp;

// Rotate first row 1 columns to left
temp = (* St )[0][1];
(* St )[0][1] = (* St )[1][1];
(* St )[1][1] = (* St )[2][1];
(* St )[2][1] = (* St )[3][1];
(* St )[3][1] = temp;

// Rotate second row 2 columns to left
temp = (* St )[0][2];
(* St )[0][2] = (* St )[2][2];
(* St )[2][2] = temp;
temp = (* St )[1][2];
(* St )[1][2] = (* St )[3][2];
(* St )[3][2] = temp;

// Rotate third row 3 columns to left
temp = (* St )[0][3];
(* St )[0][3] = (* St )[3][3];
(* St )[3][3] = (* St )[2][3];
(* St )[2][3] = (* St )[1][3];
(* St )[1][3] = temp;

}

#if XTIME_AS_FUNC
static uint8_t xtime ( uint8_t x) {

return (x << 1) ^ (((x >> 7) & 0x01) * 0x1B );
}
# else
# define xtime (x) (((x) << 1) ^ ((((x) >> 7) & 0x01) * 0x1B ))
# endif /* XTIME_AS_FUNC */

static void MixColumns ( state_t * St) {
int i;
uint8_t Tmp , Tm , St0;
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for (i = 0; i < 4; ++i) {
St0 = (* St )[i ][0];
Tmp = (* St )[i][0] ^ (* St )[i][1] ^ (* St )[i][2] ^ (* St )[i ][3];

Tm = (* St )[i][0] ^ (* St )[i ][1]; Tm = xtime (Tm ); (* St )[i][0] ^= Tm ^ Tmp;
Tm = (* St )[i][1] ^ (* St )[i ][2]; Tm = xtime (Tm ); (* St )[i][1] ^= Tm ^ Tmp;
Tm = (* St )[i][2] ^ (* St )[i ][3]; Tm = xtime (Tm ); (* St )[i][2] ^= Tm ^ Tmp;
Tm = (* St )[i][3] ^ St0; Tm = xtime (Tm ); (* St )[i][3] ^= Tm ^ Tmp;

}
}

#if MPY_AS_FUNC

static uint8_t Mpy( uint8_t x, uint8_t y) {
return (

(((y) >> 0 & 0x01) * (x)) ^
(((y) >> 1 & 0x01) * xtime (x)) ^
(((y) >> 2 & 0x01) * xtime ( xtime (x))) ^
(((y) >> 3 & 0x01) * xtime ( xtime ( xtime (x)))) ^
(((y) >> 4 & 0x01) * xtime ( xtime ( xtime ( xtime (x )))))

);
}

# else

# define Mpy(x, y) ( \
(((y) >> 0 & 0x01) * (x)) ^ \
(((y) >> 1 & 0x01) * xtime (x)) ^ \
(((y) >> 2 & 0x01) * xtime ( xtime (x))) ^ \
(((y) >> 3 & 0x01) * xtime ( xtime ( xtime (x)))) ^ \
(((y) >> 4 & 0x01) * xtime ( xtime ( xtime ( xtime (x ))))) \

)

# endif /* MPY_AS_FUNC */

#if ECB | ECB_DEC | CBC | CBC_DEC
static void InvMixColumns ( state_t * St) {

int i;
uint8_t s0 , s1 , s2 , s3;
for (i = 0; i < 4; ++i) {

s0 = (* St )[i ][0];
s1 = (* St )[i ][1];
s2 = (* St )[i ][2];
s3 = (* St )[i ][3];

(* St )[i][0] = Mpy(s0 , 0x0e) ^ Mpy(s1 , 0x0b) ^ Mpy(s2 , 0x0d) ^ Mpy(s3 , 0x09 );
(* St )[i][1] = Mpy(s0 , 0x09) ^ Mpy(s1 , 0x0e) ^ Mpy(s2 , 0x0b) ^ Mpy(s3 , 0x0d );
(* St )[i][2] = Mpy(s0 , 0x0d) ^ Mpy(s1 , 0x09) ^ Mpy(s2 , 0x0e) ^ Mpy(s3 , 0x0b );
(* St )[i][3] = Mpy(s0 , 0x0b) ^ Mpy(s1 , 0x0d) ^ Mpy(s2 , 0x09) ^ Mpy(s3 , 0x0e );

}
}
# endif

#if ECB | ECB_DEC | CBC | CBC_DEC
static void InvSubBytes ( state_t * St) {

uint8_t i,j;
for (i = 0; i < 4; ++i) {

for (j = 0; j < 4; ++j) {
(* St )[j][i] = rsbox [(* St )[j][i]];

}
}
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}
# endif

#if ECB | ECB_DEC | CBC | CBC_DEC
static void InvShiftRows ( state_t * St) {

uint8_t temp;

// Rotate first row 1 columns to right
temp = (* St )[3][1];
(* St )[3][1] = (* St )[2][1];
(* St )[2][1] = (* St )[1][1];
(* St )[1][1] = (* St )[0][1];
(* St )[0][1] = temp;

// Rotate second row 2 columns to right
temp = (* St )[0][2];
(* St )[0][2] = (* St )[2][2];
(* St )[2][2] = temp;

temp = (* St )[1][2];
(* St )[1][2] = (* St )[3][2];
(* St )[3][2] = temp;

// Rotate third row 3 columns to right
temp = (* St )[0][3];
(* St )[0][3] = (* St )[1][3];
(* St )[1][3] = (* St )[2][3];
(* St )[2][3] = (* St )[3][3];
(* St )[3][3] = temp;

}
# endif

#if ECB | ECB_ENC | CBC | CBC_ENC
static void Encrypt ( state_t * St , uint8_t * Rk) {

int round = 0;

AddRk (St , Rk , round );
round ++;

for (; round < Nr; ++ round ) {
SubBytes (St );
ShiftRows (St );
MixColumns (St );
AddRk (St , Rk , round );

}

SubBytes (St );
ShiftRows (St );
AddRk (St , Rk , round );

}
# endif

#if ECB | ECB_DEC | CBC | CBC_DEC
static void Decrypt ( state_t * St , uint8_t * Rk) {

int round = Nr;

AddRk (St , Rk , round );
round --;

for (; round > 0; --round ) {
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InvShiftRows (St );
InvSubBytes (St );
AddRk (St , Rk , round );
InvMixColumns (St );

}

InvShiftRows (St );
InvSubBytes (St );
AddRk (St , Rk , round );

}
# endif

static void cpy( uint8_t * dst , const uint8_t * src) {
int i;

for (i = 0; i < Bs; i++) {
dst[i] = src[i];

}
}

#if ECB | ECB_ENC
void ecb_encrypt ( uint8_t * dst , const uint8_t * src , const uint8_t * key) {

state_t * St;
uint8_t Rk[Ke ];

if (dst != src) {
cpy(dst , src );

}

St = ( state_t *) dst;

IkExpand (Rk , key );
Encrypt (St , Rk );

}
# endif /* ECB | ECB_ENC */

#if ECB | ECB_DEC
void ecb_decrypt ( uint8_t * dst , const uint8_t * src , const uint8_t * key) {

state_t * St;
uint8_t Rk[Ke ];

if (dst != src) {
cpy(dst , src );

}

St = ( state_t *) dst;

IkExpand (Rk , key );
Decrypt (St , Rk );

}
# endif /* ECB | ECB_DEC */

#if CBC | CBC_ENC | CBC_DEC
static void XorWithIv ( uint8_t * block , const uint8_t * Iv) {

int i;

for (i = 0; i < Bs; ++i) {
block [i] ^= Iv[i];

}
}
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# endif /* CBC | CBC_ENC | CBC_DEC */

#if CBC | CBC_ENC
void cbc_encrypt ( uint8_t * dst , const uint8_t * src , const uint8_t * key ,

const uint8_t * iv) {
state_t * St;
uint8_t Rk[Ke ];

if (dst != src) {
cpy(dst , src );

}

St = ( state_t *) dst;
IkExpand (Rk , key );

XorWithIv (dst , iv );
Encrypt (St , Rk );

}
# endif /* CBC | CBC_ENC */

#if CBC | CBC_DEC
void cbc_decrypt ( uint8_t * dst , const uint8_t * src , const uint8_t * key ,

const uint8_t * iv) {
state_t * St;
uint8_t Rk[Ke ];

if (dst != src) {
cpy(dst , src );

}

St = ( state_t *) dst;
IkExpand (Rk , key );

Decrypt (St , Rk );
XorWithIv (dst , iv );

}
# endif /* CBC | CBC_DEC */
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Appendix C

Xilinx Microblaze and TMR
Subsystem

C.1 Configuration Scripts

In this section is presented the TCL configuration script used to generate automati-
cally the single Xilinx Microblaze and its triplicated version in the TMR Subsystem.
This script defines a procedure called generate_mb that is designed to take as input
name (bd_name) a string in the following form:

<base_name>_tmr(0|1)_ecc(0|1)

C.1.1 generate_mb.tcl

proc generate_mb { prj_name bd_name } {

create_bd_design $bd_name

set use_tmr [ regexp "tmr1" $bd_name ]
set use_ecc [ regexp "ecc1" $bd_name ]

set bd_path "${ prj_name }/${ prj_name } .srcs / sources_1 /bd/${ bd_name }"
set bd_file [ get_files " $bd_path /${ bd_name }.bd"]

## CONSTANTS #################################################################
set XIP " xilinx.com:ip "
set MB_ENABLE_UART 1
set MB_ENABLE_GPIO 1
set MB_ENABLE_TIMR 1

## COMPONENT: MicroBlaze #####################################################
set mb [ create_bd_cell -type ip -vlnv $XIP:microblaze microblaze_0 ]
set_property -dict [ list \
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CONFIG.C_ADDR_SIZE 32 \
CONFIG.C_AREA_OPTIMIZED 1 \
CONFIG.C_INTERCONNECT 2 \
CONFIG.C_BASE_VECTORS 0 x00000000 \
CONFIG.C_FAULT_TOLERANT 1 \
CONFIG.C_LOCKSTEP_SLAVE 0 \
CONFIG.C_AVOID_PRIMITIVES 3 \
CONFIG.C_PVR 0 \
CONFIG.C_PVR_USER1 0x00 \
CONFIG.C_PVR_USER2 0 x00000000 \
CONFIG.C_D_AXI 0 \
CONFIG.C_D_LMB 1 \
CONFIG.C_I_AXI 0 \
CONFIG.C_I_LMB 1 \
CONFIG.C_USE_BARREL 0 \
CONFIG.C_USE_DIV 0 \
CONFIG.C_USE_HW_MUL 0 \
CONFIG.C_USE_FPU 0 \
CONFIG.C_USE_MSR_INSTR 1 \
CONFIG.C_USE_PCMP_INSTR 1 \
CONFIG.C_USE_REORDER_INSTR 1 \
CONFIG.C_UNALIGNED_EXCEPTIONS 0 \
CONFIG.C_ILL_OPCODE_EXCEPTION 0 \
CONFIG.C_M_AXI_I_BUS_EXCEPTION 0 \
CONFIG.C_M_AXI_D_BUS_EXCEPTION 0 \
CONFIG.C_DIV_ZERO_EXCEPTION 0 \
CONFIG.C_FPU_EXCEPTION 0 \
CONFIG.C_OPCODE_0x0_ILLEGAL 0 \
CONFIG.C_FSL_EXCEPTION 0 \
CONFIG.C_ECC_USE_CE_EXCEPTION 0 \
CONFIG.C_USE_STACK_PROTECTION 0 \
CONFIG.C_IMPRECISE_EXCEPTIONS 0 \
CONFIG.C_DEBUG_ENABLED 1 \
CONFIG.C_NUMBER_OF_PC_BRK 1 \
CONFIG.C_NUMBER_OF_RD_ADDR_BRK 0 \
CONFIG.C_NUMBER_OF_WR_ADDR_BRK 0 \
CONFIG.C_DEBUG_EVENT_COUNTERS 5 \
CONFIG.C_DEBUG_LATENCY_COUNTERS 1 \
CONFIG.C_DEBUG_COUNTER_WIDTH 32 \
CONFIG.C_DEBUG_TRACE_SIZE 8192 \
CONFIG.C_DEBUG_PROFILE_SIZE 0 \
CONFIG.C_DEBUG_EXTERNAL_TRACE 0 \
CONFIG.C_DEBUG_INTERFACE 0 \
CONFIG.C_ASYNC_INTERRUPT 0 \
CONFIG.C_FSL_LINKS 0 \
CONFIG.C_USE_EXTENDED_FSL_INSTR 0 \
CONFIG.C_ICACHE_BASEADDR 0 x0000000000000000 \
CONFIG.C_ICACHE_HIGHADDR 0 x000000003FFFFFFF \
CONFIG.C_USE_ICACHE 0 \
CONFIG.C_ALLOW_ICACHE_WR 1 \
CONFIG.C_ICACHE_LINE_LEN 4 \
CONFIG.C_ICACHE_FORCE_TAG_LUTRAM 0 \
CONFIG.C_ICACHE_STREAMS 0 \
CONFIG.C_ICACHE_VICTIMS 0 \
CONFIG.C_ICACHE_DATA_WIDTH 0 \
CONFIG.C_ADDR_TAG_BITS 17 \
CONFIG.C_CACHE_BYTE_SIZE 8192 \
CONFIG.C_DCACHE_BASEADDR 0 x0000000000000000 \
CONFIG.C_DCACHE_HIGHADDR 0 x000000003FFFFFFF \
CONFIG.C_USE_DCACHE 0 \
CONFIG.C_ALLOW_DCACHE_WR 1 \
CONFIG.C_DCACHE_LINE_LEN 4 \
CONFIG.C_DCACHE_FORCE_TAG_LUTRAM 0 \
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CONFIG.C_DCACHE_USE_WRITEBACK 0 \
CONFIG.C_DCACHE_VICTIMS 0 \
CONFIG.C_DCACHE_DATA_WIDTH 0 \
CONFIG.C_DCACHE_ADDR_TAG 17 \
CONFIG.C_DCACHE_BYTE_SIZE 8192 \
CONFIG.C_USE_MMU 0 \
CONFIG.C_MMU_DTLB_SIZE 4 \
CONFIG.C_MMU_ITLB_SIZE 2 \
CONFIG.C_MMU_TLB_ACCESS 3 \
CONFIG.C_MMU_ZONES 16 \
CONFIG.C_MMU_PRIVILEGED_INSTR 0 \
CONFIG.C_USE_INTERRUPT 1 \
CONFIG.C_USE_EXT_BRK 0 \
CONFIG.C_USE_EXT_NM_BRK 0 \
CONFIG.C_USE_NON_SECURE 0 \
CONFIG.C_USE_BRANCH_TARGET_CACHE 0 \
CONFIG.C_BRANCH_TARGET_CACHE_SIZE 0 \

] $mb

set IRQ_PERIPH [ list ]
set AXI_PERIPH [ list ]

## COMPONENT: AXI Timer ######################################################
if { $MB_ENABLE_TIMR } {

set tim [ create_bd_cell -type ip -vlnv $XIP:axi_timer:2.0 axi_timer_0 ]
lappend IRQ_PERIPH $tim
lappend AXI_PERIPH $tim

}

## COMPONENT: AXI GPIO #######################################################
if { $MB_ENABLE_GPIO } {

set gpio [ create_bd_cell -type ip -vlnv $XIP:axi_gpio:2.0 axi_gpio_0 ]
lappend AXI_PERIPH $gpio

set_property -dict [ list \
CONFIG.C_GPIO_WIDTH 32 \

] $gpio
}

## COMPONENT: AXI UART #######################################################
if { $MB_ENABLE_UART } {

set uart [ create_bd_cell -type ip -vlnv $XIP:axi_uartlite:2.0 axi_uartlite_0 ]
lappend IRQ_PERIPH $uart
lappend AXI_PERIPH $uart

set_property -dict [ list \
CONFIG.C_BAUDRATE 115200 \
CONFIG.C_DATA_BITS 8 \
CONFIG.C_ODD_PARITY 0 \
CONFIG.C_USE_PARITY 0 \

] $uart
}

## AUTOMATION: MicroBlaze ####################################################
apply_bd_automation \

-rule xilinx.com:bd_rule:microblaze \
-config { \

preset " Microcontroller " \
local_mem "8KB" \
ecc "None" \
cache "None" \
debug_module "None" \
axi_periph " Enabled " \
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axi_intc "1" \
clk "New External Port (100 MHz)" \

} $mb

## AUTOMATION: AXI ###########################################################
foreach axiPeriph $AXI_PERIPH {

apply_bd_automation \
-rule xilinx.com:bd_rule:axi4 \
-config { \

Master "/ microblaze_0 ( Periph )" \
intc_ip "/ microblaze_0_axi_periph " \
Clk_xbar "Auto" \
Clk_master "Auto" \
Clk_slave "Auto" \

} [ get_bd_intf_pins $axiPeriph / S_AXI ]
}

## INTERRUPTS ################################################################
if {[ llength $IRQ_PERIPH ] > 0} {

set irqconcat [ get_bd_cells microblaze_0_xlconcat ]
set_property -dict [ list \

CONFIG.NUM_PORTS [ llength $IRQ_PERIPH ] \
] $irqconcat

set i 0
foreach irqPeriph $IRQ_PERIPH {

connect_bd_net \
[ get_bd_pins $irqPeriph / interrupt ] \
[ get_bd_pins $irqconcat /In$i]

incr i
}

}

## EXTERNAL CONNECTIONS ######################################################
set_property NAME ext_clk [ get_bd_ports Clk]
make_bd_pins_external [ get_bd_pins rst_* / ext_reset_in ]
set_property NAME ext_rst_n [ get_bd_ports ext_reset_in* ]

if { $MB_ENABLE_UART } {
make_bd_pins_external [ get_bd_pins $uart /rx]
set_property NAME mb_uart_rxd [ get_bd_ports rx*]
make_bd_pins_external [ get_bd_pins $uart /tx]
set_property NAME mb_uart_txd [ get_bd_ports tx*]

}

if { $MB_ENABLE_GPIO } {
# make_bd_intf_pins_external [ get_bd_intf_pins $gpio /GPIO]
# set_property NAME mb_gpio [ get_bd_intf_ports GPIO]
make_bd_pins_external [ get_bd_pins $gpio / GPIO_io_i ]
set_property NAME mb_gpio_i [ get_bd_ports GPIO_io_i* ]
make_bd_pins_external [ get_bd_pins $gpio / GPIO_io_t ]
set_property NAME mb_gpio_t [ get_bd_ports GPIO_io_t* ]
make_bd_pins_external [ get_bd_pins $gpio / GPIO_io_o ]
set_property NAME mb_gpio_o [ get_bd_ports GPIO_io_o* ]

}

## GROUP CELLS ###############################################################
group_bd_cells $bd_name [ get_bd_cells ]

## SAVE DESIGN ###############################################################
regenerate_bd_layout
validate_bd_design
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save_bd_design
write_bd_tcl generated_$ { bd_name }.tcl -force

## COMPONENT: TMR Manager ####################################################
if { $use_tmr } {

set tmr [ \
create_bd_cell \

-type ip \
-vlnv $XIP:tmr_manager:1.0 \
$bd_name / tmr_manager_0 \

]

set_property -dict [ list \
CONFIG.C_LMB_AWIDTH 32 \
CONFIG.C_LMB_DWIDTH 32 \
CONFIG.C_MAGIC1 0x00 \
CONFIG.C_MAGIC2 0x00 \
CONFIG.C_NO_OF_COMPARATORS 1 \
CONFIG.C_UE_IS_FATAL 0 \
CONFIG.C_STRICT_MISCOMPARE 0 \
CONFIG.C_USE_DEBUG_DISABLE 0 \
CONFIG.C_USE_TMR_DISABLE 0 \
CONFIG.C_WATCHDOG 0 \
CONFIG.C_WATCHDOG_WIDTH 30 \
CONFIG.C_SEM_INTERFACE 0 \
CONFIG.C_SEM_ASYNC 0 \
CONFIG.C_SEM_HEARTBEAT_WATCHDOG 0 \
CONFIG.C_SEM_HEARTBEAT_WATCHDOG_WIDTH 10 \
CONFIG.C_SEM_INTERFACE_TYPE 2 \
CONFIG.C_BRK_DELAY_WIDTH 0 \
CONFIG.C_BRK_DELAY_RST_VALUE 0 x00000000 \
CONFIG.C_COMPARATORS_MASK 0 \
CONFIG.C_MASK_RST_VALUE 0 xFFFFFFFFFFFFFFFF \
CONFIG.C_TEST_COMPARATOR 0 \

] $tmr

## AUTOMATION: TMR Manager #################################################

# Options:
# bram: " Local "|" Common With ECC" (LMB Memory Configuration )
# wd: "None"|" Internal " ( Software Watchdog )
# sem_if: "None"|" Included "|" External " (SEM Interface )
# sem_wd: "0"|"1" (SEM Heartbeat Watchdog )
# brk: "0"|"1" ( Reconfiguration Delay )
# mask: "0"|"1" ( Comparator Test)
# inject: "0"|"1" ( Fault Injection )

apply_bd_automation \
-rule xilinx.com:bd_rule:tmr \
-config { \

bram " Local " \
wd "None" \
sem_if "None" \
sem_wd "0" \
brk "1" \
mask "0" \
inject "0" \

} $tmr

## EXTERNAL RESET ##########################################################
move_bd_cells [ get_bd_cells /] [ get_bd_cells ${ bd_name }/ rst_Clk_100M ]
set_property NAME reset_generator [ get_bd_cells rst_Clk_100M ]
set rst [ get_bd_cells / reset_generator ]
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## VALIDATE AND SAVE #######################################################
regenerate_bd_layout
validate_bd_design
save_bd_design
write_bd_tcl generated_$ { bd_name } _tmr.tcl -force

}

## GENERATE IP FILES #########################################################
generate_target all $bd_file -quiet

export_ip_user_files -of_objects $bd_file -no_script -sync -force -quiet
create_ip_run $bd_file

export_simulation \
-of_objects $bd_file \
-directory ${ prj_name }/${ prj_name } .ip_user_files / sim_scripts \
-ip_user_files_dir ${ prj_name }/${ prj_name } .ip_user_files \
-ipstatic_source_dir ${ prj_name }/${ prj_name } .ip_user_files / ipstatic \
-lib_map_path [ list \

{ modelsim=$ { prj_name }/${ prj_name } .cache / compile_simlib / modelsim } \
{ questa=$ { prj_name }/${ prj_name } .cache / compile_simlib / questa } \
{ ies=$ { prj_name }/${ prj_name } .cache / compile_simlib /ies} \
{ vcs=$ { prj_name }/${ prj_name } .cache / compile_simlib /vcs} \
{ riviera=$ { prj_name }/${ prj_name } .cache / compile_simlib / riviera }\

] \
-use_ip_compiled_libs -force -quiet

## ASSOCIATE ELF FILE ########################################################
set elf_path ../swt/${ bd_name }.elf

set elf_syn [ add_files -quiet -fileset [ get_filesets sources_1 ] $elf_path ]
set_property SCOPED_TO_REF ${ bd_name } ${ elf_syn }
set_property SCOPED_TO_CELLS [ get_bd_cells -hier microblaze_0 ] ${ elf_syn }

set elf_sim [ add_files -quiet -fileset [ get_filesets sim_1 ] $elf_path ]
set_property SCOPED_TO_REF ${ bd_name } ${ elf_sim }
set_property SCOPED_TO_CELLS [ get_bd_cells -hier microblaze_0 ] ${ elf_sim }

}
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C.2 Firmware

In this section are presented the main C and assembly files that, used with the
AES C files presented in Appendix B, were compiled in an Executable and Linkable
Format (ELF) file and therefore loaded on the microprocessors.

Depending on the configuration used, single or triplicated Microblaze, the define
TMR_ENABLE was set properly.

C.2.1 test_micro.c

# include <stdint .h>
# include "aes.h"

# define TMR_ENABLED 1

# define ECB 0
# define ECB_ENC 1
# define ECB_DEC 0

# define READ_REQUEST 0
# define BLOCKS_ENCODED 255

# define GPIO_BASEADDR 0 x40000000
# define GPIO_OFF_DATA 0 x0000
# define GPIO_OFF_TRI 0 x0004

# define GPIO_DATA_REG ( volatile uint32_t *)( GPIO_BASEADDR + GPIO_OFF_DATA )
# define GPIO_TRI_REG ( volatile uint32_t *)( GPIO_BASEADDR + GPIO_OFF_TRI )

static uint32_t gpio_read ( void );
static void gpio_write ( uint32_t data );

static void get_data ( uint8_t * buf , int size );
static void set_data ( uint8_t * buf , int size );

#if TMR_ENABLED
extern void _xtmr_manager_initialize ();
# endif

int main () {
uint8_t key[Ks ]; // Container for Key
uint8_t buf[Bs ]; // Container for Data

#if TMR_ENABLED
_xtmr_manager_initialize ();

# endif

while (1) {
// Get key from GPIOs .
get_data (key , Ks );
set_data (key , Ks );

int i;
for (i = 0; i < BLOCKS_ENCODED ; ++i) {

#if ECB | ECB_ENC
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// Test ECB Encoding
get_data (buf , Bs );
ecb_encrypt (buf , buf , key );
set_data (buf , Bs );

# endif
#if ECB | ECB_DEC

// Test ECB Decoding
get_data (buf , Bs );
ecb_decrypt (buf , buf , key );
set_data (buf , Bs );

# endif
}

}

return 0;
}

static uint32_t gpio_read ( void ) {
return * GPIO_DATA_REG ;

}

static void gpio_write ( uint32_t data) {
* GPIO_DATA_REG = data;
* GPIO_TRI_REG = 0 xBADC0FFE ;
* GPIO_TRI_REG = 0 xFFFFFFFF ;

}

static void get_data ( uint8_t * buf , int size) {
int i;
for (i = 0; i < size; i += 4) {

gpio_write ( READ_REQUEST );
uint32_t data = gpio_read ();
buf[i + 3] = (data >> 0) & 0xFF;
buf[i + 2] = (data >> 8) & 0xFF;
buf[i + 1] = (data >> 16) & 0xFF;
buf[i + 0] = (data >> 24) & 0xFF;

}
}

static void set_data ( uint8_t * buf , int size) {
int i;
for (i = 0; i < size; i += 4) {

uint32_t data =
(( buf[i + 3] << 0) & 0 x000000FF ) |
(( buf[i + 2] << 8) & 0 x0000FF00 ) |
(( buf[i + 1] << 16) & 0 x00FF0000 ) |
(( buf[i + 0] << 24) & 0 xFF000000 );

gpio_write (data );
}

}
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C.2.2 mb_recovery.S

/* *****************************************************************************
* TMR Manager recovery routines :
* - Break Handler
* - Reset Handler
* - Initialize
****************************************************************************** */

# define BASE_VECTORS 0 x00000000

# define XTMR_BASEADDR 0 x44a00000
# define XTMR_CR ( XTMR_BASEADDR + 0x00)
# define XTMR_FFR ( XTMR_BASEADDR + 0x04)
# define XTMR_CMR0 ( XTMR_BASEADDR + 0x08)
# define XTMR_CMR1 ( XTMR_BASEADDR + 0x0c)
# define XTMR_BDIR ( XTMR_BASEADDR + 0x10)
# define XTMR_SEMSR ( XTMR_BASEADDR + 0x14)
# define XTMR_SEMSSR ( XTMR_BASEADDR + 0x18)
# define XTMR_SEMIMR ( XTMR_BASEADDR + 0x1c)
# define XTMR_WR ( XTMR_BASEADDR + 0x20)
# define XTMR_RFSR ( XTMR_BASEADDR + 0x24)
# define XTMR_CSCR ( XTMR_BASEADDR + 0x28)
# define XTMR_CFIR ( XTMR_BASEADDR + 0x2c)

# define XTMR_MAGIC1 0x46
# define XTMR_MAGIC2 0x73
# define XTMR_CR_MAGIC 0 x00017346
# define XTMR_CR_VAL1 0 x00010046
# define XTMR_CR_VAL2 0 x00007300

# define REG_VAR (reg) XTMR_Manager_ ## reg
# define SAVE_REG (reg) swi reg , r0 , REG_VAR (reg)
# define LOAD_REG (reg) lwi reg , r0 , REG_VAR (reg)

/*
* _xtmr_manager_initialize - Initialize break and reset vector .
*
* Save original cold reset vector to global variables .
* Set up reset vector to branch to _xtmr_manager_reset .
* Set up break vector to branch to _xtmr_manager_break .
*
*/

. global _xtmr_manager_initialize

. section .text

. align 2

.ent _xtmr_manager_initialize

.type _xtmr_manager_initialize , @function
_xtmr_manager_initialize :

/* Push to Stack */
addik r1 , r1 , -16
swi r6 , r1 , 0
swi r7 , r1 , 4
swi r8 , r1 , 8
swi r9 , r1 , 12

/* Clear Registers */
ori r9 , r0 , XTMR_CR_MAGIC
swi r9 , r0 , XTMR_CR
swi r0 , r0 , XTMR_FFR
swi r0 , r0 , XTMR_BDIR
swi r0 , r0 , XTMR_SEMIMR
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swi r0 , r0 , XTMR_RFSR
swi r0 , r0 , XTMR_CSCR

/* Save cold reset vector */
addik r8 , r0 , BASE_VECTORS
lwi r6 , r8 , 0
lwi r7 , r8 , 4
swi r6 , r0 , XTMR_Manager_ColdResetVector +0
swi r7 , r0 , XTMR_Manager_ColdResetVector +4

/* Change reset vector */
ori r6 , r0 , _xtmr_manager_reset
bsrli r6 , r6 , 16
ori r6 , r6 , 0 xb0000000
ori r7 , r0 , _xtmr_manager_reset
andi r7 , r7 , 0 xffff
ori r7 , r7 , 0 xb8080000
swi r6 , r8 , 0
swi r7 , r8 , 4

/* Initialize break vector */
ori r6 , r0 , _xtmr_manager_break
bsrli r6 , r6 , 16
ori r6 , r6 , 0 xb0000000
ori r7 , r0 , _xtmr_manager_break
andi r7 , r7 , 0 xffff
ori r7 , r7 , 0 xb8080000
swi r6 , r8 , 0x14
swi r7 , r8 , 0x18

/* Pop from Stack */
lwi r6 , r1 , 0
lwi r7 , r1 , 4
lwi r8 , r1 , 8
lwi r9 , r1 , 12
addik r1 , r1 , 16

/* Clear MSR BIP by performing an RTBD instead of RTSD */
rtbd r15 , 8
nop

.end _xtmr_manager_initialize

/*
* _xtmr_manager_break - Handler for recovery break from the TMR Manager .
*
* Save stack pointer in global register .
* Save all registers that represent the processor internal state .
* Flush or invalidate all internal cached data : D-cache , I-cache , BTC and UTLB .
* Call break handler in C code .
* Suspend processor to signal TMR Manager that it should perform a reset .
*
* Handler notes :
* - There is no need to save exception registers (EAR , ESR , BIP , EDR), since
* when the MSR EIP bit is set , break is blocked .
*/

. global _xtmr_manager_break

. section .text

. align 2

.ent _xtmr_manager_break

.type _xtmr_manager_break , @function
_xtmr_manager_break :

/* Save context to stack */
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SAVE_REG (r1)
SAVE_REG (r2)
SAVE_REG (r3)
SAVE_REG (r4)
SAVE_REG (r5)
SAVE_REG (r6)
SAVE_REG (r7)
SAVE_REG (r8)
SAVE_REG (r9)
SAVE_REG (r10)
SAVE_REG (r11)
SAVE_REG (r12)
SAVE_REG (r13)
SAVE_REG (r14)
SAVE_REG (r15)
SAVE_REG (r16)
SAVE_REG (r17)
SAVE_REG (r18)
SAVE_REG (r19)
SAVE_REG (r20)
SAVE_REG (r21)
SAVE_REG (r22)
SAVE_REG (r23)
SAVE_REG (r24)
SAVE_REG (r25)
SAVE_REG (r26)
SAVE_REG (r27)
SAVE_REG (r28)
SAVE_REG (r29)
SAVE_REG (r30)
SAVE_REG (r31)
mfs r1 , rmsr
swi r1 , r0 , XTMR_Manager_rmsr

/* Suspend MicroBlaze to signal that a recovery reset should be done */
suspend
nop
nop
nop
nop

.end _xtmr_manager_break

/*
* _xtmr_manager_reset - Handler for recovery reset issued by TMR Manager .
*
* Restore stack pointer from global register .
* Restore MSR to turn on caches .
* Call reset handler in C code .
* If C code returns 0, represnting cold reset , jump to saved cold reset vector .
* Restore all registers that represent the processor internal state .
* Return from break to resume execution .
*
*/

. global _xtmr_manager_reset

. section .text

. align 2

.ent _xtmr_manager_reset

.type _xtmr_manager_reset , @function
_xtmr_manager_reset :

/* Turn on caches if they are used */
lwi r1 , r0 , XTMR_Manager_rmsr
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mts rmsr , r1
bri 4

/* Clear Registers */
ori r9 , r0 , XTMR_CR_MAGIC
swi r9 , r0 , XTMR_CR
swi r0 , r0 , XTMR_FFR
swi r0 , r0 , XTMR_BDIR
swi r0 , r0 , XTMR_SEMIMR
swi r0 , r0 , XTMR_RFSR
swi r0 , r0 , XTMR_CSCR

/* Restore context from stack and return from break */
LOAD_REG (r1)
LOAD_REG (r2)
LOAD_REG (r3)
LOAD_REG (r4)
LOAD_REG (r5)
LOAD_REG (r6)
LOAD_REG (r7)
LOAD_REG (r8)
LOAD_REG (r9)
LOAD_REG (r10)
LOAD_REG (r11)
LOAD_REG (r12)
LOAD_REG (r13)
LOAD_REG (r14)
LOAD_REG (r15)
LOAD_REG (r16)
LOAD_REG (r17)
LOAD_REG (r18)
LOAD_REG (r19)
LOAD_REG (r20)
LOAD_REG (r21)
LOAD_REG (r22)
LOAD_REG (r23)
LOAD_REG (r24)
LOAD_REG (r25)
LOAD_REG (r26)
LOAD_REG (r27)
LOAD_REG (r28)
LOAD_REG (r29)
LOAD_REG (r30)
LOAD_REG (r31)

/* Return from break to resume execution */
rtbd r16 , 8
nop

.end _xtmr_manager_reset

/* Declarations of global variables used by the recovery functionality */
. section .data
. align 2
. global XTMR_Manager_ColdResetVector
. global XTMR_Manager_InstancePtr
. global XTMR_Manager_rmsr
. global XTMR_Manager_r1
. global XTMR_Manager_r2
. global XTMR_Manager_r3
. global XTMR_Manager_r4
. global XTMR_Manager_r5
. global XTMR_Manager_r6
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. global XTMR_Manager_r7

. global XTMR_Manager_r8

. global XTMR_Manager_r9

. global XTMR_Manager_r10

. global XTMR_Manager_r11

. global XTMR_Manager_r12

. global XTMR_Manager_r13

. global XTMR_Manager_r14

. global XTMR_Manager_r15

. global XTMR_Manager_r16

. global XTMR_Manager_r17

. global XTMR_Manager_r18

. global XTMR_Manager_r19

. global XTMR_Manager_r20

. global XTMR_Manager_r21

. global XTMR_Manager_r22

. global XTMR_Manager_r23

. global XTMR_Manager_r24

. global XTMR_Manager_r25

. global XTMR_Manager_r26

. global XTMR_Manager_r27

. global XTMR_Manager_r28

. global XTMR_Manager_r29

. global XTMR_Manager_r30

. global XTMR_Manager_r31

XTMR_Manager_ColdResetVector :
. long 0
. long 0

XTMR_Manager_InstancePtr :
. long 0

XTMR_Manager_rmsr :
. long 0

XTMR_Manager_r1 :
. long 0

XTMR_Manager_r2 :
. long 0

XTMR_Manager_r3 :
. long 0

XTMR_Manager_r4 :
. long 0

XTMR_Manager_r5 :
. long 0

XTMR_Manager_r6 :
. long 0

XTMR_Manager_r7 :
. long 0

XTMR_Manager_r8 :
. long 0

XTMR_Manager_r9 :
. long 0

XTMR_Manager_r10 :
. long 0

XTMR_Manager_r11 :
. long 0

XTMR_Manager_r12 :
. long 0

XTMR_Manager_r13 :
. long 0

XTMR_Manager_r14 :
. long 0

XTMR_Manager_r15 :
. long 0
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XTMR_Manager_r16 :
. long 0

XTMR_Manager_r17 :
. long 0

XTMR_Manager_r18 :
. long 0

XTMR_Manager_r19 :
. long 0

XTMR_Manager_r20 :
. long 0

XTMR_Manager_r21 :
. long 0

XTMR_Manager_r22 :
. long 0

XTMR_Manager_r23 :
. long 0

XTMR_Manager_r24 :
. long 0

XTMR_Manager_r25 :
. long 0

XTMR_Manager_r26 :
. long 0

XTMR_Manager_r27 :
. long 0

XTMR_Manager_r28 :
. long 0

XTMR_Manager_r29 :
. long 0

XTMR_Manager_r30 :
. long 0

XTMR_Manager_r31 :
. long 0
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