
POLITECNICO DI TORINO

Corso di Laurea in Communications and Computer Networks Engineering

Tesi di Laurea

A Context-Aware Risk-Based Authorization
System

Relatori
Prof. Antonio Lioy
Ing. Andrea Atzeni

Emanuele Celoria

Anno accademico 2017-2018

Summary

Despite the great success that the role-based paradigm has had and still has within the access
control topic, there exist scenarios that, due to their dynamic intrinsic nature, present an inherent
uncertainty when taking authorization decisions and for which it may be an hard task to predict
which kind of authorization permissions have to be granted to users, and which not, especially
when the working environments may sensibly vary. It follows that, for those scenarios, a static
approach, as the one proposed by role-based authorization systems, may not be the preferable one.
With the advent of the new millennium some proposals have been done in order to address the
problem with more dynamic implementations of access control systems, able to exploit the notion
of risk in order to take authorization decisions; anyway from the implementation point of view
very few attempts have been made.
In this thesis work a risk-based authorization system, able to exploit the characterization of envi-
ronments in order to be context-aware, is proposed and implemented.
The system has been built up by integrating CAIRIS and SAFAX tools. The first is a security
and usability requirements management tool, able to deal with risk informations related to assets,
threats, vulnerabilities and environments, the second is a XACML-based architectural framework
tailored to the development of extensible authorization services.
The SAFAX service will exploit the risk notions, present in CAIRIS, when examining an autho-
rization request against a policy. The great advantage that the exploitation of the CAIRIS service
brings into the usage of the whole system is to allow a preliminary configuration phase, during
which a user is able to create a descriptive and visual risk model, specific for each environment
which characterize a certain project and from which risk scores will be automatically derived.
In order to show the potential of the developed system, three usage scenarios are going to be pre-
sented. In the first, it is presented how the risk-based authorization mechanism would positively
impact authorization decisions taken from the information system of a water company, which has
often to manage the access to critical resources, in order to carry out unforeseeable interventions
for the correct functioning of the infrastructure. In the second, an healthcare scenario is taken into
consideration, introducing the risk-based authorization system in order to manage the access to
sensitive resources in different working situations. Finally, in the third scenario, the authorization
system proposed is applied to a grid-based collaborative network for clinical researchers, where
sensitive informations about patients and diseases have to be accessed from different network
communities.

III

Contents

1 Introduction 7

2 State of the Art Analysis 10

2.1 Towards the definition of a mathematical and architectural model for computing
risk . 10

2.2 Introducing benefit analysis process . 16

2.3 Supporting the new Cloud Computing paradigm 16

3 Requirements for a Risk-Based Access Control Framework 21

3.1 Architectural Requirement Analysis . 21

3.1.1 Risk-Based Approach . 21

3.1.2 Trust & Risk-Based Approach . 24

3.1.3 Obligations Enforcement . 26

3.2 Security Implications . 26

4 Analysis of the Tools: CAIRIS and SAFAX 30

4.1 CAIRIS . 30

4.1.1 Introduction . 30

4.1.2 Baseline Architecture and Goals . 31

4.1.3 Novelties . 34

4.2 SAFAX . 37

4.2.1 Introduction . 37

4.2.2 Baseline Architecture and Goals . 38

4.2.3 Novelties . 40

5 Integration 42

5.1 High Level Implementation . 42

5.2 Architecture . 43

5.3 Performance Considerations . 46

IV

6 Usage Scenarios 51

6.1 Scenario 1: ACME Water . 51

6.1.1 Situation 1: . 52

6.1.2 Situation 2: . 53

6.2 Scenario 2: Healthcare facility . 53

6.2.1 Situation: . 55

6.3 Scenario 3: NeuroGrid . 55

6.3.1 Situation: . 57

7 Performance Results 58

8 Conclusions 64

8.1 Lessons learnt and open issues . 64

8.2 Future works . 67

Bibliography 71

A Developer Manual 77

A.1 “cairis”module . 77

A.1.1 /nl/tue/sec/cairis/db . 77

A.1.2 /nl/tue/sec/cairis/engine . 81

A.1.3 /nl/tue/sec/cairis/impl . 82

A.1.4 /nl/tue/sec/cairis/util . 83

A.1.5 /nl/tue/sec/cairis/ws . 87

A.1.6 The other “cairis”subfolders . 88

A.2 “sfx”module . 88

A.2.1 WebContent/main.html . 89

A.2.2 WebContent/js/sfxmain.js . 89

A.3 “sfxservice”module . 89

A.3.1 package nl.tue.sec.safax.sfxbe.db . 89

A.3.2 package nl.tue.sec.safax.sfxbe.impl . 90

A.3.3 package nl.tue.sec.safax.sfxbe.ws . 90

A.4 db_risk_tables folder . 91

A.5 example_policies_requests folder . 91

V

B User Manual 102

B.1 Installation Guide . 102

B.1.1 Tomcat installation . 102

B.1.2 Safax repository download via SVN . 103

B.1.3 MySQL . 103

B.1.4 Execution Environment . 104

B.2 User Guide . 107

B.2.1 Advanced Functionalities . 107

VI

Chapter 1

Introduction

The adoption of adequate measures to guarantee the security of information systems and resources
deployed on those systems should, nowadays, be a solid and well accepted procedure, not only
within big organizations, but in more contained scenarios too. To this purpose, access control
systems have been widely adopted in order to deal with all sort of applications, from financial to
healthcare and in many business scenarios.
An access control system should be able to determine, after a proper authentication procedure, the
activities, associated to the permissions, allowed to a legitimate user. For this reason, in addition
to an authentication procedure, a proper authorization mechanism should be present. A possible
definition for “authorization”is given by the RFC4949 [68], which defines it as “a process for
granting approval to a system entity to access a system resource”.
One of the most prominent solutions characterizing authorization mechanisms is identified by
the role-based paradigm. The interest in the Role-Based Access Control’s (RBAC) topic began
to grow in the last decades of the 20th century, formalized as a model for the first time in 1992
by Ferraiolo and Kuhn [22], until reaching a great relevance in 2004 when it was adopted as
American National Standard (ANSI-INCITS 359-2004) by the American National Standards In-
stitute [35]. The basic idea of the RBAC model is that users and permissions are associated with
roles, in such a way of avoiding the definition of customized policies for each single user, which
is not a negligible issue within a big organization. In other words, a role provides a convenient
way of associating a group of users with a set of permissions. Moreover, roles can be defined
hierarchically, in such a way to let the possibility, for high level roles, to inherit permissions from
the lower level ones and, in this way, further ease the definition of policies.
Despite the great success the RBAC model obtained in a lot of applications, it would be too
simplistic to think that existing role-based authorization mechanisms were sufficient to provide
the appropriate level of security and usability needed to cope with all kinds of situations and envi-
ronments, especially nowadays that the world wide society relies this much on IT infrastructures
and systems.
Information systems security is probably one of the hottest topic at the moment, but, in order
to be accepted, has surely to be balanced with usability measures. The problem was already
addressed by some studies in 1999 in [3], where authors give evidence to the fact that often the
way in which security mechanisms are implemented does not take into account human factors,
causing, in this way, a more difficult interaction between users and systems, that can bring to an
improper use of the system itself, compromising its inner security. The same issues are identified
in [77], where the author explains how integrating a user-centred approach, when designing secu-
rity mechanisms, could be of great help in order to avoid conflicts between security and usability
implications. Indeed, while security focuses on users’ and systems’ protection, usability brings
more attention on the quality of the user-system interaction. When security measures become too
tight, the usability of systems is mined and vice versa the risk of a too “user friendly”system is to

7

1 – Introduction

lack of appropriate security measures. Flexibility in finding a trade off between the two concepts
is then fundamental.
The real problem in existing authorization mechanisms is that they allow to specify policies that
rely on hard coded static decisions, which make them inflexible and difficult to adapt to changing
circumstances. Either someone, who is trying to perform an action, has the appropriate creden-
tials, that provide a sufficient trust level to carry out the task, or there is no way to accomplish
the task’s goal. This can be appropriate for particular scenarios, in which we want to be statically
restrictive and conservative when evaluating policies, but, on the other end, can be also very lim-
iting in dynamic environments, where authorization decisions can substantially vary depending
on the specific context they are facing. In those cases, it is not an easy task to define access
control policies able to provide both a sufficient protection for the resources and an appropriate
functionality level to let users accomplish their tasks. The risk, indeed, is to have a system which
is either too permissive towards possible risky entities or too restrictive towards entities that, in
a specific context, should be trusted. In this latter case, the security issues that could arise from
such an unusable system cannot be neglected, indeed they could create unpredictable situations
where users decide to carry out the task via undocumented means. It follows that, sometimes,
even though a controlled amount of risk associated to an authorization permission is present, and
if the benefits, resulting from the accomplishment of the task, related to that permission, outweigh
those risks, it is better to grant the authorization than steadily blocking the system. Let’s think for
example to an healthcare scenario, in which urgencies to access sensitive patient’s informations
could occur either to high profile members of the organization, like doctors, which would probably
be allowed to access those kinds of informations, but also to less trusted members, like nurses or
simple medical assistants, that normally wouldn’t be allowed to examine those informations but
exceptionally they could find themselves involved in emergency situations, requiring it. In those
cases, even the applying of a simple medical precaution, rendered possible by the examination of
sensitive clinical records of the patient, could result in an invaluable benefit for the patient itself,
whose life could be saved.
The motivation underlying the arising of this thesis work comes from the idea of revising the way
in which authorization decisions are taken. The answer proposed to the identified limitations,
characterizing the traditional RBAC model, relies on the idea of considering, during the policy
evaluation phase, values of risk, which are evaluated runtime, allowing the possibility to take
authorization decisions that can slightly change in the time and by varying the context in which
those risks are considered, thus addressing the lack of flexibility identified in the RBAC model.
For this reason, a risk-based authorization system, able to dynamically adapt to situations and
scenarios, proposes itself as the most suitable solution when dealing with complex and articulated
situations where unexpected circumstances and exceptions are on the daily agenda.
The way risk has been treated in literature can slightly vary among models, in [18], for exam-
ple, risk is computed as the product between the value of information, identified by the damage
sustained if this information were disclosed in an unauthorized manner, and the probability of
unauthorized disclosure; in [28] Faily, instead, found its model above the definition of risk as
the product of the threat likelihood, the severity of the vulnerability, and the risk impact to the
threatened assets. Anyway it is usually accepted to consider risk as the expected damage.
The purpose of a dynamic risk-based solution, though, is not only to improve the usability of an
authorization system but also to eventually counteract the credential abuse problem, which repre-
sents any unapproved or malicious use of organizational resources. According to the 2017 Data
Breach Investigations Report [1] of Verizon, the 14% of tactics, used in data breaches, involved
privilege misuse and the 25% of breaches has been carried out by internal actors, showing us how
critical is, today, for a company, to be appropriately protected not only from the external world but
from the inside as well. A breach is defined as an incident that results in the confirmed disclosure
(not just potential exposure) of data to an unauthorized party.
The report shows that Public Administration and Healthcare industries are the mostly touched by

8

1 – Introduction

the privilege misuse problem; the 71% of data compromised involved personal informations and
medical records, which have been targeted mainly for financial crimes, such as identity theft or
tax-return fraud and occasionally just for gossip value. A solid 24%, instead, involved sensitive
internal data like sales projections and intellectual property, that could be used either to start up a
competing company or to take to a new employer. These numbers are significant because allow
us to understand the huge impact that a naive and not up-to-date access control mechanism could
have inside an organization, with the possibility of resulting in huge damages for the organization
itself and also for the people which rely on it. Ahead in the thesis some scenarios of usage, for
the risk-based authorization solution proposed, are going to be presented and one of the focuses
is going to be precisely on the healthcare environment.
The rest of the thesis is organized as follows: in Chapter 2, we revise the state of the art for
what concerns Risk-Based Access Control systems, explaining how the topic is dealt with and
which are, currently, the proposed solutions. In Chapter 3, we summarize the basic necessary
requirements, identified in the previous chapter, to build a risk-based access control framework
and we identify those supplementary requirements necessary to let the system evolve with the in-
troduction of trust and obligation concepts. In Chapter 4 we introduce the two tools that have been
the main focus of this thesis work and that have been integrated in order to obtain the proposed
risk-based authorization system, highlighting their main features, their goals and the novelties
that bring in respect to similar already existing tools. In Chapter 5, we present the integration
between the two tools, highlighting the final architecture and its way of functioning, moreover
some expectations about performances of the system are outlined. In Chapter 6, we present some
usage scenarios for the system, in order to show some examples and to inspire the reader about the
possibilities this risk-based authorization system has to be used in real cases. Chapter 7 presents
the results obtained from a performance evaluation of the system. Finally, in Chapter 8, we
draw conclusions, lesson learnt will be outlined, performing a critical thinking of the work done
and presenting some future work that could be carried on in order to enhance the developed system.

9

Chapter 2

State of the Art Analysis

In this chapter it is going too be revised the state of the art of risk-based access control systems,
an approach to deal with access control that started to be investigated with the advent of the new
millennium and which does not rely on the well-known Role-Based mechanisms but it exploits
the concept of risk in order to take authorization decisions.
Slightly different proposals have been done in the time, some of them are more technology specific,
like the ones referring to Cloud Computing scenarios, some others are more focused in presenting
the mathematical approach to compute the risk, others instead mainly focus on the architecture
over which implement their access control idea. Finally, some other proposals find their main
applicability in specific contexts particularly related to confidentiality problems, although the idea
of the access control implementation, brought by this thesis’ work, is to implement a solution
able to cope with a wider range of risks, that can arise when asking for certain authorization
permissions, in diverse contexts.

2.1 Towards the definition of a mathematical and architectural model
for computing risk

One of the first approaches to risk-based access control that has been proposed in the literature is
Fuzzy MLS [18]. The basic premise of this approach is that in access control decisions a certain
measure of uncertainty is always present due to difficulties in quantifying risk, which is defined as
the product between the value of the information and the probability of unauthorized disclosure.
The value of the information is given by a rough estimate that can be done by the organization,
while the probability of unauthorized disclosure is trickier and it’s given by a combination of
probability values obtained by applying a sigmoid function. According to this model, labels are
assigned to subjects and objects. A subject’s label is composed by its sensitivity level, which
reflects the degree of trust of the subject, and the categories set, representing categories of objects
for which the subject has a legitimate need-to-know. An object’s label, as well, is composed by
its sensitivity, which should reflect the magnitude of damage if an unauthorized access occurs,
and by the categories set the object belongs to. Each access is characterised by a gap between
subject’s label and object’s label that points to a precise point in the risk scale. This risk scale
has a soft and an hard boundary; if the risk is below the soft boundary, access is granted, else if
the risk is above the hard boundary the access is denied. Between the soft and the hard boundary
there are certain bands of risk, each one associated to a mitigation measure. Mitigation measures
correspond to obligations that subjects need to accomplish in order to reduce the risk associated
to their request. In Fuzzy MLS model, these mitigation measures rely on a Line of Risk Credit
approach (similar to a credit card system). Each user has a credit of risk, every time a user accesses

10

2 – State of the Art Analysis

an information whose risk is within the region of bands of risk, the difference between the risk
and the soft boundary is charged against the user’s risk credit.
This approach could be probably reasonable in environments where users are considered suffi-
ciently trustworthy, otherwise for a malicious user could be quite simple to have access to sensitive
resources. Think about a user which is thinking of leaving the company, he could do a significant
amount of damage on purpose by using all his risk credit.
Another, among the very first proposals, has been the one presented by McGraw, called RAdAC
[50], which basically identifies three modules: a security risk module, an operational need module
and an access decision module. The security risk module is in charge of computing the risk associ-
ated to the request (determined as a composite risk computed over several factors); the operational
need module is in charge of quantifying (not just a simple binary classification) the need-to-know
associated to the person performing the request; the access decision module receives the results
of the two previous modules and return an access decision (permit/deny). If the risk is above
a maximum threshold, request is denied, regardless of the operational need; if the risk is in the
region between a normal and the maximum threshold, then we look at the operational need: if
this is above a critical need threshold (set by the policy) then this can override the risk, instead,
if the risk is below the normal threshold then if the operational need is at least above a minimum
need-to-know threshold then the access is granted. In RAdAC, the author only describes an high
level module to be integrated within a dynamic access control model but does not explain a risk
model, indeed no details on how to measure quantitatively the risk and the operational need are
given.
Fuzzy BLP system [55] was derived from the approach previously described in [18]. Even here
we have categories to which objects are assigned, each category has different properties and each
property has a score. An object’s score is computed as the sum of the scores of all its cate-
gories’ properties. A security label with four entries (unclassified, classified, secret, top secret)
is assigned to each document and to each one of the entry corresponds a membership function,
which computes the degree (within [0,1]) of membership of the document to each one of the
label’s entries. Same process is performed similarly for the subject. Then, relying on a BLP risk
inference rules table, which takes into account antecedence parameters (object’s and subject’s
label) and consequence parameter (predicted damage), the final risk is computed. The idea then
evolves similarly to Fuzzy MLS [18], using a credit card based approach with the difference that
the user’s risk credit, now called access tokens, is charged according to obligations access quota.
The idea of associating access quotas to obligations, and not directly to resources, is due to the
fact that the risk, for an object, varies depending on the context and the subject trying to accessing
it. Thus the idea of assigning access quotas, as a sort of “price”, to obligations, even though
there is no further explanation of what an obligation should consist in and why should be easier
to do so. Anyway, when accessing a certain object, obligations need to be fulfilled. The general
information flow, proposed by the paper, to support an access control decision is shown in figure
2.1. The other difference that the authors claim is that Fuzzy BLP provides a general methodology
to implement customised risk-based access control rules without using a particular function (like
the sigmoid function used in Fuzzy MLS) to compute the risk.
An interesting, although not very much developed, work has been carried on by Ahmed and
Zhang with CRAAC [4]. The model is able to identify requesters and resources; each requester is
associated to a RLoA (Requester Level of Assurance), computed on several parameters (authen-
tication method, trustworthiness of access location, channel security, type of intrusion detection
system). The RLoA is computed as a function of the different parameters based on their rela-
tionship (elevating relationship or weakest-link relationship). Resources are instead classified in
groups, according to their risk, which have a OLoA (Object Level of Assurance). The paper,
anyway, does not present a clear mathematical model to compute this risk, it’s an a-priori decision
of which group an object fits better in. Access is granted if RLoA >= OLoA.
There is no concept of bands of risk and mitigation measures in this approach, but, since requesters

11

2 – State of the Art Analysis

Figure 2.1. The Fuzzy BLP method proposed to support a Risk-Based access control [55].

(users) are not classified in predefined categories, the dynamic of the system is improved and ap-
proximates the reality, indeed, now, the trustworthiness of the requester is computed runtime by
looking at the specific context. The risk, anyway, remains still quite static, being a predefined
parameter.
A slightly different approach is the one proposed in [23], where MFEP (Multifactor Evaluation
Process) is described. Risks are accounted on three basic units: availability, integrity, confiden-
tiality. For each possible action, different possible outcomes are defined a-priori. Each outcome
has a cost and a probability of occurring. By using the formula Risk = Cost ∗ Probability of
occurrence, for each outcome associated to the action is computed a risk, separately in terms of
availability, integrity and confidentiality. Then, for each one of these basic units, all the risks
associated to the outcomes are summed up and the final risk is computed by performing the
weighted arithmetic average on those values. The same process is computed both for the solution
of accepting and the solution of rejecting, the two resulting values are compared and the solution
with minor risk is chosen.
Adopting this approach raises the need for a detailed list of all possible outcomes of an action. This
is something not so trivial to do, since it’s very hard to be able to foresee all possible events that
could result from an action. Anyway, the approach used is very simple and linear and no complex
computations are needed. Probably, in a simple environment, in which most of the time outcomes
does not go far away from the few ones that can be predicted, it could work well, however, if the
situations involve more complex scenarios, the adoption of a more advance Security Requirement
Analysis should be considered.
In [76] has been described a risk-based approach based on need-to-know. The same concept was
introduced in RAdAC model [50], but in that case it was considered as a mitigating factor of the
risk computed. This is also different from the majority of previous described models in which
risk is evaluated either as a function of cost (impact [23]), or of the trustworthiness of the user
([78]) or of the sensitivity of the data requested ([18],[55]). In particular, this approach suits well
environments in which the confidentiality of the data is the major security aspect to take into
consideration, such as Healthcare Information System, so it can be partially compared to other
approaches. In order to compute the risk, the Shannon Entropy concept is used as a measure
of the uncertainty of a doctor’s access to a medical record. By adopting this approach, the doc-
tor’s history access is taken into consideration in order to take a decision. Users, are equipped
with a certain amount of quotas each predefined period of time. After requesting an access,
the corresponding evaluated risk is subtracted from the user’s quotas. These quotas represent a
threshold for the maximum amount of risk that the system is able to take for each user. In normal
conditions doctors should not exceed their quotas; but the idea explained in the paper is that if a
doctor rarely asks for more quotas, the system could grant them considering these as exceptional
events. However, if a doctor runs out of quotas frequently, he may be over-accessing patients’

12

2 – State of the Art Analysis

informations, and his risk score should grow. This kind of approach is very similar to the credit
card approach used in [18] and [55].
A Risk-aware RBAC (Role-Based Access Control) model is defined in [16]. This is an extension
of the well-known RBAC model in which the Role assigned to users is the key concept in the
access control policy. Three risk models are presented in the paper; the authors see the possibility
of using these models separately or combined all together in order to create a more complex risk
model that supports all features of the three. The first model performs an evaluation of the risk
based on the trustworthiness of the user; the second model focuses on user’s competence; the
third model looks at the appropriateness with which the permission is associated to a specific role.
The risk domain is [0,1] and several sub-intervals are defined inside. An obligation is defined for
each sub-interval, working as a mitigation measure. If the computed risk of the request is below
the minimum threshold for the intervals, then the request is granted, without obligations. If it is
above the maximum threshold for the intervals, then the request is denied. If, instead, it belongs
to one of the sub-intervals, the corresponding obligation is enforced.
Very interesting are the future directions that authors foresee for their work: as first thing, they
think about developing a context-risk aware access control model by defining a matrix of risk mit-
igation measures associated with each permission, where each row represents a different context.
Secondly, in order to enforce obligations, they would like to adopt a credit card charging approach,
similar to the one defined in [18]. A further step, would be to extend this model to include usage
control; in this way, the system should adopt a feedback mechanism in order to become responsive
to previous access requests. This mitigation measure model, adopted in several approaches, that
defines different sub-intervals in the risk domain and it assigns a different obligation for each sub-
interval, could be an interesting direction to work on, because it reacts differently and dynamically
depending on the type of access we want to perform. Moreover, it gives to the user a concrete way
to understand the possible risk and the sensitivity of the action he wants to take; the riskier the
action, the stronger the obligation. [17] extends the previous described approach, mainly focusing
on how to manage obligations. The basic idea is to introduce a diligence score d(u) with domain
in [0,1] for each user. Three approaches can be adopted: a strong restriction, a weak restriction
and a more conservative approach. According to the strong restriction approach, whenever a user
does not fulfil an obligation in time, diligence score is decreased. A risk function of this kind is
implemented: risk = min{1, risk + (1 − d(u))}. However, in some cases, this mechanism could
be too restrictive, so a weak restriction approach is defined. The idea is to deny the access, only
for those users’ requests regarding permission that incurred in obligations remained unfulfilled. A
more conservative approach is also defined, by denying access whenever there is a risk and setting
initially d(u) = 0. Then, an obligation for the user is returned and if this obligation is fulfilled, it
could guarantee the access in future by reducing the relative risk. It’s possible to do this through
a reward approach: when an obligation is fulfilled d(u) = d(u) + w otherwise d(u) = d(u) − w,
where w is the weight given by the system to the obligation. These approaches are based on the
idea that systems usually are not able to force users to fulfil obligations, so the only way to control
their behaviour is to set time thresholds, over which evaluate whether obligations were fulfilled or
not. A possible way of improving this situation would be managing to have obligations that are
immediately verified by the system, thus resulting in a more restrictive policy.
A very interesting Risk-Based Privacy Aware Information Disclosure model is discussed in [7].
As in [76], the paper mainly focuses on confidentiality problems. The architecture described in
the paper includes three main modules: a Risk-Aware Access Control Module, a Risk Mitigation
Module and a Risk Estimation Module. The access control module includes PEP, PDP and PIP
functions. The Risk Estimation Module is in charge of computing the risk associated to the request
and the Risk Mitigation Module decides which type of mitigation measure can be applied in order
to reduce the risk. The model is based on the Risk-aware RBAC principles described in [16] but
a new kind of mitigation measure is introduced: Anonymization, which is the obfuscation, in part
or completely, of the data. Let’s suppose to have a table of patients; the attributes in the table are

13

2 – State of the Art Analysis

Figure 2.2. A Risk-Based Privacy Aware Information Disclosure model enhanced with
Trust computations.

classified as: Identifiers, Quasi-Identifiers, Sensitive attributes. Identifiers are data through which
an individual can be uniquely identified, Quasi-Identifiers are data that if put together can help
to identify an individual and finally Sensitive attributes represent sensitive informations about
individuals. In this model, the concept of trust is limited to be just an attribute and not something
to be computed dynamically.
According to the risk computed, a mitigation metric is defined and to each mitigation metric is
associated a different view of the information object. We will have risk = 1 if the the user cannot
be granted to that permission, otherwise risk = 1/p where p denotes the anonymity of a certain
view of the table. This approach is better than the one described in [76] because, even if some
percentage of risk has been associated to the access, the system, instead of denying the permission,
can deliver some obfuscated informations that could eventually be useful.
In [6] we can see an improvement of the architecture described in [7]. A new module is proposed:
the Trust Estimation Module, which is in charge of computing the trustworthiness associated to
the request, a similar concept can be found in [78]. A possible architecture for the framework
proposed can be seen in figure 2.2. In this situation, the access is granted if the trust overcomes the
risk. Both, trust and risk, are evaluated according to different parameters taken from the context,
such as the location of the requester. Whenever the access is denied two options are available:
decrease the risk (by enforcing some mitigation measures) or increase the trust level, by fulfilling
some obligations. Again Anonymization is used as a mitigation measure in order to obfuscate data
whenever the associated risk is too high.
In [66], two dynamic risk-based decision methods for access control systems have been proposed.
At first, authors propose a new framework, which is an extension of the traditional XACML

14

2 – State of the Art Analysis

Figure 2.3. High level functioning of the framework proposed in [66].

system. In addition to the PEP, PDP, PIP, PAP we now have a new module called PRTP (Policy
Risk & Trust Point). The graphical representation and the information flows of the high level
architecture of the framework proposed by the paper are shown in figure 2.3. Whenever an access
request is received by the PEP, it forwards it to the PDP, which looks if the organizational policy,
deployed on the PAP, forces to evaluate risk and trust for that kind of access, then it fetches all
relevant attributes from the PIP. After having done that, the PDP forwards the request to the PRTP
module which evaluates risk and trust values based on the past behaviour of the user. The past
behaviour is evaluated based on the history of reward and penalty points. The key concept of
this framework is that for each user and resource, the access of the user to the resource should
be respectively relaxed or restricted, whether the user has shown a positive or negative record of
use toward the resource. This is different from RAdAC [50] where history is used to help to fine
tune the algorithm in order to adjust the policy and it does not relate with attributes and their
value in the system. Moreover, probably, this is a more dynamic and responsive approach than
the one used in FuzzyMLS [18] or FuzzyBLP [55], in which we have fixed categories for objects
and subjects, that can be only changed manually from an administrator, and no dynamic related
to good or bad behaviours of past transactions is present.
After these premises, two adoptable methods are proposed; they both rely on the fact that each
subject (user) has a clearance level l(s) and each object has a sensitivity level l(o). According
to the first method, a Local Reward History and a Local Penalty History are defined, then trust
and risk are computed, respectively, as a function of the Local Reward History and of the Local
Penalty History. Finally, if trust >= risk, access is granted, otherwise no. According to the
second proposed method, instead, history is weighted differently; a weight has to be assigned to

15

2 – State of the Art Analysis

the last access performed and another weight to the previous history. This expedient has to be
applied both to reward and penalty histories. Again, if the trust value computed overrides the risk
value, access is allowed. One thing to notice is that trust and risk functions are built in such a way
that, in absence of history, it can never happen that a subject, with clearance level smaller than
object’s sensitivity level, manages to access the object.

2.2 Introducing benefit analysis process

BARAC [78] is an attempt to balance risk and benefits that would result from an access. According
to this approach, even if the risk computed is high, the access to the resource is allowed if the
benefits derived from the access result to be higher. So, actually a risk that in a Fuzzy MLS
[18] or Fuzzy BLP [55] would be considered too high to take, here could be overcome by the
benefit’s factor, changing completely the result of the decision. The BARAC model considers
subjects, objects and transactions (read and write). According to the trustworthiness of subjects
and sensitivity of objects, an Accessibility Graph and an Allowed Transaction Graph are built in
such a way that vertices represents subjects and objects. Transactions corresponds to edges and
are associated to risk and benefit vectors. By building a graph, even if the resource is not directly
accessible through direct edges, it is possible to find alternative paths between a subject and an
object on the graph, where all the transactions are accessible and allowed. In this way, if the
benefits outweigh the risks, and the profit (pro f it = bene f it − risk) of the Accessibility Graph
cannot be further improved, by adding or removing transaction from the graph, then the access to
the resource is granted. This model does not give us any hint on how risk and benefit vectors can
be computed or how the trustworthiness of subjects can be defined. Moreover, it’s for definition
a static model relying on a static graph, so actually does not add any dynamic in respect to Fuzzy
MLS or Fuzzy BLP, which rely on static categories as well.
In [42] authors propose a risk-aware approach to support UCON (Usage Control) model. UCON
is in some way a further evolution of access control models, because it checks the correctness
of policies not only during the first access but even afterwards, during usage of resource, being,
in this way, a particularly relevant solution for highly dynamic systems. The proposed approach
is based on a Markov model, by building a Markov chain, which indicates how the value of
an attribute changes. States, in this chain, are possible values of the considered attribute and
transitions are possible changes of the attribute. Transition probabilities don’t change and are
computed using statistics about past operations. When attributes change over time, there can be
two possible decisions: continue the session or revoke the session. The idea behind the analysis is
to compare the benefits of allowing access and revoking it. When the policy is not any longer met,
mitigation measures can be applied, such as the suspension of the usage, until a new fresh and
good parameter is received, or letting the session continue and notifying it to an higher authority.
The model explained is mainly theoretical and it is more focused on how to map parameters and
probabilities in the Markov process. The idea, though, is quite interesting.

2.3 Supporting the new Cloud Computing paradigm

It is possible to find some attempts that exploit a Risk-based access control model for the Cloud
Computing paradigm, which is one of the most promising and used computing architectures,
thanks to its great flexibility, scalability and reduced costs. Still, many improvements can be done
toward cloud federations, where the interoperability of different cloud providers becomes one of
the main issues. The identification, authentication, authorization of users is for sure one of the

16

2 – State of the Art Analysis

Figure 2.4. Decision process flow of the architecture described in [24].

main topics.
The proposal we find in [24] is an access control model based on an extension of the XACML
standard with three new components: the Risk Engine, the Risk Quantification Web Services and
the Risk Policies. Whenever an access request is received by the PEP, it is forwarded to the PDP
which is in charge of retrieving the traditional XACML policy from the PAP, adding contextual
information given by the PIP. In parallel, if a risk policy is associated with the resource, the
PDP forwards the request to the Risk Engine too. The Risk Engine retrieves the risk policy to be
adopted for the resource and thanks to a quantification function it computes the risk values for the
metrics used and aggregates them. The whole decision process is resumed in figure 2.4. If the risk
quantification is done locally, a function in the risk engine itself is executed, if, instead, it is done
externally, a web service is invoked for the quantification, degrading a little bit the performance
due to the HTTP connections that have to be performed. In this way, the Risk Engine generates a
response and forwards it to the PDP, which uses a combination method (permit overrides, deny
overrides, ABAC precedence, risk precedence) to take the final decision. The response is then
sent to the PEP which eventually applies obligations.
This is the first model encountered where the PDP, in order to take a decision, evaluates both the
risk-based policy and the traditional XACML policy, meaning that, according to the combination
method used, it is possible to obtain either a static access control model or a highly dynamic
model, adapting to different companies’ requirements. The authors propose to apply this risk
model to allow a cloud federation without the need of an Identity federation (which guarantees the
trust among users of different cloud providers in the federation). The trust issue will be considered
a risk metric in the system. A user can decide to instantiate a resource either in his cloud provider
or in a foreign cloud provider, defining a policy for the resource. If someone wants to access
a resource belonging to his cloud provider, the request is handled by the home cloud manager
which evaluates the request according to the model defined, otherwise the request is forwarded
from one cloud manager to the other until the one, responsible of the cloud provider which holds
the resource, is reached.
In [67] is presented a prototype implementation of a cloud-assisted eHealth system based on a

17

2 – State of the Art Analysis

Figure 2.5. A possible information flow derived from the model presented in [67].

risk model to perform access control. The authors actually address the described access control
technique as a Task-based AIC where AIC stands for Availability, Integrity and Confidentiality.
The access control is performed in two steps: first, a user is checked with credentials; by using
credentials, the system identifies the role of the user which is associated to some permissions, like
in a RBAC model (which alone is considered to be too static for the cloud scenario). Second, a
user is examined with risk. The risk score is computed by looking at the action the user wants to
perform, the sensitivity of the resource, the cost in terms of Availability, Integrity and Confiden-
tiality and the previous user’s behaviour pattern, like in [66]. Three new components are defined:
the Risk Parameter Manager, which returns the risk parameter based on the user action, the Risk
Calculator, which computes the risk score, and the Risk Score Manager, which maintains risk
score for each user. Figure 2.5 describes the information flow just described. We can say that
this model does not add any new concept or idea that wasn’t exploited before, but the scenario for
which it can find its applicability could be really interesting.
A very basic attempt, instead, to implement Risk-based access control in cloud computing is
presented in [45]. The idea is to compute the risk by putting together 8 different risk parameters:
years of experience, designation, defect level, referral index, location index, time index, proba-
tionary period. For each one of this, a table of reference values exists in order to understand the
corresponding risk’s value associated. Although no new innovations are brought by this paper,
interesting are the parameters taken into consideration in order to compute risk.
In [15] we can find another attempt to describe a Risk-based access control model for Cloud
Computing, called DRAC (Dynamic Risk Access Control). The model proposed is based on
ABAC (Attribute-based access control). The framework consists of four modules: rule-based
detection (RD), risk assessment based on data stream (RA), integrated decision making (ID), and
dynamic-threshold setting (DT). An access request consists of two vectors: req and env, req vector
is built with some attributes related to the request, env vectors, instead, is built with attributes
related to the subject (authors suppose there exist some system able to provide this informations).
The RD module is the one built according to ABAC principles, so it provides a static way of
performing access control by defining attributes, as KEY-VALUE pairs, and policy related to
combinations of attributes. The RA module instead is the most important one because enables
the dynamic security control. The risk assessment is performed by considering three factors: the
instantaneous risk value, the reference metric of the same kind of host and the historical impact
of the host itself. These three metrics are computed according to specific formulas and then put
together and weighted in order to have a single result in [0,1] domain. The DT module is in

18

2 – State of the Art Analysis

charge of computing the dynamic threshold to compare to the risk assessment. This threshold
is computed by taking the history of accesses of the subject and performing the average of the
products between the risk associated to each request, the feedback value (0 if it has been discovered
to come from a malicious source, 1 otherwise, according to the trust concept) and the sensitivity
of the action. Finally, the ID module takes the last decision. If the request has been accepted
by the ruler policy, then we proceed with the risk assessment by comparing the threshold with
the risk value computed and the sensitivity of the action, otherwise we just rely on the ABAC
model implemented in RD module. The idea of this framework is interesting because it improves
in some way other similar models previously described: it takes into account the history of past
requests in a finer-grained way, by looking both at the history of the host itself and the history
of hosts with similar characteristics; moreover, the dynamic behaviour of this model can be put
aside, letting the static approach of ABAC to prevail when the situation requires it.
In [32] it’s possible to find a further attempt to provide a Risk-adaptive authorization mechanism
for Cloud Computing. The model is called RAdAM and it can be adapted to three different Cloud
Computing contexts: Cloud User, Cloud Collaborations, Cloud Federations (which are collabora-
tions on a wider scale). Each request is characterized by an entry < Subject,Object > associated
to a risk value. A threshold is also defined and attached to the subject and the object. Moreover
an average risk value and an average threshold are defined for a user, even though, no clues on
how to compute these risks are given by the authors. In the collaboration scenario we also have
a collaboration access request’s risk and in the federation scenario we have a federation access
request’s risk. The architecture is presented as an extension of the traditional XACML standard
with the introduction of the RAdAM module, which is called by the PDP when an access request
is performed in order to compute the risk, see figure 2.6 for a more complete representation of
the modules and information exchanged proposed. Authors propose also a way of implementing
the RAdAM model with fuzzy logic. They decided to represent the clearance of the user in
a trapezoidal membership function and the object sensitivity in a combinational of trapezoidal
and triangular membership functions. The process is very similar to the one used in [55]. An
enforcement of the RAdAM model with the Vulnerability Based Authorisation Mechanism is also
proposed which is exactly equal to the one proposed in [18] where sensitivity labels are assigned
to objects and subjects, where a subject can access an object only if its label dominates the object’s
label. This proposed model, anyway, is quite abstract and not much details are given to explain
the risk’s computation process.

19

2 – State of the Art Analysis

Figure 2.6. XACML-RAdAM architecture proposal, taken from [32].

20

Chapter 3

Requirements for a Risk-Based Access
Control Framework

After having understood, from the state of the art analysis, which are the currently proposed
solutions for the implementation of a risk-based access control framework, we try, in this chapter, to
extract the main concepts observed, in such a way to better understand the necessary requirements
to build an access control solution of this kind. To this purpose, a model, that resumes all the main
features observed in the currently proposed solutions supporting a risk-based decision logic, will
be presented. Then, this model will be extended in order to integrate, in the final solution, those
secondary requirements needed to further develop the previous model, by slightly changing the
way in which access control decisions are taken and are enforced by the system. Finally, security
implications coming from these models will be outlined.

3.1 Architectural Requirement Analysis

3.1.1 Risk-Based Approach

The state of the art analysis, performed in Chapter 2, highlighted how currently proposed solutions
do not differ significantly when it comes to propose an architectural model over which developing
a risk-based access control solution. Some discrepancies emerge, instead, in the way risks should
be accounted and calculated, showing how the concept of risk could be somehow relative and
often related to the context in which it is considered, although some general definitions can be
addressed to it.
Since the purpose of this thesis work, is not to define a methodology for computing risk, but it is
to develop an access control framework able to exploit risk when taking authorization decisions,
relying on an external provider in charge of managing and storing those risks, we are going to
focus, on the architectural requirements of this framework.
The most evident requisite, that emerges from the proposals, is the necessity of developing a
solution relying on an easily extensible and scalable approach, which is generally achievable
through the adoption of the eXtensible Access Control Markup Language (XACML) standard
architecture.
XACML is an OASIS standard [72], based on XML syntax, and has become the de facto standard
for policy specification and evaluation due to its great success and large use among applications
and platforms, as observed in [46]. Since basically all the mentioned approaches, which provided
an architectural model to support their proposals, based their solutions on the standard XACML
architecture, it is worth to briefly mention all the components involved in this architecture (see
figure 3.1):

21

3 – Requirements for a Risk-Based Access Control Framework

Figure 3.1. XACML architecture overview (taken from [40]).

• the Policy Enforcement Point (PEP) is in charge of protecting a resource, by handling the
access request, and, only after a proper verification of compatibility with the policy has
been performed, granting the access to the resource;

• the Policy Decision Point (PDP) is the entity which receives all the data, linked to the access
request, and the policy to apply, and decides whether to allow or not the access;

• the Policy Administration Point (PAP) is the entity which provides the policy applicable to
the submitted request;

• the Policy Information Point (PIP) is the component which provides additional informations
related to the access request, the subject and the resource;

• the Context Handler (CH) is the component which translates access requests (and responses)
to (from) a valid XACML format, if they are still not, moreover, it enhances the requests with
attributes (taken from the PIP) related to the context in which the requests are performed.

Let’s suppose a user wants to access a document, present on the intranet of the organization
for which he works, and the policy adopted by the access control system has been configured
to discriminate access requests by looking for the email address associated to users. When the
access request, in which, in such a situation, the subject is identified by his username, is submitted
from the application, it is handled by the PEP, which is generally tightly bound to the application.
The PEP temporarily block the access request and, since it does not posses the necessary informa-
tions to evaluate itself the request, forwards it. The application request, which is not necessarily
already in XACML format, is received by the CH, which converts it in XACML and forwards it
to the PDP. The PDP retrieves the policy, to be used for the evaluation of the request, from the
PAP, which takes the requested policy from the policies repository where they are deployed. If
additional informations, like the email address associated to the subject, are needed in order to
correctly evaluate the request, the PDP asks again to the CH to provide these informations, that
the CH retrieves from the PIP. At this point, the PDP, by using all the data in its possess, evaluates
the access request and formulates an XACML response which is returned to the CH. The CH, if
needed, translates the XACML response in the application format and send it to the PEP, which
enforces the decision taken and communicates it to the user. The final decision can be either
permit or deny or indeterminate, if no sufficient informations were present to correctly evaluate
the request, or not applicable, if there was no policy to apply to the submitted request.
After having defined the core architecture supporting access control decisions, arise the necessity

22

3 – Requirements for a Risk-Based Access Control Framework

Figure 3.2. The proposed Risk-Based Access Control basic architecture.

of having specific components that allows to manage risk. A risk engine is needed, able to com-
pute the risk values and to evaluate them according to some defined rules. The two operations are
quite distinct and, in general, there is no predefined constraint in considering the entity responsible
to compute the values of risk specifically as an internal component of this risk engine, indeed it
can be easily outsourced, as the work presented in [24] clearly shows. For these reasons, it would
be clearer to separate them in two diverse modules. We can, thus, identify a Risk Decision Point
(RDP) as the module responsible of evaluating the risk according to a specific implemented mech-
anism, thus implementing all the functions and methods characterizing the core logic adopted
when taking the decision based on risk. The risk will be retrieved from a Risk Estimation Point
(REP), a module responsible to compute the risk values for the specific access request. Since, as
aforementioned, this module can be either an internal component of the access control framework
or an external entity appointed to do the work, we talk about Internal Risk Estimation Point and
External Risk Estimation Point. The proposed architecture is shown in figure 3.2.
As it is possible to see from the picture, internally to the Risk Estimation Point, another component
can be identified: a Risk Estimator Configuration Point (RECP), which represents a necessary
interface that allows to manage and configure the risk estimation functions adopted when quanti-
fying the risk values.
Furthermore, a relational database to store risk values is often needed, either to maintain the risk
score of resources or, in some cases, to store values referring to user’s risk history, either directly,
like several approaches suggest ([50], [76], [66], [42], [67], [15]), or indirectly ([18], [55]) by
considering access quotas or credits.
In this way, the basic requirements, emerged from the state of the art analysis, necessary to im-
plement an access control framework, which use just the concept of risk in order to take the final
authorization decision, have been presented and outlined. They can be resumed as:

• Req.1: Implementing an XACML-based Access Control framework.

– Req.1.1: Implementing PEP component.

– Req.1.2: Implementing PDP component.

– Req.1.3: Implementing PIP component.

– Req.1.4: Implementing PAP component.

– Req.1.5: Implementing CH component.

23

3 – Requirements for a Risk-Based Access Control Framework

• Req.2: Relying on a risk estimation module (Risk Estimation Point).

– Req.2.1: Implementing a database able to store risk informations.
– Req.2.2: Connecting the database to the network in order to be able to retrieve risk

scores.
– Req.2.3: Defining the necessary parameters to be used in the risk computations.
– Req.2.4: Defining the necessary functions to use for the final risk computations.
– Req.2.5: Implementing an interface from which associating risk parameters to re-

sources.
– Req.2.6: Implementing the necessary interfaces to receive and manage risk requests.
– Req.2.7: Installing the module on a server, connected to the internet or to the internal

network (eventually, if the service has not been outsourced), to let the service be
contacted, in order to retrieve risk informations related to an access request.

• Req.3: Implementing a risk based decision module (Risk Decision Point).

– Req.3.1: Implementing the necessary interfaces to build a risk request, in a format
supported by the Risk Estimation Point.

– Req.3.2: Implementing functions supporting the risk decision logic.
– Req.3.3: Implementing an interface from which the module can be contacted by the

PDP.
– Req.3.4: Installing the module on a server, connected to the internet, in order to be

able to contact the Risk Estimation Point (if outsourced), and to the internal network,
in such a way to let the service be contacted by the PDP, during the evaluation process
of an access request.

3.1.2 Trust & Risk-Based Approach

After having outlined the basic requirements strictly needed to successfully implement a risk-
based access control framework, we can introduce a development to the proposed model, trying
to understand, even here, the requirements necessary to support this proposal, always following
the guidelines provided by the analysis of the state of the art concerning systems of this kind.
One of the mostly enumerated and prominent proposals, we can find, is related to the use of the
trust concept. Trust can be a relevant value when considered within an authorization decision,
indeed it represents the degree of confidence the system puts in a subject requesting the access
towards a resource.
Similarly to risk, also trust needs to be computed according to some predefined parameters and
thus explicitly quantified. For this reason, it would be appropriate to have a separate module, as for
risk, which deals with the trust estimation problem. Works like [6], [66] support this idea. We are
going to address this module as the Trust Estimation Point (TEP), that again can be either external
or internal, depending whether the system foresees to outsource the service or not. Within such
component, a Trust Estimation Configuration Point (TECP) should be present, as an interface to
configure trust parameters and functions. In such a situation, moreover, a database enhanced to
provide, beside risk, also trust values would be necessary. In figure 3.3 the proposed architecture,
able to enhance the risk-based paradigm with trust computations, is proposed.
As it is possible to see from the picture, now, RDP has become a Risk & Trust Decision Point
(RTDP) where both risk and trust values are considered when taking the authorization decision.
Although the integration of the trust related modules can be considered an interesting direction
to take in order to implement a dynamic access control mechanism, the requirements needed to

24

3 – Requirements for a Risk-Based Access Control Framework

Figure 3.3. The Risk-Based Access Control architecture enhanced with the Trust Estimation Point.

support such a solution cannot be considered with the same weight of the ones identified before,
since they just support a further evolution of the already presented system, adding to it a new kind
of functionality, related to the way the authorization decision is taken. For this reason, they are
going to be addressed as additional requirements and they can be resumed as:

• Add. Req.4: Relying on a trust estimation module (Trust Estimation Point).

– Add. Req.4.1: Implementing a database able to store trust informations.
– Add. Req.4.2: Connecting the database to the network in order to be able to retrieve

trust scores.
– Add. Req.4.3: Defining the necessary parameters to be used in the trust computations.
– Add. Req.4.4: Defining the necessary functions to use for the final trust computations.
– Add. Req.4.5: Implementing an interface from which associate trust parameters to

resources.
– Add. Req.4.6: Implementing the necessary interfaces to receive and manage trust

requests.
– Add. Req.4.7: Installing the module on a server, connected to the internet or to the

internal network (eventually, if the service has not been outsourced), to let the service
be contacted, in order to retrieve trust informations related to an access request.

• Add. Req.5: Implementing a risk & trust based decision module (Risk & Trust Decision
Point).

25

3 – Requirements for a Risk-Based Access Control Framework

– Add. Req.5.1: Implementing the necessary interfaces to build risk requests and trust
request, in a format supported by the Risk Estimation Point and Trust Estimation
Point.

– Add. Req.5.2: Implementing functions supporting the risk & trust decision logic.
– Add. Req.5.3: Implementing an interface from which the module can be contacted

by the PDP.
– Add. Req.5.4: Installing the module on a server, connected to the internet, in order

to be able to contact the Risk Estimation Point and the Trust Estimation Point (if
outsourced), and to the internal network, in such a way to let the service be contacted
by the PDP, during the evaluation process of an access request.

3.1.3 Obligations Enforcement

The last major concept it is possible to identify, in the analysed proposals, is obligation enforce-
ment. The purpose of obligations is to mitigate, in some way, the risk that the system is willing to
take when granting an authorization. There are diverse methods, it is possible to find in literature,
to adopt obligations, [18] and [55] propose, for example, a model where obligation enforcement
should be adopted immediately, by the system, when the access is permitted, by decreasing the
risk credit owned by the user. Authors, in [17], instead, argue that existing systems are not able to
guarantee the enforceability of obligations that have to be fulfilled by users, thus not automatically
by the system. To this purpose, they propose a model where obligations can be fulfilled in a larger
time interval and thus controlled by the system.
The XACML component, which is generally involved in the enforcement of obligations is the PEP,
which should either enforce itself the obligation or rely on an separate obligation enforcement
service. The correspondent risk and (or) trust values, that have been retrieved, should be commu-
nicated from the PEP to the obligation service, in such a way it can choose what kind of mitigation
measure to adopt. This means that the Risk & Trust Decision Point should include in the response,
not only the decision taken, but also the risk and (or) trust values, that are communicated to the
PDP, which should include them in the XACML response returned to the PEP. At this point the
obligation service either will communicate itself to the user the obligation needed to fulfil in order
for the access to be granted, or it will pass again the information to the PEP, that will enforce the
obligation. Figure 3.4 shows the access control architecture enhanced with the obligation module.
We can thus identify the following additional requirement:

• Add. Req.6: Implementing an obligation mechanism.

– Add. Req.6.1: Defining the set of supported obligations.
– Add. Req.6.2: Implementing a mechanism to bind risk and (or) trust scores to the

defined obligations.
– Add. Req.6.3: Implementing the necessary interfaces to make the PEP and the

Obligation Service to communicate with each other (if implemented separately from
the PEP).

– Add. Req.6.4: Installing the module on a server, connected to the internal network,
in such a way to let the service be contacted by the PEP (if implemented separately
from the PEP).

3.2 Security Implications

As previously stated, there can be two adoptable approaches when estimating risks: the organiza-
tion, which implements the access control mechanism, can decide either to outsource the service

26

3 – Requirements for a Risk-Based Access Control Framework

Figure 3.4. The Risk-Based Access Control architecture enhanced with the Trust Estimation
Point and obligation enforcement.

to an external trusted entity or to implement it internally. By letting the possibility, to our system,
to rely on external providers in order to retrieve informations supporting access decisions, we
enhance the extensibility of our framework, that can, in this way, exploit additional informations
coming from trusted sources. On the other end, some security implications arise, in the commu-
nication flow between the organization’s access control system and the risk’s provider, that have
to be taken in consideration in order for the whole system to work properly and in a secure way.
If we observe the developed risk & trust based access control architecture, there can be at least
three categories of attack it is possible to identify, as figure 3.5 shows: Man In The Middle
(MITM) attacks, Denial of Service (DoS) attacks and DNS Poisoning attacks. A MITM attack
consist in a malicious third party which inserts itself in a communication, which is happening
from two other parties, and manipulate the exchanged information flow. In our specific scenario,
the attacker could decide to modify, filter or just read the intercepted data, moreover it could think
about storing a copy of the data too. In case of data modification or filtering, the integrity of the
data would be compromised. An attack of this kind could involve, for example, an attacker who,
for some reasons, wants to fool the access control system by providing it with a smaller risk value
for a specific access request, in such a way to grant himself, or to someone else, the authorization
over a resource; on the other end, it could also involve an attacker who wants to block some
user access, by providing to the system an higher risk value for the resource, or by filtering the
response, mining not only the integrity of the data, but the availability of the resource itself too.
Another attack, that could be brought by a malicious MITM, is packet sniffing, which consists in
a passive behaviour of the attacker, who limits himself to observe the traffic exchanged by the two
entities, endangering, in this way, the confidentiality of the data. In such scenario, the attacker
could be an untrusted third party that wants to obtain sensitive informations, like credentials,

27

3 – Requirements for a Risk-Based Access Control Framework

Figure 3.5. Identification of possible attacks endangering the access control architecture which
outsource risk and trust estimation.

during the authentication phase of the two systems, or analyse requests and responses, in order
to understand the risk values associated to resources and access requests, selling, in a second
moment, those informations or keeping them for future purposes.
Finally, the last attack we can address to a MITM is the replay attack. According to this kind of
attack, the malicious source intercepts the data exchanged and stores a copy, in such a way to reuse
it in a second moment. In this way, an attacker that, for example, makes a copy of a risk score
resulting from a certain access request, could resend the same response to other future requests,
providing in this way wrong risk values.
The second category of possible attacks, from which an architecture of this kind could be suscep-
tible, is DoS. A DoS attacks aims to make unavailable a service provided by a system, typically
saturating its resources. In our scenario, the attack could be directed towards either the External
REP or the TEP or the Risk & Trust database, from which the two entities rely to store risk infor-
mations. The unavailability of, at least, one of these services makes impossible the functioning
and the correct evaluation of the access control decision. A DoS attack can be obtained, for
example, by flooding with a huge number of requests the targeted system, overloading it, and, in
this way, preventing other legitimate requests to be successfully fulfilled.
Finally, serious issues may arise when considering risks deriving from a DNS Poisoning attack.
According to this kind of attack, the DNS cache of a system is maliciously altered with the purpose
of attracting the victim towards a server, different from the original one, generally called shadow
server, which can provide fake answers. In our kind of scenario, an attacker could execute this
attack, for example, to steal authentication credentials exchanged by the two systems, endangering
the confidentiality of those informations, or, by providing fake risk scores, to block some user
access, mining the availability of the system, or to grant some unauthorized one.
From the identification of those possible attacks, that could represent serious threats for the system,

28

3 – Requirements for a Risk-Based Access Control Framework

it emerges, at first, the absolute necessity for the adoption of an authentication mechanism, able to
prevent not legitimate users from accessing the risk (or risk & trust) estimation service. Clearly,
if the trust estimation service is present and is provided by another third party, different from the
one providing the risk service, a second authentication mechanism would be needed with this
third party, probably degrading, in this way, the performances of the whole authorization service.
At the same time, though, in order for the authorization system to avoid of incurring in possible
DNS Poisoning attacks, which would make the system unwillingly talk with a malicious entity,
the support of techniques like DNSsec, providing authentication, integrity and non repudiation of
DNS responses, should be considered. Anyway, a drawback, that a solution of this kind would
bring, is a large overhead, due to the computations of signatures.
Mechanisms, able to provide authenticity and integrity of data, in order to counteract unauthorized
manipulations, should be present too. At the same time, data confidentiality should be provided,
both during the authentication phase and during the risk (& trust) communication phase, in or-
der to avoid that sensitive informations, like credentials or risk values, could be captured by an
untrusted entity. In order to cope with these problems, advanced techniques for encryption and
digital signature should be adopted, always considering the drawbacks related to the performance
implications that those techniques bring. An anti-replay mechanism would be probably needed
too, able to link every response to the corresponding request.
Finally, in order to deal with attacks of type DoS, traffic monitoring techniques, like the adoption
of Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS), plus some some
servers’ scalability, would be suggested within the organizational context of the Risk (& Trust)
Estimation Point.

29

Chapter 4

Analysis of the Tools: CAIRIS and
SAFAX

4.1 CAIRIS

4.1.1 Introduction

CAIRIS [12], which stands for Computer Aided Integration of Requirements and Information
Security, has been designed as a security requirements management tool with the purpose of
integrating security, usability and requirements concepts supporting a system’s design process.
Before proceeding with the analysis of the tool, it can be useful to explain shortly what these
concepts are and why are so important in systems’ design. As systems become more complex the
probability of introducing security vulnerabilities increases, therefore, in order to provide assur-
ances about the designed system and to avoid that unintentional vulnerabilities are introduced, we
need some way of analysing, understanding and managing all the data and the informations that
come up from the process. This procedure has to be carried on preferably since when eliciting
and specifying requirements, so already at the earliest stages of the design process.
Although works on Security Requirements Engineering exist, it seems, from the literature, no
relevant attempts on usability models have been proposed with the purpose of enhancing security
models.
In [39] authors depict the usability and security threat model as a particularly critical model when
considering legitimate users, which they have no intent in harming the system. A bad designed
system, which does not respond to good usability properties for its users, can lead to intentional
or unintentional misbehaviours of the users themselves, which, generally, have not the perception
of the possible threats they could cause. Similarly, Faily and Fléchais claim in [29] that the
integration of security and usability in systems’ design needs to be done in order to predict secu-
rity implications of usability decisions and, vice versa, usability implications of security design
decisions.
A standard definition for usability is given by ISO 9241-11 [36]: “The extent to which a prod-
uct can be used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”. Effectiveness is further specified as the “accuracy
and completeness with which users achieve specified goals”. Efficiency is defined as the amount
of “resources expended in relation to the accuracy and completeness with which users achieve
goals”. Satisfaction as the “freedom from discomfort, and positive attitudes towards the use of
the product”. Finally, the context of use is defined as the “users, tasks, equipment (hardware,
software and materials), and the physical and social environments in which a product is used”.
Context of use is one of the key concepts over which CAIRIS has been built. In particular,

30

4 – Analysis of the Tools: CAIRIS and SAFAX

this concept is expressed by the term Environment. An Environment might represent a system
operating at a particular time of day, or in a particular physical location. Some concepts are
strictly specific of the environment: some of them are more concrete, such as assets, tasks, per-
sonas, attackers, and some other, like goals, vulnerabilities, threats, risks, are less. Although the
environment encapsulates the majority of the key concepts in security and usability evaluations,
during the design process, there exist other factors, like Role, for example, which are considered
environment-independent. This make sense since the role of an individual is assumed to be
something that does not vary by environment, what can vary are the security implications that
a role has, while, for example, the goal is something that can significantly change in different
environments; same thing for the Risk, which exists only if the threat and the vulnerability, that
provoke it, are present at the same time in the environment. See figure 4.1 to see a more complete
view of the concepts that in CAIRIS have been associated to the environment.
As aforementioned, the last fundamental concept, over which the CAIRIS logic stands, is Re-
quirement. The IEEE definitions of Requirement [20] are:

1. a condition or capability needed by a user to solve a problem or achieve an objective;

2. a condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed documents;

3. a documented representation of a condition or capability as in (1) or (2).

Requirements represent, in CAIRIS, the needs and the properties that have to be present or satisfied
in a certain context; so they represent the basics of this tool and they are not just security and
technical ones but they have to be defined also from the usability point of view. In [26] Faily
claims that requirements are typically classified according to whether they are Functional or Non-
Functional. Functional requirements define those aspects of conditions that have to be satisfied in
order to guarantee that the system will work properly, while non-functional requirements define
the how well aspects, so they represent quality requirements. Often, security requirements are
considered as non-functional ones. From this perspective it could be dangerous to consider
security just as an additional aspect to improve systems’ design, since it could take developers and
stakeholders to think about security only when the system is already mature, letting functional
requirements to take precedence.

4.1.2 Baseline Architecture and Goals

CAIRIS tool has been built upon the IRIS (Integrating Requirements and Information Security)
meta-model, a conceptual model for Usable Secure Requirements Engineering [27]. The two
main innovations that it introduces in the literature of security requirements models are: first,
usability of tasks is taken into consideration in a qualitative and quantitative way, exactly as the
risks; second, the meta-model explicitly defines concepts and associations which allow a context
of use to be modelled according to the specific needs. It is worth highlighting that the usability
concept is not just a characteristic of tasks but it is specific for the pair task-persona. Indeed, the
effort required by a task is user’s specific since it depends on the competence, the abilities and the
goals of a user. Similarly, also the degree of how much a task interferes with a persona’s goals is
something which is strictly related to the individual.
Personas are descriptive models of how users behave, how they think and their goals. Personas
are created by involving, in the design process, stakeholders who can provide empirical data
relative to several contexts of use. The data gathered from the observations and interviews are
mapped to behavioural variables, as explained by some already existing works that has been done
about how integrating software requirements process with personas, like in [13]; the set of all the

31

4 – Analysis of the Tools: CAIRIS and SAFAX

Figure 4.1. The environment meta-model, supported by the IRIS framework, over which
CAIRIS has been built [27].

interviewed subjects, grouped within a set of behavioural variables, forms a behavioural model,
which constitutes the basis of a persona. This persona-oriented approach can be really useful to
create real world scenarios which can help to identify those security vulnerabilities that could
arise in presence of attackers or even simply unintentional misuse cases.
An important aspect to consider is that IRIS framework distinguishes between personas (diligent
human assets) and attackers (human assets which are harmful for the system), although for both
the categories the persona-oriented approach is used to create human profiles. This distinction
comes from the fact that, in IRIS, tasks are associated to the persona but responsibilities are
associated to Roles; by doing in this way, personas and attackers can share the same role, allowing
to make deeper considerations about how eventual inside attackers could create damage.
CAIRIS allows to switch among different models by changing the perspective through which the
system can be seen, in other words it allows to analyse requirements from different points of
view, specified in the IRIS framework; in particular it allows to build a Task Meta-Model, a Goal
Meta-Model, a Risk-Meta-Model, a Responsibility Meta-Model and an Environment Meta-Model
[27].
Furthermore, the IRIS meta-model presents a way of qualitatively rating and quantitatively scoring
risks and tasks. In [28] are presented the Risk and Task Analysis performed by IRIS.
For what it concerns the Risk Analysis, from a qualitative point of view, two parameters are
defined: Likelihood and Severity, that combined together, according to the likelihood and severity
tables in IEC 61508 [19], determine a Risk rating in the range [1, 4] where, starting from the
bottom, values correspond to intolerable, undesirable, tolerable and negligible. The value of
Likelihood and Severity parameters are then mitigated by the corresponding values for the applied
countermeasures according to the formulas:

Lr = Lt−m̄t

32

4 – Analysis of the Tools: CAIRIS and SAFAX

Sr = Sv−m̄s

where Lr is the likelihood of the threat, Lt is the likelihood of the threat t associated with risk r
and m̄t is the mean likelihood value for the set of countermeasures mitigating Lt , while Sr is the
severity of the vulnerability exposed by risk r, Sv is the severity of the vulnerability v associated
with risk r and m̄s is the mean severity value for the set of countermeasures mitigating Sv.
From a quantitative point of view, in order to score the risk related to specific assets that can
be threatened, a row vector [c i a o], which represents the security properties associated with an
asset, is introduced, where c, i, a, o represent risk values for confidentiality, integrity, availability
and accountability respectively. A new parameter is then defined in order to represent the risk
Impact, according to the formula:

Pr = (Pt×Pa)−m̄p

where Pr is the risk impact, represented by the security properties held in the assets at risk from
risk r, Pt represents the security properties of the threat associated with risk r, Pa represents
the security properties of the vulnerable or threatened assets at risk and m̄p represents the mean
security properties for the countermeasures targeting the risk’s threat or vulnerability.
The final risk is computed as:

Risk = Lr×Sr×Pr

where Lr represents the likelihood of the threat, Sr represents the severity of the vulnerability
exposed by the risk and Pr represents the risk impact in terms of security properties endangered.
In this way, Req.2.3 and Req.2.4 have been addressed.
As Faily and Fléchais observe in [27], there can be different ways of treating risks: they can
be accepted “if we are prepared to accept the consequences of their impact”, ignored “if the
responsibility for dealing with them is out of scope”, or mitigated “if treating the risk has a
bearing on the system specification”, thus the vulnerabilities, which originate the risk, are an
intrinsic part of the system and the risk cannot be neglected. In the same paper, authors define
the relation between risk management and system design by saying that “choosing to mitigate a
response is synonymous to intentionally specifying that the system shall manage the risk as part
of its design”, and this is what Security Requirements tools and, in particular, CAIRIS allow
to do. When mitigation’s countermeasures are applied, the value of each one of the parameters
aforementioned is reduced according to the effect that the countermeasures will have on that risk
parameter.
Choosing a certain countermeasure, in order to reduce the risk, is not enough though, indeed, the
mitigation of a risk could result in a worse task’s usability for a user; this is why IRIS presents also
a Task Analysis [28], in which usability parameters are involved. Since usability is something
strictly related to the persona, there is not a predefined association between usability parameters
and a task, but, more precisely, usability parameters are associated to a task carried out by a certain
user. Four properties are set for each persona participating in a scenario: Duration, Frequency,
Demands, Goal conflict. Each one of these properties is mapped to usability components defined
in ISO 9241-11 [36]. In particular, Duration and Frequency of the task refers to efficiency, while
Demands (mental and physical) refers to satisfaction and Goal conflict refers to effectiveness,
which is the degree to which the task interferes with the persona’s work or personal goal. Each
value can assume numbers in the interval [0,3], where, considering Duration and Frequency, 0
means none, 1 means seconds, 2 means minutes and 3 means hours or longer; by considering
instead Demands and Goal conflict, values mean none, low, medium, high, respectively. In order
to compute the final usability for a task, average values of all the parameters are taken across all
personas carrying out the task in question and summed up.

33

4 – Analysis of the Tools: CAIRIS and SAFAX

With the introduction of countermeasures mitigating the task’s related risk, the usability will
be affected. The properties and their relative usability components for the countermeasures are
exactly the same as the ones just described, with the only difference that now they can assume
values in the range [-3, 3]. Negative values are assumed when the countermeasure is helping
to increase usability, positive values instead tell us that the countermeasure is decreasing the
usability. Again, average values among countermeasures’ usability values are taken across all the
countermeasures affecting the task in question, they are summed up and added to the previous
computed usability value. As result, the higher the score the less usable is the task for the
associated personas and vice versa.
A security analyst, during the system design phase, is supported by a practical CAIRIS GUI when
evaluating, quantifying and assigning risk and usability scores to resources and tasks, translating
the quality attributes, that the analyst specify, in numbers identifying the corresponding risk and
trust score, thus addressing Req.2.5. Clearly, an appropriate storage system has to be adopted, in
order to contain those informations; in particular, CAIRIS relies on a MySQL relational database
for the management and the access to informations such as assets, threats, vulnerabilities, risks,
and usability informations such as personas and task descriptions, addressing, in this way, Req.2.1,
Req.2.2.
In order to successfully retrieve the data stored within the CAIRIS database, apposite APIs,
have been implemented within the application, allowing the CAIRIS server to be contacted. The
exposure of these APIs allows external clients, that have been authenticated beforehand, to retrieve
such informations, addressing Req.2.6 and Req.2.7.
Another important feature of the IRIS framework, over which CAIRIS has been built, is the way
according to which it provides a visualisation schema for the Risk and Task Analysis. Since, when
creating a model, stakeholders and developers need to intuitively read it and interpret it, colours
are associated to tasks, threats and vulnerabilities according to their usability or risk value. Red is
devoted to risk while blue is devoted to usability; the more intense is the hue, the higher is the risk
or usability value. The authors in [28] explain that adopting this approach is helpful in reducing
visual clutter, especially when models grow large. In this way, the model provides a quick and
easy view of the analysis.

4.1.3 Novelties

CAIRIS is the only Requirements Management tool able to support a software design process
by dealing with both usability and security, exploiting the fact that both security and usability
models share the concept of Requirements. There exist, however, a few other tools which
instead integrated security aspects in Requirements Engineering models, in order to meet with
the necessity of developing secure software design techniques.
There are tools which focus on specifying requirements, others that allows the definition of security
aspects related to requirements, but still with naive and simplistic approaches, others focusing on
modelling and others that focus on performing security analysis. Although CAIRIS origins are in
specifying requirements, it has been extended in the years to be a tool which does all of the jobs
described plus giving a practical way of managing usability requirements too, which it seems to
be quite an innovation due to the current lack of tool-support allowing analysts and developers to
inform security design with this kind of usability insights.
The desire of having a tool which accounts both for usability and security comes from the fact
that the time and the costs, needed to implement a method that includes those features inside a
traditional requirements analysis, are higher in respect to just specifying business requirements,
since requirements engineers generally are not trained in eliciting security requirements and
they need to rely on security experts in order to do so, as addressed by [62]. In this section,
Requirements Management tools which have been enhanced to support security or usability

34

4 – Analysis of the Tools: CAIRIS and SAFAX

features will be reviewed, highlighting differences in respect to CAIRIS.

STS-Tool

STS-Tool [73] is a security requirements modelling tool, which, similarly to CAIRIS, is able to
present multiple perspectives of the system designed; in particular it allows three complementary
views: social, information and authorization view. In this way, different interactions among actors
can be analysed by working on a specific perspective instead of building a single big model of the
system at hand, helping designers separating concerns.
The social view focuses on a goal-oriented modelling. Concepts of Agents and Roles are intro-
duced; the relationship, which is established among these two entities, is based on the fact that
an agent plays a role in order to fulfil a certain goal. Both Agents and Roles are identified by the
term Actor. The goal model ties together goals and documents, which represent informations that
Actors own, or manage in some way. Another important concept, in the social view, is the Security
need: security properties are assigned to social relationships between Actors, in particular they
can be assigned to goal delegation relationships (an Actor transfers a responsibility to another)
and to document transmission relationships (an Actor allows the transmission of a document to
another in order to accomplish a goal). The security properties that can be specified are the
fundamental security properties we account in literature: integrity, availability, confidentiality,
authentication, trustworthiness, non-repudiation.
The information view, instead, is used to go deep inside the informations that documents contain
and the relationships that exist among them, indeed pieces of information belonging to different
actors can constitute, if put together, another piece of information, which can be of some value,
therefore, for this reason, they need to be properly protected.
The third view is the authorization view, defined to determine if informations are exchanged and
used in compliance with confidentiality restrictions. In other words, when an Actor shares a
document with another Actor, it has to define which authorization properties is transferring with
the document, which can be: read, modify, produce and transmit.
Finally, when the models are ready, the tool gives the possibility to perform three kinds of
analysis: a well-formedness analysis, a security analysis and a threat analysis. The purpose of
well-formedness analysis is to verify whether the diagram built by the designer is consistent and
valid according to the modelling language over which the tool is built (STS-ml [65]); security
analysis, instead, is performed to verify whether there is any possibility for the Security need to
be violated; it takes into account the semantics of STS-ml, looking at the behaviour of the rules’
propagation in transmission relationships. What could happen, for example, is that, in the design
phase of the model, we allow an actor to transfer certain security properties, associated to a certain
document, that the actor is not allowed to transfer, actually, because he does not possess them
neither. Finally, the threat analysis focuses on events threatening goals or documents, as well as
social relationships involving goals and documents. Starting from the specified threats, it analyses
how they propagate their impact over goal trees, documents and social relationships, in order to
be able to see, at the end, all the resources that could be vulnerable.
STS-Tool allows, however, to define and associate threats to goals, documents and social rela-
tionships but in a very simplistic manner, since it assumes that the represented events threatening
assets and the assets they threaten are the result of a risk analysis, performed with other specific
tools.
No concept of persona is introduced in STS-Tool; Agents refer to concrete known participants of
the system but they have no general characteristics or behavioural attitudes associated, that define
a persona’s profile. So, actually, they are just simple definitions of goals’ and documents’ owners.
For the same reason, attackers profiles don’t exist.
Without the persona’s definitions, it becomes harder to identify possible threats arising in different

35

4 – Analysis of the Tools: CAIRIS and SAFAX

scenarios, indeed there is no concept of environment supported by this tool. Furthermore, there
is no concept of Misuse Cases [70], which are used to document negative scenarios, where goals
aim to threaten the system.
Also from the visualisation point of view, CAIRIS seems to be more effective, by using colours’
distinctions in order to immediately give the perception of the risk’s entity. Moreover, models, in
CAIRIS, are automatically created after the requirement eliciting phase, while in STS-Tool have
to be manually created, resulting in a much slower and error prone approach which undermine
the intrinsic usability of the tool.

CORAS

An attempt to provide a risk analysis framework has been done by CORAS [21]. CORAS is a
model-based methodology, based on UML [58], which provides a customised graphical modelling
language, to improve the efficiency of the analysis process and the quality of results. CORAS
framework is tool supported and it provides a deep focus on threats and risks. Actually, the
IRIS meta-model, over which CAIRIS has been built, is weaker in modelling risk, since it aims
to a much broader vision in supporting secure software design, focusing on various elements in
different contexts of use [31].
From the operational point of view, CAIRIS allows to: at first, elicit security, usability and
functional requirements, then, visualise the model created, in order to have a quick and direct
view of possible issues to be managed during system design process. Differently, CORAS provides
a way of manually generating a risk model, starting immediately from the design phase, approach
which is more prone to forget important aspects that should be taken into consideration, and
putting, in this way, a lot of confidence in the security analysts who are in charge of creating the
model.
Moreover, in CORAS, there is no concept about context of use; if a slightly different context has
to be analysed, a new model has to be created. CAIRIS, instead, by introducing the notion of
environment, supports a more various and deep analysis of different scenarios that could be of
interest, automatically adapting the model. The idea underpinning CAIRIS is that risk can change
according to the scenario, as well as the security properties of assets.

SeaMonster

A tool, similar to CORAS, which has been developed to support risk analysis is SeaMonster
[64] [51], which is a graphical modelling application allowing the description of different aspects
related to security. More specifically, it allows to create models from three different perspectives:
what causes the vulnerabilities, how the system is threatened and can be attacked because of the
vulnerabilities, how the vulnerabilities or their effects can be mitigated through countermeasures.
Again, this is a simple tool which only focuses on building risk oriented models which can be very
sophisticated, but not really scalable if models grow up, since they have to be created drawing all
the modules and the relationships by hand. CAIRIS, on the other hand, allows the visualisation
of even large and complex models just by automatically elaborating the relationships between the
different components.

Rational DOORS

There exist other kinds of tools, instead, which were especially built supporting requirements
engineering. Rational DOORS [34], for example, is a Requirements Management tool developed
by IBM. What Rational DOORS developers claim is that poor and improper requirements man-
agement is the single biggest reason for project failures and can lead to disconnected working

36

4 – Analysis of the Tools: CAIRIS and SAFAX

teams, waste of time, out of control costs and unhappy customers.
Rational DOORS is a tool for capturing, tracing and analysing requirements to be managed during
the developing of complex systems; however, aside from the functional requirements aspects,
which are certainly dominant in the tool, an interesting feature of Rational DOORS is that it is
open to further extensions, thanks to the DXL (DOORS eXtension Language) scripting language,
customised to Rational DOORS, which, together with the Rational DOORS C APIs, allows a
simple integration of the tool with other applications. This means that the integration with other
existing tools which have functionalities that can be compatible with Rational DOORS is possible.
Although Rational DOORS seems to be a well accepted tool in the area of requirements engineer-
ing, it doesn’t support any graphical representation of requirements, for this reason authors in [74]
present a way of extending DOORS introducing a DXL plug-in, enabling graphical modelling
within DOORS. Probably, those good flexibility properties, that allow the simple integration with
other tools, could be exploited to enhance Rational DOORS to include security and usability
requirements plugins and risk analysis mechanisms, aiming to propose Rational DOORS as a
good security and usability requirement tool.

4.2 SAFAX

4.2.1 Introduction

SAFAX [40] is a XACML-based architectural framework tailored to the development of extensible
authorization services for distributed and collaborative systems, like cloud storage systems. Since
cloud storage services are recently becoming a dominant component in people’s everyday life and
are often already integrated in mobile or desktop devices they possess, it is quite usual to be signed
to different cloud providers and to have contents spread all over those different storage systems.
Several issues arise in such a situation: most of the time, cloud providers adopt identity-based
access control mechanisms, which means that for each specific user or group of users, a specific
policy has to be defined. The problem, from the point of view of the person which is in charge
of defining the policies, is that, when specifying some rules for a group of users, all of the single
individuals of the group have to be known and inserted in the list, which is something infeasible
when groups are composed by a large number of users. At the same time, from the point of view
of the system itself, all the users have to be necessarily registered on it, otherwise there is no way
to identify them and to guarantee that the correct policy specifications are applied. Another not
negligible issue in the policy’s definition process in those cloud storage systems is the limited
expressiveness capability: generally, it’s not possible to define complex and dynamic rules that
capture parameters from the context (for example time, location, connection security properties,
risk) and define policies which are not simply based on the specifications of users, roles and
actions over objects. Moreover, policies specification’s methods are not at all standardised, each
cloud service provider implements its own way to define policies: some of them provide a GUI
through which insert parameters, like the user’s email and the actions he can perform on the
object, some others instead require the knowledge of a specific language; this can have a strong
impact on users’ workload, due to the fact that they need to learn how to correctly deploy all of
those policies. From this issue, consequently, another one arise: if we need to update the kind of
access a certain user has granted over resources sparse among different cloud providers, there is
no way of doing that once and for all, but we are forced to manually modify the policies on all
the cloud domains. Furthermore, not only policies specification’s methods are cloud provider’s
specific, but generally, also the semantic that each system use is quite peculiar. The same term
used in a system can be present in another with a slightly different meaning, creating confusions
and misalignments. Those are the issues that SAFAX aims to solve.

37

4 – Analysis of the Tools: CAIRIS and SAFAX

Figure 4.2. SAFAX framework [40].

4.2.2 Baseline Architecture and Goals

From the point of view of the baseline architecture, SAFAX relies on the XACML standard. In
particular, the main features of SAFAX stand in how the XACML components relate with each
others and with, eventually, other possible external components.
The SAFAX framework consists of three main blocks: domain-specific components, SAFAX-
CORE and trust services (see figure 4.2). PEP, CH and PIP are domain-specific components and
are generally implemented by the domain controller, which is the cloud service provider itself,
so they depend on the application environment, addressing Req.1.1, Req.1.3, Req.1.5. The only
requisite they should have is being able to handle the conversion between the attributes given by
the application and the attributes expressed in the XACML format. The SAFAX-CORE is the main
part of SAFAX’s implementation and includes several components: first of all, the Router, which
receives the XACML requests and context attributes through specific interfaces, and forwards
those requests to the PDP. In the SAFAX-CORE, a dedicated PDP is assigned to each Domain
Owner, thus addressing Req.1.2, and it is identified by a PDP-URL, in such a way the Router is
able to identify the correct PDP to contact for an access request. When a PDP receives an access
request, it fetches the policies associated to the Domain Owner from the PAP service.
The PAP module built in the SAFAX-CORE is unique, indeed each Domain Owner of each
Domain Controller relies on the same PAP. This is one of the key point of SAFAX: to offer a
single point for deploying and managing policies, addressing Req.1.4. PDPs need also to be
configured through a PDP Configuration module (PDPC), thanks to which it is possible to define,
for a Domain Owner, the kind of PDP implementation to use and configure the selected PDP with
the proper parameters (like the root combining algorithm). A schema for the existing relations
between components within SAFAX-CORE is provided by figure 4.3.
A Trust Service Repository is also present in the SAFAX-CORE and allows external service
providers to register their services within SAFAX; moreover, it allows to any service already
registered to consume other registered services. In order to successfully complete the registration,
external services need to have assigned a Service identifier and to provide the Service Provider’s
identity, a Service description, the service endpoint (URI), the HTTP method to use to invoke the
service, the Request parameters data type, the Response parameters data type, the Request and
Response messaging format and the Service Type, which indicates the kind of service is provided
(PDP, PAP, PEP, CH, PIP, External Trust Service). It’s crucial that external services’ APIs must
conform to the specifications of SAFAX in order to communicate with the system. In order for
these trust services to be exploited, SAFAX’s developers chose to enhance the PDPs with an
External Service Extension module, which is a component that handles the invocations to external
trust services, in order not to disrupt the existing components.

38

4 – Analysis of the Tools: CAIRIS and SAFAX

Figure 4.3. SAFAX-CORE inner relations [40].

By exploiting those trusted registered services, it is possible to define User Defined Functions
(UDFs), which are Domain Owner’s custom functions and are used to retrieve external parameters
to include in the access control decision.
The SAFAX architecture does not make any assumption on the trust model to use in the cloud
environment; it has been built to work in the same way either with a Centralized Trust model or a
Distributed Trust model or a Distributed and Delegated Trust model, see figure 4.4.
According to a Centralized Trust Model, the Cloud Provider controls all the authorization services.
The domain-specific components, the SAFAX-CORE and the trust services are within the Domain
Controller, which means the Domain Owner puts his complete trust in the Cloud Provider for the
storage, the correctness of the access control decisions and the enforcement of the policies. This
kind of approach can be suitable to those environments where it is too risky to outsource some
services, like in military environments.
In a Distributed Trust Model instead the Domain Owner has to put his trust in two different
entities: the Authorization Service Provider, which is composed by the SAFAX-CORE and the
trust services, and the Domain Controller, which, from its side, implements PEP, PIP and CH.
This means that, still, the Domain Owner cannot exploit services which are external to the
authorization provider but, now, he can connect several Cloud Storage Services to the same
Authorization Service Provider, exploiting the property of SAFAX to be a unique point where to
deploy policies.
The third model, the Distributed and Delegated Trust model, is the most general one; the Domain
Owner has to trust three different entities: the Domain Controller, for the secure storage, the
Authorization Service provider, for taking correct access decisions and deployment of policies, the
External Provider, for returning correct and accurate informations to be used in policy evaluation.
Adopting SAFAX, as a unique point where to deploy policies, relieves the user, that needs to
update some permissions, from the burden of changing those permissions specifically on every
Cloud Provider. Moreover, by adopting XACML, which is an attribute-based policy language,
SAFAX gives the possibility to extend policies with custom attributes, improving the limitations
of Cloud Providers in defining policies and it defines a standard way to define them, solving in
this way the problem, for the user, to learn and adopt different languages. Moreover, by using
UDFs, SAFAX provides not only a way of defining fine-grained policies, using informations and
attributes that are taken from External Trust Services, but it also relieves the system from having
to know specifically every user identity, addressing this problem to the outside external services.
It is also possible to exploit an External Trust Service which is able to align semantics of terms,
among Cloud Providers, avoiding in this way vocabulary interpretation’s problems that otherwise
should be solved with human intervention.

39

4 – Analysis of the Tools: CAIRIS and SAFAX

Figure 4.4. Trust models supported by SAFAX (A) Centralized trust model. (B) Distributed trust
model. (C) Distributed and delegated trust model. [40].

4.2.3 Novelties

There are works that aim to improve XACML components from the point of view of perfor-
mances, like [46], where XEngine, a scheme for efficient XACML policy evaluation based on the
numericalization and normalization of XACML policies, is proposed; or in [49], where clustering
techniques and reordering algorithms are used to improve access control to policies.
SAFAX, does not bring any novelty neither for what concerns policy evaluation, since it just
reuse already existing XACML implementations, nor for what it concerns performances. The
main novelty, that SAFAX introduces and makes this tool unique, lies in the service oriented
architecture adopted for policy evaluation. The first thing to observe is that every component of
the XACML reference architecture is implemented as a loosely coupled service. Loose coupling
has a positive connotation, since it implies that services share a limited amount of features and
therefore they can evolve independently [56]. This is a great advantage, since when we need to
update and modify some properties of a service, we can do it, without having to adapt all the
others accordingly.
By looking at the literature, some work has been done in designing loosely coupled modules inside
authorizations systems, like in [44], where an extensible XACML authorization web service has
been proposed, which only focus on the development of an extensible PDP, enhanced with some
additional modules able to extend policies with non-standard data type; or in [47], where, again,
an authorization system architecture is described, highlighting the fact that PDP implementation
is refrained from closely coupling with the context-handler component.
The main difference, in respect to those approaches, is that SAFAX does not focus only on the PDP,
but on all the components of the three main blocks: domain-specific components, SAFAX-CORE’s
components, external trust services are implemented as loosely coupled services. In particular,
the External Service Extensions component, which is the one that extends the SAFAX’s PDPs,
implements, for each UDF, a self-configuring client, that consumes the external trust service;
indeed, when the Domain Owner specifies policies that require additional trust informations to
make a decision, the PDP service contacts the external trust services. By doing this way, in a
Distributed and Delegated Trust model, is the Domain Owner who is in charge of determining
from which source the informations used in policy evaluation have to be fetched, allowing in this
way the maximum of flexibility and governance to the user who wants to store and protect his
contents.
We can say that SAFAX breaks the limits imposed by current XACML implementations, which
are monolithic and does not provide proper functionalities for cloud environments, where, instead,

40

4 – Analysis of the Tools: CAIRIS and SAFAX

a dynamic approach is needed, different access control parameters have to be checked and policies
have to be enhanced with more details.
The fact that external services can be easily added to SAFAX, by registering to the SAFAX Trust
Service Repository, is another relevant feature of the tool. Some work has been carried out in
order to address the problem of the limited support for establishing and maintaining a web of
trust, in particular focusing on cloud federations. In [43] we find a definition for cloud federa-
tions: “Cloud federation comprises services from different providers aggregated in a single pool
supporting three basic interoperability features - resource migration, resource redundancy and
combination of complementary resources". In [10] an inter-cloud federation architecture, from
an high level point of view, is presented: a Cloud Exchange orchestrator acts as a market maker,
aggregating the infrastructure demand of users and the available infrastructure supply of the Cloud
Providers, that adhere to the federation. In this way, the architecture couples the administratively
and topologically distributed storage and computes capabilities of Clouds as parts of a single
resource leasing abstraction. For sure, some advantages can be seen from this perspective: from
the point of view of the user, the choice of the Cloud provider will be made according to the market
rules, dynamically, in order to benefit from the best QoS conditions guaranteed; from the point
of view of the cloud providers, instead, advantages come from a better resource’s allocation and
migration of workloads, improving the usage and the management of storage and computational
resources. If the model just described is then enhanced with the security and trust model for
Cloud infrastructures proposed in [14], it is possible to obtain a trusted cloud federation where
users’ credentials can be reused from one provider to the other, guaranteeing, in this way, the
secure access to resources, stored in different clouds, without having to be registered on each
cloud domain.
A slightly different approach is proposed in [5], where access control modules are now distributed
among different providers and not centralized in a single entity; the federation is then kept to-
gether by Service Level Agreement (SLA) modules which forward and evaluate the permissions
transferred between different providers.
By adopting the previously described approaches, the problem, which involves both authentication
and authorization, is that, when we need to include in the Federation a new cloud provider, we
need to update all the components of all the other already existing services, in order to maintain
this web of trust. The workload, resulting from this process, becomes more demanding the more
cloud domains are present. SAFAX, instead, offers a simple way of increasing the number of
trusted services just by registering on the SAFAX Trust Service Repository. In such a way, on the
one hand, SAFAX relieves the user from the burden of having to specify and manage different
access control policies on each cloud platform, on the other hand, it helps cloud providers to
reduce the implementation and management costs of developing their own authorization solutions
by outsourcing it.
In order to summarize, the main novelties, that SAFAX introduces, stands in how XACML
components and external services are connected together and in the way all components are
implemented, which is as loosely coupled services, thus providing the flexibility, extensibility,
and scalability needed to manage authorizations in cloud environments. Moreover, by proposing
itself as a unique point where to deploy policies belonging to several registered services, SAFAX
improves the usability perception of people that have to manage those services and helps the
providers of the same services which, registering to SAFAX, wouldn’t need to implement their
own access control systems any more.

41

Chapter 5

Integration

In this chapter, we present the high level implementation of the final framework obtained with the
integration of SAFAX and CAIRIS tool, presenting the complete process to carry on when config-
uring such a system, in order to be able to exploit a risk-based decision mechanism when evaluating
access requests. Then, details about the architecture and the components that characterize it are
given. Finally, some considerations about tool’s performances are outlined.

5.1 High Level Implementation

As a result of this thesis work, the implementation of a risk-based authorization mechanism has
been extended to a context-aware scenario, where decisions are tailored to the specific environment
the authorization system is facing.
This means that the authorization mechanism should be able to distinguish among requests that
involve same parameters but in slightly different contexts. A context of use can represent a time
range (Day, Night, from 10 am to 12 am, and so on) or a geographical concept (access request
coming from an internal machine of the organization or from the outside), or, in general, any
specific scenario the authorization system should be able to deal with. Adopting a context aware
mechanism let the dynamic of the decisions to improve; indeed, by providing to the authorization
mechanism a set of parameters to be evaluated, in order to take an authorization decision, we
may retrieve different risk scores, depending on the specific scenario in which those parameters
are considered. By supporting a mechanism of this kind, it is possible to address a common
issue, observed in several works that have been revised in the state of the art analysis performed
in Chapter 2, which is the failure of the attempts, that have been made, in identifying risks within
specific scenarios of usage, obtaining, in this way, quite static approaches which don’t address the
real need for a precise and dynamic way of creating a context able to describe the reality, in all its
characterizing facets.
We can identify the definition of contexts as a first necessary phase in order to consider usage
situations from different perspectives and elicit those scenarios who are of interest and those
who aren’t. By distinguishing among them, it is possible to improve the flexibility and the
accuracy of the system which relies on those scenarios, separating concerns, subjects, resources
and vulnerabilities involved. For this reason, proceeding with a first general outline of the
environments is the first step to perform towards the categorization of risks.
The second necessary step would be then, for each identified environment, to build an appropriate
risk model, in order to configure the system. To this purpose, CAIRIS, exploiting the fact of being
a security and usability requirements management tool, proposes itself as a smart and functional
way to accomplish this task, allowing a user to create an a priori detailed risk model, tailored to

42

5 – Integration

the business scenario the risk-based authorization system will be used for.
In order to achieve this, CAIRIS has to be exploited in its full potential. Assets, risks, threats,
vulnerabilities, personas and possible attackers can be defined, in such a way to feed the tool with
all the necessary requirements to automatically create the model. In order to exploit quantified
risk notions, for each specific identified environment, threats have to be assigned to the assets
they threaten and vulnerabilities have to be assigned to the assets they expose. Moreover, for each
threat, the likelihood with which it will manifest itself and the asset’s security properties it will
endanger have to be specified, together with the vulnerabilities’ severity.
By putting together those informations, the risk, for a certain resource, is going to be automatically
computed by the system making the product between likelihood of the threat, severity of the
vulnerability exposed by the risk and the risk impact. The latter represented by the security
properties endangered for the asset.
In this way a risk score is assigned for each asset in the model, according to the insights presented
in [28].
After these preliminary but fundamental “design”phases, a database of risk’s notions will be
present and ready to be used.
At this point, a user, that wants to evaluate some risk policies, just have to complete the registration
on SAFAX service, in order to obtain an account. A preliminary configuration phase is needed:
first of all, the user should create a project, then he can proceed with the creation of the demos
associated to the project. According to [40], a demo can be defined as “the management point
for regulating access to the data”; a demo allows the user to deploy XACML policies, upload
requests, choose the root combining algorithm to use inside policies and configure the kind of
PDP implementation to use in the evaluation process, indeed a single PDP is associated to each
demo. Furthermore, together with the aforementioned features, thanks to this thesis work, the
user is going to have the possibility to set his own CAIRIS credentials and database informations
to use in order to successfully authenticate on CAIRIS and retrieve risk informations (see the User
Manual in Appendix B for a more detailed description of the steps necessary to configure and use
SAFAX tool).
Once the setting of these informations is done, the user can exploit the authorization service
provided by SAFAX, both via SAFAX GUI, in order for policies and requests to be easily tested,
and also by configuring a third-party software system, that access SAFAX programmatically. The
latter method is the most interesting one because it allows a third-party system to contact SAFAX
via proper APIs and, after having performed an authentication procedure, gives the possibility
to contact the PEP web service, provided by SAFAX, and consume the authorization service, by
submitting a valid request. The same approach can be used to remotely deploy policies. Obviously,
before those operations can successfully work, the third-party system should be first configured
on SAFAX, in order to obtain authentication credentials and a dedicated PDP, according to the
specification given in [59].

5.2 Architecture

As we saw, SAFAX is an extensible XACML-based architectural framework for policy evaluation.
It can be used to evaluate simple policies that adhere to the XACML standard, moreover, at the
same time, it can be easily extended to some customized way of treating policies, by means of
UDFs. UDFs are User Defined Functions and, if they are invoked in the Rule part of the XACML
policy, allow to integrate in the evaluation process a new customized way of treating attributes.
By implementing those UDFs with the ability of treating a risk concept, it is possible to extend
this framework to support a policy evaluation process based on risk.
The service, that has been considered of particular interest in order to provide the risk values
to use during the evaluation process, performed by SAFAX, has been identified in CAIRIS. As

43

5 – Integration

Figure 5.1. High level architecture supporting the CAIRIS-SAFAX interaction.

we saw, CAIRIS is a security and usability requirements management tool, which allows the
characterization and construction of real case models supporting the system design process.
After having presented how these two tools successfully conform to the first two classes of re-
quirements, identified in Chapter 3, necessary to develop a risk-based access control framework
and involving the implementation of an XACML-based architectural framework and of a risk
estimation module, we are going to present how the integration of the two has been successfully
obtained.
The architecture that allows the interaction among the two services, CAIRIS and SAFAX, is
shown in figure 5.1. The SAFAX Risk Service component is a RESTful web service and runs on
a CAIRIS server. Logically, the component contains a controller object, which has been placed
behind the APIs, and a DAO object, which works as an intermediary between the controller and
a database proxy. The SAFAX Risk Service interacts with a CAIRIS Model, which is a relational
database, containing security informations about the assets, threats, vulnerabilities, risks, and
usability informations such as personas and task descriptions, addressing the previously identified
need for managing those informations.
This service is registered within the Trust Service Repository on the SAFAX server and is ac-
cessed, by means of specific APIs, by the CAIRIS module, which has been the main development
focus of this thesis work, and runs on a SAFAX server, addressing Req.3.4.
The Trust Service Repository uses a MySQL back-end database to store the informations regard-
ing a service, such as the URL to contact the service, the HTTP method to use, the number of
parameters to include, the kind of service provided (PIP, PEP, UDF, etc). Moreover, in order to
support the aforementioned configuration procedure, to exploit the CAIRIS service, two brand
new tables have been added to the database: a sfx_cairis_credentials table and a sfx_cairis_db
table (see the Developer Manual in Appendix A for more details about these tables). The first one
is used to store the CAIRIS credentials, specific for each demo present in the system, so a reference
to the demoid had to be made in order to successfully perform the association; the second one,
instead, stores the informations about CAIRIS databases that can be contacted to retrieve risks.
The logical relation linking the two tables stands in the possibility of having multiple databases
associated to the same credentials. From CAIRIS side, indeed, each user has the possibility to
create his own databases, related to the corresponding developed models, which are personal and
dedicated to the user.
The CAIRIS module is the entity responsible of managing the communication between SAFAX and
CAIRIS tools, in particular between the SAFAX PDP and the SAFAX Risk Service implemented
by CAIRIS. To this purpose, the CAIRIS module intercepts the PDP invocation of the CAIRIS risk
service, during policy evaluation. The risk service, indeed, is summoned by means of a specific
set of APIs, that the PDP itself invoke, in order to contact the module and that represent a risk

44

5 – Integration

request, addressing Req.3.3. Then, the CAIRIS module constructs a valid HTTP request, by filling
it with all the necessary parameters to retrieve the risk score, in such a way to cope with the format
requirements supported by the CAIRIS APIs and thus addressing Req.3.1. In order to retrieve
these risk values, the CAIRIS module has to go through two preliminary steps: first authenticate
on CAIRIS system, then contact the desired CAIRIS database. Basic HTTP authentication is
the implemented mechanism used to obtain a valid session on CAIRIS; this session is a unique
identifier for an incoming request and it is represented by a string of 32 alphanumeric characters
(see table 5.1 for the details about the API used). The session obtained will be then used when
contacting the CAIRIS Open-Database API, used to open the specified database (see table 5.2 for
more details about the API).
According to the developed solution, a user, that wants to evaluate a request against a policy,
exploiting the notion of risk, has the possibility to specify, in it, one out of four possible combi-
nations of attributes, in such a way to retrieve the desired risk value. These four combinations are
mapped into four different APIs supported by CAIRIS (details about these APIs can be found in
5.3, 5.4, 5.5, 5.6 tables):

1. /api/risk_level/asset/{asset_name}, see table 5.3.

2. /api/risk_level/asset/threat_type/{asset_name}/{threat_type_name}, see table 5.4.

3. /api/risk_level/asset/{asset_name}/environment/{environment_name}, see table 5.5.

4. /api/risk_level/asset/threat_type/{asset_name}/{threat_type_name}/environment/
{environment_name}, see table 5.6.

By using the first enumerated API, a user needs to specify, in the request, the asset name, which
identifies a resource. In this case, CAIRIS will return as a result the highest risk value associated
to the specified asset.
If, instead, a user wants to exploit the second enumerated API, he needs to specify the asset name
and the threat type name, which represents a possible threat associated to the asset. In such a
situation, CAIRIS will return the highest risk score associated to the resource given the specified
threat type.
With the introduction of the last two enumerated APIs, we allow the further specification of the
environment as a context of use, in such a way to let CAIRIS return, respectively, the highest risk
score associated to a resource in the given environment and the highest risk score associated to
a resource, given a certain threat type, in the given environment. In this way, we cope with the
need, identified at the beginning of Section 5.1, for distinguishing among risks involving threats
and assets which belong to multiple environments.
In order to find a matching for resources, threat’s specifications and environments, clearly, the two
tools need to be aligned, using the same identifiers.
Beside the URL parameters, the only data parameter needed in these APIs is the identifier of the
session, which will automatically point the risk request towards the previously opened CAIRIS
database.
Once the desired risk value has been retrieved from CAIRIS, the CAIRIS module, present in
SAFAX, parses the response and evaluate it, then it communicates to the PDP the final decision,
so that the PDP can enforce it.
The evaluation mechanism implemented is threshold based, meaning that, in order to take an
authorization decision, the risk value is compared against a threshold, but, could be, eventually,
easily extensible with other mechanisms. When the risk value is higher than the threshold, it means
the risk is too high to be accepted and the authorization request cannot be granted, otherwise,
when the risk value is lower or equal than the threshold, it means the risk is acceptable and the
system should grant the authorization to the request. With the definition of the evaluation logic

45

5 – Integration

Figure 5.2. Distributed and Delegated Trust Model with CAIRIS usage.

we can address Req.3.2.
Thresholds have to be specified in the Rule’s condition, within the policy, in such a way that we
can easily associate them to the specific resources they refer to. Therefore, when defining a policy,
a user, together with the asset, threat type, environment attributes, has to immediately define a
value for the resource’s risk threshold.
As a result, the current implementation allows to establish a distributed and delegated trust model,
the most open and extensible among the trust models identified by [40]. This model provides the
highest level of flexibility, by delegating to three different parties the tasks. The SAFAX service
acts as the Authorization Service Provider, while CAIRIS is the External Provider, which provides
an external trust service. The Domain Controller role will be identified by any application which
decides to consume the SAFAX service. Figure 5.2 shows the distributed and delegated trust
model which involves the interaction with CAIRIS as an external service.

5.3 Performance Considerations

As revised in Section 4.2, one of the most relevant features of SAFAX is the way it has been
built. The architecture, indeed, includes several components which have been implemented as
loosely coupled services, thus allowing to anyone, who would like to exploit the service provided
by a customized XACML component or external service, to easily include it inside the project.
It follows that great extensibility properties come from the intrinsic core architecture of SAFAX,
emphasising, in this way, one of the main goals of the developers of the tool, which is to create
an application that could hugely evolve in the future, together with technology innovations and
services, supporting advanced authorization scenarios, like papers [25], [48], [75] present.
SAFAX services have been implemented as RESTful web services that strictly conform to the

46

5 – Integration

Figure 5.3. Information flow during a risk evaluation request, once preliminary authenti-
cation steps have been performed.

properties of being purely stateless with all information related to the state contained either with
the request or stored in a persistent database. Moreover, services communicate with each other
either in JSON or XML [40].
It is important to make those premises in order to better understand the functioning of the tool
and the results a user should expect from it, since the underlying architecture, over this tool has
been built, strongly determine its performances.
Due to the inherent structure of the framework, in order for the modules to communicate with
each other, several HTTP calls have to be performed, sending requests and retrieving responses
in every communication step among the XACML reference architecture’s components, which act
as independent standalone web services. It follows that, whenever a request is submitted and
have to be evaluated against a policy, first of all, the PEP web service is contacted through the
proper API, the PEP forwards the request to the web service acting as Context Handler, which
forwards the request to the PDP and, eventually, if the PDP asks to, it fills the request with context
informations taken from the PIP. The PDP needs to contact the PAP module, then, to retrieve
policies. Moreover, during the evaluation procedure, the PDP contacts the CAIRIS module, by
means of the proper APIs.
The CAIRIS module, then, needs to perform an HTTP request towards the CAIRIS server, in
order to retrieve the risk information. Actually, before being able to retrieve the risk score from
CAIRIS, an authentication procedure has to be successfully carried out and the desired database
has to be opened in order to let the risk APIs point directly to the correct set of data. These are
two distinct operations that happens in sequence. It would be certainly interesting to analyse the
percentage of time those operations require, in respect to the total evaluation time for a request,
in such a way to analyse the weight that these have within all the evaluation process and in order
to have a clear understanding of the causes for all the experienced delays.
If an application relies on the XACML architectural components provided by SAFAX, exploiting
the service programmatically, then the interface between the CAIRIS module and the SAFAX
Risk Service represents the only point of communication between an internal SAFAX component

47

5 – Integration

and an entity implemented outside the SAFAX server. If instead we suppose an application
implements its own PEP, CH and PIP components, SAFAX becomes the Authorization Provider,
offering the authorization features that PDP, PAP and CAIRIS module implement, according to
the aforementioned distributed and delegated trust model. In this latter case there would be two
communication flows crossing the public internet: the one representing the interface between the
application specific CH and the SAFAX PDP and, again, the one between CAIRIS module and
the SAFAX Risk Service on the CAIRIS server. The complete information flow happening in such
architecture is shown in figure 5.3.
As a result, by avoiding to implement the whole authorization mechanism, offered by the SAFAX
tool, as a monolithic component, a great extensibility is allowed, but performances are penalized:
even if all the modules are physically deployed on the same server, logically they represents
standalone web services that communicate as if they belong to different projects deployed on
diverse servers, situation which could, in principle, be true, if again we take as example the
distributed and delegated trust model where PEP, PIP, CH and external trust services are provided
by different entities from SAFAX (figure 5.2).
A further interesting direction to take, when analysing the performances of the tool, could be to
observe whether and how the evaluation time varies when the risk policy changes, in particular
when it changes in respect to the different supported scenarios that exploit the four aforementioned
APIs (tables 5.3, 5.4, 5.5, 5.6). The expressiveness of a risk policy changes according to these
four situations: the most general case is represented by API 5.3, according to which the highest
risk value for an asset, considering all the possible associated threats and within all the possible
environments, is retrieved. In this case, the CAIRIS database has to compute and return the
maximum value among all the risk scores associated to the specified asset, a task which is heavier
the highest is the number of risk scores present in the database and associated to the specified
asset, thus the highest is the number of threat for the asset and the number of environments in
which it can be considered. By applying some sort of filtering, instead, either on the environment
(5.5) or on the threat type (5.4) or on both (5.6), we would expect the risk retrieval process on
the database to be a faster task, since the number of possible entries, over which the maximum
operation have to be performed, should decrease in respect to the more general case.

48

5 – Integration

Session API Returns a valid CAIRIS session-id
URL /api/session
Method POST
HTTP Authorization Header Type: Basic

Base64Encoded: {username}:{password}
Success Response Code: 200, Content: {session_id: String}
Error Response Bad Request (400), Content: {error: String}

Table 5.1. CAIRIS Session API table.

Open-Database API Allows a session-id to point to a specific CAIRIS database
URL /api/settings/database/{dbname}/open
Method POST
URL Parameters {dbname}: String [Required]

{dbname}: identifies the database to contact.
DATA Parameters {session_id : String}
Success Response Code: 200, Content: {resp_result: String}

resp_result corresponds to a message advertising the successful
operation.

Error Response Bad Request (400), Content: {error: String}
Session Not Found (409), Content: {error: String}

Table 5.2. CAIRIS Open-Database API table.

Risk API 1 Returns the highest risk score associated to an asset
URL /api/risk_level/asset/{asset_name}
Method GET
URL Parameters {asset_name}: String [Required]

{asset_name} identifies a resource.
DATA Parameters {session_id : String}
Success Response Code: 200, Content: {risk_level: Integer}

risk_level corresponds to the risk score, where 0 ≤ risk_level ≤ 10.
Error Response Bad Request (400), Content: {error: String}

Unauthorized (401), Content: {error: String}

Table 5.3. CAIRIS Risk API 1 table.

49

5 – Integration

Risk API 2 Returns the highest risk score associated to an asset
given a threat type

URL /api/risk_level/asset/threat_type/{asset_name}/{threat_type_name}
Method GET
URL Parameters {asset_name}: String [Required]

{threat_type_name}: String [Required]
{asset_name} identifies a resource.

{threat_type_name} identifies a threat type.
DATA Parameters {session_id : String}
Success Response Code: 200, Content: {risk_level: Integer}

risk_level corresponds to the risk score, where 0 ≤ risk_level ≤ 10.
Error Response Bad Request (400), Content: {error: String}

Unauthorized (401), Content: {error: String}

Table 5.4. CAIRIS Risk API 2 table.

Risk API 3 Returns the highest risk score associated to an asset
in a specific environment

URL /api/risk_level/asset/{asset_name}/environment/{environment_name}
Method GET
URL Parameters {asset_name}: String [Required]

{environment_name}: String [Required]
{asset_name} identifies a resource.

{environment_name} identifies a context.
DATA Parameters {session_id : String}
Success Response Code: 200, Content: {risk_level: Integer}

risk_level corresponds to the risk score, where 0 ≤ risk_level ≤ 10.
Error Response Bad Request (400), Content: {error: String}

Unauthorized (401), Content: {error: String}

Table 5.5. CAIRIS Risk API 3 table.

Risk API 4 Returns the highest risk score associated to an asset
given a threat type and in a specific environment

URL /api/risk_level/asset/threat_type/{asset_name}/{threat_type_name}/
environment/{environment_name}

Method GET
URL Parameters {asset_name}: String [Required]

{threat_type_name}: String [Required]
{environment_name}: String [Required]

{asset_name} identifies a resource.
{threat_type_name}: identifies a threat type.

{environment_name} identifies a context.
DATA Parameters {session_id : String}
Success Response Code: 200, Content: {risk_level: Integer}

risk_level corresponds to the risk score, where 0 ≤ risk_level ≤ 10.
Error Response Bad Request (400), Content: {error: String}

Unauthorized (401), Content: {error: String}

Table 5.6. CAIRIS Risk API 4 table.

50

Chapter 6

Usage Scenarios

In this section, three usage scenarios will be presented in order to give some hints and suggestions
about how the risk-based authorization system developed could be applied and used in real case
situations. The first scenario involves a water company, which relies on a distributed system,
both accessible via internal network or remotely from the outside, in order to manage the whole
infrastructure over which the business has been built. In the second scenario, we present a
possible application to an healthcare facility scenario. The third scenario involves a grid-based
collaborative system, used by research centres to share knowledge and research progresses mainly
about neural diseases, involving people’s sensitive informations.

6.1 Scenario 1: ACME Water

ACME Water [2] is a UK water company using a cloud-based enterprise SCADA system. The
company has been object of a case study [30] where a user-centered approach was taken to elicit
and analyse information security policy requirements following reports of the Stuxnet worm [33].
To this purpose, ACME Water has a User Experience (UX) team which has carried out users
research, by interviewing people, within the company, in order to create a database of personas
characterizing typical roles in the organization (instrument technician, plant operator, ICT partner,
etc) and descriptions of tasks these different roles carry out.
In order to perform this kind of research, CAIRIS tool has been used. CAIRIS, indeed, allows
a detailed characterization of personas, specifying their roles, their motivations, to perform their
tasks, and their capabilities. Furthermore, CAIRIS allows the identification of environments,
representing different possible working scenarios, helping in this way the team to separate concerns
and develop, in this way, more specific models.
Thanks to CAIRIS, it has been possible to create a complete task model, able to link with each other
all the elicited informations. In particular, each persona has been assigned to a role and to tasks
he performs, while tasks have been associated with assets of concern in the given environments.
ACME Water has also a security team which has been designated to create a risk database over
which rely, in order to track incidents and risks associated with the ability to endanger the water
delivery from this critical national infrastructure. In order to accomplish this task, they exploited
again the functionalities offered by CAIRIS, which has helped them to create a risk model, tailored
to the requirements elicited in the task model, carried out previously by the UX team. Thanks
to the features offered by the tool, each risk is associated with a collection of assets, either
threatened by an attacker, or exposed as a vulnerability that an attacker might exploit. For each
asset the security properties to protect are identified, for each vulnerability, moreover, the security
properties it endangers are specified. By linking vulnerabilities with assets, risks can be elicited

51

6 – Usage Scenarios

and a score for those risks is automatically computed.
Among the several personas and workers there is Barry [9]. Barry is an authorized instrument
technician of ACME Water and much of his work involves equipment modification and instrument
calibration; this work arises from specific requests from his superiors, or as activities which are
part of on-going projects to improve plant efficiency. As part of these changes, Barry may need
to modify alarms on outstations, and make minor changes to PLCs and HMIs.
By using the SCADA system, it is possible for Barry to remotely configure SCADA Human
Machine Interface (HMI) files, which would otherwise only be possible by being present in water
treatment plants, using the HMI.
Each operation which involves the access to resources, which reside within workstations connected
to the internal network of the company, such as modifications of files, preview of confidential
documents, execution of software processes, has to be evaluated from an access control policy.
The security team, after some years of adoption of a role-based access control mechanism, has
decided to pass to a more dynamic solution, which involves the evaluation of risk parameters when
dealing with access requests. In order to rely on an approach of this kind, the SAFAX service
has been chosen. In particular, they decided to rely on the complete XACML infrastructure
offered by SAFAX, thus delegating to it each functionalities needed during the policy evaluation.
This means that whenever a user tries to perform an access over a resource, the SAFAX PEP is
contacted and it is the one to initially block the user’s access, until a valid authorization response
is communicated to it by the PDP.
The idea of adopting this new solution, when taking authorization decisions, came from the
observation that, in the last years, due to a significant expansion of the water treatment plants,
the dynamics and the organization of the work, within the company, have changed: it has been
observed, for example, that the number of accesses to the SCADA workstations from within the
plants has significantly decreased, highlighting how the remote access, to these workstations, has
become the preferable way for carrying out most of the tasks. From this perspective, the two
environments, elicited during the characterization of the models, are precisely insite and offsite,
which separate the operations that can be performed being within a water treatment plant from
the ones that can be performed from the outside.
Starting from these two scenarios, a whole new set of threats, now, has to be accounted for, since
the access to the resources may be performed from potentially insecure external machines, thus,
the fact of possessing the authorization permissions coming from the intrinsic trust put in a role
is not anymore sufficient to guarantee an appropriate level of protection for the system.

6.1.1 Situation 1:

The ACME Water security team is made aware of a new piece of Windows malware that,
potentially, has affected every laptop used by instrument technicians at ACME Water. The
malware tampers with SCADA HMI files, and the malicious execution is invoked each time the
laptop connects to the public Internet. This malware might affect Barry’s laptop when remotely
connecting to the SCADA system offsite, but does not affect him if he alters the file using the
laptop on a treatment plant site private wi-fi network or on a workstation at the plant.
ACME Water’s security team, after having built up the risk model and eliciting, among the
different identified threats, all the potential risks that could result either from performing an
access from within the plant’s internal network or from outside, wants a policy that denies the
access to SCADA HMI files under the following condition: the risk posed by any threat exceeds
a threshold of 6, where the risk level depends on whether the SCADA HMI file is accessed insite
or offsite. In order to have an implementation of this kind, the security team has uploaded, on
SAFAX, a specific policy which has as target’s subject SCADA HMI files, as target’s environment
offsite and as target’s actions read and modify. Furthermore, in order to exploit the risk service,

52

6 – Usage Scenarios

they specified as UDF function the one linked to the risk API that, given an asset, identified among
a set of 50, and an environment specified in a request, is able to retrieve the highest risk score
associated to that asset in the given environment, among all the possible threats (table 5.3), which
are roughly 50 for each environment.
Given the likelihood with which has spread in systems similar to ACME Water and the severity of
the vulnerability that is associated to this threat, which mainly would endanger the confidentiality
of informations and the integrity of the system, the highest risk retrieved is precisely the one
posed by the new Windows malware and is rated as a 9, in case of a remote access, and as a 4
if, instead, the access to the file happens from a workstation within the infrastructure’s private
network domain. Consequently, if Barry attempts to access the SCADA HMI file using his laptop
offsite, his request should be denied.

6.1.2 Situation 2:

One of the advantages that CAIRIS brought within the company, by adopting it, has been the
fact of offering itself not only as a security, but also as a usability requirements management
tool, allowing the security team to associate personas and tasks to assets, tracking the usability
implications of these tasks. Indeed, it could happen that if assets were compromised or made
unavailable, the workload of the associated user would increase to the extent that he might violate
security in order to complete the task.
In order to cope with this possible issue, the ACME Water security team wishes to apply an
additional policy, in SAFAX, such that if the denying someone access to a resource would
otherwise affect a critical task, access should be granted if the associated risk scores less than 8.
Barry is often called out to troubleshoot problems at sites and kiosks within his area of operations,
which can involve software changes, ranging from simply downloading software to a device to
clean up its memory, through to re-generating the software from configuration sheets if no software
backup is available. In such a situation and keeping in consideration the warnings made by the
security team, which follow from the situation, in 6.1.1, previously presented, regarding the new
malware discovered, Barry needs to modify a SCADA HMI file while simultaneously carrying
out another job offsite (an emergency requiring the technician to fix multiple issues across a wide
geographical area). If the access to the file is denied then Barry’s behaviour becomes undefined
and he may attempt to carry out the task via some undocumented means: for example, he might
drive to the affected plant to modify the SCADA settings locally, thus increasing the response
time for the other emergencies, or he might use some questionable workaround, skipping steps in
the task that may lead to a security violation.
This possible issue has been already foreseen by the UX team, thanks to the deep research carried
out, thus the CAIRIS service has been configured in such a way to mitigate the risk score by
decreasing it of 2 points, if the system is made aware of the other pending emergencies assigned to
the same technician. It will be up to the authorization service, in particular to the CAIRIS module,
offered by SAFAX, to check if the final mitigated risk can be met by the threshold specified in the
policy.
In such a situation, the risk related to the access to the resource will be now rated as a 7,
consequently, Barry should be allowed to access the resource.

6.2 Scenario 2: Healthcare facility

Healthcare organizations are complex and dynamic. Within an healthcare facility there is a huge
number of tasks to be performed and a huge number of people working in it, everyone fitting in
his own role. It is usually present a management section in order to support and coordinate the

53

6 – Usage Scenarios

services that are provided within the organization, an administrative section to take care of all the
bureaucracy and human resources, then there are doctors, nurses and possibly also students which
are doing their internship within the hospital. Furthermore, cannot be forget the staff that works
inside the facility like cooks, laundry workers, cleaners, security personnel and information sys-
tem administrators. All those figures and roles must be taken into consideration when developing
a scenario of usage, in particular if they have access to the facility’s network, since everyone of
them could represent a possible threat.
The intrinsic nature of this kind of facilities makes these scenarios highly dynamic and difficult
to predict a priori, the same difficulties stand in the definition of authorization policies that allow
to maintain an high level of security but, on the other hand, that allow an acceptable degree of
freedom for users, that interact with the information system of the facility, in order to perform
operations that can be particularly sensitive and urgent.
The adoption of a dynamic context aware risk-based access control mechanism would help the
system to take more thoughtful authorization decisions, which may vary depending on the envi-
ronments the system is facing.
In this kind of scenario, the security policy adopted by the organization foresees two kinds of
environments: critical and not-critical. The critical one represents a red code emergency situation
with high urgency requested, the not-critical one, instead, represents green or yellow code emer-
gency, where the situation is easier to manage and there is not such urgency. The two environments
are modelled with CAIRIS, assets of concerns are grouped in three main categories: informations,
which are mainly characterized by integrity, confidentiality and availability properties; hardware,
which represents the physical hardware devices used inside the facility, mainly characterized by
availability properties; software, which represents programs and tools used by the facility person-
nel, characterized by integrity, availability, and accountability properties. Patients’ confidential
records probably represent the most sensitive assets within the information class, due to the high
confidentiality that characterizes them.
An external security firm has been entrusted with the development of risk models contextualized
to the different identified environments, in such a way to create a database of risks to be exploited
during policy evaluations.
By analysing the developed model, built up on the facility scenario, with CAIRIS, one of the main
threats identified by the security team is the intentional or unintentional disclosure of sensitive
informations, regarding patients, to the unauthorized personnel. For this reason, some facility’s
executive manager, involved as a stakeholder, during the elicitation requirements and risks def-
inition process, is more prone to use a policy which implements very strong rules regulating
informations’ accesses; at the same time, though, it has been observed, by past experiences,
that a too conservative policy has sometimes resulted in the arising of unacceptable issues, that
prevented some patients to be appropriately taken care of, putting at serious risk their physical
wellness.
With the identification of separate environments, it has been possible to give a finer-grained
resolution to the problem. Authorization decisions will be taken evaluating the risk of a request
against a threshold and depending on the environment.
The information system adopted by the facility, in order to manage authorization requests, relies on
an application which autonomously implements the PEP, PIP and CH components, characterizing
the XACML-based architectural framework, but the CH has been implemented in such a way to
contact the PDPs configured on SAFAX service, which represents the authorization provider and
the trusted repository point where to deploy policies. It will be up to SAFAX service, then, to
retrieve the risk scores from the CAIRIS database, configured by the security team. An imple-
mentation of this kind exactly represent the Distributed and Delegated Trust model (figure 5.2).
According to the deployed policy, if the risk exceeds the value of the threshold the permission is
denied, otherwise it is granted.
A first check performed by the policy is to identify the role of the subject, which is associated to

54

6 – Usage Scenarios

the subject credentials as an attribute and is provided by the PIP; a second check foresees to verify
whether the request comes from an authorized terminal or not. Indeed, sensitive informations,
such as patients’ medical records can be accessed only from workstations situated in the same
ward where the patient is treated. The entity which is responsible of identifying the terminal is
again the PIP, which saves the information as an additional attribute to be used in the policies. A
third check is, moreover, performed over the kind of access the user is trying to perform (read,
update, etc).
In order to retrieve the risk, the request should be filled with the following parameters: the re-
source that the subject is trying to have access to, the threat associated to the kind of access it is
requested and the environment in which the authorization request is submitted. The specification
of these three parameters allows to use a customized UDF, inside the reference policy, which
exploits the API able to retrieve the highest risk score for an asset, given a certain threat, within
the specified environment (table 5.6). In such a scenario, 120 sensitive assets have been identified
by the security team during requirements elicitation, which may possibly be endangered in both
the considered environments, each one attackable by roughly 50 threats.

6.2.1 Situation:

An emergency happens, a patient in life-danger conditions arrives and no doctor is at the moment
available, due to the high workload given by multiple emergencies. Only nurses, which have a
lower security level in respect to doctors, are able to receive the patient and they need to look into
his clinical records in order to find whether a certain treatment could be good for the patient or
could be harmful. By accessing his clinical records, confidential and sensitive informations about
the patient would be disclosed.
Normally, which means in presence of a not-critical emergency, or during the normal operations
performed, without a specific association to an emergency, due to the security policy adopted by
the facility, nurses wouldn’t be able to access that kind of resources, since the risk threshold set
to 6 by the risk policy, developed by the security team, would block the access. For example, a
reading mode request, made by a nurse using a terminal, within the same area where the patient
is treated, will result in a score of 8, that if not mitigated in some way, would result in a risk too
high.
In this specific situation, though, the red code emergency would set the environment to critical: the
highest risk score associated to a reading access to the patient’s clinical records, considering the
possible information disclosure threat, identified within the critical environment, will be retrieved.
In such critical scenario, the risk posed by the threat has been configured to assume less dangerous
values, by relaxing, in CAIRIS, the relevance value of the associated security properties, giving
as a result 6, the minimum acceptable value in order to grant the permission, and allowing in this
way the nurses to access the patient information records and accomplish their task.

6.3 Scenario 3: NeuroGrid

NeuroGrid [54] was a UK Medical Research Council funded project to develop a grid-based
collaborative research environment for different clinical researcher communities and a case study
based on this scenario is going to be presented now.
The main goals of this collaborative system are collecting, analysing, interpreting and secure
archiving of neuroimaging data. According to the NeuroGrid CAIRIS example [53], three
environments are defined: Core technology, characterized by NeuroGrid infrastructure operations;
Psychosis, where the focus is put on the integration of serial MRI scans and behavioural data,
and on the development of methodologies to perform analysis over those data, together with the

55

6 – Usage Scenarios

development of a general ontology for psychosis related data; and finally Stroke, which focus
on improving the infrastructure that allows the sharing, among different researches centre, of
large archives of images linked to key metadata for diseases which require long term study. The
sensitivity of those clinical data and their distributed nature drives the need to find secure and
effective ways of accessing and managing them.
Since the community of researchers, which decided to adhere to the project, are spread all over the
world and each one of them relies on a specific repository for accessing and managing resources,
there is the absolute need for coordinating the access to those resources in such a way to protect
the informations but at the same time to guarantee an appropriate level of usage. To this purpose,
SAFAX has been adopted as a unique point were to deploy policies and each repository interface
used among the different communities has been registered within the SAFAX service repository,
in such a way to coordinate and group all the authorization policies in a single place, and allowing
to specify them once and for all and not anymore singularly for each repository’s authorization
system, incurring in the risk of possible misalignment among the different communities.
Basically, a Distributed and Delegated Trust model is implemented, with the repository’s specific
authorization systems implementing their own web interfaces relying on specific PEP, PIP and
CH components. In order to rely on the same policies, each implemented CH will contact the
dedicated PDP, configured on the SAFAX server and, if requested by the policy, the CAIRIS
module, again implemented on the SAFAX server will be invoked in order to evaluate a risk
request and retrieving this risk from CAIRIS server.
A preliminary configuration phase is indeed necessary both in SAFAX to configure PDPs, deploy
policies and configure the credentials that those PDPs need in order to contact the CAIRIS service,
and, in CAIRIS, to develop a risk model, able to elicit and quantify the possible risks arising from
the identified scenarios, in such a way to create a complete database of risk notions.
One of the main issues, characterizing the management of resources in this collaborative network,
stands in the fact that when interrogating the NeuroGrid databases, it is very simple to aggregate
and disaggregate informations, forcing the system to show all the wished results, with the risk of
releasing too explicit informations that could compromise the confidentiality of data and clearly
the privacy of people. For this reason, anonymization’s measures have to be adopted.
In order to cope with these security requirements, which require a certain dynamic and responsive
ways of managing informations and involving outcomes which cannot be easily predicted, the
authorization system has been configured to rely on policies which consider risk scores, which
varies with the environments and the kind of request is performed.
In particular, a risk is evaluated depending on the number of subjects involved in the research
and whether the access to the database happens from a machine inside or outside the centre.
Researchers, anyway, are strongly discouraged to adopt this last option and whenever they need
to access data being offsite they are obliged to submit a report justifying the kind of work they are
carrying on. The thresholds instead are set only by looking at the number of subjects the results
are based on; in this way the fact of being offsite will just make the risk worse, thus increasing the
probability of rejecting the request.
In particular, policies have been defined in such a way that if, in any query performed, the
results obtained are based on less than 10 subjects, the risk threshold is set to 1, meaning that
in any case the risk of accessing those kinds of informations is too high, since it could bring to
the identification of specific subjects and none of the people should be allowed to access those
sensitive data. When the number of subjects is higher than 10 up to 20, then the risk’s threshold
is set to 4. When, instead, the number of subjects is higher than 20, then the threshold is set to 7.
In this kind of scenario, CAIRIS has been configured in such a way that assets are represented by
diverse aggregations of sensitive informations and environments are represented by the aggregation
of a particular research scenario (Core Technology, Psychosis and Stroke) with the fact of accessing
the informations either from a machine connected to the internal network of a research centre or
from the outside.

56

6 – Usage Scenarios

Policies, in SAFAX, have been configured to retrieve, through the proper UDF, the highest risk
score for a resource in a specific environment.

6.3.1 Situation:

A community of researchers is particularly focused on the Stroke environment, investigating and
analysing data and images concerning some special kinds of diseases. The work of the researchers
is now focused in comparing different cases of the same disease with the goal of finding some
common ground in order to make some guesses about distinctive characteristics in people that
probably are the main cause in the arising of the disease. More specifically, in this kind of
scenario, they have to deal with a database of 120 subjects, which are the assets considered at
risks. In order to come up with the first conclusions, a lot of studies, analysis, data processing and
queries towards NeuroGrid database have to be done.
Claire is a clinical researcher and she is responsible for this researchers’ community. She autho-
rizes requests that other members of her group make for accessing NeuroGrid, and is officially
responsible for making sure her colleagues aren’t misusing their access. Anyway, sometimes, in
order to speed up some works and simplify some bureaucracy’s issues, she’s used to let Maria
and Mark, two students doing their internship in the research centre, use her digital certificate, in
order for them to have a broader access to the NeuroGrid resources and perform more accurate
analysis. The two young students have been instructed about the security procedures adopted by
the centre, anyway the perception they have about security is quite superficial, especially if it is
related to cyber-threats.
Mark, which is really enthusiastic about the project is working on, in order to complete some
analysis he was doing during the day, access the NeuroGrid database, with Claire’s certificate,
from his laptop at home and starts interrogating it. Unfortunately, he is not aware of the fact that a
malicious software is acting in background and downloading any web page he has access to. Since
the requests he makes are quite specific (he wants to retrieve the date of birth, the place of birth and
the nationality of the parents of all people affected by the disease under study that currently live
in the south-east of England) and they could be possibly dangerous, from the confidentiality point
of view (it happens that the data refer to just 15 subjects), the risk score will be evaluated as an
8, a value that takes into account the confidentiality of the data plus the offsite access mode. The
risk score is greater than 4, so he won’t be able to successfully obtain the wished results, avoiding
in this way a possible undesired disclosure of informations, that would have been captured by the
malware.
After having realized that such informations are not possible to retrieve, at least not from being
outside the centre, he decides, for the moment, to settle for a more general research (30 subjects
involved), that brings to a risk score of 6, now to be compared with a threshold of 7, letting
in this way Mark access the informations. At this point, the results obtained are sufficiently
aggregated in such a way to loose their confidentiality property, so even if the malware captures
those informations they are not considered a threat.

57

Chapter 7

Performance Results

In this chapter the results, obtained after having carried out a performance analysis of the developed
system, are going to be presented and discussed.
The analysis has been performed by deploying the CAIRIS’ and SAFAX’s components into three
different virtual machines on the same host machine, by using the VirtualBox virtualization
environment, in such a way to emulate the Distributed and Delegated Trust Model presented in
[40] and already shown in figure 5.2. In particular, the PEP, PIP and CH web service components
have been deployed on one machine; the PDP, PAP, CAIRIS module and a the database, where
to store policies, CAIRIS’ credentials and models informations on a second machine; finally, the
CAIRIS service, together with a database where to upload the CAIRIS models with which to
interact, on a third machine. The three virtual machines have been configured to be on the same
internal network in order to communicate. Figure 7.1 shows the adopted deployment diagram.
From the figure, VM1 and VM2 represent two 64 bit Linux Ubuntu 14.04 LTS virtual machines,
while VM3 is a 64 bit Linux Ubuntu 16.04 LTS virtual machine. The latter exploits the currently
last Linux operating system version, which is the suggested and most tested one, in such a way to
correctly install the tool. On VM1 and VM2 the web services run on an Apache Tomcat 7.0.76
server and on VM2 a MySQL 5.5 Database has been installed. On VM3, instead, the CAIRIS
server runs on an Apache2 HTTP server and interacts with a MySQL 5.7 Database.
The performance analysis carried out in this chapter has as object the policy evaluation time for a
request, which needs a risk score retrieval in order to be evaluated. By performing an analysis of
this kind, it has been possible to observe the average policy evaluation times at different level of
granularity, understanding for each component the average percentage of time it spends in order
to accomplish its tasks. Furthermore, a specific focus has been maintained over the risk retrieval
time from CAIRIS, observing how it varies when the load, in terms of number of risks stored,
of the CAIRIS database changes and when the expressiveness of the policy changes as well, by
exploiting the four APIs supported and described in detail in Chapter 5.
For each experiment, the average values obtained as results have been computed over 50 runs, in
order to make a sufficient number of tests smoothing out the variance of the results.
A first set of results are shown in figure 7.2. These results have been obtained exploiting the
usage of API 1 (table 5.3) and varying the number of assets and the number of threats present in
the CAIRIS database and assigned to a specific asset. The API should retrieve the highest risk
score among all the possible threats assigned to the specified asset, thus we expect that an higher
number of threats, for an asset, would result in an higher number of operations to perform, in order
to compute the maximum among all the related scores. Figure 7.2 shows exactly this behaviour in
the data, in particular we can observe that, if we fix the number of assets present in the database,
by halving the largest number of threats, associated to an asset and taken into consideration in
this analysis (100), the risk retrieval time is approximatively halved too. By further reducing the
number of threats from 50 to 10, instead, the risk retrieval time is reduced of the 58%, 55%, 65%,

58

7 – Performance Results

Figure 7.1. Deployment diagram for CAIRIS’ and SAFAX’s components in three
different virtual machines.

67% respectively for the cases with 120, 50, 10 and 1 assets, thus showing a non linear decreasing
behaviour, in respect to the first variation. The situation, where only one threat is associated to
the asset, whose we want to retrieve the risk, reflects the case with the minimum necessary time
needed to retrieve a risk score once the specified asset has been identified in the database.
Furthermore, it is also possible to observe how the times vary when the number of assets present
in the database changes; indeed, the database needs some time in order to be able to identify
the specified asset, passed in the API as parameter, among all the assets present and stored in
the database. In order to identify an entry into the database, MySQL exploits the B-tree data
structure, which is a generalization of the binary search tree, letting a node the possibility to have
more than two children. The great advantage of using an approach of this kind is that sorting is
allowed and the look-up can be done in a logarithmic number of steps and speeded up with the
usage of indexing [52].
While varying the number of threats bring us to more significant time variations, in the order of
hundreds of milliseconds, if we fix a certain threats’ load, the variation of the number of assets
bring us to a less evident variation of time, represented by tens of milliseconds, not changing
significantly the order of magnitude. This bring us to an important consideration, which can make
us to state that the most demanding operations are the ones concerning the comparisons of risk
scores and not the ones involving the search of a resource in the database.
The worst case scenario is clearly represented by the situation in which 120 assets are present
in the database and 100 threats are associated to the asset whose we want to retrieve the risk.
By decreasing either the number of threats or the number of assets or both, the risk retrieval
time decreases as well, until reaching it’s minimum possible value represented by the situation
with 1 asset stored in the database and just 1 threat associated to it. Figure 7.3 shows, for the
four realizations obtained by loading the database respectively with 120, 50, 10 and 1 assets,
the decreasing behaviour just described: the figure shows exactly this lack of linearity in the
decreasing trend, and roughly tends to find a point of convergence, for each realization, in the
scenario with just 1 threat assigned to an asset.
Since the variation of the risk retrieval time, when the number of threats per asset varies, is
a perceptible and clear understanding, given from the fact that the more the risk scores in the
database and the more have to be the operations in order to compute the maximum among them,
it has been decided to carry on a further analysis, able to focus on the differences in accessing
the risk informations by varying the number of assets present in the database, for each one of the
four APIs, described in Chapter 5, keeping the number of threats per asset constant. In particular,
the number of threats assigned to an asset has been fixed to 100, equally subdivided into two
environments (50 threats per environment).
Figure 7.4 shows the results obtained for each API at the variation of the number of assets
populating the database of risk’s informations. It is possible to observe how the trend, which

59

7 – Performance Results

Figure 7.2. Average risk retrieval times in ms, obtained for different loads, in terms of number of
assets and threats, of the CAIRIS database, exploiting API 1.

Figure 7.3. Behavioural trend obtained from the results in figure 7.2.

involves shorter times for smaller loads of assets, is again confirmed for all the APIs.
Moreover, it is interesting to compare the risk retrieval times obtained by using the four defined
APIs. In particular, as aforementioned, the API 1 (table 5.3), allows us to retrieve the highest
risk score, searching among all the possible threats and environments, given a certain asset, thus
representing the heaviest task to perform, requiring to compare all the 100 risk scores before
having the maximum.
API 2 (table 5.4) , instead, allows to retrieve the highest risk score for an asset, given a threat
type, among all the possible environments. Since, in the experiments performed, the number
of environments has been fixed to two, once the asset and the threat have been identified, the
comparison to make is just one, in order to decide which risk, among the two, is the highest.
Since the most demanding operations are reduced to the minimum, it is possible to obtain, as
a result, very short times, which become even shorter reducing the number of assets present in
the database. In particular, the case with 120 assets matches exactly situation 6.2 described in

60

7 – Performance Results

Figure 7.4. Average risk retrieval times in ms, obtained by fixing the number of threats per asset
in the database and varying the number of assets, exploiting the four APIs.

Chapter 6, thus in such scenario, the authorization process will need 81.4 ms, on average, in order
to retrieve the correct risk score.
By proceeding with API 3 (table 5.5), the highest risk for an asset, among all the possible threats
in a specific environment, can be retrieved; in such a case, once the asset and the environment of
interest are identified, the risk scores to compare are exactly 50 (remember that there have been
defined 50 threats for each of the two environments, for a total of 100 threats). For this reason we
expect to obtain better performances than the ones obtained from the usage of API 1, but worse in
respect to the ones obtained with API 2 and the data confirm this forecast. This kind of scenario
can be, actually, compared, from the operational point of view, with the one presented before, in
figure 7.2, and involving the API 1 where 50 threats have been assigned to an asset; the results
obtained, indeed, are quite similar, surely in the same order of magnitude. The differences among
the two categories of results, represented by tens of milliseconds, can be probably addressed to a
little variance of the results characterizing each realization when making an experiment.
In Chapter 6, scenarios 6.1 and 6.3 have been thought to exploit exactly API 3, in the case with 50
and 120 assets respectively, thus needing approximately 316.94 ms and 385.417 ms, respectively,
on average, to retrieve the risk scores.
Finally, API 4 (table 5.6) allows to retrieve the highest risk score for an asset, given a threat, in a
specific environment, thus restricting, even more than API 2, the range of possible risks among
which make the comparisons. In particular, by using this kind of API, no comparisons are needed,
since the informations specified in the API point us to a punctual and singular risk score. By
eliminating the comparisons, which represent the most demanding operations, we can obtain the
best results observed for the risk retrieval time, in the different APIs: 33 ms in the case with 120
assets, around 32 ms in the case with 50 assets and 27 ms in the case with 10 assets.
The comparison among the different APIs allows us to understand the performance implications
resulting from the different possibility of expressiveness for a risk policy. What emerges is that
well-defined scenarios, where threats and environments can be easily identified, or where we
consciously want to be more precise when retrieving a risk, by specifying the exact threat and
eventually also the environment involved, benefit from the best performances, while when the risk
retrieval becomes a wider and probably more conservative process, that wants to consider a larger
spectrum of possible risks, the performances are affected.
Until here, the focus has been kept over the only parameter which may vary during policy
evaluation, due to the workload of the system, and we saw which are the possible reasons
characterizing its variations. Let’s now see the other parameters characterizing a complete policy
evaluation process, which should remain constant, since they do not depend on any other factor
than possible fluctuations given from the workload of the server or of the network if an HTTP call
is involved. These parameters are:

• PAP working time: the average time needed to retrieve a policy from the PAP.

61

7 – Performance Results

• CAIRIS authentication time: the average time needed by SAFAX to retrieve the CAIRIS
credentials and use them to authenticate on CAIRIS, obtaining a valid session.

• CAIRIS open DB time: the average time needed by SAFAX to retrieve the desired CAIRIS
database associated to the selected credentials and open it on CAIRIS.

• Risk Evaluation time: the average time needed by the CAIRIS module, within SAFAX, to
evaluate the risk against a threshold.

• CAIRIS module working time: (CAIRIS authentication time) + (CAIRIS open DB time) +
(Risk Evaluation time) + (spare time to perform the necessary operations which guarantee
the correct functioning of the module).

• PDP working time: (PDP average time needed to evaluate a policy) - (PAP working time) -
(CAIRIS module working time).

• CH working time: (CH average working time) - (PDP working time).

• PEP working time: (PEP average working time) - (CH working time).

PDP, CH and PEP working times have been described with a subtraction, since the times have
been computed by taking as initial value the instant in which the HTTP call of the API contacting
the module is performed and as final value the instant in which the API returns with an HTTP
response to the entity which called it. It follows that in this way the PDP working time would
include in its operations the PAP and the CAIRIS module working times, the CH would include
the PDP working time and the PEP would include the CH working time in a sort of hierarchical
manner . By subtracting the inner working time of the “son”modules, it is possible to obtain the
effective working time for the “father”module.
The results, that have been obtained from the experiments described above, showed that while
the procedure carried out by SAFAX to contact the CAIRIS service, in order to open the desired
database, is quite fast, around 40 milliseconds on average, the authentication procedure is much
heavier, oscillating from 950 ms to 1100 ms, due to the different experiments’ realizations and
representing, in this way, one third of the total average policy evaluation time.
The average risk evaluation time, instead, is around 65 ms and the average policy retrieval time
from the PAP requires about 160 ms.
By summing up all the values until here obtained, it is possible to understand that, by using API 1,
the average CAIRIS module working time requires around 2200 ms when 100 threats are present
in the CAIRIS database, decreasing to 1900 ms when the number of threats is 50 and further
decreasing to 1700 ms, when only 10 threats are present, and to 1600 when just one threat is
present.
Focusing on the scenario with 100 threats present in the database, by using API 2, the CAIRIS
module average working time is of 1600 ms, while, by using API 3 is of 1800 ms and by using
API 4 of 1500 ms. The variability in those times is clearly due to the fact that the different APIs,
as described above, allows to access the data with different levels of granularity. It follows that the
great majority of the operational time, for the module, is spent performing authentication, which
is the heaviest task.
Actually, the CAIRIS module average working time represents the main time component within
the whole policy evaluation process; we need then to add 500 ms, on average, of PDP evaluation
time of the policy, 290 ms of CH operations, which involve: retrieving the IP address of the
configured PDP and constructing the URL with the necessary parameters to be passed to the
PDP. Furthermore, 320 ms of PEP operations have to be accounted: retrieving the IP address
of the configured CH, checking the validity of the XML format for the request and constructing
the URL with the necessary parameters to be passed to the CH. It is important to notice that in

62

7 – Performance Results

the performed experiments, no additional attributes from the PIP have been added to the policy
evaluation process, thus in this case the CH just vehicles the request, brought by the PEP, to the
PDP.
As a result, the usage of API 1 allows to obtain an average policy evaluation time of about 3370
ms and API 2 allows to obtain around 2270 ms, which represents the time needed to evaluate a
risk policy in scenario 6.2. API 3 let us to obtain as result 2970 ms, thus quantifying the risk
policy evaluation time needed in scenario 6.3 with 120 assets, while we would remain in the same
order of magnitude, just some tens of ms less, if we consider scenario 6.1, where the assets are
50. Finally, by using API 4 we can obtain around 2670 ms.

63

Chapter 8

Conclusions

In this chapter, we draw conclusions for the thesis work that has been carried out, summarizing
the main features of the results obtained. At first, we try to make a critical thinking of the work
done, trying to recall the steps that had to be faced in order to obtain the final realization of the
system. Lessons learnt during the process and open issues are outlined. Moreover, future works,
that could be possibly undertaken, in order to be integrated in the developed system, are proposed.

8.1 Lessons learnt and open issues

The purpose of this thesis work has been to implement a context-aware risk-based authorization
system, by extending the SAFAX tool and integrating it with a second tool, CAIRIS. SAFAX
proposes itself as a framework for XACML policy evaluation, while CAIRIS is a security and
usability requirements management tool, that allows the creation of risk models and the catego-
rization, the specification and the storage of risk’s related informations regarding assets, threats,
vulnerabilities and environments.
A first goal of such a framework is to enhance the well-known role-based paradigm, considered
too static and not sufficiently responsive to cope with highly dynamic scenarios where it is difficult
to predict which authorization permissions should be granted to a user, in order to protect the
system from possible misbehaviours, and at the same time allowing a sufficient usability degree
in order to let the users accomplish their tasks.
Some usage scenarios, which would benefit by using the developed system, have been presented
in Chapter 6. These scenarios show, indeed, how the dynamism of this system would help to solve
some security implications coming from improper authorization decisions.
A second goal of the framework is to let the system be context-aware, meaning that it should
recognize the environment in which is working, in such a way to adapt the authorization decisions
accordingly. In this way it is possible to take finer grained decisions which help to further enhance
the dynamism of the authorization process.
Although SAFAX has been built in such a way to be easily integrated with external services, by
exploiting User Defined Functions, which represent customized ways of treating attributes within
XACML policies, several issues arose when came up the idea of integrating it with CAIRIS tool.
The main problem was that CAIRIS uses some form of authentication which wasn’t supported by
SAFAX and it was not possible to directly contact the CAIRIS’ APIs, in order to retrieve the risk
values associated to the resources and to be used during the policy evaluation procedure.
Before proceeding with the risk’s retrieval part, the first step performed for the implementation
of the system has been to understand the authentication mechanisms supported by CAIRIS. Two
mechanisms are currently supported: the first, very trivial, involves the usage of a static identifier,

64

8 – Conclusions

recognized by CAIRIS, which can be simply included in the URL of the API as a data parameter.
The adoption of this method only allows to exploit the CAIRIS service with a default test account,
so it clearly has a very limited usage, which is just for testing purposes. The second option instead
allows to rely on the basic HTTP authentication mechanism, which is much better because it
allows each user to contact his own CAIRIS model, developed within his personal account; for
this reason it is more suitable to be adopted in a production environment.
The CAIRIS credentials and database informations, that should be used to successfully carry out
the authentication with the CAIRIS server, have to be specified during a preliminary configuration
phase on the SAFAX tool, through the offered GUI. In particular each demo, present in SAFAX,
will have its own credentials specified, storing these informations in the SAFAX database. This
kind of implementation, concerning the management of credentials, has been necessary in order
to support the autonomy of the system when performing the authentication procedure, which can
be done automatically without requiring a third party software, which exploits the SAFAX service
programmatically, to modify the currently supported methods in order to pass the credentials
when sending an authorization request.
This means that any application, which develops a set of methods able to contact the appropriate
SAFAX PEP APIs and that conform to the requirements of these APIs, would be able to exploit
the authorization service provided by SAFAX.
The weakness of such approach is represented by the fact that confidential informations, belonging
to CAIRIS, have to be managed and stored not only within the CAIRIS domain, but also in the
SAFAX domain too. This means that, from a security point of view, those credentials could be
attackable in two different points, thus increasing the chances for a possible attacker, that wants
to steal those credentials, to find exploitable vulnerabilities in the two systems. The alternative
would be to modify the PEP’s APIs in such a way to support a remote passage of credentials
between the third party application and the SAFAX service. By adopting a solution of this kind,
there wouldn’t be the need for the management of CAIRIS credentials in the database but, on the
other end, those credentials would be susceptible of attacks, by a MITM, when passed to SAFAX.
Once the authentication part has been successfully completed, SAFAX will include the identifier
of the negotiated session as a data parameter in the URL API, in such a way to prove his autho-
rization to make the specific risk request.
Beside the identifier of the session, the necessary URL parameters have to be included in the
APIs: resources, threats and environments are the requested informations in order to retrieve a
risk score. These values are extracted from the XACML request, submitted by a user, by the PDP
which contacts the developed CAIRIS module, internal to SAFAX, by means of a local API, and
integrate in it the extracted parameters.
The CAIRIS module has been implemented as a RESTful web service, where the information about
the SAFAX ongoing session is passed in the API through which the module is contacted. The
module is in charge of adopting one of the supported authentication mechanisms, just described,
opening the desired CAIRIS database, with which interacts, and constructing the HTTP URL
to use when retrieving risk. Then, it implements its own risk evaluation method. The standard
method that has been chosen is threshold based, meaning that, in order to take the final decision,
the risk value retrieved will be compared to the threshold specified in the policy.
The idea of integrating the risk threshold directly within the policy comes from the fact that it
represents a parameter strictly connected to the resource or to a precise group of resources. Risk
is a concept which is directly linked with an asset as well, for example we can say that each asset
has its own confidentiality value, thus the risk impact, that a possible unauthorized access could
have over an asset, strictly depends on the confidentiality property of the asset itself. For this
reason, coherently, a risk threshold should necessarily be referred to the specific asset too and
could not be defined as an absolute parameter valid for an entire scenario.
Moreover, a risk, which refers to a specific asset, changes if we consider the asset in slightly
different contexts, indeed, the risk retrieval process varies according to the kind of policy we are

65

8 – Conclusions

considering: there are policies which consider some aggregated form of the risk value retrieved,
others which consider more specific risk values, by further specifying the threat associated to
an endangered asset, others, furthermore, support a much finer grained definition of the risk, by
allowing not only the specification of the threat, but also that of the environment to consider when
retrieving the risk associated with an asset. It follows that the risk threshold should be adapted
accordingly too.
It is true that defining properly a value for the threshold is not an easy task, for this reason,
probably, it is not sufficient to just carry out a risk analysis but it would be appropriate to perform
some kind of sensitivity analysis too, in order to appropriately set risk’s thresholds as well, as
a preliminary phase, after having built up a risk model on CAIRIS. Sensitivity analysis indeed
has been proposed as “the study of how the uncertainty in the output of a model (numerical or
otherwise) can be apportioned to different sources of uncertainty in the model input”[63]. Such
kind of analysis could be of help in order to test the robustness of the threshold based decision
mechanism implemented, as well as the goodness in choosing the input parameters with a certain
degree of uncertainty and variability. In [11], a sensitivity analysis in view of a threshold decision
making process is presented and applied to a real-life dynamic scenario in the healthcare field,
to test the robustness of the decision that a clinician should take about whether or not to start a
certain treatment to a patient, basing on the probability for that patient to find himself in a par-
ticular health condition. In the example proposed, a sensitivity function representing a threshold
probability is built and the results observed at the varying of a parameterΘ of the model, with the
goal of identify the region within which a certain decision shouldn’t change. A similar approach
could be eventually used in our case, to the same purposes, by selecting the CAIRIS risk rating
function ([28]) as the sensitivity function and by observing its behaviour at the varying of the two
parameters which characterize that function: the threat likelihood and the vulnerability severity.
We may take those two parameters into consideration as input parameters, to our problem. They
both represent uncertain quantities “due to incompleteness of data and partial knowledge of the
domain under study”, as authors in [11] says, derived from qualitative considerations, thus if
we want to derive a method to define an optimal threshold from them, they should be properly
analysed.
The ultimate reason behind a proper definition of a risk threshold is to decide until which point
we want to push our willingness to take those risks.
Implications, deriving from the adoption of the different methods to retrieve the risk, affect not
only the different expressiveness capabilities of the risk policy but also the performances, in terms
of time, that the system offers.
The performance analysis, regarding the time required by a policy evaluation process, which uses
risk informations, retrieved by CAIRIS to take an authorization decision, has been performed in
Chapter 7 and the results that have been obtained clearly show how the expressiveness of a policy
characterizes its evaluation process. Indeed, when adopting API 1, which allows just the specifi-
cation of the asset as a parameter, the operations that have to be performed in order to compute
the highest risk score are much more, since no discrimination about threats and environments has
been done, thus the evaluation times are higher. When adopting API 2, a further specification
of the threat is allowed, thus permitting a finer grained decision, with a number of operations
involved which mainly depends on the number of environments identified in the model and for
which a threat has been identified. Similarly, API 3 allows the specification of a second parameter,
beside the asset, which this time is the environment. This allows to retrieve the highest risk for a
resource in a specific environment, helping the system to be aware of the most dangerous threats
identified in a context, requiring a number of operations to perform which depends on the number
of threats present in the database for that environment. Finally, the last supported risk retrieval
method is represented by API 4, which allows to identify a risk by specifying the asset, the threat
and the environment and representing in this way the finest grained way to identify a specific risk
and also the fastest way to retrieve a risk since only indexing operations, which exploit the inner

66

8 – Conclusions

structure of the database, are needed and no comparisons about risks have to be done in order to
find the maximum.
Beside these variable time’s components which change according to the kind of risk policy has
been defined, it has been observed that the main factor affecting the whole policy evaluation time
is given by the authentication part, which more or less takes one third of the time.
It is worth to say that the results, in terms of time, of the performances obtained, are also char-
acterized by the core architecture that SAFAX adopts and over which the development of the
CAIRIS module, to support the integration with the CAIRIS tool, took place, in such a way to
obtain the desired risk-based authorization framework. The fact of implementing each XACML
component separately as a standalone web service, in a distributed manner, limits in some way
the performances of the system in respect to the situation in which all the functionalities of the
components would be implemented in a centralized way, but, on the other end, allows to have a
system easily customizable and with great extensibility and integrability properties.

8.2 Future works

An interesting direction that could be taken, in order to further enhance the developed system,
could involve the definition of some alternative way of taking the final decision, based on the
risks score retrieved. As already seen, the current decision method implements a threshold based
solution, while some other ideas about possible alternatives have been suggested, in Chapter 2,
when performing the state of the art analysis concerning risk-based access control systems.
A first interesting idea would be to implement a system able to balance both the concepts of
risk and benefit (analysed in section 2.2). The idea of considering benefits together with risks
and compare them in order to take an authorization decision, surely, bring us to a much more
dynamic solution, able not only to consider the negative consequences of possible threats but also
the positive implications deriving from an action. In this way, it would be clearer to understand
when benefits outweigh risk in order to be more confident when taking a decision. In order to
be possible to integrate an approach of this kind, in the system developed in this thesis work, we
should probably consider to extend the usage of CAIRIS to support not only the management of
risk parameters but of benefits related parameters as well. Since benefits, like risks, are strictly
related to resources, it would be important, in a situation of this kind, to enhance the same system,
which provides the risk scores, to provide the benefits scores too, thus avoiding to delegate this
task to a third party, in such a way, for those values, to be compliant and homogeneous.
Actually, the functionalities that CAIRIS offers are not so distant from this kind of perspective, in
fact, beside the development of risk models, it is able to support also the creation of task models as
well, that cope with usability concepts. As it is now, tasks’ related benefits are just descriptive and
not quantified, but probably a similar quantification method used in the task analysis development,
proposed in [28], could be adopted. There would be surely the need for developing a set of APIs,
that given some predefined parameters, would be able to retrieve benefits scores. Furthermore,
it would be important to define a way of associating benefits implications to the risks identified.
According to the current way of managing risks, vulnerabilities are assigned to assets, at the same
time threats are assigned to assets as well, finally a risk is computed by linking threats to vul-
nerabilities. Maybe, a possible association could be derived between benefits and vulnerabilities,
since vulnerabilities may represent sensitive actions that could be performed over assets and from
which both positive and negative consequences may arise. Although from a semantic point of
view, the fact of associating benefits to vulnerabilities might sound strange, the approach could
work within the CAIRIS environment, where there is not an explicit way of defining actions, that
users perform over resources, but those actions might implicitly be taken into consideration when
defining vulnerabilities. In order to clarify the concept, let’s suppose to specify, as a vulnerability,
configuration file’s modification: it is a vulnerability possibly identifiable in a certain environment,

67

8 – Conclusions

since a threat could arise from it, and, at the same time, it provides informations about the kind of
access is related to the vulnerability involving a resource.
A second possible alternative to the threshold based mechanism, involves the adoption of a trust
service, able to compute a trust score to integrate with the risk.
SAFAX already supports two mechanisms which allow to evaluate a policy considering the trust
of the subjects: a Flow based Reputation Service [69] and an Evidence based Reputation Service
[71]. The former service, has been implemented with the purpose of enhancing the traditional
reputation models ([8], [41], [57]) by using a metric that gives absolute values to the users in-
volved in a system, instead of just a ranking. The latter, is of particular interest because it creates
a Flow based reputation model with uncertainty by putting together the advantages of both the
two prominent reputation models present in literature, which are the Flow based model and the
Subjective Logic [37].
The adoption of reputation systems allows to capture the actual trustworthiness of a target, where,
clearly, the quality of the reputation values depends on the amount and the accuracy of informa-
tions used for its computation.
As asserted by [38], the main difference between trust and reputation systems stands in the fact that
trust systems produce a score which reflects a subjective view of the relying party over the entity’s
trustworthiness, whereas reputation systems produce a score, assigned by the whole community,
which represents the public reputation’s view of the entity.
By using a reputation system within a specific environment we can make the two concepts con-
verge and we can think about using the reputation score, as a value of trust that the system puts
in the subject in that specific context, together with the risk score of a resource. In this way, we
would be able to compute a more accurate metric when taking the final evaluation decision, in
compliance with the policy.
It would be really interesting to find a way of exploiting, for example, the solution proposed in
[66], according to which both risk and trust values should rely on a local reward history and a local
penalty history, in such a way of creating a level of confidence which evolves in the time. This
approach would be probably compliant with the two reputation services supported by SAFAX,
that, in order to work properly, need informations captured by past transactions, indeed as asserted
by [71]: “The basic idea underlying reputation is that a user’s past experience as well as the
experience of other users influences his decision whether to repeat this interaction in the future”.
Clearly, how to consider, in CAIRIS, the history element is an issue that should be addressed.
The risk and trust values, then, could be compared or weighted according to some defined logic,
in such a way to obtain the desired risk and trust authorization system.
By adopting a reputation service implemented by SAFAX, we would be able to cope with all
the requirements identified by Add. Req.4 in Chapter 3, which allow to properly implement a
trust estimation module. Indeed, in order to support this kind of service, the SAFAX database
supports the storage and the retrieval of trust informations, addressing in this way Add. Req.4.1
and Add. Req.4.2. The two reputation services have been implemented by two web services,
installed on the SAFAX server, addressing Add. Req.4.7, that in order to be exploited, can be
contacted by means of specific APIs, in this way addressing Add. Req.4.6. The logic which stands
behind the implementation of the core part of the reputation mechanism, involving parameters
and functions, and addressing Add. Req.4.3 and Add. Req.4.4, is explained in detail in [69]
and [71]. In particular, through the SAFAX GUI, it is possible to upload the file containing
a set of history transactions associated to scores that users have assigned to these transactions.
Moreover there is the possibility of defining the value of alpha for computing reputation, which
represents a weight parameter for the importance of indirect versus direct evidence, the initial
vector representing the initial reputation values for the subjects involved and finally the function
to adopt when representing the belief a subject has when looking at the trust score of another
subject. In this way we can address Add. Req.4.5.
In order to successfully cope with all the identified requirements supporting a risk and trust based

68

8 – Conclusions

authorization service, there would be the need of implementing a risk & trust based decision
module as addressed by Add. Req.5. This module should implement the necessary decision logic
for making coexist both risk and trust scores retrieved. This logic could be either implemented
in a new customized component or it could be integrated within one of the two already existing
services, which are the CAIRIS module and the Reputation Trust Service and letting the two
service communicate in order to exchange risk and trust informations, addressing in this way Add.
Req.5.1. By adopting this second solution we would automatically address also Add. Req.5.3 and
Add. Req.5.4. In order to complete the implementation, a decision function that creates a relation
between risk and trust scores should be implemented, with the purpose of returning the final risk
authorization decision to the PDP and coping with Add. Req.5.2. For example, we could think
about either a simple or a weighted comparison between the two values.
An other possibility of enhancement, for the risk-based authorization system proposed, is identi-
fied, by the introduction of an obligation service, able to mitigate the risk that the system is willing
to take. To this purpose we could think about upgrading the threshold into a region of risk. In this
way, we can fix a lower bound for the minimum amount of risk that could bring some damage in
our system and an upper bound for the maximum amount of risk we are willing to accept.
When developing solutions of this kind in an organization, we need to keep in mind that the ulti-
mate goal is to achieve results that wouldn’t be possible with a traditional role-based mechanism,
thus allowing, in some cases, the presence of some percentage of risk when authorizing an access,
and helping, in this way, a user to accomplish his tasks. On the other end, in order to maintain the
inner security of the system we need some way of controlling risks, meaning that we should allow
the access to a resource in presence of some amount of risk, only at certain conditions. Those
conditions can be identified as mitigation measures, which consist in some form of obligations a
user should fulfil, in order to mitigate the risk associated to the action he wants to perform.
Between the two bounds, several levels of risk could be identified and to each one of them a
specific obligation should correspond; the higher the risk identified by a level and the more rele-
vant an obligation should be, in order to increase the responsibility feeling in a user and his risk
perception, and, at the same time, keeping the focus on the organisation’s optimal goal, which is
to give the possibility to users to successfully accomplish their tasks.
What an obligation should be in practice, clearly, strictly depends on the scenario in which the
authorization system works. For example, an obligation could be a notification that a user has
to submit to a responsible entity, which keeps track of all the transactions in order to verify, in a
second moment, their correctness and effectiveness; alternatively it could represent a sort of price
to pay according to a market based mechanism in order to purchase the permission to perform an
action. The definition and the implementation of the supported obligations is addressed by Add.
Req.6.1.
SAFAX already implements an approach of this kind, applied to a UCON scenario, according
to which the authorization control over the resources is monitored during the whole usage time
of a resource, within a session. The implemented scenario, in particular, simulates the phone’s
credit mechanism, which allows a user to be authorized to make a call and sustain this call until
his credit is positive. A credit is initially assigned to each user and during the whole duration of a
call, the credit is partially decreased, thus a way for continuously monitor the user’s authorization,
in terms of sufficient credit, is needed.
A similar approach could be implemented by integrating it with the aforementioned proposal of
introducing the trust concept inside the evaluation process: after a policy evaluation process has
been completed and verified, the trustworthiness of the user could be either rewarded or penalized
in such a way to create a trust score that could be used to “buy”, in the future, the possibility of
performing an action at the price of the obligation, thus working as a mitigating factor for the risk
and addressing Add. Req.6.2. In this case, obligations would represent the minimum amount of
trust, requested by a system, in order to perform an action.
Since the PEP is the module which stands directly between the user and the authorization service

69

8 – Conclusions

and is responsible of enforcing the final decision, taken by the system, it is generally considered
as the most suitable component, in the XACML architecture, for implementing the obligation
service. Alternatively, the obligation service could be implemented as a separate component that
interacts, by means of ad hoc APIs with the PEP, helping it to enforce the final decision. The
implementation specifications supporting such a system will cope with Add. Req.6.3 and Add.
Req.6.4.

70

Bibliography

[1] 2017 Data Breach Investigations Report. Verizon Enterprise. 74 pp. url: http://www.
verizonenterprise.com/resources/reports/rp_DBIR_2017_Report_en_xg.
pdf.

[2] ACME Water Specification Exemplar. Nov. 2017. url: https://cairis.org/ACME_
Water/.

[3] A. Adams and M. A. Sasse. «Users are not the enemy». In: Communications of the ACM
42.12 (1999), pp. 40–46. doi: 10.1145/322796.322806.

[4] Ali Ahmed and Ning Zhang. «A context-risk-aware access control model for ubiquitous
environments». In: Computer Science and Information Technology, 2008. IMCSIT 2008.
International Multiconference on. IEEE. 2008, pp. 775–782. doi: 10.1109/IMCSIT.
2008.4747331.

[5] A. Almutairi et al. «A distributed access control architecture for cloud computing». In:
IEEE software 29.2 (2012), pp. 36–44. doi: 10.1109/MS.2011.153.

[6] A. Armando et al. «Balancing trust and risk in access control». In: OTM Confederated
International Conferences ’On the Move to Meaningful Internet Systems’. Springer. 2015,
pp. 660–676. doi: 10.1007/978-3-319-26148-5_45.

[7] A. Armando et al. «Risk-based privacy-aware information disclosure». In: International
Journal of Secure Software Engineering (IJSSE) 6.2 (2015), pp. 70–89. doi: 10.4018/
IJSSE.2015040104.

[8] Sergey B. and Lawrence P. «The anatomy of a large-scale hypertextual Web search engine».
In: Computer Networks and ISDN Systems 30.1 (1998). Proceedings of the Seventh Interna-
tional World Wide Web Conference, pp. 107–117. issn: 0169-7552. doi: 10.1016/S0169-
7552(98)00110-X.

[9] Barry persona. Nov. 2017. url: https://cairis.org/barry.
[10] R. Buyya, R. Ranjan, and R. N. Calheiros. «Intercloud: Utility-oriented federation of cloud

computing environments for scaling of application services». In: International Conference
on Algorithms and Architectures for Parallel Processing. Springer. 2010, pp. 13–31. url:
https://arxiv.org/ftp/arxiv/papers/1003/1003.3920.pdf.

[11] Theodore C. and van der Gaag L. C. «Sensitivity Analysis for Threshold Decision Making
with Dynamic Networks». In: CoRR (2012). arXiv: 1206.6818. url: http://arxiv.
org/abs/1206.6818.

[12] CAIRIS web site. Nov. 2017. url: https://cairis.org/.
[13] J. W. Castro, S. T. Acuña, and N. Juristo. «Integrating the personas technique into the re-

quirements analysis activity». In: Computer Science, 2008. ENC’08. Mexican International
Conference on. IEEE. 2008, pp. 104–112. doi: 10.1109/ENC.2008.40.

71

http://www.verizonenterprise.com/resources/reports/rp_DBIR_2017_Report_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2017_Report_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2017_Report_en_xg.pdf
https://cairis.org/ACME_Water/
https://cairis.org/ACME_Water/
https://doi.org/10.1145/322796.322806
https://doi.org/10.1109/IMCSIT.2008.4747331
https://doi.org/10.1109/IMCSIT.2008.4747331
https://doi.org/10.1109/MS.2011.153
https://doi.org/10.1007/978-3-319-26148-5_45
https://doi.org/10.4018/IJSSE.2015040104
https://doi.org/10.4018/IJSSE.2015040104
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://cairis.org/barry
https://arxiv.org/ftp/arxiv/papers/1003/1003.3920.pdf
http://arxiv.org/abs/1206.6818
http://arxiv.org/abs/1206.6818
http://arxiv.org/abs/1206.6818
https://cairis.org/
https://doi.org/10.1109/ENC.2008.40

BIBLIOGRAPHY

[14] D. W. Chadwick et al. «My private cloud overview: a trust, privacy and security infrastruc-
ture for the cloud». In: Cloud Computing (CLOUD), 2011 IEEE International Conference
on. IEEE. 2011, pp. 752–753. doi: 10.1109/CLOUD.2011.113.

[15] A. Chen et al. «A Dynamic Risk-Based Access Control Model for Cloud Computing». In:
Big Data and Cloud Computing (BDCloud), Social Computing and Networking (Social-
Com), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-
SustainCom), 2016 IEEE International Conferences on. IEEE. 2016, pp. 579–584. doi:
10.1109/BDCloud-SocialCom-SustainCom.2016.90.

[16] L. Chen and J. Crampton. «Risk-aware role-based access control». In: International Work-
shop on Security and Trust Management. Springer. 2011, pp. 140–156. url: http://www.
isg.rhul.ac.uk/~jason/Pubs/stm11.pdf.

[17] L. Chen et al. «Obligations in risk-aware access control». In: Privacy, Security and Trust
(PST), 2012 Tenth Annual International Conference on. IEEE. 2012, pp. 145–152. doi:
10.1109/PST.2012.6297931.

[18] P. Cheng et al. «Fuzzy multi-level security: An experiment on quantified risk-adaptive
access control». In: Security and Privacy, 2007. SP’07. IEEE Symposium on. IEEE. 2007,
pp. 222–230. doi: 10.1109/SP.2007.21.

[19] International Electrotechnical Commission et al. «Functional safety of electrical/electron-
ic/programmable electronic safety related systems». In: IEC 61508 (2000).

[20] IEEE Standards Coordinating Committee et al. «IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std 610.12-1990). Los Alamitos». In: CA: IEEE Computer
Society 169 (1990). doi: 10.1109/IEEESTD.1990.101064.

[21] CORAS web site. Nov. 2017. url: http://coras.sourceforge.net.
[22] Ferraiolo D. and Kuhn R. «Role-based access controls». In: Proceedings of 15th NIST-

NCSC National Computer Security Conference. Vol. 563. Baltimore, Maryland: NIST-
NCSC. 1992. url:https://csrc.nist.gov/CSRC/media/Publications/conference-
paper/1992/10/13/role- based- access- controls/documents/ferraiolo-
kuhn-92.pdf.

[23] Nguyen Ngoc Diep et al. «Contextual Risk-Based Access Control». In: Security and Man-
agement 2007 (2007), pp. 406–412. url: https://www.researchgate.net/profile/
Heejo_Lee/publication/221199840_Contextual_Risk-Based_Access_Control/
links/5590a78f08ae15962d8c53a9.pdf.

[24] D. R. Dos Santos, C. M. Westphall, and C. B. Westphall. «A dynamic risk-based access
control architecture for cloud computing». In: Network Operations and Management Sym-
posium (NOMS), 2014 IEEE. IEEE. 2014, pp. 1–9. doi: 10.1109/NOMS.2014.6838319.

[25] A. I. Egner et al. «An Authorization Service for Collaborative Situation Awareness». In:
Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy.
2016, pp. 136–138. isbn: 978-1-4503-3935-3. doi: 10.1145/2857705.2857740.

[26] S. Faily. «A framework for usable and secure system design». PhD thesis. University of
Oxford, 2011. url: http://www.cs.ox.ac.uk/files/4045/thesis.pdf.

[27] S. Faily and I. Fléchais. «A meta-model for usable secure requirements engineering». In:
Proceedings of the 2010 ICSE Workshop on Software Engineering for Secure Systems.
ACM. 2010, pp. 29–35. doi: 10.1145/1809100.1809105.

[28] S. Faily and I. Fléchais. «Analysing and visualising security and usability in IRIS». In:
Availability, Reliability, and Security, 2010. ARES’10 International Conference on. IEEE.
2010, pp. 543–548. doi: 10.1109/ARES.2010.28.

72

https://doi.org/10.1109/CLOUD.2011.113
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.90
http://www.isg.rhul.ac.uk/~jason/Pubs/stm11.pdf
http://www.isg.rhul.ac.uk/~jason/Pubs/stm11.pdf
https://doi.org/10.1109/PST.2012.6297931
https://doi.org/10.1109/SP.2007.21
https://doi.org/10.1109/IEEESTD.1990.101064
http://coras.sourceforge.net
https://csrc.nist.gov/CSRC/media/Publications/conference-paper/1992/10/13/role-based-access-controls/documents/ferraiolo-kuhn-92.pdf
https://csrc.nist.gov/CSRC/media/Publications/conference-paper/1992/10/13/role-based-access-controls/documents/ferraiolo-kuhn-92.pdf
https://csrc.nist.gov/CSRC/media/Publications/conference-paper/1992/10/13/role-based-access-controls/documents/ferraiolo-kuhn-92.pdf
https://www.researchgate.net/profile/Heejo_Lee/publication/221199840_Contextual_Risk-Based_Access_Control/links/5590a78f08ae15962d8c53a9.pdf
https://www.researchgate.net/profile/Heejo_Lee/publication/221199840_Contextual_Risk-Based_Access_Control/links/5590a78f08ae15962d8c53a9.pdf
https://www.researchgate.net/profile/Heejo_Lee/publication/221199840_Contextual_Risk-Based_Access_Control/links/5590a78f08ae15962d8c53a9.pdf
https://doi.org/10.1109/NOMS.2014.6838319
https://doi.org/10.1145/2857705.2857740
http://www.cs.ox.ac.uk/files/4045/thesis.pdf
https://doi.org/10.1145/1809100.1809105
https://doi.org/10.1109/ARES.2010.28

BIBLIOGRAPHY

[29] S. Faily and I. Fléchais. «Software for interactive secure systems design: Lessons learned
developing and applying cairis». In: Proceedings of BCS HCI 2012 Workshops: Designing
Interactive Secure Systems. 2012. url: http://www.shamalfaily.com/wp-content/
papercite-data/pdf/fafl121.pdf.

[30] S. Faily and I. Fléchais. «User-centered information security policy development in a post-
stuxnet world». In: Availability, Reliability and Security (ARES), 2011 Sixth International
Conference on. IEEE. 2011, pp. 716–721. doi: 10.1109/ARES.2011.111.

[31] S. Faily et al. «Model-driven architectural risk analysis using architectural and contextu-
alised attack patterns». In: Proceedings of the Workshop on Model-Driven Security. ACM,
2012, 3:1–3:6. doi: 10.1145/2422498.2422501.

[32] D. Fall et al. «Risk adaptive authorization mechanism (RAdAM) for cloud computing». In:
Journal of Information Processing 24.2 (2016), pp. 371–380. doi: 10.2197/ipsjjip.
24.371.

[33] N. Falliere, L. O. Murchu, and E. Chien. «W32. stuxnet dossier». In: White paper, Symantec
Corp., Security Response 5.6 (2011). url: https://www.symantec.com/content/
en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_
dossier.pdf.

[34] IBM - Rational DOORS web page. Nov. 2017. url: http : / / www - 03 . ibm . com /
software/products/it/ratidoor.

[35] ANSI INCITS. «INCITS 359-2004. American National Standard for Information Technology-
Role Based Access Control, American National Standards Institute». In: Inc., NY, USA
(2004).

[36] «ISO 9241-11. Ergonomic requirements for office work with visual display terminals
(VDTs) –Part 11: Guidance on usability». In: The international organization for standard-
ization 45 (1998).

[37] A. Jøsang. «A logic for uncertain probabilities». In: International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 9.03 (2001), pp. 279–311. url: http:
//eprints.qut.edu.au/7204/1/Jos2001-IJUFKS.pdf.

[38] A. Jøsang, R. Ismail, and C. Boyd. «A survey of trust and reputation systems for online
service provision». In: Decision support systems 43.2 (2007), pp. 618–644. doi: 10.1016/
j.dss.2005.05.019.

[39] R. Kainda, I. Fléchais, and A. Roscoe. «Security and usability: Analysis and evaluation». In:
Availability, Reliability, and Security, 2010. ARES’10 International Conference on. IEEE.
2010, pp. 275–282. doi: 10.1109/ARES.2010.77.

[40] S. P. Kaluvuri et al. «SAFAX–an extensible authorization service for cloud environments».
In: Frontiers in ICT 2 (2015), p. 9. doi: 10.3389/fict.2015.00009.

[41] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. «The eigentrust algorithm for repu-
tation management in p2p networks». In: Proceedings of the 12th international conference
on World Wide Web. ACM. 2003, pp. 640–651. doi: 10.1145/775152.775242.

[42] L. Krautsevich et al. «Risk-aware usage decision making in highly dynamic systems».
In: Internet Monitoring and Protection (ICIMP), 2010 Fifth International Conference on.
IEEE. 2010, pp. 29–34. doi: 10.1109/ICIMP.2010.13.

[43] T. Kurze et al. «Cloud federation». In: CLOUD COMPUTING 2011 (2011), pp. 32–38.
url: http://www.aifb.kit.edu/images/0/02/Cloud_Federation.pdf.

73

http://www.shamalfaily.com/wp-content/papercite-data/pdf/fafl121.pdf
http://www.shamalfaily.com/wp-content/papercite-data/pdf/fafl121.pdf
https://doi.org/10.1109/ARES.2011.111
https://doi.org/10.1145/2422498.2422501
https://doi.org/10.2197/ipsjjip.24.371
https://doi.org/10.2197/ipsjjip.24.371
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www-03.ibm.com/software/products/it/ratidoor
http://www-03.ibm.com/software/products/it/ratidoor
http://eprints.qut.edu.au/7204/1/Jos2001-IJUFKS.pdf
http://eprints.qut.edu.au/7204/1/Jos2001-IJUFKS.pdf
https://doi.org/10.1016/j.dss.2005.05.019
https://doi.org/10.1016/j.dss.2005.05.019
https://doi.org/10.1109/ARES.2010.77
https://doi.org/10.3389/fict.2015.00009
https://doi.org/10.1145/775152.775242
https://doi.org/10.1109/ICIMP.2010.13
http://www.aifb.kit.edu/images/0/02/Cloud_Federation.pdf

BIBLIOGRAPHY

[44] R. Laborde et al. «An extensible XACML authorization web service: Application to
dynamic web sites access control». In: Signal-Image Technology & Internet-Based Sys-
tems (SITIS), 2009 Fifth International Conference on. IEEE. 2009, pp. 499–505. doi:
10.1109/SITIS.2009.83.

[45] H. Lakshmi et al. «Risk based access control in cloud computing». In: Green Computing and
Internet of Things (ICGCIoT), 2015 International Conference on. IEEE. 2015, pp. 1502–
1505. doi: 10.1109/ICGCIoT.2015.7380704.

[46] A. X Liu et al. «Xengine: a fast and scalable XACML policy evaluation engine». In: ACM
SIGMETRICS Performance Evaluation Review. Vol. 36. 1. ACM. 2008, pp. 265–276. doi:
10.1145/1384529.1375488.

[47] M. Lorch, D. Kafura, and S. Shah. «An XACML-based policy management and autho-
rization service for globus resources». In: Proceedings of the 4th International Workshop
on Grid Computing. IEEE Computer Society. 2003, p. 208. doi: 10.1109/GRID.2003.
1261718.

[48] R. Mahmudlu and N. den Hartog J. and Zannone. «Data Governance and Transparency for
Collaborative Systems». In: Data and Applications Security and Privacy XXX. Springer
International Publishing, 2016. doi: 10.1007/978-3-319-41483-6_15.

[49] S. Marouf et al. «Adaptive reordering and clustering-based framework for efficient XACML
policy evaluation». In: IEEE Transactions on Services Computing 4.4 (2011), pp. 300–313.
doi: 10.1109/TSC.2010.28.

[50] R McGraw. «Risk-adaptable access control (radac)». In: Privilege (Access) Management
Workshop. NIST–National Institute of Standards and Technology–Information Technology
Laboratory. 2009. url: https://csrc.nist.gov/csrc/media/events/privilege-
management-workshop/documents/radac-paper0001.pdf.

[51] P. H. Meland et al. «SeaMonster: Providing tool support for security modeling». In: Norsk
informasjonssikkerhetskonferanse, NISK (2008). url: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.172.4582&rep=rep1&type=pdf.

[52] MySQL Internals Manual. Oracle. url: https://dev.mysql.com/doc/internals/
en/files-in-innodb-sources.html.

[53] NeuroGrid Exemplar. Nov. 2017. url: https://cairis.org/NeuroGrid/.
[54] NeuroGrid overview. Nov. 2017. url: http://gtr.rcuk.ac.uk/projects?ref=

G0300623.
[55] Q. Ni, E. Bertino, and J. Lobo. «Risk-based access control systems built on fuzzy in-

ferences». In: Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security. ACM. 2010, pp. 250–260. doi: 10.1145/1755688.1755719.

[56] C. Pautasso and E. Wilde. «Why is the web loosely coupled?: a multi-faceted metric for
service design». In: Proceedings of the 18th international conference on World wide web.
ACM. 2009, pp. 911–920. doi: 10.1145/1526709.1526832.

[57] Lempel R. and Moran S. «The stochastic approach for link-structure analysis (SALSA) and
the TKC effect». In: Computer Networks 33.1 (2000), pp. 387–401. issn: 1389-1286. doi:
10.1016/S1389-1286(00)00034-7.

[58] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Pearson Higher Education, 2004.

[59] SAFAX External Clients. url:https://security1.win.tue.nl/safax/Documentation/
safax_programmatically_integration-v0.2.pdf.

74

https://doi.org/10.1109/SITIS.2009.83
https://doi.org/10.1109/ICGCIoT.2015.7380704
https://doi.org/10.1145/1384529.1375488
https://doi.org/10.1109/GRID.2003.1261718
https://doi.org/10.1109/GRID.2003.1261718
https://doi.org/10.1007/978-3-319-41483-6_15
https://doi.org/10.1109/TSC.2010.28
https://csrc.nist.gov/csrc/media/events/privilege-management-workshop/documents/radac-paper0001.pdf
https://csrc.nist.gov/csrc/media/events/privilege-management-workshop/documents/radac-paper0001.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.4582&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.4582&rep=rep1&type=pdf
https://dev.mysql.com/doc/internals/en/files-in-innodb-sources.html
https://dev.mysql.com/doc/internals/en/files-in-innodb-sources.html
https://cairis.org/NeuroGrid/
http://gtr.rcuk.ac.uk/projects?ref=G0300623
http://gtr.rcuk.ac.uk/projects?ref=G0300623
https://doi.org/10.1145/1755688.1755719
https://doi.org/10.1145/1526709.1526832
https://doi.org/10.1016/S1389-1286(00)00034-7
https://security1.win.tue.nl/safax/Documentation/safax_programmatically_integration-v0.2.pdf
https://security1.win.tue.nl/safax/Documentation/safax_programmatically_integration-v0.2.pdf

BIBLIOGRAPHY

[60] SAFAX Installation Guide. url:http://security1.win.tue.nl/safax/Documentation/
safax_installation_guide.pdf.

[61] SAFAX User Manual. url: http://security1.win.tue.nl/safax/Documentation/
safax_user_manual.pdf.

[62] P. Salini and S. Kanmani. «A novel method: Ontology-based security requirements en-
gineering framework». In: Emerging Trends in Engineering, Technology and Science
(ICETETS), International Conference on. IEEE. 2016, pp. 1–5. doi: 10.1109/ICETETS.
2016.7602982.

[63] A. Saltelli. «Sensitivity Analysis for Importance Assessment». In: Risk Analysis 22.3
(2002), pp. 579–590. issn: 1539-6924. doi: 10.1111/0272-4332.00040.

[64] SeaMonster download page. Nov. 2017. url: http://sourceforge.net/projects/
seamonster/.

[65] Security Requirements Modeling Tool, Socio - Technical Security Modeling Language (rev
1.0). University of Trento. url:http://www.sts-tool.eu/download/documentation/
Documentation_v.2.1.0/Manual_ModelingLanguage_v.2.1.0.pdf.

[66] R. A. Shaikh, K. Adi, and L. Logrippo. «Dynamic risk-based decision methods for access
control systems». In: computers & security 31.4 (2012), pp. 447–464. doi: 10.1016/j.
cose.2012.02.006.

[67] M. Sharma et al. «Using Risk in Access Control for Cloud-Assisted eHealth». In: High
Performance Computing and Communication & 2012 IEEE 9th International Conference
on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Con-
ference on. IEEE. 2012, pp. 1047–1052. doi: 10.1109/HPCC.2012.153.

[68] R. W. Shirey. «Internet security glossary, version 2». In: (2007). url: https://tools.
ietf.org/html/rfc4949.

[69] A. Simone, B. Skoric, and N. Zannone. «Flow-based reputation: more than just ranking».
In: International Journal of Information Technology & Decision Making 11.03 (2012),
pp. 551–578. url: https://security1.win.tue.nl/~zannone/publication/
simo-skor-zann-12-IJITDM.pdf.

[70] G. Sindre and A. L. Opdahl. «Eliciting Security Requirements by Misuse Case». In: Pro-
ceedings of the 37th International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS-Pacific 2000), IEEE CS Press. 2000. doi: 10.1109/TOOLS.2000.
891363.

[71] B. Skoric, S. J. A. de Hoogh, and N. Zannone. «Flow-based reputation with uncertainty:
evidence-based subjective logic». In: International Journal of Information Security 15.4
(Aug. 2016), pp. 381–402. issn: 1615-5270. doi: 10.1007/s10207-015-0298-5.

[72] OASIS Standard. eXtensible Access Control Markup Language (XACML) Version 3.0. Jan.
2013. url: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-
os-en.html.

[73] STS-Tool web site. Nov. 2017. url: http://www.sts-tool.eu.
[74] A. K. Thurimella and D. Janzen. «Metadoc Feature Modeler: A Plug-in for IBM Rational

DOORS». In: 2011 15th International Software Product Line Conference. IEEE. 2011,
pp. 313–322. doi: 10.1109/SPLC.2011.17.

[75] D. Trivellato, N. Zannone, and S. Etalle. «GEM: A distributed goal evaluation algorithm for
trust management». In: Theory and Practice of Logic Programming 14.3 (2014), 293?337.
doi: 10.1017/S1471068412000397.

75

http://security1.win.tue.nl/safax/Documentation/safax_installation_guide.pdf
http://security1.win.tue.nl/safax/Documentation/safax_installation_guide.pdf
http://security1.win.tue.nl/safax/Documentation/safax_user_manual.pdf
http://security1.win.tue.nl/safax/Documentation/safax_user_manual.pdf
https://doi.org/10.1109/ICETETS.2016.7602982
https://doi.org/10.1109/ICETETS.2016.7602982
https://doi.org/10.1111/0272-4332.00040
http://sourceforge.net/projects/seamonster/
http://sourceforge.net/projects/seamonster/
http://www.sts-tool.eu/download/documentation/Documentation_v.2.1.0/Manual_ModelingLanguage_v.2.1.0.pdf
http://www.sts-tool.eu/download/documentation/Documentation_v.2.1.0/Manual_ModelingLanguage_v.2.1.0.pdf
https://doi.org/10.1016/j.cose.2012.02.006
https://doi.org/10.1016/j.cose.2012.02.006
https://doi.org/10.1109/HPCC.2012.153
https://tools.ietf.org/html/rfc4949
https://tools.ietf.org/html/rfc4949
https://security1.win.tue.nl/~zannone/publication/simo-skor-zann-12-IJITDM.pdf
https://security1.win.tue.nl/~zannone/publication/simo-skor-zann-12-IJITDM.pdf
https://doi.org/10.1109/TOOLS.2000.891363
https://doi.org/10.1109/TOOLS.2000.891363
https://doi.org/10.1007/s10207-015-0298-5
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://www.sts-tool.eu
https://doi.org/10.1109/SPLC.2011.17
https://doi.org/10.1017/S1471068412000397

BIBLIOGRAPHY

[76] Q. Wang and H. Jin. «Quantified risk-adaptive access control for patient privacy protection
in health information systems». In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security. ACM. 2011, pp. 406–410. doi: 10 . 1145 /
1966913.1966969.

[77] K. Yee. «Aligning security and usability». In: IEEE Security & Privacy 2.5 (2004), pp. 48–
55. doi: 10.1109/MSP.2004.64.

[78] L. Zhang, A. Brodsky, and S. Jajodia. «Toward information sharing: Benefit and risk access
control (barac)». In: Policies for Distributed Systems and Networks, 2006. Policy 2006.
Seventh IEEE International Workshop on. IEEE. 2006, 9–pp. doi: 10.1109/POLICY.
2006.36.

76

https://doi.org/10.1145/1966913.1966969
https://doi.org/10.1145/1966913.1966969
https://doi.org/10.1109/MSP.2004.64
https://doi.org/10.1109/POLICY.2006.36
https://doi.org/10.1109/POLICY.2006.36

Appendix A

Developer Manual

The purpose of this manual is to describe the code developed to implement the integration between
CAIRIS and SAFAX tools. The project is going to be described package by package and file by
file.

A.1 “cairis”module

Folder named “cairis”represents the CAIRIS module implemented “ex novo”on SAFAX. This is
a web service developed in JAVA and packaged as a WAR file; it represents the core part of the
final integration. In the subfolder src it’s possible to find all the source files (.java) where the
code for the implementation of the CAIRIS module is present, in particular they are organized in
4 packages:

1. /nl/tue/sec/cairis/db

2. /nl/tue/sec/cairis/engine

3. /nl/tue/sec/cairis/impl

4. /nl/tue/sec/cairis/util

5. /nl/tue/sec/cairis/ws

A.1.1 /nl/tue/sec/cairis/db

In this package 2 files are present:

DBAbstraction.java: In DBAbstraction class, methods supporting the connection to the MySql
SAFAX database (db) are present, together with the implementation of the upload, select, update
and delete statements, which are used when performing the queries. The class has been declared
public in order to be visible also outside its package, in such a way, for the implemented methods,
to be invoked by other external classes. The methods defined inside DBAbstraction class are:

• private static void connect: It is a private static method, so it can be invoked just within this
class and without having to create an instance of the class. It creates a DBJerseyConfig class’
instance which is used to retrieve all the configuration parameters needed to successfully
perform the connection, such as: db host, db port, db name, db username, db password.
These parameters are retrieved from the config.db.properties file.

77

A – Developer Manual

– parameters: no input parameters.
– returns: no return value (void method).

• private static boolean disconnect: Performs the closure of the db connection.

– parameters: no input parameters
– returns: returns true if the closure of the db connection has been successfully per-

formed, false otherwhise.

• public static int insertStatement: It is a public method, so can be invoked also outside
this class. By calling the connect() method, it retrieves the configuration parameters needed
to open a connection towards the db and then it creates and executes the statement used to
insert data inside the db. After that, the disconnect method is invoked and the connection
is closed.

– parameters:
∗ String query: which is the query to be performed on the db.
∗ List<String>variables: which is a list of all the parameters to insert inside the

query, ordered as they appear in the query.
– returns: returns an integer value greater than 0 if the statement has been executed

correctly, 0 otherwise.

• public static boolean updateStatement: By calling the connect() method, it retrieves the
configuration parameters needed to open a connection towards the db and then it creates
and executes the statement used to upload data inside the db. After that, the disconnect
method is invoked and the connection is closed.

– parameters:
∗ String query: which is the query to be performed on the db.
∗ List<String>variables: which is a list of all the parameters to insert inside the

query, ordered as they appear in the query.
– returns: returns true if the statement has been executed correctly, false otherwise.

• public static boolean deleteStatement: By calling the connect() method, it retrieves the
configuration parameters needed to open a connection towards the db and then it creates
and executes the statement used to delete data inside the db. After that, the disconnect
method is invoked and the connection is closed.

– parameters:
∗ String query: which is the query to be performed on the db.
∗ List<String>variables: which is a list of all the parameters to insert inside the

query, ordered as they appear in the query.
– returns: returns true if the statement has been executed correctly, false otherwise.

• public static ArrayList<String>selectRecords: By calling the connect() method, it re-
trieves the configuration parameters needed to open a connection towards the db and then
it creates and executes the statement used to select multiple tuples inside the db. After that,
the disconnect method is invoked and the connection is closed.

– parameters:
∗ String query: which is the query to be performed on the db.

78

A – Developer Manual

∗ List <String>variables: which is a list of all the parameters to insert inside the
query, ordered as they appear in the query.

– returns: returns a list of String values which represent the tuples that have been
selected from the db, null otherwise.

• public static String selectRecord: By calling the connect() method, it retrieves the con-
figuration parameters needed to open a connection towards the db and then it creates and
executes the statement used to select a single tuple inside the db. After that, the disconnect
method is invoked and the connection is closed.

– parameters:
∗ String query: which is the query to be performed on the db.
∗ List<String>variables: which is a list of all the parameters to insert inside the

query, ordered as they appear in the query.
– returns: returns a String value which represent the tuple that has been selected from

the db, null otherwise.

• public static ArrayList<String> selectColumns: By calling the connect() method, it
retrieves the configuration parameters needed to open a connection towards the db and then
it creates and executes the statement used to extract, from each selected tuple, the attributes
composing it. After that, the disconnect method is invoked and the connection is closed.

– parameters:
∗ String query: which is the query to be performed on the db.
∗ List<String>variables: which is a list of all the parameters to insert inside the

query, ordered as they appear in the query.
– returns: returns a list of String value which represent the attributes of the tuples that

have been selected from the db, null otherwise.

DBFns.java : In DBFns class, methods that perform queries to the SAFAX database are defined.
The class has been defined public in order to be visible also outside its package and let the public
methods defined in the class to be invoked. Furthermore, methods have been defined static, so
that can be invoked without the need of creating an instance of the class. The methods defined
inside DBFns class are:

• public static int errorlog: Insert the error in SAFAX ext_errorlog table.

– parameters:
∗ String transactionID: it’s the SAFAX transaction-id associated to the transaction

performed, that allows to call methods for writing logs.
∗ String logHead: which represents an explicative header explaining the type of

error.
∗ String logMsg: which is just an additional message that can be added in order to

give more infos about the error.
∗ int level: which is an integer value representing the error log level (4 = Invalid

Errors, 3 = Network Errors, 2 = DB Errors, 1 = Parsing Errors, 0 = Every other
Error).

∗ String component: which represents the SAFAX component experiencing the
error.

79

A – Developer Manual

– returns: An integer value representing the result of the insertStatement method in
DBAbstraction class. Which means an integer value greater than 0 if the execution of
the query was successful, 0 otherwise.

• public static String getDemoIDfromTransactionID: Retrieves the demoid from the
sfx_transaction table.

– parameters:
∗ String transactionID: it’s the SAFAX transaction-id associated to the transaction

performed.
– returns: An String value representing the demoid .

• public static ArrayList<String> getCAIRISCredentials: Retrieves, from the sfx_cairis_credentials
table, the CAIRIS credentials associated to the specified demoid.

– parameters:
∗ String demoID: it’s the identifier of a demo.

– returns: A list of String values representing, respectively, the ccid (identifier of the
tuple), the CAIRIS username and the CAIRIS password; null otherwise.

• public static String getCAIRISDB: Retrieves, from the sfx_cairis_db table, the CAIRIS
database associated to the specified CAIRIS account.

– parameters:
∗ String ccid: it’s the identifier of the tuple representing a CAIRIS account.

– returns: A String value representing the CAIRIS database associated to the CAIRIS
account identified by the ccid.

The followings are methods created with the purpose of being used by the CAIRIS module to
perform some tests retrieving the risk values from the local sfx_cairis_risks db. They could be
useful either in preliminary configuration phases, just to have a simple overview of the risk
retrieval mechanism, or if the CAIRIS’ APIs are not working (so, actually, in the normal
configuration of SAFAX, these methods are never invoked).

• public static String getHighestRiskValuefromResource: Retrieves the highest risk value
given a resource.

– parameters:
∗ String resource: which represents the asset which we want to retrieve the risk of.

– returns: A string which is the result of the selectRecord method in DBAbstraction
class.

• public static String getHighestRiskValuefromResourceGivenThreat: Retrieves the high-
est risk value given a resource and a threat.

– parameters:
∗ String resource: which represents the asset which we want to retrieve the risk of.
∗ String threat: which represents the threat associated to the asset.

80

A – Developer Manual

– returns: A string which is the result of the selectRecord method in DBAbstraction
class.

• public static String getHighestRiskValuefromResourceGivenEnvironment: Retrieves
the highest risk value given a resource and an environment.

– parameters:
∗ String resource: which represents the asset which we want to retrieve the risk of.
∗ String environment: which represents the environment within which we want to

retrieve the risk.
– returns: A string which is the result of the selectRecord method in DBAbstraction

class.

• public static String getHighestRiskValuefromResourceGivenThreatandEnvironment:
Retrieves the highest risk value given a resource, a threat and an environment.

– parameters:
∗ String resource: which represents the asset which we want to retrieve the risk of.
∗ String threat: which represents the threat associated to the asset.
∗ String environment: which represents the environment within which we want to

retrieve the risk.
– returns: A string which is the result of the selectRecord method in DBAbstraction

class.

A.1.2 /nl/tue/sec/cairis/engine

In this package, just 1 file is present:

CairisEngine.java : The CairisEngine class is a public class, where the method, in which
resides the core part of the implementation engine of the CAIRIS module, is implemented. The
class allows the adoption of two authentication methods implemented. Since, as default, the
Basic HTTP authentication method is enabled, in order to use the simple authentication method,
you should just uncomment the line which follows the comment string “SIMPLE SESSION_ID
AUTHENTICATION" and comment the part of the code between the comment strings “HTTP
BASIC AUTHENTICATION" and “End HTTP BASIC AUTHENTICATION". The method
defined inside CairisEngine class is:

• public static int coreExecute: It’s the core logic that resides behind the functioning of
the CAIRIS module. It invokes methods to retrieve CAIRIS credentials and database, to
perform authentication on CAIRIS and to retrieve the risk.

– parameters:
∗ String CairisURL: Risk API URL.
∗ String transID: it’s the SAFAX transaction-id representing the transaction per-

formed.
∗ String authURL: CAIRIS API to contact in order to obtain the session-id.
∗ String CAIRISdb: the name of the CAIRIS db to contact.

– returns: A positive integer value (≥ 0) representing the value of risk, retrieved by
CAIRIS, -1 otherwise.

81

A – Developer Manual

A.1.3 /nl/tue/sec/cairis/impl

In this package 3 files are present:

AuthenticationMethods.java : The AuthenticationMethods class is a public class, where
methods that support the two kinds of authentication supported by CAIRIS are implemented.
The methods defined inside AuthenticationMethods class are:

• public static ClientResponse httpBasicAuth: Allows to perform http basic authentication,
by contacting the proper CAIRIS api, passed as parameter, through POST method, and
giving it username and password in order to obtain a valid session-id.

– parameters:
∗ String username: username used to authenticate on CAIRIS.
∗ String passwd: password used to authenticate on CAIRIS.
∗ String authURL: CAIRIS API to contact in order to obtain the session-id.

– returns: An object of type ClientResponse which represents the response to the
invocation of the authURL.

• public static ClientResponse simpleAuth: Allows to directly retrieve the risk value from
the CAIRIS API, passed as parameter by means of a standard and predefined authentication
(session_id=test) supported by CAIRIS.

– parameters:
∗ String cairisURL: the complete URL to invoke in order to retrieve the risk from

CAIRIS.
– returns: An object of type ClientResponse which represents the response to the

invocation of the cairisURL.

CAIRISRetrievalMethods.java: The CAIRISRetrievalMethods class is a public class
implementing the risk’s retrieval method, used when HTTP Basic authentication is previously
used and a valid session-id has been correctly retrieved. The method defined inside
CAIRISRetrievalMethods class is:

• public static ClientResponse getRisk: Allows to retrieve the risk value from the CAIRIS
API passed as parameter after that a valid session-id have been negotiated. The session-id
is extracted from the response, received by CAIRIS, parsed and attached to the CairisURL.

– parameters:
∗ ClientResponse resp: it’s the response, received from CAIRIS, to the HTTP basic

authentication request.
∗ String CairisURL: the complete URL to invoke in order to retrieve the risk from

CAIRIS.
∗ String CAIRISdbURL: the CAIRIS database URL API to contact in order to open

the desired db.
∗ String dbname: is the name of the CAIRIS database to open.
∗ String transID: it’s the SAFAX transaction-id associated to the transaction per-

formed, that allows to call methods for writing logs.

82

A – Developer Manual

– returns: An object of type ClientResponse which represents the response to the
invocation of the CairisURL.

• private static ClientResponse openCAIRISdb: Allows to open the CAIRIS database
passed as parameter. The method has been implemented as private, in such a way to be
visible only within the class.

– parameters:
∗ String sessionCairis: the session-id retrieved form CAIRIS and to include in the

database open API.
∗ String CAIRISdbURL: the CAIRIS database URL API to contact in order to open

the desired db.
∗ String dbname: is the name of the CAIRIS database to open.
∗ String transID: it’s the SAFAX transaction-id associated to the transaction per-

formed, that allows to call methods for writing logs.
– returns: An object of type ClientResponse which represents the response to the

invocation of the CAIRISdbURL.

EvaluationMethods.java : The EvaluationMethods class is a public class implementing the
threshold based risk’s evaluation method. If, in the future, a new evaluation method will be
implemented, it could be defined in this class. The method defined inside EvaluationMethods
class is:

• public static boolean evaluateThreshold: Allows to compare the risk, passed as param-
eter, against a threshold, passed as parameter too.

– parameters:
∗ int risk: it’s the risk that have been retrieved from CAIRIS.
∗ int threshold: it’s the threshold against which we compare the risk.
∗ transID: it’s the SAFAX transaction-id associated to the transaction performed,

that allows to call methods for writing logs.
– returns: True if the risk is below the threshold, false otherwise.

A.1.4 /nl/tue/sec/cairis/util

In this package 4 files are present:

CairisUtil.java: The CairisUtil class is a public class where utility functions can be
implemented. First of all, the COMPKEY parameter is defined. In particular it is defined as
private, since there is no reason why it should be accessible from outside this class, final because
it is a value that will never change and static so that can be directly called without creating an
instance of the class. The method defined inside CairisUtil class is:

• public static String writeLog: This method is used to contact the PAP component which
is, among other things, responsible of storing and showing the logs relative to the evaluation
mechanism of a XACML request, showing them in the Account Activity section of SAFAX
application. The data are passed in the URL by means of a Form instance, the parameters
passed in the Form object are: clientcode (a unique string that identifies the component
which is writing the logs), transactionid (the SAFAX transaction-id), level (the log level),
message (the message to write in the logs), serviceid (the denomination of the component:
nl:tue:sec:cairis).

83

A – Developer Manual

– parameters:
∗ String transactionid: it’s the SAFAX transaction-id associated to the transaction

performed, that allows to call methods for writing logs.
∗ int level: it’s the log level (3 = Network Messaging, 2 = Internal messages to the

component, 1 = Interface level, 0 = Every other, -1 = Info, -2 = Warning, -3 =
Error, -4 = Super Critical Errors).

∗ String message: it’s the message to write in the log.
– returns: A string representing the entity response if the PAP URL has been correctly

contacted (code status = 200), an empty string otherwise.

DataUtil.java: The DataUtil class is a public class where JSON parsing methods are defined.
The methods defined inside DataUtil class are:

• public static JSONObject MapToJSON: This method converts a LinkedHashMap into a
JSONObject.

– parameters:
∗ LinkedHashMap<String, String> lmap: the map to be converted.

– returns: a JSONObject object.

• public static JSONArray MapToJSON: This method converts an array of LinkedHashMap
into a JSON Object.

– parameters:
∗ ArrayList<LinkedHashMap<String, String>> lmap: the array of maps to be

converted.
– returns: a JSONArray array of JSONObject objects.

• public static ArrayList<LinkedHashMap<String,String>> JSONArrayToMap: This
method converts an array of JSON objects into an array of maps.

– parameters:
∗ JSONArray jArray: the JSON array to be converted.

– returns: an ArrayList of LinkedHashMap maps.

• public static LinkedHashMap<String,String> JSONToMap: This method converts a
JSON object into a map.

– parameters:
∗ JSONObject json: the JSON object to be converted.

– returns: a LinkedHashMap map.

• public static JSONArray StringTOJSONArray: This method converts a string into a
JSON array.

– parameters:
∗ String jsonString: the string to be converted.

– returns: a JSONArray array.

• public static ArrayList<String> convertToList: This method converts a sequence of
strings into an array of strings.

84

A – Developer Manual

– parameters:
∗ String...args: the sequence of strings to be converted.

– returns: an ArrayList array of String objects.

• public static JSONObject getJSONFromInt: This method converts an integer into a
JSON object.

– parameters:
∗ int response: the integer value to be converted.

– returns: a JSONObject object.

-

• public static JSONObject getJSONFromDouble: This method converts a double into a
JSON object.

– parameters:
∗ double response: the double value to be converted.

– returns: a JSONObject object.

• public static JSONObject getJSONFromString: This method converts a string into a
JSON object.

– parameters:
∗ String response: the string to be converted.

– returns: a JSONObject object.

• public static JSONObject getJSONFromBool: This method converts a boolean value
into a JSONObject.

– parameters:
∗ Boolean response: the boolean value to be converted.

– returns: a JSONObject object.

• public static Response buildResponse: This method builds a response to an invocation of
an API, with a JSONString object.

– parameters:
∗ JSONObject json: the JSONObject to pass in the response.

– returns: a Response object.

• public static Response buildResponse: This method builds a response to an invocation of
an API, with a JSONString object.

– parameters:
∗ JSONArray json: the JSON array to pass in the response.

– returns: a Response object.

DBJerseyConfig.java: The DBJerseyConfig class is a public class used to retrieve the
configuration parameters in order to successfully connect to SAFAX MySql db. The methods
defined inside DBJerseyConfig class are:

85

A – Developer Manual

• public String getDBHost: Allows to get the db host.

– parameters: no input parameters.
– returns: a string indicating the db host.

• public String getDBPort: Allows to get the db port.

– parameters: no input parameters.
– returns: a string indicating the db port.

• public String getDB: Allows to get the db name.

– parameters: no input parameters.
– returns: a string indicating the db name.

• public String getDBUser: Allows to get the db username.

– parameters: no input parameters.
– returns: a string indicating the db username.

• public String getDBPassword: Allows to get the db password.

– parameters: no input parameters.
– returns: a string indicating the db password.

• public String getPropValues: Allows to read and get the configuration parameters from
the file where they are specified (config.db.properties file).

– parameters: no input parameters.
– returns: a string value that list all the parameters read from the file.

LogUtil.java: The LogUtil class is a public class which implements log methods. The methods
defined inside LogUtil class are:

• public static void errorlog: it just invokes errorlog method in DBFns class.

– parameters:
∗ String transactionid: it’s the SAFAX transaction-id associated to the transaction

performed, that allows to call methods for writing logs.
∗ String header: represents an explicative header explaining the type of error.
∗ String message: just an additional message that can be added in order to give

more infos about the error.
∗ int level: an integer value representing the error log level (4 = Invalid Errors, 3 =

Network Errors, 2 = DB Errors, 1 = Parsing Errors, 0 = Every other Error).
– returns: no return value (void method).

• public static void writeLog: it just invokes writeLog method in CairisUtil class.

– parameters:
∗ String transactionid: it’s the SAFAX transaction-id associated to the transaction

performed, that allows to call methods for writing logs.
∗ String message: just an additional message that can be added in order to give

more infos about the error.
∗ int level: an integer value representing the error log level (4 = Invalid Errors, 3 =

Network Errors, 2 = DB Errors, 1 = Parsing Errors, 0 = Every other Error).
– returns: no return value (void method).

86

A – Developer Manual

A.1.5 /nl/tue/sec/cairis/ws

In this package 1 file is present:

CairisService.java: The CairisService class is a public class where CAIRIS UDFs are specified.
The core part of the implementation of these UDFs has been defined in the CairisEngine file,
within nl.tue.sec.cairis.engine package. Indeed, each one of the UDFs, after a preliminary
self-configuration step, invokes the coreExecute method, which follows a standard procedure to
retrieve the final risk value from CAIRIS and thus can exploit a unified code. In this class, 3
private final static parameters are defined: CAIRISHOME, which represents the URL of the
CAIRIS demo, authURL, which represents the URL of the API to contact in order to obtain a
session in CAIRIS, and CAIRISdb, which represents the URL to contact in order to manage the
relation with a CAIRIS database. This parameters are defined private because they are going to
be used only within this class and final, since they will never change their value. The UDFs
implemented in CairisService class are:

• public Response asset

– urn:bu:udf:cairis:risk:level:asset : It’s the UDF that should be able to retrieve the
highest risk for an asset.

– Path: api/risk_level/asset/{asset_name}/{threshold}/{transID}
– Method: GET
– Parameters:

∗ asset_name: it’s the name of the resource which we want to retrieve the risk of.
∗ threshold: it’s the threshold against which evaluate the resource’s risk.
∗ transID: it’s the SAFAX transaction-id associated to the transaction performed,

that allows to call methods for writing logs.
– Returns: a JSON Response encapsulating a boolean value, true if risk is below

threshold, false otherwise.

• public Response asset_threat

– urn:bu:udf:cairis:risk:level:asset:threat:type : It’s the udf that should be able to retrieve
the highest risk for an asset, given a threat type.

– Path: api/risk_level/asset/threat_type/{asset_name}/{threat_name}/
{threshold}/{transID}

– Method: GET
– Parameters:

∗ asset_name: it’s the name of the resource which we want to retrieve the risk of.
∗ threat_name: it’s the name of the threat associated to the asset.
∗ threshold: it’s the threshold against which evaluate the resource’s risk.
∗ transID: it’s the SAFAX transaction-id associated to the transaction performed,

that allows to call methods for writing logs.
– Returns: a JSON Response encapsulating a boolean value, true if risk is below

threshold, false otherwise.

• public Response asset_environment

87

A – Developer Manual

– urn:bu:udf:cairis:risk:level:asset:environment : It’s the udf that should be able to
retrieve the highest risk for an asset, in a specific environment.

– Path: api/risk_level/asset/environment/{asset_name}/{environment}/
{threshold}/{transID}

– Method: GET
– Parameters:

∗ asset_name: it’s the name of the resource which we want to retrieve the risk of.
∗ environment: it’s the name of the environment in which we want to retrieve the

resource’s risk.
∗ threshold: it’s the threshold against which evaluate the resource’s risk.
∗ transID: it’s the SAFAX transaction-id associated to the transaction performed,

that allows to call methods for writing logs.
– Returns: a JSON Response encapsulating a boolean value, true if risk is below

threshold, false otherwise.

• public Response asset_threat_environment

– urn:bu:udf:cairis:risk:level:asset:threat:type:environment : It’s the udf that should be
able to retrieve the highest risk for an asset, in a specific environment, given a threat
type.

– Path: api/risk_level/asset/threat_type/environment/{asset_name}/{threat_name}/
{environment}/{threshold}/{transID}

– Method: GET
– Parameters:

∗ asset_name: it’s the name of the resource which we want to retrieve the risk of.
∗ threat_name: it’s the name of the threat associated to the asset.
∗ environment: it’s the name of the environment in which we want to retrieve the

resource’s risk.
∗ threshold: it’s the threshold against which evaluate the resource’s risk.
∗ transID: it’s the SAFAX transaction-id associated to the transaction performed,

that allows to call methods for writing logs.
– Returns: a JSON Response encapsulating a boolean value, true if risk is below

threshold, false otherwise.

A.1.6 The other “cairis”subfolders

In subfolder resources it’s possible to find the config.db.properties file, which provides the con-
figuration’s informations needed to successfully interact with the SAFAX database. In subfolder
build it’s possible to find all the compiled files (.class) of the project. Finally, in WebContent
subfolder it’s possible to find the libraries included in the project and the web.xml file, which is
the standard deployment descriptor for the Web application that the Web service is part of. It
declares filters and servlets used by the service.

A.2 “sfx”module

Folder named “sfx”represents the Web Service providing the graphical part of the project. Here
HTML and Javascript files, needed to support the functioning of the application, are contained.

88

A – Developer Manual

This Web Service was already present in the original project, so only the changes in the files that
have been updated, to support the goal of this thesis work, will be reported here:

A.2.1 WebContent/main.html

In this file, the HTML code has been updated in such a way to include, in the GUI, the Risk tab,
where the user can insert and update the CAIRIS Settings. By searching for the word “CAIRIS
”, inside the file, it is possible to see the updates that have been made. Mostly, they consist in a
form where to insert username, password and database informations.

A.2.2 WebContent/js/sfxmain.js

In this file, the javascript function called by the Save Settings button in main.html has been
implemented. The function sends an Ajax request to the sfxservice module, contacting the
sfxservice/demo/edit/cairis/ API and passing as parameters the informations inserted in the form
by the user, corresponding to the CAIRIS credentials and database informations. Then, it displays
a message showing whether the result of the operations has been successful or not.

A.3 “sfxservice”module

Folder named “sfxservice”represents the Web Service providing the interface between the web
component of the project and the engine part, developed in java. This Web Service was already
present in the original project, so only the changes in the files that have been updated, to support
the goal of this thesis work, will be reported here:

A.3.1 package nl.tue.sec.safax.sfxbe.db

DBFns.java: In DBFns class, methods that perform queries to the SAFAX database are defined.
The class has been defined public in order to be visible also outside its package and let the public
methods defined in the class to be invoked. Furthermore, methods have been defined static, so
that can be invoked without the need of creating an instance of the class. The methods newly
implemented are:

• public static String setCairisCredentials: The method sets into the sfx_cairis_credentials
table the username and the password for the specific demo; if they already exist, it updates
them.

– parameters:
∗ String cairisuname: the CAIRIS username.
∗ String cairispwd: the CAIRIS password.
∗ String demoid: the identifier of the demo.

– returns: the identifier of the tuple for the set/updated CAIRIS account, null otherwise.

• public static int setCairisDB: The method sets into the sfx_cairis_db table the database
to associate to a CAIRIS account specified in the sfx_cairis_credentials table. Whenever a
database is added or updated, it becomes the default one.

– parameters:

89

A – Developer Manual

∗ String dbname: the CAIRIS database.
∗ String cairisid: the identifier of the tuple of the CAIRIS account to which associate

the database.
– returns: an integer value representing the identifier of the tuple for the set/updated

CAIRIS database, 0 if something in the process goes wrong.

A.3.2 package nl.tue.sec.safax.sfxbe.impl

DemoHandlerImpl.java: The DemoHandlerImpl class is a public class where the implementa-
tion engine of methods in DemoHandler.java file is implemented. The method newly implemented
is:

• public String editCairis: The method allows to invoke the database functions supporting
the setting or the update of the CAIRIS credentials and database informations.

– parameters:
∗ String demoid: the demo identifier.
∗ String uname: the SAFAX username.
∗ String cairisusr: the CAIRIS username.
∗ String cairispwd: the CAIRIS password.
∗ String cairisdb: the CAIRIS database.
∗ String projectid: the SAFAX project identifier.
∗ String sessionid: the SAFAX user session identifier.

– returns: a string value representing the result of the operation.

A.3.3 package nl.tue.sec.safax.sfxbe.ws

DemoHandler.java: The DemoHandler class is a public class where the SAFAX API called by
the javascript functions through Ajax request, are defined. The API newly implemented is:

• public Response editCairis

– Path: /edit/cairis/{demoid}/{projectid}
– Method: POST
– URL parameters:

∗ String demoid: the demo identifier.
∗ String projectid: the SAFAX project identifier.

– Path parameters:
∗ String cairisusr: the CAIRIS username.
∗ String cairispwd: the CAIRIS password.
∗ String cairisdb: the CAIRIS database.

– Cookie parameters:
∗ String sessionid: the SAFAX user session identifier.

– returns: a JSON Response encapsulating a string value representing the result of the
operation, carried on by the editCairis method in DemoHandlerImpl class.

90

A – Developer Manual

A.4 db_risk_tables folder

In the folder “db_risk_tables”are present the scripts to create the SAFAX database tables needed
in the project.

• safax_sfx_cairis_risks.sql
The script creates a SAFAX risk table, named sfx_cairis_risks, that simulates the risks
retrieved by CAIRIS and that can be used to test the CAIRIS module if, for example, the
CAIRIS service is not available. In order to achieve this, a table with these columns is
needed:

– resourceid (PrimaryKey, not null, Datatype: INT)
– resourcename (not null, Datatype: VARCHAR)
– threatname (Default: null, Datatype: VARCHAR)
– environmentname (Default: null, Datatype: VARCHAR)
– riskvalue (not null, Datatype: INT)

In order to successfully perform the test, you should uncomment the line of codes in
CairisService class which are between the comment strings “TEST”and “End TEST”.
Then, you should comment the part of code where the coreExecute method is invoked.

• safax_sfx_cairis_credentials.sql
The script creates a table, named sfx_cairis_credentials, that contains the CAIRIS creden-
tials associated to each demo in the application. In order to achieve this, a table with these
columns is needed:

– ccid (PrimaryKey, not null, unsigned, zero fill, auto increment, Datatype: INT)
– cairisuname (not null, Datatype: VARCHAR)
– cairispwd (not null, Datatype: VARCHAR)
– demoid (not null, unsigned, zero fill, Datatype: INT)

• safax_sfx_cairis_db.sql
The script creates a table, named sfx_cairis_db, that contains the CAIRIS databases (active
and not active) associated with each credential. In order to achieve this, a table with these
columns is needed:

– cdid (PrimaryKey, not null, unsigned, zero fill, auto increment, Datatype: INT)
– dbname (not null, Datatype: VARCHAR)
– ccid (not null, unsigned, zero fill, Datatype: INT)
– isactive (Default: 1, Datatype: TINYINT(1))

A.5 example_policies_requests folder

In the folder “example_policies_requests" are present the XACML risk policies and requests that
can be used to benefit from this Risk-based authorization mechanism, each one tests a different
CAIRIS API:

91

A – Developer Manual

• risk_policy_asset.xml: This is an example of Risk policy, which asks for a resource-id and
an action-id. The two attributes’ values are compared to the attributes with same attribute-id
in the request according to urn:oasis:names:tc:xacml:1.0:function: string-equal function,
which is just a string comparator function. In this way, the applicability of the policy is
verified. In the condition of the rule, instead, urn:bu:udf:cairis:risk:level:asset UDF is
called. The function takes as parameters the attributes specified inside, which in this case
are the resource-id attribute specified in the request and an integer value representing the
threshold. If the result of the condition in the first rule will be TRUE, then the effect will
be PERMIT, if FALSE, then the second rule’s effect will be DENY. (See figure A.1).

• risk_request_asset.xml: This is an example of Risk request, which wants to perform a
certain action over a specified resource, so resource-id and action-id have to be specified.
(See figure A.2).

• risk_policy_asset_env.xml: This is an example of Risk policy, which asks for an resource-
id, an environment-id and an action-id. The three attributes’ values are compared to the at-
tributes with same attribute-id in the request according to urn:oasis:names:tc:xacml:1.0:function:string-
equal function, which is just a string comparator function. In this way, the applicability of the
policy is verified. In the condition of the rule, instead, urn:bu:udf:cairis:risk:level:asset:environment
UDF is called. The function takes as parameters the attributes specified inside, which in this
case are the resource-id attribute and the environment-id attribute specified in the request
and an integer value representing the threshold. If the result of the condition in the first rule
will be TRUE, then the effect will be PERMIT, if FALSE, then the second rule’s effect will
be DENY. (See figure A.3).

• risk_request_asset_env.xml: This is an example of Risk request, which wants to perform a
certain action over a specified resource, in a specific context, so resource-id, environment-id
and action-id have to be specified. (See figure A.4).

• risk_policy_asset_threat.xml: This is an example of Risk policy, which asks for an
resource-id, a threat-id and an action-id. The three attributes’ values are compared to the at-
tributes with same attribute-id in the request according to urn:oasis:names:tc:xacml:1.0:function:string-
equal function, which is just a string comparator function. In this way, the applicability of the
policy is verified. In the condition of the rule, instead, urn:bu:udf:cairis:risk:level:asset:threat:type
UDF is called. The function takes as parameters the attributes specified inside, which in
this case are the resource-id attribute and the threat-id attribute specified in the request and
an integer value representing the threshold. If the result of the condition in the first rule
will be TRUE, then the effect will be PERMIT, if FALSE, then the second rule’s effect will
be DENY. (See figure A.5).

• risk_request_asset_threat.xml: This is an example of Risk request, which wants to per-
form a certain action over a specified resource, given a certain threat, so resource-id,
threat-id and action-id have to be specified. (See figure A.6).

• risk_policy_asset_threat_env.xml: This is an example of Risk policy, which asks for
an resource-id, a threat-id, an environment-id and an action-id. The four attributes’
values are compared to the attributes with same attribute-id in the request according to
urn:oasis:names:tc:xacml:1.0:function:string-equal function, which is just a string com-
parator function. In this way, the applicability of the policy is verified. In the condition of

92

A – Developer Manual

the rule, instead, urn:bu:udf:cairis:risk:level:asset:threat:type: environment UDF is called.
The function takes as parameters the attributes specified inside, which in this case are the
resource-id attribute, the threat-id attribute and the environment-id attribute specified in
the request and an integer value representing the threshold. If the result of the condition
in the first rule will be TRUE, then the effect will be PERMIT, if FALSE, then the second
rule’s effect will be DENY. (See figure A.7).

• risk_request_asset_threat_env.xml: This is an example of Risk request, which wants
to perform a certain action over a specified resource, given a certain threat, in a specific
context, so resource-id, threat-id, environment-id and action-id have to be specified. (See
figure A.8).

93

A – Developer Manual

Figure A.1. risk_policy_asset.xml.

94

A – Developer Manual

Figure A.2. risk_request_asset.xml.

95

A – Developer Manual

Figure A.3. risk_policy_asset_env.xml.

96

A – Developer Manual

Figure A.4. risk_request_asset_env.xml.

97

A – Developer Manual

Figure A.5. risk_policy_asset_threat.xml.

98

A – Developer Manual

Figure A.6. risk_request_asset_threat.xml.

99

A – Developer Manual

Figure A.7. risk_policy_asset_threat_env.xml.

100

A – Developer Manual

Figure A.8. risk_request_asset_threat_env.xml.

101

Appendix B

User Manual

The purpose of this manual is to enhance the utility of the SAFAX Installation Guide [60] and
the SAFAX User Manual [61], adding the necessary steps in order to install, better understand
and make use of the new CAIRIS module implemented for this thesis work. This manual has been
organized in two sections, the first one is more like an installation guide, which has been thought
to help users who are going to install locally SAFAX from scratch, the second one is a user guide,
which instead has the purpose of giving to the user the necessary knowledge to appropriately use
the tool.

B.1 Installation Guide

All the references to chapters, sections, pages that are made in this Installation Guide refers to
the SAFAX Installation Guide [60]. Pay attention that not every single step described in [60]
is repeated in this guide, but only the improvements, changes and of course the additional steps
necessary in order to make use of SAFAX tool with the integration supporting the interaction with
the CAIRIS tool.

B.1.1 Tomcat installation

In Prerequisites >Tomcat > Windows section (pag. 7).

In the following steps, it is explained how to download and install Tomcat. Tomcat is needed both
for the development and execution of SAFAX, being used in this project as a servlet container for
Jersey web services.

1. Create a custom directory (It is suggested to create the custom directory in the workspace
of the user account on Windows system).

2. Download the 32-bit or 64-bit zip file from https://tomcat.apache.org/download-70.cgi.

3. Extract the zip file in the custom directory (make sure after the extraction of tomcat zip that
no spaces are present in the path, in order to avoid problems).

102

B – User Manual

B.1.2 Safax repository download via SVN

In Development Environment > SVN section (pag. 13).

In this section it is explained how to download SAFAX repository and all its components by
using SVN service.

A new folder named cairis will be now available, which contains the CAIRIS service. It is
a component which allows to have a risk-based access control mechanism by contacting CAIRIS
application as an external trust service and relying on it for risk parameters retrieval.

B.1.3 MySQL

In Development Environment > MySQL section (pag. 19).

In the following steps it is described how to create with MySQL Workbench a new user ac-
count, which is the one that the module of SAFAX will use when contacting the database.

Use MySQL Workbench to create a new database and importing SAFAX database schema:

1. Click Create a new schema in the connected server button (B.1).

Figure B.1. Create a new schema.

2. Name the schema: safax.

3. Choose latin1_swedish_ci for the Collation (B.2).

Figure B.2. Collation.

4. click Open SQL Script to import the SAFAX initial database. The script to use when
importing tables can be found in the SAFAX SVN server.

5. Execute the script to create tables in the SAFAX database.

6. Create a user named vdJCh9F3 and assign the schema safax to this user, set a password for
the user (the same password that the module are going to use when contacting the database)
(B.3).

7. Assign to the user the necessary privileges needed to manage the tables (at least: SELECT,
INSERT, UPDATE, DELETE, EXECUTE) (B.4).

103

B – User Manual

Figure B.3. User creation.

Figure B.4. User permission assignment.

B.1.4 Execution Environment

In Execution Environment (pag. 20)

In the following steps it is described how to correctly setup the execution environment of SAFAX.

Prerequisites

The following applications are needed to install the SAFAX development environment:

• JDK

• Tomcat

• MySQL

104

B – User Manual

• MongoDB

See Section “Prerequisite” (pag. 5) for the installation of these applications.

Service Deployment

Windows and Ubuntu

1. Some execution environment configuration:

(a) (Only for Windows systems) Setup CATALINA_HOME environmental variable.
i. Right-click on My Computer and select Properties.
ii. Click on Advanced system settings > Advanced > Environmental Variables.
iii. Under System variables, click on New.
iv. In the Variable name enter: “CATALINA_HOME”.
v. In the Variable value enter the path of the Tomcat’s installation folder.

vi. Under System Variables, select variable Path and click on Edit.
vii. In the Variable value append: “;%CATALINA_HOME%\bin”.

(b) (Only for Ubuntu systems) create a setenv.sh file in the bin folder of tomcat with the
following content:

2. Update Tomcat users
Go to tomcat-installed-folder/conf/tomcat-users.xml and add the following lines:
<role rolename=“tomcat”/>
<role rolename=“manager-gui”/>
<role rolename=“manager-script”/>
<role rolename=“manager-jmx”/>
<role rolename=“manager-status”/>
<role rolename=“admin-gui”/>
<role rolename=“admin-script”/>
<user username=“tomcat”password=“tomcat”roles=“tomcat”/>
<user username=“both”password=“tomcat”roles=“tomcat,role1”/>
<user username=“role1”password=“tomcat”roles=“role1”/>
<user username=“admin”password=“admin”roles=“manager-gui, manager-script, manager-
jmx,manager-status, admin-gui, admin-script”/>

3. Change Tomcat port to 80
Go to tomcat-installed-folder/conf/server.xml and update the following lines:
<Connector port=“80”protocol=“HTTP/1.1”
connectionTimeout=“20000”redirectPort=“8443”/>

4. Deploy SAFAX web services to Tomcat server by using one of the two options:

(a) Copying web application archive files (.war) into Tomcat webapps folder (tomcat-
installed-folder/webapps). .war files can be found in SAFAX SVN server.

(b) Using Tomcat’s manager application:
i. First start Tomcat

Windows:
• opening command prompt.

105

B – User Manual

• typing cd Tomcat-directory-name.
• typing .\bin\startup.bat (or %CATALINA_HOME%\bin\startup.bat).
• typing .\bin\shutdown.bat (when later you will shutdown the server).
• typing sudo .\catalina.bat (to debug while tomcat is running).

Ubuntu:
• opening a terminal.
• typing cd /tomcat-installed-directory.
• typing sudo ./bin/startup.sh.
• typing sudo ./bin/shutdown.sh (when later you will shutdown the server).
• typing sudo ./catalina.sh run (to debug while tomcat is running).

ii. Go to the Manager App (http://localhost/manager/html).

106

B – User Manual

iii. Login by using the username and password mentioned in tomcat-users.xml file
(user: admin, passwd: admin).

• Scroll down to the section “Deploy”.
• Upload the .war files and click “Deploy”.

Starting MongoDB application

Windows

1. create the following folder: C:/data/db

2. open a terminal and type: cd C:/Program Files/MongoDB/Server/3.2/bin.

3. run mongoDB application by typing on the terminal: mongod.

4. by default, mongoDB server will start at port 27017.

Linux

1. open a terminal.

2. start MongoDB service by typing: sudo service mongod start.

3. check if MySQL is running by checking the contents of the log file at: /var/log/mongodb/-
mongod.log for a line saying: [initandlisten] waiting for connections on port <port>.

B.2 User Guide

All the references to chapters, sections, pages that are made in this User Guide refers to the
SAFAX User Manual [61]. Pay attention that not every single step described in [61] is repeated
in this guide, but only the improvements, changes and of course the additional steps necessary in
order to make use of SAFAX tool with the integration of the CAIRIS service.

B.2.1 Advanced Functionalities

In Chapter 3 > Advanced functionalities (pag. 32)

In this section, all the advanced features that SAFAX offers for policy evaluation are described.
The following new sub-chapter (3.8) should be added:

Risk Service

1. Functional Description:
The risk service to support a Risk-based access control mechanism is provided by the
CAIRIS service. According to this kind of access control, the subject is authorized to
perform an action over a resource only if the risk related is below a certain threshold. The
idea is to implement a dynamic access control mechanism which goes beyond traditional
access control systems (mostly role-based) which have quite a static approach when applying
policies.

107

B – User Manual

2. Caution and Warning:
Not applicable

3. Formal Description:
On the home page of SAFAX, click to create a new project, then create a new Demo. In the
XACML tab upload your risk policy and your request paying attention to be coherent with
the standard format that supports the different scenarios.

It is possible to have 4 different kinds of scenarios:

Scenario 1: We ask to evaluate the risk of accessing a certain resource.
For this kind of scenario the request should contain a resource-id attribute (which represents
the asset we are asking to access in a certain mode) and of course an action-id attribute
(which represents the mode according to which we want to access the asset, i.e. read,
write,..). The policy should include, in the Condition, the threshold against which the risk
will be compared. The UDF which has to be used in order to evaluate the condition is:
urn:bu:udf:cairis:risk:level:asset.

Scenario 2: We ask to evaluate the risk of accessing a certain resource given a threat
type.
For this kind of scenario the request should contain a resource-id attribute (which represents
the asset we are asking to access in a certain mode), a threat-type attribute (which represents
the threat associated to the asset) and of course an action-id attribute (which represents the
mode according to which we want to access the asset). The policy should include, in the
Condition, the threshold against which the risk will be compared. The UDF which has to
be used in order to evaluate the condition is: urn:bu:udf:cairis:risk:level:asset:threat:type.

Scenario 3: We ask to evaluate the risk of accessing a certain resource in a certain context.
For this kind of scenario the request should contain a resource-id attribute (which repre-
sents the asset we are asking to access in a certain mode), an environment attribute (which
represents the environment we are interested in, which is associated to the asset) and of
course an action-id attribute (which represents the mode according to which we want to
access the asset). The policy should include, in the Condition, the threshold against which
the risk will be compared. The UDF which has to be used in order to evaluate the condition
is: urn:bu:udf:cairis:risk:level:asset: environment.

Scenario 4: We ask to evaluate the risk of accessing a certain resource in a certain context
given a threat type.
For this kind of scenario the request should contain a resource-id attribute (which repre-
sents the asset we are asking to access in a certain mode), a threat-type attribute (which
represents the threat associated to the asset), an environment attribute (which represents
the environment we are interested in, which is associated to the asset) and of course an
action-id attribute (which represents the mode according to which we want to access the
asset). The policy, should include, in the Condition, the threshold against which the risk
will be compared. The UDF which has to be used in order to evaluate the condition is:
urn:bu:udf:cairis:risk:level:asset:threat: type:environment.

Then go in the Risk tab (see figure B.5) and set, for the specific demo, your CAIRIS
settings: credentials (Username and Password) and Database. The username and password
informations correspond to the account informations that the user is supposed to possess
within the CAIRIS service. The database information, instead, represents the name of the

108

B – User Manual

database from which the user wants to retrieve the risk scores.
Click on Save Settings button to effectively set the informations.
A specific set of test credentials are available, in order to let a user, without an account on
CAIRIS, to test the authorization mechanism: Username = test, Password = test, Database
= ACME_Water (see figure B.6).

Then, after the uploads, click on run in order to evaluate your request. An example of
risk response that is possible to see in the Account Activity page of SAFAX is shown in
figure B.7

4. Related

Figure B.5. CAIRIS Settings.

Figure B.6. CAIRIS Settings with test credentials.

109

B – User Manual

Figure B.7. Example of a risk response.

110

	Introduction
	State of the Art Analysis
	Towards the definition of a mathematical and architectural model for computing risk
	Introducing benefit analysis process
	Supporting the new Cloud Computing paradigm

	Requirements for a Risk-Based Access Control Framework
	Architectural Requirement Analysis
	Risk-Based Approach
	Trust & Risk-Based Approach
	Obligations Enforcement

	Security Implications

	Analysis of the Tools: CAIRIS and SAFAX
	CAIRIS
	Introduction
	Baseline Architecture and Goals
	Novelties

	SAFAX
	Introduction
	Baseline Architecture and Goals
	Novelties

	Integration
	High Level Implementation
	Architecture
	Performance Considerations

	Usage Scenarios
	Scenario 1: ACME Water
	Situation 1:
	Situation 2:

	Scenario 2: Healthcare facility
	Situation:

	Scenario 3: NeuroGrid
	Situation:

	Performance Results
	Conclusions
	Lessons learnt and open issues
	Future works

	Bibliography
	Developer Manual
	“cairis”module
	/nl/tue/sec/cairis/db
	/nl/tue/sec/cairis/engine
	/nl/tue/sec/cairis/impl
	/nl/tue/sec/cairis/util
	/nl/tue/sec/cairis/ws
	The other “cairis”subfolders

	“sfx”module
	WebContent/main.html
	WebContent/js/sfxmain.js

	“sfxservice”module
	package nl.tue.sec.safax.sfxbe.db
	package nl.tue.sec.safax.sfxbe.impl
	package nl.tue.sec.safax.sfxbe.ws

	db_risk_tables folder
	example_policies_requests folder

	User Manual
	Installation Guide
	Tomcat installation
	Safax repository download via SVN
	MySQL
	Execution Environment

	User Guide
	Advanced Functionalities

		Politecnico di Torino
	2018-04-03T14:18:25+0000
	Politecnico di Torino
	Antonio Lioy
	S

