
POLITECNICO DI TORINO

Corso di Laurea Magistrale in ICT for Smart Society

Dipartimento di Electronics and Telecommunications

Machine Learning for

Self-organizing Networks

Tesi di:

Chongshun Wang

matricola 231135

Relatore:

Prof.ssa. VISINTIN MONICA

Prof. GARELLO ROBERTO

Mr. BULDORINI ANDREA (TIM)

Anno Accademico 2017-2018

Contents

1 Introduction 2

2 Backgrounds and Related Works 4

2.1 Self-Organizing Networks 4

2.2 Load Balancing of Antennas 5

2.3 Data Mining and Machine Learning 7

2.4 Related Work . 8

3 Data Processing 10

3.1 Data Description . 10

3.2 Data Selection and Clean 12

3.3 Normalization . 15

3.3.1 Normalization with All Days 18

3.3.2 Normalization Day by Day 19

3.3.3 Normalization with All Cells 20

3.4 Removal of Mean . 22

3.5 Smoothing . 23

4 Clustering 26

4.1 K-means Introduction 26

4.2 DBSCAN Introduction 32

2

4.2.1 Parameters and Definitions 33

4.3 Clustering Performance 35

4.3.1 Davies-Bouldin Index 37

4.3.2 Dunn Index . 38

4.3.3 Silhouette Score 38

4.4 K-means Clustering Implementation 39

4.5 DBSCAN Implementation 41

4.5.1 Distance Metric 41

4.6 Results . 45

4.6.1 K-means Results 45

4.6.2 DBSCAN Results 47

5 Classification and Self-optimization 51

5.1 Classification . 52

5.2 Performance Evaluation Index 53

5.3 Classifiers . 54

5.3.1 Minimum Distance Classifier 54

5.3.2 GNB Classifier 56

5.3.3 CNN . 58

5.4 Results and Figures . 61

5.5 Outliers Detection . 64

6 Conclusions and Future Works 68

Bibliografia 70

List of Figures

2.1 Antenna inclination . 6

2.2 Antenna Load Balancing 6

3.1 Correlation Matrix of Measurements in Dataset 13

3.2 Data after interpolation 17

3.3 Data after all days normalization 19

3.4 data after day by day normalization 21

3.5 data after all cells normalization 22

3.6 data after removal of mean 23

3.7 data smoothed by adjusted EWMA 25

4.1 When DBSCAN works well 33

4.2 When DBSCAN works bad 33

4.3 Illustration of DBSCAN Structure 35

4.4 Performance Index Box plot for GP3 40

4.5 Time Series Aligned by DTW 42

4.6 Base station complexity comparison 48

4.7 KPIs and Performance Score 49

4.8 Best Clustering Results 49

4.9 Clustering Heat map 49

4.10 DBSCAN Clustering Results 50

4.11 Clustering Heat map by using DBSCAN DTW distance 50

4

4.12 Clustering Heat map by using DBSCAN Euclidean dis-

tance . 50

5.1 Classification Terminology 54

5.2 Random dataset splitting 55

5.3 Used classification labels 56

5.4 A 3-layer neural network 58

5.5 A convolutional neural network 59

5.6 The potential of deep learning 63

5.7 Minimum Distance Classifier Training Set 65

5.8 Minimum Distance Classifier Testing Set 65

5.9 GNB Classifier Training Set 66

5.10 GNB Classifier Testing Set 66

5.11 CNN Classifier Training Set 67

5.12 CNN Classifier Testing Set 67

List of Tables

2.1 Machine Learning Brief Summary 8

2.2 Programming Language and Tools in this project . . . 9

3.1 Parameters in the datasets 11

3.2 A snippet of the dataset 11

3.3 Cell Mergence . 12

3.4 Dataset for i-th base station 17

4.1 Clustering Outputs . 45

5.1 Class Description . 55

5.2 Convolutional Neural Network Structure 61

5.3 Classifiers Evaluation KPIs 62

Chapter 1

Introduction

Traditionally, the evolution of mobile networks from one generation

to another has been driven by the hardware technology improvement.

While the 5G revolution is different, the improvement of software tech-

nology becomes more important than the improvements of hardware,

especially in terms of network management system. With the explosion

of software improvements, the management of autonomic network can

be put into practice taking advantage of also other cross-disciplinary

knowledge advancements in the area of Machine Learning (ML). Self-

organizing Network (SON) is used to refer to mobile network automa-

tion and human intervention minimization in the cellular network man-

agement.

Troubleshooting in traditional mobile networks is a procedure that

has been manual. It has 3 stages 1). Detection: to identify the sectors

with failure/abnormal performance. 2). Determination: to determine

the cause of the problem. 3). Fix: to take actions to solve the problem

(repair HW, configuration corrections, etc).

This project is a telecommunications field work developed by com-

puter scientists. For this reason, it is important to notice that the back-

2

ground chapter was carefully balanced between electrical engineering

and computer science aspects.

The remainder of the thesis is organized as follows: the second

Second chapter explains the backgrounds, the goal of this work, why it

is important and hard and also outlined the methodology. The third

chapter provides the information of data preparation and cleaning. The

forth chapter describes how we get the cell behavior pattern clusters

and the fifth chapter describes how we classified the new data into our

existed models.

3

Chapter 2

Backgrounds and

Related Works

2.1 Self-Organizing Networks

SON is a main driving technology to improve efficiency, simplify

management procedure and reduce the operation costs for next gen-

eration Radio Access Networks (RANs). The Main objective of SONs

can be roughly divided into 3 main parts:

1. Bring intelligence and autonomous adaptability into cellular net-

work,

2. Reduce capital and operation cost,

3. Enhance performance of network in terms of its capacity, cover-

age and improve the quality of service/experience.

In telecommunication field, SON can be useful to achieve real time

autonomous network management.However, the SON solutions in cur-

rent market are limited in various aspects:

4

1. SONs are mainly based on heuristic algorithms

2. SONs are implemented with low complexity solutions such as

triggering for the automated control

3. Some operations are still done manually eg. engineers manually

fix networks faults

4. Do not really take advantage on the huge amount of information

that is available in the network

As we can observe in Big Data Empowered Self Organized Networks

[10], huge amounts of data have been generated in current 4G networks

during normal operations by control and management functions. It

is reasonable to expect more will come in 5G networks due to the

emergence of new applications and services, for example Internet of

things (IoT) paradigms. So 5G network management is expected to

face much more complex challenges.

A key concept in SONs is that the collections of data should be

used to inform the system about what is going on in the network

at any given time. Usually, this data collections are counters or key

performance indicators (KPIs). As an example of KPIs, pmreceived is

the number of paging messages received per minute (for a given cell).

2.2 Load Balancing of Antennas

So far, we said about the goal of this project is to implements machine

learning on SONs, but the SONs settings, which is the main object

are still abstract. Actually, we are talking about physically tilting the

antennas. One of the technology in the field is remote electric tilt

(RET). This tilting allows antennas to be controlled either manually

5

or remotely, but with SONs application, the remote control is neces-

sary. When we apply the tilt to an antenna, we improve or reduce the

signal coverage in areas of that antenna. In other words, when we’re

adjusting the tilt we seek a signal as strong as possible in areas of in-

terest (where the traffic must be), or similarly, a signal the weakest as

possible beyond the borders of the cell.

Figure 2.1: Antenna inclination

As discussed in Antenna Tilt Load Balancing in Self-Organizing

Networks [5], the purpose of load balancing is to transfer loads from

a cell that is experiencing heavy load to a neighboring cell that is

experiencing less. Due to the unpredictable nature of user behavior, it

is not easy without proper tools.

Figure 2.2: Antenna Load Balancing. Illustration of load balancing. Down-tilting antenna
A while up tilting antenna B, the coverage area for respective cells are changed.

6

2.3 Data Mining and Machine Learning

We believe that Machine Learning is a promising technology in telecom-

munication network management. It allows the network to learn from

experience so as to improving performance. In particular, big data

analytics can pursue the self-awareness by driving the network man-

agement from reactive to predictive. That is why big data analyt-

ics are receiving big attention in research and market. The term of

machine learning (ML) was originally introduced in 1959 by Arthur

Samuel, when he defined ML as a field that gives computers the abil-

ity to learn without being explicitly programmed. And according to

Machine Learning [9], Using Output Codes to Boost Multi-class Learn-

ing Problems [13], Big Data: the next frontier for innovation, com-

petition and productivity [8], The primary goal of ML is to develop

efficient algorithms, where time and the amount of data required for

learning are one of the most important efficiency indicators. Learning

algorithms should also be as general as possible, but also, those deci-

sions/predictions have to be easily understandable by experts.

ML taxonomy is traditionally organized into 3 parts: (see Table 2.1)

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

Programming Tools The programming language in this work is

Python which is very famous programming language in Scientific Com-

puting and Machine learning fields(Python for Scientific Computing

[11]) as well as some scientific packages from Python community, such

7

Supervised Learning

Classification
K-Nearest Neighbors
Support Vector Machine
Naive Bayes
Neural Network

Regression
K-Nearest Neighbors
Support Vector Machine
Naive Bayes
Neural Network
Decision Trees

Unsupervised Learning

Clustering
Non-overlapping clustering
Hierarchical clustering
Overlapping clusterings

Dimensionality Reduction
Non-overlapping clustering
Hierarchical clustering
Overlapping clusterings

Anomaly Detection
Pruning techniques
Rule based systems

Reinforcement Learning

Model-based
Dynamic Programming
Monte Carlo

Model-free Temporal Difference

Table 2.1: Machine Learning Brief Summary

as Numpy, Matplotlib, Pandas, TensorFlow, Scikit-Learning

and Kears Table 2.2.

2.4 Related Work

The idea of using machine learning tools to telecommunication net-

works is not new at all. For example, in Unsupervised Learning of

Traffic Patterns in Self-Optimizing 4th Generation Mobile Networks

[2], the authors proposed a standard unsupervised method to aggregate

8

Tools Name

Numpy “NumPy is the fundamental package for scientific
computing with Python”

Pandas “Powerful data structures for data analysis, time
series,and statistics”

TensorFlow A open-source machine learning framework from
Google

Scikit-Learning “Simple and efficient tools for data mining and data
analysis”

Keras “A high-level neural networks API, written in
Python and capable of running on top of Tensor-
Flow.”

Table 2.2: Programming Language and Tools in this project

user behavior in order to find the most suitable pattern of cell to match

the user behavior. More general research (non-telecommunications re-

lated) about time series clustering in Probabilistic discovery of time

series motifs [4], the main idea of time series clustering is to cluster

intervals in a time series that show similarity. However it was realized

we are more interested in finding a large clusters with long time series

rather than small, very distinctive ones.

9

Chapter 3

Data Processing

Mobile networks generate a huge amount of traffic data which must be

analyzed with proper tools, in order to bring intelligent decision mak-

ing mechanism to the network management. In this chapter, we will

explain the data preparation and cleaning, which is the first procedure

of how machine learning tools can specifically be applied to SONs.

3.1 Data Description

The dataset consists of 100 different base stations (cells), and the 100

also including cases of same base station but using different technolo-

gies 2G/3G/4G. The duration of whole dataset is from 14, Novem-

ber, 2016 to 15, October, 2017. Each counter / KPI is measured

every 15 minutes. The number of values for each counter is N =

4records/hour×24hours = 96samples. Full descriptions of the mean-

ing of each features (measurements) are listed in the Table 3.1.

For example, a typical record for a day may look like as Table 3.2.

Notice that, in order to make the records more synchronize to human

behavior, the day start-end interval is shifted. The starting time of a

10

List of Parameters

Record ID
identifier eg. “AT”
date and time eg. 2017-02-15 02:15:00

Measurements

pagreceived paging message received per minute
raatt radio access attempt connection per minute
rasucc radio access successful connection per minute
rrcconnestabatt number of RRC connection requests per minute
rrcconnestabsucc number of RRC connection established per minute
activeuedl number of user equipment in the down-link
activeueul number of user equipment in the up-link
dpcpvoldl traffic volume in the down-link
dpcpvolul traffic volume in the up-link

KPIs

accessibilitatotale total accessibility (percentage)
accessibilitarrc radio control accessibility (percentage)
accessibilitas1signaling signal accessibility (percentage)
accessibilitaerab radio access bearer accessibility (percentage)

Table 3.1: Parameters in the datasets

day is shifted from 00:00 to 04:00. In other words, the first record of

a day is at 04:00, correspondingly the last record of a day is at 03:45

instead of 23:45.

key Cell ID Date Time activeuedl More Parameters
LL1 2017-02-03 04:00:00 LL1 2017-02-03 04:00 1725 ...
LL1 2017-02-03 04:15:00 LL1 2017-02-03 04:15 2479 ...
LL1 2017-02-03 04:30:00 LL1 2017-02-03 04:30 2443 ...

.
LL1 2017-02-04 03:30:00 LL1 2017-02-04 03:30 367 ...
LL1 2017-02-04 03:45:00 LL1 2017-02-04 03:45 472 ...

Table 3.2: A snippet of the dataset

Records of one base station shows the cellular network usage inside

the coverage of that cell. But it is also very interesting to have a aspect

from a larger geographic region. Those large virtual base stations are

obtained by merging adjacent cells together, Table 3.3, and the records

of them are calculated by simply summing the records of each small

stations inside this large virtual station.

11

Group Cells

Group01 KL1, KT1

Group02 DT1, DT2, DL1, DL2, ET1, ET2, EL1, EL2

Group03 DT1, DT2, DL1, DL2, EL1, EL2, ET1, ET2, HT2, HE2,
KL1, KT1

Group04 CL1, CT1, DL1, DL2, DT2, DT1, ET1, ET2, EL1, EL2,
LL1, LL3, LT1, LT3, KT1, KL1

Table 3.3: Cell Mergence

3.2 Data Selection and Clean

Data selection From measurements correlation matrix in figure 3.1,

it is obvious that some measurements are highly correlated, for example

the number of RRC (Radio Resource Control) connection requests per

minutes (rrcconnestabatt) and the radio access attempt connection

per minute (raatt). So this redundant features maybe hurt in machine

learning aspects, it is necessary we reduce the number of features to

be considered.

There are 9 measurements in the collections of data. In the experi-

ments, we selected features in two ways. One way is to choose 4 param-

eters but 2 of them are added, so at last we have 3 features down-link

traffic (dpcpvoldl), up-link traffic (dpcpvolul), connected user (ac-

tiveueul + activeuedl). And second way is to choose 2 of them and

add them, total traffic (dpcpvoldl + dpcpvolul).

Missing Data The collected data have to be cleaned for various rea-

sons, for example, some machine learning algorithm are not applicable

12

Figure 3.1: Correlation Matrix of Measurements in Dataset. Bright color represents
highly correlated measurements and vice-versa.

with missing values in the dataset. In general,the step of data clean-

ing is necessary to structure the data to facilitate the following data

analysis.

Dataset might have missing values for different reasons such as

system management maintenance or simply system error. Handling

missing data is very important as many machine learning algorithms

do not support dataset with missing values and data is a kind resource

that we should take advantage of, as much as possible.

In the experiments, a simple strategy was adopted for handling

missing data that is removing that day if the record of it contains

any missing value. But in order to maintain more records, we use the

criteria that only the day with more than 3 hours missing records

are removed, which means if a day contains more than 12 miss-

13

ing values (3 hours × 4 records/hour = 12 records) over 96 values

(24 hours× 4 records/hour = 96 records) it will be discarded.

Interpolation After the removing process, the remaining missing

values are interpolated. Traditionally, interpolation of missing value

can be done by using one of the following strategy.

• Constant value that has meaning within the domain, for example

0 if the column consists of numeric value or categorical value if

it is a categorical represented feature.

• Mean, median of that feature.

• A value estimated by another predictive model.

As a starting point, we choose to use mean value to substitute the

missing data. Formally, if a records is missing ad,ti,j for base station i of

measurement j at day d time t, then we assign

ad,ti,j = Mean(ax,ti,j) for x ∈ D (3.1)

where ax,ti,j is the non-missing record in the dataset of same base station

and same time of a day but in different days, the mean value of such

records are used to interpolate the missing record.

Restructure The last step of data cleaning is to restructure the data

format into desired shape. In machine learning convention, datasets

are organized in 2D matrix (For some applications data are organized

into 3D, such as imagine processing, but in our applications 2D matrix

14

is enough). Each row is a sample and each column represents a feature.

It is important to say that because our samples are time series, one

value of measurement is a feature. To be clear, if we choose 3 features,

then our datasets will contain 288 features (96×3 = 288). The output

of this step is to generate such 2D matrix for each cell.

3.3 Normalization

Normalization is a very common and necessary procedure before apply-

ing any machine learning algorithms on the dataset, basic motivations

for normalization is described as follows:

• The range of values in different features often varies widely. For

example, one major classifier uses the criteria of calculating the

distance between two points by the Euclidean distance, nor-

malization is necessary so that each feature approximately con-

tributes proportionately to the final distance.

• The gradient descent converges much faster with normalization

than without it.

In general case, the aim of normalization is to make each feature in

the data have zero-mean and unit-variance. xi is normalized into

yi in two steps. First, distribution mean and standard deviation for

each feature are determined. Next the mean is subtracted from each

of the features in the datasets and resulting values are divided by the

standard deviation eq.3.4.

15

x =
1

n

n∑
i=1

xi (3.2)

σ =

√√√√ 1

n− 1

N∑
i=1

(xi − x) (3.3)

yi =
xi − x
σ

(3.4)

First of all, let me introduce the terminology that we used in this

part. Nd is the number of days and Nd,c is the number of days for

cell c. Nf is the number of KPIs that we considered. After data

reconstructed, records of a day, called a sample in machine learning

field, is reshaped to a row vector with the shape [1, Nf × 96] where Nf

is number of measurements used, then samples of Nd,c days for each

base station in Nc, total number of base station, are concatenated. The

shape of a final data set [A] is eq.3.5.

[A].shape = [Nd, Nf × 96] (3.5)

Nf = number of considered features

Nd =

Nc∑
c=0

Nd,c = total samples = 23264

Nc = number of cells = 104

The normalization is made cell independently which means the

16

dataset is divided into different parts for different cells as it shows

in table3.4.

ID connected rrc users traffic volume Mb
AL1 2016-12-03 (1) (2) (96) (1) (2) (96)
AL1 2016-12-04 (1) (2) (96) (1) (2) (96)
AL1 2016-12-05 (1) (2) (96) (1) (2) (96)

i-th station j-th day x
(1),1
i,j x

(2),1
i,j x

(k),1
i,j x

(96),1
i,j x

(1),2
i,j x

(2),2
i,j x

(k),2
i,j x

(96),2
i,j

AL1 2016-10-12 (1) (2) (96) (1) (2) (96)

Table 3.4: Dataset for i-th base station

Figure 3.2: Data after interpolation

Normalization can be made in 3 different ways. In this part, the

detail procedure of this 3 normalization criteria are introduced. For the

first and second criteria, each cell is normalized independently, while

in the third criterion we consider all cells together.

1. Normalization with all days

17

2. Normalization day by day

3. Normalization with all cells

3.3.1 Normalization with All Days

Normalization with All Days means to normalize our data set as

normal normalization in machine learning field, gathering all numeric

values in one feature and scaling them.

For i-th base station, the procedure of normalization is shown in eq.3.6.

Notice that we assume to have 2 features, connected rrc users and traf-

fic volume Mb, where traffic volume mb is the sum of traffic of down-

link and up-link, and for each feature, we have 96 records in a day.

xli =
1

Nd,c × 96

Nd,c∑
j=1

96∑
k=1

xklij

σli =

√√√√ 1

Nd,c × 96

Nd,c∑
j=1

96∑
k=1

(xklij − xli)

l ∈ (1, 2)

(3.6)

Where xli and σli represent mean value and variance of l-th feature

records in the i-th base station. Nd,c is the number of available days

for the i-th cell. Then xklij in original dataset should be substituted by

xklij ′ as eq.3.7.

xklij ′ =
xklij − xli
σli

(3.7)

18

An example of normalized data is shown in Fig.3.3

Figure 3.3: Data after all days normalization

3.3.2 Normalization Day by Day

Normalization Day by Day means perform normalization indepen-

dently not only for different base stations but also different days.

For the i-th base station, the procedure of normalization is shown

in eq.3.8 and eq.3.9. Notice that we assume to have 2 features, con-

nected rrc users and traffic volume Mb, where traffic volume mb is the

sum of traffic of down-link and up-link, and for each feature, we have

96 records in a day.

19

xlij =
1

96

96∑
k=1

xklij

σlij =

√√√√ 1

96

96∑
k=1

(xklij − xlij)

l ∈ (1, 2) j ∈ Nd,c

(3.8)

Here xli and σli represent mean value and variance of l-th feature

records in the i-th base station at j-th day. Also Nd,c is number of

available days in i-th cell. Then xklij in original dataset should be sub-

stituted by xklij ′ as eq.3.9.

xklij ′ =
xklij − xlij
σlij

(3.9)

An example of normalized data is shown in Fig.3.4

3.3.3 Normalization with All Cells

Normalization with All Cells means perform normalization assum-

ing all base stations form into a large virtual one. The samples in

different base station are normalized together.

For i-th base station, the procedure of normalization is shown in

eq.3.10. Notice that we still assumed to have 2 features, connected

rrc users and traffic volume Mb, where traffic volume mb is the sum

20

Figure 3.4: data after day by day normalization

of traffic of down-link and up-link, and for each feature, we have 96

records in one day.

xl =
1

Nc ×Nd,c × 96

Nc∑
i=1

Nd,c∑
j=1

96∑
k=1

xklij

σl =

√√√√ 1

Nc ×Nd,c × 96

Nc∑
i=1

Nd,c∑
j=1

96∑
k=1

(xklij − xl)

i ∈ Nc, j ∈ Nd,c, l ∈ (1, 2)

(3.10)

Here xli and σli represent mean value and variance of l-th feature

records in all base stations all days. Also Nd,c is number of available

days in i-th cell and Nc is the number of base stations that we have

(also included virtual base station). Then xklij in original dataset should

21

be substituted by xklij ′ as eq.3.11.

xklij ′ =
xklij − xl

σl
(3.11)

An example of normalized data is shown in Fig.3.5

Figure 3.5: data after all cells normalization

3.4 Removal of Mean

Next procedure after normalization, the value of records are converted

into the distance between the value of records and average value as

showed in eq.3.12, where xklij ′ represent new samples.

22

xkli =
1

Nd,c

Nd,c∑
j=1

xklij

xklij ′ = xklij − xkli
j ∈ Nd,c

(3.12)

Figure 3.6: data after removal of mean

3.5 Smoothing

The results after removal is noisy this is evident in figure 3.6. EWMA

algorithm is chosen to smooth the data series. EWMA represents

exponential weighted moving average. Moving averages come

from statistical analysis. The most basic aim of moving average is to

create a series of average values of different subsets of the full data set.

23

Moving average technique can smooth out the noise of random outliers

and emphasize long-term trends or cycles so that it is quite often used

in stock analysis.

The Exponentially Weighted Moving Average (EWMA) is an ad-

vanced version of moving average for monitoring the process. EWMA

averages data in a way that gives less and less weight to older data. In

EWMA, the parameter we need to define is α which is called smoothing

factor or decay factor. The smoothing scheme begins by setting yi to

xi, where yi stands for the observation after smoothing, and xi stands

for the original observation. And the subscripts refer to the times-

tamps, 1, 2, . . . , n. In general, the EWMA is calculated as eq.3.13.

yt =

∑t
i=0wixt−i∑t
i=0wi

(3.13)

There are also two variants of EWMA, the different is in choosing

weights wi one is called adjusted EWMA, and the other called non-

adjusted EWMA as eq.3.14.

Adjust = True: wi = (1− α)i

Adjust = False: wi =

α(1− α)i if i < t

(1− α)i if i = t

(3.14)

In the experiments, we used adjusted EWMA, An example of data

after adjusted EWMA is shown in Fig.3.7

24

Figure 3.7: data smoothed by adjusted EWMA

25

Chapter 4

Clustering

In order to create a model from current data, we counted on Unsuper-

vised learning. We desired to have a model that contains the traffic

patterns for each cell. In this chapter, we will discuss about apply-

ing machine learning Clustering onto this application, but first let us

discuss about some basic view of clustering.

4.1 K-means Introduction

Clustering is an unsupervised technique. The known data set is

made just of the Mfeatures vectors y(n), which means each y(n) is a M

dimension vector. The machine learning algorithm, typically using the

distances between couples of vectors, finds groups of close vectors and

decides that they form a cluster. In the example of the blood analysis,

the clustering algorithm might cluster the patients not according to

their cardiovascular disease risk but according to the fact that they

are male or female, if the gender were such that the vectors are clearly

separated.

In the telecommunication field, an example of clustering may be

26

found in vector quantization. In this case, the probability density

function fy(u) of the N -dimensional random vector y is known and

we want to quantize y according to the rule: if y ∈ Rk, then y is

represented (substituted) by vector xk which is the centroid of region

Rk. In other words, if y(n) is the n-th input of the quantizer, its

corresponding output is yQ(n), found according to the rule

if y(n) ∈ Rk then yQ(n) = Q(y(n)) = xk, k = 1, . . . , K, n ∈ Z
(4.1)

The centroid of the region is mathematically defined as

xk =

∫
Rk

ufy(u) du.

Regions Rk must again be Voronoi regions, i.e. Rk ∩ Rh = Φ for all

k 6= h, and R1∪R2∪· · ·∪RK = RM , because one and only one vector

must be present at the output of the quantizer.

The Lloyd algorithm finds the optimum regions Rk (and therefore

the optimum vectors xk, which are the centroids of these regions) that

minimize the quantization error

e =
K∑
k=1

∫
Rk
‖xk − u‖2 fy(u) du.

Once the regions are found by the algorithm, the quantization is per-

formed in a straightforward manner, according to the rule in (4.1).

Note that the Lloyd algorithm can be used for lossy compression, in

that vector y(n) is mapped into number k (the index of the region it

belongs to), and only log2K bits are sufficient to represent k.

This example shows that the values of xk are not known in the

27

quantization problem and the algorithm has to find them, whereas in

the previous classification/detection problem of the receiver they are

known. Moreover, it is clear from this example that, for a given prob-

ability density function fy(u), the shapes of the regions depend on the

value of K, which is a design parameter.

The hard k-means algorithm Let y(n) be the n-th measured vec-

tor with n = 1, . . . , Nsamples, and assume that y(n) is a point in the

M -dimensional space RM . The task of the k-means algorithm is to

cluster together close vectors y(n). The assumption is that

y(n) = x(n) + ν(n)

where x(n) is one among the set {x1, . . . ,xK} and ν(n) is a zero-mean

random Gaussian vector. This assumption is clearly not correct in

many cases, but it allows to understand how the algorithm works. The

task of the algorithm is to find the estimates of x1, . . . ,xK , knowing

y(n) for n = 1, . . . , Nfeatures. If we knew the set Sk of indexes n defined

as

Sk = {n ∈ [1, Nfeatures] : y(n) = xk + ν(n)},

(i.e. the set of indexes n such that y(n) was originated by xk) then we

could estimate xk as

x̂k =
1

|Sk|
∑
n∈Sk

y(n)

exploiting the fact that ν(n) has zero mean; in the previous equation

|Sk| is the cardinality of Sk (the number of its elements). Point x̂k is

also called the centroid/barycenter. Of course we don’t know Sk and

the algorithm has to find it out.

28

The algorithm is described as follows:

1. We start with an initial guess of x̂k(0), k = 1, . . . , K; this ini-

tial guess can be obtained by generating K random vectors of

dimension M (typically Gaussian), or by randomly selecting K

of the Nfeatures vectors y(n). We set i := 0.

2. At the i-th step we associate to x̂k(i) the points y(n) which are

closer to x̂k(i) than to the other points x̂h(i) (assignment step):

n ∈ Sk if ‖y(n)−x̂k(i)‖2 ≤ ‖y(n)−x̂h(i)‖2 ∀h 6= k n = 1, . . . , Nfeatures

3. We evaluate the mean value mk(i) of the points y(n) (or the

centroid of the points y(n)) that have been associated with x̂k(i)

(update step):

mk(i) =
1

|Sk|
∑
n∈Sk

y(n), k = 1, . . . , K

4. We define x̂k(i+1) = mk(i), we set i := i+1, we go back to step

2 until the algorithm converges.

In the assignment step, instead of the Euclidean distance

dEuc(y,x) = ‖y − x‖2 =
M∑
m=1

|ym − xm|2

other distances can be used, for example the Manhattan distance

dMan(y,x) =
M∑
m=1

|ym − xm|.

29

The soft k-means algorithm The soft k-means algorithm differs

from the hard k-means algorithm in that the hard assignment step is

substituted by a soft assignment step: vector y(n) is not given to one

and only one cluster, but the algorithm evaluates the K probabilities

that it belongs to cluster 1, to cluster 2, etc., or, better, it evaluates

the responsibility level rk(y(n)) that each cluster has on vector y(n),

and this responsibility is a real number instead of being either 0 or 1,

as in the case of the hard k-means algorithm.

The assumptions of the soft k-means algorithm are the following:

• y(n) = xk+νk(n) with probability πk, for k = 1, . . . , K; of course∑K
k=1 πk = 1, but πk might not be equal to 1/K (the hypotheses

are not equally likely)

• the dimension of y(n) is M

• νk(n) is an M -dimensional, zero-mean, Gaussian random vec-

tor and each of its M components have variance σ2k (the noise

variance depends on the cluster)

• parameters πk and σ2k must be estimated

The algorithm is described as follows:

1. Start from an initial set of values xk(0), σ2k(0) = 1, πk(0) = 1/K,

k = 1, . . . , K. Set i = 0

30

2. (Assignment step) for k = 1, . . . , K and n = 1, . . . , N :

rk(y(n); i) =
πk(i)

1
(2πσ2

k(i))
M/2e

− 1

2σ2
k
(i)
‖y(n)−xk(i)‖2

∑K
s=1 πs(i)

1
(2πσ2

s(i))
M/2e

− 1

2σ2s (i)
‖y(n)−xs(i)‖2

3. (Update step)

xk(i+ 1) =

∑N
n=1 rk(y(n); i)y(n)∑N

n=1 rk(y(n); i)
, k = 1, . . . , K

σ2k(i+ 1) =

∑N
n=1 rk(y(n); i)‖y(n)− xk(i+ 1)‖2

M
∑N

n=1 rk(y(n); i)
, k = 1, . . . , K

πk(i+ 1) =

∑N
n=1 rk(y(n); i)∑K

k=1

∑N
n=1 rk(y(n); i)

, k = 1, . . . , K

4. set i := i + 1, go back to step 2 until a convergence condition is

met.

This soft version of the k-means algorithm is more flexible, but

it might suffer from numerical and convergence problems. Its use is

recommended if the results of the more stable hard k-means algorithm

are not satisfactory.

Local Minimum in K-means Notice that in K-means algorithm,

if enough time is given, the results will always converge, however this

may be to a local minimum. This is highly caused by the difference

of initialization of the centroids. As a result, in our programs, the

computation is often done several times, with different initializations of

the centroids. One method to help address this issue is the k-means++

31

initialization scheme, which has been implemented in scikit-learn (use

the init=’k-means++’ parameter). This scheme initializes the cen-

troids to be (generally) distant from each other, leading to provably

better results than just a random initialization.

4.2 DBSCAN Introduction

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

was originally proposed in the paper A density-based algorithm for dis-

covering clusters in large spatial databases with noise [7] in 1996. The

density based clustering algorithm, is used to identify clusters of

any shape in data set containing noise and outliers that lie alone in

low-density regions. The advantages of this algorithm are that:

• Unlike k-means, it dose not require the user to specify the number

of clusters to be generated

• It can discover arbitrary shape clusters

• It can identify outliers

As illustrated in Figure.4.1, clusters are made of dense region in

data space and separated by low dense regions. DBSCAN is based on

the intuitive notion of “clusters” and “noise”. The density of points

in a cluster is comparatively higher than the density of non-clustered

points (“area of noise”, outliers).

While the disadvantage is that it can not handle varying densities

data and the results are sensitive to parameters, and bottleneck of DB-

32

Figure 4.1: When DBSCAN works well

SCAN is that it is not easy to determine the correct set of parameters,

the detail of parameter will be discussed in next part. Figure. See two

examples of clustering performed by DBSCAN in Figs 4.1 and 4.2

Figure 4.2: When DBSCAN works bad

4.2.1 Parameters and Definitions

According to A density-based algorithm for discovering clusters in large

spatial databases with noise [7], there are 2 parameters and several def-

initions in this algorithm.

Parameter 1: ε Neighborhood Points within a radius ε from point

p, denoted by Nε(p) is defined as eq.4.2.

Nε(p) : {q ∈ D | dist(p, q) ≤ ε} (4.2)

33

Parameter 2: MinPts (Minimal Reachable Points) For a point

p, if the number of points in p’s reachable neighborhood is more than

MinPts, than this p is considered as a core point.

Definition 1: Directly Density Reachable A point p is directly

reachable from a point q if

1. p ∈ Nε(q)

2. |Nε(q)| ≥MinPts (core point condition)
(4.3)

Definition 2: Density Reachable A point p is density reachable from

a point q if there is a chain of points p1, . . . , pn and p1 = p, /; , pn =

q such that pi+1 is directly density reachable from pi.

Definition 3: Cluster Let D be a set of points. A cluster C is a

non-empty subset of D satisfying the following conditions.

1. ∀p, q: if p ∈ C and q is density-reachable from p, then q ∈ C

2. ∀p, q ∈ C, p density-connected to q

(4.4)

Definition 4: Noise Let C1, . . . , Ck be the clusters of the database

D, i = 1, . . . , k. Then we define the noise as the set of points in the

database D not belonging to any cluster Ci

noise = {p ∈ D|∀i : p /∈ Ci} (4.5)

Given ε and MinPoints, a point is a core point if it has more

than MinPoints number of points within ε, these points are the inte-

34

Figure 4.3: Illustration of DBSCAN Structure

rior of a cluster. A border point has fewer than MinPoints within ε,

but is in the neighborhood of a core point. A noise point is any point

that is not a core point nor a border point. In Fig.4.3 the definitions

are clarified.

4.3 Clustering Performance

Suppose that, until now, we already had some preliminary results from

machine learning model by using k-means algorithm (or other cluster-

ing algorithms), we still have to find a quantitative method to eval-

uate if our results as reasonable. In this section, we will introduce

some well known unsupervised learning evaluation metrics. In general,

the performance evaluation of a clustering algorithm is not as trivial as

counting the number of errors or the precision and recall of a supervised

classification algorithm. In practice, the knowledge of the ground truth

classes, which requires manual assignment by human annotators, is al-

most never available. Also, in general any evaluation method should

never take the absolute values of the cluster labels into account, the

reason is that the labels in clustering is randomly assigned, but since

in our application, each cluster has its own meaning, it will be useful

35

to re-order the numerical value of the cluster’s labels.

Considering, the output of a k-means clustering is

C = {C1, C2, ..., Ck} (4.6)

Firstly we define some parameter as following, and notice that x

represents a sample which is a row vector with the shape [1, Nf×96]:

1. dist(x, y) computes the distance between two samples(x, y), here

the distance means euclidean distance

dist(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

(4.7)

2. µi represents centroid of a cluster Ci andNi represents the num-

ber of samples in the cluster Ci

µi = xi =
1

Ni

∑
1≤i≤Ni

xi (4.8)

3. avg(Ci) computes the average distance of each sample-pair in

cluster Ci

avg(Ci) =
2

Ni(Ni − 1)

∑
1≤i≤j≤Ni

dist(xi, xj)

where xi, xj ∈ Ci

(4.9)

36

4. diam(Ci) is largest distance of sample-pair in cluster Ci

diam(Ci) = max
1≤i≤j≤Ni

dist(xi, xj)

where xi, xj ∈ Ci
(4.10)

5. dmin(Ci, Cj) is the smallest distance for pair (x,y) where x ∈
Ci ,y ∈ Cj

dmin(Ci, Cj) = min
x∈Ci,y∈Cj

dist(x, y) (4.11)

6. dcen(Ci, Cj) is the centroids distance between two clusters Ci

and Cj

dcen(Ci, Cj) = dist(µi, µj) (4.12)

4.3.1 Davies-Bouldin Index

The Davies-Bouldin Index(DBI) is defined in eq.4.13

DBI =
1

k

k∑
i=1

max
j 6=i

(
avg(Ci) + avg(Cj)

dcen(Ci, Cj)
) (4.13)

Since K means algorithm tends to produce clusters with low intra-

cluster distances (high intra-cluster similarity) and high inter-cluster

distances (low inter-cluster similarity), the clustering implementation

that produces a collection of clusters with the smallest Davies-Bouldin

index is considered the best algorithm based on this criterion.

37

4.3.2 Dunn Index

The Dunn Index(DI) is defined as eq.4.14

DI = min
1≤i≤k

{minj 6=i(
dmin(Ci, Cj)

max1≤l≤k diam(Cl)
)} (4.14)

The Dunn index aims to identify how dense and how well-separated

clusters are. Since internal criterion seeks clusters with high intra-

cluster similarity and low inter-cluster similarity (same criterion when

we choosing best DBI), algorithms that produce clusters with high

Dunn index are more desirable.

4.3.3 Silhouette Score

The Silhouette Coefficient(SI) for a datum i is calculated using the

mean intra-cluster distance ai (eq.4.15) and the mean nearest-cluster

distance bi (eq.4.16). The Silhouette Coefficient (eq.4.18) for a sample

i is (b - a) / max(a, b).

Just to clarify, nearest-cluster distance is the distance between a

sample and centroid of nearest cluster that the sample is not a part

of (eq.4.17). The best value of si is 1 and the worst value is -1. Val-

ues near 0 indicate overlapping clusters. A negative value generally

indicates that a sample has been assigned to the wrong cluster, as a

different cluster is more similar.

ai =
1

Ni − 1

Ni∑
j=1,j 6=i

d(i, j) ∀(i, j) in the same cluster (4.15)

38

bi =
1

K − 1

K∑
k,k 6=ci

dmin(i, Ck) ci is cluster index for i (4.16)

dmin(i, Ck) = min
j∈Ck

d(i, j) (4.17)

si =
bi − ai

max{ai, bi}
(4.18)

SI =
1

N

N∑
i

si (4.19)

4.4 K-means Clustering Implementation

In this section, the detail of procedure of K-means clustering implemen-

tation will be explained. First of all, since we have 103 base stations

in total, it is not possible to analyze all of them separately, so we pick

some of them as typical samples and to see the performance of algo-

rithms.

This work will show the clustering result for 7 base station which 3

of them are real base stations and 4 are virtual stations. Namely they

are BL2, GT1, Group1, Group2, Group3, Group4, SC. And those 4

virtual base stations are a relation of inclusion, Group1 ⊂ Group2 ⊂
Group3 ⊂ Group4.

First, we start K-means clustering with different k (number of clus-

ters we desired to generate), k = 3, . . . , 9. And in k-means algorithm,

the procedure is initialized randomly so it is common that we have dif-

ferent results in different clustering trial, thats explained that in the

39

Figure 4.4: Performance Index Box plot for GP3

plot 4.4, we have different performance index values for same k in most

cases (while we still have some cases that the performance index values

are consistent in 50 time trials, eg, k=2 and 3 for base station GP3).

After the performance index values are calculated for each trail, we

must compare the performance score for each trail and we would say

this result is a better one if it has larger Davies-Bouldin Index values,

lower Dunn Index values and higher Silhouette Score values. A naive

equation to combine all 3 performance index in eq.4.20

weights = [w1 = −0.5, w2 = 1.4, w3 = 1]

Score = w1 ×DBI + w2 ×DI + w3 × SI
(4.20)

40

4.5 DBSCAN Implementation

As we discussed in chapter.4.2, DBSCAN is a density based cluster-

ing algorithm but we do not need to specify the number of clusters as

we did in K-means. The input parameters are ε Neighborhood and

Minimal Points and the algorithm based on the pairwise distance

between samples.

4.5.1 Distance Metric

Finding a good distance metric in featured space is crucial especially in

this project since we have a very high dimensions in machine learning

perspective. Some distance metric learning algorithms are proposed

in Distance Metric Learning: A Comprehensive Survey [14]. While in

this project, we used 2 distance metric Euclidean distance and Dynamic

Time Wrapping distance so that we can have a sort of comparisons of

results.

Euclidean Distance

The Euclidean distance between time sequences X = (x1, x2, . . . , xn)

and Y = (y1, y2, . . . , yn) is given by the extension of Pythagorean

formula:

dist(X,Y) = dist(Y,X) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

=

√√√√ n∑
i=1

(xi − yi)2

(4.21)

41

Figure 4.5: Time Series Aligned by DTW

DTW

Dynamic time warping (DTW) is one of the most popular algorithm

in the time series analysis. It measures the similarity between two

temporal sequences regardless it might vary in speed. For example,

the similarities in speaking could be measured by DTW, even if one

person was talking faster then the other or they are talking in different

tunes during the recording. DTW algorithm has been applied widely

in video, audio and graphics data analysis and recognition. A very sig-

nificant feature of DTW is that it is able to automatically cope with

time deformations and different speeds associated with time-dependent

data which suitable in our application where the interesting event in a

day might get affected by the event length and event scale.

In general, comparing 2 sequences X = (x1, x2, . . . , xN1) of

length N1 ∈ N and Y = (y1, y2, . . . , yN2) of length N2 ∈ N.

These discrete time sequences are sampled at equidistant points in

time domain. But actually, in our application the sequence is multi-

dimensional time series (MDT). MDT consist of M individual time

42

series (M ≥ 2) and each time series has N observations, but for sake

of complexity, we assumed that all M are the measurements for same

KPI:

X1 = (x1,1, x1,2, . . . , x1,N)

X2 = (x2,1, x2,2, . . . , x2,N)

. . .

XM = (xM,1, xM,2, . . . , xM,N)

⇓
X = (x1,1, . . . , x1,N , x2,1, . . . , x2,N , x3,1, . . . , x3,N)

(4.22)

To calculate DTW distance, we have to build cost matrix C ∈
RN1×N2, by calculating each pair of elements in the sequences X and

Y. The cost matrix is defined by eq.4.23, and the distance here is

Euclidean Distance.

C(n,m) = dist(xn, ym) (4.23)

In the cost matrix, an (N,M)-wraping path p = (p1, . . . , pL) is an

alignment between sequence X and Y. The total cost cp(X,Y)is

defined as the summation of costs along the wraping path.

cp(X,Y) =
L∑
l=1

c(xnl
, yml

) (4.24)

Then the DTW distance is to the minimum cost path within the cost

43

matrix.

DTW (X,Y) = cp∗(X,Y)

= min{cp(X,Y) | p is an (N,M) warping path}
(4.25)

Typically,if x and y are similar to each other, c(x, y) is small (low

cost), and otherwise c(x, y) is large (high cost). And because DTW

is able to compare similarity between sequences with different length,

one further work could be we simulate some event behavior (just for

event instead of 24-hours data) and try DBSCAN and assign this event

as core point.

44

4.6 Results

In this section, we will show the results of implementation of clustering

and discuss them. After comparing the results, we see there is no

much difference in selecting 3 features down-link traffic, up-link traffic,

connected user and just 1 feature total traffic. So the results shown

below are mixed by 3 features and 1 feature.

4.6.1 K-means Results

Different results in 50 trials The K-Means algorithm leads to

different results even if each trial is executed under same parame-

ters setting (caused by random initialization). In order to overcome

this phenomenon, the K-Means clustering algorithm is executed for

k = 2, 3, . . . , 10, and 50 times for each value of k, and take 3 fea-

tures: uplink traffic,downlink traffic, connected user, or just 1 feature:

total traffic, where total traffic = uplink traffic + downlink traffic.

One interesting point is that, the number of different results can

be viewed as the base station complexity. Because, in some how, it

represents the stability of the base station. To be more clear, as the

Table.4.1 indicates the number of different results of GP2 (55 & 56)

is much less than the different results of GT1(316 & 305) out of 500

trials (= 50× 10) in total.

cell name BL2 GT1 GP1 GP2 GP3 GP4 SC
3–features 295 316 164 55 142 152 184
1-feature 289 305 215 66 156 107 211

Table 4.1: Number of different clustering outputs received out of 500 trials

45

Fig.4.6 shows 3 clustering trails, one for GP2 and two for GT1,

fig.4.6b and fig.4.6c represent different clustering results for cell GT1

when k=6. As it shows, the daily behavior’s variation in cell GP2

is much simpler than in GT1. For the more complexer behavior, the

performance weights tuning is more necessary, because it is harder for

this cell to select better clustering among all the results.

Fig.4.7 shows the clustering KPIs and its performance index are

plot. The 3 dimensions in plots represent Davies-Bouldin Index, Sil-

houette Score and Dunn Index, and color represents the performance

score, each scatter point represents one trial in clustering with different

number of clusters. The brighter color of the point indicates the bet-

ter clustering performance, the performance is evaluated as last section

discussed eq.4.26.

weights = [w1 = −0.5, w2 = 1.4, w3 = 1]

Score = w1 ×DBI + w2 ×DI + w3 × SI
(4.26)

Every results from clustering trials are saved and the performance

scores are calculated according to eq.4.13, eq.4.19, eq.4.14 and eq.4.26.

Then select highest score as the final clustering results of that base

station.

The final results for clustering phase is a set of labels for each pair

of cell-day and one heat map shown in Fig4.9. Each column represents

a day and each row represents a cell. The dark color represents the

abnormal day and light color represents normal day, gray color is the

day of no-data day. From the heat map, it is obvious to see the peri-

odicity in horizontal direction, and actually the periodicity is 7 (days).

46

In vertical direction, we can see that the geographic adjacent cell are

more similar than those far away.

4.6.2 DBSCAN Results

The DBSCAN clustering are executed by setting ε and minPoints

parameters as discussed in chapter4.2. In fig.4.10, it compare the re-

sults of DBSCAN clustering with ε = 10 minPoints = 5 and

ε = 1 minPoints = 5. Theoretically, with ε decreased, we will

have more samples labeled as outliers (class -1). Although it is not so

apparent in the fig.4.10a and fig.4.10b, but the lines (samples) in class

0 in first figure is more than the lines in class 0 in 2nd figure.

Fig.4.11 and Fig.4.12 shows clustering heat map produced by DB-

SCAN. From the figure we can see that although the output are not

identical, the DTW distance metric has more samples in cluster-0 and

cluster-1 (low event day), but the results almost same. The detail

of the difference among the different clusters will be discuss in next

chapter.

47

(a) Clustering result GP2 k
= 6 (total traffic)

(b) Clustering result GT1 k
= 6, 1st trial (total traffic)

(c) Clustering result GT1 k
= 6, 2nd trial (total traf-
fic)

Figure 4.6: Base station complexity comparison between GP2 and GT1.

48

(a) KPIs plot BL2 (b) KPIs Plot GT1 (c) KPIs Plot GP4

Figure 4.7: KPIs and Performance Score which 3 dimensions are Davies-Bouldin Index,
Silhouette Score and Dunn Index and color represents performance score.

(a) K-means Results BL2 (b) K-means Results GT1 (c) K-means Results GP4

Figure 4.8: Best Clustering Results whose gives highest Performance Score in the Fig.4.7

Figure 4.9: Clustering Heat map

49

(a) DBSCAN Clustering GP2 with set-
ting parameter eps=10 minPts=5

(b) DBSCAN Clustering GP2 with set-
ting parameter eps=1 minPts=5

Figure 4.10: DBSCAN Clustering Results

Figure 4.11: Clustering Heat map by using DBSCAN DTW distance

Figure 4.12: Clustering Heat map by using DBSCAN Euclidean distance

50

Chapter 5

Classification and

Self-optimization

In SON network, classification can be applied to autonomously detect

cells that are not operating properly due to possible failures. Some

solutions for this problems have been proposed in Detection of Sleeping

Cells in LTE Networks Using Diffusion Maps [3] and Diagnosis based

on genetic fuzzy algorithms for LTE Self-Healing [6]. In particular,

in [3], the authors propose a solution based on diffusion maps, by

means of clustering schemes so as to detect abnormal behaviors from

a “sleeping” base station. [6] presents a solution based on fuzzy logic

for the automatic diagnosis of troubleshooting system. In order to

determine if a failure occurs, a controller is designed to receive as an

input a set of representative KPIs.

In this experiments, we tried different popular classifiers, Mini-

mum Distance Classifier, Gaussian Navies Bayes Classifier, Convolu-

tion Neural Network, in ML field. And we will benchmark the perfor-

mances of those classifiers. First let us introduce the evaluation index

in classification fields.

51

5.1 Classification

Classification is a supervised technique. The known data set is

made ofNmeas vectors y(n) (withM elements) and their correspond-

ing class c(n). The class c(n) of y(n) is known because typically it is

given by the human brain. An example can be the following: a medi-

cal doctor analyses the M blood parameters of a patient and classifies

him/her as a patient with high or low risk of cardiovascular diseases;

there are two classes (high or low risk) and the medical doctor per-

forms the classification, using his/her experience. Machine learning

algorithms exist that, using a known data set {y(n), c(n)}Nmeas
n=1 , es-

timate the class ĉ(n) of a new vector y(n). Note that, whatever the

classification algorithm is, the decision/classification rule can only be:

ĉ(n) = k if y(n) ∈ Rk

where Rk is the decision region for class k (a subset of RN), and,

since we typically want a unique decision, the regions must be such

that Rk ∩Rh = Φ for all k 6= h, and R1 ∪R2 ∪ · · · ∪RK = RM .

In the telecommunication field, the detector of the receiver has

an input vector y(n) and must decide which of the possible sym-

bols xk, k = 1, . . . ,K has been transmitted, knowing that y(n) =

x(n)+ν(n), being x(n) in the set {xk}Kk=1. This problem is typically

referred to as a hypothesis testing problem, since the receiver tests the

hypotheses:

H1 : y(n) = x1 + ν(n)

H2 : y(n) = x2 + ν(n)

...

52

HK : y(n) = xK + ν(n)

and selects the “best” one according to some criterion (minimum error

probability, for example). In the machine learning jargon, this hypoth-

esis testing problem is a classification problem and the estimated class

is ĉ(n) = k if the detector selects the k-th hypothesis Hk.

5.2 Performance Evaluation Index

Precision & Recall Precision is also called positive predictive value

and recall also known as sensitivity or True Positive Rate eq.5.1. The

precision is the number of true positives divided by the total number

of elements labeled as the positive class; in another word, it is the

number of positive predictions divided by the total number of positive

class values predicted. Recall is defined as the number of true positives

divided by the total number of elements that actually belong to the

positive class.

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

(5.1)

F1 Score is the harmonic mean of precision and recall defined in

eq.5.2:

F1 =
2

1

Recall
+

1

Precision

= 2×
Precision×Recall
Precision+Recall

(5.2)

53

Figure 5.1: Classification Terminology

5.3 Classifiers

This section is devoted to discuss the classifiers that we implemented

during the experiments. We use the unlabeled data and the clustering

results (labels) to make up of necessary labeled data (training data and

testing data) in supervised learning. We designed a couple of different

classifiers in the experiments to compare the potential capability in

SON field for future applications.

5.3.1 Minimum Distance Classifier

Brief Introduction The MD classifier Minimum Distance Classifier

is only based on the relative distance of samples and each representa-

tive points of clusters, we do not consider the probability or the sam-

ples distribution function in the statistical point of view. The detail

information about MD classifier are shown as following:

1. Random splitting datasets into training data and testing data.

2. Retrieving the labels of training data (clustering results) and

54

Figure 5.2: Random dataset splitting

calculating centroids for the clusters C = 1, 2, . . . , k where k

represents the number of clusters.

3. Calculating distance between samples and every centroid, the

distance metric is decided to be Euclidean Distance, eq.5.3.

d(x,CentroidC) = {(x1 − Centroid(C,1))2 + (x2 − Centroid(C,2))2

+ · · ·+ (x(Nf×96) − Centroid(C,Nf×96))
2}(1/2)

(5.3)

4. Assign the sample to that cluster if the distance between the

sample and that centroid is minimum one among all pairs.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5
Time 24 hours 20:00 - 01:00 09:00 - 21:00 20:00 - 01:00 13:00 - 19:00 20:00 - 01:00

Event scale / low low medium low/medium/high high

Table 5.1: Class Description

Implementations We chose the labels from K-Means clustering re-

sult for the 6 cells BL2,GT1,GP1,GP2,GP3,GP4, Fig.5.3. Class 0 is

the group of no event day, the traffic is flat and nearly 0 in the whole

day. Class 1 is the group of days with low volume events at night. Class

55

Figure 5.3: Used classification labels

2 is the group of days with low volume events during daytime (09:00

to 21:00). Class 3 is the group of days with medium volume events at

night. Class 4 is the group of days with events at afternoon (13:00 to

18:00). Class 5 is the group of days with high volume events at night

(13:00 to 18:00).

5.3.2 GNB Classifier

Brief Introduction Naive Bayes Classifier is a supervised learning

algorithms based on Bayes’ theorem eq.5.4 with the “naive” assump-

56

tion that each features are independent of others.

P (h|d) =
P (d|h)× P (h)

P (d)
(5.4)

And in the experiment, we implemented the Gaussian Naive Bayes

(GNB) algorithm for the classification where the likelihood of the fea-

tures is assumed to be Gaussian(normal distribution).

Implementation We chose same labels from K-Means clustering re-

sults for the 6 cells as MD classifier, and selected 3 features as clustering

dataset. Class 0 is the group of no event day, the traffic is flat and

nearly 0 in the day. Class 1 is the group of days with low volume events

at night. Class 2 is the group of days with low volume events during

daytime (09:00 to 21:00). Class 3 is the group of days with medium

volume events at night. Class 4 is the group of days with events in

the afternoon (13:00 to 18:00). Class 5 is the group of days with high

volume events at night (13:00 to 18:00).

Drawbacks of GNB Classifier As explained in Smoothness with-

out Smoothing: Why Gaussian Naive Bayes Is Not Naive for Multi-

Subject Searchlight Studies [12], GNB classifier takes each data point,

and assigns it to whichever class it is nearest, but unlike MD classifier

calculating the nearness by using the Euclidean distance from the cen-

troids (class-means), the GNB classifier takes into account not only the

distance between the samples and centroids but also how this samples

located with respect to the variance of the class. So the weaknesses

of GNB, but also some surprising strengths, come from the “Naive”

assumption of the Gaussian Naive Bayes. The Naive aspect treats all

input dimensions as independent of each other. In our application, the

57

features are total dimension, Nf ×96, and since it is a time sequence,

of course there is high covariance between adjacent dimensions (what

happens now is somehow related what happened 15 minutes before),

but the GNB classifier does not model it.

5.3.3 CNN

Neural Networks are modeled by collections of neurons that are

connected in an acyclic graph. In other words, the outputs of some

neurons are the inputs of other neurons. Acyclic property are empha-

sized that in the network, otherwise, it would imply an infinite loop in

the forward pass of a network.

Figure 5.4: Structure of a 3-layer neural network, with an input layer of 3 inputs, two
hidden layers of 4 neurons and one output layer with 2 outputs. Two adjacent layer are
fully connected but no connection exists within a layer.

Neural Network models are often organized into several distinct

layers of neurons. The most common layer type of NN model is fully-

connected layer in which neurons between two adjacent layers are fully

pairwise connected, but neurons within a single layer share no connec-

tions, Fig.5.4. The neurons have learn-able weights and biases. Each

58

neuron receives some inputs, performs a dot product and (optionally)

allows the non-linearity functions.

Convolutional Neural Networks are very similar to ordinary Neu-

ral Networks as described in the previous paragraph. In particular,

unlike a regular Neural Network, the layers of a ConvNet have neurons

arranged in 3 dimensions: width, height, depth. as shown in Fig.5.5

(Note that the word depth here does not refer to the depth of a full

Neural Network. It refers to the third dimension of an activation vol-

ume. The depth of a full Neural Network can refer to the total number

of layers in a network.)

Figure 5.5: A common structure of a convolutional neural network (CNN). A ConvNet
arranges 3 dimensions dataframe as visualized.

There are several different kinds of layers in the ConvNet architec-

ture: Convolutional Layer, Pooling Layer, and Fully-Connected

Layer. Those layers are stacked to form a full ConvNet architecture.

Convolutional Layer The Convolutional Layer computes the con-

volution of the previous layer. The number of dimensions is a property

of the problem being solved. For example, 1D convolution for time se-

ries signals, 2D convolution for images, 3D convolution for movies.

Thus in our application, 1D convolutional computing was adopted.

59

Suppose we have input as shape “[Ns × 96]”, we use an “[m × 1]”

filter and use no stride step, our convolutional layer output will be of

size “[Ns × 96−m]”

Pooling Layer There are two types of pooling layers, max-pooling

and average-pooling. The pooling layer takes small rectangular blocks

from the convolutional layer and subsamples it to produce a single

output from that block. Our pooling layers are applied in layer-1 and

layer-2. In layer-1 it takes the maximum of the block and in layer-2 it

takes the average of the block.

Fully-Connected Layer Finally, after several convolutional and

max pooling layers, there is fully-connected layer as it is in normal neu-

ral networks. A fully connected-layer takes all neurons in the previous

layer and connects it to every single neuron it has. Fully connected

layers are not spatially located anymore (you can visualize them as

one-dimensional), so there can be no convolutional layers after a fully

connected layer.

Convolutional Neural Network Classifier uses a trained Con-

vNet as classifier to “predict” the label of samples. In our experiment,

the ConvNet is a fairly small network with 4 layers and there are 1862

trainable parameters. The detail of the ConvNet is described in the

Table.5.2.

Apart from some layers we have discussed in the last paragraph,

there are some more functional layers that we had in the network. Zero

padding is used to add to the border of the time series, the border is

extended by a couple of zeros (10 in the experiments, but can be tuned

60

Layer Output Shape Num. Parameters

Layer 0 Input Layer (Ns,288,1) 0
Zero Padding (Ns,298,1) 0

Layer 1 Conv 1D (Ns,295,8) 40
Relu(Activation) (Ns,295,8) 0
Max Pooling 1D (Ns,147,8) 0

Layer 2 Conv 1D (Ns,73,8) 200
Relu(Activation) (Ns,73,8) 200
Average Pooling 1D (Ns,36,8) 0

Layer 3 Conv 1D (Ns,17,8) 200
Relu(Activation) (Ns,17,8) 200

Layer 4 Flatten (Ns,136) 200
Fully Connected (Ns,6) 822

Table 5.2: Convolutional Neural Network Structure

as a hyper-parameter). Activation function helps to add nonlinearity to

the network as a pure convolution is a linear operation in Mathematics

point of view. The activation function that we use Relu which is

defined as 5.5. The categorical labels are adopted since this is a multi-

label classification problem.

Relu(x) = max(x, 0) (5.5)

5.4 Results and Figures

In this section, we will present the results obtained from the experi-

ments. In particular, using the 3 learning classifiers described in Sec-

tion 5.3.1, 5.3.2, 5.3.3, we tested how each of the classifier performed

by calculating the performance evaluation metrics mentioned in Sec-

tion 5.2.But one thing have to be clearly discussed, those performance

61

evaluation metrics are applicable only for binary classification which

you only have 2 class as candidates, but in our experiment since class 0

contains no-activity days, remaining class contains activity days with

different activity level. Here we assumed that our classification is bi-

nary: the class 0 vs classes 1-6. The reason is that in the classification

outputs, there is no error happens in classes 1-6 (for example, no sam-

ple belongs to class 6 are labeled as class 1). So this assumption works

well and makes the evaluation metric stay simple.

Min Distance Classifier Precision Recall F1
Training Set 1 0.935 0.96
Testing Set 1 0.75 0.857

GNB Classifier Precision Recall F1
Training Set 0.650 1 0.788
Testing Set 0.571 1 0.727

CNN Classifier Precision Recall F1
Training Set 1 1 1
Testing Set 0.923 1 0.96

Table 5.3: Classifiers Evaluation KPIs. The 3 KPIs are evaluated Precision, Recall, F1
score. For each KPIs, 1 is optimal results.

The Minimum Distance Classifier is a very simple classifier as KNN

classifier (when it is proposed in 1992, An introduction to kernel and

nearest-neighbor nonparametric regression [1]). In KNN, the classifi-

cation decision making is based on the distance from the unlabeled

sample to closest neighbor in the feature space. But in our MD clas-

sifier, the considered distance is between the unlabeled sample and

centroids. The first advantage of MD classier is that it does not need

a real training phase, the model is established as long as the training

data confirmed, second advantage is that the performance is good in

62

Figure 5.6: The potential of deep learning

Precision aspect. The disadvantage of MD classifier is that we can’t

have a better accuracy by increasing the size of the dataset as we

expected in neural networks.

The Gaussian Naive Bayes Classifier can be viewed as MD classi-

fier with Bayes theorem, the distribution of samples in feature space is

assumed to be Gaussian(normal) distribution. As the drawbacks dis-

cussed in Section 5.3.2, the performance is worse than the MD classifier,

5.3. But since the GNB classifier is a powerful and famous classifier in

machine learning field, this is worth to try.

The Convolutional Neural Network Classifier, during the whole ex-

periments, is the most stable and has the best performance. Besides

the current classification accuracy, the ConvNet will benefit from a

larger size of training data.

63

5.5 Outliers Detection

In order to find a way to identify a new pattern of events (which can

be called outliers because it does not belong to any already analyzed

clusters), we have to find a distance threshold as a boundary of each

cluster.

The methodology of Outliers Detection is to use the labels from

clustering to calculate σc standard deviation of distance between sam-

ples and centroids µi of clusterc. For example, If the distance from

new data to every cluster is larger then 3σ, the new data is labeled as

an outlier.

µc = xi =
1

Ni

∑
1≤i≤Ni

xi xi ∈ clusterc

σc =

√∑N
i dist(xi, µc)

2

N − 1
N = |clusterc|

(5.6)

The method of the mean plus or minus three Standard Deviation is

based on the characteristics of a normal distribution for which 99.87%

of the data appear within this range.

While this method has several things to be discussed. Firstly, this

method assumes that the distribution is normal (outliers included).

Secondly, the mean and the standard deviation are strongly impacted

by the outliers. Thirdly, this method is very unlikely to detect outliers

in small samples.

64

(a) Minimum Distance Training Set
True label

(b) Minimum Distance Training Set
Prediction Label

Figure 5.7: Minimum Distance Classifier Training Set

(a) Minimum Distance Classifier Test-
ing Set True label

(b) Minimum Distance Classifier Test-
ing Set Prediction Label

Figure 5.8: Minimum Distance Classifier Testing Set

65

(a) GNB Classifier Training Set True
label

(b) GNB Classifier Training Set Pre-
diction Label

Figure 5.9: GNB Classifier Training Set

(a) GNB Classifier Testing Set True
label

(b) GNB Classifier Testing Set Predic-
tion Label

Figure 5.10: GNB Classifier Testing Set

66

(a) CNN Classifier Training Set True
label

(b) CNN Classifier Training Set Pre-
diction Label

Figure 5.11: CNN Classifier Training Set

(a) CNN Classifier Testing Set True
label

(b) CNN Classifier Testing Set Predic-
tion Label

Figure 5.12: CNN Classifier Testing Set

67

Chapter 6

Conclusions and Future

Works

In this thesis, we described the challenges in the new generation of

communication network and how machine learning could make the

difference. In the second chapter, we covered the basic background

knowledge of both telecommunication field (SONs) and machine learn-

ing science field because this is an inter-disciplinary project, also the

used tools and packages are introduced.

In the third chapter, We described the data processing, the feature

selection procedure, and data cleaning. The most noticeable point in

this chapter is that we removed the means of samples (field counters),

so we transfer absolute values to the deviation to the daily means.

models for different telecommunication cells via clustering and made

classifiers to predict unlabeled days.

The fourth and fifth chapter are devoted to describing the pro-

cedure of clustering and classification. In particular, in the fourth

chapter, we described how to derive a model that contains the traffic

patterns for each cell by unsupervised learning. And in fifth chap-

68

ter, we combine the new unlabeled data with the model we created in

chapter 4.

In order to complete this experiment, there are several possible activ-

ities.

1. Distance metric learning, the distance metrics we used in this

experiments are Euclidean distance and Dynamic time wrapping

distance. But for time series sequences, we could also derive this

distance by learning algorithms [14].

2. Different measurements selection. In the experiments, we se-

lected the KPIs to be considered traffic volume(Mb) and the

number of connected users, but there are also many other KPIs

available as we listed in chapter 2. For sure we can take advan-

tage of them somehow.

3. Dimension reduction for better GNB classifier adoption.

And the future development could be Outliers detection in real time.

Also, it is interesting to take geographic information into consideration,

in current experiment, we just derive models from the field measure-

ments KPIs without knowing the cell type (residence, industry, school,

etc.) By adding geographic information, we can group our cells in a

more reasonable way so we could have just one pattern for each cell

type.

69

Bibliography

[1] N.S. Altman. An introduction to kernel and nearest-neighbor non-

parametric regression. The American Statistician.

[2] Emil Bergner. Unsupervised learning of traffic patterns in self-

optimizing 4th generation mobile networks. 2012.

[3] F. Chernogorov, J. Turkka, T. Ristaniemi, and A. Averbuch. De-

tection of sleeping cells in lte networks using diffusion maps. in

proc. of the IEEE 73rd Vehicular Technology Conference (VTC

Spring), 2011.

[4] Keogh E. Chiu, B. and S Lonardi. Probabilistic discovery of time

series motifs. Proceedings of the 9th ACM SIGKDD international

conference on knowledge discovery and data mining, 2003.

[5] V. Bratu Claes Beckman. Antenna tilt load balancing in self-

organizing networks. Antennas and Propagation (EuCAP), 2013

7th European Conference on, 2013.

[6] A. Gomez-Andrades I. Serrano E. J. Khatib, R. Barco. Diagno-

sis based on genetic fuzzy algorithms for lte self-healing. IEEE

Transactions on Vehicular Technology), 2015.

70

71

[7] Sander Jorg-Xu Xiaowei Ester Martin, Kriegel Hans-Peter. A

density-based algorithm for discovering clusters in large spatial

databases with noise. Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining (KDD-96),

1996.

[8] Global Institute McKinsey. Big data: the next frontier for inno-

vation, competition and productivity, 2011.

[9] Thomas M. Mitchell. Machine Learning. 1997.

[10] Josep Mangues-Bafalluy Nicola Baldo, Lorenza Giupponi. Big

data empowered self organized networks. in proc. of the 20th

IEEE European Wireless, 2014.

[11] Travis Oliphant. Python for scientific computing. Computing in

Science and Engineering 9(3):10-20, 2007.

[12] Yune-Sang Lee Rajeev D. S. Raizada1. Smoothness without

smoothing: Why gaussian naive bayes is not naive for multi-

subject searchlight studies. PLoSONE 8(7): e69566. doi:10.1

371/journal.pone.0069566, 2013.

[13] R.E. Schapire. Using output codes to boost multiclass learning

problems. 14th International Conference on Machine Learning,

1996.

[14] Liu Yang. Distance metric learning: A comprehensive survey.

Michigan State University, 2006.

		Politecnico di Torino
	2018-04-05T10:46:35+0000
	Politecnico di Torino
	Monica Visintin
	S

