
POLITECNICO DI TORINO
Corso di Laurea Magistrale

in Ingegneria Informatica (Computer Engineering)

Tesi di Laurea Magistrale

Security-oriented dynamic code
analysis in automotive embedded

systems

Relatori
Prof. Gianpiero Cabodi
Dott. Fabrizio Sebastiano Finocchiaro

Candidato
Daniele Montisci

Anno Accademico 2017-2018

Contents

List of Tables 4

List of Figures 5

1 Motivations and objectives 7

2 Symbolic execution 11
2.1 Challenges . 13
2.2 Modern symbolic execution . 13

2.2.1 Pros and cons . 14
2.3 Limitations . 14

3 Dynamic taint analysis 17
3.1 Taints propagation . 17

3.1.1 Data-flow taints . 18
3.1.2 Addresses taints . 18
3.1.3 Control-flow taint . 19

3.2 Taints removal . 20
3.3 Limitations . 21
3.4 Multi-path dynamic taint analysis 23

4 Tools for symbolic execution 25
4.1 KLEE . 25

4.1.1 Architecture . 27
4.1.2 Environment modelling . 29

4.2 S2E . 30
4.2.1 Execution consistency models 31
4.2.2 Architecture . 35

5 Tools for dynamic taint analysis 37
5.1 KLEE-TAINT . 37

5.1.1 Limitations . 40
5.2 Implementation of multi-path DTA 41

2

5.2.1 Execution consistency models 42

6 Use case 45
6.1 CAN messages filtering and routing 46

6.1.1 Modules . 46
6.2 External diagnostic devices authentication 49

6.2.1 Modules . 49
6.2.2 X.509 certificates parsing . 51

7 Template procedure of the analysis 53

8 Analysis of CAN messages filtering and routing 59
8.1 Analysis with symbolic execution 59

8.1.1 Content-based Message Filter - Test harness 59
8.1.2 Content-based Message Filter - Results 61
8.1.3 Messages filtering/routing full stack - Test harness 63
8.1.4 Messages filtering/routing full stack - Results 67

8.2 Analysis with dynamic taint analysis 69
8.2.1 Multi-path DTA - Test harness 69
8.2.2 Multi-path DTA - Results 71
8.2.3 Traditional DTA . 73
8.2.4 Enhanced traditional DTA 76
8.2.5 Enhanced traditional DTA - Limitations 77

9 External diagnostic devices authentication 81
9.1 Stub of the driver for the cryptographic accelerator 81
9.2 Modules selection and main function of the test harness 85
9.3 X.509 Certificate Parser - First version 88
9.4 X.509 Certificate Parser - Second version 91
9.5 Certificate Manager - X.509 certificate validation 107
9.6 Certificate Manager - Cryptographic challenge validation 112

10 Conclusions 115

Bibliography 117

3

List of Tables

6.1 ISO-TP frame types and content. 50
6.2 High view of the X.690 encoding structure. 51
6.3 Identifier encoding structure. 51
6.4 Length encoding structure. 52
9.1 List of the vulnerabilities found in the procedure for external diag-

nostic devices authentication. 82

4

List of Figures

2.1 Execution tree of code example in Listing 2.1. 12
2.2 Execution tree of code example in Listing 2.2. 15
3.1 Data-flow taint propagation in Listing 3.1. 18
3.2 Address taint propagation in Listing 3.2. 19
3.3 Control-flow taint propagation in Listing 3.3. 20
3.4 Graph of the execution paths of the example in Listing 3.8. 24
4.1 Example of Counter-example cache. 28
5.1 Portion of the control flow graph corresponding to the code in List-

ing 5.4. 40
6.1 Interconnections between the central gateway ECU and the others

ECUs. 45
6.2 Interface between the host and the HSM. 47
6.3 Software modules and interactions of the ECU firmware. 48
7.1 Structure of a test harness. 53
8.1 Possible combinations of module and node identifiers. 73

5

6

Chapter 1

Motivations and objectives

Dynamic code analysis[1] is a set of techniques for computer security analysis based
on monitoring of running code, which allows to exploit run-time information. In this
work, two among these techniques, dynamic taint analysis and symbolic execution,
are taken into consideration.

White-box testing is a method for testing a software application by exploiting
the knowledge of its source code. In the past, it was used almost exclusively at
unit level; recently, it has started to be used also at integration and system lev-
els. Traditional approaches to white-box testing require a significant effort by the
tester. It is necessary to manually inspect and to understand precisely the inner
working and structures of the software module under test in order to reason out
an exhaustive set of test cases. Sometimes it is not feasible to figure out all the
admitted behaviours due to the complexity of the code, a part of which may thus
remain untested. Furthermore, the obtained test cases set is closely related to the
implementation details and not to the functional specifications of the module. This
is problematic when a functionality needs to be re-implemented, because also the
corresponding test cases set must be re-created. Otherwise, it is possible to incur
in false negatives (non existing errors) and/or false positives (non triggered errors).
All of this impacts on the development cost and time.

The necessity to lighten this effort and at the same time to improve the qual-
ity of the generated test cases set, has brought to the introduction of symbolic
execution (SE), described in Chapter 2. Its main application is the automatic gen-
eration of a set of test cases given the source code or the binary of the application
under test. This set is virtually capable of exploring all the admitted behaviours,
intended or not, of an implementation. The key idea of the technique consists in
using symbolic values, capable of representing any concrete value, as input and
in representing internal and output values as symbolic expressions over the input
values. Every execution path passes through the true or the false branches of a
sequence of conditional statements and it is described with a set of constraints over
the input values. By solving them, the corresponding test case is obtained. The

7

1 – Motivations and objectives

main limitations of SE are the path explosion and the constraints solving, which
prevented it from being applicable for the testing of real pieces of software. Re-
cently there has been a renewed interest caused by the advancement in constraint
solving techniques and by the introduction of the possibility to intermix symbolic
with concrete execution. This has made SE suitable especially for testing embed-
ded software, whose typical size ranges from hundreds of thousands to few millions
lines of code. Being frequently critical and not continuously upgradable, it requires
thorough testing before deployment.

Dynamic taint analysis (DTA), described in Chapter 3, allows to observe the
information flow during the execution of a software component. Its main application
is the verification of security properties. It consists in marking data incoming from
a certain source with a taint, consisting in shadow bits, and in observing if this
taint can be propagated to a certain destination. Propagation is performed during
the execution of base computations (e.g. additions, multiplications, ...): if at least
one of the operand is marked, then the same taint is assigned to the result. If the
source is considered safe and the destination unsafe, then it is possible to verify the
confidentiality of sensitive information by checking that the taint cannot propagate.
Otherwise, if the source is unsafe and the destination is a trusted memory location
or register, it is possible to verify the integrity of the destination, whose sensitive
information must not be under the influence of data potentially injected by an
attacker, again by checking the impossibility for the taint to propagate.

Currently, SE and DTA are considered to be among the most promising tech-
niques for dynamic code analysis. The objective of this work is to verify their
applicability in the testing phase of real software systems, specifically embedded
software in automotive context. An electronic control unit operating inside a car
has been chosen as use case. This unit provides two main functionalities: filtering
and routing all the messages exchanged over CAN buses during the normal vehicle
operation and authentication of an external diagnostic device, whose messages are
allowed to pass in case of success. A detailed functional description of the unit
and its firmware architecture are reported in Chapter 6. In order to achieve this
objective, some publicly available tools have been taken into consideration. Those
that best suited the kind of analyses to be performed on the use case have been
selected.

In order to deal with the limitations of SE, a template procedure for creating
a test harness, making the analysis feasible and obtaining meaningful results has
been defined; it is discussed in Chapter 7.

SE is affected by the so-called path explosion problem, consisting in the repeated
forking of the execution flow in correspondence of loops and recursions whose num-
ber of iterations depend on symbolic values. In order to control this problem, it is
necessary to be able to constrain adequately the input data that have been made
symbolic. The approach that has been judged more effective is called source code
instrumentation and it is adopted by the KLEE tool and its derivative S2E, which

8

1 – Motivations and objectives

are described in Chapter 4.
All the freely available tools for DTA implement the traditional approach de-

scribed above. When scaled to real systems, it turns out to be insufficient, due
to the amount of false negatives and false positives yielded. The adopted solution
consisted in implementing a recent algorithm that interprets DTA as an application
of SE. Multi-path DTA makes possible to have virtually exact results or, if the path
explosion problem becomes unmanageable, to control more effectively the sources of
false negatives and false positives. A tool based on the traditional approach and the
prototype implementing the aforementioned algorithm are described in Chapter 5.

Chapter 8 and Chapter 9 detail the analysis procedure on the use case. The
former focuses on the messages filtering/routing functionality. The latter focuses
on the external diagnostic devices authentication procedure. For each module or
set of modules under test, first the choices in the construction of the test har-
ness are discussed, then the obtained results are reported. Chapter 8 reports a
comparison between DTA based on SE and the traditional approach, proving the
powerfulness of the former. Since the authentication procedure is affected by some
vulnerabilities, Chapter 9 lists the affected portion of code and the mechanism for
each bug-triggering input.

9

10

Chapter 2

Symbolic execution

Symbolic execution[1][2] is a technique consisting in substituting concrete data
values given as input to a program with symbolic values, in representing (part of)
the values of program variables as symbolic expressions over these symbolic values,
and in expressing the output values of the program as a function of the inputs. This
allows us to explore the behaviour of a program (i.e. to test it) on many possible
input at once by implicitly enumerating them. In the strict sense, a symbolic value
is unconstrained, which means that it can represent any possible concrete value. A
program variable can take a simple symbolic value, or in the general case a symbolic
expression, also called constrained symbolic value (using a less precise but more
intuitive terminology), that limits the possible concrete values that it can assume.
A feasible execution path is defined by the sequence of branches (then or else) taken
at each encountered conditional statement. All the feasible execution paths of a
program can be represented with an execution tree, which forks in correspondence
of each conditional statement. To execute symbolically a program it is necessary to
maintain for each execution path a symbolic state (symbolic expressions assumed by
variables) and a path constraint (conjunction of the conditions of the encountered
conditional statements). An execution path is feasible if its path constraint can
be solved, yielding a concrete sample value. At the end of the execution of a
feasible path, a test case (i.e. a set of input values) that covers it can be generated.
When a conditional statement is encountered, both the symbolic state and the path
constraint are forked: the first path constraint is incremented with the condition
(then branch), the second with the negation of the condition(else branch). Both
branches can be taken if the corresponding path constraints are feasible (at least
one is, if the parent path is feasible).

In Listing 2.1 there are 2 conditional statements and 3 possible execution paths,
one of which is infeasible: the assert(false) statement is not reachable, whatever
value the variables x and y take. The corresponding graph of the execution paths
is reported in Figure 2.1.

11

2 – Symbolic execution

1 i n t x , y ;
2 . . . // Give the i n p u t v a r i a b l e s " x " and " y " s ymbo l i c v a l u e s "X"

and "Y" r e s p e c t i v e l y .
3 i f (x > y) {
4 x = x + y ;
5 y = x − y ;
6 x = x − y ;
7 i f (x − y > 0) {
8 a s s e r t (f a l s e) ;
9 }

10 }

Listing 2.1. Basic symbolic execution example.

Figure 2.1. Execution tree of code example in Listing 2.1.

12

2.1 – Challenges

2.1 Challenges
• The symbolic memory address problem arises when trying to de-reference a

symbolic value, derived from user input: a possible solution is to dereference
any possible value (explicit enumeration), which requires to fork a new execu-
tion path for each one of them[3].

• The symbolic jump problem is related to the previous one, it arises when trying
to jump to a symbolic location: a possible solution is to use static analysis to
determine all the possible jump targets.

• The path selection problem consists in deciding which branch to follow first
when a conditional statement is encountered. This is particular important
in case of never-ending loops, in which the symbolic execution gets stuck,
preventing the exploration of other parts of the program. Possible strategies
include DFS search with a limit on the number of iterations, concolic testing
(see 2.2), random selection (favours shallows states).

• External libraries not instrumented for symbolic execution and OS system
calls can abort the analysis, because it is not possible to symbolically explore
them: concolic testing (see 2.2) offers a partial solution, but it is also possible
to emulate system calls so that they return symbolic data while keeping track
of their side effects[4].

2.2 Modern symbolic execution
Modern techniques for symbolic execution[2] mix concrete and symbolic execution.

• Concolic (concrete and symbolic) testing maintains a symbolic state, that maps
only variables that have a symbolic value, and a concrete state, that maps all
variables to their concrete value. As consequences, a variable can have at
the same time a concrete and a symbolic value, and concrete input values are
needed. While the program under testing is executed, the constraints on the
input values posed by the encountered conditional statements are gathered and
solved, so that at the next execution an alternative feasible execution path is
selected. This process iterates until all feasible execution paths are executed,
or a user-defined criteria is met.

• Execution-generated testing (EGT) maintains a symbolic and a concrete state
similarly to concolic testing, but the way in which concrete and symbolic
execution are mixed is different: if an instruction uses only concrete operand
values, it is executed concretely (potentially at native speed), otherwise (i.e.
at least one symbolic operand value) symbolically.

13

2 – Symbolic execution

2.2.1 Pros and cons
Pure symbolic execution cannot explore parts of the program under test that inter-
act with an external library not instrumented for symbolic execution or that issue
an OS system call. EGT can execute such a call concretely if all the argument
values are concrete, otherwise if at least one is symbolic, it needs to concretize
them (i.e. to solve the path constraint built so far). Concolic execution can use the
concrete values (derived from the input values) to perform the call. This constraint
simplification allows to execute all the program under test, but the analysis may be
incomplete: some feasible execution path may be left unexplored, thus the coverage
of the test input set may be reduced.

2.3 Limitations
• The main limitation of symbolic execution is the path explosion problem[2]:

when executing loops or recursive procedures the number of feasible paths can
grow huge if the termination condition depends on symbolic input data. It
is necessary to put an heuristic limit on the number of forked paths or on
the number of iterations. The number of execution paths, in the worst case,
is exponential on the number of static branches in the code. The problem
is mitigated by the fact that not all branches may be feasible and not all
conditional statements have a condition dependent on symbolic input data.
The problem can be addressed by using search heuristics for prioritizing path
exploration, by pruning or merging redundant paths (i.e. paths with the same
path constraint), ...

1 unsigned i n t b u f f e r [SIZE] ;
2 unsigned i n t num ;
3 . . . // Give i n p u t v a r i a b l e "num" a symbo l i c v a l u e "N" .
4 i f (num <= SIZE) {
5 f o r (unsigned i n t i = 0 ; i < num ; i ++) {
6 b u f f e r [i] = i ;
7 }
8 }

Listing 2.2. Example of code causing path explosion.

A piece of code causing path explosion is reported in Listing 2.2, and the
corresponding execution tree starting from the for loop in Figure 2.2: only the
input variable num is given a symbolic value, which in the true branch if the
if-then-else statement starting from line 5 can vary from 0 to SIZE, extremes
included; before executing the body of the for loop the termination condition
is checked and since both branches are feasible until the index becomes equal

14

2.3 – Limitations

to SIZE, a new execution path is forked and the relative test case is created
for each possible concrete value that the variable num can take; the resulting
number of execution paths is equal to SIZE + 1 and, if SIZE is set to a
static value in the order of one hundred of thousands or one million, even
the analysis of such a simple piece of code poses feasibility problems (i.e.
execution time and memory footprint) with the symbolic execution tools taken
into consideration.

Figure 2.2. Execution tree of code example in Listing 2.2.

15

2 – Symbolic execution

• Some path constraints can be impossible or hard to solve (for example non-
linear ones): this may preclude or slow down the exploration of feasible exe-
cution paths, and thus reduce the coverage of the yielded test-cases set. The
problem can be addressed by eliminating irrelevant constraints (if the con-
straint of a branch depends on a subset of the variables inside the path con-
straint, then only the corresponding subset of constraint is needed to determine
the feasibility of the execution path) and by incremental solving (a solution
for a set of constraints is a solution also for a subset of them, and usually also
for a superset).

16

Chapter 3

Dynamic taint analysis

Dynamic taint analysis[1] (DTA), also known as dynamic information flow analysis,
is a technique consisting in marking with taints some data sources, according to
some taint introduction rules, and tracking the propagation of the taints, according
to some taint propagation rules. Taints may consist in simple binary values or in
arrays of bits[5].

• A taint introduction rule specifies how to introduce taints into the system. A
typical rule is to initialize all registers and memory cells as untainted, and to
specify that some system calls or some functions from a certain library always
return tainted values. Some tools[5] allow also to arbitrarily mark variables as
tainted.

• A taint propagation rule specifies, for each operation, the tainting of the result
according to the tainting of the operands. A typical rule is to taint the result
of an operation if at least one of the operands is tainted. This rule can be
extended to the case in which we have multi-bit taints of the same length,
using a bitwise-or.

DTA is subject to two errors: over-tainting and under-tainting. Their occurrence
is influenced by the taint propagation rules adopted. A DTA system that does not
suffer over-tainting and under-tainting is defined precise.

3.1 Taints propagation
Taint values can be associated with data values (i.e. the contents of memory cells
and of CPU registers, with memory addresses (both to data and to instructions)
and with the control-flow (i.e. with the program counter). These different types of
taints may or may not be propagated according to the adopted propagation rules.

17

3 – Dynamic taint analysis

3.1.1 Data-flow taints
To propagate the data-flow taints consists in considering only simple assignments,
unary and binary operators (arithmetical, logical, ...) and in assigning a com-
bination of the taint of the operands to the result. Considering the example in
Listing 3.1, when the content values of variables a and b are summed, in parallel
the taint values are combined with a bitwise OR operator. Both these results are
assigned to variable c. The same applies for variable e which, at the end of the
execution, has the taint value of a. The propagation is depicted in Figure 3.1.

1 i n t a = 1 ; i n t b = 4 ; i n t d = 2 ; i n t c , e ;
2 . . . // As s i gn v a r i a b l e " a " t a i n t v a l u e 1 .
3 c = a + b ;
4 e = c ∗ d ;

Listing 3.1. Since a is tainted, "c" and then "e" will be tainted.

Figure 3.1. Data-flow taint propagation in Listing 3.1.

3.1.2 Addresses taints
If an array is accessed using a tainted index, or if a tainted value is dereferenced,
the result of the memory operation is tainted. To achieve this, it is necessary to
propagate the taints of both values and addresses, otherwise under-tainting occurs.
Considering the example in Listing 3.2, when variable b is used to index the array
a, the address of the first cell of a and the content value of b are summed, while
the taint values of the seventh cell of a and of b are combined. Both these results
are assigned to variable c. The propagation is depicted in Figure 3.2.

18

3.1 – Taints propagation

1 char a [SIZE] ; i n t b = 4 ; char c ;
2 a [b] = 6 ;
3 . . . // As s i gn v a r i a b l e "b" t a i n t v a l u e 1 .
4 c = a [b] ;

Listing 3.2. Since "b" is tainted, "c" will be tainted.

Figure 3.2. Address taint propagation in Listing 3.2.

3.1.3 Control-flow taint
It is possible to propagate the control-flow taint in addition to the data-flow taints:
if the condition of a branch or the address of an indirect branch are tainted, then all
the variables assigned inside both the true and false branch bodies are potentially
tainted. If inside one of the branch bodies a variable is assigned a value differing
from the one it contained before the branch and, at the same time, differing from the
one it is assigned inside the other branch body (if present), then it will be tainted.
In Listing 3.3, variable b is assigned value 3 only in the true branch, a value different
both from the original one, which was 0, and from the one it is assigned inside the
false branch, again 0, as shown in Figure 3.3. The same applies for variable c.
There may be pieces of code after conditional branches whose execution does not
depend on the condition, for example the assignment to variable d, which will not
be tainted: this might seem banal, but while when considering the source code the
bodies of the branches are easily identified, when considering the corresponding
binary they are not, and all the tools considered in this work perform dynamic
taint analysis on binaries.

1 i n t a = 5 ; i n t b = 0 ; i n t c = 0 ; i n t d = 0 ;
2 . . . // As s i gn v a r i a b l e " a " t a i n t v a l u e 1 .
3 i f (a == 5) {
4 b = 3 ;
5 } e l s e {

19

3 – Dynamic taint analysis

6 c = 4 ;
7 }
8 d = 6 ;

Listing 3.3. Since "a" is tainted, "b" and "c" will be tainted, but "d" will not.

Figure 3.3. Control-flow taint propagation in Listing 3.3.

It is possible to deduct that control-flow taint propagation requires taking into
consideration both branches of a conditional statement; executing only one while
completely disregarding the other one as it happens in an ordinary program execu-
tion may make the analysis imprecise. In the general case, computing the control
dependencies requires a static analysis or a multi-path dynamic analysis of the
code, a pure single-path dynamic analysis incurs in under-tainting (do not track
control-flow taint) or over-tainting (once the control-flow is tainted, it cannot be
un-tainted). To achieve a precise DTA, it is required to track data-flow taints,
addresses taints and control-flow taint.

3.2 Taints removal
Taints can be removed when the program computes constants from tainted values.
In Listing 3.4, variables b and c are always equal to 0, independently of the value of

20

3.3 – Limitations

the operand a, thus they will not be tainted. The XOR case is critical, because it
is often used to clear x86 registers. Recognizing these situations is called the taint
sanitization problem.

1 i n t a = 5 ; i n t b = 0 ; i n t c = 0 ;
2 . . . // As s i gn v a r i a b l e " a " t a i n t v a l u e 1 .
3 b = a ^ a ;
4 c = a − a ;

Listing 3.4. "a" is tainted, but "b" and "c" will not.

3.3 Limitations
The purpose of dynamic taint analysis is to determine if a taint source can influence
the value of a taint sink. As discussed in Section 3.1, traditional techniques apply
the data-flow taints propagation logic associated to an instruction only when that
instruction is executed, and perform static analysis of the code to determine the
propagation of the control-flow taint. There are a number of situations in which
this approach fails:

• A taint source influences a taint sink but the taint propagation logic cannot be
applied, because the control-flow prevents the execution of the corresponding
instruction: the analysis suffers from under-tainting. In Listing 3.5, variable a
influences b, because depending on its value b may take content value 2 or 3,
but in the execution path chosen by the control flow the variable assignment
in line 4 is not executed. The KLEE-TAINT[5] tool fails in recognizing this
influence and determines that b is not tainted.

1 i n t a = 1 ; // Ta int s ou r c e − Tainted
2 i n t b = 2 ; // Ta int s i n k − Not t a i n t e d
3 i f (a == 5) {
4 b = 3 ; // A p p l i c a t i o n o f t a i n t p r opaga t i on l o g i c .
5 }
Listing 3.5. Example of under-tainting caused by an instruction not being executed.

The DYTAN[6] tool, in order to deal with such cases, performs an initial static
analysis of the code in order to determine which variables are assigned inside
the body of at least one branch of each conditional statement: if a variable
is assigned only inside one branch, then DYTAN inserts a self-assignment of
the same variable inside the other branch. The purpose is to have same set
of assigned variables in both branches, so that when the dynamic part of the
analysis is performed, the control flow taint can be effectively propagated dur-
ing the execution of condition-dependent variable assignments. In Listing 3.6,

21

3 – Dynamic taint analysis

DYTAN inserts a self-assignment of variable b if the else branch of the condi-
tional statement, therefore whatever branch is taken the influence of a on b is
correctly recognized.

1 i n t a = 1 ; // Ta int s ou r c e − Tainted
2 i n t b = 2 ; // Ta int s i n k − Not t a i n t e d
3 i f (a == 5) {
4 b = 3 ; // A p p l i c a t i o n o f t a i n t p r opaga t i on l o g i c .
5 } e l s e {
6 b = b ; // A p p l i c a t i o n o f t a i n t p r opaga t i on l o g i c , but

con t en t v a l u e unmod i f i ed .
7 }

Listing 3.6. Self-assignment inserted by DYTAN in order to prevent under-tainting.

• A taint sink can take two different content values depending on which branch of
a conditional statement with a tainted condition is taken and, while at compile-
time the two values appear different, at runtime they are always equal: the
source cannot actually influence the sink. In Listing 3.7, variable b takes the
value 16 in both branches, so a cannot actually influence it. KLEE-TAINT
fails in recognizing this absence of influence and incorrectly determines that
variable b is tainted, therefore the analysis suffers from over-tainting. Other
tools taken into consideration that enhance basic DTA with static analysis,
such as DYTAN and DTA++[7], were not available or usable, but basing on
their respective papers it is reasonable to assume that they would behave as
KLEE-TAINT.

1 i n t a = 1 ; // Ta int s ou r c e − Tainted
2 i n t b = 2 ; // Ta int s i n k − Not t a i n t e d
3 i f (a == 5) {
4 b = s q r t (256) ;
5 } e l s e {
6 b = pow (4 , 2) ;
7 }

Listing 3.7. Example of over-tainting caused by not taking into account
runtime content values.

Given the examples above, it is possible to deduce that a combination of single-
path dynamic analysis with static analysis is not sufficient to achieve precise DTA:
it is necessary to take into account all the possible runtime values of a taint sink,
therefore the analysis must be dynamic and multi-path.

22

3.4 – Multi-path dynamic taint analysis

3.4 Multi-path dynamic taint analysis

The approach to DTA proposed in [8] is an application of symbolic execution. The
key idea is that taint sources take unconstrained symbolic content values and, for
all the execution paths, the content values of the taint sink are observed: if they are
constant (i.e. concrete or constant symbolic expressions) and equal across all paths,
then the taint sink is not tainted, otherwise, if at least one of the conditions is not
met, it is tainted. Unlike in previous traditional approaches, memory locations are
not associated with taint values implemented as shadow bits and instructions are
not associated with taint propagation logic. The taint status of a sink can only be
positive or negative, it is not possible to have a bit array like in KLEE-TAINT.

In Listing 3.8 there are a total of 4 execution paths, as shown in Figure 3.4. At
the end of all of them, the taint sink x has the same constant value, thus it is not
tainted, the sink y takes only constant values but they are not all equal, thus it
is tainted, finally the sink z can take 2 different values at the end of the second
path, and being not constant it is tainted. Multi-path DTA, based on symbolic
execution, is capable of achieving precise taint "propagation" in such situations.

1 // Envi ronment
2 void f u n c t i o n (i n t ∗x , i n t ∗y , i n t ∗z , i n t c) {
3 i f ((c >= 8) && (c < 10)) {
4 x = pow (4 , 2) ; y = 3 ; z = c ;
5 } e l s e {
6 x = pow (2 , 4) ; y = 3 ; z = 8 ;
7 }
8 }
9

10 // Uni t
11 i n t main (void) {
12 i n t a , b , c ; // Ta int s o u r c e s
13 i n t x , y , z ; // Ta int s i n k s
14 . . .
15 i f (a == 5) {
16 i f (b == 1) {
17 x = s q r t (256) ; y = 3 ; z = 8 ;
18 } e l s e {
19 f u n c t i o n (&x , &y , &z , c) ;
20 }
21 } e l s e {
22 x = s q r t (s q r t (65536)) ; y = 6 ; z = 8 ;
23 }
24 }

Listing 3.8. Example of precise taint "propagation" obtained with Multi-path DTA.

23

3 – Dynamic taint analysis

Figure 3.4. Graph of the execution paths of the example in Listing 3.8.

The limitations of multi-path DTA are the same of symbolic execution, specif-
ically the path explosion problem and the solvability of the path constraints. The
possible countermeasures depend on its implementation, therefore they will be dis-
cussed in Section 5.2.

24

Chapter 4

Tools for symbolic execution

In order to perform an analysis based on symbolic execution, many state-of-the-
art publicly available tools have been taken into consideration, including Angr[9],
PySymEmu[10], FuzzBALL[11], KLEE, S2E. As already discussed in Section 2.3,
one of the main limitations on symbolic execution is the path explosion problem
and, as detailed in Chapter 7, one of the possible countermeasures consists in
constraining the symbolic value given as input to the software modules under test.
The most straightforward way to enforce these constraints consists in using the
so-called source code instrumentation functions provided by KLEE and S2E. These
functions allow to inject symbolic values into any variable, not only input ones,
and to constrain them by means of standard C language expressions, that are
automatically translated into symbolic expressions.

4.1 KLEE
KLEE[4] is a symbolic execution tool that performs execution-generated testing.
It requires the C/C++ source code of the program to be tested, which must be
compiled to LLVM byte-code in order to be analysed. The output consists in a
test-cases for each feasible execution path.

The tool provides two approaches for introducing symbolic values in the program:
injection from the environment and intrinsic functions. With the first approach the
source code needs no modifications, symbolic values can be injected by means of
command line arguments, standard input and files. In Listing 4.1 it is shown that
the source code of the program under test is compiled into LLVM byte-code but
not linked, then executed with 5 to 10 symbolic arguments of 20 bytes each, with
5 symbolic files and 20 bytes of symbolic standard input available.

1 c l ang −emit−l l vm −c −g program_under_test . c −o
program_under_test . bc

25

4 – Tools for symbolic execution

2 k l e e −−sym−a r g s 5 10 20 −−sym− f i l e s 5 20 −−sym−s t d i n 20
program_under_test . bc

Listing 4.1. Example of injection of symbolic values by means of
command line arguments.

The second approach is one of the main innovations in the context of symbolic
execution tools: by means of functions provided by KLEE it is possible to inject
symbolic values into any variable, at any point of the source code. In addition,
other functions allow to arbitrarily modify path constraints, to kill execution paths
and to concretize a symbolic expression in order to get sample concrete values that
satisfy the constraints at a certain moment of the execution. This approach is used
in Listing 4.2: in lines 4 and 5, klee_make_symbolic() injects a symbolic value into
variable num, replacing scanf() which asks the user to provide a concrete value; in
line 9, klee_assume() constrains the set of values that num can take, so that the
true branch of the if-then-else statement in line 10 can never be executed; in line
15, klee_get_value_i32() chooses a concrete value from num, so that at most one
of the conditional statements in lines 16 and 17 will be executed; finally in line 19,
klee_abort() terminates each path in which it is executed, so that the function in
line 20 is never called.

1 i n t main (void) {
2 i n t num ;
3

4 // s c a n f ("%d " , &num) ;
5 klee_make_symbol ic (&num , s i z e o f (num) , "num") ;
6

7 i f ((num >= 0) && (num < 10)) {
8

9 klee_assume ((num >= 5) & (num < 8)) ;
10 i f (num == 3) p r i n t f ("A\n") ;
11 e l s e i f (num == 5) p r i n t f ("B\n") ;
12 e l s e i f (num == 7) p r i n t f ("C\n") ;
13 } e l s e {
14

15 num = k l ee_ge t_va lue_ i32 (num) ;
16 i f (num == 20) p r i n t f ("D\n") ;
17 i f (num == 21) p r i n t f ("E\n") ;
18

19 k l e e_abo r t () ;
20 p r i n t f ("F\n") ;
21 }
22 return 0 ;
23 }

Listing 4.2. Example of use of KLEE’s intrinsic functions.

26

4.1 – KLEE

4.1.1 Architecture
KLEE works as an operating system for processes involving symbolic values and
as an interpreter. A symbolic process is a symbolic state, which besides the com-
ponents of an ordinary concrete process (stack, heap, registers, program counter)
includes a path constraint. KLEE directly interprets the LLVM instruction set, uses
bit-level accuracy, but lacks support for symbolic floating points instructions, x86
longjmp instructions, threads and assembly code (unless the program is recompiled
from binary to LLVM instead of from source to LLVM).

Like in pure symbolic execution, state forking occurs in correspondence of con-
ditional statements of which both branches are feasible, but also in correspondence
of operations that perform error checking, like divisions; both these types of con-
straints are treated in the same manner.

Every memory object is represented by means of a distinct STP[12] array, a
straightforward representation of the memory as an array of byte is infeasible,
because the constraint solver would have to solve too hard constraints. To address
the symbolic memory address problem, KLEE performs explicit enumeration: when
a pointer can reference N memory objects, the current state is forked N times. To
obtain a compact state representation, KLEE implements copy-on-write at memory
object level. Allowing common parts of the states to be shared, it becomes possible
to test programs that generate a number of states in the order of magnitude of
hundred of thousands.

A significant portion of the computational time of an analysis is taken by the
constraint solver, thus KLEE implements some optimizations in order to simplify
expressions and, when possible, to eliminate queries. Constraint independence
divides constraint sets into subsets based on the variables they reference: if the
constraint imposed by a branch references variables found only in some on these
subsets, its feasibility can be verified with a query that includes only these subsets
and the new constraint. In Listing 4.3, before executing the statement in line 5,
the path constraint is the conjunction of the conditions of the previous two if-then-
else statements; in order to verify the feasibility of the true branch of the third
if-then-else statement, its condition must be conjuncted with the path constraint
and passed to the constraint solver; it is possible to notice that only the constraints
that involve variables a and b are actually needed, the true branch is infeasible
regardless of the value of c.

1 i n t a , b , c ;
2 . . .
3 i f ((c < 10) && (b >= 10) && (b < 15)) {
4 i f ((c >= 0) && (a == b)) {
5 i f (a == 15) {
6 . . . // Do someth ing
7 } e l s e {
8 . . . // Do someth ing e l s e

27

4 – Tools for symbolic execution

9 }
10 }
11 }

Listing 4.3. Only the constraints on "a" and "b" are needed to verify the feasibility
of the true branch of the third conditional statement.

The Counter-example cache addresses the problem of frequent redundant queries,
i.e. queries consisting in a subset or a superset of the constraints of a stored query.
If a subset of constraints has no solution, then also the original set has not: in
Figure 4.1, the first entry of the cache is a subset of the first query and has no
solution, therefore also the query has no solution and needs not to be passed to
the constraint solver. If a subset has a solution, it is possible (and often happens)
that the solution is a valid also for the the original set (checking a solution against
some constraints is cheaper than solving the same constraints): the third entry of
the cache is a subset of the third query, its solution allows to simplify the query
before passing it to the constraint solver. If a superset of constraints has a solution,
then the solution is valid also for the original set: the second entry of the cache is
a superset of the second query, its solution satisfies the third query as well.

Figure 4.1. Example of Counter-example cache.

States are scheduled for execution according to 2 search heuristics, used in a
round-robin fashion in order to avoid that one of them gets the execution stuck.
Random path selection tends to favour shallow states (that have executed the fewest
number of instructions): these states are usually less constrained and thus more
likely to explore still unexplored code, and this strategy avoids getting stuck in loops
depending on a symbolic condition, which tend to fork lots of states. Coverage-
optimized search tries to select states likely to cover still uncovered code.

28

4.1 – KLEE

4.1.2 Environment modelling

KLEE provides a symbolic file system for each execution state, containing a single
directory with N symbolic files (specified by a command line argument) and co-
existing with the normal concrete file system shared among all states. OS system
calls are redirected to models (open(), read(), write(), close(), ...) that check if
the file to be accessed is stored in the concrete or the symbolic file system. In the
former case the corresponding OS system call is invoked, while in the latter case the
action is performed on a symbolic file. In Listing 4.4, a simplified version of KLEE’s
model for the read() system call is reported: if the file descriptor provided by the
application under test corresponds to a concrete file, then the operating system’s
pread() system call will be invoked, else if it corresponds to a symbolic file, then
(part of) a buffer containing symbolic values will be copied into the user-provided
buffer.

1 s s i z e _ t read (i n t fd , void ∗ buf , s i z e _ t count) {
2 . . . // E r r o r check i ng
3 s t ruc t k l e e_ fd ∗ f = &f d s [fd] ;
4 i f (i s _ c o n c r e t e _ f i l e (f)) {
5 i n t r = pread (f−>rea l_ fd , buf , count , f−> o f f) ;
6 i f (r != −1) f−>o f f += r ;
7 return r ;
8 } e l s e {
9 i f (f−>o f f >= f−>s i z e) return 0 ;

10 s i z e _ t count = min (count , f−>s i z e − f−>o f f) ;
11 memcpy(buf , f−>f i l e _ d a t a + f−>of f , count) ;
12 f−>o f f += count ;
13 return count ;
14 }
15 }

Listing 4.4. KLEE’s model for the "read()" system call.

Optionally, also failures of system calls are modelled by specifying a command
line option, as shown in Listing 4.5: if the maximum number of allowed failures is
set to 1, then when trying to open a symbolic file, the corresponding execution path
will be forked into one path in which the file has been opened correctly and one in
which the call failed. A successful or failed opening of a concrete file depends on
the real file system.

1 k l e e [. . .] −−max− f a i l 1 program_under_test . bc

Listing 4.5. Failure modelling.

29

4 – Tools for symbolic execution

4.2 S2E
S2E[3] (Selective Symbolic Execution) is a tool capable of performing symbolic ex-
ecution and more in general of analysing the properties and behaviour of software
systems by means of multi-path analysis. It is based on the QEMU virtual machine
emulator and on the KLEE symbolic execution engine. It features several differ-
ences with respect to similar tools: it is capable of full-system analysis and thus to
observe programs in their "natural environment"; it can work on unmodified x86,
x86-64 and ARM binaries, but it implements also the source code instrumentation
approach, with an interface very similar to KLEE, in order allow more flexibility
of analysis.

S2E implements the so called selective symbolic execution technique, which al-
lows to restrict the multi-path analysis only the parts of code of interest, while
executing all the remaining code in single-path mode (i.e. concretely). This allows
to avoid or to reduce the path explosion problem, at the cost of performing a non-
fully consistent analysis, but in many cases this is still acceptable. For example, it
is possible to test an application without extending the analysis to the kernel code
when a system call is made, or to a cryptographic library which gets the analysis
stuck because it generates hard to solve constraints.

In order to switch from single-path mode to multi-path mode before calling
a given function, it is necessary to substitute the concrete argument values with
symbolic values, which can be arbitrarily constrained. In Listing 4.6, the user-
provided concrete values are substituted with symbolic values in line 4.

1 char s t r i n g [3] ;
2 s t r i n g [2] = 0 ;
3 // s c a n f ("%2 s " , s t r i n g) ;
4 s2e_make_symbol ic (s t r i n g , 2 , " s t r i n g ") ;
5 i f (strncmp (s t r i n g , "OK" , 2) == 0) {
6 p r i n t f ("OK\n") ;
7 } e l s e i f (strncmp (s t r i n g , "NO" , 2) == 0) {
8 p r i n t f ("NO\n") ;
9 } e l s e {

10 p r i n t f (" E r r o r !\ n") ;
11 }

Listing 4.6. Example of switching from single-path mode to multi-path mode.

In order to switch from multi-path mode to single-path mode before calling a
given function, it is necessary to concretize all its argument values, i.e. to solve
their symbolic expressions and take one of the possible solutions. In Listing 4.7, the
analysis is started in multi-path mode, since variable x is assigned a symbolic value
in line 2, then, in the execution path that goes trough the true branches of the first
two conditional statements, x is concretized and takes value 3, thus only the path
where OK is printed is now feasible, the error condition is no more reachable.

30

4.2 – S2E

1 i n t x = 0 ;
2 s2e_make_symbol ic(&x , s i z e o f (x) , " x ") ;
3 i f (x > 2) {
4 i f (x < 5) {
5 s 2 e _ c o n c r e t i z e (&x , s i z e o f (x)) ;
6 i f (x == 3) {
7 p r i n t f ("OK\n") ;
8 } e l s e {
9 p r i n t f (" E r r o r !\ n") ;

10 }
11 } e l s e {
12 . . .
13 }
14 } e l s e {
15 . . .
16 }

Listing 4.7. Example of switching from multi-path mode to single-path mode.

To concretize a variable actually means to place an additional equality constraint
on it: this is a source of over-constraining, which may prevent the exploration of
some otherwise feasible execution paths, making the analysis incomplete.

4.2.1 Execution consistency models
An execution state of a program is consistent if it exists a feasible execution path
from the starting state to the current state. Due to the path explosion problem,
maintaining consistency during multi-path exploration is often too costly and in
many cases it is also unnecessary. S2E offers several execution consistency models,
that define trade-offs between the consistency level and the cost of enforcing the
model: renouncing to consistency in some parts of the code makes possible feasible
and still meaningful analyses. These models rely on the definition of system, unit
and environment: the system is the complete software under analysis, the unit is
the part of the system to be actually analysed, the environment consists in all the
other parts of the system.

• Strictly Consistent Concrete Execution.
The whole system is executed in single-path mode, the explored path is only
determined by the concrete input provided, no symbolic data is involved. The
information internal to the system (i.e. the conditions of conditional state-
ment) is not gathered and used. A typical implementation of this model is
random input testing, reported in Listing 4.8.

1 i n t f u n c t i o n (i n t x) {
2 i f (x == 4) return 8 ; // Exp l o r ed

31

4 – Tools for symbolic execution

3 i f (x == 6) return 12 ; // Exp l o r ed
4 i f (x == 8) return 16 ; // Not e x p l o r e d
5 return x ; // Exp l o r ed
6 }
7 i n t t e s t _ v a l u e s [5] = {2 , 4 , 7 , 1 , 6} ;
8 i n t main (void) {
9 i n t r e s u l t ;

10 f o r (i n t i = 0 ; i ++; i < 5) {
11 i f (t e s t _ v a l u e s [i] == 2) r e s u l t = 4 ; // Exp l o r ed
12 e l s e i f (t e s t _ v a l u e s [i] == 10) r e s u l t = 20 ; // Not

e x p l o r e d
13 e l s e r e s u l t = f u n c t i o n (t e s t _ v a l u e s [i]) ;
14 }
15 return (r e s u l t) ;
16 }

Listing 4.8. Strictly consistent concrete execution: random input testing.

• Strictly Consistent Unit-level Execution.
The unit is executed in multi-path mode, while the environment in single-
path mode. Only the information internal to the unit is gathered (to form path
constraints) and used to explore new execution paths, while paths generated by
conditional statements in the environment are missed, causing the exploration
of the unit to be potentially incomplete (e.g. this is the case of conditional
statement of the unit dependent on values derived from the environment).
To implement it, it is necessary to concretize all the symbolic expressions of
the data passed to the environment when interfacing with it, as shown in
Listing 4.9. KLEE uses this approach when the environment is not modelled,
forcing it to concretize all the argument values before executing a system call.

1 i n t f u n c t i o n (i n t x) {
2 i f (x == 4) return 8 ; // Not e x p l o r e d
3 i f (x == 6) return 12 ; // Exp l o r ed
4 i f (x == 8) return 16 ; // Not e x p l o r e d
5 return x ; // Not e x p l o r e d
6 }
7 i n t main (void) {
8 i n t r e s u l t ;
9 i n t i n p u t ;

10 s2e_make_symbol ic(& input , s i z e o f (i n p u t) , " i n p u t ") ;
11 i f (i n p u t == 2) r e s u l t = 4 ; // Exp l o r ed
12 e l s e i f (i n p u t == 10) r e s u l t = 20 ; // Exp l o r ed
13 e l s e {
14 s 2 e _ c o n c r e t i z e (& input , s i z e o f (i n p u t)) ; // Value 6

i s chosen
15 r e s u l t = f u n c t i o n (i n p u t) ;

32

4.2 – S2E

16 }
17 return (r e s u l t) ;
18 }

Listing 4.9. Strictly consistent unit-level execution.

• Strictly Consistent System-level Execution.
The whole system is executed in multi-path mode, the information internal
to both the unit and the environment is used to explore new execution paths,
so the analysis is both complete and consistent. Symbolic data is allowed to
cross the boundary between the unit and the environment. This model is more
expensive to enforce with respect to the previous two, because typically the
size of the environment code is orders of magnitude larger than the size of
the unit code, so it is more easily affected by the path explosion problem. An
example is reported in Listing 4.10

1 i n t f u n c t i o n (i n t x) {
2 i f (x == 4) return 8 ; // Exp l o r ed
3 i f (x == 6) return 12 ; // Exp l o r ed
4 i f (x == 8) return 16 ; // Exp l o r ed
5 return x ; // Exp l o r ed
6 }
7 i n t main (void) {
8 i n t r e s u l t ;
9 i n t i n p u t ;

10 s2e_make_symbol ic(& input , s i z e o f (i n p u t) , " i n p u t ") ;
11 i f (i n p u t == 2) r e s u l t = 4 ; // Exp l o r ed
12 e l s e i f (i n p u t == 10) r e s u l t = 20 ; // Exp l o r ed
13 e l s e r e s u l t = f u n c t i o n (i n p u t) ;
14 return (r e s u l t) ;
15 }

Listing 4.10. Strictly consistent system-level execution.

• Local Consistency.
The unit is executed in multi-path mode, while the environment is not ex-
ecuted or is executed only partially, in single-path or multi-path mode. To
implement this model means to substitute (some of) the values returned by
the environment with symbolic values that are consistent only with the in-
terface to the environment and that represent any possible valid result of the
execution: this allows to explore all the possible paths of the unit, and to
avoid executing the environment, obtaining the same performances of the SC-
UE model and the completeness of the SC-SE model. The execution state of
the unit is always kept consistent, while it is possible to have inconsistencies
in the environment, therefore from the point of view of the whole system the
analysis is not consistent.

33

4 – Tools for symbolic execution

In Listing 4.11, the main function uses another auxiliary function that by
contract requires an input value between 0 and 4; if the input is in-bounds,
it returns 0 and gives an output value between 0 and 99 according to some
external configuration, else it returns -1. The main function asks the user to
input a value between 0 and 6, and deals with values 5 and 6 according to some
static configuration. It is required to explore all the possible behaviours of the
user and to disregard those of the environment, i.e. those of the auxiliary
function, therefore the request for user input is substituted with a creation
of a symbolic value and the call to the auxiliary function is substituted with
a creation of symbolic values for its return value and output parameter, and
with the enforcement of its contract’s constraints.

1 i n t mask [5] = {24 , 65 , 93 , 82 , 37} ;
2 i n t f u n c t i o n (i n t ∗out , i n t i n) {
3 i f ((i n >= 0) && (i n < 5)) {
4 ∗ out = mask [i n] ;
5 return 0 ;
6 } e l s e return −1;
7 }
8 i n t main (void) {
9 i n t in , out , r e s ;

10 // s c a n f ("% i " , i n) ;
11 s2e_make_symbol ic(& in , s i z e o f (i n) , " i n ") ;
12 i f (i n == 5) out = 48 ;
13 e l s e i f (i n == 6) out = 71 ;
14 e l s e {
15 // r e s = f u n c t i o n (&out , i n) ;
16 s2e_make_symbol ic(&out , s i z e o f (out) , " out ") ;
17 s2e_make_symbol ic(& re s , s i z e o f (r e s) , " r e s ") ;
18 s2e_assume (((r e s == 0) && (out >= 0) && (out < 100))

| | (r e s < 0)) ;
19 i f (r e s < 0) out = −1;
20 }
21 return (out) ;
22 }

Listing 4.11. Local consistency.

• Over-approximate Consistency.
This model is similar to local consistency, the only difference is that the con-
straints imposed by the interface of the environment are completely discarded,
thus allowing paths of the unit that otherwise would not be explored, because
they would normally be infeasible. From the point of view of the system the
analysis is not consistent, but it is complete, since every behaviour of the
environment is allowed.

34

4.2 – S2E

With respect to the example in Listing 4.11, the only required modification
to enforce this model consists in the removal of the contract’s constraints, as
shown in Listing 4.12.

1 i n t main (void) {
2 i n t in , out , r e s ;
3 // s c a n f ("% i " , i n) ;
4 s2e_make_symbol ic(& in , s i z e o f (i n) , " i n ") ;
5 i f (i n == 5) out = 48 ;
6 e l s e i f (i n == 6) out = 71 ;
7 e l s e {
8 // r e s = f u n c t i o n (&out , i n) ;
9 s2e_make_symbol ic(&out , s i z e o f (out) , " out ") ;

10 s2e_make_symbol ic(& re s , s i z e o f (r e s) , " r e s ") ;
11 // s2e_assume (((r e s == 0) && (out >= 0) && (out <

100)) | | (r e s < 0)) ;
12 i f (r e s < 0) out = −1;
13 }
14 return (out) ;
15 }

Listing 4.12. Over-approximate consistency.

• CFG Consistency: This model is similar to the SC-SE model in the sense that
it exploits the same information to explore new paths, but it is not consis-
tent, since it explores also infeasible execution paths: both branches of every
conditional statement are explored, without checking their feasibility with a
constraint solver. Every explored path corresponds to some path in the unit’s
CFG. A use case for this model are dynamic code disassemblers.

4.2.2 Architecture
S2E is composed by a customized version of the QEMU virtual machine, a dynamic
binary translator (DBT), and uses the symbolic execution engine of KLEE. For each
guest instruction (i.e. of the system under test), the DBT before translation checks
if the operands are all concrete: if so, the instruction can be concretely executed
by the host CPU and is translated in its instruction set; otherwise the instruction
must be executed symbolically by the KLEE’s symbolic execution engine and is
translated in LLVM byte-code. Avoiding to feed all instructions to the symbolic
execution engine, as KLEE does, makes feasible to execute a whole system.

S2E implements a plug-in architecture, in which plug-ins listen for events created
by the S2E platform or by other plug-ins. Events are created by the platform when
an instruction is translated by the DBT or executed by the virtual machines, when
memory is accessed, when an interrupt is issued, when a state forks, etc... When

35

4 – Tools for symbolic execution

an execution path creates an event the listening plug-ins are able to access and
modify the corresponding state, which includes physical memory, registers, program
counter, PID of the current process, etc... Plug-ins are able to access also the global
state.

In order to instrument the source code of a program to be tested, S2E provides a
header file containing functions for creating symbolic values, concretizing symbolic
expressions, printing debug information, etc... These functions, that are meant to
be executed by the guest system, use custom op-codes which S2E interprets and
for which provides the actual implementation.

To solve the symbolic memory address problem, S2E identifies all the memory
pages that can possibly be referenced and passes all of them to the constraint solver.
In order for this solution to be efficient, the page size must be small, in the order
of hundreds of bytes; S2E allow the user to configure it.

36

Chapter 5

Tools for dynamic taint
analysis

As detailed in further chapters, a part of this work consisted in testing exhaustively
the compliance of a message gateway with its specifications, by means of dynamic
taint analysis. This requires precise taint propagation/deduction, thus the tools
used have been selected according to their capability to provide it. The TEMU[13]
and Taintgrind[14] tools propagate data-flow taints but not the control-flow taint,
thus they have been discarded. The DYTAN, DTA++ and KLEE-TAINT tools
enhance the dynamic part of the analysis with static analysis in order to propagate
the control-flow taint. Among these, only the last one was publicly available and
used. However, only multi-path DTA is virtually capable of precise taint deduction
and, since there were no publicly available tools using this approach, it has been
implemented on top of S2E.

5.1 KLEE-TAINT

KLEE-TAINT[5] is an extension of the KLEE tool that adds the capability of
performing Dynamic Taint Analysis. It extends the LLVM byte-code interpreter in
order to implement in a straightforward manner the taint propagation logic. Taints
are arrays of bits, combined (merged) by means of the bitwise OR operator. To
the best of the author’s knowledge, this is the only tool for dynamic taint analysis
that implement the source code instrumentation approach: it provides 2 functions,
klee_get_taint() and klee_set_taint(), that respectively mark as tainted and check
the taint value of a variable. The tool allows to choose among 3 taint propagation
modes: direct (data-flow tainting), indirect (data-flow and control-flow tainting)
and region-based (precise data-flow and control-flow tainting).

37

5 – Tools for dynamic taint analysis

• In direct flow mode, for each operation the taints of all the operands are merged
together in order to obtain the taint value of the result. If an assignment to
a variable depends on a tainted condition, the taint value of the variable does
not take into account the taint value of the condition: this means that this
mode introduces under-tainting. In Listing 5.1, when the content values of
variables a and b are summed, their taint values are merged into value 3.

1 i n t a = 1 ;
2 i n t b = 100 ;
3 i n t c = 0 ;
4 k l e e _ s e t _ t a i n t (1 , &a , s i z e o f (a)) ;
5 k l e e _ s e t _ t a i n t (2 , &b , s i z e o f (b)) ;
6 c = a + b ;
7 i n t t a i n t _ c = k l e e _ g e t _ t a i n t (&c , s i z e o f (c)) ;

Listing 5.1. Direct flow mode example.

• In indirect flow mode, when the condition of a conditional statement is depen-
dent on a tainted value, then the control flow is tainted by assigning to the
program counter the merging of the taint values of the involved variables. All
subsequent assignments to variables are merged with this taint value. Once
the PC is tainted, it cannot be untainted even if two branches converge to
common instructions, that are thus executed independently of the condition.
This means that this mode introduces over-tainting, but it can still be useful in
cases when a tainted PC is an error by itself, for example in cryptographic rou-
tines where data undergoing some elaboration must not be able to determine
the control flow. In Listing 5.2, the program counter takes the taint value of
variable a, which is then propagated to variable c. Therefore, the taint value
of c will be 1.

1 i n t a = 1 ;
2 i n t c = 0 ;
3 k l e e _ s e t _ t a i n t (1 , &a , s i z e o f (a)) ;
4 i f (a == 1) {
5 c = 1 ;
6 } e l s e {
7 c = 0 ;
8 }
9 i n t t a i n t _ c = k l e e _ g e t _ t a i n t (&c , s i z e o f (c)) ;

Listing 5.2. Indirect flow mode example.

• Region-based mode aims to achieve precise taint propagation: in order to do
so, when two branches of a conditional statement converge to instructions
that are executed independently of the condition, the control flow (i.e. the
program counter) is un-tainted. Specifically, the program counter is associated

38

5.1 – KLEE-TAINT

with a stack of taints: when executing a conditional statement the current PC
taint is pushed into the stack and merged with the taint of the condition,
in order to obtain a new PC taint to be used for all the assignments inside
the two branches; after exiting the selected branch the previous PC taint is
popped and restored as the current PC taint. In this way, variables assigned
independently of the condition are not over-tainted. In Listing 5.3, before
checking the condition in line 5, the current taint value of the PC, 0, is pushed
into a stack, then it is updated to the taint value of a, which is 1. This value
is propagated to variable b and then, when exiting the branch, it is discarded
and the previous value is pulled from the stack, therefore c will have taint
value 0.

1 i n t a = 1 ;
2 i n t b = 0 ;
3 i n t c = 0 ;
4 k l e e _ s e t _ t a i n t (1 , &a , s i z e o f (a)) ;
5 i f (a == 1) {
6 b = 2 ;
7 }
8 c = 3 ;
9 i n t t a i n t_b = k l e e _ g e t _ t a i n t (&b , s i z e o f (b)) ;

10 i n t t a i n t _ c = k l e e _ g e t _ t a i n t (&c , s i z e o f (c)) ;
Listing 5.3. Region-based mode example.

Before performing an analysis in region-based mode, KLEE-TAINT performs a
static analysis on the LLVM byte-code of the program under test in order to identify
its SESE (single-entry single-exit) regions[15], which are sequences of instructions
terminating with an instruction that alters the control flow and that have a single
entry point and a single exit point. These regions are connected together in a
control flow graph, and each of them is assigned a level, which is used to perform
push and pull operations on the stack of the PC’s taints: when the level increases
by one, the current taint is pushed into the stack, when it decreases by one, the
previous taint is pulled from the stack. A portion of C code consisting in if-then-else
statement preceded and followed by other instructions, like the one in Listing 5.4,
corresponds to at least 4 SESE regions connected to form a control flow graph like
the one in Figure 5.1 (for simplicity the C instructions are reported instead of the
LLVM ones): the instructions preceding the body of the conditional statement and
its condition are inside one region, the two blocks delimited by curly braces are
inside one region each of a superior level, and finally the instructions following the
body are inside a region of the same level as the first one. When taking one of the
branches of the conditional statement, the level increases thus the current PC taint
value is saved, when exiting one of the branches, it decreases thus the previous PC
taint is used and the taint of variables e and f is determined correctly.

39

5 – Tools for dynamic taint analysis

1 i n t a , b , c , d , e , f ;
2 . . .
3 b = 2 ∗ a ;
4 i f (c == 5) {
5 c = 6 ;
6 d = c + b ;
7 } e l s e {
8 c = 7 ;
9 d = c − b ;

10 }
11 e = a + d ;
12 f = c + e ;
13 . . .

Listing 5.4. Example of C code including an if-then-else statement.

Figure 5.1. Portion of the control flow graph corresponding to the code in Listing 5.4.

5.1.1 Limitations
Even when performing an analysis in region-based mode, KLEE-TAINT is not
capable of detecting all the information flows, as shown in Listing 5.5: the user is
asked to input a single character which is marked as tainted and used to index an
array; the indexed cell is set to 1, while all the other cells retain value 0; a for loop
is used to increment the value of variable b until it is equal to the value of a; the
taint value of b should be equal to the one of a, but it remains 0. The information
flow between a and b is indirect, because is not caused by a simple assignment, and
goes undetected, thus this is an example of under-tainting.

1 i n t v [2 5 6] = {0} ;

40

5.2 – Implementation of multi-path DTA

2 unsigned char a , b ;
3 s c a n f ("%c " , &a) ;
4 k l e e _ s e t _ t a i n t (1 , &a , s i z e o f (a)) ;
5 v [a] = 1 ;
6 f o r (b = 0 ; v [b] != 0 ; b++) ;
7 i n t t a i n t_b = k l e e _ g e t _ t a i n t (&b , s i z e o f (b)) ;

Listing 5.5. Example of information flow not detected by KLEE-TAINT.

KLEE-TAINT is incapable of detecting also other types of information flows, which
results in over-tainting, but this is a problem that affects also other similar tools and
has a common cause in all of them. Section 3.4 details this problem and proposes
a possible solution.

5.2 Implementation of multi-path DTA
The implementation of the algorithm for multi-path DTA proposed in [8] is not
publicly available. A new prototype has been developed on top of S2E as a plug-in.

On the guest side, two instrumentation functions, reported in Listing 5.6, were
added to the S2E header file: they allow to declare a generic array (or a variable,
as a particular case) respectively a taint source or a taint sink.

1 s t a t i c i n l i n e void s 2 e_ ta i n t_ sou r c e (void ∗ b u f f e r , s i z e _ t s i z e ,
const char ∗name) ;

2 s t a t i c i n l i n e void s 2 e _ t a i n t _ s i n k (void ∗ b u f f e r , s i z e _ t s i z e ,
const char ∗name) ;

Listing 5.6. S2E instrumentation functions for Multi-path DTA.

Sources and sinks need to be named: for the former, the only purpose is to be able
to print more detailed debug information; for the latter, names are necessary to
distinguish them, as explained in detail later. Taint values cannot be manipulated
directly like with the instrumentation functions provided by KLEE-TAINT for two
reasons. There are only two possible values, declaring an array as a source means
to assign to it the positive taint value. S2E provides the user with a debug console
and with a window for the guest’s standard output, which is shared among the
various execution paths and reset as soon as the corresponding path terminates.
Therefore it is convenient to print all the analysis data on the debug console rather
than on the standard outputs, making useless to have the taint values of the sinks
inside the guest.

On the host side, the implementation of the plug-in consists in a C++ class
that maintains a global state over all the execution states. This state consists in
a map with the correspondence between an identifier and a mapped value for each
taint sink: the former is a conjunction of the address, the size and the name of the
buffer used as sink, while the mapped value is a structure containing a flag stating

41

5 – Tools for dynamic taint analysis

if the sink is tainted or not and a dynamically allocated vector of bytes containing
a copy of the initial value of the taint buffer. The class provides a public function,
onCustomInstruction(), registered as a callback to be called each time an assembly
instruction with a custom op-code of the guest is executed. This function intercepts
two custom op-codes, one for each instrumentation function available to the guest,
and provides their actual implementations. The code for s2e_taint_source() is
fundamentally the same as s2e_make_symbolic(): it creates a symbolic buffer of
the required size and copies it in the specified memory cells. The only difference
consists in the more detailed information printed on the debug console. The code
for s2e_taint_sink() distinguishes among several cases depending on the provided
sink identifier. If the identifier is not found inside the map, it means that a new
taint sink has been declared and it is memorized. Then its initial content value is
examined: if it is constant (i.e. a concrete value or a constant symbolic expression),
then it is memorized together with the key and it is deduced that the sink is not
tainted so far, otherwise the taint status flag of the mapped flag is raised. If the
identifier is found inside the map and the taint status flag is low, then the current
content value is examined: it must be a constant and it must be equal to the initial
value; if one of these condition is not met, then the sink is tainted and the taint
status flag is raised. Finally, if the identifier is found and the taint status flag is
high, there are no operations to be performed, if a sink has already been proved
tainted, it cannot be untainted. Once the possibility that a taint can be propagated
to a sink has been proved, the analysis can be stopped, while to demonstrate that
it cannot propagate, it is necessary to run it to completion. The implementation
of this prototype is straightforward, as it only required slightly less than 300 lines
of codes, including comments. Nonetheless, its effectiveness has been successfully
verified on the test suite of KLEE-TAINT (which is the most advanced tool that was
publicly available due to its capability of propagating the control-flow taint) and
then on all the critical examples described before where the traditional approach
to DTA fails.

5.2.1 Execution consistency models
Since the proposed implementation of multi-path DTA is based on S2E, in order
to limit the intrinsic problems of symbolic execution it is possible to enforce one
of the consistency models, trading the feasibility of the analysis for the possibility
of incurring in over-tainting and/or under-tainting. To describe these effects, the
example in Listing 3.8 is considered again: the main function is part of the unit
and the auxiliary function is part of the environment; out of four paths, two pass
through the environment.

• If the SC-SE model is applied, then the analysis is precise. If the execution
engine is not capable of completing the analysis (i.e. to run all the execution
paths past the taint sink), due for example to loops or recursions that depend

42

5.2 – Implementation of multi-path DTA

on symbolic conditions and that must be quitted without fully exploring them,
there can be under-tainting, because not all the possible values of the taint
sink are taken into consideration. For instance, if the fourth path in Figure 3.4
is not fully explored due to early termination, it is not detected that the sink
y takes value 6, and considering only the other 3 paths where it takes always
value 3, it is wrongly deemed not tainted.

• If the SC-UE model is applied, there may be under-tainting: concretizing
parameter values before environment calls causes the loss of feasible paths,
and therefore of possible values of the taint sink. For instance, if the input
parameter c is concretized to value 5 before calling the environment function,
then the second path in Figure 3.4 is not explored, and the sink z is wrongly
deemed not tainted.

• If the LC and the OC models are applied, there may be over-tainting: sub-
stituting values returned by environment calls with under-constrained or un-
constrained symbolic values allows the taint sink to take values that otherwise
would be impossible. For instance, if the environment function is not called
and its output parameters x, y and z are substituted with unconstrained sym-
bolic values, then the sink x will be erroneously considered tainted.

43

44

Chapter 6

Use case

The use case selected for the testing methodologies described before is a central
messages gateway residing inside one of the ECUs of a car. CAN buses are used
to interconnect all the ECUs of the car and to interface with external diagnostic
devices; there are a total of 6 CAN buses, all of them are connected to the central
gateway ECU, some are reserved for the communication among the internal ECUs
and some for diagnostics, as shown in Figure 6.1.

Figure 6.1. Interconnections between the central gateway ECU and the others ECUs.

45

6 – Use case

The central gateway ECU provides two main functionalities: filtering and rout-
ing of CAN messages coming from and directed to internal ECUs depending on
their compliance with the specifications and their frequency of exchange, and al-
lowing the exchange of messages from and to external diagnostic devices only if
they complete an initial authentication phase. CAN messages are not encrypted
nor authenticated, cryptographic authentication is only used to verify the identity
of external diagnostic devices.

The gateway ECU features a quad core ARM-based processor, three of which
are general purpose cores and one is a HSM, a hardware-accelerated cryptographic
co-processor. Currently only one of the general purpose cores is used. The ECU
runs a real-time operating system, which performs scheduling of the tasks and
provides a hardware abstraction layer for interfacing with the CAN bus modules
and with the HSM core. The low-level interface between the host (the 3 general
purpose cores) and the HSM is implemented with RAM buffers and interrupts, as
shown in Figure 6.2: when an application task running on the host needs the HSM
to execute a cryptographic computation, it writes the necessary data on a RAM
input buffer, then it issues an HSM service request, which triggers an interrupt
service routine in the HSM, and then prosecutes with other computations, since
the request in non-blocking; the HSM reads the input data, executes the code of
the selected interrupt service routine, and writes back the output data in another
RAM output buffer; the application task on the host can verify the progress of the
operations on the HSM with a polling-based interface and it retrieves the results
once they are completed.

The firmware running on the ECU is organized into several modules whose in-
terconnections and interactions are illustrated in Figure 6.3. When a CAN message
is injected in one of the input channels, the CAN Interface module determines if
it is directed to an internal ECU (normal operation or diagnostic message) or it is
an authentication message. In the former case, it is redirected to the Communi-
cation module that invokes, depending on the message identifier, a callback of the
Content-based Message Filter and one of the Frequency Monitor; if the message
must be forwarded, the CAN Interface sends it back to the driver. In the latter
case, it is redirected to the CAN Transport Protocol and to the Diagnostic Pro-
tocol that delegates certificates validation and cryptographic computations to the
Certificate Manager.

6.1 CAN messages filtering and routing

6.1.1 Modules
The CAN Interface is the lowest level module: it is used both by the modules that
perform message filtering and by the modules that perform authenticated diagnostic
access. It is statically configured with a list that, for each allowed incoming message

46

6.1 – CAN messages filtering and routing

Figure 6.2. Interface between the host and the HSM.

type, includes the message identifier, the length code, from which CAN channel(s)
it is expected to be received, to which CAN channel(s) must be sent and which
upper level modules must read the payload before an eventual forwarding (message
filtering modules) or to perform authentication (authenticated diagnostic access
modules). This module therefore provides low level gateway functionalities, being
able to route packets, to filter out packets with an unknown identifier, with a wrong
size and/or coming from a wrong channel; it does not inspect in any way the payload
of the messages.

The Communication Module interfaces with the CAN Interface, with the Content-
based Message Filter and with the Frequency Monitor. It receives CAN messages

47

6 – Use case

Figure 6.3. Software modules and interactions of the ECU firmware.

from the CAN Interface and, according to their identifier, invokes the correspond-
ing callbacks with the appropriate parameters of the Content-based Message Filter
and/or the Frequency Monitor.

The Content-based Message Filter is a module that inspects the payload of the
messages and performs a white-list/black-list check. First, it checks if the incoming
message is of diagnostic type, in which case it lets the message pass, regardless
of its content, only if an authenticated diagnostic access was previously completed
successfully. If the message is of any other type, then its payload the signals in the
payload are isolated and checked individually. Each signal value must be inside a
specific range, which is specified statically in the module configuration, otherwise
the whole message is blocked.

48

6.2 – External diagnostic devices authentication

The Frequency Monitor is a module that checks how frequently a message di-
rected to other ECUs tries to pass through the gateway ECU. If that type of mes-
sage is configured to have an upper bound on the frequency, and if this frequency
is exceeded, the message is blocked and a procedure to log the anomaly is invoked.

6.2 External diagnostic devices authentication
Authentication of external diagnostic devices is divided in two phases: the first one
consists in the verification, by the gateway ECU, of the digital signature of a X.509
certificate provided by the external device; the second one consists in a challenge,
made by the gateway ECU, against the external device, which has to prove the
knowledge of the private key corresponding to the public key of the certificate. As
already mentioned, communication is done over CAN buses, whose frame payload
is limited to a maximum length of 8 bytes. A typical X.509 certificate is about
1000 bytes long, therefore a transport layer is necessary. The adopted standard for
the transport layer is ISO-TP[16], whose segment payload can be up to 4095 bytes
long. ISO-TP can use its own addressing in conjunction with the CAN identifier
(Extended Addressing), reserving the first byte of the frame payload for it, but this
operation mode is not used (Normal Addressing). As shown in Table 6.1, ISO-TP
defines four frame types, each identified by a code in the 4 most significant bits
of the first byte: single frame, whose payload contains the whole segment payload
(which can be up to 6 or 7 bytes long) and the segment payload length in the 4
least significant bits of the first byte; first frame, whose payload contains the first
part of the segment payload (that has a minimum of 7 or 8 bytes and a maximum
of 4095 bytes) and the segment payload length in 12 bits, starting from the 4 least
significant bits of the first byte and including the whole second byte; consecutive
frame, whose payload contains subsequent data of the segment payload and the
index of the segment in the 4 least significant bits of the first byte, which is thus
reset every 16 segments; control flow frame, sent by the receiver to acknowledge a
first frame, containing parameters for the transmission of further segments.

6.2.1 Modules
The CAN Transport Protocol module implements the ISO-TP standard for the
transport layer. It interfaces with the CAN Interface to send and receive CAN
messages, and with the Diagnostic Protocol, which uses it to execute the two-phase
authentication procedure.

The Diagnostic Protocol module implements the two-phases authentication pro-
cedure. It features two main procedures, each one corresponding to one of the two
phases, that are triggered by a specific message received by the CAN Transport
Protocol: the first one requires the HSM to verify the signature of a given X.509

49

6 – Use case

Byte 0:
bits 7..4

Byte 0:
bits 3..0

Byte 1 Byte 2 ...

Single
frame

0 Size (0..7) [Data 1] [Data 2] [Data 3]

First
frame

1 Size (8..4095) Data 1 Data 2

Consecu-
tive
frame

2 Index
(0..15)

[Data 1] [Data 2] [Data 3]

Flow
control
frame

3 Flow con-
trol flag

Block size Separation
time

Table 6.1. ISO-TP frame types and content.

certificate and to provide a cryptographic random number to be used as a chal-
lenge with the provider of the certificate, which has to prove the possession of the
corresponding private key; the second one verifies the result of the provided chal-
lenge and, if it is correct, it grants the forwarding of diagnostic messages. These
procedures are executed relying on the Host to HSM module.

The Host to HSM module and the HSM to Host module are two complementary
modules, the former runs on the host, the latter on the HSM. They both are
interfaces to the operating system’s driver for the HSM bridge: the former provides
functions to verify a X.509 certificate, to generate a cryptographic random number,
to verify the the result of a cryptographic challenge and to verify the status of these
requests; the latter listens to service requests and when one is issued it invokes the
corresponding function of the Certificate Manager module passing the received
parameters.

The Certificate Manager module is an application of the HSM core that imple-
ments the high level procedures for verification of X.509 certificates and verification
of the result of cryptographic challenges. To perform these tasks it relies on two
modules: the Cryptographic Manager and the X.509 Certificate Parser; the former
is a simple wrapper for the operating system’s driver for the cryptographic hardware
accelerator, it allows to verify the content of a certificate given the signature and
the RSA public key and to perform basic encryption and decryption of byte arrays
given a RSA public key. This module is statically configured with the certificates of
the authorities that emit allowed certificates. An incoming X.509 certificate is valid
if its binary encoding is correct, if its issuer is equivalent to the subject of one of
the statically configured certificates, if the signature is valid and if it is not expired.
The challenge-response authentication consists in sending a cryptographic random

50

6.2 – External diagnostic devices authentication

number to the external device, who encrypts it with the private key of the issuer
of the incoming X.509 certificate and sends back the result, and in decrypting this
result with the corresponding public key; if the result of the decryption is equal to
the number sent, then the external device is authenticated.

6.2.2 X.509 certificates parsing
Both the statically configured certificates and the incoming certificates are encoded
following the ITU-T X.690[17] standard, specifically according to the ASN.1 Dis-
tinguished Encoding Rules (DER) format. DER is a self-describing, self-limiting
TLV (type, length, value) format: each encoded element consists in identifier octets
(i.e. bytes), length octets and content octets, as shown in Table 6.2.

Identifier octets
(1+)

Length octets
(1+)

Value octets
(0+)

End-of-content
(not allowed in
DER format)

Table 6.2. High view of the X.690 encoding structure.

The first identifier octet consists in 2 bits for the tag class, that specify if the tag
number is an ASN.1 native type or dependant on the application or on the context,
1 bit that states if the content encodes directly the element value (primitive) or
contains more element encodings (constructed), 5 bits for the tag number, that
identifies an ASN.1 native type (e.g. boolean, integer, floating point number, bit
string, character string, set, sequence, ...) or another custom type. If the tag
number is 31, the real tag number is encoded in further octets because it cannot fit
in 5 bits (long form): in this case the following octets consist in 1 bit that states if
there are further identifier octets and 7 bits for (a part of) the tag number.

First octet Second octet Nth octet
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Tag
class

Prim. /
Constr.

Tag number
(0..30) N/A N/A

Long form
(31)

More
id
octets

Tag number
More
id
octets

Tag number

Table 6.3. Identifier encoding structure.

The first length octet consists in 1 bit that states if the length is in short form
or in long form: in the former case, the subsequent 7 bits define the number of
octets of the content (0 to 127); in the latter case, the subsequent 7 bits define the
number of further length octets (1 to 126, 127 is a reserved value, 0 corresponds to

51

6 – Use case

the indefinite form, which is not allowed for DER), that contain the actual content’s
length.

First octet Second octet Nth octet
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Def.
short
(0)

Num. value
octets (0..127) N/A N/A

Def.
long
(1)

Num. length
octets (1..126) Num. value octets

Table 6.4. Length encoding structure.

DER encoding of ASN.1 values is unambiguous: when a given data structure is
serialized, the obtained representation is unique. This feature is required when a
data structure needs to be digitally signed, which is the case of X.509 certificates, for
which DER is suitable and widely used. To achieve uniqueness of the representation,
DER prescribes to use the shortest possible length encoding, to use the primitive
encoding for bit strings, octet strings and restricted character strings, and to sort
the elements of a set according to the tag number.

Parsing a X.509 DER-encoded certificate is an operation that can theoretically
be subdivided in two distinct phases: generic de-serialization with syntax checking
and verification that the de-serialized structure corresponds to a certificate with
all the required fields. The X.509 Certificate Parser module intermixes these two
phases: for each certificate field, it decodes a portion of the encoded binary and
verifies that it corresponds to the expected field. This procedure, as described in
Chapter 9, is error prone but, in this context, it is the easiest approach. Decoding
and copying a generic DER-encoded ASN-1 type requires dynamic memory allo-
cation, because it is impossible to know a priori the length of the content, but
the operating system of this platform does not offer any support for it, thus only
static allocation is possible. It is not possible to dynamically construct a structure
where the presence and the size of fields corresponding to ASN-1 types depend
on the parsed binary, it is only possible to statically allocate a structure with the
required fields of a X.509 certificate, that contains pointers to the binary. From
this constraint comes the necessity to intermix the two phases.

52

Chapter 7

Template procedure of the
analysis

Before reporting the results of the analysis on the central gateway software, the
template procedure for an analysis based on symbolic execution, which includes
multi-path dynamic taint analysis, will be discussed.

Construction of the test harness

The test harness is made up of three main components, as depicted in Figure 7.1:
the software modules to be tested, which are unmodified with respect to the original
system, the main testing functions and the stub modules, which are optional.

Figure 7.1. Structure of a test harness.

53

7 – Template procedure of the analysis

In general, a software module provides a public interface composed by function
signatures and data structures, and uses the public interfaces of other modules.
The main function uses only the interface of the highest-level module, which is
the one on which the analysis is focused. The highest-level module may need the
functionalities offered by lower-level modules, which must either be included into
the test harness or substituted with stubs that implement their interface. The
reasons that lead to choose the former or the latter solution will be clarified later.

Main function of the test harness

The testing of a module can be done function-by-function or according to specific
procedures, depending on its design. The former approach is suitable for re-entrant
code, the latter when the code relies on global and/or static variables. For ex-
ample, if an interface offers a function to pass data to be elaborated and another
function that performs the actual elaboration, testing these functions singularly
would have little to no meaning, therefore the main testing function should call
them in the intended order. In the first case, the user-controlled inputs coincide
with the input parameters of the functions; in the second case, they are a subset
of the signature parameters, and must be identified according to the semantic of
the procedure. The UC-KLEE[18] tool (under-constrained KLEE) offers support
for function-by-function testing of modules with interfaces intended to be used ac-
cording to procedures, by implementing the so-called lazy initialization. When a
symbolic input pointer is dereferenced for the first time, the execution forks: in one
path, it is given a null value; in the other one, a new object of its type is allocated
and bound to it. The analysis of a function with this approach is under-constrained,
as the preconditions on the inputs are not enforced, thus it yields false positives,
but it is capable of exploring otherwise unreachable code due to path explosion.
UC-KLEE has not been used here since it was not publicly available.

Inputs and outputs

Before calling functions of the module under test, part of or all the user-controlled
inputs must be made symbolic. This choice mainly depends on the feasibility of
the analysis due to the path explosion problem: if the module’s logic is prone to
it, a possible approach is to maintain some of the inputs concrete or to constrain
them, in order to try to explore only one section at a time. This possibility will be
detailed later.
If requested for the kind of analysis performed, the outputs of a function/procedure
can be concretized and observed inside the test harness. It is possible to do the
same also for the inputs, but it is necessary to do it after the execution of a func-
tion/procedure and after the concretization of the outputs. This is due to the inner
working of the KLEE tool (and of the S2E tool, which relies on it): concretizing
a value stops path forking (a concrete value can trigger the execution of one and

54

7 – Template procedure of the analysis

only one branch of a conditional statement) and thus the exploration of all possible
behaviours (execution paths) of the code. KLEE does this automatically anyway
to generate test cases for the inputs that were made symbolic, but often the mixed
hexadecimal/ASCII printing format makes hard to interpret them manually.

Stubs

When a lower-level module causes unmanageable path explosion, too hard to solve
constraints and/or it relies on unavailable hardware, it is possible to substitute it
with a stub that implements its interface. A typical example of modules that need
to be stubbed so that the analysis yields meaningful results in a feasible time are
those that perform cryptographic computations. These stubs make no use of the
input parameters, while part or all of the output parameters and the return value
are made symbolic. These value are conceptually equivalent to the user-controlled
inputs in the main testing function, therefore they can be concretized and observed
inside the the test harness, with the same limitations described above. A stub
returns completely unconstrained values, it does not apply any of the constraints
derived from the logic of the modules they substitute, therefore the whole analysis is
under-constrained and may yield false negatives. When a supposed bug-triggering
concrete input value is found, it is necessary to verify that it actually is by rein-
serting the original module in place of its stub and running the function/procedure
under test with it.

Test cases replay

Once a test case has been generated, it is possible to replay it either with the
KLEE-REPLAY tool or by embedding it into the test harness. In the former case,
the test harness is compiled in LLVM and interpreted in the same environment
as KLEE. In the latter case, it is compiled in assembly and executed natively;
this requires to disable the instrumentation functions calls provided by KLEE and
usable only inside its environment, specifically to substitute all the function calls
that return symbolic values (i.e. klee_make_symbolic(), klee_range(), ...) with the
corresponding section of the test case, both in the main testing function and in the
stubs, if present. In case the test case triggers a bug, the former approach is suitable
for evidencing the "logical" aspect of the error, while the latter approach allows to
observe the effects of the error on the real platform. For example, a memory error
caused by a sequence of out-of-bounds accesses to an array is detected by KLEE at
the first wrong access and this behaviour is replicable with KLEE-REPLAY; the
same error may not be detected when the same source code is compiled in assembly
and executed in the real platform, or not immediately but only when the Nth wrong
access causes a segmentation fault or an exception.

55

7 – Template procedure of the analysis

Path explosion taming

As mentioned before, making all the user-controlled inputs symbolic and uncon-
strained is often a too naive approach, as it may easily lead to path explosion. If
the function/procedure expects as input an array with its relative size, it is possible
to address the problem by constraining the size. A typical situation that occurs
with variable sized arrays is a loop iterating on each element, which means that for
each integer value that the index can take (for example, from 0 to size minus one)
a new execution path is forked; the smaller the element and the larger the size,
the more paths are created. Furthermore, if the size is completely unconstrained,
it mismatches the actual size leading to false positive errors: the called has to
trust the caller for consistency between the size passed as parameter and the actual
one. By leaving the size concrete, this source of path forking and false positives
is removed and the analysis focuses on the content of the array. Making the size
symbolic and then constraining it so that it can take a range of values between
0 and the actual size, allows to avoid the false positives and to reduce the path
explosion. Another possibility, that does not exclude the previous one, consists in
constraining the content of the array: it is useful and often necessary when the
input undergoes elaborations, like decoding and parsing, in which the control flow
is heavily dependent on user-controlled data, and that thus are prone to path ex-
plosion. For example, if the array contains the binary encoding of a structure, it is
possible to make symbolic only part of the fields: this limits path forking and thus
the extension of the exploration, but it allows to reach quicker deeper paths, i.e. to
explore functions that parse only a particular field or all fields of a particular type,
triggering deep errors otherwise unreachable in a feasible time.

Influence of the inputs on the control flow

An important result of an analysis is the number of generated execution paths, since
it is capable of giving an insight about the influence of an input on the control flow.
If it is possible to run to completion an analysis (i.e. it terminates in a feasible
time) having made all inputs symbolic, then it is also possible to re-run it again
having made all but one inputs symbolic: if there is no difference between the two
numbers of obtained paths, then that input, regardless of its value, cannot alter the
control flow. Similarly, if only one input has been made symbolic and the number
of paths does not change, then that input cannot alter the control flow, given all
the concrete values of the other inputs.

Automation of the test harness creation

From the procedure template discussed above it is possible to deduce that generat-
ing a test harness for an analysis based on symbolic execution requires a significant
manual effort by the tester. This problem has been addressed and has lead to

56

7 – Template procedure of the analysis

the creation of the KLOVER[19] methodology and framework, capable of automat-
ically generating test harnesses that output unit-level tests with high structural
code coverage. KLOVER takes as input a source file and for each function under
test generates a test proxy, i.e. a function that wraps the function under test,
receives symbolic inputs from the main function of the test harness and performs
variables initialization in order to satisfy the preconditions. These preconditions
are automatically inferred, as much as possible, with a static analysis on the func-
tion under test and they often need to be manually tuned in order to achieve a
higher coverage and a lower false positives ratio. This approach simplifies the im-
plementation work (i.e. less code writing) for the tester but it does not diminish
the amount of conceptual work needed, since the path explosion and constraints
complexity problems are left unaddressed by the framework and must be dealt with
manually inside the test proxies.

57

58

Chapter 8

Analysis of CAN messages
filtering and routing

The analysis of the software modules involved in CANmessages filtering and routing
has been initially performed by means of symbolic execution. Since the obtained
results are yielded in a form that makes difficult and error-prone to compare them
with the specifications, the analysis has been repeated with dynamic taint analysis,
in order to further elaborate them automatically. For the second part, both the
traditional approach to DTA and the one based on symbolic execution have been
used, in order to compare the precision of the results.

8.1 Analysis with symbolic execution
Since the software of the central gateway under analysis is organized into layers with
increasing abstraction, the testing approach that initially seemed more appropriate
consisted in taking the highest level modules (i.e. the application modules), leaving
them untouched and stubbing the interface with the underneath modules.

8.1.1 Content-based Message Filter - Test harness
The first module to be put under analysis has been the Content-based Message
Filter: its interface, reported in Listing 8.1, consists in only one function that
takes as parameters the identifier of a CAN message and its payload, and returns
a boolean value, true if the message shall pass, false otherwise.

1 typedef enum {
2 LengthCode_0 = 0 ,
3 LengthCode_1 = 1 ,
4 LengthCode_2 = 2 ,
5 . . .

59

8 – Analysis of CAN messages filtering and routing

6 LengthCode_8 = 8 ,
7 LengthCode_12 = 9 ,
8 LengthCode_16 = 10 ,
9 . . .

10 LengthCode_64 = 15
11 } LengthCode_t ;
12 typedef s t ruc t {
13 void ∗ d a t a P o i n t e r ;
14 LengthCode_t l e n g t h ;
15 } MessagePayload_t ;
16 bool Conten tBasedMes sageF i l t e r_Func t i on (
17 unsigned i n t messageId ,
18 MessagePayload_t ∗ messagePay load) ;

Listing 8.1. Interface of the Content-based Message Filter.

Stubbing is not required for this module, because it does not use functionalities
offered by other modules; its public function is called by the Communication mod-
ule. The main function of the test harness, reported in Listing 8.2 creates symbolic
values for the message identifier, the payload length and the payload buffer. Since
the KLEE implementation of the malloc() system call cannot take a symbolic value
as the size parameter, the payload length must be priorly concretized so that it can
take all its allowed concrete values (i.e. it is required to switch from implicit to
explicit enumeration); this is feasible in this particular case because the payload
length is an enumeration with a very limited set of possible values.

1 i n t main (void) {
2 unsigned i n t msgId ;
3 void ∗ dataPt r ;
4 LengthCode_t l e n g t h ;
5 klee_make_symbol ic (&msgId , s i z e o f (msgId) , " msgId ") ;
6 klee_make_symbol ic (& l eng th , s i z e o f (l e n g t h) , " l e n g t h ") ;
7 i f (l e n g t h == LengthCode_1) l e n g t h = LengthCode_1 ;
8 e l s e i f (l e n g t h == LengthCode_2) l e n g t h = LengthCode_2 ;
9 . . .

10 e l s e i f (l e n g t h == LengthCode_8) l e n g t h = LengthCode_8 ;
11 . . .
12 e l s e i f (l e n g t h == LengthCode_64) l e n g t h = LengthCode_64 ;
13 e l s e l e n g t h = LengthCode_0 ;
14

15 i f (l e n g t h > 0) {
16 dataPt r = ma l l o c (l e n g t h) ;
17 klee_make_symbol ic (dataPtr , l eng th , " data ") ;
18 } e l s e {
19 dataPt r = NULL ;
20 }
21 MessagePayload_t pay load = {

60

8.1 – Analysis with symbolic execution

22 . d a t a P o i n t e r = dataPtr ,
23 . l e n g t h = l e n g t h } ;
24 bool r e t V a l = Conten tBasedMes sageF i l t e r_Func t i on (msgId ,

pay load) ;
25 return (i n t) r e t V a l ;
26 }

Listing 8.2. Main function of the test harness for the Content-based Message Filter.

With the test harness described above, it is possible to explore all the execution
paths of the message filter, except for the ones triggered by invalid payload length
codes (enumerations in C language are almost always implemented with integer
variables, that can take values not listed in the definition) and the ones triggered
by mismatches between the declared payload length code and the actual length of
the block allocated for payload data (again, due to the properties of the C language,
the called has to trust the caller).

8.1.2 Content-based Message Filter - Results
A portion of the result of the analysis is shown in Listing 8.3: for each execution
path there is a line containing a sample input message value that leads the exe-
cution along that path and a flag that states if the sample input message shall be
forwarded; for clarity of explanation, only the paths with message identifier 0x3b4
and length code 6 as path constraint are listed.

1 . . .
2 Forward = No ; msgId = 0 x000003b4 ; l e n g t h = 0 x00000006 ; data

= 0x 00 00 00 03 00 00 ;
3 Forward = No ; msgId = 0 x000003b4 ; l e n g t h = 0 x00000006 ; data

= 0x 00 00 00 0c 00 00 ;
4 Forward = No ; msgId = 0 x000003b4 ; l e n g t h = 0 x00000006 ; data

= 0x 00 00 00 30 00 00 ;
5 Forward = No ; msgId = 0 x000003b4 ; l e n g t h = 0 x00000006 ; data

= 0x 00 00 00 c0 00 00 ;
6 Forward = Yes ; msgId = 0 x000003b4 ; l e n g t h = 0 x00000006 ; data

= 0x 00 00 00 00 00 00 ;
7 . . .
8

9 KLEE : done : t o t a l i n s t r u c t i o n s = 1118377
10 KLEE : done : completed paths = 1424
11 KLEE : done : g ene r a t ed t e s t s = 1424

Listing 8.3. Test results for the Content-based Message Filter.

To interpret the result, it is useful to compare it to the configuration of the
same message, reported in Listing 8.4, which includes the identifier, the number

61

8 – Analysis of CAN messages filtering and routing

of signals inside the message and for each signal, the starting bit, the length, the
minimum and the maximum allowed values.

1 { 0x3B4 , 13 , {
2 {6 , 1 , 0x0 , 0x1 } , {24 , 2 , 0x0 , 0x2 } ,
3 {26 , 2 , 0x0 , 0x2 } , {28 , 2 , 0x0 , 0x2 } ,
4 {30 , 2 , 0x0 , 0x2 } , {32 , 2 , 0x0 , 0x3 } ,
5 {34 , 2 , 0x0 , 0x3 } , {36 , 1 , 0x0 , 0x1 } ,
6 {37 , 1 , 0x0 , 0x1 } , {38 , 1 , 0x0 , 0x1 } ,
7 {39 , 1 , 0x0 , 0x1 } , {40 , 4 , 0x0 , 0xF } ,
8 {44 , 4 , 0x0 , 0xF } , } , } ,

Listing 8.4. Configuration of message 0x3b4.

The second, third, fourth and fifth signals are represented on 2 bits, and their
value can vary between 0 and 2, so it is possible to have the value 3 which is not
allowed and causes the whole message to be blocked. The fifth sample message shall
be forwarded because all its signals have in-range values, while all the other sample
messages have at least one signal value out-of-range: it is possible to deduct that
signal values are checked sequentially and that as soon as an out-of-range value is
found, the checking procedure quits blocking the message.

Another portion of the result of the execution is shown in Listing 8.5:
1 . . .
2 Forward = Yes ; msgID = 0 x000003b4 ; l e n g t h = 0 x00000000 ; data

= 0x ;
3 Forward = Yes ; msgID = 0 x000003b4 ; l e n g t h = 0 x00000001 ; data

= 0x 00 ;
4 . . .
5 Forward = Yes ; msgID = 0 x000003b4 ; l e n g t h = 0 x00000030 ; data

= 0x 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 ;

6 . . .
7

8 KLEE : done : t o t a l i n s t r u c t i o n s = 1118377
9 KLEE : done : completed paths = 1424

10 KLEE : done : g ene r a t ed t e s t s = 1424

Listing 8.5. Test results for the Content-based Message Filter.

A message with identifier 0x3b4 must have a payload length of 6 bytes, but
messages with different lengths are not blocked, in particular shorter messages that
do not contain all the expected signals and that therefore cannot be checked com-
pletely. Furthermore, CAN messages have a maximum payload length of 8 bytes,
while this message filter analyses and can forward messages with longer payloads,
violating the standard. This does not imply that the code is bugged, but that this

62

8.1 – Analysis with symbolic execution

module relies on other modules for the correctness of its input parameters: specif-
ically, messages longer than 8 bytes shall be discarded at hardware level, while
messages whose payload length is different than the expected one given the mes-
sage identifier shall be discarded by a lower level software module.

The testing approach adopted so far is therefore too naive, because it does not
take into account the tight coupling among the software modules and requires
the tester to reason about it and to manually constrain the input parameters:
without this effort, the false positive ratio explodes and the obtained results are not
meaningful. A more effective approach consists in taking all the modules involved
in a specific functionality written by the application developers and stubbing the
interface with the operating system: this reduces the complexity and the amount
of constraints to be applied on input data by the tester, thus it reduces the false
positive ratio among the possible bugs.

8.1.3 Messages filtering/routing full stack - Test harness
In the specific case, all the modules involved in message filtering and routing were
selected, beginning with the Content-based Message Filter and ending with the
CAN Interface, that interfaces with a stub of the operating system’s driver for
the CAN hardware module. The constraints to be imposed on the input data
by the stub are derived only from the CAN standard specifications, not from the
architecture of the specific application, which therefore needs not to be studied
in detail by the tester. The CAN Interface module provides two public functions,
reported in Listing 8.6: the first one is meant to be called during the system boot-up
and performs an initialization of the module according to its static configuration,
setting in the driver the right number of CAN channels and the allowed message
identifiers for each channel; the second one is meant to be called in the context
of an Interrupt Service Routine triggered by an incoming message in the CAN
hardware module, it performs a check of the payload length (which must correspond
to the expected one given the message identifier) and passes the message to the
Communication or the CAN Transport Protocol module.

1 void CANIn t e r f a c e_ In i t (void) ;
2 void CANInte r face_Rece i ve (unsigned char ch an ne l I nd e x) ;

Listing 8.6. Public functions of the CAN Interface module.

The CAN hardware is organized in modules, nodes and message objects: each
module can have multiple nodes, that correspond to physical CAN channels, and
each node has an associated list of message objects, that describe the features of
the messages allowed to enter and exit the node, the most important of which is the
message identifier. In this application, the CANInterface_Init() function activates
2 modules, 4 nodes for the first module and 2 nodes for the second, for a total of

63

8 – Analysis of CAN messages filtering and routing

6 CAN channels, and creates a total of about two hundred message objects. To
do this, it uses the functions in Listing 8.7, which are provided by the operating
system’s CAN driver.

1 typedef s t ruc t {
2 unsigned i n t module Id ;
3 } CANDriver_ModuleConfig ;
4 void CANDr ive r_ in i tModu leConf ig (
5 CANDriver_ModuleConfig ∗ moduleConf ig) ;
6 typedef s t ruc t {
7 unsigned i n t module Id ;
8 } CANDriver_Module ;
9 CANDriver_Status CANDriver_in i tModule (

10 CANDriver_Module ∗module ,
11 const CANDriver_ModuleConfig ∗ moduleConf ig) ;
12 typedef s t ruc t {
13 unsigned i n t node Id ;
14 CANDriver_Module ∗module ;
15 } CANDriver_NodeConfig ;
16 void CANDr ive r_ in i tNodeConf ig (
17 CANDriver_NodeConfig ∗ nodeConf ig ,
18 const CANDriver_Module ∗module) ;
19 typedef s t ruc t {
20 unsigned i n t node Id ;
21 CANDriver_Module ∗module ;
22 } CANDriver_Node ;
23 CANDriver_Status CANDriver_in i tNode (
24 CANDriver_Node ∗node ,
25 const CANDriver_NodeConfig ∗ nodeConf ig) ;
26 typedef s t ruc t {
27 unsigned i n t msgObjId ;
28 CANDriver_Node ∗node ;
29 } CANDriver_MsgObjConfig ;
30 void CANDriver_in i tMsgObjConf ig (
31 CANDriver_MsgObjConfig ∗ msgObjConfig ,
32 const CANDriver_Node ∗node) ;
33 typedef s t ruc t {
34 unsigned i n t msgObjId ;
35 CANDriver_Node ∗node ;
36 } CANDriver_MsgObj ;
37 CANDriver_Status CANDriver_initMsgObj (
38 CANDriver_MsgObj ∗msgObj ,
39 const CANDriver_MsgObjConfig ∗ msgObjConf ig) ;

Listing 8.7. Functions provided by the CAN driver.

The initialization of modules, nodes, and message objects is implemented by

64

8.1 – Analysis with symbolic execution

function pairs: first, a configuration object is initialized with the first function,
then the CAN Interface sets some parameters (hardware details, identifiers, ...) in
the structure, then the actual initialization takes place with the second function,
and finally structures representing modules, nodes and message object are returned
to the CAN Interface, which has to save them because they are needed for sending
and receiving messages. The stub implements all these functions: it discards all
the low level hardware parameters and it retains from the configuration objects
the information needed to determine the number of the CAN channels and what
message identifiers are allowed through each channel. This information allows the
stub to discard some invalid packets; this is a necessary feature because this module
assumes that the real hardware and driver behave this way.

The functions in Listing 8.8 are provided by the CAN driver and used to send
and receive messages.

1 typedef s t ruc t {
2 unsigned i n t message Id ;
3 unsigned char data [8] ;
4 LengthCode_t l e n g t h ;
5 } CANDriver_Message ;
6 unsigned i n t CANDriver_getMessageId (void) ;
7 CANDriver_Status CANDriver_readMessage (
8 CANDriver_Message ∗msg ,
9 const CANDriver_MsgObj ∗msgObj) ;

10 CANDriver_Status CANDriver_sendMessage (
11 const CANDriver_Message ∗msg ,
12 const CANDriver_MsgObj ∗msgObj) ;

Listing 8.8. Functions provided by the CAN driver.

This module needs to include the message object corresponding to the message it
is willing to send or receive, in order to use the correct channel. Actually, the stub
implementation of these functions does not need the message object parameter,
as all the information needed to use the correct channel can be deduced from
the configuration information collected during the initialization phase. Therefore,
before reading an incoming message, this module needs to know its identifier, to
retrieve the correct message object. This task is accomplished by the CANDriver-
_getMessageId() function, that checks that the message identifier is among those
allowed for the channel, returning the message identifier if true, an error code
otherwise, that prevents this module from calling the CANDriver_readMessage()
function.

The stub provides another function, reported in Listing 8.9, intended to be used
in the main function of the test harness.

1 void CANDriver_Stub_TestMessage (
2 unsigned i n t moduleId ,
3 unsigned i n t nodeId ,

65

8 – Analysis of CAN messages filtering and routing

4 CANDriver_Message ∗ message) ;
Listing 8.9. Function provided by the CAN driver stub to the main
function of the test harness.

This function allows to send a single input CAN message to the desired channel,
and to print a log containing the eventual errors detected or a corresponding output
message. First, it checks that the payload length is between 0 and 8 bytes, so that
it does not violate the CAN specifications; then it determines the correct input
channel index given the module and the node ids and if the channel exists, it
passes it as parameter to the CANInterface_Receive() function, otherwise it logs
the error condition and quits.

The main function of the test harness, showed in Listing 8.10, creates symbolic
values for every input parameter. Unlike in the test harness for the Content-based
Message Filter, here the payload buffer is allocated statically with the maximum
length allowed by the CAN specifications.

1 i n t main (void)
2 {
3 unsigned i n t module Id ;
4 unsigned i n t node Id ;
5 unsigned i n t message Id ;
6 unsigned char data [8] ;
7 LengthCode_t l e n g t h ;
8 CANDriver_Message message ;
9

10 klee_make_symbol ic (&moduleId , s i z e o f (module Id) , " module Id ") ;
11 klee_make_symbol ic (&nodeId , s i z e o f (node Id) , " node Id ") ;
12 klee_make_symbol ic (&messageId , s i z e o f (message Id) , " message Id "

) ;
13 message . message Id = message Id ;
14 klee_make_symbol ic (& l eng th , s i z e o f (l e n g t h) , " l e n g t h ") ;
15 message . l e n g t h = l e n g t h ;
16 klee_make_symbol ic (data , s i z e o f (data) , " data ") ;
17 f o r (unsigned i ; i < 8 ; i ++) message . data [i] = data [i] ;
18

19 CANDriver_Stub_TestMessage (moduleId , nodeId , &message) ;
20 return 0 ;
21 }

Listing 8.10. Main function of the test harness.

This choice allows to avoid concretizing the payload length in order to be able to
perform dynamic memory allocation, and thus to explore the behaviours triggered
by invalid length codes (which should be detected by the test harness, as described
above); the drawback is that this code is not capable of detecting eventual buffer
overflows when the payload length is smaller than 8 bytes. Beside that, all the

66

8.1 – Analysis with symbolic execution

other possible execution paths through all the involved modules are explored.

8.1.4 Messages filtering/routing full stack - Results
A part of the result of the analysis is reported in Listing 8.11. As with the Content-
based Message Filter case, for ease of explanation only the messages with identifier
0x3b4 are reported. The log of each execution path contains the message and the
channel that drove the execution towards that path, while the subsequent lines
contain an error message if the message was rejected by the stub, or the content of
the read message if it was accepted, also with the content of the sent message if it
was forwarded.

1 TEST MESSAGE: ID : 0x3b4 ; Length code : −1; Data : 00 00 00 00 00
00 00 00 ; Module : 2 ; Node : 0 ;

2 Bad l e n g t h code .
3

4 TEST MESSAGE: ID : 0x3b4 ; Length code : 0 ; Data : 00 00 00 00 00 00
00 00 ; Module : 2 ; Node : 0 ;

5 Bad channe l .
6

7 TEST MESSAGE: ID : 0x3b4 ; Length code : 0 ; Data : 00 00 00 00 00 00
00 00 ; Module : 1 ; Node : 6 ;

8 Bad channe l .
9

10 TEST MESSAGE: ID : 0x3b4 ; Length code : 0 ; Data : 00 00 00 00 00 00
00 00 ; Module : 0 ; Node : 6 ;

11 Bad channe l .
12

13 TEST MESSAGE: ID : 0x3b4 ; Length code : 0 ; Data : 00 00 00 00 00 00
00 00 ; Module : 0 ; Node : 3 ;

14 Bad message ID , node ID or module a d d r e s s .
15

16 TEST MESSAGE: ID : 0x3b4 ; Length code : 0 ; Data : 00 00 00 00 00 00
00 00 ; Module : 0 ; Node : 2 ;

17 Bad message ID , node ID or module a d d r e s s .
18

19 TEST MESSAGE: ID : 0x3b4 ; Length code : 0 ; Data : 00 00 00 00 00 00
00 00 ; Module : 0 ; Node : 1 ;

20 Bad message ID , node ID or module a d d r e s s .
21

22 TEST MESSAGE: ID : 0x3b4 ; Length code : 0 ; Data : 00 00 00 00 00 00
00 00 ; Module : 0 ; Node : 0 ;

23 Bad message ID , node ID or module a d d r e s s .
24

25 TEST MESSAGE: ID : 0x3b4 ; Length code : 0 ; Data : 00 00 00 00 00 00
00 00 ; Module : 1 ; Node : 1 ;

67

8 – Analysis of CAN messages filtering and routing

26 Bad message ID , node ID or module a d d r e s s .
27

28 TEST MESSAGE: ID : 0x3b4 ; Length code : 6 ; Data : 00 00 00 03 00 00
00 00 ; Module : 1 ; Node : 0 ;

29 READ: ID : 0 x000003b4 ; Length code : 6 ; Data : 00 00 00 03 00 00 00
00 ;

30

31 TEST MESSAGE: ID : 0x3b4 ; Length code : 6 ; Data : 00 00 00 0c 00 00
00 00 ; Module : 1 ; Node : 0 ;

32 READ: ID : 0 x000003b4 ; Length code : 6 ; Data : 00 00 00 0c 00 00 00
00 ;

33

34 TEST MESSAGE: ID : 0x3b4 ; Length code : 6 ; Data : 00 00 00 30 00 00
00 00 ; Module : 1 ; Node : 0 ;

35 READ: ID : 0 x000003b4 ; Length code : 6 ; Data : 00 00 00 30 00 00 00
00 ;

36

37 TEST MESSAGE: ID : 0x3b4 ; Length code : 6 ; Data : 00 00 00 c0 00 00
00 00 ; Module : 1 ; Node : 0 ;

38 READ: ID : 0 x000003b4 ; Length code : 6 ; Data : 00 00 00 c0 00 00 00
00 ;

39

40 TEST MESSAGE: ID : 0x3b4 ; Length code : 0 ; Data : 00 00 00 00 00 00
00 00 ; Module : 1 ; Node : 0 ;

41 READ: ID : 0 x000003b4 ; Length code : 0 ; Data : 00 00 00 00 00 00 00
00 ;

42

43 TEST MESSAGE: ID : 0x3b4 ; Length code : 6 ; Data : 00 00 00 00 00 00
00 00 ; Module : 1 ; Node : 0 ;

44 READ: ID : 0x3b4 ; Length code : 6 ; Data : 00 00 00 00 00 00 00 00 ;
45 SEND: ID : 0x3b4 ; Length code : 6 ; Data : 00 00 00 00 00 00 00 00 ;

Module : 0 ; Node : 3 ;
46 . . .
47

48 KLEE : done : t o t a l i n s t r u c t i o n s = 2317405
49 KLEE : done : completed paths = 1103
50 KLEE : done : g ene r a t ed t e s t s = 1103

Listing 8.11. Results of the analysis of the complete stack of the message filter.

The 1st message was rejected because the length code is an example of out-
of-range value that violates the CAN specifications. The 2nd one has an invalid
module id, while the 3rd and the 4th an invalid node id, therefore the stub in not
able to find an existing input CAN channel. The messages from the 5th to the
9th were inserted in an existing channel, but none of them was allowed to accept a
message with that identifier, therefore we get an example for each of the 5 wrong

68

8.2 – Analysis with dynamic taint analysis

channels. The subsequent 4 messages were inserted in the correct channel, so the
CAN Interface module is capable of reading them, but they were not forwarded,
because their payloads contain signals with out-of-range values. The second-last
message has an incorrect length code, which was not detected by the stub but by
the CAN Interface module, which has in its static configuration the associations
between message identifier and length code. The last message was correctly read
and forwarded to another channel.

All the allowed and invalid messages were checked against the specifications of
the functionality of the modules involved in message filtering, and no incongruence
nor implementation errors were found by this analysis.

8.2 Analysis with dynamic taint analysis
A physical CAN channel can be seen as a conjunction of a logical input channel and
a logical output channel. With this in mind, dynamic taint analysis has been used
in this context to to track the information flow between input channels and output
channels: the purpose was to observe the influence on the output channels of a
certain message inserted in a certain input channel. To do this, the test harness
used for the analysis with symbolic execution has been adapted, and both the
prototype tool for Multi-path DTA and KLEE-TAINT were employed. The results
of this analysis are fundamentally equivalent to those reported in Subsection 8.1.4,
its advantage consists in the form in which the results are presented: the obtained
test cases are further elaborated in order to deduct the taint propagation, providing
a result easier to interpret and to compare with the specifications.

8.2.1 Multi-path DTA - Test harness
The stub of the CAN driver was modified in order to represent input and output
channels as arrays indexed by channel number and whose cells contain the message
they can carry, and to provide external access to the output channels, as reported
in Listing 8.12: sent messages are not logged and printed by the stub, because
they need to be examined in the main function of the test harness, before they
are concretized in order to be printed. Other minor modifications, like external
access to the input channels and the signature modification of the CANDriver-
_Stub_TestMessage(), were done only for simplification purpose and do not affect
the analysis.

1 CANDriver_Message ∗ CANDriver_Stub_GetInChannels (void) ;
2 CANDriver_Message ∗ CANDriver_Stub_GetOutChannels (void) ;
3 bool CANDriver_Stub_TestMessage (u i n t 8 i n C h a n n e l I d x) ;

Listing 8.12. Functions provided by the CAN driver stub to the main
function of the test harness.

69

8 – Analysis of CAN messages filtering and routing

The logic behind the main function of the test harness can be subdivided in
steps: the first one, shown in Listing 8.13, consists in defining a sample message
and the input channel. Having a sample message is not mandatory, but it allows to
focus the analysis: for example, it could be interesting to determine the influence
on the output channels only of a message with a certain identifier while the content
is free to variate, or of a message with a certain content.

1 #def ine IN_CHANNEL_IDX 4
2 #def ine MESSAGE_ID 0x3b4
3 //#d e f i n e MESSAGE_LENGTH_CODE LengthCode_6
4 //#d e f i n e MESSAGE_DATA_0 0x00
5 //#d e f i n e MESSAGE_DATA_1 0x00
6 . . .
7 //#d e f i n e MESSAGE_DATA_7 0x00
8

9 CANDriver_Message ∗ i nChanne l s = CANDriver_Stub_GetInChannels
() ;

10 CANDriver_Message ∗ outChanne l s =
CANDriver_Stub_GetOutChannels () ;

Listing 8.13. Main function of the test harness for analysis with multi-path DTA.

The second step consists in defining the taint source. In Listing 8.14, the whole
content of the selected channel is marked as tainted, which includes the message
identifier, the payload content and the payload length. The payload content has a
fixed size of 8 bytes and all of them are marked as tainted regardless of the length
code: the reason is the same that has brought to declare symbolic the whole payload
content in the main function of the test harness for symbolic execution.

1 char ta intSourceName [0 x100] ;
2 s p r i n t f (ta intSourceName , " I n channe l %u" , IN_CHANNEL_IDX) ;
3 s 2 e_ ta i n t_ sou r c e (& inChanne l s [IN_CHANNEL_IDX] , s i z e o f (

i nChanne l s [IN_CHANNEL_IDX]) , ta intSourceName) ;
Listing 8.14. Main function of the test harness for analysis with multi-path DTA.

The third step consists in defining policies on the taint source, which consists
in assigning concrete values or symbolic constrained values to parts of the taint
source. This step is optional. In Listing 8.15, since only the MESSAGE_ID macro
is defined, only the message identifier is forced to have a single value: the analysis
reports what output channels are influenced by a message with identifier 0x3b4
injected into input channel 4.

1 #i f d e f MESSAGE_ID
2 i nChanne l s [IN_CHANNEL_IDX] . i d = MESSAGE_ID ;
3 #end i f
4 #i f d e f MESSAGE_LENGTH_CODE
5 i nChanne l s [IN_CHANNEL_IDX] . l engthCode = MESSAGE_LENGTH_CODE;

70

8.2 – Analysis with dynamic taint analysis

6 #end i f
7 #i f d e f MESSAGE_DATA_0
8 i nChanne l s [IN_CHANNEL_IDX] . data [0] = MESSAGE_DATA_0;
9 #end i f

10 #i f d e f MESSAGE_DATA_1
11 i nChanne l s [IN_CHANNEL_IDX] . data [1] = MESSAGE_DATA_1;
12 #end i f
13 . . .
14 #i f d e f MESSAGE_DATA_7
15 i nChanne l s [IN_CHANNEL_IDX] . data [7] = MESSAGE_DATA_7;
16 #end i f

Listing 8.15. Main function of the test harness for analysis with multi-path DTA.

The fourth step consists in defining the taint sinks, after having run the proce-
dure under test. In Listing 8.16, all the output channels are defined as taint sinks,
since it has been decided to observe the influence of the input message on all of
them.

1 CANDriver_Stub_TestMessage (IN_CHANNEL_IDX) ;
2

3 char ta intS inkName [0 x100] ;
4 f o r (u i n t 16 i = 0 ; i < CANDRIVER_STUB_CHANNELS_MAX_NUM; i ++)

{
5 s p r i n t f (ta intS inkName , "Out channe l %u" , i) ;
6 s 2 e _ t a i n t _ s i n k (& outChanne l s [i] , s i z e o f (outChanne l s [i]) ,

ta intS inkName) ;
7 }

Listing 8.16. Main function of the test harness for analysis with multi-path DTA.

The last step consists in observing the content of all the channels and it is
optional. The purpose is to clarify why a certain output channel is tainted and
what messages cause this, which is equivalent to getting a test case with the test
harness described in Subsection 8.1.3. The code is omitted as it is trivial.

8.2.2 Multi-path DTA - Results
Part of the result of the analysis performed with the described test harness is
reported in Listing 8.17. Before the end of the execution of each state, the taint
status of all the declared taint sinks (i.e. the output channels) is observed. The
content of the channels is not reported for simplicity, as it is the same of the test
cases reported in Subsection 8.1.4.

1 [S t a t e 0] I n channe l 4 ’ ; Addr 0 x80610c0 ; S i z e 0x10 ;
2

3 [S t a t e 0] Out chn 0 : Addr 0 x8061100 ; S i z e 0x10 ; S ta tu s
NOT_TAINTED;

71

8 – Analysis of CAN messages filtering and routing

4 [S t a t e 0] Out chn 1 : Addr 0 x8061110 ; S i z e 0x10 ; S ta tu s
NOT_TAINTED;

5 [S t a t e 0] Out chn 2 : Addr 0 x8061120 ; S i z e 0x10 ; S ta tu s
NOT_TAINTED;

6 [S t a t e 0] Out chn 3 : Addr 0 x8061130 ; S i z e 0x10 ; S ta tu s
NOT_TAINTED;

7 [S t a t e 0] Out chn 4 : Addr 0 x8061140 ; S i z e 0x10 ; S ta tu s
NOT_TAINTED;

8 [S t a t e 0] Out chn 5 : Addr 0 x8061150 ; S i z e 0x10 ; S ta tu s
NOT_TAINTED;

9 . . .
10 [S t a t e 1] Out chn 0 : Addr 0 x8061100 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;
11 [S t a t e 1] Out chn 1 : Addr 0 x8061110 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;
12 [S t a t e 1] Out chn 2 : Addr 0 x8061120 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;
13 [S t a t e 1] Out chn 3 : Addr 0 x8061130 ; S i z e 0x10 ; S ta tu s TAINTED ;
14 [S t a t e 1] Out chn 4 : Addr 0 x8061140 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;
15 [S t a t e 1] Out chn 5 : Addr 0 x8061150 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;
16 . . .
17 [S t a t e 6] Out chn 0 : Addr 0 x8061100 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;
18 [S t a t e 6] Out chn 1 : Addr 0 x8061110 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;
19 [S t a t e 6] Out chn 2 : Addr 0 x8061120 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;
20 [S t a t e 6] Out chn 3 : Addr 0 x8061130 ; S i z e 0x10 ; S ta tu s TAINTED ;
21 [S t a t e 6] Out chn 4 : Addr 0 x8061140 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;
22 [S t a t e 6] Out chn 5 : Addr 0 x8061150 ; S i z e 0x10 ; S ta tu s

NOT_TAINTED;

Listing 8.17. Results of the analysis of the complete stack of the message
filter with multi-path DTA.

The Multi-path DTA tool observes that the contents of the taint sinks in states
0 and 1 are not equal, thus it changes the tainting status of output channel 3 to
tainted. At the end of the analysis only channel 3 results tainted: the tool has
exhaustively checked that a message with identifier 0x3b4 inserted into channel 4
can only influence channel 3, regardless of the size and the content of its payload.
This analysis has been repeated for all channels and unconstraining the message
identifier: again, the obtained results were coherent with the specifications for the
CAN message filtering and routing functionality.

72

8.2 – Analysis with dynamic taint analysis

The execution engine generates a total of 7 execution states, while the test har-
ness in Subsection 8.1.3 generated 15 states: this happens due to the fact that the
former test harness constrains the channel index to a single concrete value and due
to the difference between the interfaces of the stub for the CAN driver (respectively
Listing 8.12 and Listing 8.9). In the former, input channels are grouped into an
array of 6 elements and identified by means of an index (0 to 5). In the latter,
they are selected by means of a combination of a CAN module identifier (0 to 1)
and a CAN node identifier (0 to 5). Each module has its own nodes, but all the
nodes are uniquely identified. Specifying a node identifier is not really necessary,
but it allows a more exhaustive analysis, since it tests the capability of the CAN
Interface module to detect and discard invalid combinations. There are 9 possible
combinations of module and node identifiers, as shown in Figure 8.1: 6 of them
correspond to valid input channels, 2 are invalid because the module exist but the
node does not, 1 is invalid because the module does not exist (then the node is
not checked). The test harness in Subsection 8.1.3 explores all these combinations,
forking 9 paths, while the one in Subsection 8.2.1 only the one corresponding to
the provided concrete index, hence the difference of 8 execution paths.

Figure 8.1. Possible combinations of module and node identifiers.

8.2.3 Traditional DTA
The analysis described in Subsection 8.2.1 and in Subsection 8.2.2 has been repeated
with KLEE-TAINT, that implements the traditional approach to dynamic taint

73

8 – Analysis of CAN messages filtering and routing

analysis, in order to verify the improvement in effectiveness introduced by the
Multi-path approach. The test harness had to be adapted for interfacing with the
functions of KLEE-TAINT that allow to define taint sources and taint sinks. The
order of taint sources definition and taint source policies enforcement phases had
to be inverted with respect to the procedure described before: the reason of this is
that enforcing a policy consists in assigning a constant value to (a part of) a taint
source, which resets its taint value, therefore it is necessary first to assign a content
value, then to taint it. The tool has been configured to run first in direct mode
then in region-based mode in order to maximize the precision, but the results were
not affected. The printing format is similar to the one used in Subsection 8.2.2:
the input channel chosen as taint source is printed together with its taint value,
which has no analogous in multi-path DTA, all the output channels are printed with
their taint value in place of the taint status, which is assumed to be positive if the
taint value is different from 0. In addition, since no symbolic values are used, the
concrete values given to the input channels and those taken by the output channels
are reported, for ease of explanation.

Since the result of the analysis depends on the value of the taint source, for the
first step the input channel 4 was assigned a message that the gateway forwards to
the output channel 3, i.e. which has a message identifier allowed for that channel,
and payload size and content coherent with the identifier. As reported in List-
ing 8.18, KLEE-TAINT is able to propagate correctly the taint associated to input
channel 4 to output channel 3.

1 I n chn 4 : Addr 0 x2bf56d0 ; S i z e 0 x00000010 ; Ta in t 0 x00000001 ;
2 Out chn 0 : Addr 0 x2bf5690 ; S i z e 0 x00000010 ; Ta in t 0000000000;
3 Out chn 1 : Addr 0 x2bf56a0 ; S i z e 0 x00000010 ; Ta int 0000000000;
4 Out chn 2 : Addr 0 x2bf56b0 ; S i z e 0 x00000010 ; Ta int 0000000000;
5 Out chn 3 : Addr 0 x2bf56c0 ; S i z e 0 x00000010 ; Ta int 0 x00000001 ;
6 Out chn 4 : Addr 0 x2bf56d0 ; S i z e 0 x00000010 ; Ta int 0000000000;
7 Out chn 5 : Addr 0 x2bf56e0 ; S i z e 0 x00000010 ; Ta int 0000000000;
8 Out chn 0 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
9 Out chn 1 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
10 Out chn 2 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
11 Out chn 3 : i d = 0 x000003b4 ; l engthCode = 0006 ; data = 01 01 01

01 01 01 00 00 ;
12 Out chn 4 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
13 Out chn 5 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
14 I n chn 0 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00

00 00 00 00 ;

74

8.2 – Analysis with dynamic taint analysis

15 I n chn 1 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00
00 00 00 00 ;

16 I n chn 2 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00
00 00 00 00 ;

17 I n chn 3 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00
00 00 00 00 ;

18 I n chn 4 : i d = 0 x000003b4 ; l engthCode = 0006 ; data = 01 01 01 01
01 01 00 00 ;

19 I n chn 5 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00
00 00 00 00 ;

Listing 8.18. Results of the analysis of the complete stack of the message
filter with KLEE-TAINT.

The second step consisted in assigning the input channel 4 a message almost
identical to the one of the first step, the only difference being an out-of-range
value of one of the signals in the payload, which prevents the message from being
forwarded. In Listing 8.19, output channel 3 should be tainted with value 1, but
KLEE-TAINT does not determine its tainting status correctly: the tainting status
of a taint sink should not depend on a particular content of the taint source, if a
variation of the content of a taint source causes a variation of the content of a taint
sink, then the latter is tainted.

1 I n chn 4 : Addr 0 x2bf56d0 ; S i z e 0 x00000010 ; Ta in t 0 x00000001 ;
2 Out chn 0 : Addr 0 x2bfd410 ; S i z e 0 x00000010 ; Ta int 0000000000;
3 Out chn 1 : Addr 0 x2bfd420 ; S i z e 0 x00000010 ; Ta int 0000000000;
4 Out chn 2 : Addr 0 x2bfd430 ; S i z e 0 x00000010 ; Ta int 0000000000;
5 Out chn 3 : Addr 0 x2bfd440 ; S i z e 0 x00000010 ; Ta int 0000000000;
6 Out chn 4 : Addr 0 x2bfd450 ; S i z e 0 x00000010 ; Ta int 0000000000;
7 Out chn 5 : Addr 0 x2bfd460 ; S i z e 0 x00000010 ; Ta int 0000000000;
8 Out chn 0 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
9 Out chn 1 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
10 Out chn 2 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
11 Out chn 3 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
12 Out chn 4 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
13 Out chn 5 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
14 I n chn 0 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00

00 00 00 00 ;
15 I n chn 1 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00

00 00 00 00 ;

75

8 – Analysis of CAN messages filtering and routing

16 I n chn 2 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00
00 00 00 00 ;

17 I n chn 3 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00
00 00 00 00 ;

18 I n chn 4 : i d = 0 x000003b4 ; l engthCode = 0006 ; data = 01 01 01 c1
01 01 01 01 ;

19 I n chn 5 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00 00
00 00 00 00 ;
Listing 8.19. Results of the analysis of the complete stack of the message
filter with KLEE-TAINT.

8.2.4 Enhanced traditional DTA
Since KLEE-TAINT is capable of performing symbolic execution, it is possible to
use this feature to increment the precision of taint propagation. Considering the
same example of Subsection 8.2.3, it is sufficient to declare the payload content
symbolic instead of assigning it a constant value. The printing format is the same
used in Subsection 8.2.3, the only differences being the omission of information
related to non-involved channels and the fact that the content values of the channels
are not manually assigned but automatically generated by concretizing symbolic
expressions.

As shown in Listing 8.20, the tool now creates 5 execution states, triggered by
the logic of the Content-based Message Filter: the corresponding test cases are
equivalent to the ones reported in Subsection 8.1.2. These results are equivalent to
the ones in Subsection 8.2.2: in the last state the taint was propagated correctly,
which is sufficient to determine that output channel 3 is tainted.

1 I n chn 4 : Addr 0 x2bfd450 ; S i z e 0 x00000010 ; Ta in t 0 x00000001 ;
2

3 . . .
4 Out chn 3 : Addr 0 x2bfd440 ; S i z e 0 x00000010 ; Ta int 0000000000;
5 . . .
6 Out chn 3 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
7 . . .
8 I n chn 4 : i d = 0 x000003b4 ; l engthCode = 0006 ; data = 00 00 00 03

00 00 00 00 ;
9 . . .

10

11 . . .
12 Out chn 3 : Addr 0 x2bfd440 ; S i z e 0 x00000010 ; Ta int 0000000000;
13 . . .
14 Out chn 3 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;

76

8.2 – Analysis with dynamic taint analysis

15 . . .
16 I n chn 4 : i d = 0 x000003b4 ; l engthCode = 0006 ; data = 00 00 00 0c

00 00 00 00 ;
17 . . .
18

19 . . .
20 Out chn 3 : Addr 0 x2bfd440 ; S i z e 0 x00000010 ; Ta int 0000000000;
21 . . .
22 Out chn 3 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
23 . . .
24 I n chn 4 : i d = 0 x000003b4 ; l engthCode = 0006 ; data = 00 00 00 30

00 00 00 00 ;
25 . . .
26

27 . . .
28 Out chn 3 : Addr 0 x2bfd440 ; S i z e 0 x00000010 ; Ta int 0000000000;
29 . . .
30 Out chn 3 : i d = 0000000000; l engthCode = 0000 ; data = 00 00 00

00 00 00 00 00 ;
31 . . .
32 I n chn 4 : i d = 0 x000003b4 ; l engthCode = 0006 ; data = 00 00 00 c0

00 00 00 00 ;
33 . . .
34

35 . . .
36 Out chn 3 : Addr 0 x2bfd440 ; S i z e 0 x00000010 ; Ta int 0 x00000001 ;
37 . . .
38 Out chn 3 : i d = 0 x000003b4 ; l engthCode = 0006 ; data = 00 00 00

00 00 00 00 00 ;
39 . . .
40 I n chn 4 : i d = 0 x000003b4 ; l engthCode = 0006 ; data = 00 00 00 00

00 00 00 00 ;
41 . . .

Listing 8.20. Results of the analysis of the complete stack of the message filter
with KLEE-TAINT, using symbolic execution.

8.2.5 Enhanced traditional DTA - Limitations
It is important to underline that the results in Subsection 8.2.2 and in Subsec-
tion 8.2.4 are equivalent only in this particular case: in general, the traditional
taint propagation approach enhanced with symbolic execution does not achieve the
same taint precision level of multi-path DTA. It is possible to show this by analysing
the same example discussed in Section 3.4, reported in Listing 8.21, where the in-
strumentation code is omitted for simplicity.

77

8 – Analysis of CAN messages filtering and routing

1 i n t a ;
2 i n t b ;
3

4 /∗ Def i n e " a " as t a i n t s ou r c e ∗/
5

6 i f (a == 5) {
7 b = s q r t (256) ;
8 } e l s e {
9 b = pow (4 , 2) ;

10 }
11

12 /∗ Def i n e "b" as t a i n t s i n k ∗/
Listing 8.21. Example that causes traditional taint propagation enhanced
with symbolic execution to fail.

The multi-path DTA prototype correctly deduces that variable b is not tainted,
as shown in Listing 8.22, while KLEE-TAINT (with taint source a declared sym-
bolic) assigns the same taint value of the source to the sink in both execution paths,
as shown in Listing 8.23. The printing format of the results obtained with KLEE-
TAINT is here simplified: In taint is the taint value assigned to the source a, while
Out taint is the equivalent for the sink b; after the first line, one line is printed
for each execution state, containing the taint value of the sink and sample concrete
values for the source and the sink.

1 [S t a t e 0] Name = ’ a ’ ; Addres s = 0 xbfacb200 ; S i z e = 0x4 ;
2

3 [S t a t e 0] Name = ’b ’ ; Address = 0 xbfacb204 ; S i z e = 0x4 ; S t a tu s =
NOT_TAINTED;

4 [S t a t e 0] b = 16 ; a = 0 ;
5

6 [S t a t e 1] Name = ’b ’ ; Address = 0 xbfacb204 ; S i z e = 0x4 ; S t a tu s =
NOT_TAINTED;

7 [S t a t e 1] b = 16 ; a = 5 ;
Listing 8.22. Results of the analysis with multi-path DTA of the
example in Listing 8.21.

1 I n t a i n t = 1
2

3 Out t a i n t = 1 ; b = 16 ; a = 0 ;
4

5 Out t a i n t = 1 ; b = 16 ; a = 5 ;
Listing 8.23. Results of the analysis with KLEE-TAINT of the example
in Listing 8.21.

78

8.2 – Analysis with dynamic taint analysis

This result might lead to think that if the taint value of the sink is the same
across all execution paths, then the sink is to be considered not tainted, but it is
sufficient to slightly modify the example in Listing 8.21 to prove this wrong, as
shown in Listing 8.24.

1 i n t a ;
2 i n t b ;
3

4 /∗ Def i n e ’ a ’ as t a i n t s ou r c e ∗/
5

6 i f (a == 5) {
7 b = s q r t (256) ;
8 } e l s e i f (a == 4) {
9 b = pow (4 , 2) ;

10 } e l s e {
11 b = 3 ;
12 }
13

14 /∗ Def i n e ’ b ’ as t a i n t s i n k ∗/
Listing 8.24. Example that causes traditional taint propagation enhanced
with symbolic execution to fail.

Now the execution forks into 3 paths, in 2 of which the taint sink b contains the
value 16, and in the remaining one the value 3. The Multi-path DTA tool correctly
determines that the sink this time is tainted, as reported in Listing 8.25, while
KLEE-TAINT behaves as before, assigning the taint value of the source to the sink
in all execution paths, as reported in Listing 8.26.

1 [S t a t e 0] Name = ’ a ’ ; Addres s = 0 xbfa430c8 ; S i z e = 0x4 ;
2

3 [S t a t e 0] Name = ’b ’ ; Address = 0 xb fa430cc ; S i z e = 0x4 ; S ta tu s =
NOT_TAINTED;

4 [S t a t e 0] b = 3 ; a = 0 ;
5

6 [S t a t e 2] Name = ’b ’ ; Address = 0 xb fa430cc ; S i z e = 0x4 ; S ta tu s =
TAINTED ;

7 [S t a t e 2] b = 16 ; a = 4 ;
8

9 [S t a t e 1] Name = ’b ’ ; Address = 0 xb fa430cc ; S i z e = 0x4 ; S ta tu s =
TAINTED ;

10 [S t a t e 1] b = 16 ; a = 5 ;
Listing 8.25. Results of the analysis with multi-path DTA of the
example in Listing 8.24.

1 I n t a i n t = 1
2

79

8 – Analysis of CAN messages filtering and routing

3 Out t a i n t = 1 ; b = 3 ; a = 0 ;
4

5 Out t a i n t = 1 ; b = 16 ; a = 4 ;
6

7 Out t a i n t = 1 ; b = 16 ; a = 5 ;
Listing 8.26. Results of the analysis with KLEE-TAINT of the example
in Listing 8.24.

To conclude, nor the absolute taint values of a sink nor the differences among
them are sufficient to deduce its taint status, the differences among the content
values are.

80

Chapter 9

External diagnostic devices
authentication

Differently from the analysis described in Chapter 8, the main purpose of this one
is not to verify the compliance with detailed specifications, but to discover memory
errors. Since the authentication procedure requires the parsing of a public key cer-
tificate and the verification of its emitter, it naturally lent itself to an analysis based
on symbolic execution, because the control flow is heavily influenced by externally
injected data under the control of a potential attacker. While it is theoretically
possible to employ also dynamic taint analysis, it is practically infeasible: it would
be necessary to statically identify all the memory locations involved in the proce-
dure and declare everything else a taint sink, so that when an illegal access to the
memory is performed, the taint status of the non-involved locations becomes posi-
tive. Relying on the capabilities of LLVM and KLEE of identifying illegal accesses
requires a significantly inferior effort in designing and building the test harness.

The list of the vulnerabilities found with this analysis are listed and briefly
described in Table 9.1. Their detailed description, which includes, for each one of
them, the affected function and line, a bug-triggering certificate and the explanation
of the mechanism, is reported from Section 9.3 to Section 9.6.

9.1 Stub of the driver for the cryptographic ac-
celerator

As discussed in Section 6.2, external diagnostic devices authentication relies on
hardware-accelerated asymmetric cryptography. Since the hardware of the ECU
under test was not available, a possible solution could have been to use a publicly
available software implementation of the required functionalities, wrapped so that
its interface would have been the same of the operating system’s driver for the

81

9 – External diagnostic devices authentication

Affected module Description
1 X.509 Certificate Parser -

1st ver.
Integer elements are always assumed to
have at least one value byte.

2 X.509 Certificate Parser -
1st ver.

Multi-part tags are not parsed cor-
rectly.

3 X.509 Certificate Parser -
2nd ver.

The capability of parsing multi-part
tags is absent.

4 X.509 Certificate Parser -
2nd ver.

Certificate serial’s content is accessed
before checking its length.

5 X.509 Certificate Parser -
2nd ver.

Certificate version’s content is accessed
before checking its length. The version
may take invalid values.

6 X.509 Certificate Parser -
2nd ver.

The bytes after the first of long-form
lengths are not parsed correctly.

7 X.509 Certificate Parser -
2nd ver.

The first byte of long-form lengths is
not parsed correctly.

8 X.509 Certificate Parser -
2nd ver.

Access to non-existent tag encoding
byte.

9 X.509 Certificate Parser -
2nd ver.

Access to non-existent certificate ver-
sion bit-string.

10 X.509 Certificate Parser -
2nd ver.

Element’s hierarchy exceeds the maxi-
mum depth.

11 X.509 Certificate Parser -
2nd ver.

Certificate signature’s content is ac-
cessed before checking its length.

12 X.509 Certificate Parser -
2nd ver.

Signing algorithm and signed algorithm
sections have different lengths, but they
are compared regardless.

13 X.509 Certificate Parser -
2nd ver.

Out-of-bounds month value is used to
index an array.

14 X.509 Certificate Parser -
2nd ver.

Out-of-bounds month value is used to
index an array.

15 Certificate Manager - X.509
certificate validation

Certificate issuer’ length is not checked.
This allows a theoretical side-channel
attack.

Table 9.1. List of the vulnerabilities found in the procedure for external
diagnostic devices authentication.

cryptographic accelerator. However symbolic execution, and techniques based on
symbolic execution such as multi-path DTA, are unable to explore software modules

82

9.1 – Stub of the driver for the cryptographic accelerator

that generate too hard to solve constraints, specifically they are completely unsuit-
able for exploring cryptographic routines. In the example reported in Listing 9.1,
adapted from [20], in order to take the true branch of the if-then-else statement,
the symbolic execution engine has to verify its feasibility. To do so, it queries
the constraints solver, which has to invert a cryptographic hash function. Since
these functions are purposely designed to make it impossible in a feasible time, the
whole analysis gets stuck. Similar considerations apply to routines that perform
symmetrical and asymmetrical cryptography.

1 char b u f f e r [SIZE] ;
2 . . . // F i l l " b u f f e r " .
3 i f (0 x12345678 == sha1 (b u f f e r , SIZE) {
4 p r i n t f ("OK\n") ;
5 } e l s e {
6 p r i n t f ("NO\n") ;
7 }

Listing 9.1. Example of code using a cryptographic routine that generates
too hard to solve constraints. .

Therefore, the first step for building a test harness for the modules involved in
authentication has been to stub the aforementioned driver: the stub makes no use
of the input parameters, while each output parameter and the return value are
assigned completely unconstrained symbolic values. An alternative solution could
have been to substitute the driver with symbolic functions[20], that abstract the
original implementation with properties such as that decryption inverts decryp-
tion. However, the described stub is trivial to implement and, for this analysis, the
under-constraining that introduces does not affect the results.

The CryptoDriver_VerifyToBeSigned() function (Listing 9.2) validates the to-
be-signed section of a X.509 certificate: it takes as input parameters the exponent
and the modulo of the public key, the section, the signature and two flags, while
the only output parameter is the pointer to a result flag stating the validity of the
certificate. The implementation simply assigns an unconstrained symbolic value to
the result flag.

1 void CryptoDr i v e r_Ver i f yToBeS igned (
2 const unsigned char ∗ Exp , unsigned i n t ExpSize ,
3 const unsigned char ∗ Mod, unsigned i n t ModSize ,
4 unsigned char Ke y I sS t r i n g ,
5 const unsigned char ∗ Msg , unsigned i n t MsgSize ,
6 const unsigned char ∗ Sig , unsigned i n t S i gS i z e ,
7 unsigned char ∗ Resu l t ,
8 unsigned char Msg I sS t r i n g)
9 {

83

9 – External diagnostic devices authentication

10 klee_make_symbol ic (Resu l t , s i z e o f (∗ R e s u l t) , "
Ve r i f yToBeS igned_Resu l t ") ;

11 return ;
12 }

Listing 9.2. Function of the driver of the cryptographic accelerator used to verify
the to-be-signed section of a X.509 certificate.

CryptoDriver_DecryptRSABlock() (Listing 9.3) is the other function of the driver
needed by the authentication modules. It decrypts an RSA block and is used to
verify a challenge: it takes as input parameters the exponent and the modulo of
the public key, the encrypted block and two flags, while the output parameter is
the decrypted block and the return value signals errors like wrong sizes. The imple-
mentation returns an unconstrained return value and assigns the decrypted block
256 bytes of unconstrained symbolic data, which is the maximum block size of
RSA with a 2048 bit key. Such a large symbolic array does not cause problems to
the constraint solver for this particular analysis, since the decrypted block is only
compared for equality with the original random number, therefore the generated
constraints consist in one independent equality condition for each byte.

1 CryptoDr i ve r_Retu rnVa lue_t CryptoDr iver_DecryptRSABlock (
2 const unsigned char ∗ Exp , unsigned i n t ExpSize ,
3 const unsigned char ∗ Mod, unsigned i n t ModSize ,
4 u in t8_t K ey I sS t r i n g ,
5 const unsigned char ∗ Ciphe r I n , unsigned i n t

C i p h e r I n S i z e ,
6 unsigned char ∗ MsgOut , unsigned i n t ∗ MsgOutSize ,
7 u in t8_t Msg I sS t r i n g)
8 {
9 CryptoDr i ve r_Retu rnVa lue_t r e t u r n V a l u e ;

10 klee_make_symbol ic (MsgOut , s i z e o f (∗MsgOut) ∗ 256 , "
DecryptRSABlock_MsgOut ") ;

11 klee_make_symbol ic (& re tu rnVa lue , s i z e o f (r e t u r n V a l u e) , "
DecryptRSABlock_returnValue ") ;

12 return r e t u r n V a l u e ;
13 }

Listing 9.3. Function of the driver of the cryptographic accelerator used to
decrypt a RSA block.

Describing these choices with the terminology of S2E, the modules involved
in authentication take the role of the unit while the driver for the cryptographic
hardware accelerator takes the role of the environment, and the test harness im-
plements a form of Local or Over-approximate execution consistency model: the
output parameters and the return value of the functions above have no constraints
by interface contract. The main difference with respect to the definition of these
models is that the module under test is left untouched and the creation of symbolic

84

9.2 – Modules selection and main function of the test harness

data happens inside the environment, but this has no real effect on the analysis.

9.2 Modules selection and main function of the
test harness

The testing approach initially selected for the modules involved in authentication
is similar to the one used for the modules involved in message filtering, i.e. to stub
the driver for the CAN hardware module and inject a sequence of symbolic CAN
frames whose identifier is constrained to belong to a subset of identifiers that cause
the message to be redirected to the CAN Transport Protocol module by the CAN
Interface module. This requires no substantial modification of the test harness
for analysis with symbolic execution of the complete stack of the message filter.
However this rapidly proved to be completely infeasible. A CAN frame payload
directed to the CAN Transport protocol is interpreted as a ISO-TP segment, and
if the frame payload is completely symbolic then also the frame type, the message
length, and eventually the segment index are symbolic, and this is a source of path
explosion: for instance, after a consecutive frame containing part of a large message
could come another frame of any type, which could contain the subsequent segment
of the same message, a non-contiguous segment, an already received segment, a
single frame, the first frame of a new message or a subsequent frame of another
large message with a size that can take any value between 0 and 4096 bytes, and
in all these cases but the first, the current message has to be discarded. The
analysis remains thus stuck in the CAN Transport Protocol module, it is necessary
an infeasibly large amount of time to recompose a message able to reach a path
through all the other modules. This required a modification of the stub of the
driver for the CAN hardware module: CANDriver_Stub_TestTransportProtocol()
(Listing 9.4) is a function that takes as input parameter a (large) message packet
and sends a sequence of CAN messages to the CAN Interface module was added
to the interface, intended to be used in the main function of the test harness.
The function internally subdivides the message packet in a sequence of segments
according to the ISO-TP specifications, the segments being of single frame or multi
frame depending on the length of the message packet. Making symbolic only the
content of the message packet and/or its length makes symbolic only the payload
of the segments and/or its length in the first frame, allowing to reach quickly
execution paths of other modules and thus effectively taming the path explosion
problem, at the cost of not exploring exhaustively all the possible behaviours of the
CAN Transport Protocol module.

1 void CANDriver_Stub_TestTransportProtoco l (
2 unsigned i n t moduleId ,
3 unsigned i n t nodeId ,
4 unsigned i n t messageId ,

85

9 – External diagnostic devices authentication

5 unsigned char ∗ messagePacket ,
6 s i z e _ t messagePacketLength) ;

Listing 9.4. Function of the driver of the CAN hardware module used to bypass
the CAN Transport Protocol module.

However this simplification proved to be insufficient to explore even a single ex-
ecution path through the Diagnostic Protocol module. Manual exploration of the
code of the CAN Transport Protocol, in order to further constrain the input data
and thus simplify the analysis, was infeasible due to the fact that its code is mostly
auto-generated and not documented. The test harness could then directly inter-
face with the Diagnostic Protocol module, whose interface consists in 2 callbacks,
reported in Listing 9.5. As discussed in Section 6.2, these functions implement the
two-phases authentication procedure, but only at a high level: they delegate the
verification of the certificate and of the challenge, and the generation of a random
number to another module running on the HSM, thus they do no not directly elab-
orate any of their input and output parameters. In other words, they do not add
other relevant execution paths to those already generated by the modules they rely
on, in an analysis based on symbolic execution they are "transparent". The same
observation applies to the Host to HSM and HSM to Host modules, as their only
purpose is to pass requests and data buffers without elaborating them.

1 typedef DPM_GenericData_t unsigned char ;
2 unsigned char DPM_Callback_VerifyX509_and_GetRnd (
3 const DPM_GenericData_t ∗ c e r t i f i c a t e B u f f e r ,
4 DPM_GenericData_t ∗plainRandNum ,
5 DPM_ErrorCode_t ∗ e r r o rCode) ;
6 unsigned char DPM_Cal lback_Ver i fyCha l lenge (
7 const DPM_GenericData_t ∗encryptedRandNum) ;

Listing 9.5. Interface of the Diagnostic Protocol module.

The approach that has been finally adopted consists in two steps: first, to fo-
cus the analysis on both versions of the X.509 Certificate Parser, which performs a
"fine-grained" elaboration on its input parameters and thus it is suitable for analysis
based on symbolic execution; second, to extend the analysis to the whole Certificate
Manager and to the modules it relies on, i.e. the Certificate Parser (whose input
parameters become more constrained) and the Cryptographic Manager, which re-
lies on the stub described in Section 9.1. The interfaces of these two modules are
reported in Listing 9.6. The X509CertParser_Parse() function receives a X.509
certificate in ASN.1 DER binary format and fills a structure received as first pa-
rameter: the largest fields like public key and signature, and the fields with variable
length like issuer and subject are not copied into the structure, their offset and size
in the binary are recorded instead; this is due to the fact that the parsed certifi-
cate structure is meant to be allocated in the stack by the Certificate Manager

86

9.2 – Modules selection and main function of the test harness

module. The CertificateManager_SetCertificateContext() and CertificateManager-
_SetChallengeContext() functions allow to copy the data necessary for each of the
two authentication phases, while CertificateManager_Authenticate() executes the
specified phase and it is meant to be called immediately after each one of the pre-
vious two.

1 X509CertParse r_ErrorCode_t X509CertParse r_Parse (
2 X509Ce r tPa r s e r_X509Ce r t i f i c a t e_t ∗ p a r s e d C e r t i f i c a t e ,
3 const unsigned char ∗ c e r t i f i c a t e B u f f e r ,
4 const s i z e _ t c e r t i f i c a t e S i z e) ;
5

6 void C e r t i f i c a t e M a n a g e r _ S e t C e r t i f i c a t e C o n t e x t (
7 const unsigned char ∗ c e r t i f i c a t e B u f f e r ,
8 const s i z e _ t c e r t i f i c a t e S i z e ,
9 unsigned char ∗ r e s u l t F l a g) ;

10 void C e r t i f i c a t e M a n a g e r _ S e t C h a l l e n g e C o n t e x t (
11 const unsigned char ∗ encryptedRandNumBuffer ,
12 const s i z e _ t encryptedRandNumSize ,
13 const unsigned char ∗ pla inRandNumBuffer ,
14 const s i z e _ t plainRandNumSize ,
15 unsigned char ∗ r e s u l t F l a g) ;
16 void C e r t i f i c a t e M a n a g e r _ A u t h e n t i c a t e (
17 const unsigned char phaseNumber) ;

Listing 9.6. Interfaces of the X.509 Certificate Parser and Certificate
Manager modules.

For the first step, the main function of the test harness instantiates a certificate
structure and passes to the parsing function an unconstrained symbolic buffer with
a fixed size, as shown in Listing 9.7. The certificate length has been initially fixed
to 9 bytes, in order to focus the analysis on the sub-functions that parse the first
fields of a X.509 certificate, which are version and algorithm.

1 #def ine CERT_LEN
2 unsigned char c e r tBu f [CERT_LEN] ;
3

4 klee_make_symbol ic (ce r tBu f , CERT_LEN, " c e r tBu f ") ;
5

6 X509Ce r tPa r s e r_X509Ce r t i f i c a t e_t c e r t ;
7 X509CertParse r_ErrorCode_t e r r =
8 X509CertParse r_Parse (& ce r t , ce r tBu f , CERT_LEN) ;
9 . . .

Listing 9.7. Main function of the test harness for testing the X.509
Certificate Parser module.

87

9 – External diagnostic devices authentication

9.3 X.509 Certificate Parser - First version
1. The X509CertParser_ParseInt() function (Listing 9.8) parses elements of in-

teger type, copying their content to a C integer variable. In line 9, it checks
if the integer number is positive or negative by reading the most significant
bit of the first byte of the value, without verifying before that its length is at
least one byte: integer elements are assumed to always have a value. There-
fore, if the element to be parsed has length 0 and it is the last element in the
certificate buffer, the function attempts to read a memory location that is not
part of the binary of the certificate: in the best case it simply reads a casual
value and the whole parsing function terminates with an error condition for
other reasons, in the worst case it may cause a segmentation fault, depending
on the CPU architecture and on the operating system.

1 X509CertParse r_ErrorCode_t X509Ce r tPa r s e r_Par s e In t (
2 const X509CertParser_Token_t ∗ e lement ,
3 i n t ∗ v a l u e) {
4 unsigned char i s N e g a t i v e ;
5 const unsigned char ∗ data = element−>data ;
6 i f (e lement−>l e n g t h > s i z e o f (∗ v a l u e)) {
7 return ERRORCODE_ERROR_MEMORY;
8 }
9 i f (∗ data & 0x80) {

10 n e g a t i v e = TRUE;
11 ∗ v a l u e = ∗ data & 0x7F ;
12 } e l s e {
13 n e g a t i v e = FALSE ;
14 ∗ v a l u e = ∗ data ;
15 }
16 f o r (data += 1 ; data < element−>data + element−>l e n g t h ;

data++) {
17 ∗ v a l u e = (∗ v a l u e << 8) | ∗ data ;
18 }
19 i f (n e g a t i v e == TRUE) {
20 ∗ v a l u e = ∗ v a l u e ∗ −1;
21 }
22 return ERRORCODE_OK;
23 }
Listing 9.8. Function for parsing integer values: it accesses an element’s first
octet before checking its length.

When the certificate shown in Listing 9.9 is given as input, X509CertParser-
_ParseInt() causes an out-of-bounds memory error. The first element is a
sequence that includes all the fields of the certificate. The second element is
a sequence containing the to-be-signed section of the certificate. The third

88

9.3 – X.509 Certificate Parser - First version

element is the certificate version section, while the fourth element, containing
the actual value of the certificate version, is optional: if present, it specifies if
the X.509 certificate is version 2 or 3; otherwise, the certificate is assumed to
be version 1. Therefore, if the fourth element is present, it must have a value,
its absence should be detected and considered as an error condition.

1 unsigned char c e r t i f i c a t e B i n a r y [0 x8] = {
2 0x30 , // Type : u n i v e r s a l , c on s t r u c t ed , sequence ;
3 0x06 , // Length : d e f i n i t e sho r t , 6 o c t e t s v a l u e ;
4 0x30 , // T: u n i v e r s a l , c on s t r u c t ed , sequence ;
5 0x04 , // L : d e f i n i t e sho r t , 4 o c t e t s v a l u e ;
6 0xa0 , // T: con t e x t s p e c i f i c , c o n s t r u c t e d ;
7 0x02 , // L : d e f i n i t e sho r t , 2 o c t e t s v a l u e ;
8 0x02 , // T: u n i v e r s a l , p r i m i t i v e , i n t e g e r ;
9 0x00 // L : d e f i n i t e sho r t , 0 o c t e t s v a l u e

;
10 } ;

Listing 9.9. Certificate triggering Vulnerability 1: the fourth element is
assumed to always have a value.

2. The X509CertParser_Next() function (Listing 9.10) parses the tag and the
length of each element, filling the corresponding fields inside the token struc-
ture. Lines 12, 13 and 14 isolate the fields of the first octet of the tag encoding,
pointed by parser->current. Then, if the tag number is 31, the actual tag num-
ber is recomposed from the subsequent octets: the current tag is shifted left
by 7 bits, the 7 least significant bits of the current octet are attached to it,
the current pointer to the certificate buffer is incremented by 1 and finally
the most significant bit of the current octet is checked. The current pointer is
incremented (line 22) before checking the most significant bit (line 27), while
these two operations should be performed in reverse order.

1 X509CertParse r_ErrorCode_t X509CertParser_Next (
2 X509Cer tParse r_Parse r_t ∗ p a r s e r) {
3 #def ine INCREMENT_CURRENT do { \
4 pa r s e r −>c u r r e n t ++; \
5 i f (pa r s e r −>c u r r e n t >= pa r s e r −>p a r e n t s [p a r s e r −>depth

]) { \
6 return ERRORCODE_ERROR_INVALID ; \
7 } \
8 } whi le (0)
9 X509CertParser_Token_t ∗ token = pa r s e r −>token ;

10 . . .
11 Util_MemSet (token , 0 , s i z e o f (∗ token)) ;
12 token−>c l a s s = (((∗ pa r s e r −>c u r r e n t) & (3 << 6)) >> 6) ;
13 token−>i s P r i m i t i v e = (((∗ pa r s e r −>c u r r e n t) & (1 << 5)) ==

0) ;

89

9 – External diagnostic devices authentication

14 token−>tag = ∗ pa r s e r −>c u r r e n t & ((1 << 5) −1) ;
15 INCREMENT_CURRENT;
16 i f (token−>tag == 31) {
17 unsigned i n t b i t s = 0 ;
18 token−>tag = 0 ;
19 do {
20 token−>tag <<= 7 ;
21 token−>tag |= ∗ pa r s e r −>c u r r e n t & ((1 << 7) − 1) ;
22 INCREMENT_CURRENT;
23 b i t s += 7 ;
24 i f (b i t s > s i z e o f (token−>tag) ∗ 8) {
25 return ERRORCODE_ERROR_MEMORY;
26 }
27 } whi le (∗ pa r s e r −>c u r r e n t & 0x80) ;
28 }
29 . . .
Listing 9.10. Function for parsing tag and length of an element: the current
pointer is incremented before checking the "more" bit.

The certificate shown in Listing 9.11 is similar to the one in Listing 9.9, the
only difference consisting in the tag encoding of the third element, which is now
multi-part, because the tag number of the first octet is 31. X509CertParser-
_Next() considers the two following octets as part of this tag, despite the fact
that the first bit of the second octet is set to zero, thus the third octet is
actually part of the length encoding. More in detail, during the first iteration
of the do-while cycle, after the part of the tag number contained in the second
octet has been successfully read, the current pointer is incremented and the
most significant bit of the third octet is checked in place of the second. During
the second and last iteration, the most significant bit of the first octet of
the length encoding is checked instead of the third octet of the tag encoding.
The parser accepts this certificate as semantically equivalent to the one in
Listing 9.9, it triggers the same buffer overflow memory error in the same line
of code, while the error condition should be detected and cause a return with
error before the function that parses integer elements is called. This bug may
prevent valid certificates from being correctly parsed and validated and might
allow incorrectly encoded certificates to pass the parsing phase, but it does
not compromise in any way the signature verification.

1 unsigned char c e r t i f i c a t e B i n a r y [0 xA] = {
2 0x30 , // T: u n i v e r s a l , c on s t r u c t ed , sequence ;
3 0x08 , // L : d e f i n i t e sho r t , 8 o c t e t s v a l u e ;
4 0x30 , // T: u n i v e r s a l , c on s t r u c t ed , sequence ;
5 0x06 , // L : d e f i n i t e sho r t , 6 o c t e t s v a l u e ;
6 0 xbf , 0 x00 , 0 x80 , // T: contex t −s p e c i f i c ,

c on s t r u c t ed , non we l l −formed mul t i −pa r t tag ;

90

9.4 – X.509 Certificate Parser - Second version

7 0x02 , // L : d e f i n i t e sho r t , 2 o c t e t s
v a l u e ;

8 0x02 , // T: u n i v e r s a l , p r i m i t i v e , i n t e g e r ;
9 0x00 // L : d e f i n i t e sho r t , 0 o c t e t s v a l u e

;
10 } ;

Listing 9.11. Certificate triggering Vulnerability 2: the multi-part tag of the
third element is not well formed.

9.4 X.509 Certificate Parser - Second version
3. The second version of the certificate parser "addresses" the problem described

in Vulnerability 2 by removing the capability of recognizing multi-part tags,
as shown in Listing 9.12: the octets following the first of the tag encoding are
assumed to belong to the length encoding without any kind of check. This
implementation is not compliant with the X.690 DER encoding standard, it
causes a wrong interpretation and the rejection of all certificates using multi-
part tags.

1 . . .
2 Utils_MemSet (token , 0 , s i z e o f (∗ token)) ;
3 token−>c l a s s = (((∗ l e x e r −>c u r r e n t & 3<<6)) >> 6) ;
4 token−>i s _ p r i m i t i v e = (! ((∗ l e x e r −>c u r r e n t & 1<<5) >> 5)) ;
5 token−>type = (∗ l e x e r −>c u r r e n t & 31) ;
6 l e x e r −>c u r r e n t ++;
7 i f ((∗ l e x e r −>c u r r e n t & (1<<7)) != 0) {
8 unsigned i n t num_octets = (∗ l e x e r −>c u r r e n t & ((1<<7)−1))

;
9 token−>l e n g t h = 0 ;

10 f o r (unsigned i n t n = 0 ; n < num_octets ; n++) {
11 l e x e r −>c u r r e n t ++;
12 token−>l e n g t h = (token−>l e n g t h << 8) | (∗ l e x e r −>

c u r r e n t) ;
13 }
14 } e l s e {
15 token−>l e n g t h = ∗ l e x e r −>c u r r e n t & ((1<<7)−1) ;
16 }
17 l e x e r −>c u r r e n t ++;
18 . . .
Listing 9.12. Function for parsing tag and length of an element: the multi-part
tag recognition and parsing is not implemented.

The main design difference of the second version of the certificate parser with
respect to the first one consists in the error management: while the first version

91

9 – External diagnostic devices authentication

quits the whole procedure when an error condition is detected, the second one
performs a bitwise OR of the return values of all the sub-procedures, which take
value 0 if no errors occur and positive values as error codes. The purpose is to
make the execution time as constant as possible, and thus to harden timing-based
side-channel attacks whose aim is to leak implementation details. This design
choice is prone to the buffer overflow memory errors described afterwards, as each
sub-procedure does not repeat all the checks that were already performed by sub-
procedures previously executed.

4. The X509CertParser_ParseSerial() function (Listing 9.13) parses the certifi-
cate serial number, copying it into the dedicated field of the certificate struc-
ture. In line 7, it accesses the first value octet of the current element before
checking its length. If this element is empty and it is the last one in the cer-
tificate binary buffer, then data points to the first byte outside the buffer and
dereferencing it causes a reading buffer overflow.

1 s t a t i c X509CertParse r_ErrorCode_t X509Ce r tPa r s e r_Pa r s eSe r i a l
(

2 X 5 0 9 C e r t P a r s e r _ C e r t i f i c a t e _ t ∗ c e r t ,
3 X509Cer tParse r_Parse r_t ∗ p a r s e r) {
4 const X509CertParser_Element_t ∗ e l ement = pa r s e r −>

element ;
5 X509CertParse r_ErrorCode_t r e t _ v a l = X509_PARSER_OK ;
6 r e t _ v a l |= NOT(IS_INTEGER(e lement)) ;
7 i f ((e lement−>data [0] == NULL_U8) && (element−>l e n g t h ==

VAL_U32(9))) {
8 Utils_MemCpy (c e r t −>s e r i a l , &(e lement−>data [1]) ,

VAL_U32(8)) ;
9 } e l s e i f ((e lement−>data [0] != NULL_U8) && (element−>

l e n g t h == VAL_U32(8))) {
10 Utils_MemCpy (c e r t −>s e r i a l , e lement−>data , VAL_U32(8)

) ;
11 } e l s e {
12 r e t _ v a l = X509_PARSER_NOK;
13 }
14 return (r e t _ v a l) ;
15 }
Listing 9.13. Function for parsing the serial number: the value of the current
element is accessed without checking the length.

The certificate shown in Listing 9.14 is not well-formed, since the first element
should be a sequence containing the two main subsections, i.e. to-be-signed
and signature.

1 unsigned char c e r tBu f [0 x8] = {
2 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;

92

9.4 – X.509 Certificate Parser - Second version

3 0x06 , // L : d e f i n i t e sho r t , 6 o c t e t s v a l u e ;
4 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
5 0x04 , // L : d e f i n i t e sho r t , 4 o c t e t s v a l u e ;
6 0x20 , // T: u n i v e r s a l , c o n s t r u c t e d ;
7 0x02 , // L : d e f i n i t e sho r t , 2 o c t e t s v a l u e

;
8 0x60 , // T: a p p l i c a t i o n s p e c i f i c ,

c o n s t r u c t e d ;
9 0x00 // L : d e f i n i t e sho r t , 0 o c t e t s

v a l u e ;
10 } ;
Listing 9.14. Certificate triggering Vulnerability 4: the first element should be a
sequence and the fourth one is empty.

The main procedure detects this and keeps trace of the error condition, but
all the subsequent sub-procedures are executed anyway. The fourth element
is interpreted as the container of the certificate serial number: since its length
is 0, when X509CertParser_ParseSerial() tries to access the first value octet
it triggers the aforementioned memory error.

5. The X509CertParser_ParseVersion() function (Listing 9.15) parses the cer-
tificate version number from the current element, after having verified that its
tag encoding is context-specific and of invalid type. In line 10, it dereferences
a pointer to the first value octet, without priorly performing any check on its
length. Similarly to Vulnerability 4, if this pointer points to the first memory
cell after the end of the certificate buffer above, dereferencing it causes a buffer
overflow. Furthermore, the conditional statement in line 9 does not check if
the value encoding of the fourth element is primitive or constructed, thus not
preventing the execution of the true branch in the latter case. Another bug, in
line 10, this time visible from manual code analysis, is that the integer value
stating the certificate version is directly assigned to the corresponding field
into the parsed certificate structure: this field is an enumeration with a set of
3 allowed values, but it is actually allowed to take any integer value. How-
ever this causes no problems to the subsequent phases of the authentication
procedure, as the certificate version is not used.

1 s t a t i c X509CertParse r_ErrorCode_t
X509Ce r tPa r s e r_Par seVe r s i on (

2 X 5 0 9 C e r t P a r s e r _ C e r t i f i c a t e _ t ∗ c e r t ,
3 X509Cer tParse r_Parse r_t ∗ p a r s e r) {
4 const X509CertParser_Element_t ∗ e l ement = pa r s e r −>

element ;
5 X509CertParse r_ErrorCode_t r e t _ v a l = X509_PARSER_OK ;
6 i f (X509Ce r tPa r s e r_ I s (e lement , TAG_CLASS_CONTEXT,

TAG_TYPE_INVALID) == TRUE) {

93

9 – External diagnostic devices authentication

7 r e t _ v a l |= X509CertParser_Descend (p a r s e r) ;
8 r e t _ v a l |= X509CertParser_NextElement (p a r s e r) ;
9 i f (IS_INTEGER(e lement) == TRUE) {

10 c e r t −>v e r s i o n = ∗ e lement−>data ;
11 } e l s e {
12 r e t _ v a l |= X509_PARSER_NOK;
13 }
14 }
15 r e t _ v a l |= X509CertParser_Ascend (pa r s e r , VAL_U8(1)) ;
16 return (r e t _ v a l) ;
17 }

Listing 9.15. Function for parsing the certificate version: the content of
the fourth element is accessed without checking the length, the certificate
version can take any value.

The certificate shown in Listing 9.16 is not well-formed for three reasons:
the first element should be a sequence, the tag encoding of the fourth ele-
ment states that its value is at the same time universal, primitive and integer,
which is not an allowed native tag, and the fourth element, that specifies the
certificate version number, has no value.

1 unsigned char c e r tBu f [0 x8] = {
2 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
3 0x06 , // L : d e f i n i t e sho r t , 6 o c t e t s v a l u e ;
4 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
5 0x04 , // L : d e f i n i t e sho r t , 4 o c t e t s v a l u e ;
6 0xa0 , // T: con t e x t s p e c i f i c , c o n s t r u c t e d ;
7 0x02 , // L : d e f i n i t e sho r t , 2 o c t e t s v a l u e

;
8 0x22 , // T: u n i v e r s a l , c on s t r u c t ed ,

i n t e g e r ;
9 0x00 // L : d e f i n i t e sho r t , 0 o c t e t s

v a l u e ;
10 } ;

Listing 9.16. Certificate triggering Vulnerability 5: the first element should
be a sequence, the tag encoding of the fourth element is not allowed, the
certificate version has no value.

The parser detects and keeps trace of the first error condition, like with the
certificate in Listing 9.14. When X509CertParser_ParseVersion() parses the
fourth element, it does not recognize the second and third error conditions,
causing a memory error because of the latter.

6. The X509CertParser_NextElement() function (Listing 9.17) isolates an ele-
ment beginning from the octet pointed by the current pointer to the certifi-
cate buffer, it extracts its tag and value length, and it deducts its depth in the

94

9.4 – X.509 Certificate Parser - Second version

hierarchy of the elements.
1 X509CertParse r_ErrorCode_t X509CertParser_NextElement (
2 X509Cer tParse r_Parse r_t ∗ p a r s e r) {
3 X509CertParser_Element_t ∗ e l ement = pa r s e r −>element ;
4 . . .
5 pa r s e r −>c u r r e n t ++;
6 i f (CONTENT_IS_LONGFORM(∗ pa r s e r −>c u r r e n t) == TRUE) {
7 unsigned i n t num_octets = CONTENT_NUM_OF_OCTETS(∗

pa r s e r −>c u r r e n t) ;
8 e lement−>l e n g t h = NULL_U32 ;
9 f o r (unsigned i n t n = NULL_U32 ; n < num_octets ; n++)

{
10 pa r s e r −>c u r r e n t ++;
11 e lement−>l e n g t h = (element−>l e n g t h << VAL_U32(8)

) | (∗ pa r s e r −>c u r r e n t) ;
12 }
13 } e l s e {
14 e lement−>l e n g t h = ∗ pa r s e r −>c u r r e n t &

CONTENT_LENGTH_MASK;
15 }
16 . . .

Listing 9.17. Function for isolating an element and parsing its type and
length: the length encoding is accessed without performing any check on the
bounds of the certificate binary.

The main difference in the certificate shown in Listing 9.18 with respect to the
the ones in Listing 9.14 and in Listing 9.16 is the incoherent length encoding:
the value of the first element is correctly stated to be 6 octets long, while the
value lengths of the second and third elements are both wrong by one unit,
and the value length of the fourth element is in long form, which requires the
presence of another subsequent octet stating the actual value length. Further-
more, since long form is used, the value length must be at least 128 to comply
with the DER specifications, that prescribe to use the shortest possible length
encoding: this is another reason of incompatibility between the lengths of the
fourth elements and of the other elements. The parser does not detect the
aforementioned incoherence, but, as usual, only that the first element is not a
sequence.

1 unsigned char c e r tBu f [0 x8] = {
2 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
3 0x06 , // L : d e f i n i t e sho r t , 6 o c t e t s v a l u e ;
4 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
5 0x03 , // L : d e f i n i t e sho r t , 3 o c t e t s v a l u e ;
6 0x20 , // T: u n i v e r s a l , c o n s t r u c t e d ;
7 0x01 , // L : d e f i n i t e sho r t , 1 o c t e t v a l u e ;

95

9 – External diagnostic devices authentication

8 0x00 , // T: u n i v e r s a l , p r i m i t i v e ;
9 0x81 // L : d e f i n i t e long , 1 o c t e t

l e n g t h ;
10 } ;
Listing 9.18. Certificate triggering Vulnerability 6: wrong length encodings in
the second, third and fourth elements.

The fourth time X509CertParser_NextElement() is called, it tries to parse the
fourth element: since its length encoding is in long form, the true branch of the
conditional statement is executed; during the first iteration of the for cycle,
in line 11, it tries to access the first octet of the actual value length encoding,
which does not exist, and instead it dereferences a memory cell outside the
certificate buffer, causing a buffer overflow memory error. Since this function
has access to the parent element through the parser structure, it is possible
to prevent this out-of-bounds access by checking against the already parsed
length of its parent and deducing that the for loop must not be executed.

7. In the certificate shown in Listing 9.19, contrarily to all the previous ones,
the third element is primitive, thus it directly encodes a value, and the fourth
element is a child of the second one, not of the third. Furthermore, the fourth
element is not well-formed as the length encoding, which should always be
present even if equal to 0, is missing. The third element is not context-specific,
which means that X509CertParser_ParseVersion() does not interpret it as the
container for the fourth element (line 6), which should be an integer specifying
the certificate version, and thus X509CertParser_NextElement() is called 4
times.

1 unsigned char c e r tBu f [0 x8] = {
2 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
3 0x06 , // L : d e f i n i t e sho r t , 6 o c t e t s v a l u e ;
4 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
5 0x04 , // L : d e f i n i t e sho r t , 4 o c t e t s v a l u e ;
6 0x00 , // T: u n i v e r s a l , p r i m i t i v e ;
7 0x01 , // L : d e f i n i t e sho r t , 1 o c t e t v a l u e ;
8 0x00 ,
9 0x00 // T: u n i v e r s a l , p r i m i t i v e ;

10 } ;
Listing 9.19. Certificate triggering Vulnerability 7: wrong length
encodings in the fourth element.

The fourth time X509CertParser_NextElement() is called, it tries to parse
the fourth element: in line 6 of the function above, it tries to access the first
octet of the length encoding in order to determine if it is in long or short
form; since this octet does not exist, the current pointer actually points to a

96

9.4 – X.509 Certificate Parser - Second version

memory call outside the certificate buffer, triggering a buffer overflow memory
error. This situation can be avoided considering the value length of the parent
element, equal to 4, which allows to deduce that the last child element is not
well-formed.

8. Another portion of the X509CertParser_NextElement() function is reported
in Listing 9.20, that parses the tag encoding.

1 X509CertParse r_ErrorCode_t X509CertParser_NextElement (
2 X509Cer tParse r_Parse r_t ∗ p a r s e r) {
3 X509CertParser_Element_t ∗ e l ement = pa r s e r −>element ;
4 . . .
5 Utils_MemSet ((unsigned char ∗) e lement , NULL_U8 , s i z e o f

(∗ e l ement)) ;
6 e lement−>c l a s s = TAG_CLASS(∗ pa r s e r −>c u r r e n t) ;
7 e lement−>i s _ p r i m i t i v e = TAG_IS_PRIMITIVE(∗ pa r s e r −>

c u r r e n t) ;
8 e lement−>type = TAG_TYPE(∗ pa r s e r −>c u r r e n t) ;
9 pa r s e r −>c u r r e n t ++;

10 . . .
Listing 9.20. Function for isolating an element and parsing its type and
length: the tag encoding is accessed without performing any check on the
bounds of the certificate binary.

The certificate shown in Listing 9.21 is not well-formed because the first
two elements should be sequences and the fourth one should be an integer,
containing the certificate version. Differently from the certificates in List-
ing 9.18 and in Listing 9.19, the third element is context-specific, which means
that X509CertParser_ParseVersion() takes the true branch of the conditional
statement in line 6, thus X509CertParser_NextElement() is called 5 times in-
stead of 4.

1 unsigned char c e r tBu f [0 x8] = {
2 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
3 0x06 , // L : d e f i n i t e sho r t , 6 o c t e t s v a l u e ;
4 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
5 0x04 , // L : d e f i n i t e sho r t , 4 o c t e t s v a l u e ;
6 0xa0 , // T: con t e x t s p e c i f i c , c o n s t r u c t e d ;
7 0x02 , // L : d e f i n i t e sho r t , 2 o c t e t s v a l u e

;
8 0x60 , // T: a p p l i c a t i o n s p e c i f i c ,

c o n s t r u c t e d ;
9 0x00 // L : d e f i n i t e sho r t , 0 o c t e t s

v a l u e ;
10 } ;

97

9 – External diagnostic devices authentication

Listing 9.21. Certificate triggering Vulnerability 8: the first two elements should
be sequences and the fourth one an integer.

The fifth time X509CertParser_NextElement() is executed, it tries to parse a
non-existent fifth element: to determine the tag class (universal, application-
specific or context-specific) the current pointer, pointing to the first octet of
the tag encoding, needs to be dereferenced, but since it points to a memory
cell outside the certificate buffer, it causes a buffer overflow memory error.
Again, it is possible to avoid executing this portion of code by considering the
value length of the parent element, i.e. the fourth, which is 0.

9. The certificate shown in Listing 9.22 has incoherent value lengths in all its
elements: the first one should be 7, the second 5, the third 3, the fourth 1.
X509CertParser_NextElement() detects these error conditions since the first
time it is called to analyse the first element, but the procedure does not stop
regardless. The third element is not context-specific, thus X509CertParser-
_ParseVersion() deduces that the certificate version number is not specified
and the fourth element is interpreted as the certificate serial number.

1 unsigned char c e r tBu f [0 x9] = {
2 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
3 0x06 , // L : d e f i n i t e sho r t , 6 o c t e t s v a l u e ;
4 0x60 , // T: a p p l i c a t i o n s p e c i f i c , c o n s t r u c t e d ;
5 0x03 , // L : d e f i n i t e sho r t , 3 o c t e t s v a l u e ;
6 0x20 , // T: u n i v e r s a l , c o n s t r u c t e d ;
7 0x01 , // L : d e f i n i t e sho r t , 1 o c t e t v a l u e ;
8 0x60 , // T: a p p l i c a t i o n s p e c i f i c ,

c o n s t r u c t e d ;
9 0x08 , // L : d e f i n i t e sho r t , 8 o c t e t s

v a l u e ;
10 0x01 // T: u n i v e r s a l , p r i m i t i v e ,

boo l ean ;
11 } ;

Listing 9.22. Certificate triggering Vulnerability 9: all the value lengths
are incoherent.

X509CertParser_ParseSerial() operates on the fourth element, whose value
length must be 8 or 9. In this case, since the length is 8 and the value
of the first octet is different from 0, the true branch of the second condi-
tional statement is executed (line 10): the Utils_MemCpy() function tries
to copy 8 octets of data from the certificate buffer to the parsed certifi-
cate structure. But all these octets are outside the certificate buffer and
this causes a buffer overflow memory error. X509CertParser_ParseSerial()

98

9.4 – X.509 Certificate Parser - Second version

could theoretically avoid this situation by reasoning on the elements’ hier-
archy, since it has access to the parser structure, but this is a responsibil-
ity of X509CertParser_NextElement(), that has already detected the error:
X509CertParser_ParseSerial() trusts the parsed element structure filled by
X509CertParser_NextElement(), but has no access to its error condition flag.

Since no more bugs were automatically triggered with small buffers (in the or-
der of tens of bytes), the analysis stepped onwards with buffers that more closely
resemble in size real certificates (in the order of a thousand bytes).

10. The X509CertParser_UpdateDepth() function (Listing 9.23) operates on the
parser structure, which keeps the global status of the parser, and by consider-
ing the pointer to the first octet of the current element and an array containing
the pointers to all its ancestors, it adjusts the depth level field inside parser.
In order to index the ancestors array, the depth level field is used.

1 s t a t i c void X509CertParser_UpdateDepth (
2 X509Cer tParse r_Parse r_t ∗ p a r s e r) {
3 whi le ((pa r s e r −>c u r r e n t == pa r s e r −>p a r e n t s [p a r s e r −>depth

]) && (pa r s e r −>depth > 1)) {
4 pa r s e r −>depth −−;
5 }
6 }
Listing 9.23. Function for adjusting the depth level counter in the structure
containing the global status of the parser.

The certificate shown in Listing 9.24 is not well-formed for various reasons (e.g.
wrong value length in the first element, the second element is not a sequence,
...), but its most important aspect is that the elements’ hierarchy reaches a
depth of 11 levels, while the maximum allowed is 10.

1 unsigned char c e r tBu f [0 x400] = {
2 0x30 , // L e v e l 0
3 0x82 , 0 x04 , 0 x00 ,
4 0x60 , // L e v e l 1
5 0 x7f ,
6 0x60 , // L e v e l 2
7 0x7c ,
8 0x60 , // L e v e l 3
9 0x7a ,

10 0x60 , // L e v e l 4
11 0x77 ,
12 0x60 , // L e v e l 5
13 0x75 ,
14 0x20 , // L e v e l 6
15 0x68 ,

99

9 – External diagnostic devices authentication

16 . . .
17 0x20 , // L e v e l 7
18 0x00 ,
19 // empty
20 . . .
21 0xe0 , // L e v e l 7
22 0x01 ,
23 0x00 ,
24 0x20 , // L e v e l 7
25 0x06 ,
26 0x63 , // L e v e l 8
27 0x04 ,
28 0xa1 , // L e v e l

9
29 0x02 ,
30 0x72 , //

L e v e l 10
31 0x00 ,
32 // empty
33 0x20 , // L e v e l 7
34 0x20 ,
35 . . .
36 } ;
Listing 9.24. Certificate triggering Vulnerability 10: the elements’ hierarchy
reaches a depth of 11 levels.

X509CertParser_NextElement() is capable of detecting such a situation and
reporting an error condition, nonetheless X509CertParser_UpdateDepth() is
executed and when the certificate above reaches level 10, it performs an out-
of-bounds memory access, causing a buffer overflow. The described situation
could be easily avoided by priorly checking that the depth value is in-bounds,
or (more coherently with the design of the module) by controlling the error
codes yielded by previous calls to X509CertParser_NextElement().

Providing to the parser an unconstrained symbolic buffer with a size in the order
of a thousand bytes proved to be a source of path explosion: such a simplistic test
harness was not able to automatically trigger other bugs besides Vulnerability 10 in
a reasonable amount of time, which was assumed to be in the order of tens of hours.
The bugs described above affect functions called in the first steps of the parsing
procedure, that parse fields which appear first in a X.509 certificate, such as the
version and the serial. In order to attempt to trigger bugs in functions called in
following phases of the parsing procedure, the adopted approach consisted in taking
a well-formed certificate (with coherent DER encoding and with all the required
fields) and make symbolic only specific parts of it. Since the type of errors that

100

9.4 – X.509 Certificate Parser - Second version

most likely were expected to be found were buffer overflows, only one element of
the buffer at a time was made symbolic, specifically the last one, since if a pointer
goes out of the bounds by one byte of an element in the middle of the buffer, it still
points to a memory cell inside the buffer, thus it does not trigger a memory error.

11. The signature section of a X.509 certificate may optionally begin with a padding
byte, which if present is always set to zero and must be removed in order to iso-
late the the signature value. The X509CertParser_RemovePadding() function
(Listing 9.25) performs this task.

1 s t a t i c void X509CertParser_RemovePadding (
2 X509CertParser_Element_t ∗ e lement_in ,
3 X509CertParser_Element_t ∗ e lement_out) {
4 i f ((e lement_in−>data [0] == NULL_U8) && ((e lement_in−>

l e n g t h % VAL_U32(256)) == VAL_U32(1))) {
5 element_out−>data = &(e lement_in−>data [1]) ;
6 element_out−>l e n g t h = element_in−>l e n g t h − VAL_U32

(1) ;
7 } e l s e {
8 ∗ e lement_out = ∗ e l ement_ in ;
9 }

10 }
Listing 9.25. Function for removing the optional first padding byte.

A 953 bytes long certificate buffer was uses as a starting point for this part of
the analysis. The first step consisted in making symbolic the last element, con-
taining the whole signature section, but no bugs were triggered. The second
step consisted in removing the signature section (made of 256 bytes of signa-
ture and 5 bytes of meta-data) and making symbolic one by one the elements
containing the fields belonging to the signing algorithm section: making sym-
bolic the container element of the signing algorithm section allowed to trigger
a bug previously unreachable in a feasible time. The most significant parts of
the bug-triggering certificate is shown in Listing 9.26: the symbolic execution
engine reduced the size of the signing algorithm section by 2 bytes, making
room for a signature section with no content.

1 unsigned char c e r tBu f [6 9 2] = {
2 0x30 , // Main c o n t a i n e r
3 0x82 , 0 x02 , 0 xB0 , // 688 by t e s
4 0x30 , // Con ta i n e r o f to−be−s i g n e d s e c t i o n
5 0x82 , 0 x02 , 0 x6D , // 621 by t e s
6 . . .
7 0x30 , // Con ta i n e r o f s i g n i n g a l g o r i t h m

s e c t i o n
8 0x3B , // 59 by t e s

101

9 – External diagnostic devices authentication

9 . . .
10 0x03 , // Fake s i g n a t u r e s e c t i o n
11 0x00
12 } ;
Listing 9.26. Certificate triggering Vulnerability 11: a signature section with no
content was automatically generated.

X509CertParser_RemovePadding(), in line 4, tries to access a non-existent
first value octet of the element without priorly checking the value length,
which was coherently set to 0 by X509CertParser_NextElement(), that filled
the structure here received as first parameter. Since this functions tries to
access a memory cell outside the certificate buffer, it causes a buffer overflow
memory error. The simplest possible solution to prevent this out-of-bound
access is to modify the condition of the if-then-else statement in line 4 so that
the value length is checked before dereferencing the pointer to the value.

12. The parser checks that the container of the signing algorithm is identical to the
container of the signed algorithm, which is a sub-section of the to-be-signed
section. This task is carried out by the X509CertParser_EquateElement()
function (Listing 9.27), that first checks the equivalence of the meta-data and
then delegates the comparison of the value buffer to the Utils_MemCmp()
function, whose implementation returns immediately with a false value if it
encounters two different bytes before the end of the buffers specified by the
length parameter.

1 unsigned char X509CertParser_EquateElement (
2 const X509CertParser_Element_t ∗a ,
3 const X509CertParser_Element_t ∗b) {
4 return (a−>l e n g t h == b−>l e n g t h) &&
5 (a−>c l a s s == b−>c l a s s) &&
6 (a−>type == b−>type) &&
7 (a−>i s _ p r i m i t i v e == b−>i s _ p r i m i t i v e) &&
8 (Utils_MemCmp ((const unsigned char ∗) a−>data , (

const unsigned char ∗) b−>data , a−>l e n g t h) == TRUE) ;
9 }

Listing 9.27. Function for comparing two elements, here used for the
signing algorithm section.

In the certificate shown in Listing 9.26 the length encoding in the parents of
the removed elements were adjusted: since the signature section is 261 bytes
long, the length encoding of the main container was reduced from 949 to 688
bytes. The purpose was to trigger deeper bugs in the code: if a length en-
coding is wrong and/or incoherent with other length encodings, most likely
this would trigger already discovered bugs in functions that isolate elements

102

9.4 – X.509 Certificate Parser - Second version

and parse their tag and length, rather than in functions used do parse specific
fields, executed later. However, omitting these adjustments can simulate the
effect of an incompletely received valid certificate, which may be interesting as
well. The certificate shown in Listing 9.28 has been obtained by removing the
signature section and the last two elements of the signing algorithm section
from the original certificate, without adjusting any of the length encodings
of the parent elements, but adjusting the size of the buffer in order to max-
imize the probability of finding buffer overflows related to the parsing of the
last element’s content. Then, the whole signing algorithm section was made
symbolic.

1 unsigned char c e r tBu f [953 − 261 − 5] = {
2 0x30 , // Main c o n t a i n e r
3 0x82 , 0 x03 , 0 xB5 , // Not a d j u s t e d l e n g t h
4 0x30 , // Con ta i n e r o f the to−be−s i g n e d s e c t i o n
5 0x82 , 0 x02 , 0 x6D , // Not a d j u s t e d l e n g t h
6 . . .
7 0x30 , // Con ta i n e r o f the s i g n i n g a l g o r i t h m

s e c t i o n
8 0x3D , // Not a d j u s t e d l e n g t h
9 0x06 ,

10 0x09 ,
11 . . .
12 0x30 ,
13 0x30 , // Not a d j u s t e d l e n g t h
14 0xA0 ,
15 0x0D ,
16 . . .
17 0xA1 ,
18 0x1A ,
19 . . .
20 } ;
21 // 0xA2 , // Element removed from the

s i g n i n g a l g o r i t h m s e c t i o n
22 // 0x03 ,
23 // 0x02 ,
24 // 0x01 ,
25 // 0x20
Listing 9.28. Certificate triggering Vulnerability 12: the signing algorithm section
is incomplete and the lengths were not adjusted accordingly.

Utils_MemCmp() receives as first parameter an element with a wrong length,
5 bytes more than the ones actually contained in the buffer starting from the
signing algorithm section, therefore when trying to access the first one of these
it causes a buffer overflow. The signing algorithm container element created

103

9 – External diagnostic devices authentication

by the symbolic execution engine in order to trigger this bug is identical to
the signed algorithm element, in order to avoid that Utils_MemCmp() returns
before having reached the first byte outside the buffer. Both X509CertParser-
_EquateElement() and Utils_MemCmp() have to assume that the elements
received as parameters are correct. A possible solution to avoid such a situation
is to add a parameter to X509CertParser_EquateElement() that allows to
observe the return status of X509CertParser_NextElement(), that is capable
of identifying and reporting this error, in order to decide whether or not to
invoke Utils_MemCmp().

13. For a X.509 certificate to be considered valid it is necessary that the cur-
rent time-stamp is in between the valid-not-before and valid-not-after time-
stamps. The corresponding elements have both 0x17 as tag number, which
states that the value is encoded into the UTC Time ASN.1 native type:
the X509CertParser_DecodeTime() function (Listing 9.29) decodes them into
Unix time-stamp values, which are the seconds elapsed since January 01, 1970.
First, it isolates the sub-fields of the element value, i.e. year, month, day, hour,
minute, second; then, it checks that all the sub-fields are in-bounds; finally, all
the sub-fields are converted into second and summed together.

1 X509CertParse r_ErrorCode_t X509CertParser_DecodeTime (
2 const X509CertParser_Element_t ∗ e lement ,
3 X509CertParser_Time_t ∗ t ime) {
4 s t a t i c const unsigned char daysPerMonth [1 2] =
5 {/∗Jan , Feb , Mar , Apr , May , Jun , Ju l , Aug , Sep , Oct , Nov , Dec∗/
6 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31} ;
7 . . .
8 i f ((month < 1) | | (month > 12)) {
9 r e t _ v a l |= PARSER_NOK;

10 }
11 i f (day < 1) {
12 r e t _ v a l |= PARSER_NOK;
13 } e l s e i f ((i s _ l e a p) && (month == 2) && (day > 29)) {
14 r e t _ v a l |= PARSER_NOK;
15 } e l s e i f (day > daysPerMonth [month − 1]) {
16 r e t _ v a l |= PARSER_NOK;
17 }
18 . . .
19 yea r −= 1970 ;
20 month −= 1 ;
21 day −= 1 ;
22 ∗ t ime = yea r ∗ SECONDS_PER_YEAR;
23 f o r (i = 0 ; i < month ; i ++) {
24 ∗ t ime += daysPerMonth [i] ∗ SECONDS_PER_DAY;
25 }

104

9.4 – X.509 Certificate Parser - Second version

26 ∗ t ime += day ∗ SECONDS_PER_DAY;
27 ∗ t ime += hour ∗ SECONDS_PER_HOUR;
28 ∗ t ime += minute ∗ SECONDS_PER_MINUTE;
29 ∗ t ime += second ;
30 ∗ t ime += leap_days ∗ SECONDS_PER_DAY;
31 return (r e t _ v a l) ;
32 }

Listing 9.29. Function for decoding an UTC Time ASN.1 native type
into a Unix Timestamp.

The certificate buffer shown in Listing 9.30 triggers a bug in X509CertParser-
_DecodeTime(): all the elements that follow the valid-not-before and valid-
not-after sections were removed, the length encodings and the size of the buffer
were adjusted coherently and the value of the valid-not-after element was made
symbolic (not so the tag and length encodings). The obtained month and day
values are out-of-range and the end-of-string value appears two octets before
than in the valid-not-before element, thus the seconds are not specified.

1 unsigned char c e r tBu f [953
2 −261 // S i g n a t u r e
3 −63 // S i g n i n g a l g o r i t h m
4 −6 −7 −4 −7 −73 −11 −275−2−1−1 −2 −15 −13 −18 −23] = {
5 0x30 , 0 x81 , 0 xA8 , // Main c o n t a i n e r
6 0x30 , 0 x81 , 0 xA5 , // Con ta i n e r o f to−be−s i g n e d
7 . . .
8 0x30 , 0 x1E , // V a l i d i t y s e c t i o n
9 0x17 , 0 x0D , // Va l id −not−b e f o r e s e c t i o n

10 0x31 , 0 x37 , // Year = (20) 17
11 0x30 , 0 x34 , // Month = 4
12 0x30 , 0 x37 , // Day = 7
13 0x31 , 0 x31 , // Hour = 11
14 0x34 , 0 x37 , // Minute = 47
15 0x30 , 0 x30 ,
16 0x5A , // End o f UTC Time

s t r i n g
17 0x17 , 0 x0D , // Va l id −not−a f t e r s e c t i o n
18 0x31 , 0 x30 , // Year = (20) 10
19 0x32 , 0 x30 , // Month = 20
20 0x30 , 0 x30 , // Day = 0
21 0x30 , 0 x30 , // Hour = 0
22 0x30 , 0 x30 , // Minute = 0
23 0x5A , // End o f UTC Time

s t r i n g
24 0x00 , 0 x00
25 } ;

105

9 – External diagnostic devices authentication

Listing 9.30. Certificate triggering Vulnerability 13: the month and day values
of the valid-not-after-section are out-of-range.

X509CertParser_DecodeTime(), in line 8, verifies that the month value is in-
bounds: if it is not, this error condition is reported but the function does not
return. Then in the for loop starting from line 23, this value is used to index
the daysPerMonth array, in order to add to the time-stamp the correct amount
of seconds. In the certificate in Listing 9.30 the month value is 20, therefore
when the index variable takes the value 13, the function tries to perform an
out-of-bounds access, triggering a buffer overflow. This error can be avoided
simply by extending the condition of the for loop with a check on the index,
that should not be allowed to take a value greater than 11.

14. A bug in X509CertParser_DecodeTime() analogous to Vulnerability 13 is trig-
gered by the certificate shown in Listing 9.31, which has been obtained by
setting the test harness exactly in the same way as for the certificate in List-
ing 9.30, the only difference consists in the sample value for the valid-not-after
section, which now has a valid day value.

1 unsigned char c e r tBu f [953 −261 −63 −6 −7 −4 −7 −73 −11
−275−2−1−1 −2 −15 −13 −18 −23] = {

2 0x30 , 0 x81 , 0 xA8 , // Main c o n t a i n e r
3 0x30 , 0 x81 , 0 xA5 , // Con ta i n e r o f to−be−s i g n e d
4 . . .
5 0x30 , 0 x1E , // V a l i d i t y s e c t i o n
6 0x17 , 0 x0D , // Va l id −not−b e f o r e s e c t i o n
7 0x31 , 0 x37 , 0 x30 , 0 x34 , 0 x30 , 0 x37 , 0 x31 , 0

x31 , 0 x34 , 0 x37 , 0 x30 , 0 x30 , 0 x5A ,
8 0x17 , 0 x0D , // Va l id −not−a f t e r s e c t i o n
9 0x31 , 0 x30 , // Year = (20) 10

10 0x32 , 0 x30 , // Month = 20
11 0x31 , 0 x30 , // Day = 10
12 0x30 , 0 x30 , // Hour = 0
13 0x30 , 0 x30 , // Minute = 0
14 0x5A , // End o f UTC Time

s t r i n g
15 0x00 , 0 x00
16 } ;
Listing 9.31. Certificate triggering Vulnerability 14: the month value of the
valid-not-after-section is out-of-range.

The different value for the day makes the control flow follow an execution
path along the condition of the if-then-else statement in line 15, which again
uses the month value to index the daysPerMonth array, this time in order to

106

9.5 – Certificate Manager - X.509 certificate validation

determine if the specified day exists in the specified month. When the month
takes a value above 12 (it has not been decremented by one in line 20 yet) it
triggers a buffer overflow memory error.

9.5 Certificate Manager - X.509 certificate vali-
dation

The analysis of the Certificate Manager can be split in two parts: X.509 certificate
validation procedure and cryptographic challenge validation procedure. For the
former, the main function of the test harness instantiates an unconstrained symbolic
buffer with fixed size, intended to be modified manually, as shown in Listing 9.32.

1 #def ine CERT_LEN
2 #def ine CERT_VALID_PHASE 0
3 unsigned char c e r tBu f [CERT_LEN] ;
4

5 klee_make_symbol ic (ce r tBu f , CERT_LEN, " c e r tBu f ") ;
6

7 unsigned char r e s u l t ;
8 C e r t i f i c a t e M a n a g e r _ S e t C e r t i f i c a t e C o n t e x t (ce r tBu f , CERTL_LEN, &

r e s u l t) ;
9 C e r t i f i c a t e M a n a g e r _ A u t h e n t i c a t e (CERT_VALID_PHASE) ;

10 . . .
Listing 9.32. Main function of the test harness for testing the
Certificate Manager module.

The initially adopted approach was fundamentally the same already used in Sec-
tion 9.2: to begin with buffers with size in the order of tens of bytes and to escalate
to size that approximate the ones of real certificates. However, the obtained results
were not meaningful, as they were equivalent to the ones reported in Section 9.3
and in Section 9.4: it was not possible in a reasonable time to explore new execu-
tion paths deriving from the logic of the Certificate Manager, and thus trigger new
error conditions.

The test harness has been modified by adding a stub of the X.509 Certificate
Parser, shown in Listing 9.33, which allows to focus the analysis solely on the
certificate manager.

1 X509CertParse r_ErrorCode_t X509CertParser_Stub_Parse (
2 X 5 0 9 C e r t P a r s e r _ C e r t i f i c a t e _ t ∗ c e r t ,
3 const unsigned char ∗ data ,
4 unsigned i n t num) {
5 i f (k l e e _ i s _ s y m b o l i c (num)) {
6 c e r t −>i s s u e r . data = data ;

107

9 – External diagnostic devices authentication

7 c e r t −>i s s u e r . l e n g t h = num ;
8 return k l e e _ i n t (" X509CertParser_Stub_Parse_Return ") ;
9 }

10 f o r (unsigned i n t i = 0 ; i < num ; i ++) {
11 i f (k l e e _ i s _ s y m b o l i c (data [i])) {
12 c e r t −>i s s u e r . data = data ;
13 c e r t −>i s s u e r . l e n g t h = num ;
14 return k l e e _ i n t (" X509CertParser_Stub_Parse_Return ") ;
15 }
16 }
17 return X509CertParse r_Parse (c e r t , data , num) ;
18 }

Listing 9.33. Stub of the X.509 Certificate Parser used in the test harness
for the Certificate Manager.

The Certificate Manager verifies that the issuer of the received X.509 certificate
is equal to the subject of at least one of its statically configured certificates, then
it uses the public key of the latter to verify the signature of the former. There-
fore, the only field of the parsed certificate that it uses internally is the issuer: the
to-be-signed section and the signature field are passed as input parameters to the
Cryptographic Manager, which has been substituted with a stub and makes no use
of any input parameter. The parser is used by the Certificate Manager both for the
statically configured certificates and for the received certificate, which is symbolic.
The stub above checks if the length of the buffer or at least one of its bytes are
symbolic: if they are, then the buffer and its length are assigned to the issuer field
of the "parsed" certificate, else the true parsing function is invoked with the same
input parameters. This allows to have an unchanged behaviour for the statically
configured certificates, to avoid parsing the (partially) symbolic input certificate
(thus avoiding the related path explosion problem), and to inject symbolic values
exactly where needed. Such an analysis is under-constrained and thus prone to
false positives, which must be discarded: when a bug-triggering input is found, the
parser stub must be substituted with the true one and the procedure re-run with
that concrete input, in order to verify that it is still capable of triggering the same
bug despite the constraints imposed by the true parser.

Describing these choices with the terminology of S2E, the parser becomes part
of the environment together with the driver for the hardware cryptographic accel-
erator while only the Certificate Manager remains part of the unit, and the test
harness implements again a form of Local or Over-approximate execution consis-
tency model, as also in this case there are no constraints imposed by interface
contract and creation of symbolic value is done in the environment.

15. The analysis of the certificate validation procedure yielded a single bug-triggering

108

9.5 – Certificate Manager - X.509 certificate validation

buffer, consisting in exactly the same sequence of bytes of one among the stat-
ically configured certificates, beginning from its subject section. Actually the
capability of the programming error to trigger the bug depends on the length
of the input buffer, which is set statically and varied manually: it must be
enough to contain the part of the static certificate that goes from the be-
ginning of the subject to the last byte, plus one byte. To explain how the
symbolic execution engine generated it, it is necessary to examine the core of
the certificate validation procedure, reported in Listing 9.34.

1 unsigned char i d x = NULL_U8 , v a l i d _ s t s , ∗ r e s ;
2 const unsigned char ∗ data ;
3 unsigned i n t s i z e ;
4 X 5 0 9 C e r t P a r s e r _ C e r t i f i c a t e _ t i n_ce r t , au th_ce r t ;
5 X509CertParse r_ErrorCode_t pa_err ;
6 . . .
7 pa_err = X509CertParse r_Parse (& in_ce r t , data , s i z e) ;
8 i f (pa_er r == X509_PARSER_OK) {
9 v a l i d _ s t s = TRUE;

10 f o r (i d x = NULL_U8 ; (i d x <
STATIC_CERTIFICATES_BINARIES_NUM) && (v a l i d _ s t s == TRUE) ;

i d x++) {
11 X509CertParse r_Parse (
12 &auth_cert ,
13 STATIC_CERTIFICATES_BINARIES [i d x] . c e r t ,
14 STATIC_CERTIFICATES_BINARIES [i d x] . l e n g t h

) ;
15 i f (Utils_MemCmp (
16 i n _ c e r t . i s s u e r . data ,
17 auth_ce r t . s u b j e c t . data ,
18 i n _ c e r t . i s s u e r . l e n g t h) == TRUE) {
19 v a l i d _ s t s =

Cryptograph icManager_Ver i f yToBeS igned (
20 auth_ce r t . publ icKeyMod . data , au th_ce r t .

publ icKeyMod . l eng th ,
21 auth_ce r t . pub l i cKeyExp . data , au th_ce r t .

pub l i cKeyExp . l eng th ,
22 i n _ c e r t . toBeSigned . data , i n _ c e r t .

toBeSigned . l eng th ,
23 i n _ c e r t . s i g n a t u r e . data , i n _ c e r t .

s i g n a t u r e . l e n g t h) ;
24 ∗ r e s = v a l i d _ s t s ;
25 }
26 }
27 . . .

Listing 9.34. Core of the certificate validation procedure, inside the
Certificate Manager.

109

9 – External diagnostic devices authentication

The equivalence between issuer and subject is checked in the line 12 relying
on the same Utils_MemCmp() function (Listing 9.35) that was involved in
Vulnerability 12 and inside which also this bug is triggered.

1 unsigned char Utils_MemCmp (
2 const unsigned char ∗ptr_1 ,
3 const unsigned char ∗ptr_2 ,
4 unsigned i n t s i z e) {
5 unsigned char i s _ e q u a l = FALSE ;
6 i f ((ptr_1 != NULLP_U8) && (ptr_2 != NULLP_U8)) {
7 i s _ e q u a l = TRUE;
8 f o r (unsigned i n t i = NULL_U32 ; (i < s i z e) && (

i s _ e q u a l == TRUE) ; i ++) {
9 i s _ e q u a l = (ptr_1 [i] == ptr_2 [i]) ;

10 }
11 }
12 return (i s _ e q u a l) ;
13 }

Listing 9.35. Function for comparing two buffers: as soon as a mismatch
is found, the function quits.

Contrarily to that previous situation, the root cause of the bug is not a mis-
match between the actual length and the parsed length of the issuer buffer:
the parsing of a static certificate is assumed to always succeed, while the exit
status of the parsing of a received certificate is always checked, therefore the
parsing must succeed for Utils_MemCmp() to be called and the two lengths
are always coherent. Utils_MemCmp() is called using as length the one of the
issuer of the received certificate, without any check of equality with the subject
length: the former is thus completely unbounded and under the control of the
certificate sender. As long as the issuer value is equal to the subject value and
the following fields (including their tag and length encoding) the for loop in
line 8 does not terminate and a long enough sequence of equal bytes causes an
out-of-bounds access on the first array in line 9. Such an access may or may
not trigger a buffer overflow memory error, depending on the architecture of
the (virtual) machine on which this code is executed. The former case occurs
when executing it inside the KLEE environment: trying to access the first byte
after the end of one of the statically configured certificates triggers a memory
error, as seen with all the previously reported bugs. This requires the symbolic
execution engine to generate a sequence of bytes equal to the part of a static
certificate beginning from the subject field. The latter case is likely to happen
in real platforms, where going out-of-bounds while accessing an array does not
necessarily trigger for example a segmentation fault, and it is a potentially
more critical situation, since it leaves room for a timing based side-channel
attack. Since the execution time of Utils_MemCmp() is dependent on the

110

9.5 – Certificate Manager - X.509 certificate validation

content of the issuer field, if an attacker is able to accurately measure it, it
can deduct (part of) the content of the main memory. If the attacker guesses
the first byte but not the second, then the for loop in line 8 performs two
iterations, if it guesses the first and the second bytes but not the third, there
will be three iterations, and so on. The attacker needs to try a maximum of
256 values for each single byte that it is willing to guess. This is not a serious
problem for parts of a X.509 certificate that follow the subject field, as they
are public by definition, but it is possible to discover the content of the main
memory that follows a static certificate, the only limits being the maximum
allowed length for an input certificate, if present, and the CPU and operat-
ing system’s architecture, if they implement segmentation faults or analogous
behaviours. This may lead to leakage of industrial secrets. The most obvious
countermeasure for this bug is to check that the issuer and subject lengths are
equal before calling Utils_MemCmp().

As already mentioned, in order to verify that this bug can be triggered also in
the original system, it is necessary to substitute the under-constraining stub
implementation of the parser with the original one. It is not necessary to
do the same with the stub for the cryptographic accelerator driver, as this
memory error occurs before any of its functions are used. For the parser to
return with a success exit status, the issuer of a valid certificate was replaced
with the bug-triggering issuer found, as shown in Listing 9.36.

1 unsigned char c e r tBu f [1 6 8 2] = {
2 0x30 , // Main c o n t a i n e r
3 //0x82 , 0 x03 , 0 xB5 ,
4 0x82 , 0 x06 , 0 x8E , // Ad jus ted l e n g t h
5 0x30 , // To be s i g n e d s e c t i o n
6 // 0x82 , 0 x02 , 0 x6D ,
7 0x82 , 0 x05 , 0 x46 , // Ad jus ted l e n g t h
8 . . . // Content p r e c e d i n g i s s u e r f i e l d
9 0x30 ,

10 // 0x34 ,
11 0x82 , 0 x03 , 0 x0B ,
12 // 0x31 , // Beg inn ing o f o r i g i n a l i s s u e r
13 // 0x13 ,
14 // 0x30 ,
15 // 0x11 ,
16 // 0x06 ,
17 // 0x03 ,
18 // 0x55 , 0 x04 , 0 x03 ,
19 // 0x13 ,
20 // 0x0A ,

111

9 – External diagnostic devices authentication

21 // 0x43 , 0 x65 , 0 x72 , 0 x74 , 0 x4C , 0
x65 , 0 x76 , 0 x65 , 0 x6C , 0 x33 ,

22 . . . // Remaining con t en t o f o r i g i n a l
i s s u e r

23 0x31 , // Beg inn ing o f bug−t r i g g e r i n g
i s s u e r

24 0x13 , 0 x30 , 0 x11 , 0 x06 , 0 x03 , 0 x55 , 0 x04 , 0 x03 ,
25 0x13 , 0 x0A , 0 x43 , 0 x65 , 0 x72 , 0 x74 , 0 x4C , 0 x65 ,
26 0x76 , 0 x65 , 0 x6C , 0 x34 , 0 x31 , 0 x10 , 0 x30 , 0 x0E ,
27 0x06 , 0 x03 , 0 x55 , 0 x04 , 0 x0A , 0 x13 , 0 x07 , 0 x43 ,
28 . . . // Remaining con t en t o f bug−

t r i g g e r i n g i s s u e r
29 . . . // Remaining con t en t o f o r i g i n a l c e r t i f i c a t e
30 } ;
Listing 9.36. Certificate triggering Vulnerability 15: the issuer is equal to one
among the statically configured certificates, beginning from the subject section.

It is possible to notice that the issuer field is actually composed by multiple
sub-fields, and that the bug-triggering issuer is not well-formed "internally".
This should be noticed by the parser that as a consequence should return
notifying the error condition, however, the parsing of the issuer consists solely
in isolating the value of its container element: Utils_MemCmp() compares the
binary encodings of issuer and subject, not their parsed sub-fields. Therefore,
the bug described above can occur also in the original system. Given the
inability to understand the behaviour of the Diagnostic Protocol module, not
even with the help of symbolic execution, it has not been possible to verify the
actual capability of such a malformed certificate to arrive to the Certificate
Manager module starting from the CAN Interface module, where it is injected
split across multiple CAN messages. In particular it has been impossible to
deduce its maximum length: an ISO-TP payload can be up to 4095 bytes
long, which may impose an upper bound on the maximum certificate length,
but it is as well possible that the Diagnostic Protocol Module is capable of
reassembling multiple ISO-TP payloads into a single certificate.

9.6 Certificate Manager - Cryptographic challenge
validation

The analysis of the cryptographic challenge validation procedure is not meaningful.
To explain the motivation, the core of this procedure is reported in Listing 9.37.

1 X 5 0 9 C e r t P a r s e r _ C e r t i f i c a t e _ t auth_ce r t ;
2 unsigned char i dx , v a l i d _ s t s , ∗ p_res , c e r t _ l v l ;
3 const unsigned char ∗ enc ryp ted_cha l l enge_data , ∗ cha l l enge_data ,

∗ rand_num_data ;

112

9.6 – Certificate Manager - Cryptographic challenge validation

4 unsigned i n t e n c r y p t e d _ c h a l l e n g e _ s i z e , c h a l l e n g e _ s i z e ,
rand_num_size ;

5 Ce r t i f i c a t eManage r_Er ro rCode_t r e t _ v a l ;
6 . . .
7 x509_Stub_parse (
8 &auth_cert ,
9 STATIC_CERTIFICATES_BINARIES [c e r t _ l v l] . c e r t ,

10 STATIC_CERTIFICATES_BINARIES [c e r t _ l v l] . l e n g t h) ;
11 r e t _ v a l = Cryptograph icManager_RsaDecrypt (
12 auth_ce r t . pub l i cKeyExp . data , au th_ce r t . pub l i cKeyExp .

l eng th ,
13 auth_ce r t . publ icKeyMod . data , au th_ce r t . publ icKeyMod .

l eng th , FALSE ,
14 enc ryp ted_cha l l enge_data , e n c r y p t e d _ c h a l l e n g e _ s i z e ,
15 cha l l enge_data , &c h a l l e n g e _ s i z e , FALSE) ;
16 i f (r e t _ v a l == CLIB_NO_ERR) {
17 i f (Utils_MemCmp (cha l l ange_data , rand_num_data ,

rand_num_size) == TRUE) {
18 ∗ p_res = TRUE;
19 }
20 }

Listing 9.37. Core of the cryptographic challenge validation procedure,
inside the Certificate Manager.

Apparently there is a programming error in line 10 of the same nature of the one in
the X.509 certificate validation procedure: the decrypted and the original random
numbers are checked for equality with Utils_MemCmp() using as length parame-
ter the one of the original random number, which is not dependent on the user-
provided inputs; the length of the buffer containing the decrypted random number
may be smaller, and this would cause a buffer-overflow memory error, though less
exploitable than Vulnerability 15. However, the length of the decrypted buffer is
set by the driver for the hardware cryptographic accelerator, which has been sub-
stituted by a stub. It is possible to make the stub return a symbolic length value
that would trigger this bug, but since the real hardware has not been available for
this analysis, it has been impossible to determine if it could actually return such a
length.

113

114

Chapter 10

Conclusions

In this work, the applicability of techniques of dynamic code analysis in the testing
phase of a critical software system has been verified successfully. In this way, the
amount of manual effort required by the tester in a traditional approach to white-
box testing is effectively reduced. It is no more needed to thoroughly inspect and
to precisely understand the inner working of the piece of software under test, in
order to reason out an exhaustive set of test cases and all the possible information
flows involving sensitive and/or not trusted data. The most promising among these
techniques, symbolic execution and dynamic taint analysis, were applied on a real
embedded system. The selected use case consists in a central gateway ECU oper-
ating in-car, providing two main functionalities: CAN messages filtering/routing
and external diagnostic devices authentication.

The former has been analysed by means of DTA based on SE, considering the
input channels as non trusted sources of data, and the output channels as desti-
nations. If the SE engine generates a well-formed message, then all the output
channels must remain intact, except the one to which the message should be for-
warded. Data derived from a non trusted source must not be able to propagate to
them. Otherwise, if a bad message was injected, all channel must preserve their
integrity property.

The latter requires the unit to parse a public key certificate sent from the diag-
nostic device and to verify that it was emitted by one of the trusted certification
authorities. These portions of the procedure naturally lent themselves to an anal-
ysis based on SE, because their control flow is heavily influenced by external data
potentially under the control of an attacker. It has not been possible to analyse
the part of the procedure performing cryptographic computations, because they
generate constraints sets not solvable in a feasible time.

The necessity to deal with the limitations of SE in the second part of the analysis
has lead to the definition of a template procedure for creating a test harness and
focusing the analysis on the portions of code of interest.

The analysis of the messages filtering/routing functionality did not reveal any

115

10 – Conclusions

incongruence between the implementation and the available specifications listing
all the admitted messages for each input channel. Since the analysis has been
exhaustive, it is possible to state that its correctness has been proved. Furthermore,
the results obtained with a tool implementing the traditional approach to DTA were
compared with the ones obtained with the developed prototype. The former were
not precise, since they were affected by false negatives. The latter were exact, since
simplifying assumptions to deal with path explosion were not needed.

On the other side, the analysis of the authentication procedure revealed defects
in the parser that did not emerge with a more traditional approach to the testing
phase. All of them cause buffer overflow memory errors and most of them are caused
by a single design flaw. Since the hardware platform on which this firmware was
deployed was not available, it is unknown if these malfunction can appear during
normal operation. The verification of the certificate’s emitter is affected by a bug of
the same type. Differently from all the others, this one is theoretically exploitable
by means of a timing-based side channel attack, which allows an attacker to read
the content of the main memory. This may cause leakage of sensitive information
about the system.

A secondary contribution of this work has been the implementation of a recent
algorithm for DTA based on SE. The sources of false negatives and false posi-
tives affecting the results can now more easily be controlled and, under certain
circumstances, eliminated. The prototype was successfully applied in the analysis
of the use case, and yielded exact results as opposed to a publicly available tool
implementing the traditional approach.

Future developments based on this work include:
• Further verification of the scalability of the described techniques by means of

analysis of larger pieces of software. Specifically, the firmware analysed in this
work is part of a larger system composed of many others. The largest one
among them has roughly 10 times the amount of lines of code, which makes it
a suitable candidate.

• Extension of the analysis to the binary code to be deployed of the firmware. By
testing the binary code, which includes the operating system and its drivers, it
is possible to observe the actual failures caused by the defects found. However,
since the binary code is less syntactically rich than the corresponding binary
code, identification of defects like memory manipulation errors is harder. Fur-
thermore, a greater effort for building a test harness is required. It is necessary
to emulate the hardware of the platform and to find suitable injection points
for symbolic values in the virtual peripherals. The S2E tool offers support for
this kind of analysis, since it is based on QEMU, which provides an emulated
ARM environment. This platform is similar to the one on which the considered
use case runs and it must be properly adapted by adding the needed custom
assembly instructions and custom embedded peripherals.

116

Bibliography

[1] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask),” in Security and privacy (SP), 2010 IEEE symposium on,
pp. 317–331, IEEE, 2010.

[2] C. Cadar and K. Sen, “Symbolic execution for software testing: three decades
later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90, 2013.

[3] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo
multi-path analysis of software systems,” ACM SIGPLAN Notices, vol. 46,
no. 3, pp. 265–278, 2011.

[4] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs.,” in OSDI,
vol. 8, pp. 209–224, 2008.

[5] R. Corin and F. A. Manzano, “Taint analysis of security code in the klee
symbolic execution engine,” in International Conference on Information and
Communications Security, pp. 264–275, Springer, 2012.

[6] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis
framework,” in Proceedings of the 2007 international symposium on Software
testing and analysis, pp. 196–206, ACM, 2007.

[7] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “Dta++: dynamic
taint analysis with targeted control-flow propagation.,” in NDSS, 2011.

[8] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying infor-
mation flow properties of firmware using symbolic execution,” in Proceedings
of the 2016 Conference on Design, Automation & Test in Europe, pp. 337–342,
EDA Consortium, 2016.

[9] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis,” in IEEE Symposium on
Security and Privacy, 2016.

[10] R. Corin and F. A. Manzano, “PySymEmu - A symbolic execution tool, capable
of automatically generating interesting inputs for x86/x64 binary programs.”
https://github.com/feliam/pysymemu.

[11] S. McCamant, P. Saxena, D. Akhawe, et al., “FuzzBALL.” https://github.

117

https://github.com/feliam/pysymemu
https://github.com/bitblaze-fuzzball/fuzzball
https://github.com/bitblaze-fuzzball/fuzzball

Bibliography

com/bitblaze-fuzzball/fuzzball.
[12] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and arrays,”

in Computer Aided Verification, 19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007, Proceedings (W. Damm and H. Hermanns,
eds.), vol. 4590 of Lecture Notes in Computer Science, pp. 519–531, Springer,
2007.

[13] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new approach to
computer security via binary analysis,” in International Conference on Infor-
mation Systems Security, pp. 1–25, Springer, 2008.

[14] W. M. Khoo, “Taintgrind: a Valgrind taint analysis tool.” https://github.
com/wmkhoo/taintgrind.

[15] C. Lattner and V. Adve, “LLVM language reference manual,” 2006.
[16] ISO, “Road vehicles – Diagnostic communication over Controller Area Network

(DoCAN) – Part 2: Transport protocol and network layer services,” ISO 15765-
2:2016, International Organization for Standardization, Geneva, Switzerland,
2016.

[17] ITU-T, “Information technology – ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distin-
guished Encoding Rules (DER),” ITU-T X.690, International Telecommunica-
tion Union, Geneva, Switzerland, 07 2002.

[18] D. A. Ramos and D. R. Engler, “Under-constrained symbolic execution: Cor-
rectness checking for real code.,” in USENIX Security Symposium, pp. 49–64,
2015.

[19] H. Yoshida, G. Li, T. Kamiya, I. Ghosh, S. Rajan, S. Tokumoto, K. Munakata,
and T. Uehara, “Klover: Automatic test generation for c and c programs, using
symbolic execution,” IEEE Software, vol. 34, no. 5, pp. 30–37, 2017.

[20] R. Corin and F. A. Manzano, “Efficient symbolic execution for analysing cryp-
tographic protocol implementations,” in International Symposium on Engi-
neering Secure Software and Systems, pp. 58–72, Springer, 2011.

118

https://github.com/bitblaze-fuzzball/fuzzball
https://github.com/bitblaze-fuzzball/fuzzball
https://github.com/wmkhoo/taintgrind
https://github.com/wmkhoo/taintgrind

	List of Tables
	List of Figures
	Motivations and objectives
	Symbolic execution
	Challenges
	Modern symbolic execution
	Pros and cons

	Limitations

	Dynamic taint analysis
	Taints propagation
	Data-flow taints
	Addresses taints
	Control-flow taint

	Taints removal
	Limitations
	Multi-path dynamic taint analysis

	Tools for symbolic execution
	KLEE
	Architecture
	Environment modelling

	S2E
	Execution consistency models
	Architecture

	Tools for dynamic taint analysis
	KLEE-TAINT
	Limitations

	Implementation of multi-path DTA
	Execution consistency models

	Use case
	CAN messages filtering and routing
	Modules

	External diagnostic devices authentication
	Modules
	X.509 certificates parsing

	Template procedure of the analysis
	Analysis of CAN messages filtering and routing
	Analysis with symbolic execution
	Content-based Message Filter - Test harness
	Content-based Message Filter - Results
	Messages filtering/routing full stack - Test harness
	Messages filtering/routing full stack - Results

	Analysis with dynamic taint analysis
	Multi-path DTA - Test harness
	Multi-path DTA - Results
	Traditional DTA
	Enhanced traditional DTA
	Enhanced traditional DTA - Limitations

	External diagnostic devices authentication
	Stub of the driver for the cryptographic accelerator
	Modules selection and main function of the test harness
	X.509 Certificate Parser - First version
	X.509 Certificate Parser - Second version
	Certificate Manager - X.509 certificate validation
	Certificate Manager - Cryptographic challenge validation

	Conclusions
	Bibliography

		Politecnico di Torino
	2018-04-06T13:47:04+0000
	Politecnico di Torino
	Gianpiero Cabodi
	S

