
Master’s Degree in Electronic Engineering

Thesis

Secure FPGA bitstream
management in reconfigurable
mobile heterogeneous systems

Supervisors
Stefano Di Carlo
Paolo Ernesto Prinetto

Candidate

Carlo Alberto Cristofanini

Academic year 2017-2018

A tutti coloro che mi
hanno supportato fino
al raggiungimento di
questo importante
traguardo

Abstract

In these last years the mobile devices scenario has shown a huge spread all over the
world. This has lead to a large diffusion of applications due to their availability,
popularity and an easy accessibility. Another key factor that push them forward
to a further evolution step, is the increasing computational power of mobile de-
vices. Multicore architectures, heterogeneous computing, GPUs, ASICs have been
key points in this evolution. Nowadays, another step forward can be achieved by
mean of the reconfigurable computing devices, the FPGAs, which are fundamental
parts of the embedded mobile devices of the future. They allow both to reduce
the power consumption and to speed up complex operations.

The employing of reprogrammable devices introduces new security issues. FP-
GAs are programmed via bitstream files whose clear version must be kept secret.
To achieve this, their confidentiality, integrity and authenticity must be preserved,
defending them against threats by two types of attackers: MITM (man in the
middle), which acts on the communication channel, and MATE (man at the end),
which has physical access to the system.

The scenario assumed is quite close to the one used in the mobile application
deployment. The end user buys an application on an application store; after the
payment success confirmation it sends automatically, to the store, an ID to iden-
tify its FPGA. The store sends the request to the software provider, which sends
both the bitstream file and the ID to the hardware vendor, which is the FPGA
manufacturer. This encrypts the bitstream file with a key related to the FPGA
ID and sends the ciphered bitstream back to the end user passing through the
software provider and the store. The end user’s device contains the key needed to
decrypt the ciphered bitstream. The plaintext version of the bitstream is used by
the device to program the FPGA.

To face the above mentioned problem, the SEcubeTM platform has been em-
ployed. It grants a good security level against MATE attackers; the FPGA and
the microcontroller are embedded on the same SoC, therefore it’s complex to gain

i

access to their interconnections.

This thesis focuses on the last passage of the scenario mentioned above, the
secure of the FPGA programming phase: After the download, the ciphered bit-
stream files is stored into an external memory (e.g., SD card) aboard the end user’s
device. The internal device memory is limited, so a tradeoff between memory oc-
cupation and speed must be achieved to avoid the memory overflow. To overcome
this issue, a “paging”-like solution has been adopted: the files have been virtually
split in blocks. When the FPGA programming function is executed one of these
blocks is read, decrypted and then stored into an internal buffer; at the same time
the block sign is computed and compared to the given one to verify both integrity
and authenticity. Then, the FPGA programming function accesses the buffer,
which contains a portion of the plaintext version of the bitstream, to program the
FPGA. The obtained clear version of the bitstream mustn’t be readable in any
way, neither by the end user, which is not reliable.

To protect the confidentiality, integrity and authenticity of the bitstream, both
AES in CBC mode and a SHA algorithms have been employed. The CBC mode
has been selected, instead of the ECB one, due to its simple decoding implementa-
tion and to avoid the main ECB drawback: any resident properties of the plaintext
might well show up in the ciphertext using this mode. The internal buffer size has
been chosen in order not to occupy all the available space; this is due to the as-
sumption of other functions memory occupation and other free space needing.

This project is a mandatory tile in a bigger puzzle which is the FPGA bitstream
securing panorama.

ii

Acknowledgements

After long and intense months the day is finally arrived.
This words of thanks are addressed to all those that helped me with continuous
support and patience, immense knowledge and encouragement, in the draft of my
thesis, with suggestions criticism and observations. It has been a period of inten-
sive learning, not only on a scientific level, but also on a personale level.

A special thanks is addressed to my thesis supervisors Prof. Stefano Di Carlo,
Prof. Paolo Ernesto Prinetto and to the PhD Students for their great support,
Alberto Carelli and Alessandro Vallero, because when I ran into a trouble spot or
had a question about my research, the project or writing this thesis, they helped
me in the right direction whenever I needed it, with sincere availability. I have
been extremely lucky to have thesis supervisors who cared so much about my work.

My sincere gratitude is addressed to all of them.

Moreover I would like to thank my mother for her continued support, her en-
couragement since my childhood enabled me to reach this important goal.

Finally, I want to thank all my friends that have been close to me encouraging
and understanding me, in good times and during the hardships and the discomfort
throughout my years of study and through the process of searching and writing
this thesis.

A heartfelt thanks to everyone.

iii

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Heterogeneous computing enters application era 1

1.2 Reconfigurable on heterogeneous computing platforms 5

1.3 IP Protection in FPGA-based reconfigurable computing 7

1.4 Goal of the thesis . 8

2 Cryptography 10

2.1 Introduction . 10

2.2 Theory about cryptography . 13

2.2.1 Cipher types . 14

2.2.2 Attack types . 20

2.3 Cryptographic hash function . 25

3 Related Works 27

3.1 Introduction . 27

3.2 Bitstream confidentiality . 28

3.3 Bitstream integrity . 29

3.4 Bitstream authenticity . 29

3.5 Further solutions . 30

3.6 Available solutions drawbacks . 30

4 System architecture and attack model 31

4.1 Assumptions and models . 31

4.2 Security requirements . 32

4.3 Attack model . 33

4.4 Adversary model . 33

iv

5 Protocol and secure bitstream exchange 35
5.1 Introduction . 35
5.2 Simple scenario . 37
5.3 Full scenario . 39

6 Platform Implementation 41
6.1 Introduction . 41
6.2 Hardware architecture . 43

6.2.1 SEcubeTM development kit board 43
6.3 Development flow . 48

6.3.1 FPGA . 48
6.3.2 SD card file system . 49
6.3.3 Data decryption . 55

7 Security Analysis 59
7.1 Introduction . 59
7.2 Encryption mode . 59
7.3 Types of attackers . 64

7.3.1 MITM - Man in the middle 64
7.3.2 MATE - Man at the end . 64

7.4 Simple scenario security analysis . 65

8 Conclusions 66

A Datasheet 68
A.1 Datasheet connection scheme . 68

B Programming code: C code 69
B.1 main.c . 69
B.2 FPGA.h . 71
B.3 FPGA.c . 71
B.4 secure FPGA.h . 76
B.5 secure FPGA.c . 77

C Others 83
C.1 FSM-like switch engine . 83

Bibliography 85

v

List of Figures

1.1 Elementary Configurable Logic Block (CLB) 7

2.1 Simplified model of symmetric encryption 15
2.2 Simplified model of a symmetric cryptosystem 16
2.3 Stream cipher using algorithm bitstream generator 17
2.4 Block cipher . 18
2.5 Simplified model of asymmetric encryption 19
2.6 Passive attack simplified model . 22
2.7 Active attack simplified model . 23
2.8 SPA leaks from an RSA implementation 24

3.1 Relationship between security services and mechanisms. 27

5.1 End user’s point of view of the application store structure 36
5.2 Simplified model of a symmetric cryptosystem 37

6.1 VME file generation flow . 42
6.2 SEcubeTM development kit board and BGA chip 44
6.3 USEcubeTM Stick final commercial product 45
6.4 USEcubeTM Stick internal blocks scheme 45
6.5 USEcubeTM Stick dimensions and internal physical structure 46
6.6 St-Link/v2 kit: device and cables 46
6.7 SEcubeTM internal blocks scheme 47
6.8 “B5 FPGA Programming” function block diagram 50
6.9 “GetByte” function block diagram 51
6.10 SEcubeTM DevKit board, highlighted LEDs 52
6.11 FatFs middleware module architecture 53
6.12 Bitstream file partitioning . 56
6.13 “fillFILEvector” function block diagram 58

7.1 ECB mode for AES algorithms . 59
7.2 CBC encryption mode for AES algorithms 60

vi

7.3 ECB decryption mode for AES algorithms 60
7.4 Graphical examples of AES encryption using ECB and CBC modes,

with two different key length: 128 bit and 256 bit. The source image
used is the Polytechnic of Turin logo (a clip art). The encryption key
employed by the algorithm is obtained by the input string: “CARLO”. 62

7.5 Graphical examples of AES encryption using ECB and CBC modes,
with two different key length: 128 bit and 256 bit. The source image
used is a photo. The encryption key employed by the algorithm is
obtained by the input string: “CARLO”. 63

A.1 SEcubeTM internal main blocks connections 68

C.1 Main FPGA programming process switch engine (FSM-like) 84

vii

List of Tables

1.1 FPGA design advantages . 5

2.1 Caesar’s cipher, example . 11
2.2 Caesar’s cipher, method . 11
2.3 Conventional and Public-Key Encryption comparison 21

viii

Chapter 1

Introduction

1.1 Heterogeneous computing enters application

era

In the last years the high-tech market is showing a huge expansion in terms of
mobile devices, like multimedia players, smartphones, pads and latest wearable
technologies as smart-watches and fitness trackers. This phenomenon is getting
more and more important and involve each areas of everyday life.
The diffusion of these devices go with technology innovation and a significant mo-
bile application market enlargement, leading to its immersion in a competitive
environment and business landscape creating the opportunity to introduce new
technological solutions based on these devices. Clearly, the mobile application
market is starting to heavily affect the global business environment.
Some examples about this world are well known. Apple has always shown to the
world its ability in spreading edge technology in its devices. It used to be the only
force in mobile technology panorama. Its strength could lean on the iPhone, the
iOS operating system, and the Apple App Store.
Nowadays, new rival devices, operating systems and application stores are growing
and facing the old sector leader.
About 160 application stores offered by a range of companies, including device
manufacturers, platform providers, mobile operators, and media conglomerates
are today available.
The Apple App Store inventory, at the end of 2010, counted 300,000 apps, twice
the number available the previous year, according to Distimo, a mobile analytics
firm. Google Android Market has increased by six times the apps number available
in 2009. The same effects can be seen in other mobile application stores (Nokia’s
Ovi Store, BlackBerry App World).
At the same time mobile apps sale is growing exponentially. The research firm

1

1 – Introduction

Gartner reported that mobile application stores delivered 17.7 billion downloads
internationally in 2011, more than double 2010’s 8.2 billion downloads [1].
Developer revenues came from app purchases, in-app purchases and mobile app
advertising. Gartner expects revenue amount to surpass 29.5 USD billion in 2013,
more than a fourfold increase over 2010. The Gartner’s research director, S. Bagh-
dassarian, doesn’t think the app frenzy is just a fashion trend which, like many
others, shall pass. She and her team strongly believe there’s a bright future full
of opportunities for application stores. Clearly applications need to grow up and
deliver a superior experience to end users [2].
The opportunity to introduce new technological solutions aboard these devices is
due to mobile applications immersion in a competitive environment and in a busi-
ness landscape. Apps are getting more advanced, that means mobile devices need
higher computational power.

The Moore’s law has passed its half century lifetime and it’s close to its end.
At the same time, microprocessor speed has reached its higher limit. It’s no longer
worth to try to increase the speed given the cost in terms of power consumed and
heat dissipated.
Dennard scaling law is related to Moore’s law, and states that “at constant tran-
sistors power density, they are getting smaller, so the power used is in proportion
with area occupied”. This law is useful to create a relation between power and
area: at fix power density, when transistors density increases, a power consump-
tion reduction for the single transistor is obtained. It can be translated in voltage
and current scaling with length. This is what has broken down: not the ability to
etch smaller transistors, but the ability to drop the voltage and the current they
need to operate reliably [3], [4]. But this law is getting close to its end too; voltage
and current scaling with length is reaching its limits, since transistor gates have
become too thin, affecting their structural integrity, and currents are starting to
leak. Another drawback that must be addressed is thermal losses, which occur
when a huge amount of transistors in a small area switch together several billion
times per second. Faster transistors switching means that more heat is generated,
and without proper cooling system the IC might be destroyed [5],[6]. Computa-
tional power reduction is still the main technology goal researchers and developers
are trying to achieve.
Before continue with heterogeneous computing solutions it’s mandatory to under-
stand where those limitations came from and why they must be respected.
From digital electronic design theory, power dissipated by a device is made up of
two contributions: static and dynamic power consumption. They are generated by
two different conditions: static power tells informations about power dissipation
due to leakage currents (Istat) in function with voltage supply (Vdd), essentially

2

1 – Introduction

consists of the power used when the transistor (fundamental building block of
modern electronic devices) is not in the process of switching;

Pstat = Istat · Vdd

dynamic power gives informations about power consumption during logical state
transition at a specific speed (frequency f) and voltage supply (Vdd), with a known
capacitive load(CL).

Pdyn = f · CL · V 2
dd

From the previous formula it’s clear that increasing the speed entails a power
consumption growth. The same applies to voltage supply but in much higher
terms due to its quadratic relation with dynamic power. It affects static power
too. Most common strategies to reduce power consumption consist in reducing
both frequency and voltage supply splitting the circuit in two or more identical
copies and using pipelining techniques. The main drawback is an increasing area
occupation, so a trade off between area, frequency, voltage and power must be
accomplished [7]. To face the clock rates stalled and the rising power consumption
issues, different solutions, within heterogeneous computing, have been found in
the last years.

Intel employs the speed/power trade off as fundamental theorem useful to ex-
plain the requirement of multicore processors and to describe them; that’s the
reason which moves the integrated system architectures to add two or more pro-
cessing areas, or cores, on a single chip. A core is the main element of a processing
system, it performs basic arithmetic/logical operations and controls input/out-
put informations. Intel reports that under-clocking (slowing down microprocessor
speed) a single core by 20% saves half the power while sacrificing just 13% of the
performance. It means that, if a two cores microprocessor runs at an 80% clock
rate, a performance enhancement of 73% for the same power is achieved and the
heat is dissipated at two points rather than one. But it also means that the area
occupied is double [5].

It’s passed more than a decade since what has been called “the breakdown of
Moore’s law” and the switch to multicore processors instead of ever faster sin-
gle chips. But it’s not quite correct at all. Moore’s law has not really broken
down. Transistor count continues to increase. What has happened is that it is no
longer possible to keep running these transistors at ever faster speeds; this is one
of the reasons of the general-purpose multicore processing [4]. Parallel process-
ing increases performance by adding more parallel resources (not just cores) while
maintaining manageable power characteristics [8]. Analogously to the frequency
case, where it’s value couldn’t be increased beyond a certain limit, the increase of
cores number (in transistor budget terms) in multi-core architectures might not
be the ideal strategy. Therefore a better design strategy would be to provide a

3

1 – Introduction

wider diversity cores capabilities. That diversity can come in the form of hetero-
geneous general-purpose cores, specialized cores, hardware accelerators, or even
configurable fabric. Thread-level parallelism falls short of hardware parallelism,
due to a lack of threads or to power constraints (dark silicon). This is the reason
of heterogeneous computing requirement. An example that is easy to understand
is when three threads are running on an eight-core homogeneous processor, those
five idle cores provide no value whatsoever. But on a heterogeneous processor,
even idle cores provide value; they could present a more efficient host for one of
the running threads [9].

Graphics Processing Units (GPUs) are digital electronic circuits specialized in
graphic computing. They’ve been used mainly as coprocessor to accelerate render-
ing graphic images creation. Modern GPUs are not only powerful graphics engines,
but also highly parallel programmable processors featuring peak arithmetic and
memory bandwidth that essentially outperform their CPU counterpart. A broad
range of computationally demanding and complex problems have been entrusted
to GPUs, due to their rapid increase in both programmability and capability [10].
This effort in general-purpose GPUs (GPGPU) engines allowed to separate regular,
parallel, streaming segments of workload from the less parallel, control-intensive
segments that still run most effectively on the CPU, positioning the GPUs as a
compelling alternative to traditional microprocessors in high-performance com-
puter systems of the future [9].
In “Scalable Heterogeneous CPU-GPU Computations for Unstructured Tetrahe-
dral Meshes”, Johannes Langguth et al. analyze the performance on two platforms
and show that combining the CPU and GPU execution capacity clearly provides
a performance advantage over the GPU-only approach for irregular applications
[11].
Using hardware optimized for specific functions is much more energy efficient than
implementing those functions with general-purpose cores. On the other side this
might represent an expensive investment for supercomputer customers because
custom components, designed for high-end high-performance computing systems,
isn’t cheap at all. Therefore, high-volume GPU technology becomes a natural
choice for energy-efficient data-parallel computing. Computing nodes that com-
pose integrated CPUs and GPUs (called accelerated processing units, APUs, by
AMD), along with the hardware and software support, enable scientists to run
their scientific experiments on more advanced and sophisticated system [12].
Focusing on mobile world, GPUs allowed to move from a mobile device generation
to a newer one. Nevertheless, today it’s not powerful enough to manage the com-
putational payload required without significant energy efficiency loss. About this,
reconfigurable computing may represent a promising solution.
Hardware accelerators are digital electronic devices, known also as coprocessors,

4

1 – Introduction

designed to perform only specific functions which are performed more efficiently
than in a general purpose CPU, where an huge amount of clock cycles are required
to obtain the same result. Some other examples than GPUs are application-specific
integrated circuit (ASIC), cryptographic accelerator, field-programmable gate ar-
ray (FPGA), digital signal processor (DSP).

1.2 Reconfigurable on heterogeneous computing

platforms

Heterogeneous computing architectures are integrated systems in which conven-
tional and specialized processors work cooperatively.
Field Programmable Gate Arrays (FPGA) are semiconductor devices based on a
configurable logic blocks (CLBs) matrix, connected via programmable intercon-
nects. FPGAs are hardware-reconfigurable devices that can be redesigned repeat-
edly by programmers to solve specific types of problems more efficiently. This fea-
ture distinguishes FPGAs from Application Specific Integrated Circuits (ASICs),
which are custom manufactured for specific design tasks.
Although one-time programmable (OTP) FPGAs are available, the dominant
types are SRAM based which can be reprogrammed as the design evolves [13].
They have been used as programmable logic devices for more than a decade, but
are now attracting stronger interest as reconfigurable coprocessors.
These peculiar devices can be adopted in HPC (high performance computing),
enterprise environments and mobile devices thanks to their versatility and power
efficiency [14] (Table 1.1).

FPGA Design
Advantage Benefit
Faster time-to-market No layout, masks or other manufacturing steps are needed
No upfront non-recurring expenses Costs typically associated with an ASIC design
Simpler design cycle Due to software that handles much of the routing, placement, and timing
More predictable project cycle Due to elimination of potential re-spins, wafer capacities, etc.
Field re-programability A new bitstream can be uploaded remotely

ASIC Design
Advantage Benefit
Full custom capability For design since device is manufactured to design specs
Lower unit costs For very high volume designs
Smaller form factor Since device is manufactured to design specs

Table 1.1. FPGA design advantages [15]

FPGAs can deliver orders of magnitude performance improvements over con-
ventional processors on some types of applications [16]. They allow designers to

5

1 – Introduction

create a custom instruction set for a given application, and apply hundreds or
even thousands of processing elements to an operation simultaneously. For appli-
cations that require heavy bit manipulation, adding, multiplication, comparison,
convolution or transformation, FPGAs can execute these instructions on thousands
of pieces of data at once, with low control overhead and lower power consump-
tion than conventional processors. Systems made of CPU and FPGA, in which
hardware acceleration and processing units run in parallel, enhance the total com-
putational throughput of the system.
FPGAs had some historic issues that slowed down their spread; among them their
speed (at the beginning they were quite slow devices) and their programming lan-
guage, which is a Hardware Design Language (HDL). Although these languages are
commonplace for electronic designers, they are completely foreign to most HPC
system designers, software programmers and users. Nowadays simpler languages
are emerging to let use this type of devices to a wide programmers range.
Eventually, as heterogeneous systems incorporating FPGAs become more widely
used, it’s common to believe they will allow users to solve certain types of prob-
lems much faster than anything that will be provided in the near future through
Moore’s Law, and even support some applications that would not have been pos-
sible before [17].
Some of their main applications are: ASIC prototyping, automotive, aerospace,
defense, data centers, consumer electronics, industrial, medical, security, video
and image processing, communications [18].

The basic structure of a CLB (clearly it is just a common example, they depend
on producer strategy design) can be supposed to be made of (Fig.1.1):

• Look-up table (LUT): it’s a particular logical device which gives in output
a specified value as a function of its input;

• D-FlipFlop (D-FF): asynchronous set and clear flip-flop;

• Mux: multiplexer 2 to 1 used to bypass D-FF in case of pure combinatory
cells.

Embedding FPGAs on reconfigurable platforms, gives the chance to create a
new types of systems where frequent and remote hardware upgrade is required
[19], [20].

FPGA market has grown rapidly in the last thirty years, covering a wide va-
riety of applications in different industrial sectors, thanks to their advantages like
their high flexibility.
A new concept of FPGA has born. Dynamic partial reconfigurable FPGAs offer
new design space introducing some benefits, opening up new interesting applicative
scenarios [21]-[22]: reduced configuration time, memory saving as the partial recon-
figuration files (bitstreams) are smaller than full ones and possibility of run-time

6

1 – Introduction

Figure 1.1. Elementary Configurable Logic Block (CLB)

reconfiguring selected portions of a device without affecting the remaining parts
of the design. The DPR (dynamic partial reconfiguration) can be exploited in
many application fields, for instance to fulfill space requirements in small portable
systems, to create a system-on-a-chip with a very high level of flexibility, to realize
adaptive hardware algorithms, and so on [23], [21], [24], [22]. It creates a possible
scenario in which configurable hardware can be programmed at run-time with ap-
plication specific computational cores to assist the software execution, leaving the
processing unit available to operate new instructions while programmed FPGA
works as hardware accelerator [25], [26].

1.3 IP Protection in FPGA-based reconfigurable

computing

This innovative panorama introduces a new mobile application pattern that ex-
ploits hardware on demand to minimize computational resources with benefits on
the overall system complexity. Final product should be an instance made of ap-
plication specific hardware acceleration cores deployed together with the software
application; it will introduce enhancements in mobile applications such as games,
audio/video processing, secure communications, etc.
In addition to the benefits, several serious security threats have been introduced.
Moving and storing hardware Intellectual Property (IP) (i.e., FPGA biststream
files), to use reconfigurable computing technology, means to bring sensitive data
over potentially insecure channels and repositories.
A bitstream file can be intercepted by an antagonist, which can spread it out to
public domain, sell it for profit (violating the hardware block confidentiality) or
may also tamper with the hardware block description trying to corrupt it, injecting
malicious functionalities in the hardware core that may either prevent the correct

7

1 – Introduction

behavior of the system, or inject security threats in it.
Encryption features have been already provided by hardware vendors (FPGA
seller) to help embedded system designers protecting the confidentiality of their
products and their IP cores [27], [28], [29], [30].
There already exist some security mechanism, providing bitstream authentication
and confidentiality, proposed in several publications [31], [32].
They concern a simple scenario in which the embedded system designer is the only
entity entrusted to produce and deliver reconfigurable hardware descriptions to a
remote system. In this thesis a more complex scenario is addressed.

1.4 Goal of the thesis

The considered scenario involves several independents parties like system design-
ers, software and reconfigurable hardware providers, etc. This thesis addresses
security issues due to the reconfigurable resource sharing by several applications
from different vendors; integrity and confidentiality of the provided IP cores must
be granted during these passages. Two different types of adversaries are considered
as potentially critical to the system security:

• Remote adversary: acts on the communication channels between the ap-
plication providers and the devices (known also as MITM, man in the mid-
dle);

• Local adversary: has physical access to the system (known also as MATE,
man at the end),

For the envisioned structure, three aspects of security services are taken into ac-
count:

• hardware resources and system architecture to implement the required secu-
rity primitives;

• high level software infrastructure needed to implement the required commu-
nication protocols;

• high level entrusting policies required among the involved entities.

This thesis project is focused on programming an FPGA using a given en-
crypted and signed bitstream.
For this purpose, the ciphered file will be stored in an external memory device
(more precisely on a micro SD card); in order to gain access to the data, the mi-
croprocessor needs to interface to this auxiliary memory device. Encryption and
signature type are hypothesized as already known by the firmware designers. The

8

1 – Introduction

main contribution to the global project are the development of the infrastructure
required to:

• access to the encrypted data on the SD card;

• decrypt this file;

• program the FPGA.

9

Chapter 2

Cryptography

2.1 Introduction

Bruce Schneier, in his book “Applied Cryptography”, introduces the concept of
cyber security and cryptography using the following example: “If I take a letter,
lock it in a safe, hide the safe somewhere in New York, then tell you to read the
letter, that’s not security. That’s obscurity. On the other hand, if I take a letter
and lock it in a safe, and then give you the safe along with the design specifications
of the safe and a hundred identical safes with their combinations so that you and
the world’s best safecrackers can study the locking mechanism, and you still can’t
open the safe and read the letter, that’s security.” [33].

Years ago, cryptography was a military and governmental exclusive domain
technology, but in last years its use, in everyday devices, has spread significantly.
Computer security aims to protect an automated information system in order to
attain the applicable objectives of preserving the integrity, availability, and con-
fidentiality of information system resources (hardware, software, firmware, infor-
mation/data, and telecommunications).
Suppose a sender wants to send a private message securely to a receiver, and wants
to be sure that an eavesdropper can’t read the message. An original message is
called plaintext (known also as cleartext). The process of disguising a message, in
order to hide message content, is called encryption. An encrypted, coded message
is a ciphertext. The reverse process, of turning ciphertext back into plaintext, is
decryption. The science of keeping messages secure is called cryptography. Crypt-
analysis is instead the science of breaking ciphertext. Cryptology is the branch of
mathematics encompassing both cryptography and cryptanalysis.

One of the most known ciphers of the history was the Caesar cipher by Julius
Caesar. This cipher is quite simple and widely known, it consits on shifting each
letter of the alphabet of three places further down the alphabet and it is wrapped

10

2 – Cryptography

around, so that the letter following Z is A. For example:

Plaintext: s e c u r i t y
Ciphertext: V H F X U L W B

Table 2.1. Caesar’s cipher, example

0 V H F X U L W B
1 w i g y v m x c
2 x j h z w n y d
3 y k i a x o z e
4 z l j b y p a f
5 a m k c z q b g
6 b n l d a r c h
7 c o m e b s d i
8 d p n f c t e j
9 e q o g d u f k
10 f r p h e v g l
11 g s q i f w h m
12 h t r j g x i n
13 i u s k h y j o
14 j v t l i z k p
15 k w u m j a l q
16 l x v n k b m r
17 m y w o l c n s
18 n z x p m d o t
19 o a y q n e p u
20 p b z r o f q v
21 q c a s p g r w
22 r d b t q h s x
23 s e c u r i t y
24 t f d v s j u z
25 u g e w t k v a

Table 2.2. Caesar’s cipher, method

The main drawback is that the decryption algorithm is simple and if it’s known, a

11

2 – Cryptography

brute-force cryptanalysis is easily performed on a given ciphertext in Caesar cipher
form, simply trying all the 25 possible keys [33], [34].
Three important characteristics of this problem enabled us to use a brute-force
cryptanalysis (means try all the possible key to find the right one):

1. The encryption and decryption algorithms are known.

2. There are only 25 keys to try.

3. The language of the plaintext is known and easily recognizable.

In most cases the algorithms are known. The use of a large number of keys
for an algorithm generally makes the brute-force cryptanalysis impractical. The
third characteristic is also significant. If the language of the plaintext is unintel-
ligible, then plaintext output may not be recognizable. Furthermore, the input
may be abbreviated or compressed in some fashion, again making recognition dif-
ficult [35]. Cryptographic systems were based, at the beginning, on elementary
operations as substitution and permutation. Basic types were simply calculated
by hand but an advance in symmetric cryptography occurred when the rotor en-
cryption/decryption machine was developed. It allowed a very complex cipher
systems development. With the computer era arrival even more complex systems
were devised.

Information security purposes is to protect the CIA triad (confidentiality, in-
tegrity and availability) of data. These three security objectives for information
systems are useful characterized in the following [33], [34]:

• Confidentiality: ensures limits or restricted access to the information, pre-
serving authorized restrictions on its access and disclosure, including means
for protecting personal privacy and proprietary information.

• Integrity: guarding against improper information modification, corruption
or destruction, including ensuring information nonrepudiation and authen-
ticity.

• Availability: ensuring timely and reliable access to and use of information.

Some people, in the security field, feel that additional concepts are needed to
present a complete picture:

• Authenticity: the property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message
originator. This means verifying that users are who they say they are and
that each input arriving at the system came from a trusted source.

12

2 – Cryptography

• Accountability: the security goal that generates the requirements for actions
of an entity to be traced uniquely to that entity. This supports nonrepu-
diation, deterrence, fault isolation, intrusion detection and prevention, and
after-action recovery and legal action. Because truly secure systems are not
yet an achievable goal, we must be able to trace a security breach to a re-
sponsible party. Systems must keep records of their activities to permit later
forensic analysis to trace security breaches or to aid in transaction disputes.

• Nonrepudiation: a sender should not be able to falsely deny later that he
sent a message.

Some issues may occur with associated risks and consequences. A loss of security
definition is given for the three main categories [33], [34]:

• Confidentiality: a loss of confidentiality is the unauthorized disclosure of
information.

• Integrity: a loss of integrity is the unauthorized modification or destruction
of information.

• Availability: a loss of availability is the disruption of access to or use of
information or an information system.

Cryptographic algorithms and protocols can be grouped into four main areas:

• Symmetric encryption: Used to conceal the contents of blocks or streams of
data of any size, including messages, files, encryption keys, and passwords.

• Asymmetric encryption: Used to conceal small blocks of data, such as en-
cryption keys and hash function values, which are used in digital signatures.

• Data integrity algorithms: Used to protect blocks of data, such as messages,
from alteration.

• Authentication protocols: These are schemes based on the use of crypto-
graphic algorithms designed to authenticate the identity of entities.

2.2 Theory about cryptography

Encryption and the decryption functions can be expressed likewise a mathematical
functions. For example denoting the plaintext by M, for message, where it can
be a stream of bits, a text file, a bitmap, a digital video image, whatever. M is
the message to be encrypted and in this scenario it is simply binary data. The

13

2 – Cryptography

ciphertext is denoted by C and it is binary data too: sometimes it has the same
size as M, sometimes it is larger. The encryption function E operates on M in
order to produce C, mathematically:

E(M) = C

In the reverse process, the decryption function D operates on C to produce M:

D(C) = M

Decryption D returns a message M, which has been encrypted before with E:

D(E(M)) = M

This is true because decryption D and encryption E are opposite functions.
A cryptographic algorithm, also known as cipher, is a logic method or procedure
that express as a mathematical function used for encryption and/or decryption. It
uses a key called K which assumes one of a large number of values. This range of
possible key values is called keyspace. Both encryption and decryption operations
use this key [33], [34]:

EK(M) = C

DK(C) = M

DK(EK(M)) = M

Algorithms that use different encryption and decryption keys do exist in this case:

EK1(M) = C

DK2(C) = M

DK2(EK1(M)) = M

2.2.1 Cipher types

A wide variety of algorithms compose the cipher panorama; they can be distin-
guished into two different key-based type:

• Symmetric algorithms ;

• Asymmetric algorithms (public-key algorithms).

14

2 – Cryptography

Symmetric algorithms

The encryption key, in a symmetric algorithm, can be computed from the decryp-
tion key and vice versa and in most cases they are exactly the same. These are also
called single-key algorithms and require an agreement on a key, between sender
and receiver, before they can communicate securely. It was the only encryption
algorithm used before the development of public-key algorithm in 1970s. The se-
curity of this type of algorithms depends on the key secrecy. As long as no third
parties know it, the informations are secured.

To better understand how all it works, a simple symmetric cipher model is
described (Fig.2.1):

Figure 2.1. Simplified model of symmetric encryption

• Plaintext: is the original message or data in clear, ready to be used by the
end user or as input for the cipher algorithm.

• Encryption algorithm: alters the plaintext contents performing various
substitutions and transformations on it. The algorithm produces different
outputs using different keys.

• Secret key: is the second input to the encryption algorithm; it’s indepen-
dent from both plaintext and encryption algorithm; it’s used to obtain an
univocal ciphertext, which can be retranslated into plaintext only using the
same key.

• Ciphertext: is the scrambled message produced as encryption algorithm
output. It depends on the plaintext and the secret key. For a given message,
two different keys will produce two different ciphertexts. The ciphertext is
an apparently random stream of data and it is unintelligible.

15

2 – Cryptography

• Decryption algorithm: is the encryption algorithm reverse. It takes the
ciphertext and the key and gives as output the original plaintext. This is
true only if the right key is given (the one used for encryption).

Two requirements are mandatory to grant the information security:

1. An encryption algorithm is strong when an opponent, that knows it and has
access to one or more ciphertexts, would be unable to decipher the ciphertext
or figure out the key. Even if he or she is in possession of a number of
ciphertexts together with the plaintext that produced each ciphertext.

2. Both sender and receiver must have obtained copies of the secret key in a
secure way and must keep the key secure. If someone can discover the key
and knows the algorithm used for the encryption, all communication using
this key is readable.

Symmetric encryption is widely used due to its feasibility: it’s assumed that is
impractical to decrypt a message on the basis of the ciphertext plus knowledge of
the encryption/decryption algorithm. In other words, the algorithm doesn’t need
to be kept secret, only the key must remain secret. This is a great advantage for
manufacturers that can develop low cost chip implementations of data encryption
algorithms. The principal security problem concerns maintaining the secrecy of
the key. The essential elements that compose a symmetric encryption system are
reported in the following scheme:

Figure 2.2. Simplified model of a symmetric cryptosystem

In the example (Fig.2.2), the key is generated at the message source, then it
must also be provided to the destination by means of some secure channel. Another

16

2 – Cryptography

solution is available: a third party could generate the key and securely deliver it
to both source and destination.
An opponent (cryptanalist), which is assumed to know the encryption (E) and de-
cryption (D) algorithms, observing the cyphered informations (Y) but not having
access to the keys (K) or the plaintexts (X), may attempt to recover X or K or
both. If the opponent is interested in only this particular message, then the focus
of the effort is to recover X by generating a plaintext estimate Xn. However, often
the opponent is interested in being able to read future messages as well. In that
case an attempt is made to recover K by generating an estimate Kn.

This kind of algorithms can be split into two categories:

• Stream ciphers: operations executed on a single bit or byte at a time (Fig.
2.3);

• Block ciphers: operations executed on a group of bits (Fig. 2.4). Produce
an output block for each input block. On modern computers, algorithms use
typically block size of 64 bits.

Figure 2.3. Stream cipher using algorithm bitstream generator [34]

Symmetric ciphers are also used for key management [33], [34].

Asymmetric algorithms

“For practical reasons, it is desirable to use different encryption and decryption
keys in a crypto-system. Such asymmetric systems allow the encryption key to
be made available to anyone while preserving confidence that only people who
hold the decryption key can decipher the information” [36]. The development of
public-key cryptography is the greatest and perhaps the only true revolution in
the entire history of cryptography.
Asymmetric encryption is a form of cryptosystem in which encryption and decryp-
tion are performed using different but related keys, a public key and a private key.

17

2 – Cryptography

Figure 2.4. Block cipher [34]

The most widely used public-key cryptosystem is RSA. The difficulty of attacking
RSA is based on the difficulty of finding the prime factors of a composite number.
Public-key algorithms are based on mathematical functions rather than on substi-
tution and permutation only. The use of two keys has a deep impact in the areas
of confidentiality, key distribution, and authentication.
A common misconception is that public-key encryption is more secure from crypt-
analysis than is symmetric encryption. In fact, the security of any encryption
scheme depends on the length of the key and the computational work involved
in breaking a cipher. There is nothing in principle about either symmetric or
public-key encryption that makes one superior to another from the point of view
of resisting cryptanalysis.
A second misconstruction is that public-key encryption is a general purpose tech-
nique that has made symmetric encryption outdated. On the contrary, because
of the high computational demand of public-key encryption schemes, there is not
consistent reasons that symmetric encryption will be abandoned.

There is a feeling that key distribution is trivial when using public-key encryp-
tion, compared to the rather cumbersome handshaking involved with key distri-
bution centers for symmetric encryption. The procedures involved, the need for
a central agent to use certain protocols are not manageable and clearly nor more
efficient than those required for symmetric encryption. The public-key cryptogra-
phy concept evolved from an attempt to attack two of the most difficult problems
associated with symmetric encryption.

1. The first problem concerns the key distribution for symmetric encryption.
As mentioned before, it requires either that two communicants already share
a key, which somehow has been distributed to them, or the use of a key
distribution center.

18

2 – Cryptography

2. The second problem concerns the “digital signatures”. Since the use of cryp-
tography became widespread unto commercial and private purposes, then
electronic messages and documents would need the equivalent of signatures
used in paper documents.

The asymmetric algorithms have the following important characteristic.

• Giving only knowledge of the cryptographic algorithm and the encryption
key must be computationally unfeasible to determine the decryption key.

Some algorithms, like RSA, also exhibit the following additional characteristic.

• Either of the two related keys can be used for encryption, with the other
used for decryption.

Figure 2.5. Simplified model of asymmetric encryption

These public-key algorithms (Fig.2.5) have the following important character-
istic:

• Plaintext: is the original message or data in clear, ready to be used by end
user or as input for the cipher algorithm.

• Encryption algorithm: alters the plaintext contents performing various
transformations on it using the given public key.

• Public and private keys: are the pair of keys that have been selected;
one is used for encryption and the other is used for decryption. The exact
transformations performed by the algorithm depend on the public or private
key that is provided as input.

19

2 – Cryptography

• Ciphertext: is the scrambled message produced as encryption algorithm
output. It depends on the plaintext and the key. For a given message, two
different keys will produce two different ciphertexts. The ciphertext is an
apparently random stream of data and it is unintelligible.

• Decryption algorithm: takes the ciphertext and the private key and gives
as output the original plaintext.

The essential steps to create a public-key working system are the following:

1. Each user generates a pair of keys (public and private) to be used for the
encryption and decryption of messages.

2. Each user places the public key in a public register or other accessible file.
The companion key is kept private. Each user maintains a collection of public
keys obtained from others users.

3. If A wants to send a confidential message to B, A encrypts the message using
B’s public key.

4. When B receives the message, he decrypts it using her private key. No other
recipient can decrypt the message because only B knows his private key.

With this technique, all participants have access to public keys; private keys are
generated locally by each participant and therefore are never distributed. As long
as a user’s private key remains protected and secret, the incoming communication
is secure. If it’s needed, the system can change its private key but has to publish
the companion public key to replace its old public key [33], [34].

Key-based algorithms summary

Table 2.3 summarizes some of the important aspects of symmetric and public-key
encryptions. To discriminate between them, the key used in symmetric encryption
is called secret key, the others used for asymmetric algorithms are called private
and public key.

2.2.2 Attack types

The main goal cryptography wants to achieve, is to keep a message secret avoiding
it readability by third undesired parties. Eavesdroppers (also called adversaries,
attackers, opponents) are assumed to have complete access to the communications
channel between the sender and receiver. So they may intercept the encrypted
data. The science based on message plaintext recovering without access to the key

20

2 – Cryptography

Conventional Encryption Public-Key Encryption
Needed to Work: Needed to Work:

1. The same algorithm with the same key is
used for encryption and decryption.

1. One algorithm is used for encryption and a related
algorithm for decryption with a pair of keys, one for
encryption and one for decryption.

2. The sender and receiver must share the
algorithm and the key.

2. The sender and receiver must each have one of the
matched pair of keys (not the same one).

Needed for Security: Needed for Security:
1. The key must be kept secret. 1. One of the two keys must be kept secret.
2. It must be impossible or at least impractical to

decipher a message if the key is kept secret.
2. It must be impossible or at least impractical to

decipher a message if one of the keys is kept secret.
3. Knowledge of the algorithm plus samples of

ciphertext must be insufficient to determine
the key.

3. Knowledge of the algorithm plus one of the keys
plus samples of ciphertext must be insufficient to
determine the other key.

Table 2.3. Conventional and Public-Key Encryption comparison

is called cryptanalysis. An attempted cryptanalysis is called an attack. Success-
ful cryptanalysis may recover the plaintext or the key, it depends mainly on the
adversary’s objective. It also may find weaknesses in a cryptosystem that even-
tually lead to the previous results. The key loss through noncryptanalytic means
is called a compromise. Auguste Kerckhoffs, a Dutch linguist and cryptographer,
professor of languages in Paris, in the 19th century, first enunciated a fundamental
assumption in cryptanalysis: the secrecy of a cryptosystem must reside entirely
in the key. Kerckhoffs assumes that the cryptanalyst has complete details of the
cryptographic algorithm and implementation. Even that the encrypted message
is stille secure. Actually attackers don’t always have all these detailed informa-
tion. If an algorithm can’t break, even with knowledge of how it works, then they
certainly won’t be able to break it without that knowledge.

In literature terms attack and threat are commonly used to mean more or less
the same thing. Below their definition taken from Internet Security Glossary [37]:

• Threat: a potential violation of security, which exists when there is a cir-
cumstance, capability, action, or event that could breach security and cause
harm. It is a possible danger that might exploit a vulnerability.

• Attack: an assault on system security that derives from an intelligent threat.
This act is aimed at evading security services and violating the security policy
of a system.

Different ways to define and classify the attacks do exist. All of them are
useful to better understand how an attack is performed and why. The previous
distinction helps to distinguish among the attackers approach type.

Attacks can be classified in two categories (Fig.2.6):

• Passive attack: the eavesdropper’s goal is to obtain the transmitted infor-
mation. There exist two types of passive attacks:

21

2 – Cryptography

– Release of message contents: prevent an opponent from learning sensi-
tive or confidential informations, took from learning the contents of a
transmitted file.

– Traffic analysis: masking a communication, using the encryption (for
example), prevents an opponent to extract informations from the mes-
sage. Using the encryption isn’t enough to stop an adversary to observe
the pattern of these messages. Location and identity of communicating
hosts could be determined; frequency and length of messages exchanged
could be observed. These informations all together might be useful in
guessing the nature of the communication that is taking place.

This type of attacks don’t involve any alteration of the data, for this reason
is very difficult to detect them. Passive attacks are very difficult to detect,
because they do not involve any alteration of the data. Usually neither the
sender nor receiver is aware that a third party has read the messages or
observed the traffic pattern. The solution to face these attacks is prevention.
Use an encryption algorithm can be the right means against them.

Figure 2.6. Passive attack simplified model

• Active attack: involves every type of message alteration for any purpose,
performed by an adversary. They can be subdivided into four categories:

– Masquerade: an entity pretends to be a different one (path 2 of Fig.2.7
is active). Usually this type of attack goes with other forms of active
attacks.

22

2 – Cryptography

– Replay: a transmitted data and its subsequent retransmission are pas-
sively captured in order to produce an unauthorized effect (paths 1, 2,
and 3 of Fig.2.7 are active)

– Modification of messages: some portions of the original message is al-
tered, or is delayed, or reordered, to produce an unauthorized effect
(paths 1, and 2 of Fig.2.7 are active).

– Denial of service: normal use or management of communications facil-
ities is prevented or inhibited (path 3 of Fig.2.7 is active). This type
of attack may have a specific target; for example, an entity may sup-
press all messages directed to a particular destination (e.g., the security
audit service). Another form of service denial is the disruption of an
entire network, either by disabling the network or by overloading it with
messages so as to degrade performance.

They exhibit the opposite characteristics of passive attacks. They can be
easily detected but they’re difficult to prevent completely because of the wide
variety of potential physical, software, and network vulnerabilities. Instead,
the idea is to detect active attacks and to recover from any disruption or
delays caused by them. If the detection has a deterrent effect, it may also
contribute to prevention.

Figure 2.7. Active attack simplified model

The first possible solution to find out a password (or a passphrase) consists
on asking it directly to the person who knows it and, if needed, using persuasive,

23

2 – Cryptography

unconventional and maybe non legal approaching methods. Of course this isn’t a
suitable solution for our purpose [33], [34].
Brute-force attack is a direct type of cryptanalytic attack that consists in trying
many different keys hoping to guess the right one. It can be used to, theoretically,
find the key and decrypt encrypted data. Obviously it is not a good approach for
long keys, where the mean time needed to guess the right key, computing every
possible combinations, increases with its length.
In these cases, an efficiency solution, if applicable, is using a side-channel attack.
Its concept is based on gain information from the physical system implementation,
rather than from the algorithm weaknesses. It can be done, for example, having
access to temporary memory (cache like; it requires technical knowledge of the
system), measuring power consumptions or electromagnetic leaks, and so on. An
example of side-channel attack is simple power analysis (SPA); it attempt to in-
terpret the power consumption behavior of a device and deduce information about
its performed operations (Fig. 2.8) [38], [39].

Figure 2.8. SPA leaks from an RSA implementation [39]

In the following four general types of cryptanalytic attacks are described, in
order to account some of the basic techniques to get access to ciphered informa-
tions. Each of them assumes that the cryptanalyst has complete knowledge of the
encryption algorithm used [33], [34]:

1. Ciphertext-only attack: the adversary has the ciphertext of several mes-
sages, encrypted with the same encryption algorithm. His goal is to obtain
the plaintexts, or better to deduce the key.

2. Known-plaintext attack: the adversary has both ciphertext and plaintext
of several messages. His goal is to deduce the key or an algorithm to decrypt
any new message encrypted with the same key.

24

2 – Cryptography

3. Chosen-plaintext attack: the adversary has both ciphertext and plain-
text of several messages and chooses the plaintext that gets encrypted. It’s
clearly more powerful than known-plaintext attack because the attacker can
choose the plaintext block to encrypt which can give him the more amount
of information to deduce the key. Again his goal is to deduce the key or an
algorithm to decrypt any new message encrypted with the same key.

4. Adaptive-chosen-plaintext attack: the adversary has both ciphertext
and plaintext of several messages and chooses the plaintext that gets en-
crypted; moreover he can also change his choice based on the previous encryp-
tion results. This differs from the previous type, in which a single large block
of plaintext can be chosen to be encrypted. In adaptive-chosen-plaintext at-
tack a smaller plaintext block can be chosen to be encrypted, then another
one, on the results of the first, can be encrypted.

2.3 Cryptographic hash function

Hash functions are a peculiar type of functions that, given an arbitrary size data
in input (called pre-image), give a fixed size (generally smaller) data in output
(called hash value). No matter how large the input is. An example of simple
hash function would be a function that takes the input data and returns a byte
consisting of the XOR of all the input bytes.
In this thesis only one-way hash functions are considered. They are functions in
which f is known and doesn’t require any secret information to operate. Given y,
in the range of f, it is hard to find an x (is computationally speaking complicated
to obtain a value for x, it may require a very high number of computational steps
to be obtained, it is translated in terms of time) such that

y = f(x)

on the other hand, y needs to be easily computable [40]. One-way hash function
is also known with many different names which describe clearly its role: compres-
sion function, message digest, fingerprint, cryptographic checksum, manipulation
detection code. It covers a central position in modern cryptography and is an
essential part for many protocols. Cryptographic hash functions are widely used:
with public-key algorithms for both encryption and digital signatures, to check
the integrity (any input bit or bits change, with high probability, cause a change
to the hash code) and for the authentication. Because of its typical “many-to-
one” mechanism, the two strings equality can’t be determined with certainty, but
a reasonable assurance of accuracy can be achieved. However, a good one-way
hash function is also collision-free: it’s hard to generate two pre-images with the

25

2 – Cryptography

same hash value. An hash function can be used for both cipher and stream cipher.
About the first, either the single block and the whole message can have an hash
value.

A message authentication code (MAC) is a certain type of one-way hash func-
tion in which a secret key has been added. The hash value is a function of both the
pre-image and the key. The theory mentioned above, about classic hash functions,
is still valid, except that only someone with the key can verify the hash value.

The cryptographic hash functions are used in conjunction with symmetric ci-
phers for digital signatures. In addition, hash functions are used also for message
authentication [33], [34].

26

Chapter 3

Related Works

3.1 Introduction

To grant the security of an information transmitted between two different entities,
by mean of a potentially non secure communication channel, different mechanisms
could be employed (Fig 3.1):

Peer entity authentication

SERVICE

MECHANISM

Enc
hip

he
rm

en
t

Digi
tal

 sig
na

tur
e

Acce
ss

co
ntr

ol

Data
 in

teg
rity

Auth
en

tic
ati

on
 ex

ch
an

ge

Traf
fic

 pa
dd

ing

Rou
tin

g c
on

tro
l

Nota
riz

ati
on

Data origin authentication

Access control

Confidentiality

Traffic flow confidentiality

Data integrity

Nonrepudiation

Availability

Figure 3.1. Relationship between security services and mechanisms [34].

The potential security issues about remote update of FPGAs, employed in

27

3 – Related Works

embedded systems, has already been addressed by previous related works. T.
Wollinger et al. proposes in his article a state-of-the-art description of related
risks and how to prevent them. It provides also a list of open research problems,
explains the advantages of reconfigurable hardware for cryptographic applications
and summarizes both public and symmetric-key algorithm implementations on
FPGAs [41].

Nowadays, most FPGA vendors (as Microsemi, Lattice, Altera, Xilinx, etc)
offer bitstream confidentiality through bitstream encryption facilities [27] - [30],
[42], [43].
An Altera report analysis shows common security problems related to their specific
type of FPGAs; these security risks (listed below) can be spread also to each other
vendors FPGAs.

SRAM-based FPGAs store configuration file in an external volatile support
memory; it introduces three security risks [28]:

• Copying (cloning): it consists in make an identical copy of the FPGA content
without understanding how it works. These informations can be caught by
either reading the memory content or intercepting them at power-up, when
they’re sent from memory to FPGA. This technique is a primary form of IP
theft.

• Reverse engineering: the original design, in register transfer level (RTL) or
in schematic form, is recreated analyzing the configuration file. This type
of IP theft requires an high amount of time and resources and is reasonably
more complex than copying. Sometimes more work than create a design from
the scratch is required. But, on the other hand, the recreated design can be
enhanced, gaining a competitive edge.

• Tampering: it’s when the original design in the device has been modified or
replaced with different one. Tampered device may cause system malfunction,
security breach or steal sensitive data.

3.2 Bitstream confidentiality

The IP confidentiality is preserved encrypting the bitstream with a symmetric key
shared between the FPGA and the system designer. The key is usually stored by
the system designer on a volatile memory on the device. Obviously, regarding to
the three risks listed above, this memory is designed to prevent physical attacks;
not only the FPGA needs protection against attacks.
Bitstream encryption has proved to be an effective solution protecting designer’s IP

28

3 – Related Works

against clonation or reverse engineering and IP disclosure. Encryption method-
ology, suitable for dynamic partial reconfiguration (DPR), requires user logic to
decode encrypted partial bitstreams.

3.3 Bitstream integrity

Bitstream integrity is grant by vendors company whose systems need to be able
to:

• Confirm that the configuration data stored in an FPGA device is correct;

• Alert the system to the occurrence of a configuration error.

Usually they employ cyclic redundancy checks (CRC) for error detection. It de-
termines if data received have been corrupted during transmission. To accomplish
this, before the transmission, a function is used to calculate a checksum value for
the data and it attaches the checksum to the original data. At the receiver, the
same computation is done in order to get as result a checksum value of the orig-
inal data, which is compared to the attached one from the transmitter. If both
checksum values are the same, then the received data frame is correct and no data
corruption occurred during transmission or storage [44], [45].

But CRCs purpose is not to identify bitstream alteration in cryptographic
terms, it has been developed in order to detect unwanted data modification caused
by noisy or damaged transmission or storage media, this doesn’t include changes
by an intelligent third party like malicious attacker. Error detecting and correct-
ing codes were invented to detect these errors. These codes calculate a value from
the set of data and transmit or store it with data. Any hash function can ac-
complish the role of error detection; one of them is exactly the cyclic redundancy
check (CRC) which isn’t a cryptographically secure hash and therefore can’t re-
liably detect malicious changes in transmitted data, but it can provably detect
some common accidental errors like one or two bit or burst errors and can be im-
plemented very efficiently. Even if it’s coupled with encryption, it doesn’t grant
adequate security levels [46]. Therefore, some solutions based on cryptographic
hashing primitives have been developed [47], [48], [49].

3.4 Bitstream authenticity

A good technique to assemble a message authentication code, for implementing a
bitstream authentication mechanism, has been found in the dual-pass counter with
the Cipher Block Chaining Message Authentication Code (CBC-MAC in CCM
mode). Its main drawback is an increasing of the configuration process time due

29

3 – Related Works

to the separate authentication and encryption procedures [48]. Another step to
improve the system security has been done by providing both authentication and
confidentiality using two symmetric encryption cores running in parallel sharing re-
sources for efficient implementation. Authentication provides cryptographic-level
assurance of data integrity and its source. When the hash functions process incor-
porates a secret key, the outcome is called a Message Authentication Code (MAC)
and allows the receiver to verify that the message is authentic: it has not been
tampered with and the sender knows the key [49].

3.5 Further solutions

For latest FPGA functionalities as “partial dynamic reconfiguration” and “self
reconfiguration” a solution that aims to improve security (for SRAM FPGAs in
the case treated in [42]) through flexible bitstream encryption has been proposed.

Another related work concerns employing SHA-1 and AES algorithms (imple-
mented as C program) for authentication and encryption phases. This approach
shows that the total processing time, in both schemes, is not sufficient for practical
dynamic partial reconfiguration [50].

The same goal (grant both confidentiality and authenticity) has been achieved
by encrypting a partial bitstreams with AES-GCM cipher [51].

3.6 Available solutions drawbacks

Other security issues can’t be treated if the FPGA design itself isn’t secure. Using
an unsecured device embedded in a security system is not security-efficient [42].

As can be seen in section 3.2 the confidentiality of a DPR FPGA is grant
by encrypting its bitstreams; however, this requires user logic and computational
power.
For the integrity some solutions based on cryptographic hashing algorithm have
been used even if the CRC technique is not really suitable for this purpose; the
CRC requires some adjustments in order to recognize voluntary data alteration.
For the authenticity, more time is required to the FPGA for the configuration
process.

The main drawback of the above mentioned solutions is that they concern a
single secret shared between the system designer and the target device. Only
one entity can provide updated bitstreams, this entity is the system designer.
But in this thesis, the proposed scenario needs to let generate and distribute
dedicated bitstreams by software providers. The confidentiality and integrity of
these bitstreams must be preserved.

30

Chapter 4

System architecture and attack
model

4.1 Assumptions and models

The scenario assumed in this thesis is very close to the one used to describe the
mobile application deployment. In this proposed panorama, three main partici-
pants are involved: the software provider (SP), the hardware vendor (HWV)
and the end user.
End user buys the embedded system from the hardware vendor on which he (or
she) wants to run an application made by the software provider. A software
provider develops applications and sells them directly or through one or more
application stores. The purpose of the application stores is to reach the higher
number of possible costumers, who may have different platforms with different
OS and can access different application stores. This happens because application
stores are more handy than a specific software provider, thanks to their accessibil-
ity (for example by web servers), they’re widely known and commonly used by end
users. Stores are linked to payment gateways that allow different type of payments
(e.g., credit cards, PayPal) to the costumers. In this way the end users may pay
for the software they want to purchase.
The applications considered in this thesis are made of two parts: the software
executable code, and an FPGA bitstream file. The first one represents the classic
software used for current applications. The second one is an additional file used to
describe one or more IP cores required to improve the application performances.

A simple example could be a video player application which let end users to
watch video encoded in the HEVC (High Efficiency Video Coding or H.265) stan-
dards format. This is one of the latest video compression standard which, com-
pared to the previous one (H.264), at the same video quality, gives twice as much

31

4 – System architecture and attack model

the data compression. This gain is payed in terms of power computing required for
data decompression. In this case, an hardware accelerator, which is made specifi-
cally to execute HEVC decompression algorithm, is mandatory to avoid high CPU
usage. For this reason, an FPGA implementation could be a clever solution (as
said in chapter 1.2). However, it requires an additional file containing the algo-
rithm to be implemented aboard itself. This is the bitstream [52]. Every time the
application is executed the second file (bitstream) is dynamically reconfigured in
the FPGA.

In this thesis, the hardware execution platforms (HEPs) are systems on chip
(SoCs) composed of microprocessors and FPGAs featuring partial reconfiguration
and basic bitstream encryption mechanism. The hardware vendor designs and sells
the hardware execution platform on which software providers application will run.
It has all the knowledge about its products, this concerns security mechanism like
cryptographic keys. Another assumption is that hardware vendor offers services
by a web server (for example) to software providers and end users, like hardware
product authenticity, firmware updates, etc.

4.2 Security requirements

Software providers goal is to preserve the authenticity, the integrity and the in-
tellectual property of bitstreams deployed with its software (and of the SW itself,
obviously, but this is out of the scope of this thesis. Literature is already full of
available methodologies to approach this problem).

Preserve authenticity and intellectual property requires to satisfy the following
security requirements:

• Bitstream confidentiality: only software provider must be able to read in
cleartext a bitstream. The end user must notbe trusted because he may have
malicious intentions. Also other software providers aren’t trusted and the
application stores too. The only entity that may be reliable is the hardware
vendor due to legal binding contracts or Non-Disclosure Agreements (NDAs).

• Bitstream authentication: to use an FPGA bitstream, the end users must
have bought an original copy of the software. Use a bitstream file means that
the hardware execution platform can configure the onboard FPGA to support
the related software execution. Nevertheless the end user in no case must
be able to access bitstream in cleartext.

• Bitstream integrity: software provider in no cases wants that corrupted
bitstreams are delivered to end users, or used to configure the FPGA (pro-
ducing further security risks)

32

4 – System architecture and attack model

If only one of these requirements mentioned above isn’t met, the software provider
looses its aim: an attacker may be able to read the bitstream, start reverse engi-
neering or compromise its authenticity and integrity.

4.3 Attack model

For the purpose of this thesis, direct attacks to the physical system (hardware
execution platform) act to damage it, or make it inoperative (service denials for
example), are not considered. However, it is assumed that the reconfigurable
hardware, and other blocks associated to it, are resistant to physical attacks even
if hardware execution platform is situated in an hostile environment.

Two type of attacks are considered:

• Intellectual Property attacks:

– Adversary’s goal: violate the confidentiality of the bitstream, to make
illegal copies of the hardware.

– How it works: gain access to the cleartext version of the bitstream.
There are two ways to implement it: over the network links used to
deploy the applications; on the hardware execution platform tampering
external memory devices or interconnections.

• Integrity attacks:

– Adversary’s goal: introduce malfunctions in the execution of the related
software application or completely replace it with a previous version
(downgrade) to avoid, for example, security updates.

– How it works: integrity corruption of the bitstream, modifying its con-
tents or completely replacing it.

4.4 Adversary model

The attack model above identify two type of adversaries:

• Remote adversary: its attack aims at the network links, which connect
the application store to the hardware execution platform (Fig. 2.6 and 2.7.

• Local adversary: is a malicious end user (usually might be competing
firms) which has physical access to the hardware execution platform.

33

4 – System architecture and attack model

Both of them are well known as attackers by the software providers. They have to
be considered technically skilled, with considerable knowledge of the system and
the device they are attacking and with an high amount of resources, which are
also limited (for example in terms of time).

34

Chapter 5

Protocol and secure bitstream
exchange

5.1 Introduction

This chapter presents the solution to describe the secure reconfigurable computing
scenario used. More precisely, it analyzes the data exchange between the entities
(listed below) and the required protocols used to identify the hardware structures.

Both scenarios show 5 entities:

1. Software provider (W): it produces the application, made of the software
executable code and the FPGA bitstream file associated to it.

2. Hardware provider (H): it is the hardware execution platform manufacturer.
On its hardware execution platform the application, provided by the software
provider, will be executed. It is the only entity that has all the knowledge
about the hardware and knows the secret keys of the FPGAs.

3. Store (S): it is the means by which the application can be sold and deployed.

4. Client host (C): it is the hardware execution platform itself. It is identified,
in this thesis, with the end user, more precisely it represents the hardware
system the user has to interact with.

5. Configuration manager: it is the set of instructions that are used to program
the FPGA. The FPGA is the physical device on which the bitstream part of
the application is configured. It is surrounded by other hardware devices it
may need (e.g., external SRAM).

35

5 – Protocol and secure bitstream exchange

Figure 5.1. End user’s point of view of the application store structure

The end user doesn’t need to know all che complex structure that exists behind
the application market. During an application purchase he comes directly in touch
with just two entities: the application store and the payment gateway (Fig 5.1).

The entities listed before are attached to the following assumptions:

• the end user has an account on the store;

• the end user has access to different payment systems (e.g., credit card, Pay-
Pal);

• the store is linked to one or more payment systems;

• the FPGA is uniquely identified by an identification number called idFPGA;

• the FPGA and the hardware vendor share the FPGA key secret;

• end user, hardware vendor, store and software provider are able to create
secure channels to share informations;

• the software provider knows the hardware vendor, or has an account on its
servers.

Two different scenarios have been proposed to face security threats. A simpler
one (simple scenario), which satisfies minimum security requirements but it needs
also minimum hardware resources and complexity. A more complex one (complex
scenario), which fulfills the entire set of security requirements but needs trusted
computing hardware.

36

5 – Protocol and secure bitstream exchange

5.2 Simple scenario

Configuration
Manager

Client Host (C) Store (S)
SWprovider

(W)
HWprovider

(H)

{rc, id FPGA ,S, H(rc, id FPGA ,S)}KCS

rs,C, HKCS
(rc,rS ,C)

{rsw , id FPGA ,W, H(rsw , id FPGA ,W)}KSS

rw,S, HKSS
(rsw ,rw,S)

{rwh,BS , id FPGA ,H, H(rwh,BS , id FPGA ,H)}KSH

rh, {BS }KFPGA
,HKFPGA

(BS,id FPGA),W, HKSH
(rh,rwh, {BS }KFPGA

,HKFPGA
(BS,id FPGA),W)

rws, {BS }KFPGA
,HKFPGA

(BS,id FPGA),S, HKSS
(rws, {BS }KFPGA

,HKFPGA
(BS,id FPGA),S)

r�sw ,W, HKSS
(r�sw ,rws,W)

rsc , {BS }KFPGA
,HKFPGA

(BS,id FPGA),C, HKSH
(rsc , {BS }KFPGA

,HKFPGA
(BS,id FPGA),C)

rcs,S, HKSS
(rcs,rsc ,S)

load({BS }KFPGA
)

verifyhmac

OK/KO

KCS KCSkey agreement

KSS KSSkey agreement

KSH KSHkey agreement

KFPGA KFPGAfactory default

Figure 5.2. Simplified model of a symmetric cryptosystem

• idFPGA: identification value to identify a physical FPGA device;

• C, S, W, H: entity receiver identifier;

• r... and r... ...: random and secret number for challenge-response identification
(strong authentication)1[53];

• H(...): hash value;

• BS: bitstream file;

• {...}K... : encrypted information with a specific key;

37

5 – Protocol and secure bitstream exchange

In this scenario (Fig. 5.2) the following procedural steps are considered:

1. The user decides to buy (download) an application, developed by the software
provider, from the store. This application is made of software executable
and bitstream file which will run on the FPGA. Store redirects the user to
the payment gateway based on the payment typology chosen. When the
payment procedure is successfully completed, the payment gateway notifies
the store. The store initializes the bitstream sending procedure, asking it to
the software provider. To do that the idFPGA is mandatory to identify the
FPGA authenticity. Obviously to share this kind of information (e.g., credit
card number, idFPGA) a secure channel which uses an agreed symmetric key
KC is needed. Confidentiality, data integrity and authentication must be
ensured.

2. The store notifies the software provider about the user purchase; the FPGA
informations (idFPGA) are forwarded to the SP via a secure channel using an
agreed symmetric key KS.

3. The software provider sends, by a secure channel, the bitstream and the
idFPGA to the hardware vendor. The symmetric key used for this communi-
cation is called K.

4. The hardware vendor encrypts the bitstream using the FPGA key (related
to the idFPGA) and sends back the ciphered bitstream {BS}KFPGA

to the
software provider. For this communication the same channel established
before using the key K can be used.

5. The software provider sends back the ciphered bitstream {BS}KFPGA
to the

store. Also in this step the channel has already been established before so
this one is used for the communication, it uses the key KS.

6. Both the ciphered bitstream {BS}KFPGA
and the software executable are

available and the end user can download them from the store.

An enhancement hypothesis concerns the chance of the hardware vendor to
locally store the bitstream to avoid re-sending of it from the software provider to
reduce communication costs.

1The claiming entity proves to the verifying entity its identity by demonstrating knowledge of
a secret associated with the verifying entity (this secret must not be revealed during the protocol).
This is accomplished providing a response, which depends on both the entity’s secret and the
challenge, to a time-variant challenge. Time-variant parameters can be used in identification
protocols to counteract some type of attacks (e.g., replay attack) [53].

38

5 – Protocol and secure bitstream exchange

As happens with firmware, operating systems and, more in general, with soft-
ware, the bitstream might need to be updated, due to bug fixing or new function-
ality additions. So, if the software provider develops a new bitstream version, it
has to notify the involved infrastructures in order to send to the end user the new
bitstream file version.

1. The application connects to the software provider to look for updates.

2. If a new version of the application is available the host sends its idFPGA to
the software provider that checks if it corresponds to a valid customer.

3. Software provider and hardware vendor establish a secure channel and the
first sends the updated version of the bitstream file and the idFPGA to the
second one. For the communication the symmetric key K is used.

4. The hardware vendor encrypts the bitstream using the FPGA key (related to
the idFPGA) and gives the ciphered bitstream back to the software provider.
The secure channel is the one created in the step before (3).

5. The host downloads the updated application which includes the ciphered
(updated) bitstream {BS}KFPGA

.

This presented scenario requires that software provider trusts the hardware
vendor, this is true thanks to legal contracts. Hardware privacy can’t be achieved
because the hardware vendor knows which software is bought by an user which
has a specific idFPGA.

5.3 Full scenario

A possible solution based on FPGA which includes functionalities like a trusted
platform module, is described in the following scenario. It is based on the direct
anonymous attestation (DAA) protocol, it grants the authentication preserving
the host privacy.

In this case the idea is that the FPGA, by the DAA protocol, is recognized from
the hardware vendor as genuine and obtains a valid DAA credential. This time, the
request is made by means of the certificate (AIK−cert) created in this way instead
of using the idFPGA which gives informations about the host. After the purchase
of an application by the user (passing through a payment gateway), the software
provider checks the FPGA genuineness verifying, with the hardware vendor, the
certification using the DAA verify protocol. If it’s not marked as “rogue” the SP
proceeds sending the bitstream file encrypted by an encryption key called KS, used
to secure the channel, and the key KS itself using the (AIK − PUB) extracted

39

5 – Protocol and secure bitstream exchange

from the (AIK − cert) and gives them back to the store which let them available
for the download by the user.

40

Chapter 6

Platform Implementation

6.1 Introduction

In the supposed scenario (chapter 5.2, Fig. 5.2), an end user buys an application
found on an application store. After the buying process ends, the application is
downloaded from the store to the end user device (commonly an external memory
device like an SD card). This application is made up of two different parts: a
software program and a FPGA bitstream file. When the user launches the installed
application, the software part will run on the embedded microprocessor, while the
bitstream is used to program the FPGA device. Then, every time the software
running on the CPU needs to execute some complex operations, which have been
designed to be executed by an hardware accelerator, it relies on the programmed
FPGA. The execution of these operations are, in this way, speeded up; during this
period of time, the CPU is available to execute other operations until the FPGA
finishes its duty.

The bitstream considered in this thesis is made up of two files that contain
respectively the algorithm and the data used to program the FPGA. These are
called VME files and they’re compressed binary files created by the deployment
tool starting from an XCF file1 (Fig. 6.1). They allow a system containing an
FPGA device to program it via JTAG by using the embedded microprocessor. The
CPU, according to the VME files interpretation, manipulates the JTAG signals of
connected target device in order to program it [54].

This thesis project main objective is to secure the bitstream granting its confi-
dentiality during the FPGA programming operation and verifying its authenticity

1“An XCF file is a configuration file used by Diamond Programmer and for programming
devices in a JTAG daisy chain. The XCF file contains information about each device, the data
files targeted, and the operations to be performed.” [54]

41

6 – Platform Implementation

Figure 6.1. VME file generation flow [54]

and integrity. It means that the ciphered bitstream files, after being stored into the
SD card, must be securely managed by the software to program the target device,
and their plaintext version mustn’t be in any case, even if in portion, stored into
the external memory that’s considered non secure. At the same time an hashing
function checks both integrity and authenticity of the informations.

Code in C has been written in order to program the FPGA in a secure way,
reading the ciphered bitstream files from the SD memory card. As can be seen in
the following sections, the embedded system firmware2 has been updated (employ-
ing a STMicroelectronics tool) and their low-level commands have been used to
create other high-level functions (to manage, decrypt, check and elaborate data).

To complete the case analysis, of the securing FPGA bitstream management,
the following assumptions have been done:

1. the FPGA and all the other blocks related to it are considered resistant to
physical attacks (the end user can’t physically gain access to the FPGA or
its interconnection links);

2. the bitstream is made up by two files algorithm and data; these are gener-
ated from an hardware description language (HDL) like VHDL writes by an
hardware designer.

3. the FPGA is linked to a microcontroller which let the partial reconfiguration
of it;

4. the ciphered bitstream is downloaded and stored into an external memory
(an SD card);

2The firmware is a set of data and low-level commands that allow the device to perform specific
tasks. Firmware also provide a hardware-independent environment to realize more complex
software [55].

42

6 – Platform Implementation

5. the bitstream is quite big, so it can’t be entirely decrypted and stored aboard
an internal memory (RAM or Flash);

6. the bitstream is encrypted in blocks;

7. the encryption algorithm used is the advanced encryption standard (AES)
[56] employed in cipher block chaining (CBC) mode with 16 bytes key length
and 16 bytes initialization vector (IV) length:

8. the secure hash algorithm (SHA) [57] used to analyze the bitstream, is SHA-
256 [58]. It returns a digest value of 256 bit (32 Byte) length;

9. to grant the bitstream security its plaintext version must never be saved into
the external memory (SD card), even if it’s just a block or a portion of it.

6.2 Hardware architecture

The hardware system must be resistant against physical attacks. This means that
an adversary (or whoever may have direct access to the device) can’t easily gain
access to the data stored into the FPGA and its support memory (e.g., the SRAM
for SRAM-based FPGAs), and to the interconnection links, which connect the
FPGA to other devices too.

To achieve these requirements a unique embedded SoC, which integrates aboard
microprocessor, memories and FPGA, could be a good solution (other information
about the connection between the FPGA and the microcontroller can be found
in appendix A). For this reason the SEcubeTM development kit board [59] has
been chosen (Fig. 6.2). At the same time this chip grants a good level of security
against adversaries attacks [60].

6.2.1 SEcubeTM development kit board

The SEcubeTM (Secure Environment cube) Open Security Platform is an open
source security-oriented hardware and software platform. The board hardware
has been designed by Blu5 Group [61]. Whereas the software libraries have been
developed among five international research institutions3.

3

Blu5 Labs Ltd, Blu5 Group, Ta Xbiex, Malta - Reference: Antonio VARRIALE
CINI Cyber Security National Lab, Torino, Italy - Reference: Paolo PRINETTO
Lero, The Irish Software Research Centre, University of Limerick, Limerick, Ireland - Reference:
Tiziana MARGARIA

43

6 – Platform Implementation

Figure 6.2. SEcubeTM development kit board and BGA chip [59]

The software libraries allow non expert developers to produce software using
provided security functions, they can experience the SEcubeTM platform as a high-
security black box. On the other hand, experts in cyber security can enjoy the
openness to verify, change or rewrite the pre-existing software code at any system
level.

The SEcubeTM device family consists of:

• the integrated circuit, SEcubeTM Chip or SEcubeTM (Fig. 6.2);

• the development board, SEcubeTM DevKit (Fig. 6.2);

• the USB stick, USEcubeTM Stick (Fig. 6.3).

The USEcubeTM Stick (Fig.s 6.4, 6.5) has been designed to be compatible
with any Operating System and the SEcubeTM functionalities are accessible to
applications and services without installing any driver. The SD card memory slot
aboard USEcubeTM Stick let the end user to decide its capability and speed. The
previous developed firmware is injected by mean of an embedded secure bootloader
because the USEcubeTM Stick isn’t provided of JTAG interface has SEcubeTM

DevKit does.

LIRMM, CNRS, Montpellier, France - Reference: Giorgio DI NATALE
TU Dortmund, Dortmund, Germany - Reference: Bernard STEFFEN

44

6 – Platform Implementation

Figure 6.3. USEcubeTM Stick final commercial product [59]

Figure 6.4. USEcubeTM Stick internal blocks scheme [62]

Figure 6.5. USEcubeTM Stick dimensions and internal physical structure [59]

45

6 – Platform Implementation

To develop the software for SEcubeTM , the DevKit has been employed; it has
been linked to a PC by mean of an USB cable; a SD external card memory has
been plugged into the board; to program the SoC, the JTAG interface has been
used by mean of the St-Link/v2 (Fig. 6.6), which has been connected to both the
DevKit board and the PC.

Figure 6.6. St-Link/v2 kit: device and cables [59]

Focusing on the hardware part of SEcubeTM , it is composed of three security
embedded elements, which give a versatile security environment in a single chip
(Fig. 6.7):

• STM32F4 MCU based on ARM 32-bit Cortex®-M4 processing unit;

• MachXO2-7000 FPGA;

• SLJ52G certified security controller (Smart Card);

Suitable for any high-end design solution, it delivers integration of a flexible, con-
figurable and certified secure element [63].

In this thesis the Smart Card above mentioned is not used, for this reason it
will be no longer treated in the follow. The main information about the system
devices have been summarized:

46

6 – Platform Implementation

Figure 6.7. SEcubeTM internal blocks scheme [62]

CPU hardware features

• Core: ARM 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accel-
erator, frequency up to 180 MHz, MPU and DSP instructions;

• Memories :

– Flash memory : 2 MB organized into two banks allowing read-while-
write;

– SRAM : 256+4 KB, including 64-KB of CCM (core coupled memory)
data RAM;

• Clock : 4-to-26 MHz crystal oscillator, internal 16 MHz factory-trimmed RC,
internal 32 kHz RC with calibration;

• Other specs are: Low power: Sleep, Stop and Standby modes, Timers: up
to 17; SPI: Master/Slave configurable; USART; I2C interface; SD/SDIO
interface: up to 48MHz, 1bit-4bit modes supported; True random number
generator; CRC calculation unit; RTC; USB Connectivity; Connections to
SmartCard; Connections to FPGA.

47

6 – Platform Implementation

The CPU provides also a standard JTAG interface useful for programming and
debugging. This interface can be permanently disabled once the development cycle
is over, protecting the device from physical hardware lock.

FPGA hardware features

• 6864 LUTs and 47 I/Os, which may be used as a 32-bit external bus able to
transfer data at 3.2 Gib/s;

• Embedded and distributed memory:

– 240 Kbits SysMEMTM embedded blocks RAM;

– 54 Kbits distributed RAM;

– Dedicated FIFO control logic;

• 256 Kbits On-Chip User Flash Memory;

• Other specs are: Flexible I/O Buffers; Wide Frequency range (10 MHz to
400 MHz); Non-Volatile infinitely reconfigurable; In-field logic configuration
while system operates; Ultra low power device.

The FPGA JTAG is connected only to the embedded CPU, which manage both
debug and programming operations (Fig. A.1).

6.3 Development flow

6.3.1 FPGA

FPGA programming code analysis

The SEcubeTM software is already equipped with libraries, which contain functions
useful to program the FPGA, starting from a bitstream file.

The API (application programming interface) function given to the software de-
veloper is called B5 FPGA Programming ; recall this function let starts the FPGA
programming process.

In this first part of the project, the FPGA programming algorithm has been an-
alyzed: the bitstream is given in “TEST FPGA.h” file in which algorithm and data
parts are split into two arrays, fpga alg[g iAlgoSize] and fpga data[g iDataSize],
where g iAlgoSize and g iDataSize are the array lengths given from the bitstream
file dimensions.

48

6 – Platform Implementation

B5 FPGA Programming function (Fig. 6.8) does something more than just
programming the FPGA, it checks the VME version, starts and stops the hard-
ware for the data communication with the FPGA.
The VME version is verified reading the first 8 bytes of the fpga alg[] array4.
The FPGA programming part is executed by ispProcessVME function. This is
based on the switch-case statement and it remembers a FSM (finite state ma-
chine) structure (Appendix C.1, Fig. C.1). The sequence of states of this “FSM”
is provided by the algorithm bitstream array, whereas the other array, the data
bitstream array, contains the informations used to program the FPGA.

The ispProcessVME function gets the data from the arrays by mean of another
function called GetByte.

GetByte function (Fig. 6.9) checks which of the two bitstream arrays it needs
to access and then returns exactly a single byte (uint8 t). Obviously this function
needs some parameters to work correctly. They are: vector index (useful to get
the righteous byte from the bitstream array) and bitstream type (mandatory to
distinguish between algorithm ora data arrays).

Testing the proposed bitstream

After the algorithms analysis, some modifications have been introduced to the
project: the FPGA files have been added, and the function B5 FPGA Programming
has been recalled directly from the main of the project.
A first test has been launched on the board in order to verify the properly func-
tioning of both, the software and the FPGA.
The result has been achieved, as expected reading the VHDL source code: the 8
LEDs provided on the SEcubeTM DevKit have been turned on in sequence, one
after another (Fig. 6.10).

6.3.2 SD card file system

The SD card has been employed to achieved one of the previous assumptions
(in chapter 6.1, the 4th element of the list): to download the bitstream files,
”algo.vme” and ”data.vme”, on the device and to store them somewhere. Hence
the need to introduce a file system aboard the SEcubeTM software.

A file system contains all the criteria used to manage and organize data stored
in a storage device. It is essential, for example, to distinguish where a file ends
and another one begins, but also to define filenames and directories specs, to

4Afterwards in the thesis, the buffer arrays content will be filled reading the data from two
files (“algo.vme”, “data.vme”); the VME version is stored at the top 8 bytes of “algo.vme” file.

49

6 – Platform Implementation

Figure 6.8. “B5 FPGA Programming” function block diagram

manage the space, to restrict the access, to maintain the integrity and much more.
Nowadays a wide variety of FSs (file systems) type exist, they have been developed
in order to grant different advantages, for example, according to the hardware
device type [64].

FAT file system

Among the different types of FS, the one used in the project to manage the SD
card memory is FatFs (File Allocation Table File System) by elm-chan [65]. It is a
generic FAT file system module for embedded systems. It is written in compliance
with ANSI C (C89) and completely separated from the disk I/O layer, making it

50

6 – Platform Implementation

Figure 6.9. “GetByte” function block diagram

independent from the platform (Fig. 6.11). It is compatible with the Windows
FAT version and gives various configuration options to personalize it.

Create STM32F4 firmware using STM32CubeMX

To add the FatFs to the project, a new one has been created. In this way all the
SEcubeTM APIs created before are lost. The idea is to start from a newer and

51

6 – Platform Implementation

Figure 6.10. SEcubeTM DevKit board, highlighted LEDs [59]

clean firmware version, on which the FatFs libraries and the SEcubeTM APIs will
be added.
To build the firmware, a specific software designed by STMicroelectronics, called
STM32CubeMX has been employed. Its graphical environment allows to generate
the C initialization code for STM32 microcontrollers and an easy way to person-
alize the code and systems properties. For example, the FatFs file system can
be personalized directly by mean of STM32CubeMX environment, changing its
characteristics without acting directly on the FatFs C files but setting them on a
comfortable condition [67].

Test FatFs libraries

To use the SD card, with FatFs, an SD file system object has been created and then
it has been linked to a compatible I/O driver (the low level device control). Then
two file objects (due to the two bitstream files assumption) have been allocated
and later opened with read access only. Once they’ve been initialized, they can
be accessed in reading mode by mean of the function f read() in which, one of its
parameters is the number of bytes to read; this is the key point to fill the bitstream
buffers.
Another useful function is the f lseek(), it moves the read, or write, file pointer to

52

6 – Platform Implementation

Figure 6.11. FatFs middleware module architecture [66]

• BSP : board support package;

• HAL: hardware abstraction layer.

the given (as parameter) offset value.

Programming FPGA using bitstream from SD card

In the previous section, all bitstreams (algorithm and data) were stored into the
microcontroller. However this is not a realistic case, because may happen that
the internal memory can be occupied by other software or its capability isn’t big
enough to store them all.
The solution employed is to keep this data into an external memory (on the SD
card) and to store a portion of these files in a buffer inside the microcontroller
(on an internal memory). This choice has been taken in order to avoid an high
number of accesses to the files which would increase the time required to program
the FPGA. This is true only if the buffer size is large enough (at least more than
a single byte because the programming FPGA function gets 1 byte per time to
operate).
The total available internal memory space is about 256+4 kB (SRAM) including
64-kB of CCM. The file sizes are:

• g iAlgoSize = 129857 byte

• g iDataSize = 191421 byte

53

6 – Platform Implementation

Then 321278 byte (roughly 314 kB) are needed to store both bitstream in memory
but they’re clearly oversized for the internal memory (RAM) availability. For
this reason two different buffers are added to the code: one for the algorithm
bitstream (fpga alg[]) and the other for data bitstream(fpga data[]), both of
them with 16384 bytes (16 kB, called FPGA BUFFERSIZE) allocated, for a total
amount of RAM usage of 32 kB, dedicated only to bitstream storage. To reduce
as much as possible the number of modifications caused to the original SEcubeTM

software, two new files have been created and added to the project: the source file
“secure FPGA.c” and its header file “secure FPGA.h”5.
Their main roles are:

• to initialize, manage and terminate the file system to gain access to the SD
card;

• to initialize and terminate both “algo.vme” and “data.vme” files (f open,
f close);

• to manage the access to these files (f read, f lseek);

• to fill the buffers (fpga alg[], fpga data[]) under specific request (by through
fillFILEvector function, Fig. 6.13);

Some functions, in the already existing “FPGA.c” source file, have been modified
in order to get access to the “secure FPGA” files:

• in B5 FPGA Programming have been added the functions to initialize and
terminate the SD file system session;

• in GetByte have been added all the checks required to find the actual Index
(of an array) position, to decide if its needed to re-fill the buffer, reading
bytes from one of the two files by mean of the fillFILEvector function; this
code is essential to verify if the data required from the program is inside the
buffer or in another logic block of the file; there are two different possibilities:

– the data is in the actual block stored in the buffer: it is simply returned
to the GetByte function;

– the data is in another block, different from the one actually stored in
the buffer: a request is sent to the system asking to read from the file
the right block of bytes and to store them into the buffer.

5At this point of the project both of this files don’t contain any security functions

54

6 – Platform Implementation

• GetByte function gets the data passing through another function, called se-
lectANDpick, which simplify the access to the right buffer (among fpga alg[]
and fpga data[])

After these updates, the microcontroller FLASH memory has been programmed.
The software has been tested to be ensure that the FPGA programming, using
the two bitstream files on the SD card, works correctly.

6.3.3 Data decryption

Up to this point the two bitstream files have been considered as plaintext; but for
this final project step they will be assumed to be ciphered. Therefore a decryp-
tion procedure needs to be added to the previous created files (“secure FPGA.c”,
“secure FPGA.h”) in order to get the plaintext which will be used to program the
FPGA.
It’s very important, in order to preserve the security of the bitstream, not to
save any part of the plaintext on the external memory. On the other hand, the
SEcubeTM grants a safe environment ensuring a secure communication on the in-
terconnections between microcontroller and FPGA.

Encrypted data type

The ciphered version of the bitstream files have the following properties:

• algo.vme.enc

– key : b’0123456789ABCDEF’

– key length: 16 byte (128 bit)

– IV6: x’a230a27f051232312227d4b4cd8cf5a7’

– IV length: 16 byte (128 bit)

– plaintext bitstream length: 129857 byte

– ciphered bitstream length: 129888 byte

• data.vme.enc

– key : b’0123456789ABCDEF’

– key length: 16 byte (128 bit)

6Initialization Vector

55

6 – Platform Implementation

– IV7: x’8d02439e358dc738346a1761b132fb82’

– IV length: 16 byte (128 bit)

– plaintext bitstream length: 191421 byte

– ciphered bitstream length: 191456 byte

Figure 6.12. Bitstream file partitioning

Both these files have been encrypted using the AES algorithm in CBC mode
(Chapter 7.2, Fig. 7.2, 7.3) . This is a block cipher mode of operation, it means
that the plaintext and the ciphertext are split in blocks of the same size.
In this project, to program the FPGA, the CBC is used only in decryption mode:
to decrypt the generic block i the algorithm needs:

7Initialization Vector

56

6 – Platform Implementation

• ciphertext block i

• ciphertext block i-1 (only the latest 16 byte are needed because this is the
IV)

• the key

The case i=1 requires a special treatment because it hasn’t a i-1 block (a block
before itself), but it needs the initialization vector (IV).

To use this algorithm, the ciphertext decrypted has the same IV length.
This means that the buffer size must be, in order to avoid code drawbacks, a
multiple value of the IV length: for this reason, in the previous chapter the
FPGA BUFFERSIZE has been fixed at

16kB = 210 · 16 byte = 1024 · 16 byte = 16384 byte

Bitstream decryption

The SEcubeTM software already provides some libraries that contain encryption
and decryption algorithms.
A block of encrypted data has been read from the ciphered bitstream file, it has
been decrypted and then the buffer has been filled with the plaintext bitstream
data. To do that, two functions have been added to “secure FPGA.c” file:

• fpga programming cryptoinit : initializes the crypto environment and the pro-
cedure type (decryption in this case), set the algorithm type, it requires the
decryption key;

• fpga programming decrypt : decrypts a specified amount of data passed to it;
this requires the initialization vector.

They use the primitive security functions given by the SEcubeTM software.
The fillFILEvector function (Fig. 6.13), after reading the data from a cipher
bitstream file, it recalls these two functions to start the decryption procedure to
get the plaintext bitstream version and then to fill the buffer.
The decrypt function recalls the AES B5 Aes256 Update function which requires
the number of ciphertext blocks to decrypt. In order to respect the bitstream par-
titioning, in accord to the FPGA BUFFERSIZE, every buffer contains a number
of blocks (ciphertext to be decrypted) equal to:

FPGA BUFFERSIZE

IV length
=

16384 byte

16 byte
= 1024

blocks

buffer

57

6 – Platform Implementation

Figure 6.13. “fillFILEvector” function block diagram

58

Chapter 7

Security Analysis

7.1 Introduction

All the following security statements are assumed to be definitely secure in respect
to the infeasibility hypothesis. This concerns the impossibility for an adversary to
derive cryptographic algorithm secret informations or to invert a digest algorithm.
The assumption can be considered valid if the cryptographic algorithms used are
robust and with opportune key lengths.

7.2 Encryption mode

In first place, the objective was to implement the AES cipher algorithm in ECB
mode (Fig. 7.1), but, due to its low security level, it has been changed into the CBC
mode (Fig. 7.2), which grants more security paying it in terms of implementation
complexity and design constraints.

Figure 7.1. ECB mode for AES algorithms

The ECB main drawback is that, after the encryption, any resident properties
of the plaintext might well show up in the ciphertext (this can be easily seen in

59

7 – Security Analysis

Figure 7.2. CBC encryption mode for AES algorithms

Fig. 7.4 where some informations may be comprehended in the ECB version of
the encrypted logo). Obviously not as clearly, but analyzing the patterns these
properties can be deduced.
On the other side ECB is faster (doesn’t need to compute an EXOR operation)
than the CBC mode, and its operations can be parallelized. Also the CBC oper-
ations can be parallelized but it’s harder and it works mainly for the decryption
mode (Fig. 7.3).
The IV, for CBC mode, doesn’t need to be secret, but it must be unpredictable
and its integrity preserved [68].

Figure 7.3. ECB decryption mode for AES algorithms

Two graphical examples have been given in order to better understand the
ECB main drawback: some properties about the plaintext information can be
understood even after the encryption (Fig. 7.4 and 7.5). In these examples, the
key employed for the encryption is obtained by an hashing function which, given
any length input string, gives a fixed length output value. This result is used as
encryption key.
From a graphical point of view, properties of encrypted photographies are much
more complex to be comprehended (Fig. 7.5) than the clip art ones (Fig. 7.4).

60

7 – Security Analysis

This is true because a photography has much more color informations than a
simple clip art, like the one used in the example. Moreover, the absence of well
defined borders, in terms of colors, between different objects in photos enhance
this effect. This explains why the border of the board is well recognizable on a
monochromatic background, instead, their details, like the integrated circuits, are
not.

61

7 – Security Analysis

(a) Plaintext (b) AES ECB 128 bit (c) AES CBC 128 bit

(d) AES ECB 256 bit (e) AES CBC 256 bit

Figure 7.4. Graphical examples of AES encryption using ECB and CBC modes,
with two different key length: 128 bit and 256 bit. The source image used is
the Polytechnic of Turin logo (a clip art). The encryption key employed by the
algorithm is obtained by the input string: “CARLO”.

62

7 – Security Analysis

(a) Plaintext (b) AES ECB 128 bit (c) AES CBC 128 bit

(d) AES ECB 256 bit (e) AES CBC 256 bit

Figure 7.5. Graphical examples of AES encryption using ECB and CBC
modes, with two different key length: 128 bit and 256 bit. The source image
used is a photo. The encryption key employed by the algorithm is obtained
by the input string: “CARLO”.

63

7 – Security Analysis

7.3 Types of attackers

For the scenario presented in chapter 5.2 two different types of attackers has been
considered and they need to be countered:

• MITM - Man in the middle

• MATE - Man at the end

7.3.1 MITM - Man in the middle

The MITM is an attacker that can intercept messages or impersonate one of the
endpoints. If it happen the adversary may not only read the messages, but also
modify or delete some of these. This is the standard security problem in computer
networks and lots of different solution already exist to protect against them. A
strong peer authentication mechanism avoids the impersonation over the commu-
nication channel; a key exchange allow to agree on the symmetric key system to
be used to protect the data which flow over the channel using faster symmetric
algorithms; then, with the symmetric agreed algorithms, ensure the data confiden-
tiality (e.g., AES), integrity and authentication (e.g., keyed digest, HMAC using
SHA256).

7.3.2 MATE - Man at the end

The MITM implicitly assumes trusted endpoints, but this is not acceptable if also
MATE attackers are assumed to be interested in obtaining the bitstream and their
attacks are more difficult to be addressed.
A MATE attacker has physical access to the device, it allows him to employ tools
and techniques to reverse engineering the system and to tamper it with the software
(e.g., debuggers, emulators). He has different ways to get the bitstream: using the
I/O subsystem, the memory management subsystem, the communication channel
used by the FPGA, and many others. He also has full control on the platform
hardware. It means that the adversary can read and write every memory location,
processor registers included. In the same way he has free access to the storage
medium.
The only platform part of the user’s environment, that can be considered secure is
the FPGA; its stored informations and executed routines respect the confidentiality
criterion.

64

7 – Security Analysis

7.4 Simple scenario security analysis

The simple scenario introduced in chapter 5.2 has been analyzed under the se-
curity point of view. Two communication peers are able to encrypt and decrypt
messages by mean of a symmetric key. When one of the end users receives an
encrypted message, which can be decrypted with the symmetric key, he suppose
the message has been delivered by the other end user. The idFPGA has been sent
from the client to the hardware vendor passing through the store and the software
provider. In every communication step a key is introduced to secure the idFPGA.
In this way, if strong encryption algorithms have been used, a MITM attacker can’t
read the idFPGA. Moreover, the peers performing symmetric authentication avoid
the impersonation and using data authentication and integrity mechanism avoid
modifications which can lead to DoS attacks. Ad hoc security mechanism aren’t
required. The actual channel protection implementations already accomplish the
security requirements.

The bitstream can be read in clear only by the software provider and the
hardware vendor. All the time it is shared across the channel it is encrypted:
when the SP need to send it to the HWV, it encrypts the bitstream using the
shared key K ; when the HWV receive the bitstream, it decrypts it using the key
K and encrypt it with the key KFPGA, which correspond to the physical devices
specified by the idFPGA, and sends it back to the client passing through the SP
and the store.

The encrypted bitstream, which has been downloaded into the client device,
is stored in an external memory device. There it is read and then decrypted by
mean of the key KFPGA obtaining the plaintext version of the bitstream (which
is not saved into external memory storage devices). The process to program the
FPGA starts and when it finishes this clear version of the bitstream is deleted.

Therefore, MITM and MATE attacks that aim at reading the bitstream are
avoided.

65

Chapter 8

Conclusions

The project main goal is to allow a secure bitstream exchange among multiple
independent and unrelated parties. A fully working solution of a secure FPGA
programming process has been realized. The SEcubeTM platform has been adopted
as physical environment and it has demonstrated to be a good choice, thanks to
its architecture with good resources against physical attacks.

The security requirements are mandatory to avoid both unwanted bitstream
files disclosure and malicious injection. To achieve that confidentiality, integrity
and authenticity requisites, different security algorithms have been adopted:

• Confidentiality is grant by mean of the AES encryption block algorithm that
works in CBC mode with a key-length of 256 bit;

• Integrity is grant by a digest algorithm which has been employed by mean
of a SHA 256 function;

• Authenticity is grant by a signature algorithm which has been employed by
mean of a SHA 256 function.

A module able to verify the correctness of the received bitstream and to de-
crypt it has been provided. Moreover it has been integrated with the remainder
of the open-source firmware available on the prototyping platform. The designed
structure is able to program the internal FPGA with a protected bitstream re-
motely downloaded. The integration of this module allowed to realize a possible
future scenario for mobile applications deployment where reconfigurable devices
assist the main processing unit with the computation.

The adopted solution is not the only possible one. For example, a single
buffer can be used, filling it with the “data” or “algo” file content according to
the FPGA programming algorithm request. Or maybe a different buffer length
(FPGA BUFFERSIZE) can be set, always respecting the design constraint of

FPGA BUFFERSIZE = N · cipher block size

66

8 – Conclusions

where N is an integer number and, according to this thesis assumptions, the cipher
block size is equal to 16 byte.

Some possible future project steps could be:

• Reducing the API functions given by FatFs, acting on the C code ore directly
on the STM32CubeMX environment, to easily modify some parameters like:
FS READONLY, FS MINIMIZE, VOLUMES. These parameters let choose
to the developer what functions he doesn’t need and to remove them.

• employing different security structures;

• find the better tradeoff between memory occupation and programming speed;

• enhance the complex scenario proposed and test it;

Assuming an unlimited internal memory (RAM) availability, the best solution
would have been to store all data from the files and to close them as soon as
possible:

• start the FatFs session;

• open the ciphered bitstream files;

• read and decrypt all the file content;

• store the decrypted data into two arrays;

• close both files;

• terminate the FatFs session;

• access the clear version of the bitstream, every time is required, accessing
directly to the arrays.

In this way, the number of access to the files (it is a slow operation) is reduce at
the minimum. In other words, the total amount of time required to program the
FPGA is reduced.

The current solution keeps the CPU busy until the FPGA is programmed;
this isn’t obviously the best solution. A possible enhancement could be to use
a multicore system in which one core (or more, it depends on the core number)
might program the FPGA while the others remain available for other operations.

67

Appendix A

Datasheet

A.1 Datasheet connection scheme

Figure A.1. SEcubeTM internal main blocks connections [62]

68

Appendix B

Programming code: C code

Some parts of the following codes are omitted (“[...]”) on purpose to let the reader
focus on the main contribution of the thesis project.

B.1 main.c

1 /∗∗
2 ∗∗∗
3 ∗ F i l e Name : main . c
4 ∗ Desc r ip t i on : Main program body
5 ∗∗∗
6 ∗
7 ∗ COPYRIGHT(c) 2017 STMicroe l ec t ron i c s
8 ∗
9 ∗ R e d i s t r i b u t i o n and use in source and binary forms , with or

without mod i f i ca t i on ,
10 ∗ are permitted provided that the f o l l o w i n g c o n d i t i o n s are met :
11 ∗ 1 . R e d i s t r i b u t i o n s o f source code must r e t a i n the above

copyr ight not i ce ,
12 ∗ t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a i m e r .
13 ∗ 2 . R e d i s t r i b u t i o n s in binary form must reproduce the above

copyr ight not i ce ,
14 ∗ t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a i m e r in the

documentation
15 ∗ and/ or other m a t e r i a l s provided with the d i s t r i b u t i o n .
16 ∗ 3 . Ne i ther the name o f STMicroe l e c t ron i c s nor the names o f i t s

c o n t r i b u t o r s
17 ∗ may be used to endorse or promote products der ived from t h i s

so f tware
18 ∗ without s p e c i f i c p r i o r wr i t t en permis s ion .
19 ∗
20 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS ”AS IS ”

69

B – Programming code: C code

21 ∗ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE

22 ∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE

23 ∗ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE

24 ∗ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL

25 ∗ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR

26 ∗ SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION
) HOWEVER

27 ∗ CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT,
STRICT LIABILITY ,

28 ∗ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE

29 ∗ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

30 ∗
31 ∗∗
32 ∗/
33 /∗ Inc lude s −−∗/
34 // [. . .]
35 #include ”FPGA. h”
36

37

38 /∗ Pr ivate func t i on prototypes −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
39 // [. . .]
40

41 int main (void)
42 {
43 /∗ MCU Conf igurat ion−−−∗/
44

45 /∗ Reset o f a l l p e r i p h e r a l s , I n i t i a l i z e s the Flash i n t e r f a c e and
the Sys t i ck . ∗/

46 // [. . .]
47

48 /∗ Conf igure the system c lo ck ∗/
49 // [. . .]
50

51 /∗ I n i t i a l i z e a l l c on f i gu r ed p e r i p h e r a l s ∗/
52 // [. . .]
53

54 SystemClock Config () ;
55 MX FATFS Init () ;
56

57 d e v i c e i n i t () ;
58

59 B5 FPGA Programming () ;

70

B – Programming code: C code

60

61 /∗ I n f i n i t e loop ∗/
62 d e v i c e l o o p () ;
63 }
64

65 /∗ Functions−−∗/
66 // [. . .]
67

68 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ (C) COPYRIGHT STMicroe l e c t ron i c s ∗∗∗∗∗END
OF FILE ∗∗∗∗/

B.2 FPGA.h

1 /∗
2 ∗ FPGA. h
3 ∗/
4 #ifndef APPLICATION SRC FPGA H
5 #define APPLICATION SRC FPGA H
6

7 #include <secure FPGA . h>
8

9

10 // FUNCTIONS DECLARATION
11 // [. . .]
12 i n t 3 2 t B5 FPGA Programming (void) ;
13

14 #endif /∗ APPLICATION SRC FPGA H ∗/

B.3 FPGA.c

1 // INCLUDES
2 // [. . .]
3 #include ”FPGA. h”
4

5 // DEFINES
6 // [. . .]
7

8 // GLOBAL VARIABLES
9 // [. . .]

10 u i n t 3 2 t g i A l g o S i z e = 129857;
11 u i n t 3 2 t g iDataS i z e = 191421;
12

13 // FUNCTIONS DECLARATION
14 // [. . .]
15 u i n t 8 t selectANDpick (i n t 3 2 t SubIndex , u i n t 8 t algoORdata) ;
16 u i n t 8 t GetByte (i n t 3 2 t Index , u i n t 8 t algoORdata) ;
17

18 // FUNCTIONS

71

B – Programming code: C code

19 // [. . .]
20 /∗ ∗∗
21 ∗ ∗
22 ∗ GETBYTE ∗
23 ∗ ∗
24 ∗ INPUT: ∗
25 ∗ Index : the cur rent index to a c c e s s . ∗
26 ∗ ∗
27 ∗ algoORdata : 1 i f the re turn byte i s to be r e t r i e v e d from∗
28 ∗ the a lgor i thm array , 0 i f the byte i s to be r e t r i e v e d ∗
29 ∗ from the data array . ∗
30 ∗ ∗
31 ∗ RETURN: ∗
32 ∗ This func t i on r e tu rn s a byte o f data from e i t h e r the ∗
33 ∗ a lgor i thm or data array . I t r e tu rn s −1 i f out o f ∗
34 ∗ bounds . ∗
35 ∗ ∗
36 ∗∗ ∗/
37

38 u i n t 8 t GetByte (i n t 3 2 t Index , u i n t 8 t algoORdata)
39 {
40 // VARIABLEs DECLARATION − DEFINITION
41 u i n t 8 t outData = 0 ;
42 u i n t 8 t tmp BufferIndex = 0 ;
43 u i n t 8 t f i l lFILEvectorSTEPS counter = 0 ;
44 u i n t 3 2 t SubIndexMin = 0 ;
45 u i n t 3 2 t SubIndexMax = 0 ;
46 u i n t 3 2 t SubIndex ;
47 u i n t 3 2 t MaxVectorSize [2] = { g iDataS ize , g i A l g o S i z e } ;
48

49 SubIndexMin = Buf fe r Index [algoORdata] ∗ FPGA BUFFERSIZE;
50 SubIndexMax = (Buf fer Index [algoORdata] + 1) ∗ FPGA BUFFERSIZE − 1 ;
51 SubIndex = Index % FPGA BUFFERSIZE;
52 r e i n i t i v = 1 ;
53

54 // BODY
55 i f (! ((Index >= SubIndexMin) && (Index <= SubIndexMax)))
56 {
57 i f (Index >= MaxVectorSize [algoORdata])
58 {
59 return (unsigned char) 0xFF ; // ERROR: over l i m i t va lue
60 }
61 else
62 {
63 tmp BufferIndex = Buf fe r Index [algoORdata] ;
64 Buf fer Index [algoORdata] = Index / FPGA BUFFERSIZE;
65 f i l l F I L E v e c t o r (algoORdata) ;
66 }
67 }

72

B – Programming code: C code

68 outData = selectANDpick (SubIndex , algoORdata) ;
69 return outData ;
70 }
71

72 /∗ ∗∗
73 ∗ ∗
74 ∗ SELECTANDPICK ∗
75 ∗ ∗
76 ∗ INPUT: ∗
77 ∗ SubIndex : index value o f the cur rent block ∗
78 ∗ ∗
79 ∗ algoORdata : 1 i f the re turn byte i s to be r e t r i e v e d from∗
80 ∗ the a lgor i thm array , 0 i f the byte i s to be r e t r i e v e d ∗
81 ∗ from the data array . ∗
82 ∗ ∗
83 ∗ RETURN: ∗
84 ∗ A byte i n f o from che c o r r e c t data array ∗
85 ∗ ∗
86 ∗∗ ∗/
87

88 u i n t 8 t selectANDpick (i n t 3 2 t SubIndex , u i n t 8 t algoORdata)
89 {
90 i f (algoORdata)
91 {
92 return f p g a a l g [SubIndex] ;
93 }
94 else
95 {
96 return f p g a d a t a [SubIndex] ;
97 }
98 return 0xFF ; // ERROR
99 }

100

101

102

103

104 /∗ ∗∗
105 ∗ ∗
106 ∗ B5 FPGA PROGRAMMING ∗
107 ∗ ∗
108 ∗ INPUT: ∗
109 ∗ None ∗
110 ∗ ∗
111 ∗ RETURN: ∗
112 ∗ The return value w i l l be a negat ive number i f an e r r o r ∗
113 ∗ occurred , or 0 i f everyth ing was s u c c e s s f u l ∗
114 ∗ ∗
115 ∗ DESCRIPTION: ∗
116 ∗ This func t i on opens the f i l e p o i n t e r s to the a lgo and ∗

73

B – Programming code: C code

117 ∗ data f i l e . I t i n t i a l i z e s g l o b a l v a r i a b l e s to t h e i r ∗
118 ∗ d e f a u l t va lue s and e n t e r s the p ro c e s s o r . ∗
119 ∗ ∗
120 ∗∗ ∗/
121 i n t 3 2 t B5 FPGA Programming ()
122 {
123 char s z F i l e V e r s i o n [9] = { 0 } ;
124 i n t 1 6 t siRetCode = 0 ;
125 i n t 1 6 t i Index = 0 ;
126 i n t 1 6 t cVers ionIndex = 0 ;
127

128 /∗ ∗∗
129 ∗ ∗
130 ∗ VARIABLES INITIALIZATION ∗
131 ∗ ∗
132 ∗∗ ∗/
133 g usDataType = 0 ;
134 g iMovingAlgoIndex = 0 ;
135 g iMovingDataIndex = 0 ;
136

137 s d f i l e i n i t () ; /∗ c r e a t e s SD−FATFS s e s s i o n and f i l l both
b u f f e r s ∗/

138

139 i f (GetByte (g iMovingDataIndex++, 0)) {
140 g usDataType |= COMPRESS;
141 }
142

143 /∗ ∗∗
144 ∗
145 ∗ Read and s t o r e the v e r s i o n o f the VME f i l e .
146 ∗
147 ∗∗ ∗/
148 for (i Index = 0 ; i Index < 8 ; i Index++) {
149 s z F i l e V e r s i o n [i Index] = GetByte (g iMovingAlgoIndex++, 1) ;
150 }
151

152 /∗ ∗∗
153 ∗
154 ∗ Compare the VME f i l e v e r s i on aga in s t the supported v e r s i o n .
155 ∗
156 ∗∗ ∗/
157 for (cVers ionIndex = 0 ; g szSupportedVers ions [cVers ionIndex] !=

0 ; cVers ionIndex++) {
158 for (i Index = 0 ; i Index < 8 ; i Index++) {
159 i f (s z F i l e V e r s i o n [i Index] != g szSupportedVers ions [

cVers ionIndex] [i Index]) {
160 siRetCode = ERR WRONG VERSION;
161 break ;
162 }

74

B – Programming code: C code

163 siRetCode = 0 ;
164 }
165 i f (siRetCode == 0) {
166

167 /∗
∗∗

168 ∗ ∗
169 ∗ Found matching vers ion , break . ∗
170 ∗ ∗
171 ∗∗

∗/
172 break ;
173 }
174 }
175

176 i f (siRetCode < 0) {
177 /∗ ∗∗
178 ∗ ∗
179 ∗ Close SD−FATFS s e s s i o n . ∗
180 ∗ ∗
181 ∗∗ ∗/
182 s d f i l e f i n i t () ;
183 /∗ ∗∗
184 ∗ ∗
185 ∗ VME f i l e v e r s i o n f a i l e d to match the supported v e r s i o n s . ∗
186 ∗ ∗
187 ∗∗ ∗/
188 return ERR WRONG VERSION;
189 }
190

191 /∗ ∗∗
192 ∗ ∗
193 ∗ Star t the hardware . ∗
194 ∗ ∗
195 ∗∗ ∗/
196 EnableHardware () ;
197

198 /∗ ∗∗
199 ∗ ∗
200 ∗ Begin p r o c e s s i n g a lgor i thm and data f i l e . ∗
201 ∗ ∗
202 ∗∗ ∗/
203 siRetCode = ispProcessVME () ;
204

205 /∗ ∗∗
206 ∗ ∗
207 ∗ Stop the hardware . ∗
208 ∗ ∗
209 ∗∗ ∗/

75

B – Programming code: C code

210 DisableHardware () ;
211

212 /∗ ∗∗
213 ∗ ∗
214 ∗ Close SD−FATFS s e s s i o n . ∗
215 ∗ ∗
216 ∗∗ ∗/
217 s d f i l e f i n i t () ;
218

219 /∗ ∗∗
220 ∗ ∗
221 ∗ Return the return code . ∗
222 ∗ ∗
223 ∗∗ ∗/
224 return (siRetCode) ;
225 }

B.4 secure FPGA.h

1 /∗
2 ∗ secure FPGA . h
3 ∗
4 ∗ Author : c a r l o
5 ∗/
6

7 #ifndef APPLICATION USER SECURE FPGA H
8 #define APPLICATION USER SECURE FPGA H
9

10 #include ” f a t f s . h”
11 #include ”se3 common . h”
12 #include ” s e3c0de f . h”
13 #include ” aes256 . h”
14 #include ” sha256 . h”
15

16 /∗ ∗∗
17 ∗ ∗
18 ∗ DEFINES ∗
19 ∗ ∗
20 ∗∗ ∗/
21 #define FPGA BUFFERSIZE 16384 /∗ Bytes in s i n g l e paging b u f f e r ∗/
22 #define FPGA NBLOCKS FPGA BUFFERSIZE/16 /∗ Buf f e r b lock number ∗/
23 #define FPGA SIGNATURESIZE 32 /∗ Bytes − s i g n a t u r e s i z e ∗/
24

25 /∗ ∗∗
26 ∗ ∗
27 ∗ EXTERNAL GLOBAL VARIABLES ∗
28 ∗ ∗
29 ∗∗ ∗/

76

B – Programming code: C code

30 extern u i n t 8 t f p g a a l g [FPGA BUFFERSIZE] ; /∗ Algo Buf f e r ∗/
31 extern u i n t 8 t f p g a d a t a [FPGA BUFFERSIZE] ; /∗ Data Buf f e r ∗/
32 extern u i n t 8 t Buf fe r Index [2] ;
33 extern u i n t 8 t r e i n i t i v ;
34

35 /∗ ∗∗
36 ∗ ∗
37 ∗ STRUCT ∗
38 ∗ ∗
39 ∗∗ ∗/
40 typedef struct fpga programming cryptoctx {
41 B5 tAesCtx aesdec ;
42 B5 tHmacSha256Ctx hmac ;
43 u i n t 8 t hmac key [B5 AES 256] ;
44 u i n t 8 t auth [B5 SHA256 DIGEST SIZE] ;
45 } fpga programming cryptoctx ;
46

47 /∗ ∗∗
48 ∗ ∗
49 ∗ FUNCTIONS ∗
50 ∗ ∗
51 ∗∗ ∗/
52 void s d f i l e i n i t () ; /∗ Open SD−FATFS s e s s i o n ∗/
53 void s d f i l e f i n i t () ; /∗ Close SD−FATFS s e s s i o n ∗/
54

55 void f i l l F I L E v e c t o r (u i n t 8 t algoORdata) ; /∗ r e f i l l b u f f e r ∗/
56

57 void fpga programming crypto in i t (fpga programming cryptoctx ∗ ctx) ;
/∗ crypto enviroment i n i t i a l i z a t i o n ∗/

58 bool fpga programming decrypt (fpga programming cryptoctx ∗ ctx , const
u i n t 8 t ∗ auth , const u i n t 8 t ∗ iv , u i n t 8 t ∗ data) ; /∗ s i g n a t u r e
check and decrypt ∗/

59

60 #endif /∗ APPLICATION USER SECURE FPGA H ∗/

B.5 secure FPGA.c

1 /∗
2 ∗ secure FPGA . c
3 ∗
4 ∗ Author : c a r l o
5 ∗/
6 #include <secure FPGA . h>
7 #include <s t d i n t . h>
8

9 /∗ ∗∗
10 ∗ ∗
11 ∗ GLOBAL VARIABLES ∗

77

B – Programming code: C code

12 ∗ ∗
13 ∗∗ ∗/
14 FATFS SDFatFs ; /∗ F i l e system ob j e c t f o r SD card l o g i c a l d r i v e ∗/
15 FIL AlgoFi le , DataFi le ; /∗ F i l e o b j e c t s ∗/
16

17 fpga programming cryptoctx a l go f pg a c tx , da ta fpga c tx ; /∗ Crypto
enviroment ∗/

18

19 const u i n t 8 t ∗ fpga key = se3 magic ; /∗ Decryption key ∗/
20 const u i n t 1 6 t f p g a f l a g = SE3 CMDFLAG SIGN + SE3 CMDFLAG ENCRYPT;

/∗ 0 f o r not−encrypted b i t s t ream f i l e ∗/
21 u i n t 8 t I n i t i a l i z a t i o n V e c t o r [1 6] =

{0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ; /∗ I n i t i a l I n i t i a l i z a t i o n
Vector f o r OFB, CBC, CTR ∗/

22 u i n t 8 t ∗ IV next [2] ; // IV used to decrypt the f o l l o w i n g block (in
s e q u e n t i a l procedure)

23

24 u i n t 8 t Buf fe r Index [2] = {0 , 0} ;
25

26 u i n t 8 t f p g a a l g [FPGA BUFFERSIZE] ; /∗ Algo Buf f e r ∗/
27 u i n t 8 t f p g a d a t a [FPGA BUFFERSIZE] ; /∗ Data Buf f e r ∗/
28

29 /∗ ∗∗
30 ∗ ∗
31 ∗ SD FUNCTIONS ∗
32 ∗ ∗
33 ∗∗ ∗/
34 void s d f i l e i n i t ()
35 {
36 /∗ ∗∗
37 ∗ ∗
38 ∗ FatFS : Link the SD di sk I /O d r i v e r . ∗
39 ∗ ∗
40 ∗∗ ∗/
41 i f (retSD == 0)
42 {
43 /∗ ∗∗
44 ∗ ∗
45 ∗ Reg i s t e r the f i l e system ob j e c t to the FatFs module . ∗
46 ∗ ∗
47 ∗∗ ∗/
48 i f (f mount(&SDFatFs , (TCHAR const ∗) SD Path , 0) != FR OK)
49 {
50 while (1) ;
51 }
52 else
53 {
54 /∗ ∗∗
55 ∗ ∗

78

B – Programming code: C code

56 ∗ Open the text f i l e o b j e c t s with read a c c e s s . ∗
57 ∗ ∗
58 ∗∗ ∗/
59 i f ((f open (&AlgoFi le , ” a lgo . vme” , FA OPEN EXISTING |

FA READ) != FR OK) | | (f open (&DataFile , ” data . vme” ,
FA OPEN EXISTING | FA READ) != FR OK))

60 {
61 while (1) ;
62 }
63 /∗ ∗∗
64 ∗ ∗
65 ∗ I n i t i a l i z e v e c t o r s : f p g a a l g [] and f p g a d a t a [] . ∗
66 ∗ ∗
67 ∗∗ ∗/
68 f i l l F I L E v e c t o r (1) ;
69 f i l l F I L E v e c t o r (0) ;
70 }
71 }
72 }
73

74 void s d f i l e f i n i t ()
75 {
76 /∗ ∗∗
77 ∗ ∗
78 ∗ Close both f i l e s . ∗
79 ∗ ∗
80 ∗∗ ∗/
81 f c l o s e (&AlgoFi l e) ;
82 f c l o s e (&DataFi le) ;
83 /∗ ∗∗
84 ∗ ∗
85 ∗ Unlink the micro SD di sk I /O d r i v e r . ∗
86 ∗ ∗
87 ∗∗ ∗/
88 FATFS UnLinkDriver (SD Path) ;
89 }
90

91

92 /∗ ∗∗
93 ∗ ∗
94 ∗ BUFFER MANAGER FUNCTIONS ∗
95 ∗ ∗
96 ∗∗ ∗/
97

98 /∗ ∗∗
99 ∗ ∗

100 ∗ FILLFILEVECTOR ∗
101 ∗ ∗
102 ∗ INPUT: ∗

79

B – Programming code: C code

103 ∗ algoORdata : 1 i f the re turn byte i s to be r e t r i e v e d from∗
104 ∗ the a lgor i thm array , 0 i f the byte i s to be r e t r i e v e d ∗
105 ∗ from the data array . ∗
106 ∗ ∗
107 ∗ RETURN: ∗
108 ∗ Nothing ∗
109 ∗ ∗
110 ∗ DESCRIPTION: ∗
111 ∗ The func t i on f i l l the a lgor i thm or data array ∗
112 ∗∗ ∗/
113

114 void f i l l F I L E v e c t o r (u i n t 8 t algoORdata)
115 {
116 u i n t 3 2 t bytesread ;
117 u i n t 3 2 t In t e rna l Index ;
118 u i n t 8 t auth s i gn [B5 SHA256 DIGEST SIZE] ;
119 u i n t 8 t ∗ IV int ;
120

121 In t e rna l Index = Buf fe r Index [algoORdata] ∗ (FPGA BUFFERSIZE +
FPGA SIGNATURESIZE) ; // with SIGN

122 // In t e rna l Index = Buf fer Index [algoORdata] ∗ (FPGA BUFFERSIZE) ;
// without SIGN

123

124 i f (In t e rna l Index == 0) // i f the f i r s t b lock needs to be decrypted
125 {
126 IV next [algoORdata] = I n i t i a l i z a t i o n V e c t o r ; // s e t the f i r s t IV
127 }
128

129 i f (algoORdata)
130 {
131 f l s e e k (&AlgoFi le , In t e rna l Index) ;
132 f r e a d (&AlgoFi le , f p g a a l g , FPGA BUFFERSIZE, (void ∗) &bytesread

) ;
133 f r e a d (&AlgoFi le , auth s ign , FPGA SIGNATURESIZE, (void ∗) &

bytesread) ; // p ick s i g n a t u r e
134

135 IV int = &IV next [algoORdata] ;
136 IV next [algoORdata] = f p g a a l g [FPGA BUFFERSIZE−16] ;
137

138 fpga programming crypto in i t (& a l g o f p g a c t x) ;
139 fpga programming decrypt(& a l g o f pg a c tx , auth s ign , &IV int ,

f p g a a l g) ;
140 }
141 else
142 {
143 f l s e e k (&DataFile , In t e rna l Index) ;
144 f r e a d (&DataFile , f pga data , FPGA BUFFERSIZE, (void ∗) &

bytesread) ;

80

B – Programming code: C code

145 f r e a d (&DataFile , auth s ign , FPGA SIGNATURESIZE, (void ∗) &
bytesread) ; // p ick s i g n a t u r e

146

147 IV int = &IV next [algoORdata] ;
148 IV next [algoORdata] = f p g a d a t a [FPGA BUFFERSIZE−16] ;
149

150 fpga programming crypto in i t (& data fpga c tx) ;
151 fpga programming decrypt(& data fpga ctx , auth s ign , &IV int ,

f p g a d a t a) ;
152 }
153 }
154

155

156 /∗ ∗∗
157 ∗ ∗
158 ∗ CRYPTO FUNCTIONS ∗
159 ∗ ∗
160 ∗∗ ∗/
161 /∗ ∗∗
162 ∗ ∗
163 ∗ FPGA PROGRAMMING CRYPTOINIT ∗
164 ∗ ∗
165 ∗ INPUT: ∗
166 ∗ ctx : the crypto context ∗
167 ∗ ∗
168 ∗ RETURN: ∗
169 ∗ Nothing ∗
170 ∗ ∗
171 ∗ DESCRIPTION: ∗
172 ∗ The func t i on i n i t i a l i z e the crypto environment ∗
173 ∗∗ ∗/
174 void fpga programming crypto in i t (fpga programming cryptoctx ∗ ctx)
175 {
176 B5 Aes256 In i t (&(ctx−>aesdec) , fpga key , B5 AES 256 ,

B5 AES256 CBC DEC) ;
177 memcpy(ctx−>hmac key , fpga key , B5 AES 256) ;
178 }
179

180 /∗ ∗∗
181 ∗ ∗
182 ∗ FPGA PROGRAMMING DECRYPT ∗
183 ∗ ∗
184 ∗ INPUT: ∗
185 ∗ ctx : the crypto context ∗
186 ∗ auth : the s i gn mandatory to check the i n t e g r i t y and ∗
187 ∗ a u t h e n t i c i t y ∗
188 ∗ i v : i n i t i a l i z a t i o n vec to r f o r the CBC mode ∗
189 ∗ data : po in t e r to the data array that needs to be ∗
190 ∗ decrypted ∗

81

B – Programming code: C code

191 ∗ ∗
192 ∗ RETURN: ∗
193 ∗ FALSE i f the s i gn doesn ’ t met correspondence ∗
194 ∗ ∗
195 ∗ DESCRIPTION: ∗
196 ∗ The func t i on decrypt the data array and check the s i gn ∗
197 ∗∗ ∗/
198 bool fpga programming decrypt (fpga programming cryptoctx ∗ ctx , const

u i n t 8 t ∗ auth , const u i n t 8 t ∗ iv , u i n t 8 t ∗ data)
199 {
200 i f (f p g a f l a g & SE3 CMDFLAG SIGN)
201 {
202 B5 HmacSha256 Init (&(ctx−>hmac) , ctx−>hmac key , B5 AES 256) ;
203 B5 HmacSha256 Update(&(ctx−>hmac) , iv , B5 AES IV SIZE) ;
204 B5 HmacSha256 Update(&(ctx−>hmac) , data , FPGA NBLOCKS∗

B5 AES BLK SIZE) ;
205 B5 HmacSha256 Finit (&(ctx−>hmac) , ctx−>auth) ;
206 i f (memcmp(auth , ctx−>auth , 16))
207 {
208 return f a l s e ; // wrong s i g n a t u r e
209 }
210 }
211

212 i f (f p g a f l a g & SE3 CMDFLAG ENCRYPT)
213 {
214 B5 Aes256 SetIV (&(ctx−>aesdec) , i v) ;
215 B5 Aes256 Update (&(ctx−>aesdec) , data , data , FPGA NBLOCKS) ;
216 }
217

218 return t rue ;
219 }

82

Appendix C

Others

C.1 FSM-like switch engine

This is the core of the FPGA programming process (Fig. C.1). It is the switch
statement in which every case corresponds to a state in a FSM-like structure.
The software, before starts running the state machine, check the internal FPGA
programming code compatibility with the VME version of the bitstream file read.

83

C – Others

Figure C.1. Main FPGA programming process switch engine (FSM-like)

84

Bibliography

[1] P. Albright. (2003, October) Become a mobile apps innovator. [Online].
Available: https://www.computer.org/web/computingnow/mobile/content?
g=53319&type=article&urlTitle=become-a-mobile-apps-innovator

[2] Gartner. (2011) Gartner says worldwide mobile application store revenue
forecast to surpass $15 billion in 2011. [Online]. Available: https:
//www.gartner.com/newsroom/id/1529214

[3] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous,
and A. R. Leblanc, “Design of ion-implanted mosfet’s with very
small physical dimensions,” Proceedings of the IEEE, vol. 87, no. 4,
April 1999. [Online]. Available: http://www.ece.ucsb.edu/courses/ECE225/
225 W07Banerjee/reference/Dennard.pdf

[4] A. McMenamin. (2013, April) The end of dennard scaling. [On-
line]. Available: https://cartesianproduct.wordpress.com/2013/04/15/
the-end-of-dennard-scaling/

[5] P. E. Ross. (2008, April) Why cpu frequency stalled. [Online]. Available:
https://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled

[6] P. P. Mattsson. (2013, November) Why haven’t cpu clock speeds increased
in the last few years? [Online]. Available: https://www.comsol.com/blogs/
havent-cpu-clock-speeds-increased-last-years/

[7] S. Iyer. (2010, December) Cmos power consumption. [Online]. Available:
http://large.stanford.edu/courses/2010/ph240/iyer2/

[8] G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore processors,”
IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 26–37, 2009. [Online].
Available: http://http://ieeexplore.ieee.org/document/5230801/?part=1/
courses/ECE225/225 W07Banerjee/reference/Dennard.pdf

[9] R. Iyer and D. Tullsen, “Heterogeneous computing [guest editors’
introduction],” IEEE Micro, vol. 35, no. 4, pp. 4–5, July 2015. [Online].
Available: http://ieeexplore.ieee.org/document/7182244/

[10] ——, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–
899, May 2008. [Online]. Available: http://ieeexplore.ieee.org/document/
4490127/

85

https://www.computer.org/web/computingnow/mobile/content?g=53319&type=article&urlTitle=become-a-mobile-apps-innovator
https://www.computer.org/web/computingnow/mobile/content?g=53319&type=article&urlTitle=become-a-mobile-apps-innovator
https://www.gartner.com/newsroom/id/1529214
https://www.gartner.com/newsroom/id/1529214
http://www.ece.ucsb.edu/courses/ECE225/225_W07Banerjee/reference/Dennard.pdf
http://www.ece.ucsb.edu/courses/ECE225/225_W07Banerjee/reference/Dennard.pdf
https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/
https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/
https://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled
https://www.comsol.com/blogs/havent-cpu-clock-speeds-increased-last-years/
https://www.comsol.com/blogs/havent-cpu-clock-speeds-increased-last-years/
http://large.stanford.edu/courses/2010/ph240/iyer2/
http://http://ieeexplore.ieee.org/document/5230801/?part=1/courses/ECE225/225_W07Banerjee/reference/Dennard.pdf
http://http://ieeexplore.ieee.org/document/5230801/?part=1/courses/ECE225/225_W07Banerjee/reference/Dennard.pdf
http://ieeexplore.ieee.org/document/7182244/
http://ieeexplore.ieee.org/document/4490127/
http://ieeexplore.ieee.org/document/4490127/

Bibliography

[11] J. Langguth, M. Sourouri, G. T. Lines, S. B. Baden, and X. Cai, “Scalable
heterogeneous cpu-gpu computations for unstructured tetrahedral meshes,”
IEEE Micro, vol. 35, no. 4, pp. 6–15, July 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7155461/

[12] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C. Brantley,
S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and G. Rodgers,
“Achieving exascale capabilities through heterogeneous computing,” IEEE
Micro, vol. 35, no. 4, pp. 26–36, July 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7155462/

[13] Xilinx. What is an fpga? [Online]. Available: https://www.xilinx.com/
products/silicon-devices/fpga/what-is-an-fpga.html

[14] M. Bollo, A. Carelli, S. D. Carlo, and P. Prinetto, “Side-channel analysis of
secube platform,” 2017 IEEE East-West Design Test Symposium (EWDTS),
pp. 1–5, Sept 2017.

[15] Xilinx. Fpga vs. asic. [Online]. Available: https://www.xilinx.com/fpga/asic.
htm

[16] S. D. Carlo, P. Prinetto, and A. Scionti, “A fpga-based reconfigurable software
architecture for highly dependable systems,” 2009 Asian Test Symposium, pp.
125–130, Nov 2009.

[17] A. Shan. (2006, January) Heterogeneous processing: a strategy for
augmenting moore’s law heterogeneous processing: a strategy for augmenting
moore’s law. [Online]. Available: http://www.linuxjournal.com/article/8368?
page=0,0

[18] Xilinx. What is an fpga? [Online]. Available: https://www.xilinx.com/
products/silicon-devices/fpga/what-is-an-fpga.html

[19] S. Ke-fei, “Application of fpga in aerospace remote sensing systems,” OME
Information, 2010.

[20] M. Surratt, H. Loomis, A. Ross, and R. Duren, “Challenges of remote fpga
configuration for space applications,” Aerospace Conference, IEEE, pp. 1–9,
2005.

[21] A. Ahmad, B. Krill, A. Amira, , and H. Rabah, “3d haar wavelet trans-
form with dynamic partial reconfiguration for 3d medical image compression,”
Proc. IEEE Biomedical Circuits and Systems Conf. BioCAS, pp. 137–140,
2009.

[22] M. E. Dunham, Z. Baker, M. Stettler, M. Pigue, P. Graham, E. N. Schmierer,
and J. Power, “High efficiency space-based software radio architectures: A
minimum size, weight, and power teraops processor,” Proc. Int. Conf. Recon-
figurable Computing and FPGAs ReConFig ’09, pp. 326–331, 2009.

[23] W. Lie and W. Feng-yan, “Dynamic partial reconfiguration in fpgas,”
-, vol. 2, no. 4, pp. 445–448, November 2009. [Online]. Available:

86

http://ieeexplore.ieee.org/document/7155461/
http://ieeexplore.ieee.org/document/7155462/
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/fpga/asic.htm
https://www.xilinx.com/fpga/asic.htm
http://www.linuxjournal.com/article/8368?page=0,0
http://www.linuxjournal.com/article/8368?page=0,0
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html

Bibliography

http://ieeexplore.ieee.org/document/5369525/

[24] A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi, and D. Sciuto, “An inter-
nal partial dynamic reconfiguration implementation of the jpeg encoder for
low-cost fpgasb,” Proc. IEEE Computer Society Annual Symp. VLSI ISVLSI
’07, pp. 449–450, 2007.

[25] S. D. Carlo, A. Miele, P. Prinetto, and A. Trapanese, “Microprocessor fault-
tolerance via on-the-fly partial reconfiguration,” 2010 15th IEEE European
Test Symposium, pp. 201–206, May 2010.

[26] S. D. Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta, and A. Vallero,
“A novel methodology to increase fault tolerance in autonomous fpga-
based systems,” 2014 IEEE 20th International On-Line Testing Symposium
(IOLTS), pp. 87–92, July 2014.

[27] Actel. (2008) Actel proasic3 handbook. [Online]. Available: http:
//www.actel.com/documents/PA3 HB.pdf

[28] Altera. (2009) Design security in stratix iii devices. [Online]. Avail-
able: https://www.altera.com/content/dam/altera-www/global/en US/
pdfs/literature/wp/wp-01010.pdf

[29] Lattice. Xp2 family handbook. [Online]. Available: http://www.latticesemi.
com/documents/H

[30] Xilinx. Lock your designs with the 4 security solution. [Online].
Available: http://www.xilinx.com/publications/xcellonline/xcell 52/xc pdf/
xc v4security52.pdf

[31] B. Badrignans, D. Champagne, R. Elbaz, C. Gebotys, and L. Torres,
“Sarfum: Security architecture for remote fpga update and monitoring,”
ACM Trans. Reconfigurable Technol. Syst., vol. 3, no. 2, pp. 8:1–8:29, May
2010. [Online]. Available: http://doi.acm.org/10.1145/1754386.1754389

[32] S. Drimer, “Authentication of fpga bitstreams: Why and how,” Reconfigurable
Computing: Architectures, Tools and Applications, pp. 73–84, 2007.

[33] B. Schneier, “Applied cryptography (2nd ed.): Protocols, algorithms, and
source code in c,” John Wiley & Sons, Inc., 1995.

[34] W. Stallings, “Cryptography and network security: Principles and practice,”
Prentice Hall Press, 2010.

[35] S. Singh, “The code book: The science of secrecy from ancient egypt to
quantum cryptography,” Knopf Doubleday Publishing Group, 2011.

[36] N. R. Council, “Computers at risk: Safe computing in the information age,”
The National Academies Press, 1991.

[37] R. Shirey, “Internet security glossary, version 2,” The IETF Trust, August
2007. [Online]. Available: https://tools.ietf.org/html/rfc4949

[38] F.-X. Standaert, “Introduction to side-channel attacks,” UCL Crypto Group,
June 2016.

87

http://ieeexplore.ieee.org/document/5369525/
http://www.actel.com/documents/PA3_HB.pdf
http://www.actel.com/documents/PA3_HB.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01010.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01010.pdf
http://www.latticesemi.com/documents/H
http://www.latticesemi.com/documents/H
http://www.xilinx.com/publications/xcellonline/xcell_52/xc_pdf/xc_v4security52.pdf
http://www.xilinx.com/publications/xcellonline/xcell_52/xc_pdf/xc_v4security52.pdf
http://doi.acm.org/10.1145/1754386.1754389
https://tools.ietf.org/html/rfc4949

Bibliography

[39] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power
analysis,” Springer, 2011.

[40] One-way function. Wolfram. [Online]. Available: http://mathworld.wolfram.
com/One-WayFunction.html

[41] T. Wollinger, J. Guajardo, and C. Paar, “Securityonfpgas: State-of- the-art
implementations and attacks,” ACM Trans. Embed. Comput. Syst., vol. 3,
no. 3, pp. 534–574, 2004.

[42] L. Bossuet, G. Gogniat, and W. Burleson, “Dynamically config- urable se-
curity for sram fpga bitstreams,” Proc. 18th Int. Parallel and Distributed
Processing Symp, 2004.

[43] A. Lesea. (2007, February) Ip security in fpgas. [Online]. Available:
http://www.xilinx.com/support/documentation/whitepapers/wp261.pdf

[44] Altera. Error detection in altera fpga devices. [Online]. Available:
http://www.altera.com/literature/an/an357.pdf

[45] Xilinx. Virtex-5 configuration user guide. [Online]. Available: http:
//www.xilinx.com/support/documentation/userguides/ug191.pdf

[46] M. Stigge, H. Platz, W. Muller, and J.-P. Redlich, “Reversing crc theory and
practice,” Humboldt University Berlin, Technical Report, 2006.

[47] M. M. Parelkar and K. Gaj, “Implementation of eax mode of operation
for fpga bitstream encryption and authentication,” Proc. IEEE Int Field-
Programmable Technology Conf, pp. 335–336, 2005.

[48] M. M. Parelkar, “Authenticated encryption in hardware,” Master’s thesis,
George Mason University, 2005.

[49] S. Drimer, “Authenticated of fpga bitstreams: why and how,” In Applied
Reconfigurable Computing, vol. 4419, pp. 77–84, 2007.

[50] A. S. Zeineddini and K. Gaj, “Secure partial reconfiguration of fpgas,” Proc.
IEEE Int Field-Programmable Technology Conf, pp. 155–162, 2005.

[51] Y. Hori, A. Satoh, H. Sakane, and K. Toda, “Bitstream encryption and au-
thentication with aes-gcm in dynamically reconfigurable systems,” Proc. Int.
Conf. Field Programmable Logic and Applications FPL 2008, pp. 23–28, 2008.

[52] T. K. Tan, R. Weerakkody, M. Mrak, N. Ramzan, V. Baroncini, J.-R. Ohm,
and G. J. Sullivan, “Video quality evaluation methodology and verification
testing of hevc compression performance,” IEEE transactions on circuits
and systems for video technology, vol. 26, no. 1, 2016. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7254155

[53] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptog-
raphy. CRC Press, 1996.

[54] L. S. Corporation, Programming Tools User Guide, Lattice Semiconductor
Corporation, December 2013.

[55] R. Hassan, K. Markantonakis, and R. N. Akram, “Can you call the software

88

http://mathworld.wolfram.com/One-WayFunction.html
http://mathworld.wolfram.com/One-WayFunction.html
http://www.xilinx.com/support/documentation/white papers/wp261.pdf
http://www.altera.com/literature/an/an357.pdf
http://www.xilinx.com/support/documentation/user guides/ug191.pdf
http://www.xilinx.com/support/documentation/user guides/ug191.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7254155

Bibliography

in your device be firmware?” 2016 IEEE 13th International Conference on
e-Business Engineering (ICEBE), pp. 188–195, November 2016.

[56] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham,
E. Roback, and J. F. Dray, “Announcing the advanced encryption standard
(aes) - (fips pub 197),” Federal INformation Processing Standards Publication
197 (FIPS PUBS), no. 197, November 2001.

[57] N. I. of Standards and T. (NIST), “Secure hash standard (sha) - (fips pub 180-
1),” Federal INformation Processing Standards Publication (FIPS PUBS), no.
180-1, April 1995.

[58] ——, “Secure hash standard (sha) - (fips pub 180-2),” Federal INformation
Processing Standards Publication (FIPS PUBS), no. 180-2, August 2002.

[59] (2017, January) Secube getting started guide.
[Online]. Available: https://www.secube.eu/download/
SEcube-Development-Kit-Getting-Started-PUBLIC-v1.4.pdf

[60] C. Basile, S. D. Carlo, and A. Scionti, “Fpga-based remote-code integrity
verification of programs in distributed embedded systems,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 42, no. 2, pp. 187–200, March 2012.

[61] Open hardware - software platforms for seamless trusted systems. [Online].
Available: www.blu5group.com

[62] (2015, August) Secube datasheet. [Online]. Available: https://www.secube.
eu/download/SEcube-Datasheet-R7.pdf

[63] G. A. FARULLA, A. CARELLI, P. PRINETTO, G. SOMMA, and A. VAR-
RIALE, “Secube development kit: Getting started,” SEcube, January 2017.

[64] Y. Amir, “Operating systems 600.418 the file system,” Department of Com-
puter Science Johns Hopkins University, July 2016.

[65] Fatfs. [Online]. Available: http://elm-chan.org/
[66] S. Microelectronics, Developing Applications on STM32Cube with FatFs, ST

Microelectronics, June 2014.
[67] Stm32cubemx. [Online]. Available: http://www.xilinx.com/support/

documentation/userguides/ug191.pdf
[68] M. Dworkin, “Recommendation for block cipher modes of operation,”

NIST Special Publication 800-38A, 2001. [Online]. Available: https:
//nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

89

https://www.secube.eu/download/SEcube-Development-Kit-Getting-Started-PUBLIC-v1.4.pdf
https://www.secube.eu/download/SEcube-Development-Kit-Getting-Started-PUBLIC-v1.4.pdf
www.blu5group.com
https://www.secube.eu/download/SEcube-Datasheet-R7.pdf
https://www.secube.eu/download/SEcube-Datasheet-R7.pdf
http://elm-chan.org/
http://www.xilinx.com/support/documentation/user guides/ug191.pdf
http://www.xilinx.com/support/documentation/user guides/ug191.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

	List of Figures
	List of Tables
	Introduction
	Heterogeneous computing enters application era
	Reconfigurable on heterogeneous computing platforms
	IP Protection in FPGA-based reconfigurable computing
	Goal of the thesis

	Cryptography
	Introduction
	Theory about cryptography
	Cipher types
	Attack types

	Cryptographic hash function

	Related Works
	Introduction
	Bitstream confidentiality
	Bitstream integrity
	Bitstream authenticity
	Further solutions
	Available solutions drawbacks

	System architecture and attack model
	Assumptions and models
	Security requirements
	Attack model
	Adversary model

	Protocol and secure bitstream exchange
	Introduction
	Simple scenario
	Full scenario

	Platform Implementation
	Introduction
	Hardware architecture
	SEcubeTM development kit board

	Development flow
	FPGA
	SD card file system
	Data decryption

	Security Analysis
	Introduction
	Encryption mode
	Types of attackers
	MITM - Man in the middle
	MATE - Man at the end

	Simple scenario security analysis

	Conclusions
	Datasheet
	Datasheet connection scheme

	Programming code: C code
	main.c
	FPGA.h
	FPGA.c
	secure_FPGA.h
	secure_FPGA.c

	Others
	FSM-like switch engine

	Bibliography

		Politecnico di Torino
	2018-04-03T06:49:24+0000
	Politecnico di Torino
	Stefano dicarlo
	S

