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Chapter 1

Introduction

Excavators are among the most used mobile construction machines. They are primarily
adopted to move material and perform excavations. Due to their ability to collect and
lift material, the payload is often required to be known. The term "payload" refers to
the weight of material loaded at the operating end of the dipper arm. The knowledge
of payload is very important both for commercial purposes, not to overcome excavator
mechanical limits at given positions of arms and to respect laws restriction during the
loading of trucks. Unfortunately, payload may not be measured directly, so virtual sen-
sors are used to estimate it from noisy measurements. Literature offers many methods
allowing to design performer virtual sensors under different noise assumptions and ac-
curacy measures. For example, the Kalman filter [16, 17] is an iterative algorithm able
to estimate quantities difficult or impossible to measure, comparing statistically noisy
measurements against values provided by model equations. The Kalman filter requires to
work correctly that system model is linear and exactly known, and noises are considered
Gaussian distributed with 0 mean. Possible estimator alternatives are: H2 filters [10, 36],
H∞ filters [10, 36, 24] and ℓ1 filters [23, 39].
Non-linear observers are technically difficult to design since they are highly unstable. The
most common approach to design non-linear observers is probably the Extended Kalman
Filter (EKF) [14, 2] which firstly linearises the system around the actual state conditions
and finally applies the Kalman Filter. Other possible methods to design non-linear state
observers are: Unscented Kalman Filters (UKF) [15], Particle Filters (PF) [33] and En-
samble Kalman Filters (EnKF) [8].
As previously said, virtual sensors for non-linear systems rarely assure the required sta-
bility of solutions. Another recurrent problem in virtual sensor design is that system
equations are often unknown. A common approach consists in identifying the system
model from a set of data and in finally designing the filter using the identified model
equations. The approximations introduced by the two-step procedure are often incompat-
ible with the required precision of the estimates, because this procedure may offer only
an approximative knowledge of the system model.
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New approaches have been developed in last years to increase the quality of solutions.
Excellent solutions are given by the use of Direct Filtering techniques (DF) [30, 29],
which allow to design DVSs (Direct Virtual Sensors) directly from set of data.
DF approach allows to avoid the study of a system model and provides much better
solutions than any other methods.

Two estimation strategies are possible for payload estimators in excavators. Payload
estimators working in quasi-static conditions are able to provide the estimates when all
excavator arms are moving at low constant angular speed. Payload estimators working in
dynamic conditions are able to provide the estimates at any motion condition of arms.
Virtual sensors which estimate the payload under quasi-static conditions are a consolidated
reality and are all widely based on patent EP0736752A1 [35]. Observers based on
this patent, estimate payloads interpolating actual measured values with respect to a
characteristic map. The considered inputs are the boom angle (φ1), the angle formed by
the boom and the dipper arm (φ2) and the hydraulic pressure difference across the main
cylinder (dP ). The characteristic map is acquired at calibration phase. The calibration
phase consists in measuring the quantities φ1, φ2 and dP , for two payload references and
over a pre-defined range of motion at same angular speeds. Estimators based on this
patent should not estimate payload at different angular speeds than ones used to calibrate
them, in order to preserve precision of estimates.
The method described in "Payload Estimation in Excavators: Model-Based Evaluation
of Current Payload Estimation Systems" [4] tries to increase the estimation robustness
at different angular speeds in two-piece boom excavators, by adding to the characteristic
map another set of data measured at different arms angular speeds. This approach allows
to improve the robustness of estimations at different angular speeds but it still doesn’t
allow to correctly estimate when angular speeds are varying in time.
Great improvements have been obtained by approach described in "A Method for Payload
Estimation in Excavators" [40] where authors developed a model-based observer able to
dynamically estimate payload, in two-piece boom excavators, as function of joint torques
and link accelerations. Solutions provided by its simulations show much better precision
than ones estimated by other methods, but this estimator is still far from being applied on
reality since measurement noises are not considered by its internal structures.
An artificial neural network approach has been investigated in paper "An Artificial Neural
Network Approach to Payload Estimation in Four Wheel Drive Loaders" [11] to design
dynamic payload estimators for four-wheel-drive loaders, but test results did not pass the
minimum requirements acceptable for the industry.

The aim of this thesis is to provide valid solutions to estimate correctly the payload
in dynamic conditions for two-arms excavators, analysing several methodologies and
keeping in consideration real problems as well.
The state of the art of actual dynamic payload estimators doesn’t allows to deal with noisy
measurements without violating the 1% of accuracy required by industry. The purpose
of the developed virtual sensor will be to firstly guarantee the quality of estimates in
presence of noisy data and in dynamic conditions of arms. In order to allow developed
virtual sensor to provide accurate payload estimates, the rotating platform of the excavator
has to not move or move at constant speed with respect to the ground and the excavator
has to be level.
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Another important requirement of the dynamic estimator project is to keep the eco-
nomic costs low as much as possible. Due to this reason, the sensors have to be a
compromise between performances and costs, and have to be low in number.
Due to the high non-linearity of the model, two design approaches have been used to
develop observers and to derive the best estimator.
The first design approach has been called "Classical Observers Approach" and allows
to design virtual sensors as Extended Kalman Filters. The classical observers approach
may be seen as the evolution of the approach used in "A Method for Payload Estimation
in Excavators" [40], since it uses extended Kalman filters which are based on model
equations too.
The second design approach has been called "DVS Approach" and allows to design DVSs
using Neural Network approach [1, 25]. The DVS approach takes inspiration from "An
Artificial Neural Network Approach to Payload Estimation in Four Wheel Drive Loaders"
[11], but it’s focused on completely different structures of neural networks.
Unfortunately, it hasn’t been possible to measure data from real field, so all experiments
are simulated by a simulator made ad hoc and a set of data has been collected from it.

Chapter 2 starts by presenting a general overview about excavators. Section 2.2 describes
briefly CAN network and communication protocols, which allow interaction between
sensors, actuators and ECUs. The aim of chapter 2 is to provide a general overview
about the physical system and to give a brief description about electrical connections and
protocols which make exploitable algorithms implemented in ECUs.
Chapter 3 presents virtual sensors and classical observers, focusing attention on Kalman
filter and its extended version.
Chapter 4 introduces DVSs and gives a brief description of the direct filtering technique.
Many approaches allow to design powerful DVSs and neural networks are indubitably
one of them. Neural networks are deeply described in section 4.2, analysing both main
features and training algorithms.
Chapter 5 starts with a brief presentation of the Lagrangian mechanics and then, main
passages to the model formulation are described. Section 5.3 presents features of the
simulator and describes simulations.
Chapter 6 describes the main development phases of virtual sensors, while Chapter 7
shows the results obtained from the simulations of the previously designed virtual sen-
sors.
Finally, Chapter 8 gives conclusions and reflections on possible future works.



Chapter 2

System Description

2.1 Excavators
Excavators are heavy machines used primarily to move material not particularly coherent.
They may be equipped with particular tools, allowing excavators to perform other kinds
of tasks.
An excavator may execute: digging operations, building demolition, forestry work, ma-
terial handling, etc.
Excavator may be divided into three main sections, which are:

• The undercarriage;

• The house;

• The arms.

The undercarriage is the lowest excavator section. It includes tracks, gears and the
hydraulic motor, which is used to convert the oil power into tracks movement. The
undercarriage is connected to the house through a central pin, which allows the rotation
of the house respect the undercarriage.

Figure 2.1: CAT 345C L [5]

11



2.1. Excavators 12

The house is the upper part of the excavator and it includes the operator cab, the
counterweight, the engine, oil pumps and other minor parts. In operator cab are located all
the excavator commands. The engine convert fuel power into mechanical one. Mechanical
power is then converted into fluid power by oil pumps, which are connected with the engine
through a shaft.
The arms allow the excavator to move the tool. They are moved respect each other by
means of hydraulic cylinders, commanded through spool valves placed in the operator
cab. Boom is the arm connected directly to the house, while the dipper is the middle
arm which provides force to the tool. The tool is the device used to carry out a particular
function. The bucket is the most versatile tool, because it allows excavations and other
main tasks. Other possible excavator tools are: rippers, multi processors, wood grapples
and hydraulic breakers (see picture 2.2).

(a) Ripper (b) Multi-processor

(c) Wood-grapple (d) hydraulic-breaker

Figure 2.2: Excavator attachments [6]
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2.2 ECU and CAN Protocol
ECUs are embedded systems which control one or more electrical systems or subsystems
in vehicle field. An ECU is composed by:

• RAM memory: It’s volatile memory and stores running data;

• FLASH memory: It’s non-volatile memory and stores persistent data;

• CPU: It’s the processor which runs code;

• I/O: It manages input data coming from sensors or output signal to transducers.

ECUs communications are allowed by a CAN network which connects together every
sensors, actuators and ECUs.

Figure 2.3: CAN network [32]

CAN is a communication protocol developed by BOSH in 1985 for in-vehicle net-
works. The name means Controller Area Network (CAN) and it has been developed to
replace the antiquated hard-wires network.

Figure 2.4: Invehicle networks [13]
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CAN bus delivers messages from one sending node to one or numerous receiving
nodes, packaging informations in bit sequences called data frames.
Data frames are composed by:

• SOF (start-of-frame) bit: It identifies the starting of a new frame;

• Arbitration ID: It identifies the type of message and the message priority;

• SRR (remote transmission request) bit;

• IDE (identifier extension) bit: It identifies the message format (standard or ex-
tended);

• RTR (remote transmission request) bit: It identifies the frame type of the message
(data frame or remote frame);

• r0 (reserved) bit

• DLC (data length code): It identifies the number of byte of Data Field;

• Data Field: Series of bits representing the message;

• CRC (cyclic redundancy check): It is used to detect errors;

• ACK (ACKnowledgement) slot: Bits used by receivers to confirm the message has
been received;

• EOF (end-of-frame) bit: It identifies the end of the frame.

Figure 2.5: Data frame [13]

Other types of frames are:

• Remote frame: Frame created by a node and used to request data transmission from
one another node;

Figure 2.6: Remote frame [18]
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• Error frame: Frame used to report errors;

Figure 2.7: Error frame [18]

• Overload frame: Frame used to delay data frames and/or remote frames.

Figure 2.8: Overload frame [18]



Chapter 3

Classical Observers

3.1 What Is a Virtual Sensor?
Systems are logical entities having one or more inputs and outputs, which are governed
by mathematical laws (mathematical model). They may be classified into two categories:

• Static systems;

• Dynamic systems.

In static systems the current outputs depend only on the current inputs. On the other
hand, in dynamic systems the current outputs depend on the current inputs and on the
current internal states. A dynamic system may be represented as:

Figure 3.1: Dynamic system [37]

where u are the inputs, y are the outputs and x are the states.
Although inputs and outputs may be always measured, the states often aren’t measurable.
When states aren’t measurable and the system is observable, an observer may be adopted
to have access to internal states.

Observers may be classified into:

• Open-loop observers;

• Closed-loop observers.

16



3.1. What Is a Virtual Sensor? 17

Open-loop observers estimate internal states only by the current inputs, while closed-
loop observers use also past outputs for the internal states estimation. Generally, closed-
loop observers are more performer respect the open-loop ones.

(a) Open-loop observer (b) Closed-loop observer

Figure 3.2: Open/closed loop observers [27]

Due to their capacity to estimate quantities impossible/difficulty to measure, observers
may be used to design virtual sensors.
The term "Virtual Sensors" includes sensors which cannot be physically implemented,
so they estimate quantities from system equations and other measures.
In most practical situations, measures provided by sensors are affected by noises. To
overcome this problems, a Kalman filter (or its extended version) may be used if noises
are considered Gaussian distributed with 0 mean.
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3.2 Kalman Filter
A Kalman filter [16, 17] is a recursive algorithm able to estimate internal states of a
system, starting from a series of noisy measurements.
Rudolf Emil Kálmán officially discovered it, although Thorvald Nicolai Thiele and Peter
Swerling developed a similar algorithm earlier.
For its versatility, Kalman filter is used for states observations, noise filtering, parameter
estimation and sensors fusion.

Suppose to have a linear system affected by processing noise (w) and measurement noise
(v):

Figure 3.3: Discrete system [20]

A Kalman filter may be designed to estimate the system internal states from u and
y measurements, if noise v and w are considered Gaussian distributed with 0 mean.
Knowing the covariance Q of noise w and the covariance R of noise v, the Kalman filter
estimates the system internal states x̂k.

Estimates provided by Kalman filter are computed in two phases:

• The prediction phase;

• The update phase.

During prediction, Kalman filter calculates:

x̂−
k = Ax̂−

k−1 +Bu

Pk
− = APk−1A

T +Q

where x̂k is the predicted state and Pk
− is the variance of the a priori estimate.

Once they have been calculated, the feedback gain K is found as:

Kk =
Pk

−CT

CPk
−CT +R

and the state estimate is updated:

x̂k = x̂−
k +Kk(yk − Cx̂−

k )

as also the error covariance:
Pk = (1−KkC)Pk

−

This procedure is repeated at every clock.
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Kalman filter may be adopted only if the system to observe is linear. Instead, an
Extended Kalman filter [14, 2] may be used if the system is non-linear.

Extended Kalman filter is a non-linear state observer, which linearises the system around
the mean of the current state estimate.
Given the non-linear system: {

xk = f(xk−1, uk) + wk

yk = g(xk) + vk

Every time step, a local linearisation has to be performed by means of Jacobian calcula-
tion:

F =
δf

δx
|x̂k−1,uk

G =
δg

δx
|x̂k,

Obtaining the linearised system:{
∆xk ≈ F∆xk−1 + wk

∆y ≈ G∆xk + vk
(3.1)

After the calculation of the linearised system (3.1), the classical Kalman filter is used.

Extended Kalman filter is a powerful method to study non-linear systems. However, it
has the following drawback:

• Jacobians are difficult to calculate;

• It requires high computational power;

• It works only on systems having a differentiable model;

• It doesn’t work optimally if systems are highly non-linear.

Figure 3.4: Kalman filter estimation [20]



Chapter 4

Direct Virtual Sensors

4.1 General Overview about DVS
Virtual sensors for non-linear systems are in general difficult to design since they rarely
ensure the required stability of solutions.
Another relevant problem is that often system equations aren’t known and the following
two-step procedure has to be adopted:

• A model of the system is identified from data;

• A filter is designed from the identified model equations.

The approximation introduced by the two-step procedure might not ensure the stability
of the estimation. Possible alternatives are given by the use of direct filtering techniques
(DF) [30, 29], which allow to design observers directly from set of data, avoiding the
study of a system model. Virtual sensors designed through direct filtering techniques are
called direct virtual sensors (DVSs). Many techniques allow to design performer DVSs,
and neural network approach is one of them.

Figure 4.1: Design and estimation of a DVS [22]

20
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4.2 Neural Networks
A neural network is a logical network able to find autonomously the relation between
inputs and output by means of automatic training.

In 1943, Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, developed
the first conceptual model of an artificial neural network.
In their paper, "A Logical Calculus of Ideas Immanent in Nervous Activity” [21], they
describe the concept of neural network starting from the analysis of the hidden rules
behind the nervous activity.

As we know from biology, the central processing unit of nervous activity is placed in the
brain and it’s entrusted by particular cells called neurons. Every neuron is wired together
to perform a dense network able to modify the internal state of target neurons (or other
targets) through electrical signals.
The main body of a neuron is composed by soma, where the nucleo and other organs
are placed. Dentrides and a long axon are placed attached to the soma. Dentrites are
constituted by thin branches able to receive chemical messages from outside, while the
axon is a thin protoplasmic fiber able to transmit electrical signal at speeds of 100 meters
per second from the nucleo to terminal buttons.
Terminal buttons are directly interfaced with dentrites of other neurons. The gap between
them is called sinapsy and it may be considered the link wiring neurons together.

The action mechanism of neurons may be described as follows:
When a message carried by electrical signal reaches the soma, the nucleo elaborates the
information and if necessary a new electrical signal is created. The new information runs
over the axon and reaches terminal buttons. Terminal buttons transform the electrical
message in a chemical one and a neurotransmitter is released in the synapsy, ready to be
captured by a dentrite or another target. If a neurotrasmitter reaches a dentrites of another
neuron, the information is transformed newly in an electrical message and it’s ready to
be carried to the soma.

Figure 4.2: Neurons [9]



4.2. Neural Networks 22

4.2.1 Feedforward Neural Networks
The structure of an artificial neural network follows similar rules of nervous activity. It’s
composed by neurons able to modify the state of other neurons directly connected with
them.
Neurons are organized in virtual structures called layers which have the following defined
rules:

• Neurons of the same layer aren’t connected together and they have all the same
inputs;

• Inputs of hidden layers are the outputs of the previous layer;

• Inputs of the input layer are the inputs of the network.

The first layer is called input layer and it hasn’t neurons since it’s just used to distribute
inputs correctly to the first hidden layer. The last layer is called output layer and it has
only a neuron. All other layers are called hidden layers.

Figure 4.3: Neural network [26]

An artificial neuron is composed by a preparatory part of input signals, by a summatory
and by a transfer function.
In the preparatory part, inputs are multiplied by weights. Then, the processed inputs
are summed together and a bias is added to the sum. Finally, the result is passed to the
transfer function.

Figure 4.4: Artificial neuron [3]
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Many transfer functions have been developed in last year.
The most relevant are represented below:

Figure 4.5: Transfer functions [3]

4.2.2 Dynamic Neural Networks
The structure of neural network described in the last section allows to manage only current
inputs, without the possibility to consider past inputs and feedbacks from other layers.
Dynamic neural networks are a class of neural networks able to consider also other
kinds of inputs than the current ones. The most relevant dynamic neural networks are
represented below:

Time-delay Neural Networks

Time-delay neural networks are a class of dynamic neural networks, which use tapped
delay lines to consider past input values. Two types of Time-delay neural networks are
possible.

The first type is the "Focused Time Delay Neural Network" (also called FTDNN), which
have a tapped delay line on inputs of the first hidden layer.

Figure 4.6: Focused Time Delay Neural Network [3]

The second type is the "Time Series Distributed Delay Neural Networks" (also called
DTDNN), which have tapped delay lines on inputs of every hidden layer.
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Figure 4.7: Time Series Distributed Delay Neural Network [3]

Time Series NARX Feedback Neural Networks

The "Nonlinear autoregressive networks with exogenous inputs" (also called NARXs) are
autoregressive dynamic neural networks, which have tapped delay lines both on inputs
than on feedback. In NARX, the feedback connection is considered from the last layer
output to inputs of the first hidden layer.

Figure 4.8: Time Series NARX Feedback Neural Network [3]

Layer-Recurrent Neural Networks

The first Layer-Recurrent Neural Network was introduced by Elman, J.L in his paper
“Finding structure in time” [7]. The original Elman network has only two layers which
use hyperbolic tangent sigmoids for hidden layers and a linear transfer function for the
output layer.
Nowadays, Layer-Recurrent Neural Networks are referred as neural network having a
closed loop structure on every layer except the last.

Figure 4.9: Layer-Recurrent Neural Network [3]
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4.2.3 Neural Network Training
Gradient Descent Algorithm

Training is the phase in neural network design that allows to set optimal weights and
biases.
There are several training algorithms able to perform an efficient parameters research.
Some algorithms perform a better research than others but they require high power
calculation.

One of the most relevant training algorithm is the "Gradient Descent algorithm", which is
used to find weights and biases able to minimize the error between the calculated output
and the desired one.
Errors are represented by means of a cost function. Probably, the most used cost function
is the mean square error, which is defined as:

C(w, b) =
1

2n

∑
x

∥y(x)− a∥2 (4.1)

where y(x) is the network output and a is the desired one.

How does gradient descent algorithm work?
As previously said, the gradient descent algorithm searches weights and biases able to
minimize the cost function value.
Considering a cost function defined in two variables, the variation of its values may be
defined approximately as:

∆C ≈ δC

δv1
∆v1 +

δC

δv2
∆v2 (4.2)

Which can be rewrote as:
∆C ≈ ∇C ·∆v (4.3)

where ∇C is the cost function gradient, defined as:

∇C = (
δC

δv1
,
δC

δv2
)T (4.4)

Suppose now to relate ∆C with ∆v, writing the equation:

∆v = −η ·∆C (4.5)

where η is called learning rate. Equations (4.3) and (4.5) may be combined together,
obtaining:

∆C ≈ −η · ∥∇C∥2 (4.6)

It’s possible to demonstrate from equation (4.6), that C always decrease if ∆v change
according:

vf = vi − η ·∆C (4.7)
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The term ∥∇C∥2 is always positive, so ∆C is always negative; It means that C always
decrease.

Rewriting equation (4.7) in terms of weights and biases, it’s possible to obtain:{
wf = wi − η ·∆C

bf = bi − η ·∆C
(4.8)

Through equations (4.8) every weight and bias may be found. Gradient descend works
iteratively, so for every iteration an optimized set of weights and biases is found.
Learning rate has to be chosen carefully. Learning rate too small takes a lot of time to find
a good solution, while learning rate too big might rise the gradient instead of descend it.

Backpropagation Algorithm

As explained in the subsection before, gradient descent allows to find iteratively weights
and biases from the cost function gradient.
The calculation of the cost function gradient in many training algorithms is entrusted by
the "Backpropagation Algorithm".
Backpropagation is an algorithm originally introduced in the 1970s, which is able to
calculate gradients using an iteratively procedure. It began to be fully appreciated since
1986 after the publication wrote by David Rumelhart, Geoffrey Hinton, and Ronald
Williams [34], where they demonstrate the improvement by the use of backpropagation
algorithm in neural network training.
Backpropagation algorithm is used by several training algorithms which use different
kinds of cost function. There are two conditions which are needed by cost functions to
allow the use of backpropagation:

• It has to be an average function (C = 1
N

∑N
x=1Cx) over cost functions Cx for

individual training experiment x.

• It has to be a function of the neural network output.

Suppose to have a neural network composed by L number of layers, where parameters
are represented as follows:

• wjk
l is the weight connecting neuron k of layer (l− 1) with the neuron j of layer l.

• bj is the bias associated with the neuron j of layer l.

• aj
l = ϑ(z) is the activation associated with neuron j of layer l and ϑ is the transfer

function.

• zj
l =

∑
k wjk

lak
l−1 + bj

l is the weighted input of neuron j of layer l.

Imagine to add a small change ∆zj
l to the weight of neuron jth of layer l, so that the

neuron output becomes σ(z +∆zj
l) instead of σ(z); the change propagates over the
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whole network so that the cost function becomes δC
δzj l

∆zj
l.

Error δj l of neuron j of layer l is expressed as:

δj
l =

δC

δzj l
(4.9)

Which may be adapted for the last layer and modified using the chain rule as:

δj
L =

∑
k

δC

δakL
δak

L

δzjL
(4.10)

The derivative δak
L

δzjL
vanishing for all k /= j, so equation (4.10) may be simplified as:

δj
L =

δC

δajL
δaj

L

δzjL
=

δC

δajL
σ′(zj

L) (4.11)

Equation (4.11) may be written as:

δj
l =

∑
k

δC

δzk l+1

δzk
l+1

δzj l =
∑
k

δj
l+1 δzk

l+1

δzj l (4.12)

Equations (4.11) and (4.12) are the workhorse of backpropagation algorithm. Equation
(4.11) allows to find the errors associated with neurons of last layer. Then, the remaining
errors are calculated iterating equation (4.12).

From errors, it’s possible to calculate all weights and biases as:{
δC
δbj

= δj
l

δC
δwjk

l = ak
l−1δj

l (4.13)
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Levenberg-Marquardt Algorithm and Bayesian Regularization

Although gradient descend algorithm has good performance in weights/biases search, the
use of second-order training algorithms allows to speed up the process. Probably the most
performer second-order training algorithm is the "Levenberg-Marquardt Approach", but
it requires much more memory than other same order algorithms.

Figure 4.10: Comparison between training algorithms [31]

Given a cost function which can be expressed as a sum of squared errors e, the
Levenberg-Marquardt approach update weights/biases accordingly with formula:

xk+1 = xk − [H − µI]−1g (4.14)

Where the Hessian matrix H is approximated as:

H = JTJ

and gradient g is expressed as:
g = JT e

Jacobian calculation is entrusted by backpropagation algorithm.

When µ parameter is zero, equation (4.14) is just the Newton method with approximated
Hessian matrix; when µ parameter is big enough, equation (4.14) becomes gradient
descent with a small step size. Newton method is faster than gradient descent, so µ
should be chosen as much small as possible. Integrating "Bayesian Regularization" in
cost function of Levenberg-Marquardt algorithm allows to decrease the possibility to
overfit. Bayesian regularization expands the cost function to search, not only for the
minimal error, but also for the minimal error using the minimal weights.
The cost function with Bayesian regularization is:

C(k) = αEd + βEw

Where Ed is the sum of squared errors, while Ew is the sum of squared weights. α and
β are called Bayesian hyper-parameters.
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System Model

5.1 Lagrangian Mechanics
Lagrangian and Newtonian mechanics are the most used approaches to model mechanical
systems.
The main difference between the two methods is the use of different physical entities:

• The Newtonian mechanics considers the exchange of forces between bodies.

• The Lagrangian mechanics considers the exchange of energy between bodies.

The Newtonian approach considers vectors which are strictly dependent on the reference
system chosen and some problems could be generated if the reference system would
be modified. On the contrary, the Lagrangian mechanics doesn’t have these problems
because it considers scalars which are independent from the reference system.

Figure 5.1: The trajectory paths [12]

The concept at the base of Lagrangian mechanics is "The principle of the least
action".
Suppose to have a particle of mass m in the space q ∈ Q, subjected to a vectorial
conservative field.
Consider the particle starts its motion at time t1 in Q1 and ends its motion at time t2 in
Q2. The natural path described by the particle is called "True trajectory", while all other
possible trajectories connecting Q1 and Q2 are called "Perturbed trajectories".

29
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We may define the Action as:

S =

∫ t2

t1

Ldt (5.1)

where L = K − P is the Lagrangian Functional and:

• K is the Kinetic energy

• P is the Potential energy (Gravitational+Elastic)

The principle of the least action affirms that the trajectory which minimizes the Action is
the "True trajectory". On this path, the following identity is valid:

d

dt

dL
dq̇i

=
dL
dqi

Replacing the definition of L, it’s possible to obtain:

d

dt
(
dK

dq̇i
)− d

dt
(
dP

dq̇i
)− dK

dqi
+

dP

dqi
= 0

The term d
dt
( dP
dq̇i

) is equal zero because the potential energy is independent from the
velocity, so it may be deleted:

d

dt
(
dK

dq̇i
)− d

dt
(
dP

dq̇i
)− dK

dqi
+

dP

dqi
= 0

If vector field is considered as non-conservative, the Lagrange equation should be modi-
fied introducing the virtual work done by non-conservative forces:

d

dt
(
dK

dq̇i
)− dK

dqi
+

dP

dqi
= F nc

The non-conservative forces are composed by friction forces, plus external forces acting
on the system. Friction forces may be introduced by the Rayleigh function:

D =
N∑
i=1

1

2
βiq̇i

So, the updated Lagrange equation for translating systems is:

d

dt
(
dK

dq̇i
)− dK

dqi
+

dP

dqi
+

dD

dq̇i
= Fi (5.2)

While, for rotating systems is:

d

dt
(
dK

dq̇i
)− dK

dqi
+

dP

dqi
+

dD

dq̇i
= Ti (5.3)
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5.2 Excavator Model

Excavator has been modelled using the Lagrange approach. The Lagrangian mechanics
is the most recommended method for designing multi-bodies systems.

Figure 5.2: Excavator model

The model has been designed placing a reference system in every arm’s barycenter.
Dipper and boom have been considered as long bars and their barycentres have been
placed into geometric centres of arms. Bucket and load are smaller than dipper and
boom, so it’s possible to consider them as point masses with barycentres placed on the
dipper top end. Considering these settings, all the reference systems have:

• X-axes parallel to the axes of arms.

• Z-axes outgoing from the plain.

• Y-axes following the right-hand rule

The poses of all the reference systems respectR have been found using the roto-translation
matrix:

T =

⏐⏐⏐⏐⏐⏐⏐⏐
cosα − sinα 0 ∆x
sinα cosα 0 ∆y
0 0 1 ∆z
0 0 0 1

⏐⏐⏐⏐⏐⏐⏐⏐ (5.4)
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So, the pose of every reference system is:

T1 =

⏐⏐⏐⏐⏐⏐⏐⏐
cos q1 − sin q1 0 l1

2
cos q1

sin q1 cosq1 0 l1
2
sin q1

0 0 1 0
0 0 0 1

⏐⏐⏐⏐⏐⏐⏐⏐
T2 =

⏐⏐⏐⏐⏐⏐⏐⏐
cosq12 −sinq12 0 l2

2
cos q12 + l1 cos q1

sinq12 cosq12 0 l2
2
sin q12 + l1 sin q1

0 0 1 0
0 0 0 1

⏐⏐⏐⏐⏐⏐⏐⏐
T3 =

⏐⏐⏐⏐⏐⏐⏐⏐
cosq12 −sinq12 0 l2 cos q12 + l1 cos q1
sinq12 cosq12 0 l2 sin q12 + l1 sin q1

0 0 1 0
0 0 0 1

⏐⏐⏐⏐⏐⏐⏐⏐
with q12 = q1 + q2

From poses, the barycentre positions of both arms have been calculated as:

p1 =

⏐⏐⏐⏐⏐⏐
l1
2
cos q1

l1
2
sin q1
0

⏐⏐⏐⏐⏐⏐
p2 =

⏐⏐⏐⏐⏐⏐
l2
2
cos q12 + l1 cos q1

l2
2
sin q12 + l1 sin q1

0

⏐⏐⏐⏐⏐⏐
p3 =

⏐⏐⏐⏐⏐⏐
l2 cos q12 + l1 cos q1
l2 sin q12 + l1 sin q1

0

⏐⏐⏐⏐⏐⏐
And the barycentre velocities as:

ṗ1 =

⏐⏐⏐⏐⏐⏐
− l1

2
sin q1q̇1

l1
2
cos q1q̇1
0

⏐⏐⏐⏐⏐⏐
ṗ2 =

⏐⏐⏐⏐⏐⏐
− l2

2
sin q12 ˙q12 − l1 sin q1q̇1

l2
2
cos q12 ˙q12 + l1 cos q1q̇1

0

⏐⏐⏐⏐⏐⏐
ṗ3 =

⏐⏐⏐⏐⏐⏐
−l2 sin q12 ˙q12 − l1 sin q1q̇1
l2 cos q12 ˙q12 + l1 cos q1q̇1

0

⏐⏐⏐⏐⏐⏐
So, the total kinetic energy associated with the system is:

K =
1

2

2∑
i=1

(mi∥ṗi∥2 + Jiq̇i
2) +

1

2
(m3 +mload)∥ṗ3∥2 (5.5)
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And the total potential energy is:

P = m1g(
l1
2
cos q1) +m2g(

l2
2
sin q12 + l1 sin q1) + (m3 +mload)g(l2 sin q12 + l1 sin q1)

The energy dissipated by joint frictions has been calculated through the Rayleigh function,
as:

D =
1

2

2∑
i=1

βq̇i
2

All arms are subjected by torques impressed by the hydraulic cylinders. These torques
generate virtual works representable as:

W1 =

∫
T1 dq1

W2 =

∫
T2 dq2

The Lagrange equations are:

d

dt
(
dKtot

dq̇1
)− dKtot

dq1
+

dPtot

dq1
+

dDtot

dq̇1
= T1

d

dt
(
dKtot

dq̇2
)− dKtot

dq2
+

dPtot

dq2
+

dDtot

dq̇2
= T2

Replacing the following terms in the above equations:

T1 = u1 T2 = u2

q1 = x1 q2 = x2

q̇1 = x3 q̇2 = x4

q̈1 = ẋ3 q̈2 = ẋ4

and adding the identities:

ẋ1 = x3

ẋ2 = x4

It’s possible to represent Lagrange equations in the matrix form:

Aẋ−B = 0

So, the model is representable as:

ẋ = A−1B (5.6)

The tricky point of these passages is the calculation of the inverse matrix A in the
equation (5.6). To overcome this difficulty, the model has been represented in Matlab
code as "Model.mat" (for code details, see Appendix A.1).
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5.3 Simulator and Simulations
Simulator has been implemented in Simulink, considering the model designed on section
5.2. The physical parameters have been set up to simulate the excavator CAT 345C [5],
which its arms measure:

Length (m) Weight (kg)
Boom 6.55 4600
Dipper 3.00 2410

Several sizes of bucket may be mounted onto CAT 345C. In simulator, the bucket dimen-
sions have been set up as follows:

Capacity (m3) Weight (kg)
Bucket 2.6 2900

Arms have been considered as rigid bars in inertias calculation.
The damping factors of joints have been set up with value of 3× 105 J·s2 to obtain a
desired free evolution of the model.

Simulations have to follow trajectories coherent with ones performed by real excavators
during excavations.
Due to the high non-linearity of the model, a "Non-linear predictive model controller"[28]
has been used to obtain the right command activity.
Every Ts seconds, the NMPC performs a prediction over a period of Tp seconds and the
command activity which minimize the error x̃p(τ)=̇r(τ)− x̃(τ) has to be set. Error x̃p(τ)
is minimized searching command activities which minimize the objective function:

J(u(t : t+ Tp))=̇

∫ t+Tp

t

[||x̃p(τ)||2Q + ||up(τ)||2R]dτ + ||x̃p(t+ Tp)||2P (5.7)

The sampling and prediction time of the controller have been set up as:

• Ts=0.1 s;

• Tp=2 s.

Instead, the weight matrices have been set up as:

Q =

⏐⏐⏐⏐⏐⏐⏐⏐
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⏐⏐⏐⏐⏐⏐⏐⏐ R =

⏐⏐⏐⏐0 0
0 0

⏐⏐⏐⏐ P =

⏐⏐⏐⏐⏐⏐⏐⏐
2× 1011 0 0 0

0 2× 1011 0 0
0 0 1× 103 0
0 0 0 1× 103

⏐⏐⏐⏐⏐⏐⏐⏐
Simulations have been performed changing in every experiment the payload, the starting
point and the arrival one.
Considering the bucket size and the earth density, the payload has been randomly picked
up from 0 kg to 5000 kg.
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The starting states and the arrival ones have been randomly picked up too.
The starting states are spaced from:⏐⏐−30 deg −110 deg 0 deg

s
0 deg

s

⏐⏐
to: ⏐⏐10 deg −70 deg 0 deg

s
0 deg

s

⏐⏐
The arrival states are spaced from:⏐⏐30 deg −55 deg 0 deg

s
0 deg

s

⏐⏐
to: ⏐⏐50 deg −35 deg 0 deg

s
0 deg

s

⏐⏐
Every measure has been discretized at 20 Hz with zero order hold technique and additives
white noises have been added to the measures. White noises have been set up with
sampling time equal to 0.05 s and power spectral densities equals to:

• 5× 104 for torque signals;

• 5× 10−6 for angular position signals;

• 5× 10−7 for angular speed signals;

• 5× 10−6 for angular acceleration signals.

The dimensions of white noises have been chosen looking the datasheets of hypothetical
sensors.

Every experiment has been initialized automatically by the Matlab script "Simula-
tion.mat", which defines also the instructions for save experiments in a correct format
(for code details, see Appendix A.2).



Chapter 6

Virtual Sensors Design

6.1 Classical Observers Approach
Classical virtual sensors use measures and model equations to derive the system internal
states.
Unfortunately, measurement noises don’t allow to find internal states directly from model
equations, so the use of a filter is required to derive internal states.
Probably, the most used non-linear filter is the extended Kalman filter, which estimates
internal states using an iterative algorithm. Every time step, the solution calculated from
the system model is compared with noisy system measurements provided by sensors and
the estimate is updated. The EKF spends some time steps to reach optimal estimates.
Sometimes, the quantities to estimate aren’t system states, so it’s required to increase the
state vector size considering also them. The updated state vector is said to be extended.

Figure 6.1: Extended Kalman filter [19]

The EKF for payload estimation problem has been designed in Simulink by means of
the Extended Kalman Filter block.
Designing EKFs directly on Simulink allows to speed up both the design phase and
simulations. Simulations are faster using the EKF block because it uses an optimized
algorithm for the Jacobian calculation.
Data coming from sensors have been discretized at 20 Hz with the zero order hold
technique.

36
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Given the model equations:

ẋ = f(x, u)

y = g(x)

The functions f and g are passed to EKF block as Matlab functions. Function f has been
represented in Matlab code as "myStateTransitionFcn(x,u)" (see Appendix A.4), while
function g has been implemented as "myMeasurementFcn(x)" (see Appendix A.5).

Covariance matrices Q and R have been chosen observing the time behaviour of the
estimations. They are:

Q =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
1× 106 0 0 0 0

0 1× 106 0 0 0
0 0 1× 106 0 0
0 0 0 1× 106 0
0 0 0 0 1× 106

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

R =

⏐⏐⏐⏐⏐⏐⏐⏐
1× 10−4 0 0 0

0 1× 10−5 0 0
0 0 1× 10−4 0
0 0 0 1× 10−5

⏐⏐⏐⏐⏐⏐⏐⏐
The covariance associated with the initial conditions has been chosen equal to 5× 1015,
while the initial conditions have been chosen as:⏐⏐−0.17 rad −1.57 rad 0 rad

s
0 rad

s
5000 kg

⏐⏐
In real applications, virtual sensors may access only a limited knowledge of the system
model. Due to this reason, other two EKFs have been implemented with wrong model
parameters. EKF1% has model parameters different about 1% of the ones used in the
system equations. Instead, EKF3% has model parameters different about 3%.
Below details are reported:

Model EKF1% EKF3%
L1 (m) 6.55 6.61 6.74
L2 (m) 3.00 3.03 3.09
M1 (kg) 4600 4554 4462
M2 (kg) 2410 2385.9 2337.7

Mbucket (kg) 2900 2871 2813
Beta1 (J·s2) 3× 105 3.03× 105 3.09× 105

Beta2 (J·s2) 3× 105 2.97× 105 2.91× 105
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Observing the time evolution of the estimations, parameters of filters have been set
up as follows:

EKF1%
Initial covariance 5× 1015

Q

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
1.005× 106 0 0 0 0

0 1.005× 106 0 0 0
0 0 1.005× 106 0 0
0 0 0 1.005× 106 0
0 0 0 0 1.005× 106

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
R

⏐⏐⏐⏐⏐⏐⏐⏐
1× 10−4 0 0 0

0 1× 10−5 0 0
0 0 1× 10−4 0
0 0 0 1× 10−5

⏐⏐⏐⏐⏐⏐⏐⏐
EKF3%

Initial covariance 5× 1015

Q

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
1.01× 106 0 0 0 0

0 1.01× 106 0 0 0
0 0 1.01× 106 0 0
0 0 0 1.01× 106 0
0 0 0 0 1.01× 106

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
R

⏐⏐⏐⏐⏐⏐⏐⏐
1× 10−4 0 0 0

0 1× 10−5 0 0
0 0 1× 10−4 0
0 0 0 1× 10−5

⏐⏐⏐⏐⏐⏐⏐⏐
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6.2 DVS Approach
DVSs have been designed through neural network approach. This approach is the best one
to accomplish the payload estimation requirements, because neural networks are robust
in noise conditions and suit very well the regression problems. Late studies demonstrate
dynamic neural networks are the most performer type of neural networks for regression
problems. In particular, the best neurons combination is:

• Linear neuron for the output layer;

• Hyperbolic tangent sigmoid neurons for all other layers.

The number of layers and the number of neurons per layer are related to the problem
complexity.
Usually, neurons distributed onto many layers are more performer than same number of
neurons onto less layers.
Neural networks with high numbers of neurons are very good at fitting every problem,
but they require an high number of experiments not to overfit.
Overfitting is a real problem in neural network design. A neural network is said it overfits
when it fits very well on training experiments but it doesn’t fit other experiments of the
same type.

Neural network requires a pre/post processing stadium to work properly, which modify
data to make them more suited for neural network.
Example of pre/post processing functions are standardization and normalization.
Standardization transforms data as:

xnew =
x− xmin

xmax − xmin

Normalization modifies data as:

xnew =
x− µ

θ

No method is better than the other, so both have been tried.

Neural networks have been designed, trained and validated using the Matlab script "NNde-
sign.mat" (see Appendix: A.3).
Before starting to design neural networks, it should be clear that DVSs would be really
implemented on excavators, so the neural networks should be simple and robust. Simple
means neural networks use low number of experiments in training phase and low number
of inputs to keep low the total costs. Robust means neural networks work also in noisy
conditions.

Every type of neural network has been tested trying several combinations of hyper-
parameters, training algorithms and cost functions.
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Net1

Net1 is a Focused Time Delay Neural Network composed by three hidden layers with 10
neurons each. The output layer is composed by a linear transfer functions, while others
are composed by hyperbolic tangent sigmoid transfer functions.
Both standardization and normalization have been tested on inputs and output, but stan-
dardization performs better.
Inputs are considered at time steps t, (t-1), (t-2), (t-3), (t-4), (t-5). They are:

• Angular position and angular speed of the boom arm;

• Angular position and angular speed of the dipper arm;

• Torque impressed by the lower joint;

• Torque impressed by the upper joint.

Figure 6.2: Net1 structure

Net1 has to be trained on 100 experiments not to overfit. The training algorithm used is
the Levenberg-Marquardt with Bayesian regularization and the cost function is the mean
square error.

The results obtained during the training phase are:

Figure 6.3: Net1 training graph

It is possible to notice from the training graph that no overfit has occurred during the
training phase. The best performance reached during training is 0.0999 Kg.
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Net2

Net2 is a NARX neural network composed by three hidden layers with 10 neurons each.
The output layer is composed by a linear transfer function, while others are composed by
hyperbolic tangent sigmoid transfer functions.
For this type of neural networks as well, the standardization performs better than normal-
ization.
Inputs used to obtain good estimates are:

• Angular position and angular speed of the boom arm;

• Angular position and angular speed of the dipper arm;

• Torque impressed by the lower joint;

• Torque impressed by the upper joint.
They are considered at time step t, (t-1), (t-2), (t-3), (t-4), (t-5) and the feedback is
considered at time step (t-1).

Figure 6.4: Net2 structure

Net2 has to require 100 experiments not to overfit. The training algorithm used was
the Levenberg-Marquardt with Bayesian regularization and the training performance was
the mean square error.

The results obtained during the training phase are:

Figure 6.5: Net2 training graph

As it’s possible to see from the training graph, no overfit occurs during the training
phase. The best performance reach during training is 0.0999 Kg.



Chapter 7

Results

Five virtual sensors have been obtained by the design phase. In order to test and validate
them, a subsystem containing virtual sensors has been created into simulator and 200
simulations have been performed. The use of simulations is an efficient method to test
and validate virtual sensors. Through the use of simulations, it’s possible to evaluate the
evolution of estimations and compare virtual sensors between each other.
Virtual sensors with open loop structures are able to provide estimates immediately, while
estimators which use feedbacks require a convergence time. In order to compare both
typologies of estimators, simulations are analysed after some time steps so that closed
loop observers overcome the convergence time.
Analysing the last estimation samples of every experiment used to test virtual sensors,
it’s possible to have a general overview about the performance of estimators.
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Figure 7.0: Errors evaluations discarding the first 81 steps of every experiment
Legend: Net1( ), Net2( ), EKFideal ( ), EKF1%( ), EKF3%( ).

Mean of MAX errors (kg) Mean of RMS errors (kg)
Net1 0.4998 0.296
Net2 0.998 0.656

EKFideal 22.978 15.845
EKF1% 86.954 72.141
EKF3% 100.485 89.880

Table 7.1: Mean values of MAX and RMS errors (the first 81 steps of every experiment
are discarded)

Standard deviation Standard deviation
of MAX errors (kg) of RMS errors (kg)

Net1 0.425 0.293
Net2 0.545 0.415

EKFideal 13.952 11.439
EKF1% 65.614 58.665
EKF3% 58.683 54.728

Table 7.2: Standard deviations of MAX and RMS errors (the first 81 steps of every
experiment are discarded)
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Analysing the graphs and tables above, it’s possible to observe that DVSs estimate
much better than classical observers. Probably, the worst behaviour of classical observers
should be attributed to the high non-linearity of the system model, which doesn’t allow
the correct linearisation by means of Jacobian calculation.
Analysing the tables above, it’s also possible to observe better estimates provided by Net1
in comparison to Net2.
Robustness of both DVSs may be explored analysing the graphs in figure 7.0. Analysing
these graphs, it’s possible to observe no differences in terms of robustness among Net1
and Net2.
From the observations written above, I may affirm Net1 is the most recommended observer
for payload estimation because it allows more precision and less convergence time than
other estimators.

Following are represented the most relevant simulations.

7.0.1 Simulation n°1

Figure 7.1: Measurements at joints (simulation n°1)
Legend: Lower joint measurements ( ), Upper joint measurements ( )
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Figure 7.2: Payload estimations (simulation n°1)
Legend: Payload ( ), Net1 estimation ( ), Net2 estimation ( ), EKFideal

estimation( ), EKF1% estimation ( ), EKF3% estimation ( ).

7.0.2 Simulation n°2

Figure 7.3: Measurements at joints (simulation n°2)
Legend: Lower joint measurements ( ), Upper joint measurements ( )
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Figure 7.4: Payload estimations (simulation n°2)
Legend: Payload ( ), Net1 estimation ( ), Net2 estimation ( ), EKFideal

estimation( ), EKF1% estimation ( ), EKF3% estimation ( ).

7.0.3 Simulation n°3

Figure 7.5: Measurements at joints (simulation n°3)
Legend: Lower joint measurements ( ), Upper joint measurements ( )
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Figure 7.6: Payload estimations (simulation n°3)
Legend: Payload ( ), Net1 estimation ( ), Net2 estimation ( ), EKFideal

estimation( ), EKF1% estimation ( ), EKF3% estimation ( ).

7.0.4 Simulation n°4

Figure 7.7: Measurements at joints (simulation n°4)
Legend: Lower joint measurements ( ), Upper joint measurements ( )



48

Figure 7.8: Payload estimations (simulation n°4)
Legend: Payload ( ), Net1 estimation ( ), Net2 estimation ( ), EKFideal

estimation( ), EKF1% estimation ( ), EKF3% estimation ( ).

7.0.5 Simulation n°5

Figure 7.9: Measurements at joints (simulation n°5)
Legend: Lower joint measurements ( ), Upper joint measurements ( )
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Figure 7.10: Payload estimations (simulation n°5)
Legend: Payload ( ), Net1 estimation ( ), Net2 estimation ( ), EKFideal

estimation( ), EKF1% estimation ( ), EKF3% estimation ( ).

7.0.6 Simulation n°6

Figure 7.11: Measurements at joints (simulation n°6)
Legend: Lower joint measurements ( ), Upper joint measurements ( )
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Figure 7.12: Payload estimations (simulation n°6)
Legend: Payload ( ), Net1 estimation ( ), Net2 estimation ( ), EKFideal

estimation( ), EKF1% estimation ( ), EKF3% estimation ( ).



Chapter 8

Conclusions

Payload evaluation in excavators is a real necessity. Unfortunately, payload is impossible
to be directly measured by sensors, so mathematical approaches are required to estimate
it from other measures.
Two strategies of estimation may be adopted for this purpose. The first strategy is called
"Quasi-static estimation" and provides the estimates when all excavator arms are moving
at low constant angular speed. The second strategy provides the estimates at any motion
condition of arms and is called "Dynamic estimation". Quasi-static estimators are a
consolidated reality and are implemented in numerous excavator models. Instead, the
dynamic payload estimation is an opened problem since frictions and inertias complicate
the payload estimation by not allowing the required stability of estimates.
The finality of this thesis is to develop an efficient dynamic payload estimator from
simulated set of data, keeping in consideration also real problems like noises, uncertain
knowledge of the model and economical costs.

In previous chapters, a simulator has been implemented (chapter 5) and five virtual
sensors have been designed through several methodologies (chapter 6). After the design
phase, the virtual sensors designed have been tested through simulations. The results of
simulations are shown in chapter 7.

The results of simulations demonstrate the performance and the high quality of estimates
provided by Net1.
Net1 overcomes the minimum required precision in industry (1% of accuracy), since it
estimates with a mean value about 0.01% of MAX error and 0.006% of RMS error.
Percentages are referred to the maximum permitted payload (5000 kg).
In addition, Net1 is easy to be adapt to any model of two-arms excavators, because it
doesn’t require the study of any mathematical model at the design phase. Due to this
appreciate quality, Net1 could also be implemented on external units sold as aftermarket
parts and trained on field. At the best of author’s knowledge, no payload observers with
these qualities are available in the literature, so the results obtained from this thesis may be
considered a useful contribute to the study of payload estimators in two-arms excavators.

Unfortunately, I have to conclude my thesis here. In the future it would be interesting to
apply these estimators’ laws on real field, translating mathematical equations in embedded
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code, and implement those on a real excavator ECU. I’m pretty sure virtual sensors would
work in reality because the simulator has been carefully designed, but I’m also aware that
the simulator approximations are many compared with reality.

I really hope my work will be of help to someone.



Appendices
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Appendix A

Matlab Codes

A.1 Model.mat

%% Excavator model

clc
clear all
close all

syms t real

syms q1(t) real
syms q2(t) real

syms dq1(t) real
syms dq2(t) real

syms ddq1(t) real
syms ddq2(t) real

beta=sym('beta', [2 1], 'real'); %Friction coefficient

syms Mload real; %Payload

l=sym('l', [2 1], 'real'); %Lenght of the arms
M=sym('M', [2 1], 'real'); %Mass of the arms
J=sym('J', [2 1], 'real'); %Inertia of the arms respect z

x=sym('x', [4 1], 'real');
dx=sym('dx', [4 1], 'real');

T1=simplify([[cos(q1),-sin(q1),0;sin(q1),cos(q1),0;0,0,1],[0;0;0]; ...
zeros(1,3),1]*[eye(3),[l(1)/2;0;0];zeros(1,3),1])

T2=simplify(T1*[eye(3),[l(1)/2;0;0];zeros(1,3),1]*[[cos(q2),-sin(q2),0;...
sin(q2),cos(q2),0;0,0,1],[0;0;0];zeros(1,3),1]*[eye(3),[l(2)/2;0;0];...
zeros(1,3),1])

T3=simplify(T2*[eye(3),[l(2)/2;0;0];zeros(1,3),1])
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pose1=formula(T1);
v1=simplify([diff(pose1(1,4),t)

diff(pose1(2,4),t)
diff(pose1(3,4),t)])

v1mq=simplify(v1(1)^2+v1(2)^2+v1(3)^2)

pose2=formula(T2);
v2=simplify([diff(pose2(1,4),t)

diff(pose2(2,4),t)
diff(pose2(3,4),t)])

v2mq=simplify(v2(1)^2+v2(2)^2+v2(3)^2)

pose3=formula(T3);
v3=simplify([diff(pose3(1,4),t)

diff(pose3(2,4),t)
diff(pose3(3,4),t)])

v3mq=simplify(v3(1)^2+v3(2)^2+v3(3)^2)

Kin(1)=0.5*(M(1)*v1mq+J(1)*diff(q1(t), t)^2);
Kin(2)=0.5*(M(2)*v2mq+J(2)*(diff(q1(t), t)+diff(q2(t), t))^2);
Kin(3)=0.5*(Mload*v3mq);

Ktot=simplify(sum(Kin)) %Total kinetic co-energy

g=[0;-9.81;0];
Ptot=simplify(-M(1)*g'*pose1(1:3,4)-M(2)*g'*pose2(1:3,4)-...

(Mload)*g'*pose3(1:3,4)) %Total potential energy
Dtot=simplify(0.5*(beta(1)*(diff(q1(t), t))^2+...

beta(2)*(diff(q2(t), t))^2))

Ktot=subs(Ktot,diff(q1(t), t),dq1);
Ktot=subs(Ktot,diff(q2(t), t),dq2);

Dtot=subs(Dtot,diff(q1(t), t),dq1);
Dtot=subs(Dtot,diff(q2(t), t),dq2);

equations(1,1)=diff(functionalDerivative(Ktot,dq1),t)-...
functionalDerivative(Ktot,q1)+functionalDerivative(Ptot,q1)+...
functionalDerivative(Dtot,dq1);

equations(2,1)=diff(functionalDerivative(Ktot,dq2),t)-...
functionalDerivative(Ktot,q2)+functionalDerivative(Ptot,q2)+...
functionalDerivative(Dtot,dq2);

equations=formula(simplify(equations));

equations=subs(equations,diff(dq1(t), t),dx(3));
equations=subs(equations,diff(dq2(t), t),dx(4));

equations=subs(equations,q1,x(1));
equations=subs(equations,q2,x(2));
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equations=subs(equations,dq1,x(3));
equations=subs(equations,dq2,x(4));

for i=1:2
stateEq(i,1)=dx(i)-x(2+i);
stateEq(2+i,1)=equations(i,1);
end

stateEq

u=sym('u',[2 1],'real');
[A,b] = equationsToMatrix(stateEq==[0;0;u], dx) % A*dx=b
sol=inv(A)*b;
sol=simplify(sol);

[g,f] = equationsToMatrix(sol==zeros(4,1), u) % ff=f+g*u
sprintf('Equation: ff=f+g*u')
f=-f;
if simplify(sol-(f+g*u))==zeros(4,1)

ff=f+g*u;
save('model_variables.mat','ff','f','g')
sprintf('Matrix ff,f,g saved in "model_variables.mat"')

else
sprintf('It is not possible to save the model as matrix ff,f,g')

end
matlabFunction(sol,'file','ExcavatorModel');
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A.2 Simulation.mat

clear all
close all
clc

x=sym('x', [4 1], 'real');
u=sym('u', [2 1], 'real');

Tf=5;
Ts=0.05;

l1=6.55;
l2=3.0;

M1=4600;
M2=2410;
Mbucket=2900;

beta1=3e5;
beta2=beta1;

J1=M1*(l1^2)/12;
J2=M2*(l2^2)/12;

U_noiseVar=1e6;
Acc_noiseVar=1e-4;
Vel_noiseVar=1e-5;
Pos_noiseVar=1e-4;

open('mymodel_nmpc.slx')

for iii=1:2000
r=(pi/180)*[40+10*(2*rand-1);-45+10*(2*rand-1);zeros(2,1)];
x0=(pi/180)*[-10+20*(2*rand-1);-90+20*(2*rand-1);zeros(2,1)];

Mload=5000*rand+Mbucket;

f=ExcavatorModel(J1,J2,M1,M2,Mload,beta1,beta2,l1,l2,u(1),u(2), ...
x(1),x(2),x(3),x(4))

% om: optimization model
om.Ts=0.1; %sampling time at which the states are measured
om.Tp=2; %prediction horizon
om.Q=zeros(4);
om.R=0*eye(2);
om.P=diag([ones(1,2)*2e11,ones(1,2)*1e3]);
om.lb=[];
om.ub=[];
om.nlc=0;
om=nmpc_design(f,om);

sim('mymodel_nmpc.slx')
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exp = size(dataset,2)+1;
init = 1;
stop =size(Lower_Arm_Kin,1);
step = 1;

dataset{exp}.input = [Lower_Arm_Kin(init:step:stop,:) ...
Upper_Arm_Kin(init:step:stop,:) Torque(init:step:stop,:)];

dataset{exp}.output = (Mload-Mbucket)*ones(length(time(init:step:stop,:)),1);
dataset{exp}.time = time(init:step:stop,:);
dataset{exp}.input_names = {'Pos_LA' 'Vel_LA' 'Accel_LA' 'Pos_UA'...

'Vel_UA' 'Accel_UA' 'Torque_LA' 'Torque_uA'};
dataset{exp}.input_unit = {'deg' 'deg/s' 'deg/s^2' 'deg' 'deg/s'...

'deg/s^2' 'Nm' 'Nm'};
dataset{exp}.name = 'dataset_excavator';
dataset{exp}.note = '...';

end

save('dataset_excavator','dataset')
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A.3 NNdesign.mat

clc
clear all
close all

load dataset_excavator %Dataset used to train the net

N='[10 10 10]'; % Each element of the vector is a layer,
% the value of the element is the number of neurons
% in the layer

Input='[1 2 4 5 7 8]'; %Neural network's input

Sim='[101:151]'; %Experiments used for the validation phase
Train='[1:100]'; %Experiments used for the training phase

% Merge of data used for the training phase.
% Data should be merged to be recognized by
% the training program as sequential inputs.
% If data are passed as vector, the training
% program considers them as concurrent inputs.

sequence=str2num(Train);

for i=1:size(sequence,2)

a=0;
for iii=str2num(Input)
a=a+1;
inputArray(a,:)=dataset{sequence(i)}.input(:,iii);

end

nnn=0;
for n=1:size(dataset{sequence(i)}.output,1)
nnn=nnn+1;
uuu{nnn}(:,1) = inputArray(:,n);
ttt{nnn} = (dataset{sequence(i)}.output(n))';
end

if(i==1)
inT=uuu;
outT=ttt;
else
inT=catsamples(uuu,inT);
outT=catsamples(ttt,outT);
end
end

% Feedforward_neural_network ==> NNtype=1;
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% Timed_delay_network ==> NNtype=2;
% TDNN_network ==> NNtype=3;
% Narx_network ==> NNtype=4;
% Layer_recurrent_network ==> NNtype=5;

NNtype=2; %Defines the neural network type

pool=parpool %Starts the parallel calculation

%% Feedforward Neural network
if NNtype==1

net = feedforwardnet(str2num(N));
net.trainFcn = 'trainbr';
net.trainParam.epochs = 1e10

% net.outputs{3}.processFcns{2}='mapstd';
% net.inputs{1}.processFcns{2}='mapstd';

[In,InI,Ai,Out] = preparets(net,inT,outT);
net=init(net)
net.trainParam.lr =Lr;
[net,tr]=train(net,inT,outT,'useParallel','yes','showResources','yes');

description=strcat('Feedforward Neural network - Network: ',N,...
' -Project: ',Train,' - Sim: ',Sim,' - Input: ',Input);

end

% Timed delay network
if NNtype==2
R='0:5';

net=timedelaynet(str2num(R),str2num(N));

net.trainFcn = 'trainbr';
net.trainParam.epochs = 1e10;

% net.outputs{3}.processFcns{2}='mapstd';
% net.inputs{1}.processFcns{2}='mapstd';

[In,InI,Ai,Out] = preparets(net,inT,outT);
net.trainParam.lr =Lr;
[net,tr]=train(net,In,Out,InI,'useParallel','yes','showResources','yes');

description=strcat('Timed delay network - Network: ',N,' - R: ',R,...
' -Project: ',Train, '- Sim: ',Sim,' - Input: ',Input);

end
% TDNN network
if NNtype==3
R='0:3';
R2='0:3'; %Regressors of the layer 2
R3='0:3'; %Regressors of the layer 3
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net=distdelaynet({str2num(R),str2num(R2),str2num(R3)},str2num(N));

net.trainFcn = 'trainbr';
net.trainParam.epochs = 1e10;

[In,InI,Ai,Out] = preparets(net,inT,outT);
[net,tr]=train(net,In,Out,InI,'useParallel','yes','showResources','yes');

description=strcat('TDNN network - Network: ',N,' - R: ',R,' - R2: ',R2,...
' -Project: ',Train,' - Sim: ',Sim,' - Input: ',Input);

end

% Narx network
if NNtype==4
R1='0:5';
Rf='1'; %Regressors of the feedback
net=narxnet(str2num(R1),str2num(Rf),str2num(N));

net.trainFcn = 'trainbr';
net.trainParam.epochs = 1e10;

net=closeloop(net);

[In,InI,Ai,Out] = preparets(net,inT,{},outT);
[net,tr]=train(net,In,Out,InI,'useParallel','yes','showResources','yes');

description=strcat('Narx network - Network: ',N,' - R1: ',R1,' - Rf: ',...
Rf,' -Project: ',Train,' - Sim: ',Sim,' - Input: ',Input);

end
% Layer-Recurrent Network
if NNtype==5
R='1:2';
net=layrecnet(str2num(R),str2num(N));

net.trainFcn = 'trainbr';
net.trainParam.epochs = 1e10;

[In,InI,Ai,Out] = preparets(net,inT,outT);
[net,tr]=train(net,In,Out,InI,'useParallel','yes','showResources','yes');

description=strcat('Layer Recurrent Network - Network: ',N,' - R: ',R,...
' -Project: ',Train,' - Sim: ',Sim,' - Input: ',Input);

end

%% Network's simulation
a=0;
for i=str2num(Sim)
aaa=0;
for iii=str2num(Input)
aaa=aaa+1;
inputArray(aaa,:)=dataset{i}.input(:,iii);
end
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for n=1:size(dataset{i}.output,1)
inS{n}(:,1) = inputArray(:,n);
outS{n} = (dataset{i}.output(n))';
end

if NNtype==4
[In,InI,Ai,Out] = preparets(net,inS,{},outS);

else
[In,InI,Ai,Out] = preparets(net,inS,outS);

end

a=a+1;
sim = net(In,InI,Ai,'useParallel','yes','showResources','yes')

TestSim{NNtype}.simulation{a}.desired=cell2mat(Out);
TestSim{NNtype}.simulation{a}.estimated=cell2mat(sim);
TestSim{NNtype}.simulation{a}.err = cell2mat(sim)-cell2mat(Out);
TestSim{NNtype}.simulation{a}.CI = prctile(...

abs(TestSim{NNtype}.simulation{a}.err),[90 95 99]);
TestSim{NNtype}.simulation{a}.N_test=i;
TestSim{NNtype}.net=net;
TestSim{NNtype}.description=description;
TestSim{NNtype}.results(:,a) = TestSim{NNtype}.simulation{a}.CI;
TestSim{NNtype}.MaxErr(1,a)=max(abs(TestSim{NNtype}.simulation{a}.err));

end
delete(pool)
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A.4 myStateTransitionFcn.mat

function xk = myStateTransitionFcn(x,u)
l1=6.55;
l2=3;

M1=4600;
M2=2410;
Mbucket=2900;
Mload=abs(x(5))+Mbucket;

beta1=3e5;
beta2=beta1;

J1=M1*(l1^2)/12;
J2=M2*(l2^2)/12;

Ts=0.05;
xk=zeros(5,1);
dx=ExcavatorModel(J1,J2,M1,M2,Mload,beta1,beta2,l1,l2,u(1),u(2), ...

x(1),x(2),x(3),x(4));

for i=1:4
xk(i)=x(i)+Ts*dx(i);
end
xk(5)=Mload-Mbucket;
end

A.5 myMeasurementFcn.mat

function y = myMeasurementFcn(x)
y=x(1:4);
end



Bibliography

Articles and Books
[1] Levin A. and Narendra K. “Control of nonlinear dynamical systems using

neural networks. II. observability, identification, and control”. In: IEEE Trans.
Neural Networks NN-7.1 (1996), pp. 477–482.

[2] B. Anderson and J. Moore. “Optimal Filtering”. In: Englewood Cliffs, NJ,
1979.

[4] Nureddin Bennett, Ashwin Walawalkar, and Christian Schindler. “Payload
Estimation in Excavators: Model-Based Evaluation of Current Payload Esti-
mation Systems”. In: (2014).

[7] J.L. Elman. “Finding structure in time”. In: Cognitive Science 14 (1990),
pp. 179–211.

[8] G. Evensen. “Data Assimilation: The Ensamble Kalman Filter”. In: New
York: Springer (2007).

[9] Sharon Furtak. “Neurons”. In: Noba textbook series: Psychology. 2018. url:
http://www.nobaproject.com/.

[10] J. C. Geromel and M. C. Oliveira. “H2 and H∞ robust filtering for convex
bounded uncertain systems”. In: IEEE Trans. Autom. Control 46.1 (Jan.
2001), pp. 100–107.

[11] Jahmy Hindman, Richard Burton, and Greg Schoenau. “An Artificial Neural
Network Approach to Payload Estimation in Four Wheel Drive Loaders”.
In: ASME International Mechanical Engineering Congress and Exposition,
Proceedings. Vol. 9. Jan. 2007.

[14] A. Jazwinski. “Stochastic Processes and Filtering Theory”. In: Academic.
NewYork, 1970.

[15] S. Julier, J. Uhlmann, and H. Durrant-Whyte. “A new method for the nonlinear
transformation of mean and covariances in filters and estimators”. In: IEEE
Trans. Autom. Control 45 (2002), pp. 477–482.

[16] R. Kalman and R. Bucy. “New results in linear filtering and prediction the-
ory”. In: J . Basic Eng. 83D (1961). Ed. by Trans. ASME, pp. 95–108.

[17] A. Kolmogorov. “Stationary sequences in hilbert space”. In: Bull. Moscow
Univ. 2 (1941), pp. 1–40.

64

http://www.nobaproject.com/


Bibliography 65

[21] Warren McCulloch and Pitts Walter. “A Logical Calculus of Ideas Immanent
in Nervous Activity”. In: Bulletin of Mathematical Biophysics 5 (1943),
pp. 115–133.

[23] K. Nagpal, J. Abedor, and K. Poolla. “A linear matrix inequality approach
to peak-to-peak gain minimization”. In: IEEE. Trans. Autom. Control 41.1
(1996), pp. 43–48.

[24] K. Nagpal and P. Khargonekar. “Filtering and smoothing in an H∞ setting”.
In: IEEE. Trans. Autom. Control 36 (1991), pp. 152–166.

[25] O. Nelles. “Nonlinear System Identification: From Classical Approaches to
Neural Networks and Fuzzy Models”. In: Springer-Verlag. Berlin, Germany,
2001.

[26] Michael Nielsen. Neural Networks and Deep Learning. 2017. url: http:
//neuralnetworksanddeeplearning.com/index.html.

[29] Carlo Novara, Mario Milanese, and Fredy Ruiz. “Direct Filtering: A New
Approach to Optimal Filter Design for Nonlinear Systems”. In: IEEE TRANS-
ACTIONS ON AUTOMATIC CONTROL (2013).

[30] Carlo Novara et al. “The filter design from data (FD2) problem: parametric-
statistical approach”. In: INTERNATIONAL JOURNAL OF ROBUST AND
NONLINEAR CONTROL (2011).

[33] B. Ristic, S. Arulampalam, and N. Gordon. “Beyond Kalman Filter: Particle
Filters and Tracking Applications”. In: Artech House. Boston, MA, 2004.

[34] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
representations by back-propagating errors”. In: Nature 323 (1986), pp. 533–
536.

[35] B. Silvy-Leligois and J. Giroud. Wägeverfahren und Hubfahrzeug zur Durch-
führung des Verfahrens. EP Patent App. EP19,950,104,951. Oct. 1996. url:
https://encrypted.google.com/patents/EP0736752A1?cl=ar.

[36] K. Sun and Packardv A. “Robust and filters for uncertain LFT systems”. In:
IEEE Trans. Autom. Control 50.5 (May 2005), pp. 715–720.

[39] P. G. Voulgaris. “On optimal to filtering”. In: Automatica 31.3 (1995),
pp. 489–495.

[40] Ashwin Walawalkar et al. “A Method for Payload Estimation in Excavators”.
In: (2016).

Lecture notes
[27] Carlo Novara. Automatic control. 2016–2017.
[28] Carlo Novara. Nonlinear control and aerospace applications. 2016–2017.
[37] Michele Taragna. Controlli automatici. 2016–2017.
[38] Massimo Violante. Operating systems for embedded systems. 2016–2017.

http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
https://encrypted.google.com/patents/EP0736752A1?cl=ar


Bibliography 66

Videos
[20] Matlab. Understanding Kalman Filters. 2017. url: https : / / it .

mathworks.com/videos/series/understanding-kalman-filters.
html.

Websites
[12] Physics Insights. LagrangiaMechanics. 2006. url: http : / / www .

physicsinsights.org/lagrange_1.html#eqn-4.
[13] National Instruments. Controller Area Network (CAN) Overview. url: http:

//www.ni.com/white-paper/2732/en/.
[18] Bilal Malikuet. Controller area network protocol, features history and work-

ing. 2017. url: http://microcontrollerslab.com/can-protocol-
history-features/.

[19] Matlab. Extended Kalman Filter. url: https://it.mathworks.com/
help/control/ref/ekf_block.html.

[22] Modelway. DVS®. url: http://modelway.it/technologies/dvs/.
[31] Alberto Quesada. 5 algorithms to train a neural network. 2017. url: https:

//www.neuraldesigner.com/blog/5_algorithms_to_train_a_
neural_network.

[32] Renesas. In-Vehicle Networking Solutions. url: https://www.renesas.
com / en - in / media / solutions / automotive / technology /
networking/lan-clickablemap.jpg.

Manuals
[3] Mark Hudson Beale, Martin T. Hagan, and Howard B. Demuth. Neural Net-

work Toolbox™ User’s Guide. 2016.
[5] Caterpillar. 345C L Hydraulic Excavator. 2007.
[6] Doosan. Excavator attachments. 2015.

https://it.mathworks.com/videos/series/understanding-kalman-filters.html
https://it.mathworks.com/videos/series/understanding-kalman-filters.html
https://it.mathworks.com/videos/series/understanding-kalman-filters.html
http://www.physicsinsights.org/lagrange_1.html#eqn-4
http://www.physicsinsights.org/lagrange_1.html#eqn-4
http://www.ni.com/white-paper/2732/en/
http://www.ni.com/white-paper/2732/en/
http://microcontrollerslab.com/can-protocol-history-features/
http://microcontrollerslab.com/can-protocol-history-features/
https://it.mathworks.com/help/control/ref/ekf_block.html
https://it.mathworks.com/help/control/ref/ekf_block.html
http://modelway.it/technologies/dvs/
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network
https://www.renesas.com/en-in/media/solutions/automotive/technology/networking/lan-clickablemap.jpg
https://www.renesas.com/en-in/media/solutions/automotive/technology/networking/lan-clickablemap.jpg
https://www.renesas.com/en-in/media/solutions/automotive/technology/networking/lan-clickablemap.jpg

	List of Figures
	List of Tables
	Introduction
	System Description
	Excavators
	ECU and CAN Protocol

	Classical Observers
	What Is a Virtual Sensor?
	Kalman Filter

	Direct Virtual Sensors
	General Overview about DVS
	Neural Networks
	Feedforward Neural Networks
	Dynamic Neural Networks
	Neural Network Training


	System Model
	Lagrangian Mechanics
	Excavator Model
	Simulator and Simulations

	Virtual Sensors Design
	Classical Observers Approach
	DVS Approach

	Results
	Simulation n°1
	Simulation n°2
	Simulation n°3
	Simulation n°4
	Simulation n°5
	Simulation n°6


	Conclusions
	Appendices
	Matlab Codes
	Model.mat
	Simulation.mat
	NNdesign.mat
	myStateTransitionFcn.mat
	myMeasurementFcn.mat

	Bibliography

		Politecnico di Torino
	2018-03-30T08:41:04+0000
	Politecnico di Torino
	Carlo Novara
	S




