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Chapter 1

Introduction

The aim of this thesis is to design a discrete time optimized Guidance and Control for

an already present Unmanned Aerial Vehicle (U.A.V.) realized for the Borea project

[35] [14], [33], [30] by the Space and Precision Automatics (SPA) group from Politec-

nico di Torino. The main purpose is to replace the current not-optimal polynomial

guidance and control block with an optimal one exploiting advanced control technique

properties. The method identified to fulfill this aim is the so-called Model Predic-

tive Control (MPC) that allows to solve trajectory optimization problem through the

discrete-time constrained optimal control. Thanks to the extension of U.A.V. in the

civil sphere and its analogy with aircraft in descending propulsive phase, research to

increase performances have increased all over the world. These concerns the creation

of an optimized guidance that returns feasible optimal trajectory profiles which bring

the UAV to a desired point by minimizing a performance index. About the project,

the main aim is to test Guidance, Navigation and Control (GNC) algorithms based

on Embedded Model Control (EMC) theory [6], [8], [9], [10], [18]. Since the project

is based on these techniques, a small description of how they interact with each other

is given in Chapter 3. While in such a way to relate all the measures returned by

different sensors, in Chapter 4 are provided descriptions and technical reasons about

the assumpion of several reference frames. Subsequently in Chapter 5 are described the

complete UAV’s geometrical configuration, physical model and analysis of the attitude

behaviour to understand how the quadcopter reacts to input commands. A physical

model description is necessary inasmuch the guidance will be subject to dynamic equa-
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Chapter 1. Introduction

tions, while kinematic and finally the dispatching technique are necessary to obtain

the values of the forces that must be provided by each propellers-motor. Moreover,

embedded models are breafly described since its definition is usefull for the implemen-

tation of the discrete time guidance and control optimization.

While the most important contribution is described in Chapter 6 where it is provided to

replace the continuos time polynomial guidance with discrete time optimized one that

furthermore takes into account the physical saturation of the actuators. Since the poly-

nomial guidance is based only on the placement of polynomial coefficients that satisfy

boundary condition and not considers dynamics the physical saturation of propellers-

motors is not optimized and for this reason this limit has led to the use of new control

techniques that are increasingly used in recent years. However, before proceeding with

the complete replacement of the polynomial guide, is prosed to optimized it, leaving the

algorithm free to choose the flight time. Guidance optimization issues are often solved

as discrete time optimal control, wich the aim is to minimize cost function subject to

equality and inequality linear constraints. The technique that best suits this purpo se

is Model Predictive Control (MPC) technique. As the name itself indicates, this tech-

nique is based on predictive models that will be extensively explained in this chapter.

In addition, for the fulfillment of the requirements a change has been made in such

a way to avoid non-linearities, thus leading us back to a linear optimization problem.

This modification is broadly described in the paragraph 6.2.1 and is the key point for

the resolution and creation of a guidance/control optimization. From this assumption

two techniques based on the same philosophy of optimization are designed using differ-

ent approaches to achieve the same requirements. The two approaches correspond to

the name of targetting (or two boundary value problem TBVP) and tracking, explained

respectively in paragraphs 6.2.1 and 6.2.2. Both these techniques consider the bounds

on output and input that for this reason they are called constrained. The results ob-

tained using the above techniques are shown in Chapter 7 in the same order in which

they have been described. In this chapter will be shown how the constraints of equality

and inequality influence the feasibility of the considered optimization problem. While

the conclusions are reported in Chapter 8 where are analyzed the improvement and

the differences between not-optimal polynomial guidance and the constrained discrete

time optimal showing theirs advantages and disadvantages.

2



Chapter 2

State of art

The guidance systems make their first appearance with the advent of rockets. This

merit is attributed to Dr. Goddard who used a rudimentary gyroscope system. These

systems are widely used and had important applications with the birth of spacecraft,

guided missiles, etc. Following the Second World War the guidance systems had a no-

table evolution, in chronological time we remember the guidance navigation and control

for V2 which was a very sophisticated system in 1942 thanks to Von Braun.

Figure 2.1: Goddard (left) and V2(right)

As written in [15] ”Early v2 leveraged self -contained closed loop with 2 gyroscopes and

lateral accelerometer and simple analog computer to adjust the azimuth for the rocket

in flight. Analog computer signals were used to drive 4 external rudders on the tail fins

3



Chapter 2. State of art

for flight control”. Subsequently, the Americans responded to the German technology

of the V2, through the Jet Propulsion Laboratory founded by the Army Ordnance

1942 creating the MGM-5 Corporal. Two months after the advent of NASA (National

Aeronautics and Space Administration), the JPL went under the Army jurisdiction.

The guidance systems from that time on, had further applications and at the beginning

of 1958, Nasa JPL and Caltech developed other types of guidance to be used primarily

for unmanned flight. In the early 1950s MIT was chosen by the Air Force Western

Development Division to create a self contained guidance system backup for ATLAS

intercontinental ballistic missiles. Has written in [15] ”The Atlas guidance system was

a combination of an on-board autonomous system, and a ground-based tracking and

command system. The self-contained system prevailed in ballistic missile applications”

thanks to Jim Fletcher. New computational based solutions for guidance systems were

introduced in 1952 by Dr J. Halcombe Laning Jr. and Dr. Richard Battin to achieve

lower processing speeds. This led them to the realization of analytical solutions on

the atlas inertial guidance used for the mission Apollo. Charlie Bossart and Walter

Schweidetzky, head of this group, also contributed to these projects.

Figure 2.2: Shuttle, Apollo 11 https://grahamedwardsonline.files.wordpress.

com

The initial guide resulting from it was called DELTA which took into consideration

the distance of the aircraft with respect to the reference trajectory and controlled the

speed through the VGO (velocity to be gained). Due to the limitations in accuracy

4
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Chapter 2. State of art

of the IMU and calculation power, the guide described above was discarded. These

problems were overcome with the introduction of the Q system that revolutionized the

era of missiles that still uses variants of this method. Moreover, hybrid guidance types

were created for the missions of the Apollo program starting from August 1961 and

taking the name of Powered Explicit Guidance PEG composed by Delta and Q system

guidance. Recently, the military force has developed vehicles completly autonomous,

able to carry out reconnaissance on high risk areas avoiding the loss of soldiers and

therefore saving lives. These vehicles are known under the name Unmanned aerial vehi-

cles (UAV) and with them the guidance systems have evolved greatly. With the advent

of UAVs, a myriad of research has been carried out in the scientific field involving and

influencing the civil and industrial sectors. In fact, as often happens, the innovations

in the military are exploited for the creation of civil and industrial applications. The

UAVs that have had the greatest success in the civil field are those that are derived

from the extension of the helicopter operating principle.

Figure 2.3: UAV (left) https://grahamedwardsonline.files.wordpress.com and

JRC quadrocopter (right)

They are equipped with n propellers arranged radially and spaced with an angle that

depends on the number of propellers present. The creation of the latter arises from the

need to create a vehicle that has a high maneuverability necessary in impervious areas.

The agility of the aircraft just described is due to the presence of the four propellers that

bring about a change of quick set-up. Thanks to its extension in the civil sphere and its

analogy with the lander for the inter-plenary landing, the research on the development

and the increase of performances have increased all over the world. Improvements are

5
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made using advanced control techniques or better known as optimization methods.

They concern the creation of an optimized guide that returns feasible values of the

inputs and that brings the system to the desired final state by minimizing a perfor-

mance index. This technique is known under various names but the most used and

widespread in this field is ”trajectory planning” and allows to generate the profiles

of the state components as a reference for the control. This technique should not be

confused with path planning through which the threedimensional (3D) configuration is

located from the initial position to the final one. This corresponds to finding a static

geometry path and does not include time evolution. Generally speaking, the model

and solution algorithm of the trajectory planning problem are more complicated than

the ones of the path planning problem.

In fact, in this regard, various optimization methods have been introduced. The most

intuitive method is to adapt the theory of optimal control to the trajectory planning

problem to demonstrate this. Yao and Zhao [40] show how it is possible to use a

discrete-time technique of optimal control that works in a predictive form, hence the

name Model Predictive Control (MPC). Other references show other types of guidance

based on various optimization algorithms such as Duan et al that introduces many

optimization algorithms. It solves the optimization problem with no consideration of

dynamic and kinematic constraints including the chaotic artificial bee colony (ABC)

approach, the chaotic predator–prey biogeography-based optimization (CPPBBO) al-

gorithm, the improved gravitational search algorithm, and reducing the infinite dimen-

sional problem into the finite dimensional one [3]. Although these method might be

useful, the dynamic and kinematic model of the UAVs is completely ignored and this

type of result is unacceptable and as was written in [1] ”because the models of the

trajectory planning problem need to be closer to the real aircraft model”. The as-

sumption of a model similar to the real one is strictly necessary to obtain real feasible

trajectories. This however leads to the use of more complicated models which entails

increasing the magnitude of the problem of calculation and therefore greater difficulty

in planning trajectories. The problems that are concerned with the optimization of

trajectories make use of constraints on inputs and outputs that make the feasibility

difficult.

Other approaches have been made using the finite reciding horizon optimal control

problem to implement the approach and land-based phase of a reusable launch vehicle

(RLV). There are other algorithms which can solve the trajectory planning problem as

6
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used to solve the problem of the unmanned combat aerial vehicle (UCAV) [41] to solve

the ground attack trajectory planning problem. Kamyar and Taheri [28] also provide a

solution to solve the trajectory planning problem of 6-DOF dynamic model as differen-

tial evolution-sequential quadratic programming (DE-SQP) approach and the particle

swarm optimization-sequential quadratic programming (PSO-SQP) approach .

In literature, it is possible to find other papers that describe in the most desperate

ways how to solve this optimization problem, so the solution is not found with a single

method.

Another example is found by [12] , where it uses the differential flatness and polynomial

function method. The last frontier reached in the guidance systems for autonomous

aircraft is that of cooperation where a set of drones must carry out a particular objec-

tive that a single drone cannot reach. References to this argument are [1][12][13][25]

and represent the latest improvements in this area.

7



Chapter 3

Borea Project

3.1 Guidance Navigation and Control G.N.C and

Embedded Model Control E.M.C.

The main aim of this project is to test Guidance, Navigation and Control (GNC) algo-

rithms based on Embedded Model Control (EMC) theory [35],[14],[33],[30],[6]. Since

the quadrotor has significant equality with aircraft space vehicles in the landing propul-

sive phase, allows to extend GNC[8],[9],[10],[18], algorithms not only for Earth flight

applications but also for space applications [5], [7]. The guidance of a vehicle have

as aim to describe an appropriate trajectory which bring the UAV to a desired point

respecting all the requirements. Due to the fact that, in real applications, there are

various type limits present, the guidance is not only constrained by the configuration of

the vehicle, but also by the environment, obstacles and target position [38][39]. While

inertial navigation is used to estimate the state of the vehicle system (position, velocity

and attitude) through the inertial measurement unit (IMU) formed by accelerometer

and Gyroscope. The IMUs are the most used device to drive UAVs [29], spacecraft

and landing [23], intelligent missiles [24]. The control defines the input command value

that the actuators will be given in such a way to track reference signal given by the

guidance algorithm. Since the project is based on Embedded Model Control (EMC)

a little description on this argument is necessary. A good explantion about this ar-

gument can be found in [11], [31], [27]. From this, it is clear that Embedded Model

8
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Control consider the presence of unstructed parametric uncertainty in the development

of the model based control law, this technique is introduced to guarantee closed-loop

stability[22][20] and to consider a linear system. This aim is obtained by assigning ig-

norance coefficients that interact decreasing the feedback control effort with respect to

the model-based design. Moreover EMC shows that a model-based control law is man-

tained stable under uncertainty if the uncertainties that affect the Embedded Model

(EM) are considered, calculated in real-time as disturbance dynamics. The disturbance

vector is estimated as the difference between plant and model output and updated in

real-time in the model error, so for this reason is mandatory to design a noise estimator,

moreover as written from previous work on this project in [11]” appropriate separation

of the components into low and high frequency domains by the noise estimator itself

allows to recover and guarantee stability, and to reject the low frequency uncertainty

” [8][19]. The complete model is composed by:

1) The controllable dynamics

2) The disturbance dynamics

3) The neglected dynamics

Figure 3.1: Extended plant [11]

As can be seen in the figure 3.1 that show that controllable and disturbance dynamics

are observable and measured, together are called Embedded Model (EM) and has

previously written all the control algorithm is designed taking into account these two

parts. The EM is written under the consideration of discrete time and forms the control

unit Heart.

9
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3.1.1 Model Principles

As described by [38], the EM work sinchronusly and in a parallel way with respect to

plant driven by the computed command ui that have digital value and where i is the

i− th sample, the command comes from to the continuous quantized input driven by

a polynomial guidance (that will be substituted with this thesis). The main aim is the

formulation for guarantee a bounded model error where past uncertainty is modelized

and deleted. The discrete value of the error variable ei come from to the model error

that is computed comparing plant and EM, as mentioned before. It is the only available

measure of the past uncertainty and added in the disturbance state di , driven by an

arbitrary input noise wi.

Figure 3.2: Plant, parallel embedded model and measurement [11]

The wi taking correlation with ei (noise estimator, NE) revealing the residual uncer-

tainty and bringing the embedded model to align with the plant bounding ei and to

mantain the asymptotic stability of closed-loop system (EM+NE), a Noise estimator is

designed. For the application that regards GNC (Guidance, Navigation and control),

EMC is mandatory. The trajectory reference generator is realized using polynomial

strategy while the Noise estimator that predicts the system states is implicitly devel-

oped in the navigation algorithm.

10



Chapter 3. Borea Project

3.1.2 UAV’s parameters and model architecture

The Borea project [35] [14], [33], [30] developed by the Space and precision automatics

group had as aim to build a quadrocopter inasmuch it has significant equality with

aircraft space vehicles in the landing propulsive phase. The quadrocopter is a very

agile aircraft that can be controlled by man (manned) or programmed to perform

the desired tasks autonomously (unmanned). For this reason the quadricopter is also

included in the category called Unmanned Aerial Vehicle and can operate remotely

thanks to integrated algorithms. These vehicles are used to fulfill several tasks thanks

to their great flexibility. In fact, with them it is possible to recognize large dangerous

areas in the military, to search for missing persons due to avalanches, watching woods

or sensitive structures, or simply taking aerial images. In this subsection, the physical

parameters (as mass, inertia and dimension) and project parameters (sample period,

simulation time, constant variable) are given.

Figure 3.3: Borea Quadrotor

As can be seen from figure 3.3 , the quadrotor is equipped with 4 propellers, each driven

by the respective motors allowing the aircraft to move in space. This aircraft has the

ability to translate and rotate around its axis of reference thanks to its 6 degrees of

freedom. The physical parameters that characterize this aircraft are summarize in the

following table.

11
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Variable Value unit

1 mass 1.49 Kg

2 Inertia Ixx 17.2e− 3 Kg ·m2

3 Inertia Iyy 18.5e− 3 Kg ·m2

4 Inertia Izz 26.75e− 3 Kg ·m2

5 Diameter Quadrotor 0.5 m

6 Quadrotor Height 0.05 m

7 Propeller Diameter 0.254 m

Table 3.1: Borea Quadrotor Parameters

Obviously, these data are not sufficient in the simulation environment, where to define

how the system works it is necessary to define the sampling time or the simulation time

itself. For this reason, the project parameters are also reported which are summarized

in the table below as follows.

Variable Value unit

1 Simulation Time 100 s

2 Gravity constant 9.81 m
s2

3 sampling period 0.1 s

Table 3.2: Borea Quadrotor Parameters

To give more clarity and simplify at the same time how the simulator works, the

complete architecture of the model is shown in the form of a block diagram .It can be

divided into 4 main blocks that describe the main operations:

1. Operator

2. Simulator

3. Control unit

4. Sensors

12
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Figure 3.4: Model architecture

Where the operator block includes information about the target (position, velocity,

acceleration), the control unit block takes into account the algorithms of guidance

and navigation and control, the simulator takes in consideration the embedded model

and the sensor block represents filter and algorithm to estimate attitude and position.

In such a way to measure variables as acceleration linear and angular or position, a

different sensor is present on board.

Sensor Value

1 Acceleration 3 axis linear acceleration

2 Gyroscope 3 axis angular acceleration

3 Magnetometer Magnetic Field

4 Sonar Vertical position

5 Gps Horizontal position

Table 3.3: Quadrotor sensors
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Chapter 4

Reference frame

The quadricopter, as was mentioned in the previous chapter, belongs to the category

of unmanned aerial vehicle (UAV), which exploits the differential thrust in order to

control the attitude (Dinamic,Kinematic) as is shown in Chapter 5, unlike conventional

helicopters, which use complex mechanisms to control the coefficient of lift by modifying

the propellers configuration.

In this chapter, the used reference frames are described, that are useful and required

notations in the trajectory generation for dynamic systems, inasmuch could be possible

that in a specific reference frame, the equations of motion assums a simpler form

and consequently it is easier to find a solution that will be transformed again to the

starting reference frame, obviously, in the starting reference frame. The reason for the

assumption [2] of several different coordinate systems are the following:

� Newton’s equations, aerodynamics forces and torques are expressed in the body

frame.

� Sensors like accelerometers and gyroscope measures values with respect to the

body frame while GPS measures position, ground speed with respect to the in-

ertial frame.

� Most mission requirements like target points and flight trajectories, are specified

in the local frame. In addition, map information is also given in an inertial frame

of reference.

Due to this assumption, three reference frames (2 fixed and 1 mobile) are mandatory:

14



Chapter 4. Reference frame

the first constitutes what is commonly called inertial reference frame, with origin fixed

in Oi located in Earth COM, the second is the local reference frame, with origin fixed in

Ol located and rigidly connected with the initial point target (obviously on the Earth

surface) and lastly the body reference frame, or rather a reference frame where the

origin Ob is located and rigidly connected with the geometric center of the propellers.

Fistly to describe the used reference frames, a definition of a cartesian coordinete

system is required .

Definition . An orthogonal frame of reference R={O, i, j, k}(or cartesian coordinate

system) is formed by an origin O and a set of three unitary vectors {i, j, k} whit origin

in O, that are mutually orthogonal.

Now consider a reference frame R={O, i, j, k} and a vector
⇀
r ∈ R3, the vector can be

written as linear combination of unit vectors of R as

⇀
r = x

⇀

i +y
⇀

j +z
⇀

k ← physical vector

where x,y,z are the coordinates. The vector r can also be represented as:

⇀
r =


x

y

z

← column vector

Therefore it is necessary to set a law to express the state variables from the fixed

reference to the mobile one and viceversa and for this reason, the rotation of one frame

relative to the other is required. It is possible to make rotation around the axis i, j,

k using a rotation matrix. Several methods to describe orientations of a rigid body in

three dimensions have been developed. The first attempt to represent an orientation is

attributed to Leonhard Euler[16] [17]that immagined three reference frames, rotating

one around the other, and realized starting from the fixed reference frame and doing

3 rotations, he could get any other reference frame in the space. The values of these

three rotation angles are called Euler angles also known as pitch, roll and yaw (φ , θ , ψ).

They describe the orientation of a rigid body with respect to a fixed coordinate system.

Any orientation can be achieved by composing three elementary rotations about the

axes of a coordinate system. The angles of Euler can be defined as:

� φ is the angle between the x axis and the node line (N). This precession angle is

defined in [0, 2π] or in [−π, π]

15



Chapter 4. Reference frame

� θ is the angle between the z and Z axes. So-called angle of nutation is defined in

[0, π] or in[−π
2
, π
2
]

� ψ is the angle between the node line and the X axis. This angle of rotation is

defined in [0, 2π] or in [−π, π]

Figure 4.1: Tait-Bryan 123 Rotation

Where the line of nodes(N) are defined by the intersection of xy and XY planes. If the

planes coincide, the line of the nodes N is defined as the X axis. Euler angles can be

defined by three of these rotations.

Rotation about x through an angle φ:

T1(φ) =


1 0 0

0 cφ sφ

0 −sφ cφ

 where

cφ = cos(φ)

sφ = sin(φ)

Rotation about y through an angle θ

T2(θ) =


cθ 0 −sθ
0 1 0

sθ 0 cθ

 where

cθ = cos(θ)

sθ = sin(θ)

Rotation about z through an angle ψ

16



Chapter 4. Reference frame

T3(ψ) =


cψ sψ 0

−sψ cψ 0

0 0 1

 where

cψ = cos(ψ)

sψ = sin(ψ)

The total transformation can be seen as a sequence of three elementary rotations and

can be extrinsic (rotations about the starting coordinate system, where it is assumed

to remain fixed), or intrinsic (rotations about the rotating coordinate system x-y-z,

rigidly connected with the body, that changes orientation after each rotation), there

exist 12 possible sequences of rotation axes, divided in two groups [16]:

� Proper Euler angles

� Tait–Bryan angles

For Proper Euler angles the axes of the original frame are denoted as X,Y,Z and the

axes of the rotated frame as x-y-z. The geometrical definition starts to define the line

of nodes as the intersection of the planes XY and x-y.

There are 6 possibilities to choose the rotation axes for proper Euler angles. In all of

them, the first and third rotation axes are the same:

� z-x’-z� (intrinsic rotations) or z-x-z (extrinsic rotations)

� x-y’-x� (intrinsic rotations) or x-y-x (extrinsic rotations)

� y-z’-y� (intrinsic rotations) or y-z-y (extrinsic rotations)

� z-y’-z� (intrinsic rotations) or z-y-z (extrinsic rotations)

� x-z’-x� (intrinsic rotations) or x-z-x (extrinsic rotations)

� y-x’-y� (intrinsic rotations) or y-x-y (extrinsic rotations)

While Tait–Bryan rotations represent rotations about three distinct axes ( x-y-z or x-y’-

z�). The three elementary rotations can be around the axes of the starting coordinate

system, which remain fixed (extrinsic rotations), or around the axes of the mobile

coordinate system or to change orientation after each elementary rotation (intrinsic

rotations).

There are 6 possibilities to choose the rotation axes for Tait–Bryan rotation:

� x-y’-z� (intrinsic rotations) or Z-Y-X (extrinsic rotations)

17
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� y-z’-x� (intrinsic rotations) or X-Z-Y (extrinsic rotations)

� z-x’-y� (intrinsic rotations) or Y-X-Z (extrinsic rotations)

� x-z’-y� (intrinsic rotations) or Y-Z-X (extrinsic rotations)

� z-y’-x� (intrinsic rotations) or X-Y-Z (extrinsic rotations)

� y-x’-z� (intrinsic rotations) or Z-X-Y (extrinsic rotations)

Sometimes, these sequences are called Euler angles, also called Cardan angles (or nau-

tical angles, heading, elevation, and bank). The idea behind Euler rotations is to divide

the overall rotation of the coordinate system into three simpler rotations[16], so-called

precession, nutation, and intrinsic rotation, each one as an increment on each Euler

angles. Notice that the first matrix will represent a rotation around one of the axes

of the reference frame, and the final matrix represents a rotation around one of the

moving frame axes. The second matrix represents a rotation around an intermediate

axis called line of nodes.

However, the definition of Euler angles is not unique and in the literature many dif-

ferent conventions are used and conventions depend on the axes about the sequence

rotations obtained.

The convention used is usually indicated by specifying the axes around consecutive

rotations are done, marking them by index (1, 2, 3) or letter (X, Y, Z).

For this application, Tait-Bryan 123 is taken in consideration formed by the consecutive

rotation around the Z, Y, X or x-y’-z”:

T123 = T1(φ)T2(θ)T3(ψ) =


cθcψ −cθsψ sθ

sφsθcψ + cφsψ −sφsθsψ + cφcψ −sφcθ
−cφsθcψ + sφsψ cφsθsψ + sφcψ cφcθ

 (4.1)

That correspond to :

Extrinsic Intrinsic

a rotation by ψ about Z a rotation by φ about x

a rotation by θ about Y a rotation by θ about y’

a rotation by φ about X a rotation by ψ about z”

Table 4.1: Extrinsic and Intrinsic rotation
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Chapter 4. Reference frame

4.1 Inertial reference frame

Frame of reference is called inertial if, of a isolated point mass, zero acceleration value

is measured, whatever the instant in which the measurement is made and whatever the

kinematic state it was of the point in the same instant t, in other words if a material

point is in free motion, that is not undergoing a force or undergoing a null resultant

force, therefore persist its rest state or in unvarying straight motion as long as no

pertubation was actuated. The Earth is not a true system of this type, due to its

revolute and rotational movement. In particular, the rotational motion undergoing

the object on the surface away to the poles at a little centrifugal force. However this

acceleration is negligible in some cases, for wich the Earth can be considered as an

inertial frame of reference.

For this reason the ECEF is chosen as inertial frame of reference, acronym of Earth-

Centered Earth-Fixed, rather than a cartesian geocentric coordinate system. The frame

of reference taken in consideration can be defined as follow:

Definition. An orthogonal frame of reference Ri=
{
Oi,

⇀

ii ,
⇀

ji ,
⇀

ki

}
is is formed by an

origin Oi and a set of three unitary vectors
{⇀

ii ,
⇀

ji ,
⇀

ki

}
with origin in Oi located in Earth

COM, the axis xi is located in the equatorial plane in direction of Greenwich meridian,

axis yi is located in the equatorial plane orthogonal respect to xi axis., and zi axis is

defined orthogonal to the previous axes
⇀

ki =
⇀

ii ×
⇀

ji in direction North-pole.

Figure 4.2: Inertial Reference frame
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Chapter 4. Reference frame

4.2 Local reference frame

As previously listed in the introduction of this chapter, all the requirements are ex-

pressed in the local frame of reference defined as follow:

Definition. An orthogonal frame of reference Rl=
{
Ol,

⇀

il ,
⇀

jl ,
⇀

kl

}
is is formed by an

origin Ol and a set of three unitary vectors
{⇀

il ,
⇀

jl ,
⇀

kl

}
with origin in Ol located and

rigidly connected with the initial point target, where xi lies on the Earth tangent plane

with direction to the Earth north, axis zl is normal respect to the Earth tangent plane

with direction opposite to the gravity ~kl = −
−→g
g

in the same direction of the Zenith

and axis yl is defined orthogonal to the previous axes
⇀

jl =
⇀

kl ×
⇀

ilwith direction to the

Earth West.

This reference frame is equal to so-called NEU (North, East, Up) rotated by π around

z axis.

Figure 4.3: Local r. f.(green) ,Inertial r. f.(blu)

Any orientation can be achieved by composing three elemental rotations, using the fol-

lowing it is possible to obtain the relation between inertial frame and local frame:
xECEF

yECEF

zECEF

 =


cλl sλl 0

−sλl cλl 0

0 0 1




cφl 0 sφl

0 1 0

−sφl 0 cφl



xl

yl

zl

 (4.2)
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4.3 Body reference frame

Accelerometers and gyroscopes measure information with respect to body frame of

reference, also called Aircraft Body Center (ABC). A definition of this reference frame

is the following: Definition. An orthogonal frame of reference Rb=
{
Ob,

⇀

ib,
⇀

jb,
⇀

kb

}
is

is formed by an origin Ob and a set of three unitary vectors
{⇀

ib,
⇀

jb,
⇀

kb

}
with origin in Ob

located and rigidly connected with the geometric center of the propeller, where axis xb

oriented as
−−−→
A1A3, axis yb is oriented as

−−−→
A2A4and axis

⇀

kb is defined orthogonal to the

previous axes.

⇀

ib =

−−−→
A1A3

|
−−−→
A1A3|

⇀

jb =

−−−→
A2A4

|
−−−→
A2A4|

⇀

kb =
⇀

ib ×
⇀

jb

Figure 4.4: Local reference frame

Using the previously defined Tait-Bryan 1-2-3 rotation matrix as a consecutive multi-

plication of the 3 elementary rotation:

21



Chapter 4. Reference frame

T123 = T1(φ)T2(θ)T3(ψ) =


cθcψ −cθsψ sθ

sφsθcψ + cφsψ −sφsθsψ + cφcψ −sφcθ
−cφsθcψ + sφsψ cφsθsψ + sφcψ cφcθ

 (4.3)

it is possible to express a vector defined in the body frame into the local reference

frame that it is rotated troughout an extrinsic rotation equal to X-Y-Z .

Now, can be obtained the forces acting on the body’s C.O.M that are expressed in the

body frame, into the local frame by multiplying the rotation matrix to a vector w.r.t.

body frame:

⇀

fl = T123 ·
⇀

fb
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Chapter 5

Quadrotor model

5.1 General description

For the description of the general case configuration with n-propellers, radially dis-

tributed on a circumference of radius r and rotated by an alpha angle with respect

to the z axis, is initialy taken into consideration. The general configuration can be

summarized in the Figure 5.1.

Figure 5.1: Propellers general configuration

The assembly is organized into α = 2π/n where n is the number of propellers.

Considering now a quadrotor with four propellers, the angle α must be:

α =
2π

4
=
π

2
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Chapter 5. Quadrotor model

Corresponding to propellers on the vertices of a square, whose diagonals form the

interconnection between them, so defining in this way the geometric center called Cp

as shown in the following Figure:

Figure 5.2: Proprellers configuration

Each propeller is composed by nb blades with length Rb. The thrust is described

through aereodynamic equation and was analyzed previously in [11] using momentum

theory and blade element theory. In our case nb is equal to 2.

In aerodynamics, the lift produces by the wing inside an air flow with velocity V is

usually expressed by a non-dimensional coefficient:

L =
1

2
ρCL V

2 S (5.1)

where

� L is the lift force.

� ρ is the density of the air (1,225 kg/m³ al livello del mare)

� V is the flight velocity;

� S is the wing surface;

However as known, propellers interact with air rotating, and part of the rotational

kinetic energy given by the rotor speed is transformed into linear one, producing the

i-th thrust command in the body frame identified by previous work [11], [31] and

calculated as:
−→
F i body = Cwt(Rb, nb, )

⇀
w

2

i + Cvt(Rb, nb)
⇀
vpi (5.2)
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Chapter 5. Quadrotor model

where the dependence of the i-th thrust force by the square of i-th angular velocity

wi produced by the brushless motor and the i-th relative wind velocity vpi is shown,

while Cwt and Cvt are coefficients defined by the geometrical configuration and size of

the propellers.

Since the body frame is rigidly connected to the quadrotor, and the motor direction is

fixed and aligned with the z axis, the rotational velocity wi is consider to be applied

on the z axis defined in this way:

⇀
wi =


0

0

wi

 (5.3)

and taking into account the equation (5.3) , also the vector force is written as:

⇀

Fi−body =


0

0

fi−bz

 (5.4)

With the force produced by each of the propellers, the question remains how this

influences the displacement, velocity, acceleration, attitude and angular velocity of the

quadrotor.

Six degrees of freedom (d.o.f.) are required to describe the dynamics of the quadrotor,

three traslational and three rotational motions along the three axes. So for this reason

it is necessary to take into account that the state of the quadrotor can be controlled

by changing the angular velocity of the four motors. Acting on the wi it is possible to

obtain thrust and angular moment, where the roll and picth moments are caused by

the difference in thrusts, yaw moment is caused by unbalancing angular velocities on

the four rotors. They constitute the four input variable. Yaw moment is cancelled out

when the 2 couple of motors (1-3 and 2-4) rotate in opposite direction:

� front and rear motors (i=3 and i=1) rotating counterclockwise;

� right and left motors (i=2 and i=4) rotating clockwise.

Considering the configuration and the change of rational speed of each rotor it is

possible to identify four basic movements, as follows:
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Chapter 5. Quadrotor model

HOVER / ALTITUDE CHANGE

When all actuators are at equal thrust,

the craft will either hold in steady

hover (assuming no disturbance) or

increase/decrease altitude depending

the actual thrust value.

ROLL MOMENT

If one of the actuators is decreased or

increased on the roll axis as compared

to the other actuator on the same

axis, a roll motion will occur. In this

instance, the quadrotor would roll

towards the right.

PITCH MOMENT

Similar to the roll axis, if either

actuator is changed on the pitch axis,

the axis will rotate in the direction of

the smaller thrust. In this instance,

the aircraft would pitch up towards

the reader (out of the page) due to the

differentice on the pitch axis.

YAW MOMENT

If the clockwise spinning actuators are

decreased (or the counterclockwise

actuators increased), a net torque will

be induced on the craft resulting in a

yaw angle change. In this instance, a

yaw torque is induced.
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Following what is listed in the table above and considering only the vertical movement,

the force required to hold in steady hover or increase/decrease altitude is calculated

as:

⇀

fub =
4∑
i=1

⇀

Fi−body =


0

0

fubz


while to describe lateral movement it is required to apply the classic equation to the

equilibrium point, the torque due to the i-th thrust on the j-th axis in the body frame

is defined as:

τj =
∑

(| ⇀r i | ×
⇀

Fi−body)

that gives the possibility to calculate the torque on the y axis considering the presence

of
⇀

F1 and
⇀

F3,so
⇀
τ x =| ⇀r 1 | ×

⇀

F1− |
⇀
r 3 | ×

⇀

F3

where τx can be rewritten as:

⇀
τ x =

⇀

R× (
⇀

F1 −
⇀

F3) (5.5)

Corrispondingly, the pitch torque is given by a similar expression:

⇀
τ y =

⇀

R× (
⇀

F2 −
⇀

F4) (5.6)

Yaw torque is obtained considering the reactive torque produced by the motor, as:

⇀
τ z =

4∑
i=1

(−1)i+1−→w 2
i

where the term (−1)i+1 corresponds to a positive value for th i-th motor if it spins

clockwise ( i=2 and 4 ) and negative if it spins opposite ( i=1 and 3 ). Thus, the total

torque about the z axis is given by:

⇀
τ z = b(+w2

1 − w2
2 + w2

3 − w2
4) =


0

0

τψ

 (5.7)

Considering the equations (5.5)(5.6)(5.7), the total torque vector in the body frame

acting on the quadcopter is expressed as:

⇀
τ B =


⇀

R× (
⇀

F1 −
⇀

F3)
⇀

R× (
⇀

F2 −
⇀

F4)

b(+w2
1 − w2

2 + w2
3 − w2

4)

 (5.8)
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Attitude control is done by varying the rotational velocity of the 4-propellers-motors.

Considering the 6 outputs and the four inputs the quadrotor is considered as underac-

tuated nonlinear system. So it is possible to define the inputs command.

5.1.1 Dispatching

Considering that all the inputs (
⇀

Fi,
⇀
τ x,

⇀
τ y,

⇀
τ z ) are expressed w.r.t. the body frame,

where also each force given by i-th propeller-motor is known, a dispatch tecnique is

needed to create a relationship. All the steps are solved in [36] and in previous work

as[11].

Starting to define the propeller force set vectors as:

⇀

f p set =


fp1

fp2

fp3

fp4


and considering that

⇀

fub =
4∑
i=1

⇀

Fi body =


0

0

f1 bz + f2 bz + f3 bz + f4 bz

 =


0

0

f4 bz


since each component of the propeller force set vector is expressed in the body frame and
⇀

fub is equal to the sum of this, the corresponding tranformation is the following:

⇀

fub = V ·
⇀

f p set =


0 0 0 0

0 0 0 0

1 1 1 1

 ·

fp1

fp2

fp3

fp4


As known each propeller gives force generating torque:

⇀
τ Bi =


r · sin(α · (i− 1))

−rcos(α · (i− 1))

b(−1)i

 · fpi
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from this it is possible to dispatch the torque command as:

⇀
τ B = Mt ·

⇀

f pset =


0 r · sin(α) r · sin(2α) r · sin(3α)

−r −rcos(α) −r · cos(2α) −r · cos(3α)

−b b −b b

 ·

fp1

fp2

fp3

fp4


where r is the distance between the propeller and the center of mass and α = π

2
.

So considering the equation [36], to describe the overall transormation, a new vector is

defined:

fzm =


fubz

τx

τy

τz

 = Bzm ·


fp1

fp2

fp3

fp4



where the matrix Bzm represents the relationship between x,y,z torques, z force and

the i-th component of the propeller force set vector.

This matrix can be obtained from matrices V and Mt :

Bzm =


1 1 1 1

0 r · sin(α) r · sin(2α) r · sin(3α)

−r −rcos(α) −r · cos(2α) −r · cos(3α)

−b b −b b



to compute now the value of each component of fpset, we define a new matrix G for

fast computation :

G = Bzm ·BT
zm =


n 0 0 0

0 r(n/2) 0 0

0 0 r(n/2) 0

0 0 0 nKm

 (5.9)

and finally inverting the equation (5.9), and considering G matrix, the vector fpset is

calculated as
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⇀

f p set = BzmG
−1


fubz

τx

τy

τz


That allows to obtain the following solution:

fp set =


1
n
−2sin(0)

r
−2cos(0)

r
− 1
n·b

1
n
−2sin(π

2
)

r
−2cos(π

2
)

r
1
n·b

1
n
−2sin(π)

r
−2cos(π)

r
− 1
n·b

1
n
−2sin( 3

4
π)

r
−2cos( 3

4
π)

r
1
n·b



fubz

τx

τy

τz

 (5.10)

5.2 Rigid body Dynamic

Rigid-body dynamics studies the movement of systems of interconnected bodies under

the action of external forces. The assumption that the bodies are rigid, means that they

do not deform under applied forces, simplifying the analysis by reducing the parameters

that describe the system configuration [26],[34],[21]. This corresponds to considering

bodies with low elasticity, and plastic deformation.

Through the laws of kinematics and Newton’s second law rigid body dynamics can

be desbribed. The solution that comes from these equations gives the possibility to

compute position, velocity and the acceleration related to a time. The rigid body

dynamics is necessary to implement simulation of mechanical systems.

Considering that the difference of the thrusts provided by each propeller, controls

the attitude and therefore the state of the quadrocopter, it is also subject to the

classical dynamic equations. To consider rigid body dynamics in three-dimensional

space, Newton’s second law must be extended defining the relationship between the

movement of a rigid body and the system of forces and torques that act on it . Newton

formulated his second law for a particle as written by [?],[4] The change of motion of an

object is proportional to the force impressed. It is made in the direction of the straight

line in which the force is impressed and to every action there is always opposed an

equal reaction; or, the mutual actions of two bodies upon each other are always equal

and directed to contrary parts. Because Newton generally expresses as the force equal
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to a mass times velocity over the time, the phrase ”change of motion” regards mass

times body acceleration, and so this law is usually written as

⇀

F = m
⇀
a

where
⇀

F is understood to be the only external force acting on the particle, m is the

mass of the particle, and a is its acceleration vector. The extension of Newton’s second

law to rigid bodies is achieved by considering a rigid system of particles.

As known, the dynamic equations have vector origins, therefore it is possible to express

itheir values in different frames. In literature, for the drafting of the dynamic equations,

local frame and the ABC (Aircraft Body Center or body) frame is used .The first is

an orthogonal system with origin on the Earth surface with axes directed respectively

towards North, West and the UP towards the Zenith . It is inertial and for this reason

it is used to define the so-called navigation equations. The second is a reference frame

rigdly connected to the rigid body with axes x,y directed along the connection beam

and z perpendicularly to x,y with the same direction of the of gravity acceleration .

So throught the Newton’s second law expressed in the local reference frame , we can

define the force fl applied on the center of mass mq.

⇀

flmq =
⇀
al (5.11)

where
⇀
al is the body acceleration in the local frame:

⇀
al =


alx

aly

alz


and the force

⇀

fl applied on the center of mass that is equal to:
⇀

fl =
⇀

ful +
⇀

fgl +
⇀

fdl

where
⇀

fgl is the force due to the gravity acceleration,
⇀

fdl the disturbance force and
⇀

ful

the input force generated by the 4-motors-propellers set obtained from
⇀

fub, being the

input force expressed w.r.t. body:

⇀

fub =
4∑
i=1

⇀

Fi body
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where
⇀

Fi body is the thrust force genereted by one motor throught propeller and i is the

i-th propeller.

Due to the fact that the input force is expressed in the body reference frame, euler

rotation T123 is used to obtain the corresponding value in the local frame:

⇀

ful = T123 ·
⇀

fub

and considering that the body frame is rigly connected with the quadrotor, and the fixed

direction of the propellers, only the k-th component of the input force is present:

⇀

fub =


fubx

fuby

fubz

 =


0

0

fubz


where, by applying the rotation T123, it is possible to find the value of input force

expressed with respect to the local frame:

⇀

ful =


cθcψ −cθsψ sθ

sφsθcψ + cφsψ −sφsθsψ + cφcψ −sφcθ
−cφsθcψ + sφsψ cφsθsψ + sφcψ cφcθ

 ·


0

0

fubz


that, once solved, becomes:

⇀

ful =


sθ

−sφcθ
cφcθ

 · fubz
Gravity force fgl considered in the local reference frame, is defined as follows:

⇀

fgl = mq ·


0

0

−g


About disturbance force fdl considered in the local reference frame, is defined as

follows:
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fdl =


fdlx

fdly

fdlz


In conclusion the COM dynamics expressed in local reference frame is the follow-

ing:

mq ·


aqlix

aqliy

aqliz


︸ ︷︷ ︸

⇀
fql

=


sθ

−sφcθ
cφcθ

 · fubz
︸ ︷︷ ︸

⇀
ful

+mq ·


0

0

−g


︸ ︷︷ ︸

⇀
fgl

+


fdlx

fdly

fdlz


︸ ︷︷ ︸

⇀
fdl

However, due to the fact that the command force is expressed in the intermediate frame

of reference, the COM dynamics is rotated through a rotation Rli
l as follows:

mq ·


aqlix

aqliy

aqliz


︸ ︷︷ ︸

⇀
fql

=


0 −1 0

1 0 0

0 0 1




sθ

−sφcθ
cφcθ

 · fubz
︸ ︷︷ ︸

⇀
ful

+


0 −1 0

1 0 0

0 0 1

mq ·


0

0

−g


︸ ︷︷ ︸

⇀
fgl

+fdli

that becomes:

mq ·


aqlix

aqliy

aqliz

 =


sφcθ

sθ

cφcθ

 · fubz +mq ·


0

0

−g

+ fdli

and by dividing the right-hand side by the mass mq, it is possible to obtain the final

form. This equation is explicit in acceleration and particularly useful from the control

point of view:


aqlix

aqliy

aqliz

 =


sφcθ

sθ

cφcθ

 · fubzmq

+


0

0

−g

+
fdli
mq

(5.12)
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Figure 5.3: Dynamic model

5.2.1 Attitude dynamics - Euler moment equation

Using the center of mass and inertia matrix I, for a single rigid body, the force and

torque equations takes the following form:

⇀

F = m
⇀
a (5.13)

⇀

M = I
⇀·
ω +

⇀
ω × I⇀ω (5.14)

and are known as Newton’s second law of motion for a rigid body, where when a rotating

object is under the influcnce of torques, it exhibits the behaviours of precession and

nutation. The fundamental equation describing the behavior of a rotating solid body

gives the possibility to express the angular acceleration with respect to the torque

command as:

⇀·
ω = I−1 · (

⇀

M − ⇀
ω × I · ⇀ω)
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Figure 5.4: Attitude Dynamic

where
⇀
ω× is rewritten using the skew simmetrix matrix S

S =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0


while the

⇀

M =
⇀
τb +

⇀
τd

where
⇀
τb is the command torque vector that is derived from the difference in thrust in

the body frame and
⇀
τd is the disturbance torque vector.

5.2.2 Attitude kinematics - Euler angle kinematics

To describe the evolution of the angles derivative φ̇, θ̇, ψ̇ over the time with respect

to the body angular velocity, it is necessary to see the overall rotation from the local

to body as the sequence of three intrinsic elementary rotations (x-y’-z”) around the

mobile frame.

F1 is rotated w.r.t. the local frame through the rotation T1(φ) and considering
⇀
ωφl =
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
φ̇

0

0


⇀
ωφl = T1(φ)wφ1 −→

⇀
ωφ1 = T1(φ)T

⇀
ωφl = T1(−φ)


φ̇

0

0


F2 is rotated w.r.t. F1 through the rotation T2(θ) and considering

⇀
ωθ1 =


0

θ̇

0


⇀
ωθ1 = T2(θ)

⇀
ωθ2 −→

⇀
ωθ2 = T2(θ)

T⇀ωθ1 = T2(−θ)


0

θ̇

0


⇀
ωφ2 = T2(θ)

⇀
ωφ1 −→

⇀
ωφ2 = T2(θ)

TT1(φ)T
⇀
ωφl = T2(−θ)T1(−φ)


φ̇

0

0


⇀
ωφl = T1(φ)

⇀
ωφ1 −→

⇀
ωφ1 = T1(φ)T

⇀
ωφl = T1(−φ)


φ̇

0

0


FB is rotated w.r.t. F2 through the rotation T3(ψ) and considering

⇀
ωψ2 =


0

0

ψ̇


⇀
ωψ2 = T3(ψ)

⇀
ωzB −→

⇀
ωzB = T3(ψ)T

⇀
ωψ2 = T3(−ψ)


0

0

ψ̇


⇀
ωφ2 = T3(ψ)

⇀
ωxB −→

⇀
ωxB = T3(ψ)TT2(θ)

TT1(φ)T
⇀
ωφ1 = T3(−ψ)T2(−θ)T1(−φ)


φ̇

0

0


⇀
ωθ2 = T3(ψ)

⇀
ωyB −→

⇀
ωyB = T3(ψ)TT2(θ)

T⇀ωφ1 = T3(−ψ)T2(−θ)


0

θ̇

0


From these results, it is possible to write the angular velocity vector in the body frame
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knowing the derivative of the Euler angles as:

⇀
ω = ωxBi + ωyBj + ωzBk =


ωxB

ωyB

ωzB


That, taking the same steps into consideration, corresponds to:

ωxB

ωyB

ωzB

 = T3(−ψ)T2(−θ)


φ̇

0

0

+ T3(−ψ)


0

θ̇

0

+


0̇

0

ψ̇



ωxB

ωyB

ωzB

 =


c(−ψ) s(−ψ) 0

−s(−ψ) c(−ψ) 0

0 0 1




c(−θ) 0 −s(−θ)
0 1 0

s(−θ) 0 c(−θ)



φ̇

0

0

+ . . .

. . .+


c(−ψ) s(−ψ) 0

−s(−ψ) c(−ψ) 0

0 0 1




0

θ̇

0

+


0̇

0

ψ̇


rewriting everything in matrix form, the above equation becomes:


ωxB

ωyB

ωzB

 =


cθcψ sψ 0

−sψcθ cψ 0

sθ 0 1

 ·

φ̇

θ̇

ψ̇

 (5.15)

Inverting the equation and integrating it is possible to calculate the Euler angles

(φ, θ, ψ) from ωxB, ωyB, ωzB.


φ̇

θ̇

ψ̇

 =
1

cθ


cψ −sψ 0

sψcθ cθcψ 0

−sθcψ sθsψ cθ



ωxB

ωyB

ωzB

 (5.16)

Inverting the matrix as shown above, a singularity occurs when the denominator is

0, that corresponds to a rotation of θ = ±π
2

. This phenomenon is known as Gimbal

lock.
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Figure 5.5: Gimbal Lock

For this reason it is useful to use quaternions to avoid this phenomenon.

5.2.3 Attitude kinematics - Quaternion kinematics

The Aim is to describe the time evolution of the rotation quaternion q in function

of w1, w2, w3. In order to describe the rotation and the attitude kinematics, the

quaternion-kinematics representation is used.

A necessary condition is that a quaternion has a unit norm ||q|| = 1 that is called unit

quaternion. Consider now the unit quaternion:

⇀
u =


u0

u1

u2

u3

 = (u0;u) =

[
cos(θ)

usin(θ)

]

that represents the rotation Rot(u; 2θ) around the axis specified by the unit vector

u = (u1, u2, u3)
T .

The opposit is also true, i.e., given a rotation Rot(u; θ) of an angle θ around the axis

specified by the unit vector u = (u1, u2, u3)
T , the unit quaternion:

⇀
q =

⇀
u =

[
q0

q

]
=

[
cos( θ

2
)

usin( θ
2
)

]
=


q0

q1

q2

q4


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To compute the rotation matrix R(q) given a unit quaternion q = (q0; q), we use the

following relation:

R (q) =
(
q20 − qT ·q

)
·I +2q·qT − 2 · q0 · S(q)

where S(q) is the skew-symmetric matrix of the unit vector q:

S(q) =


0 −q3 q2

q3 0 −q1
−q2 q1 0


Quaternion representation has the advantage when it is used in kinematic differential

equation, because it is possible to know the derivative of quaternion q̇ from the current

quaternion q and the angular velocity vector wq = (0,w) as follow:

q̇ =
1

2
· q ⊗wq

where ⊗is the Hamilton product that is computed as follow:

q ⊗ p = (q0p0 − q · p) + (q0p+ p0q + q× p) =

[
qo −qT

q q0 I+ S(q)

]
·

[
p0

p

]
That could be resolved in an equivalent way as:

q̇ =
1

2
Ω·q

where Ω is a skew matrix defined as :

Ω =


0 −w1 −w2 −w3

w1 0 w3 −w2

w2 q1 0 w1

w3 w2 −w1


or similarly like

q̇ =
1

2
Q ·w
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where Q is a matrix that takes the following form:

Q =


−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0



In conclusion the dynamic and kinematic equations shown above can be seen a series

connection of two nonlinear system:

Figure 5.6: Series connection of dynamic and kinematic equation
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5.3 Quadrotor embedded models

The model is obtained by approximations to the nonlinear quadrotor model, simplified

using the feedback linearization method. This method corresponds to connecting the

horizontal model and the attitude model through a feedback linearization trasforming

the non linear problem into a linear one [11]. This connection allows to consider a

unique problem avoiding the realization of two control levels. The embedded models

are discrete time controlled by two inputs composed by the thrust command input

calculated for each sample time k , and the noise vector, known only for the k-th

instant (it is unpredictable). Since the initial model is described in continuous time,

the backward euler method has been used to bring it back to its corresponding discrete

form. With this method it is possible to express the variation of any variable in the

time unit as the difference between the k-th sample and its previous one in the unit

time which in this case corresponds exactly to the sampling time Ts. In continuous

time the law that describes this variation is expressed as:

ẋ =
x(t+4T )− x(t)

4T
(5.17)

In order to clarify these models, the method previously described is rewritten in the

form of a diagram where digital integrators have been used for the realization:

Figure 5.7: Embedded scheme

This scheme will be used for the description of embedded models that are divided into

vertical, horizontal and spin dynamics. For the creation of the vertical and horizontal

model, reference is made to what has been written in Ch. 5 where the dynamic of the

rigid body has been described through equation (5.12) which is shown below:
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
ax

ay

az

 (t) =


sφcθ

sθ

cφcθ

 · fbz(t)mq

+


0

0

−g

+
fd
mq

Attitude control is done by varying the rotational velocity of the 4-propellers-motors.

Considering the 6 outputs and the 4 inputs the quadrotor is a hightly underactuated

nonlinear MIMO time-invariant system.

5.3.1 Vertical embedded model

For the realization of these models, the dynamics are divided in vertical and the hor-

izontal so this implies that the previous equation is divided into two parts : the first

one that considers the first two components of acceleration and defines the horizontal

dynamic and the second that considers the third component of acceleration and defines

the vertical dynamic. So, dividing this equation and using only the second part we

obtain the vertical model that is expressed in continuous time form:

az(t) = cφcθ ·
fbz(t)

mq

− g +
fd
mq

(5.18)

Now considering the model obtained by backward euler as:

x(k + 1) = x(k) +4T ẋ(k) (5.19)

and considering the continuous-time state-space vertical model

[
ẋ1

ẋ2

]
z

=

[
0 1

0 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
(t) +

[
0

1

]
︸ ︷︷ ︸

B

uz(t)−

[
0

1

]
g +

[
0

1

]
d (5.20)

where the input is linearized through the association uz(t) = cφcθ · fbz(t)mq
and the source

of disturbance is modeled by the component d acting as an input for acceleration as

described in Ch (3).
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Using equation (5.20) the continuous model is led back to the underlying discrete

form:


xz

vz

D1

 (k + 1) =


1 1 0

0 1 1

0 0 1


︸ ︷︷ ︸

A


xz

vz

D1

 (k) +


0

1

0


︸ ︷︷ ︸

B

uz(k)−


0

1

0

 g + . . .

. . .+


0 0

0 1

1 0


[
w1z

w2z

]

which can be rewritten in a schematic form using the embedded diagram of figure

(5.8).

Figure 5.8: Vertical Embedded model [11]

5.3.2 Horizontal Embedded Model

The horizontal model is obtained similarly to the vertical model described in the pre-

vious paragraph. In this case the dynamics concerning the XY plane will be mod-

eled, therefore the x and y components of the acceleration vector will be considered

only:
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[
ax

ay

]
(t) =

[
sφcθ

sθ

]
· fbz(t)
mq

+
fd
mq

Since the discrete time embedded model to be created is linear, it is linearized using a

state transformation.

q =

[
qlx

qly

]
=

[
sφcθ

sθ

]

Since the attitude is controlled by the application of the torque vector, but the new state

can not be controlled by this, the introduction of a new state variable is required.

Ωl = q̇

Ωl =

[
Ωlx

Ωly

]
=

[
cφcθφ̇− sφsθθ̇

cθθ̇

]
=

[
cφcθ −sφsθ

0 cθ

][
φ̇

θ̇

]

In the horizontal dynamics, the disturbance signals are present not only as acceleration

but also as torque. The disturbance dynamics is set to three, considering what we have

found now, the complete horizontal embedded model takes the following form:



x

vx

qx

Ωl

D1

D2

D3


(k + 1) =



1 1 0 0 0 0 0

0 1 α 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


︸ ︷︷ ︸

A



x

vx

qx

Ωl

D1

D2

D3


(k) + . . .
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Chapter 5. Quadrotor model

. . .+



0

1

0

0

0

0

0


︸ ︷︷ ︸
Bx

ux(k) +



0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0





w1x

w2x

w3x

w4x

w5x



where α = fbz(k) is a time varying parameter. The system is MIMO (Multiple Input

Multiple Output) considering its 6 inputs and 7 outputs. This model is implemented

in the simulator using the Embedded diagrams as shown in the following figure:

Figure 5.9: Horizontal EM scheme [11]

5.3.3 Spin embedded model

The embedded model for spin is described separately as:


ψ

Γ

Dφ1

 (k + 1) =


1 1 0

0 1 1

0 0 1


︸ ︷︷ ︸

A


ψ

Γ

Dφ1

 (k) +


0

1

0


︸ ︷︷ ︸
Bx

ux(k) +


0 0

1 0

0 1


[
w1x

w2x

]
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Trajectory planning strategies

In this chapter will be described trajectory generation methodologies, based on two

different tecnique formulated as optimization problem. The purpose of this develop-

ment is to provide the necessary references that allows to achieve our quadrocopter

in any target position starting to initial one [32]. The first method shown is related

to the pre-existing polynomial guidance algorithm with fixed time of fly and defined

in continuos time. It is based on a reconstruction of the polynomial functions that

respectively describe position velocity and acceleration. This reconstruction is carried

out considering boundary condition (initial and final) on all the states, optimizing the

polynomial functions coefficients . To optimize this guidance will be consider a time

interval that could have the final value of time and therefore no longer a fixed one. The

method used to optimize the problem is based on the minimization of an objective

function also known under the names of performance index or cost function us-

ing the weighed standard method. Polynomial Guidance allows our system to evolve

until reaching the target, in very short calculation times, but using this approach it is

not possible to take into account other important things such as dynamics respecting

input saturation or keeping in mind the presence of obstacles. To achieve this aim is

necessary to develop a new guidance algorithm completely described in discrete time

and which respects not only the dynamics of the system but also the limits that char-

acterize the outputs and saturation for inputs . The main requirements on which our

approach is based could be represented sequentially in 4 steps as follow :

� The generated trajectory must satisfy the dynamic and input constraints finding
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feasible solution.

� The generated trajectory bring the quadrotor to the target position such that,

picth and roll angles are minimized over all the trajectory.

� The calculation must be fast enougth for online calculation.

� The optimization must be calculated for each sample time, considering an implicit

control low, and applying only the first element of the sequence vector u∗.

This optimization approach, implemented in the next paragraphs, directly incorpo-

rates output (forbidden fly zone, initial and final position ), input and the dynamic

constraints of the quadrotor controlled by four command inputs. As known, in the

real case the inputs can not have an infinite value due to the fact that the components

used have finite physical limits (motor speed) and for this reason the optimization

problem will be subject to inpunt constraints that take into account inputs saturation.

The presence of constraints are hard limits to be respected and that often make the

problem difficult to solve. In fact, feasibility of the generated trajectory is guarateed

by limiting trajectory acceleration such that the actual control inputs do not saturate

and ouput do not exceed the desidered value.

6.1 Continuos time optimization problem

6.1.1 Polynomial Unconstrained Optimization Problem

To optimize the already present polynomial guidance we refers to what was written in

[37][11] . The following optimization problem became to the improvement performance

over the basic polynomial guidance that consider now, not a fixed value for time of flight

but as a free-parameter tf ∈ [tmin , tmax]. The problem could be posed describing the

5th derivative of the position or in better way the second derivative of the acceleration

so called crackle expressed in general polynomial form:

α(t) = C0 + C1t+ ... + CN t
N (6.1)
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where N ≥ 3 .

The problem is posed by considering N=4 , so the cranckle profile is rewritten as:

α(t) =
[

1 t t2 t3 t4
]


C0

C1

C2

C3

C4


= C0 + C1t+ C2t

2 + C3t
3 + C4t

4 (6.2)

The states track a trajectory as is shown in the following equation



α

Ω

a

v

x


(t)

︸ ︷︷ ︸
x(t)

=



α(0)

Ω(0) +α(0)t

a(0) + Ω(0)t+α(0)t2/2

v(0) + a(0)t+ Ω(0)t2/2 +α(0)t3/6

x(0) + v(0)t+ a(0)t2/2 + Ω(0)t3/6 +α(0)t4/24


︸ ︷︷ ︸

x0(t)

+ . . .

. . .+



1 t t2 t3 t4

t t2

2
t3

3
t4

4
t5

5
t2

2
t3

6
t4

12
t5

20
t6

30
t3

6
t4

24
t5

60
t6

120
t7

210
t4

24
t5

120
t6

360
t7

840
t8

1680


︸ ︷︷ ︸

A(t)

·



C0

C1

C2

C3

C4


︸ ︷︷ ︸

C

Where we have defined with Ω the jerk state, a the acceleration,vthevelocity,x the

position.

The equation above can be rewritten in the compact form:

x(t) = x0(t) +A(t) ·C (6.3)

This show that the profile of the state depend by the initial value of the sistem and its

dynamic.

The aim of the problem is to find the coefficients that describe in exact way all the

state profile in order to satisfy the terminal boundary conditions. The method used to
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optimize the problem is based on the minimization of an objective function JE where

in our case could be choosen to minimize the following cost function:

JE =

∫ tf

0

αTα dt (6.4)

That is subject to an equality constranit given by the equation (6.3) where implies that

the coefficients (C0, C1, C2, C3, C4) must satisfy the following equation:

A(t)



C0

C1

C2

C3

C4


= x(t) −x0 (t) (6.5)

That obviously correspond to the following general form for the equality constraint:

Ax = b

Now to take some trasformation usefull to split and reformulate the problem, the

crankle profile is rewrittes as the multiplication of:

α(t) = ΦTC

where ΦT =
[

1 t ... tN
]

that can be substituted in the quadratic objective func-

tion and it returns:

JE = CTS(tf )C (6.6)

with S(tf ) =
∫ tf
0
ΦTΦ dt.

The optimization problem became, considering linear quadratic function e linear equal-

ity constraint:

min
(C0,C1,C2,C3,C4)

JE =

∫ tf

0

αTα dt

subject to A(tf )C = b(tf )

where
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A(tf ) =



1 t t2 t3 t4

t t2

2
t3

3
t4

4
t5

5
t2

2
t3

6
t4

12
t5

20
t6

30
t3

6
t4

24
t5

60
t6

120
t7

210
t4

24
t5

120
t6

360
t7

840
t8

1680


and b(tf ) = x(t)− x0(t).

The optimization problem exposed correspond to the so-called standard minimum

weighted norm and can be solved as:

C(tf ) = S−1AT (AS−1AT )−1b (6.7)

Thanks to this solution is possible to reconstruct the polinomial form of each state and

the respective command input. In such a way to use the the Polynomial guidance is

needed to discretize the polynomial inputs previously to apply it inasmuch the overall

system is described in discrete time. Following this procedure can be express the overall

algorithm as:

Algorithm 1 Polynomial algorithm

1: k ← 0

2: for k ← 1, N do

Require: x0 and xf . Initial and target Condition

3: minimize JE . Standard minimum weighted norm

Ensure: Axc = b

4: Update Profile . Polynomial Reconstruction

5: Calculate τ(t) . Torque command

6: Discretize . Profile and Torque command

7: end for

So the optimization problem is runned for all the value of tf ∈ [tmin , tmax] choosing

the coefficient that correspond to a minimun value of the objective function.

However, the higher order polynomial guidance laws are only guaranteed to satisfy

the terminal boundary condition a priori, and obvioustly don’t take into saturation

of input. For this reason a constrained guidance are developed in the following sec-

tion.
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6.1.2 Results

Implementing the knowledge described in the previous paragraph is possible to obtain

the optimal solution t∗that give feaseble trajectory [37]. First of all is necessary to

calculate the matrix of the coefficients C for each tf ∈ [tmin , tmax] using the equation

(6.7) that is shown in the following figure:

Figure 6.1: C(tf ) with tf ∈ [tmin , tmax]

As can be seen the value of the coefficent converge to a 0 value for t that goes to tmax.

From this result is possible compute the cost function trought the equation:

JE = CTS(tf )C

that for all C(tf ) with tf ∈ [tmin , tmax] where tmin = 1 ; tmax = 10 ; gives the following

responce:
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Figure 6.2: Cost function JE

That show the minimum for t∗f = 10 due to the fact that tfmin = 1 ; tfmax = 10 ; and

the sampling time Ts = 0.02;

From the result obtained above is possible to obtain the optimal vector C∗(tf ):

C∗(10) = S−1AT (AS−1AT )−1b =



1.6800

−2.6880

1.0080

−0.1344

0.0059


and using this optimal value for the computation of the acceleration vector is possible

to obatin the feaseble trajectory as follow:

α(t) =
[

1 t t2 t3
]


1.6800

−2.6880

1.0080

−0.1344

0.0059


= 1.68−2.688 ·t+1.008 ·t2−0.1344 ·t3+0.0059 ·t4
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The states track a trajectory as is show in the following equation:



α

Ω

a

v

x


(t)

︸ ︷︷ ︸
x(t)

=



α(0)

Ω(0) +α(0)t

a(0) + Ω(0)t+α(0)t2/2

v(0) + a(0)t+ Ω(0)t2/2 +α(0)t3/6

x(0) + v(0)t+ a(0)t2/2 + Ω(0)t3/6 +α(0)t4/24


︸ ︷︷ ︸

x0(t)

+ . . .

. . .+



1 t t2 t3 t4

t t2

2
t3

3
t4

4
t5

5
t2

2
t3

6
t4

12
t5

20
t6

30
t3

6
t4

24
t5

60
t6

120
t7

210
t4

24
t5

120
t6

360
t7

840
t8

1680


︸ ︷︷ ︸

A(t)

·



C0

C1

C2

C3

C4


︸ ︷︷ ︸

C

for each t ∈ [0 , t∗f ] , all the profile are shown below.

53



Chapter 6. Trajectory planning strategies

Figure 6.3: Profiles

And finally the command reference is reconstruct following the equation below :

τ(t) =
[

1 t t2 t3
]


γ0

γ1/tf

γ2/t
2
f

γ3/t
3
f

γ4/t
4
f


24∆x/t4f (6.8)
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Figure 6.4: Torque command

where gives the possibility to calculate the angles.

Figure 6.5: Angle θ
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6.2 Discrete time Constrained optimization prob-

lem

In this subsection is described the mathematical formulation of a discrete time trajec-

tory optimization for a UAV on the earth with uniform gravitational field. The problem

formulation involves an optimal control (discrete time) problem with cost function[32],

translational dynamics, state and control constraints, that allows to plan the trajectory

from any initial state to a target. The main requirements to satisfy are:

� The trajectory must be feasible subject to dynamic, input and output constraints

that takes into account inputs saturation and phisical bounds for the outputs.

� The trajectory calculation must be fast enough to be used on-board.

� The input controlled are the thrust and torque moments.

� It must be possible to generate an implicit feedback control law by replanning

the trajectory at each time step, and applying only the first input element of the

optimal sequence vector u∗.

The aim is to find, the optimal control sequence u∗ =
{
u∗0, u∗1, ... , u∗N

}
and

the corrispondig optimal state sequence x∗ =
{
x∗0, x1

∗, ... , x∗N

}
. So considering

what has just been written, the technique that best suits our purpose is the one based

on linear quadratic discrete time constraind optimal control that is known under the

name of Model Predictive Control (MPC). In constrained (and discrete time) optimal

control problem with finite prediction horizon, there does not exist any simple closed-

form expression for the solution. The main idea to build a closed loop is to apply only

the first control move of optimal sequence u∗ to the system and resolve a new finite

horizon problem for each time step. In this chapter is shown how set fixed horizon

optimal problem using quadratic cost function and linear constraints trought quadratic

program, where is taken into accout the following linear, time-invariant system:

xk+1 = Axk +Buk

yk+1 = Cxk + dk

where xk ∈ Rn define the state vector, uk ∈ Rm define control input and yk ∈ Rm
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define the output while dk ∈ Rm define the time-varyng output disturbance.

Furthermore, are assumed that matrices A,B,C allows to stabilize e detectabilize the

system. So the aim of the optimization problem is to minimize the cost function

regulating the control sequence vector that brings the state vector to a desired value.

For quadratic programming the performance index is generally defined as:

J(x(0), u) = x′(N)QNx(N) +
N∑
k=1

( x′(k)Qx(k) + u′(k)Ru(k))

� N= Prediction time horizon

� the first term mesure the deviation of the final state with respect to desired value

xtarget

� the second measure the deviation of the state vector x with respect to desired

value xtarget

� the third mesure the intensity of the control input (actuator authority)

while R,Q,Qt are parameters to tune, with explict physical/economic meaning.

In conclusion the minimization problem is subject to a input and output constraints

that sometimes if the prediction horizon is restricted, gives infesible solution. They are

expressed as:

umin ≤ u(k) ≤ umax ∀k ∈ [1;N ] (6.9)

xmin ≤ x(k) ≤ xmax ∀k ∈ [1;N ] (6.10)

Moreover initial and final condition must be taken in consideration

x(1) = x0 (6.11)

x(N) = xtarget (6.12)

To satisfy the requirements to which the trajectory optimization problem will be sub-

ject, the use of advanced control techniques is strictly mandatory. The optimization

of the trajectory is a topic widely dealt with in literature and that has undergone

considerable changes over the years. As written in Chapter 4, the guidance is the

component that deals with the generation of reference profiles through an optimization
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process. An indication of the technique to be used come from itself by as the optimiza-

tion problem is posed. Therefore, making the some considerations, it was possible to

identify two approaches for solving the same problem, both based on the MPC control

technique, but using different approach: 1- Two Boundary Value Problem (T.B.V.P.)

: fixed limit conditions (initial and final) that defines Two boundary condition for the

problem. 2-Tracking: exploits the optimization properties, minimizing the difference

between the state vector and its reference, thus leaving the system much freer to evolve.

Moreover, in such a way to avoid high non linearity of the system, and in such a way to

link the linear quadratic formulation of the optimization problem with the aim of our

problem will be exploits relation that link accelerations and angles through a tecnique

so-called differential flatness.

6.2.1 Two Boundary Value Problem (T.B.V.P.) Constrained

using modificated Model Predictive Control (M.P.C.)

The first technique that is introduced to solve the trajectory optimization problem is

known under the name of Two Boundary Value Problem (T.B.V.P.) or simply target-

ting, where the problem is set imposing at a certain instant the achievement of a target.

In the literature various examples shown how to satisfy all the requirements and then

solve a problem of this type. Usually the consideration of boundary conditions as well

as the inclusion of bounds on input and output may be causes infeasibility solution.

However, the techniques described above solve linear problems and therefore it is not

possible to use them to find the solution for non-linear problem as well as one of this

type. So to arrive a solution, a strategy is requested to link the non linear system

with linear optimization problem. The optimization method will be posed as describe

above, however nonlinear dynamic are present in the model and this must be avoided

to use linear optimization. This aim is the key point to design correctly a trajectory

problem.

The standar form of optimization problem, formulated as TBVP is posed through

discrete time optimal control problem, involving cost function, quadrotor dynamics,

states and control constraints. It can be summarized using the classical notation of

optimization problem as:
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min
u(k)

||
⇀

φ||2 + ||
⇀

θ ||2 (6.13)

subject to x(k + 1) = f(x(k), u(k))︸ ︷︷ ︸
non linear dynamic

k = 1, 2, ..., N (6.14)

umin ≤ u(k) ≤ umax ∀k ∈ [1;N ] (6.15)

xmin ≤ x(k) ≤ xmax ∀k ∈ [1;N ] (6.16)

x(1) = x0 (6.17)

x(N) = xtarget (6.18)

where ”min” considers minimization problem of objective function formed by the square

norm of sequence vector
⇀

φ =
{
φ0, φ1, ... , φN

}
,
⇀

θ =
{
θ0, θ1, ... , θN

}
.

The problem formulated as above correspond to a Two Boundary Value Problem

(TBVP) limits by bounds on input and boundary condition and non linear dynamic

constraints for outputs.

The precence of this latest one do not allows to use linear formulation and accord-

ing to what written precedently, a strategy is requested to express a linear quadratic

formulation involving linear constraints. To reach this purpose the current objective

function that consider the minimization of angles is rewritten in such a way to avoid

non linearity using differential flatness approach [41], where is shown that accelera-

tion vector depend directly to φ and θ angles. To use this approach is mandatory to

take into account the equation (5.12) that describe translation dynamics w.r.t. local

reference:

⇀
a l(t) =


sφcθ

sθ

cφcθ

 · fubz(t)mq

+


0

0

−g


The solution can be obtained considering 23 combination of boundary conditions on

the acceleration vector as:
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1. if ax = 0 , ay 6= 0 , az 6= 0

ax = sin(φ)cos(θ) · fubz = 0 gives that sin(φ) = 0 implying φ = 0

ay = sin(θ) · fubz
az = cos(φ)cos(θ) · fubz − g = cos(θ) · fubz − g where cos(φ) = 1

gives the solution θ = tan−1
(

ay
az+g

)
2. if ax 6= 0 , ay = 0 , az 6= 0 that gives sin(θ) = 0 that gives θ = 0

φ = tan−1
(

ax
az+g

)
3. if ax 6= 0 , ay 6= 0 , az = 0

φ = tan−1
(
ax
g

)
θ = tan−1

(
ay
az+g
· sin(φ)

)
4. if ax 6= 0 , ay 6= 0 , az 6= 0

φ = tan−1( ax
az+g

)

θ = tan−1
(

ay
az+g
· cos(φ)

)
5. if ax = 0 , ay = 0 , az = 0

φ = 0

θ = 0

6. if ax 6= 0 , ay = 0 , az = 0 implying θ = 0

φ = tan−1
(
ax
g

)
7. if ax = 0 , ay 6= 0 , az = 0 implying φ = 0

θ = tan−1
(
ay
g

)
8. if ax = 0 , ay = 0 , az 6= 0

φ = 0

θ = 0

This solution allows to formulate a new cost funcion that involves accelleration e not

the angles φ and θ. Inasmuch, this angles depends to the arcotangent and if the aim is

to minimize it, is mandatory to minimize the argument, minimizing the numerator and

maximizing the denominator, that correspond at same time to minimize the difference

between the three component of acceleration vector. Then, this allows to formulate

the new cost function as:

min ||(⇀ax −
⇀
az)||2 + ||(⇀ay −

⇀
ax)||2 (6.19)
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Where
⇀
ax ,

⇀
ay and

⇀
az ∈ R1×N . Having obtained what needed, let’s move on to the

description of the dynamics to which optimization is subject. Now to describe the

dynamics, the linear model are considered as previously done for Embedded Model

(EM) which take into account a discrete-time formulation. So, to obtain translation

dynamics is taken into account the equation () wrt local frame for each axes as:
x

vx

ax

 (k + 1) =

[
1 Ts

0 1

]
︸ ︷︷ ︸

Ax

[
x

vx

]
(k) +

[
0

Ts

]
︸ ︷︷ ︸

Bx

ux(k) (6.20)

[
y

vy

]
(k + 1) =

[
1 Ts

0 1

]
︸ ︷︷ ︸

Ay

[
y

vy

]
(k) +

[
0

Ts

]
︸ ︷︷ ︸

By

uy(k) (6.21)

[
z

vz

]
(k + 1) =

[
1 Ts

0 1

]
︸ ︷︷ ︸

Az

[
z

vz

]
(k) +

[
0

Ts

]
︸ ︷︷ ︸

Bz

uz(k) (6.22)

That can be rewritten in compact form as:

x

vx

y

vy

z

vz


︸ ︷︷ ︸

x

(k+1)=



1 Ts 0 0 0 0

0 1 0 0 0 0

0 0 1 Ts 0 0

0 0 0 1 0 0

0 0 0 0 1 Ts

0 0 0 0 0 1


︸ ︷︷ ︸

A



x

vx

y

vy

z

vz



(k)+



0

Ts

0

0

0

0


︸ ︷︷ ︸

Bx

ux(k)+



0

0

0

Ts

0

0


︸ ︷︷ ︸

By

uy(k)+



0

0

0

0

0

Ts


︸ ︷︷ ︸

Bz

uz(x)

(6.23)

Now, in such a way to describe dynamic constraint as equality constraint for each time

step, the method described in [41] is taken into account to eliminate the dipendence of

x(k). This method is so-called Batch approach:

x(1) = x0

x(2) = Ax(1) +Bxux(1) +Byuy(1) +Bzuz(1)

x(3) = Ax(2) +Bxux(2) +Byuy(2) +Bzuz(2)

x(4) = Ax(3) +Bxux(3) +Byuy(3) +Byuz(3)

. . .
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x(N + 1) = Ax(N) +Bxu(N) +Byuy(N) + +Bzuz(N)

Substituting the first eq. in the second, the second in the third one and so on:

x(1) = x0

x(2) = Ax0 +Bxux(1) +Byuy(1) +Bzuz(1)

x(3) = A(Ax0 +Bxux(1) +Byuy(1) +Bzuz(1)) +Bxux(2) +Byuy(2) +Bzuz(2)

x(4) = A(A(Ax0 +Bxux(1) +Byuy(1) +Bxux(2) +Byuy(2) +Bzuz(2)) +Bu(3)

. . .

x(N + 1) = ANx0 +
[
AN−1 ·Bx AN−2Bx ... ABx Bx

]



ux(1)

ux(2)

ux(3)

...

ux(N)


︸ ︷︷ ︸

ux

+ . . .

. . .+
[
AN−1 ·By AN−2By ... ABy By

]



uy(1)

uy(2)

uy(3)

...

uy(N)


︸ ︷︷ ︸

uy

+ . . .

. . . +
[
AN−1 ·Bz AN−2Bz ... ABz Bz

]



uz(1)

uz(2)

uz(3)

...

uz(N)


︸ ︷︷ ︸

uz

That in compact form could be rewritten as:



x(2)

x(3)

x(4)

...

x(N)


︸ ︷︷ ︸

x

=



A

A2

A3

...

AN


︸ ︷︷ ︸

F

x0+



Bx 0 0 0 0

ABx Bx 0 0 0

A2Bx ABx Bx 0 0

... A2Bx ABx Bx 0

AN−1 ·Bx ... A2Bx ABx Bx


︸ ︷︷ ︸

H1



ux(1)

ux(2)

ux(3)

...

ux(N)


︸ ︷︷ ︸

ux

+
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. . .+



By 0 0 0 0

ABy Bx 0 0 0

A2By ABy By 0 0

... A2By ABy By 0

AN−1 ·By ... A2By ABy By


︸ ︷︷ ︸

H2



uy(1)

uy(2)

uy(3)

...

uy(N)


︸ ︷︷ ︸

uy

+ . . .

. . .+



Bz 0 0 0 0

ABz Bz 0 0 0

A2Bz ABz Bz 0 0

... A2Bz ABz Bz 0

AN−1 ·Bz ... A2Bz ABz Bz


︸ ︷︷ ︸

H3



uz(1)

uz(2)

uz(3)

...

uz(N)


︸ ︷︷ ︸

uz

Where
⇀
x ∈ Rm·N×1 with m equal to the number of state corrisponding to m = 6,

F ∈ RmN×1, H1 ∈ RmN×N ,H2 ∈ RmN×N ,H3 ∈ RmN×N , ux ∈ RN×1, uy ∈ RN×1,

uz ∈ RN×1. That can be rewritten in compact form as:

x = Fx0 +


H1 0 0

0 H2 0

0 0 H3




ux

uy

uz


with 0 ∈ RmN×N . Instead for what concern state and control constraints, the problem

can be posed as:

xmin ≤ x(k) ≤ x max ∀k ∈ [1;N ]


ux min

uy min

uz min

 ≤

ux(k)

uy(k)

uz(k)

 ≤

ux max

uy max

uz max

∀k ∈ [1;N ]


−4ux max
−4uy max
−4uz max

 ≤

4ux(k)

4uy(k)

4uz(k)

 ≤

4ux max
4uy max
4uz max

∀k ∈ [1;N ]
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While the initial and the final boundary condition are specified as:

x0 =



x0

vx 0

y0

vy 0

z0

vz 0



=



0

0

0

0

0

0



; xtarget =



xt

vx t

yt

vy t

zt

vz t



=



px

0

py

0

pz

0


And considering safety flight, is required that the trajectory does not go below the

surface during the maneuver. This could be replaced with a constranits on z position

corresponding to :

x5(k) ≥ 0 ∀k ∈ [1;N ] (6.24)

For all the time of flight ∀k ∈ [1, N ].

Finally, we can summarized the overall trajectory optimization problem with the fol-

lowing statement:

min ||(⇀ax −
⇀
az)||2 + ||(⇀ay −

⇀
ax)||2 (6.25)

subject to

x = Fx0 +


H1 0 0

0 H2 0

0 0 H3




ux

uy

uz


xmin ≤ x(k) ≤ x max ∀k ∈ [1;N ]


ux min

uy min

uz min

 ≤

ux(k)

uy(k)

uz(k)

 ≤

ux max

uy max

uz max

 ∀k ∈ [1;N ]


−4ux max
−4uy max
−4uz max

 ≤

4ux(k)

4uy(k)

4uz(k)

 ≤

4ux max
4uy max
4uz max

 ∀k ∈ [1;N ]
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x5(k) ≥ 0 ∀k ∈ [1;N ]

x0 =



xo

vx 0

y0

vy 0

z0

vz 0



=



0

0

0

0

0

0



; xtarget =



xt

vx t

yt

vy t

zt

vz t



=



px

0

py

0

pz

0



Where px, py and pz are the target position and the velocity and acceleration target

are set to 0 value inasmuch the aim is to reach the target in hover condition. Bounds

are set as equality and inequality constraints to respect not only a initial and final

state but also input saturation and its increment. To set these value a consideration

on minimum and maximum value for thrust force and Euler angles is mandatory.

Tmin ≤ fubz(k) ≤ Tmax ∀k ∈ [1;N ]

φ min ≤ φ(k) ≤ φ max ∀k ∈ [1;N ]

θ min ≤ θ(k) ≤ θ max ∀k ∈ [1;N ]

that is bounded for all the time flight. Now, given the state and control constraints, the

minimun trajectory optimization problem to be solved become much hard to respect

feasebility. As known infeasible solutions appear when bounds are not respected in the

given time horizon N and in such a way to avoid it, a condition that detect the violation

is developed. The condition allows to increase the time horizon giving the possibility

to find a feasible trajectory without violation. This can be summarized through the

following scheme:
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Figure 6.6: Flow chart

An optimization of this type involves an hight number constraints proportional the time

horizon N, having negative effects on calculation time. For this reason, in such a way

to reduce time calculation, this technique has also been further optimized reducing the

problem by scaling the matrices involved in the optimization of a factor k for each step

until the desired target is reached and restarting as soon as it is reached. While if the

target is not achieved, the solution of the optimization problem would be infeaseable,

that implies that optimization is restarted by increasing the prediction horizon. Since

a disturbances affect the system and considering what written in the description of this

chapther, an implicit feedback control law is required. Its is performed by replanning

the trajectory at each time step, and applying only the first input element of optimal

sequence vector u∗. This may to result strange or wrong but if there isn’t noise that

corrupt our output, the trajectory replanned remain optimal as described by Bellman

principle.

Bellman principle: given the optimal sequence u∗ = {u∗0, u∗1, ... , u∗N} and the corre-

sponding state sequence x∗ = {x∗0, x1∗, ... , x∗N}, the subsequence {u∗1, u∗2, ... , u∗N} remain

optmil for the problem on horizon [ t1, T ] starting to the optimal state x1
∗.
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Figure 6.7: Bellman Principle

Moreover, the initial trajectory depends only on the initial state and the sequence of

the inputs from 0 to T, so the optimal trajectory from t1 to T depends x∗(1).

So the requirements that would be respected are expressed as follow:

Algorithm 2 Closed loop

1: k ← 0

2: for k ← 1, N do

Require: x0 and xf . Initial and target Condition

3: minimize J . Constrained Optimization

4: Solve optimization problem

Ensure: optimal sequence u∗

5: Apply ux,y,z(1)

6: back to step 2

7: end for

That correspond to apply only the 1st element of the optimal sequence control vector

to the system. This state feedback form has the advantage of being more robust in the

presence of perturbations on the output giving the possibility to replan the trajectory

optimization at each k step.
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If no disturbance are presents the 1st trajectory found can be followed with no variation

for all k steps. In conclusion is possible to summarize the overall TBVP algorithm

developed as follow:

Algorithm 3 TBVP algorithm

1: k ← 0

2: for k ← 1, N do

Require: x0 and xf . Initial and target Condition

3: Calculate Matrices F , H1, H2, H3 . Scaled by k

4: minimize J . Constrained Optimization

Ensure: subject to ∀k ∈ [1;N ]

x = Fx0 +


H1 0 0

0 H2 0

0 0 H3

[ ux,y,z

]

. Dynamic constraint

5: umin≤u(k)≤umax . input constraint

6: -4umax≤4u(k) ≤ 4umax . input rate constraint

7: xmin≤x(k)≤xmax . Output constraint

8: x7(k)≥0 . z axis constraint

9: Solve optimization problem

10: if solution infeasible then increase N

11: else

12: Apply ux(1), uy(1), uz(1) . Apply 1st element Control sequences

13: Calculate Ftot, τ(1) . Torques command

14: Ftot(1), τx,y,z(1) → F1,2,3,4(1) . Dispatching

15: Apply F1,2,3,4(1) to Quadrocopter

16: end if

17: end for
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6.2.2 Tracking approach using modificated Model Predictive

Control

The approach just described allows the achievement of the aim with excellent results,

the only problem that arises is the presence of boundary conditions on the output that

cause infeasibility solution. The solution at this problem can be reached deciding to add

a term inside the performance index, together to the terms that derive from differential

flatness approach, that take into account the difference between the state vector and the

reference vector. With this type of strategy, in such a way to reach the minimum value

of the cost function the state will have to converge towards the reference. The strategy

that best suits this type of solution is known under the name tracking. In addition,

with this approach, is possible to avoid forcing the state vector to a precise fixed final

time that correspond to a problem of optimization less constrained. The performance

index to perform an optimization of this type can be chosen as follows:

min ρ(||(⇀ax −
⇀
az)||2 + ||(⇀ay −

⇀
az||2) + γ(||(⇀x − ⇀

xref )||2 + ||(⇀a − ⇀
aref )||2) (6.26)

With the inclusion of the parameters ρ and γ is possible to weight terms involved in

the perfomance index giving much importance to one term respect to the other. An

example on how the system react changing these parameters is given in the following

chapter. The problem formulation is subjet to a inequality and equality constraint as

previously defined for TBVP: subject to

x = Fx0 +H1
⇀
ax +H2

⇀
ay +H3

⇀
az

xmin ≤ x(k) ≤ x max ∀k ∈ [1;N ]
ux min

uy min

uz min

 ≤

ux(k)

uy(k)

uz(k)

 ≤

ux max

uy max

uz max

 ∀k ∈ [1;N ]


−4ux max
−4uy max
−4uz max

 ≤

4ux(k)

4uy(k)

4uz(k)

 ≤

4ux max
4uy max
4uz max

 ∀k ∈ [1;N ]

x5(k) ≥ 0 ∀k ∈ [1;N ]
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x0 =



xo

vx 0

y0

vy 0

z0

vz 0



=



0

0

0

0

0

0



; xref =



xref

vx ref

yref

vy ref

zref

vz ref



=



⇀
px

0
⇀
py

0
⇀
pz

0



Where
⇀
x ∈ Rm·N×1 with m equal to the number of state corrisponding to m = 6,

F ∈ RmN×1, H1 ∈ RmN×N ,H2 ∈ RmN×N ,H3 ∈ RmN×N , ux ∈ RN×1, uy ∈ RN×1,

uz ∈ RN×1 and
⇀
px,

⇀
py and

⇀
pz are the ref position and the velocity and acceleration

target are set to 0 value for each k steps inasmuch the aim is to reach the target in hover

condition. Bounds are set as equality and inequality constraints to respect not only a

initial and final state but also input saturation and its increment. To set these value

a consideration on minimum and maximum value for thrust force and Euler angles is

mandatory.

Tmin ≤ fubz(k) ≤ Tmax ∀k ∈ [1;N ]

φ min ≤ φ(k) ≤ φ max ∀k ∈ [1;N ]

θ min ≤ θ(k) ≤ θ max ∀k ∈ [1;N ]

that are bounded for all the time flight. Thanks to the properties of this strategy,

the optimization involves an lower number of constraints then TBVP inasmuch the

algorithm will work with restricted control horizon P. This consideration have positive

effects on calculation time. Moreover, the problem formulated as now do not reach

infeasible solution inasmuch the minimization problem take the sistem as much as pos-

sibly near the reference target. Since a disturbances affect the system and considering

what written in the description of this chapther, an implicit feedback control law is

required. Its is performed by replanning the trajectory at each time step, and applying

only the first input element of optimal sequence vector u∗. The overall algorithm can

be summarized using a pseudo code that take into accout the main steps:
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Algorithm 4 Tracking algorithm

1: k ← 0

2: for k ← 1, N do

Require: x0 and xf . Initial and target Condition

3: Calculate Matrices F , H1, H2, H3 . Scaled by k

4: minimize J . Constrained Optimization

Ensure: subject to ∀k ∈ [1;N ]

x = Fx0 +


H1 0 0

0 H2 0

0 0 H3

[ ux,y,z

]

. Dynamic constraint

5: umin≤u(k)≤umax . input constraint

6: -4umax≤4u(k) ≤ 4umax . input rate constraint

7: xmin≤x(k)≤xmax . Output constraint

8: x7(k)≥0 . z axis constraint

9: Solve optimization problem

10: if solution infeasible then increase N

11: else

12: Apply ux(1), uy(1), uz(1) . Apply 1st element Control sequences

13: Calculate Ftot, τ(1) . Torques command

14: Ftot(1), τx,y,z(1) → F1,2,3,4(1) . Dispatching

15: Apply F1,2,3,4(1) to Quadrocopter

16: end if

17: end for
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Results

7.1 TBVP constrained using modificated Model Pre-

dictive Control

The trajectory optimization problem shown in Ch.5.2.1 can be resolved implementing

the problem shown above using CVX toolbox for matlab. Now considering what written

before and taking the considerations on the bounds, is possible to find the trajectory for

position, velocity and accelleration. To simplify the understanding of the graphs and

evaluate their correctness, it was initially chosen to arrive in a position of symmetry

for the three axes. So recalling the optimization problem described previously :

min ||(⇀ax −
⇀
az)||2 + ||(⇀ay −

⇀
ax)||2 (7.1)

subject to

x = Fx0 +


H1 0 0

0 H2 0

0 0 H3




ux

uy

uz



ux min

uy min

uz min

 ≤

ux(k)

uy(k)

uz(k)

 ≤

ux max

uy max

uz max

 ∀k ∈ [1;N ]

72



Chapter 7. Results


−4ux max
−4uy max
−4uz max

 ≤

4ux(k)

4uy(k)

4uz(k)

 ≤

4ux max
4uy max
4uz max

 ∀k ∈ [1;N ]

xmin ≤ x(k) ≤ x max ∀k ∈ [1;N ]

x5(k) ≥ 0 ∀k ∈ [1;N ]

x0 =



x0

vx 0

y0

vy 0

z0

vz 0



=



0

0

0

0

0

0



; xtarget =



xt

vx t

yt

vy t

zt

vz t



=



px

0

py

0

pz

0


defining the target position as px = 10[m], py = 10[m], pz = 10[m], the final value of

acceleration and velocity equal to 0 and the bound constraints as:

Tmin ≤ fubz ≤ Tmax

φ min ≤ φ(k) ≤ φ max

θ min ≤ θ(k) ≤ θ max

with Tmin = 0 [N ] ,Tmax = 100 [N ] ,φ min = −π
2

,φ max = π
2

, θ min = −π
2

,θ max = +π
2

That are rewritten recalling the equation () under constraints of the accelleration pro-

file :

⇀
a l =


sφcθ

sθ

cφcθ

 · fubzmq

+


0

0

−g


where mq is the quadrocopter mass equal to 1.49 [Kg] and g the gravitatonal costant

equal to 9.81 [m
s2

] that if entered in the previous equation with the constraints on thrust

73



Chapter 7. Results

and Euler angles returns:


−33.33

−33.33

−9.81

 ≤


ax(k)

ay(k)

az(k)

 ≤


33.33

33.33

33.33



Moreover a bounds on the variation of acceleration in the time unit is introduced to

obtain a smooth change of angles:


−0.1

−0.1

−0.1

 ≤

4ax(k)

4ay(k)

4az(k)

 ≤


0.1

0.1

0.1



The following results show how the system dynamic evolves respecting all the bound

and reaching the final targets. For the simulation, are applyed two different target

point, the first one equal to 0 fot t = [1 : 3] s while the second target is set to

px = 10[m], py = 10[m], pz = 10[m] and 0 value for the acceleration and velocity

profile for t = [12 : 15] s.
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Figure 7.1: Position profile TBVP

As previously anticipated, a target has been chosen in an optimal position such as

to make it easier to verify the correct working of the algorithm. From the last plot

is possible to see how the positions evolves from the initial position to the final one.

Obviously if the position change in time starting to a rest state and reaching a target,

also the velocity and acceleration change. Since the boundary condition are set in such

a way to have hover condition the velocity have the following behaviour
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Figure 7.2: Velocity profile

Also the velocity profile show a symmetry inasmuch the system evolves uniformly

respect to the 3 axis. This is due to the fact that a cost function has been chosen that

minimizes the acceleration differences. In fact also the acceleration will be equal (for

this symmetrical target) and are summurize by the picture below:
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Figure 7.3: Acceleration profile

As can be understood from the responce of acceleration, a hover condition is mantained

considering that no accelerations are present on the boundary respecting all the require-

ments, while in the moving phase the quadrocopter will accelerate for t = [2, 5 − 7, 5]

and decelerate for t = [7, 5 − 12, 5]. Moreover, can be seen how the constraint on the

acceleration rate is respected, resulting in a soft variation of accelerations that will

be reflected on a corresponding soft variation of angles. Inasmuch the acceleration is

linked with the angles and the thrust through the equation (5.12), also these profiles

are known :
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Figure 7.4: Euler angles and total thrust force

the behaviour shown by the Euler angles gives the possibility to state that the goal

has been achieved inasmuch as they show a maximum value of 3 degrees and a varia-

tion in the unit of time very low, therefore non-sudden angular variations. From this

results and considering the equation (5.14), also the torque commands are computed,

summarized in the figure below.
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Figure 7.5: Torques commands

Since the goal are achivied, all that remains is to understand if the values of torque

obtained are right. Considering as angles change, the calculated torques respect what

described above, in fact this can be trivially demonstrated considering that a positive

torque on the x axis generates a positive variation of the φ angle and similarly this

happens also for the torque on the y axis, instead for the torque on the axis z the speech

is completely different, where no rotation is required by the operator and this could

lead to an incorrect evaluation of what happens. In fact, the presence of this torque

shows that different angular variations of the propellers-motors lead to a corresponding

yaw movement and that a torque on the z axis is necessary to balance and then cancel

it. Infact if the commands inputs are dispatched into the corresponding propeller forces

through the equation (5.10) the previous results can be clearified.
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Figure 7.6: Dispatched forces

That can be divided into two couple that generate torques as:

Figure 7.7: Dispatched forces
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Where F1-F3 are the forces that drive the torque on the x axis and obviously F2-F4

are the forces that drives the torque on the axis y. For t = [1 : 2, 5] s there is an

hover condition where all the forces are equal and their sum correspond to the weight

force maintaining the quadrocopter around its equilibrium point, while at t = 2, 5 s

the quadrotor start to move generating torques varying the propeller-motors angular

velocity for 0.3 s. After this phase the torque is not needed in such a way to maintain

the inclination. This condition is obtained with the equality of the 4 forces. While

at t=4,8 s the quadrocopter start to change its attitude, inverting its trend to start

the deceleration phase. The behaviour of this results shown how the requirements

are respected giving the possibility to provide an automated and adaptive optimazed

guidance that kept the quadrocopter in any target position in the space with the

minimum inclination for all the trajectory. Using the TBVP algorithm developed,

that embedd the guidance and control unit, the system can be simulated giving the

possibility to understand how it reacts and if the target point is reached. This can be

verified in the next picture:
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Figure 7.8: Trajectory

that show how the quadrocopter reach the final target with no violation of boundary

constraints. Thanks to this simulation, is possible to verify that the attitude is re-

spected and all the calculations are correct, in fact in the following figures can be seen

the maximum inclination for θ .
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Figure 7.9: Initial phase (left) and Final phase (right)

7.2 Tracking approach using Model Predictive Con-

trol

The resolution of the optimization problem using the tracking approach is similar

to the previous one. In fact, for the construction of the matrices involved in the

optimizatioin problem is possible to use the same set of parameters used in the TBVP

optimization problem. The only parameters that will be modulated are ρ and γ, where

they represents the weight of each term involved in the performance index.

min ρ((
⇀
ax −

⇀
az)

2 + (
⇀
ay −

⇀
az)

2) + γ((
⇀
x − ⇀

xref )
2 + (

⇀
a − ⇀

aref )2) (7.2)

subject to

x = Fx0 +H1ux + +H2uy +H3uz
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
−33.33

−33.33

−9.81

 ≤


ax(k)

ay(k)

az(k)

 ≤


33.33

33.33

33.33

 ∀k ∈ [1;N ]


−0.1

−0.1

−0.1

 ≤

4ax(k)

4ay(k)

4az(k)

 ≤


0.1

0.1

0.1

 ∀k ∈ [1;N ]

x5(k) ≥ 0 ∀k ∈ [1;N ]

x0 =



xo

vx 0

y0

vy 0

z0

vz 0



=



0

0

0

0

0

0



; xtarget =



xt

vx t

yf

vy t

zt

vz t



=



px

0

py

0

pz

0



where xref ∈ Rm·N×1 ,
⇀
ax ,

⇀
ayand

⇀
az ∈ R1×N , while ρ and γ are set to 1 in such a way to

verify as the algorithm works. The other parameters are defined equal to the problem

described before.

The following results show how the system dynamic evolves respecting all the bound

and tracking the reference value on N time horizon with N = 150 sampling at Ts =

0.1 s. For the simulation, the reference signal have been splitted into two subparts,

equal to 0 for t = [1 : 3) s and equal to px = 10[m], py = 10[m], pz = 10[m] and 0

value for the velocity and when t = [3, N ], while the second reference given to track

the command input (the acceleration) is set to 0 for t = [1 : N ] s that correspond to

have 0 acceleration in the initial time at also when the target is reached.
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Figure 7.10: Position profiles

As previously done for the TBVP problem, a reference has been chosen in an optimal

position such as to make it easier to verify the correct working of the algorithm. As

the picture shows, system reach faster the reference. The reason is that the system

is much free to evolve inasmuch there is not fixed final time value. Obviously if the

position change in time starting to a rest state and reaching a target, also the velocity

and acceleration change. Since the boundary condition are set in such a way to have

hover condition, the velocity have the following profile.
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Figure 7.11: velocity profile

The velocity profile shows a symmetry inasmuch the system evolves uniformly respect

to the 3 axis. This is due to the fact that a cost function has been chosen that minimizes

the acceleration differences and also to track an equal references for the three axes. In

fact, the accelerations will be equal for the 3 axes (for this symmetrical references) and

are summurized by the picture below:
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Figure 7.12: Acceleration profiles

As can be understood from the responce of acceleration, a hover condition is maintained

considering that no accelerations are present on the boundary respecting all the require-

ments, while in the moving phase the quadrocopter will accelerate for t = [2, 5 − 5]

and decelerate for t = [5 − 10] . Moreover, can be seen how the constraint on the

acceleration rate is respected, but differently to the targetting results. There is soft

variation of accelerations that will be reflected on a corresponding soft variation of

angles by depending to the fact that the references are reached in short time the angle

swap is much wide. Infact using the equation (), also the angle profiles are known and

are shown below:
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Figure 7.13: Angles profiles

To reach the target in short time, are provided not also a big value of angle but also

a major value of thrust. Since this results respect all the bounds, to have a bondend

value of angles near 3-5 degrees the optimization problem is reformulated changing the

maxim value of velocity and acceleration:
−1.91

−1.91

−1.91

 ≤


vx(k)

vy(k)

vz(k)

 ≤


1.91

1.91

1.91



−0.6

−0.6

−0.6

 ≤


ax(k)

ay(k)

az(k)

 ≤


0.6

0.6

0.6



−0.1

−0.1

−0.1

 ≤

4ax(k)

4ay(k)

4az(k)

 ≤


0.1

0.1

0.1


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applying this change of bound is possible to obtain the same trajectory with minor

angles, obviously this changing will be reflect on the saturations of this. This is shown

in the next figure:

Figure 7.14: Velocity profile
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Figure 7.15: acceleration profile
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Figure 7.16: angles profiles

This correspond to have an abrupt change of angles and its saturation. The reason are

inside the formulation of the objective function where difference between the state and

its reference dominates the difference between the couples of accelerations. This can

be avoided by the introduction of costants that weights this quantities. This method

is used also in standard optimal control as Linear Quadratic Regulation (LQR) or

standard Model Predictive Controlo (MPC). So to reach a better results the formulation

problem are rewritten in the following form:

min ρ((
⇀
ax −

⇀
az)

2 + (
⇀
ay −

⇀
az)

2) + γ((
⇀
x − ⇀

xref )
2 + (

⇀
a − ⇀

aref )2) (7.3)

subject to

x = Fx0 +H1ux + +H2uy +H3uz
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
−33.33

−33.33

−9.81

 ≤


ax(k)

ay(k)

az(k)

 ≤


33.33

33.33

33.33

 ∀k ∈ [1;N ]


−0.1

−0.1

−0.1

 ≤

4ax(k)

4ay(k)

4az(k)

 ≤


0.1

0.1

0.1

 ∀k ∈ [1;N ]

x5(k) ≥ 0 ∀k ∈ [1;N ]

x0 =



xo

vx 0

y0

vy 0

z0

vz 0



=



0

0

0

0

0

0



; xtarget =



xt

vx t

yf

vy t

zt

vz t



=



px

0

py

0

pz

0



where ρ is assigned to an higher value and γ to a lower one. This formulation allows to

reach our aim without restriction on bounds. Applying this consideration is possible to

find a minimized trajectory giving much importance to the term that take into account

the difference of couples of acceleration (first term of objective function):
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Figure 7.17: position profiles

With the inclusion of the parameters ρ and γ is possible to weight terms involved in

the perfomance index. The speed profiles are obviously almost identical as shown from

the following figure:
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Figure 7.18: velocity profiles

While for the accelerations is shown substantial variation compared to the previous

cases given precisely by the inclusion of the weight parameters ρ and γ. This is verified

in the figure below:
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Figure 7.19: acceleration profile

With the insertion of the weight parameters in the tracking technique is possible to

led back to the same result obtained using the TBVP constrained technique where the

performance index is formed only by the differences of the accelerations couples. This

allows to use the results of the TBVP as an ideal case. Thus the angular profiles can

be summarized as follows:
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Figure 7.20: angles profile

the behavior shown by the Euler angles gives the possibility to identify a maximum

value of + -4.5 degrees and a variation in the unit of time very low, therefore non-

sudden angular variations. From the results and considering the equation (), the torque

commands are computed, summarized in the figure below.
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Figure 7.21: Torque profile

All that remains is to understand if values of torque obtained are right. This can

be trivially demonstrated considering that a positive torque on the x axis generates a

positive variation of the φ angle and similarly this happens also for the torque on the y

axis, instead for the torque on the axis z the speech is completely different and equal to

the TBVP discussion, where no rotation is required by the operator and this could lead

to an incorrect evaluation of what happens. In fact, the presence of this torque, shows

that different angular variations of the propellers-motors lead to a corresponding yaw

movement and that a torque on the z axis is necessary to balance and then cancel it.

If the commands inputs are dispatched into the corresponding propeller forces through

the equation () the previous results can be clearified.
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Figure 7.22: Set force profiles

As is possible to understand from these results, by modifing the parameters ρ and γ

more importance can be given to the minimization of the difference of couples acceler-

ations respect to the the difference between state vector and its reference. Therefore

it is possible to state that the results obtained are consistent with the purpose to be

achieved. This allows to use the designed techniques to solve the trajectory optimiza-

tion problem.

7.3 TBVP vs Tracking

In the previous sections the parameters and the results of two different techniques have

been shown. These two will be compared in order to choose the tecnique that best

suits our optimization problem. The first described tecnique (TBVP) will be taken as

ideal case. This is possible since it has in the objective function only the difference

of the couples accelerations that leads to a minimization of the square of the angles

through differential flatness approach. Thus allows to study the problem in the linear
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form subject to initial and final linear constraints. The second designed technique

(Tracking) is developed in such a way to set free the system from final boundary

constraints. Both techniques are developed using Model Predictive Control (MPC)

theory, to solve constrained discrete time optimal problem. Obviously, considering

that the system is non-linear, it was necessary to use the differential flatness technique

to return to a suitable form of the objective function in line with the assumption of

linear models. Moreover, the assumption of linear models derives from a feedback

linearization. The design of several techniques for solving the trajectory optimization

problem allows to make a direct comparison between them. The comparison gives

the possibility to understand which technique have to be used; to this end, the two

techniques TBVP and Tracking are compared. For the Tracking technique only the final

version is taken into account, that corresponds to the best version for its realization.

The profiles of position and speed are very similar, the substantial differences between

the two techniques are shown for the acceleration profiles and therefore the respective

angles, for this reason only the latter will be shown and analyzed. By overlapping the

results obtained we get the differences between the behavior of the angular profiles for

the two techniques taken into consideration. This is shown in the following figure:

Figure 7.23: TBVP Vs Weighted Tracking

99



Chapter 7. Results

In the figure the blue line represents the behavior of the angular profile obtained by

using the TBVP constrained technique, while, the magenta line represents the behavior

of the angular profile obtained through the use of the Tracking technique. As can be

seen from the figure, the behaviours of the two curves is very similar and the substantial

differences between the results derives from the composition of the performance index.

In fact, in the TBVP approach the cost function is formed only by the differences

between the couples accelerations deriving from the use of the differential flatness

method. While, for the Tracking approach the performance index is formed by a term

deriving from the differential flatness method and a term that takes into account the

minimization between the state and its reference, where this two terms are weighted

through ρ and γ parameters. The results shown by both techniques allow to reach

the prefixed aim. However, for the real implementation is necessary to consider the

running time of algorithms. For the resolution of a single optimization using the TBVP

technique, approximately 15-16s are required for the first up to 2 s for the last one.

The difference in the running time time between the first solution of the optimization

and the last one derives from the fact that matrices are scaled for k for each time step.

Since for the first optimization with prediction horizon of t = 15 s → N = 150 and

sampled at Ts, 900 constraints are needed and this obviously takes a long time. For

this reason the problem is reduced for every k instant. Moreover, for the use of this

technique, since the initial and final boundary conditions are defined at a determined

instant k, it is necessary to define the constraints which describe the dynamics for

all the instants k up to the prediction horizon N. While all other happens using the

Tracking technique. In fact, this tecnique is just a relaxed version of TBVP technique

where the optimization problem is left much free from the Boundary condition allowing

the system to evolve freely minimizing the difference between the state and its target.

The problem formulated, allows obtaining the minimum distance from the reference

minimizing the difference between the couples accelerations. This means that the

system does not necessarily have to reach the target but only minimize the distance

in the chosen time horizon. Based on these considerations, for Tracking approach

it has been possible to choose temporal horizons of predictions much smaller than

those chosen for TBVP, which obviously reflects on a notable reduction of the matrices

that define the number of constraints and therefore also of the calculation times. By

applying the tracking strategy, to get the solution of the optimization problem, 2.6 s

are necessary for each k instant over a control time horizon equal to P = 10. This
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allows to state that a Tracking approach is much more convenient for the realization

of Guidance optimization that has the shortest possible running time.

For this reason, this tecnique have been used for the real implementation. Now, defining

a properly reference vector, it is possible to track all type of trajectories. For example

by choosing a reference trajectory vector with infinity shape, it is possible to show how

quadrocopter tracks this kind of references:

Figure 7.24: Traiettoria Tracking

where the blu line is the reference signal and the red one is the path followed by

quadrocopter. Thanks to the properties of tracking approach no infeasibility occurs on

the overall trajectory for each time step.
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Conclusion

The obtained results, that have been described in the previous chapter, allow a di-

rect comparison between the new optimized discrete-time constrained guidance and

the already present unconstrained polynomial guidance. The main difference between

these strategies is the presence of constraints of the dynamic system in one case and

the absence of them in the other one. The designed Constrained Guidance method

gives the possibility to respect the input and output constraints through the Model

Predictive Control technique. While uncostrained polynomial technique does not give

this possibility inasmuch is based on the placement of polynomial coefficient to satisfy

boundary condition. The new strategy implies an important improvement for a tra-

jectory planning strategy. Moreover, due to this property, using the MPC technique,

the implementation of new ideas, such as an obstacle avoidance, could be possible.

Therefore, it can be state that the MPC tecnique is more flexible method than the

unconstrained polynomial one. Taking into account that this technique is an advanced

optimal control method, wich could be used to resolve trajectory optimization problem,

means to provide not only guidance but also control.
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Figure 8.1: Polynomial vs MPC blocks

While on the one hand an improvement could be done, on the other one the running

time of algorithm would be influenced. All the simulations was performed on a PC with

processor characteristics: dual core, i7 , 2.00 Ghz. The running time of the algorithm

takes 1.5-2s to arrive to the solution for Constrained optimization problem using MPC

technique in Tracking mode. While polynomial guidance algorithm provide solution

in 0.001s since the ammount of calculation is realy low. These results are summarized

considering that the running time increases proportionaly w.r.t. the complexity of the

algorithm, where for the optimized guidance the complexity of the algorithm is very

high which reflects on the future cost.

Figure 8.2: Complexity

All these consideration can be reported as advantages and disadvantages in the follow-

ing table
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Figure 8.3: Cloud architecture

Polynomial MPC

Advantages •Low run time

•Constrained
•Flexible

•Guidance&Control

Disadvantages

•Unconstrained
•Less flexible
•Unconstrained

•High runn timeCV X

Table 8.1: Polynomial vs MPC

The running time obtained to arrive to the solution of the optimization problem is not

short enough for a direct implementation on the aircraft, where the system is calibrated

on much lower sampling times. Furthermore, the computing power that is available

on board is not sufficient to solve an optimization problem in the desired time. For

this reason, as the literature suggests, to obtain lower running time need for the real

implementation, it is necessary to use expedient as cloud real time comunication or

solving the problem through specifically designed algorithm. The assumption of one of

this approach is mandatory inasmuch the optimization problem must be resolved for

each k steps in usefull time.

104



Chapter 8. Conclusion

The Cloud and the UAV could be connected through a wireless network and Internet

mobile technologies (4G or 5G in the future) with On-board Connection diagnostic to

monitor connection quality. Where due to the bad connection, the on-board control

will takes over for a safe navigation.

Obstacle avoidance

Figure 8.4: Obstacle avoidance

Cloud adoption can be a good choice to get computation times consistent with the

system sampling time.
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Figure 8.5: Cloud
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