
POLITECNICO DI TORINO

Dipartimento di Elettronica e delle Telecomunicazioni
Corso di Laurea Magistrale in ”ICT for Smart Societies”

Tesi di Laurea Magistrale

Big Data Analytics for Network Traffic
Monitoring and Analysis

Candidate:
Francesca Soro

Contents

1 Introduction and problem description 1
1.1 Overview . 1
1.2 Goal of the thesis . 2
1.3 Thesis organization . 3

2 State of the art and contributions 4
2.1 Machine Learning, Data Mining and Big Data

Analytics . 5
2.2 Network Anomaly Detection and Security 6
2.3 Benchmarks for Big Data Analysis Solutions 7

3 The Big-DAMA project 9
3.1 Big Data Analysis Frameworks . 9
3.2 Scientific Challenge . 11
3.3 Project objectives . 13
3.4 Big-DAMA cluster . 15

3.4.1 HDFS . 16
3.4.2 YARN . 16
3.4.3 Spark 2.0 . 18
3.4.4 Hive, Zookeeper and Oozie 20
3.4.5 Spark MLlib . 21
3.4.6 Future improvements . 23

4 Case study 25
4.1 WIDE/MAWI Input data traces . 26

I

Contents
4.1.1 Data preprocessing . 26
4.1.2 Feature extraction . 27
4.1.3 Labels extraction . 30

4.2 Modelling and analysis . 32
4.2.1 Basic classifiers . 32
4.2.2 Super Learner classifier . 35

4.3 Classification results . 37
4.3.1 Basic classifiers with full features set 37

4.4 Basic classifiers with feature selection 41
4.4.1 Plain-top feature selection 41
4.4.2 Sub-set search selection . 43
4.4.3 Results . 45

4.5 Super Learner classifier . 51

5 Conclusions and future work 52
5.1 Concluding remarks . 52
5.2 Future work and improvements . 53

Appendices 54

A Case study code and flow charts 55
A.1 Data preprocessing . 55

A.1.1 Mawi traces upload . 55
A.1.2 Mawi features extraction . 58
A.1.3 Flow chart for anomaly processing - outer cycle 69
A.1.4 Flow chart for anomaly processing - inner cycle 70
A.1.5 Mawi anomalies processing 70

A.2 Modelling and Analysis . 78
A.2.1 Decision Tree . 78
A.2.2 Random Forest . 78
A.2.3 Naive Bayes . 79
A.2.4 Multilayer Perceptron . 79
A.2.5 Cross Validation . 79
A.2.6 Ensemble Learning (from [1]) 81

II

Contents

Bibliography 82

III

List of Figures

3.1 Time requirements and data structure for most common fields. From
[87] . 10

3.2 Big-DAMA system overview. 15
3.3 Service layers on the cluster. 16
3.4 HDFS architecture. From [89] . 17
3.5 YARN architecture. From [90] . 17
3.6 Example of YARN Container allocation. From [91] 18
3.7 Pipeline model extraction. From [93] 20
3.8 Pipeline model application. From [93] 20
3.9 Set of frameworks running on top of Spark. From [93] 21
3.10 Modules of the Spark ML framework. 22
3.11 Kafka basic schema. 23

4.1 Process of knowledge discovery form data. 25
4.2 ROC for Decision Tree algorithm. 38
4.3 ROC for Random Forest algorithm. 39
4.4 ROC for Naive Bayes algorithm. 39
4.5 ROC for MLP algorithm. 40
4.6 ROC for SVM algorithm. 40
4.7 Linear correlation between features and attacks (absolute values). . . . 42
4.8 Top-10 feature correlation graphs for the different types of attack. . . 45
4.9 AUC results for DDoS attack in different configurations. 47
4.10 AUC results for MPTP attack in different configurations. 47
4.11 AUC results for ping flooding attack in different configurations. . . . 47
4.12 AUC results for netscan-UDP attack in different configurations. 48

IV

List of Figures

4.13 AUC results for netscan-ACK attack in different configurations. . . . 48
4.14 Relative execution time results for DDoS attack in different configura-

tions. 48
4.15 Relative execution time results for MPTP attack in different configura-

tions. 49
4.16 Relative execution time results for ping flooding attack in different

configurations. 49
4.17 Relative execution time results for netscan-UDP attack in different

configurations. 50
4.18 Relative execution time results for netscan-ACK attack in different

configurations. 50

V

List of Tables

4.1 Preliminary features extracted with tshark 27
4.2 Input features for classification algorithms 28
4.3 AUC and ET of Decision Tree. 38
4.4 AUC and ET of Random Forest. 39
4.5 AUC and ET of Naive Bayes. 39
4.6 AUC and ET for MLP. 40
4.7 AUC and ET for SVM. 40
4.8 Detection performances of basic learners with top-PLCC feature se-

lection in terms of AUC. 43
4.9 Detection performances of basic learners with top-PLCC feature se-

lection in terms of relative execution time. 43
4.10 Detection performances of basic learners with CFS in terms of AUC. . 44
4.11 Detection performances of basic learners with CFS in terms of relative

execution time. 44
4.12 Top-10 correlated features per attack type. 46

VI

Chapter 1

Introduction and problem description

1.1 Overview

Network Traffic Monitoring and Analysis (NTMA) has taken a paramount role to un-
derstand the functioning of the Internet, especially to get a broader and clearer visi-
bility of unexpected events. One of the major challenges faced by large scale NTMA
applications is the processing and analysis of large amounts of heterogeneous and fast
network monitoring data. Network monitoring data usually comes in the form of high-
speed streams, which need to be rapidly and continuously processed and analyzed. A
variety of methodologies and tools have been devised to passively monitor network
traffic, extracting large amounts of data from live networks. What is needed is a flexi-
ble data processing system able to analyze and extract useful insights from such rich
and heterogeneous sources of data, offering the possibility to apply complex Machine
Learning (ML) and Data Mining (DM) techniques. The introduction of Big Data pro-
cessing led to a new era in the design and development of large-scale data processing
systems. This new breed of tools and platforms are mostly dissimilar, have different re-
quirements, and are conceived to be used in specific situations for specific needs. Each
Big Data practitioner is forced to muddle through the wide range of options available,
and NTMA is not an exception. A similar problem arises in the case of Big Data an-
alytics through ML and DM based techniques. Despite the existence of ML libraries
for Big Data Analysis Frameworks (BDAFs), there is a big gap to the application of
such techniques for NTMA when considering fast online streams and massive offline
datasets.

1

1.2. Goal of the thesis

1.2 Goal of the thesis

Objectives

In such context, the final objective of this work is to test the performance of several su-
pervised machine learning algorithms in terms of execution time and predictive capac-
ity, to detect five types of network anomalies (DDoS, MPTP, Ping flood, Netscan-ACK
and Netscan-UDP) on real network traffic. The tests are executed on an Hadoop-based
distributed ecosystem using the Spark framework, and in particular Spark ML as a ma-
chine learning library.
The exploited packet traces are collected everyday for 15 minutes from the WIDE
backbone. They are provided as an open repository by the MAWILab project, together
with a label for each flow that states whether it is anomalous, suspicious, notice or be-
nign, which is used to extract a reliable ground truth to train each model. The MAWI
traces are further processed to extract relevant features (i.e. packet volume, total num-
ber of packets, empirical distribution of time to live, window size, fraction of flagged
packets, fraction of IPv4 and IPv6 packets, etc.) to be given as an input to the tested
classification algorithms. The instantiated models are: Decision Tree, Random Forest,
Support Vector Machines, Naive Bayes and Neural Networks. To each of them 10-fold
cross-validation is applied to reduce overfitting. Together with the test of basic classi-
fiers with a full-feature setup, the case study involves the test of two feature selection
procedures as well as the presentation and basic development of a sample of ensamble
learning model.
Results are expressed in terms of relative execution time (computed with respect to the
model having shortest execution time), and area under the Receiver Operating Char-
acteristic curve. By this means we are allowed to draw conclusions on stregnths and
weaknesses of all the models and choose which ones fit best our case study.

2

1.3. Thesis organization

1.3 Thesis organization

These are the topics treated in each chapter.

Chapter 2: State of the art and contributions

This chapter discusses the most important studies from the literature that can be useful
for the thesis. It delas with some of the traditional approaches used for NTMA, it lists
some of the existing Big-Data frameworks for batch and stream analysis, focusing on
how they can be correctly benchmarked and how are they currently applied to network
security problems.

Chapter 3: The Big-DAMA project

In this section we discuss the project scientific challenges and aims, taking into account
the work organization, the system configuration and the applied frameworks specifi-
cations in the batch and in the stream case, heading towards the future use of a single
framework for handling the entire data stream warehouse system. The chapter also
includes a basic description of the cluster environment involved in the case study, and
its future improvements.

Chapter 4: The Machine Learning models

In this chapter the case study steps are illustrated. It presents the exploited dataset,
the ground truth model and implementation details, of the chosen algorithms and
metodologies.

Chapter 5: Conclusion and future work

The case study results are presented together with conclusions and considerations
based on them. Possible future works are mentioned.

3

Chapter 2

State of the art and contributions

Before proceeding with the state of the art analysis, we should remark that what we call
Big-Data cuts loose from the mere concept of very large amount of data; the following
definitions, three among the many we find in literature, tackle the problem from aspects
other than the data volume:

• The attributive definition characterizes big data through the ”4Vs”, i.e. volume,
variety, velocity and value, referring to such technologies as ”designed to eco-
nomically extract value from very large volumes of a wide variety of data, by
enabling high-velocity capture, discovery, and/or analysis” [85];

• The comparative definition refers to big data as those datasets ”whose size is
beyond the capability of typical database software tools to capture, store, manage
and analyze” [86], providing an intentionally subjective definition lacking of
precise metrics, since it supposes that the concept will adapt to the advancements
of technology.

• The architectural definition states that ”Big data is where the data volume, ac-
quisition velocity, or data representation limits the ability to perform effective
analysis using traditional relational approaches or requires the use of significant
horizontal scaling for efficient processing” [82].

In this chapter, we structure the state of the art analysis in three different sections:
(i) Machine Learning, Data Mining and Big Data Analytics, (ii) Network Anomaly
Detection and Security, and finally (iii) Benchmarks for Big Data Analysis Solutions.

4

2.1. Machine Learning, Data Mining and Big Data
Analytics

For the sake of brevity we do not reference all the systems, solutions and algorithms
we discuss next, but we mention them to give the reader an idea of the range of the
problem. The following chapter will go deeper in covering the application of big data
analytics for NTMA and will target the ones specifically used in the realized use case.

2.1 Machine Learning, Data Mining and Big Data
Analytics

The fields of Machine Learning (ML) and Data Mining (DM) have been studied for
more than 50 years, and today there is a comprehensive list of options [46]. Popular su-
pervised ML algorithms include Locally Weighted Linear Regression, Naive Bayes,
Gaussian Discriminative Analysis, Logistic Regression, Neural Networks, Principle
Components Analysis, Independent Component Analysis, Expectation Maximization,
Support Vector Machine, Decision Trees, and many more. Clustering algorithms
(unsupervised analysis) [58] include partition-based clustering (K-means), density-
based clustering (DBSCAN), hierarchical-clustering, spectral clustering [60], distribution-
based clustering, etc... Two particularly promising unsupervised and supervised algo-
rithms which exemplify the NTMA needs in terms of complex traffic analysis are Sub-
Space Clustering [59] and Adaptive Trees [61, 62] respectively. The former because of
its capabilities for exploring big dimensional data, even when working with Big Data,
by allowing a dimensionality reduction of the problem through feature transforma-
tion (i.e. reducing the dataset dimension by combining together more features) and
feature selection; the latter because of its direct applications in stream, supervised-
based analysis. In the same context, work such as [63] shows potential and yet unex-
plored directions to perform clustering with stream data, which is also highly appealing
for NTMA applications, such as those in our work on autonomous network security
[44]. We can find today an increasing number of MapReduce-based implementations
of the most important ML algorithms. Indeed, today there is a reasonably high number
of ML libraries available, including Spark ML [78], Apache Mahout [74] and MLlib
[75] (NoSQL), MADlib (SQL-based), as well as frameworks implementing machine
learning and data mining algorithms (e.g., Weka, MOA, SAMOA, etc.). To describe
some of them, Mahout is a scalable machine learning library with a relatively long
history, containing implementations of algorithms in the areas such as classification,

5

2.2. Network Anomaly Detection and Security

clustering, recommendation systems, etc., whereas MADlib provides machine learn-
ing in SQL, including classification, regression, clustering, association rule mining,
descriptive statistics, etc. Another field that is worth mentioning is the one of Ensem-
ble Learning, whose goal is to combine the predictions of several base estimators to
improve robustness over a single estimator [79]. We recognize three main Ensemble
Learning techniques: Bagging (Bootstrap Aggregating), Boosting and Stacking; the
first one, by averaging several first level models, aims at reducing the variance of the
final model while keeping the bias fixed, the second one, on the other hand, targets
bias reduction, while the third one seeks for reaching a higher predictive capability of
the final model originated by a given combination the basic ones.

2.2 Network Anomaly Detection and Security

The usual approach applied to network monitoring and anomaly detection is the so-
called knowledge-based one, addressing all the techniques that require to be tuned by
an external agent, usually a human expert, to detect attacks. Among such techniques
we identify the signature-based detection and the novelty detection: the former is
highly effective in the detection of attacks having a known set of characteristics, re-
ferred to as signature, while the latter is able to identify traffic events deviating from
a baseline profile defined for normal traffic [44]. Anomaly detection provides the ba-
sis to detect novel incidents such as network failures, misconfigurations or network
attacks that cannot be discovered by knowledge-based approaches. While many ap-
proaches exist today for applying a wide variety of different machine learning tech-
niques to network intrusion detection [49, 50, 51, 52, 53, 44], we are still not able to
cope with todays attack techniques. There are many reasons for this. While machine
learning performs extremely well in other fields (such as SPAM detection), network
traffic introduces much larger challenges to the detection task [54]. Reasons are the
high dynamics of network traffic, the high costs of misclassifications and active attack-
ers that adapt to detection techniques. The specific nature of network traffic confines
the applicability of machine learning techniques. It requires very well focused problem
statements and carefully tuned learning approaches. Also, while existing approaches
make use of the whole range of available machine learning techniques, the extremely
important steps of feature generation and feature selection is underrepresented in cur-

6

2.3. Benchmarks for Big Data Analysis Solutions

rent literature [55]. Feature generation and feature selection are essential to provide
the input and significantly determine the detection performance [56]. Classical ma-
chine learning approaches are often computationally expensive. Data rates and the
overall amount of network traffic is permanently increasing. In addition, network traf-
fic analysis demands more and more detailed analysis results and online detection of
anomalies requires high response times, i.e. fast processing and analysis, in order to
react to severe situations and reduce the damage during critical incidents. With these
characteristics, network traffic data analysis is a perfect candidate to profit from the
benefits of big data analysis techniques [57, 64].

2.3 Benchmarks for Big Data Analysis Solutions

In order to facilitate the comparison of performances between existing solutions, test-
ing benchmarks must be defined. The rise of new Big Data platforms and tech-
nologies calls for the definition of a standardized set of benchmarks, similar to the
ones defined in the traditional relational databases field by TPC (Transaction Pro-
cessing Performance Council), whose mission is to ”define transaction processing and
database benchmarks and to disseminate objective, verifiable TPC performance data to
the industry”[83]. According to [84], Benchmarking Big Data Analysis Frameworks
(BDAFs) is not a trivial task, and it comes to be uniquely challenging for four main
reasons: system complexity, use case diversity, data scale and rapid system evolution.
The current research on big data benchmarks divides the field into two categories:
component level benchmarks and system level benchmarks, the former targeting per-
formance comparisons for stand-alone components, the latter addressing end-to-end
testing. How to know if a certain BDAF is fast and accurate enough to tackle the
specific needs of NTMA applications, and how to select the best BDAFs to perform
complex analytics on the monitoring traffic? The literature offers many specifically
tailored solutions: Gridmix [72], the Hive Benchmark [71], HiBench [69] and the
Berkeley Big Data Benchmark [45], to name a few of them. The latter is based on a
comparative study between MapReduce and parallel DBMSs frameworks conducted
in [68], and consists of a carefully designed query workload, aiming to test the ca-
pability of data processing systems for online analytical processing queries. Other
BDAFs (Spark, SimSQL, GraphLab and Giraph) have been benchmarked in terms of

7

2.3. Benchmarks for Big Data Analysis Solutions

completion-time when running complex, hierarchical Machine Learning models on
very large datasets [47]. To the best of our knowledge, none of the available bench-
marks addresses specifically NTMA applications. Another important aspect when
working with Internet measurements is the need to integrate raw data with other data
sources (e.g., for geo-location, routing and topology, classification, etc.), which is not
addressed by those benchmarks.

8

Chapter 3

The Big-DAMA project

3.1 Big Data Analysis Frameworks

The introduction of Big Data processing led to a new era in the design and development
of large-scale data processing systems [33]. This new breed of tools and platforms are
mostly dissimilar, have different requirements, and are conceived to be used in specific
situations for specific needs. Each Big Data practitioner is forced to muddle through
the wide range of options available, and NTMA is not an exception. A basic yet
complete taxonomy of Big Data Analysis Frameworks includes traditional Database
Management Systems (DBMS) and extended Data Stream Management Systems
(DSMSs), noSQL systems (e.g., all the MapReduce-based systems), and Graph-
oriented systems. Generally speaking, the distinguishing characteristics whom one
should refer to for choosing the most suitable framework for his needs are: data vol-
ume, structure, speed, continuity, number of data sources, scalability require-
ments and application distribution. Figure 3.1 below offers a first insight of time
requirements according to the nature, structure and field of application of the analyzed
data.
While the majority of the systems target the offline analysis of static data, some pro-

posal consider the problem of analyzing data coming in the form of online streams,
characterized by being continuous, rapid, time-varying and less predictable, and hence
not compliant with a traditional DBMS framework not supporting continuous queries
[76]. Data Stream Management Systems (DSMS) such as Gigascope, supporting an
SQL-like language [34], and Borealis, exploiting Stream Query Algebra [35], are

9

3.1. Big Data Analysis Frameworks

Figure 3.1: Time requirements and data structure for most common fields. From [87]

specifically designed for monitoring applications, they support continuous online pro-
cessing of data coming from heterogeneous sources also containing incomplete, stale
or intentionally omitted information, but they cannot run offline analytics over static
data. The Data Stream Warehousing (DSW) paradigm provides the means to han-
dle both types of online and offline processing requirements within a single system,
loading continuous data in a streaming fashion, and warehousing them for a long
time period (i.e. years or decades) [77]. DataCell and DataDepot are examples of
this paradigm [36]. NoSQL systems such as e.g. MapReduce [40] have also rapidly
evolved, supporting the analysis of unstructured data over distributed cluster archi-
tectures. Apache Hadoop [41] and Spark [42] are very popular implementations of
MapReduce systems. These are based on offline processing rather than stream pro-
cessing. There has been some promising recent work on enabling real-time and incre-

10

3.2. Scientific Challenge

mental analytics in MapReduce-based systems, such as Spark Streaming [43], Incoop
[37], Muppet [38] and SCALLA [39], but these remains unexploited in the NTMA do-
main. The offer of solutions available is overwhelming; more examples include Storm,
Samza, Flink (NoSQL); Hawq, Hive, Greenplum (SQL-oriented); Giraph, GraphLab,
Pregel (graph-oriented), as well as well known DBMSs commercial solutions such as
Teradata, Dataupia, Vertica and Oracle Exadata (just to name a few of them).

3.2 Scientific Challenge

As highlighted in the above section, the application of Big Data Analysis Frameworks
for NTMA tasks requires certain system capabilities:

• scalability: the framework must offer, possibly inexpensively, storage and pro-
cessing capabilities to scale with huge amounts of data generated by in-network
traffic monitors and collectors;

• real-time processing: the system must be able to ingest and process data in
real-time fashion;

• historical data processing: the system must enable the analysis of historical
data;

• traffic data analysis tools: embedding libraries or plugins specifically tailored
to analyze traffic data.

The currently exploited systems are not able to cope with these requirements and
present severe limitations when it comes to the application of Big Data Analytics to
NTMA applications. Traditional SQL-like databases, for instance, are inadequate for
the continuous real-time analysis of data. As we mentioned before, Data Stream Ware-
houses have been introduced to extend traditional database systems with continuous
data ingest and processing, and they have been in some cases proven to be able to out-
perform in terms of processing speed Big Data technologies [32]. However, differently
from Big Data technologies, they can not scale with the huge amounts of traffic data
generated by nowadays networks. This represents a huge limitation to their applica-
bility to NTMA purposes. Big Data Analysis Frameworks based on the MapReduce

11

3.2. Scientific Challenge

paradigm have been recently started to be adopted for NTMA applications [65]. Con-
sidering the specific context of network monitoring, some solutions to adapt Hadoop
to process traffic data have been proposed [66]. However, the main drawback of Big
Data technologies in general is their inherent offline processing, which is not suitable
for real-time traffic analysis, highly relevant in NTMA tasks. The only approach that
leverages Hadoop for rolling traffic analysis is described in [67]. As we mentioned
before, there have also been some Big Data Analysis Frameworks for online data pro-
cessing, but none of these has been applied to the NTMA domain.
Moreover, Big Data Analytics results on NTMA applications are seldom available, es-
pecially when considering online, stream based traffic analysis. This creates a major
gap between the developments of Big Data Analytics and Analysis Frameworks and the
development of NTMA systems capable of analyzing huge amounts of network traffic.
In addition, while there is a vast number of Big Data Frameworks, the offer is so big
and difficult to track that makes it very challenging to determine which one to choose
for the purpose of NTMA. Secondly, considering the theory of Big Data Analytics ap-
plied to the NTMA domain, most of the proposed Machine Learning frameworks and
libraries do not scale well in fast big data scenarios, as their main target is offline data
analytics.
It should also be noticed that, while some supervised and unsupervised learning al-
gorithms are already available for Big Data Analytics, we are at a very early stage
development and there is big room for improvement. The most notable example is
explorative data analysis through clustering. Available algorithms are either too sim-
ple (e.g., no techniques such as Sub-Space clustering are available, most of the work
done on traditional k-means), or too tailored to specific domains not related to traffic
analysis. Clustering data streams is still an open problem, and a very useful one for un-
supervised Anomaly Detection and Network Security. Similar unsolved problems such
as unsupervised feature selection become more challenging as well, due to scalability
issues in the Big Data scenario. Also when considering supervised approaches, we do
not have today much evidence on how supervised online learning approaches perform
with big stream-based traffic. There are also limitations in the analysis and comparison
of different machine learning and data mining techniques running in Big Data Frame-
works, because available benchmarks are very ad-hoc and tailored to specific types of
systems (e.g., tailored for MapReduce-like frameworks). The Big-DAMA project will

12

3.3. Project objectives

advance many of this open issues, as we will futher discuss in the next Section.

3.3 Project objectives

Big-DAMA is a research project founded by Vienna Science and Technology Fund
(WWTF), having as core partners AIT, Politecnico di Torino and TU Wien. One of
the main questions it poses itself as research in the NTMA domain is straightforward:
if one wants to tackle NTMA applications with (near) real-time requirements in cur-
rent massive traffic scenario, which would be the best system one should use to the
task? In addition, if the main target is to perform complex data analytics on top of this
massive traffic, considering both supervised and unsupervised ML approaches, how
should it be done? Which are the best ML algorithms for doing so? The Big-DAMA
project will accelerate NTMA practitioners and researchers understanding of the many
new tools and techniques that have emerged for Big Data Analytics in recent years.
Big-DAMA will particularly identify and test the most suitable BDAFs and available
Big Data Analytics implementations of ML and DM algorithms for tackling the prob-
lems of Anomaly Detection and Network Security in an increasingly complex network
scenario. The Big-DAMA project proposes three main objectives:

• Explore, conceive and test scalable online and offline Machine Learning and
Data Mining-based techniques to monitor and characterize extremely fast and/or
extremely large network traffic datasets;

• Conceive novel frameworks for Big Data Analytics tailored to Anomaly Detec-
tion and Network Security, evaluating and selecting the best BDAFs matching
NTMA needs. Such frameworks would target traffic stream data processing (on-
line processing) and massive offline data processing (offline processing);

• Conceive a novel benchmark for BDAFs and Big Data Analytics tailored for
NTMA applications, particularly focusing on stream analysis algorithms and on-
line processing tasks.

The starting point of Big-DAMA is DBStream [32], a Data Stream Warehouse de-
veloped between FTW and the University of Waterloo, and benchmarked against new
big data analysis platforms such as Spark, in collaboration with Politecnico di Torino,
showing very promising results in the field of NTMA [32].

13

3.3. Project objectives

Specific research questions

While the proposed objectives of the Big-DAMA project might look a-priori more
practical than theoretical, we will address several fascinating topics related to the ap-
plication of ML and DM techniques in the Big Data domain, for the specific purposes
of network traffic exploration and extraction of information. So besides the afore-
mentioned objectives, the Big-DAMA project will provide answers to the following
research questions:

• How to automatically construct proper data representations (i.e., computing good
features or descriptors) given a certain ML algorithm and a huge dataset of un-
labeled data?

• How to perform unsupervised feature selection?

• How to cluster big and fast evolving data streams? This is still an open problem,
and result would be highly useful when thinking on unsupervised NTMA;

• Which supervised learning approaches can be applied in an online manner with
big amounts of streaming data?

• Which are the statistical implications of divide and conquer algorithms when
dealing with Big Data?

• Which are the impacts of traffic sampling and aggregation in the results of Big
Data Analytics for NTMA?

• Is Big Data a curse when dealing with Anomaly Detection and Network Secu-
rity, or it can be useful to improve traditional approaches?

We expect the outcomes of the project to have a direct impact on NTMA domain, being
particularly beneficial for large network operators and network monitoring technology
vendors, but also to be applicable with few adaptations to domains facing the same kind
of challenges, such as online monitoring of M2M or IoT devices, and various smart
cities scenarios (i.e. smart transport, smart grids or home automation applications).
The final platform is depicted in figure 3.2: the system is a lambda architecture
recalling, as we said, the data stream warehouse paradigm. From the analytical point of

14

3.4. Big-DAMA cluster

view what is developed is an Automatic Network Anomaly Detection and Diagnosis
system to characterize symptomatic and diagnostic features in network traffic.

Figure 3.2: Big-DAMA system overview.

3.4 Big-DAMA cluster

The Big-DAMA cluster is Hadoop based, and managed through the Cloudera Man-
ager interface [88]. The Hadoop framework is designed to work with very large
datasets, distributed across a set of machines. In our specific case, the ecosystem in-
cludes the Hadoop Distributed File System (HDFS), the YARN resource manager,
Spark 2 as a computing system, on top of which we run Hive, Oozie and Zookeeper
services (see figure 3.3). To better characterize the case study, we will proceed with a
more detailed description of each service.

15

3.4. Big-DAMA cluster

Figure 3.3: Service layers on the cluster.

3.4.1 HDFS

HDFS has been specifically designed to manage large files (in the order of gigabytes
to terabytes) that cannot be handled through a traditional file system [89]; each file
is splitted and scattered all over several machines, guaranteeing a certain amount of
replicated copies all over the cluster, so that if a single copy gets corrupted, it will not
affect the overall workflow. This file system has a master-slave architecture including
a NameNode (master) and several DataNodes (slave, one per node in the cluster);
the former manages the namespaces and regulates the access to the clients handling
operations such opening, closing, renaming files and directories, and determining the
mapping of blocks to DataNodes, while the latter perform block creation, deletion and
replication when instructed by the NameNode. Given the large amount of operations
which the NameNode should provide, it may act as a single point of failure; that is
the reason why also a SecondaryNameNode is deployed, to act as a backup and store
periodic checkpoints for the main one. Figure 3.4 below shows the overall architecture
structure.

3.4.2 YARN

YARN stands for Yet Another Resource Negotiator. As described in [90], its funda-
mental idea is to split up the functionalities of resource management and job schedul-
ing and monitoring. Also in this case, the service is deployed as a master-slave archi-

16

3.4. Big-DAMA cluster

Figure 3.4: HDFS architecture. From [89]

tecture (as in figure 3.5), including a single ResourceManager which is aware of all
the resources on the cluster, and one NodeManager per worker machine, responsible
for Container handling and reporting usage data to the ResourceManager.

Figure 3.5: YARN architecture. From [90]

The concept of Container is really important to correctly configure the resources

17

3.4. Big-DAMA cluster

Figure 3.6: Example of YARN Container allocation. From [91]

allocation on YARN DataNodes. Given the available physical memory and vcores on
a DataNode, we may build a container by allocating a subset of these two resources;
according to the amount of memory and vcores allocated to each container, we will be
able either to guarantee more resources to fewer job, allowing less parallelization of the
existing tasks, or to define smaller containers on which more parallel jobs may run at
the same time. YARN provides a spreadsheet to allow an optimal resource allocation,
depending on the nature of the jobs that will run on the cluster. As shown in figure 3.6,
the final aim of YARN is to allocate as much as possible of the available resources to
running jobs.

3.4.3 Spark 2.0

Spark is defined as a general-purpose cluster computing system [42]. It was devel-
oped to overcome Hadoop MapReduce limitations when dealing with several kinds of
applications, mostly iterative, such as many machine learning algorithms. To speed
up the computational process Spark loads job data into memory, allowing them to be
queried iteratively in a fast way; this same process, on the other hand, experienced a
significant latency (tens of seconds according to [42]) with MapReduce, because data

18

3.4. Big-DAMA cluster

were read from disk. The first version of Spark was mostly based on the definition of
RDD (Resilient Distributed Dataset), which is defined by its creators as a read-only
collection of objects partitioned across a set of machines and that can be rebuilt if the
partition is lost, meaning that the content of an RDD can be reconstructed in case of
node failures or data losses starting from a given set of input data. The construction of
an RDD may happen in several ways:

• by parallelizing existing collections of the hosting programming language (i.e.
arrays, lists, etc.);

• by acquiring a file from a shared file system, like the above mentioned HDFS;

• by transforming an existing RDD into another one, through methods such as
flatMap, filter, join, map, etc.

Each RDD can undergo two types of operations: transformations and actions. As we
stated above, transformations are applied to an RDD to get another RDD, while actions
(count, save, collect, etc.) aim at storing the content of an RDD into a local variable or
in an output file.
Spark 2 is still based on the concept of RDD, but it allows the user to work at an higher
level of abstraction by defining an environment based on the concepts of DataFrame
and Pipeline. A DataFrame is defined as an immutable and distributed collection of
data, organized into columns, similar to a table in a relational database [92]. The
data types included in a DataFrame range from vectors to text, to a wide variety of
structured data. Since, as we said before, the DataFrame object is immutable, it can
only serve as an input to a Pipeline to generate another DataFrame; the Pipeline is
organized in a sequence of stages, which are either Transformers or Estimators in a
given order. Each Estimator is an object characterized by a .fit() method, that originates
a Model, which is a Transformer, an object that calls a .transform() method on the input
DataFrame, yielding the requested output DataFrame. To better distinguish among the
two, the Spark 2.2.0 API documentation [93] provides a simple example of Logistic
Regression applied to a given text. The Pipeline involves several stages:

1. splitting the text into single words;

2. converting the words into unambiguous numerical feature vector;

19

3.4. Big-DAMA cluster

3. obtaining and applying a prediction model.

Figure 3.7: Pipeline model extraction. From [93]

Figure 3.8: Pipeline model application. From [93]

Figures 3.7 and 3.8 illustrate respectively the training and testing phase of the model.
Step 1 and 2 are in both cases performed by transformers (Tokenizer and HashingTF),
but the two figures differentiate themselves in the last phase: in image 3.7, the .fit()
method is called on the Pipeline, extracting the Model we would later need for making
predictions on a new dataset. In image 3.8, the same model is then applied to the new
raw data, finally yielding the required prediction result. This kind of operations is par-
ticularly important when it comes to data analytics applications, since often raw data
are not properly structured or typed to be used as direct inputs for such problems and
they need to undergo similar steps to be correctly processed.
Moreover, being Spark a general-purpose system, it is able to transparently give sup-
port to different libraries and frameworks that run on top of it, as shown in figure 3.9;
some of these frameworks will be illustrated in detail in the next section.

3.4.4 Hive, Zookeeper and Oozie

Apache Hive provides a data warehouse system which facilitates reading, writing, and
managing large datasets in distributed storage systems as HDFS [94]. It uses an SQL-

20

3.4. Big-DAMA cluster

Figure 3.9: Set of frameworks running on top of Spark. From [93]

based language called HiveQL. Although being SQL inspired, the HiveQL dialect
experiences some limitations with respect to the former one, as some standard SQL
operations are still not possible or more difficult to execute (the INSERT INTO com-
mand, for instance, only accepts the insertion of ordered values, without allowing the
user to specify the columns of interest); on the other hand, running on a distributed
environment, it is more suited to handle big-data problems compared to a standard re-
lational database system. On the Big-DAMA cluster, the Hive metastore is accessed
through the HUE interface, that makes it possible to run queries interactively.
ZooKeeper is defined in [95] as a centralized service for maintaining configuration
information, naming, providing distributed synchronization, and providing group ser-
vices. It aims at collecting and coordinating all distributed services on a centralized
interface. Oozie is a workflow scheduler system to manage Apache Hadoop jobs. Its
workflow jobs are Directed Acyclical Graphs (DAGs) of actions [96].

3.4.5 Spark MLlib

As mentioned before, we are able to run on top of Spark several modules providing
more specific capabilities to the general system. Spark MLlib aims at solving machine
learning problems on large datasets by efficiently exploiting Spark distributed environ-
ment. Also in this case, the first version of the API was RDD-based, but it switched to
a DataFrame (and DataSet, when dealing with Java and Scala langauges) based API to
allow an easier integration with an SQL-like environment such as the Hive one. This
latter version was unofficially named ”Spark ML” to be distinguished from the former
one, but it is still part of the same package. Among the tools the library provides we
recognize not only common ML algorithms, but also tools for featurization (feature ex-

21

3.4. Big-DAMA cluster

traction, selection, trasformation, etc.), evaluation and useful statistics extraction; the
concepts taken into account when dealing with Pipelines in the above section are also
strongly exploited also when dealing with the provided methods. Figure 3.10 below
highlights, among the various modules, the methods used to implement the case study
in chapter 4. The Feature module has mostly been used to transform and scale the
existing features and prepare them to be correctly used as input for the classifiers, the
Classification module provided the basic algorithms to be applied, the Tuning mod-
ule allowed the construction of a parameter grid to be used for Cross Validation, while
the Evaluation module was used to compute the Area Under Curve and other perfor-
mances for each of the implemented models. The practical implementative details and
results will be further discussed in the following chapters.

Figure 3.10: Modules of the Spark ML framework.

22

3.4. Big-DAMA cluster

3.4.6 Future improvements

To provide our platform with online data processing capabilities, it must be equipped
with services and frameworks supporting the streaming of data. For this purpose,
Kafka service [100] in cooperation with the Spark Streaming framework [101] have
been chosen.

Kafka

Kafka is defined as a distributed messaging system based on the publish-subscribe
paradigm. Such paradigm identifies three main entities: the producers, that generate
data associating them to specific categories, called topics (represented by the message
icons in different colours in figure 3.11), the consumers that subscribe for a specific
topic and wait for data to be forwarded to them, and the broker, the entity that handles
the message forwarding.
Up to now, the structure may seem very similar to a centralized pub-sub system, but
with the main difference that Kafka supports more than a single broker, allowing to
build an entire cluster of brokers, and it is particularly resilient when it comes to mes-
sages handling. Kafka topics are in fact splitted into partitions, that allow their paral-
lelization among different brokers, that may serve more consumers all at once. Each
message within a partition has a unique identifier called offset, from which the con-
sumer can start to read. Such partitions are then replicated over the different brokers,
reducing the possibility for the message to be lost.

Figure 3.11: Kafka basic schema.

23

3.4. Big-DAMA cluster

Spark Streaming

As reported in [101] Spark Streaming is an extension of the Spark API that enables
scalable, high-throughput, fault-tolerant stream processing of live data streams. Data
can be ingested from many sources, Kafka among the others, and can be processed
using complex algorithms expressed with high-level functions (e.g. map, reduce or
join) and machine learning algorithms provided by Spark ML. Finally, processed data
can be pushed out to filesystems, databases, and live dashboards.
Spark Streaming work is internally based on the concept of discretized streams or
DStreams, meaning that the arriving live streams are splitted into mini-batches, to be
given as input to the standard Spark engine.

24

Chapter 4

Case study

This chapter will describe in detail the implemented use case targeting the application
of different supervised machine learning techniques for anomaly detection to several
months of network traffic. Each of the following sections will describe one of the steps
involved in the process of knowledge discovery from data, as illustrated by figure 4.1

Figure 4.1: Process of knowledge discovery form data.

25

4.1. WIDE/MAWI Input data traces

4.1 WIDE/MAWI Input data traces

This case study uses as input the traffic traces provided by the MAWI data repository
provided by the WIDE project [97], collecting traffic flowing on a trans-pacific link
since 2001. Traffic traces are collected on a daily base for 15 minutes using tcpdump,
and then anonymized making them usable for research purposes. All the flows in the
dataset have been classified through a graph-based methodology by the MAWILab
project [9] to be distinguished in four macro-categories: anomalous, suspicious, no-
tice and benign. The case study exploits this classification as a ground truth to train
the machine learning algorithms and test their performances.

4.1.1 Data preprocessing

The daily traffic traces are fully available to be downloaded from the MAWILab web-
site and come in .pcap format.The preprocessing phase is performed locally on a sin-
gle node of the cluster, due to some problems in interfacing HDFS and the Wireshark
Network Analyzer tools used to extract the preliminary features.
Each 15 minutes file is first splitted into 1 seconds chunks with the command:

editcap -i 1 <filename > <output folder>

for a total of 900 splits per day. Each file is autonomously named by editcap in the
format: YYYYMMDDHHmmss.
The splits are then decoded in human readable format with tshark, to extract the basic
features that will be used as input for the following steps, with:

tshark -T fields -n -r <filename> -E aggregator=,

-e <field> > <output folder>

Tshark yields as a result a file containing for each row the fields specified with the -e
option: as we can see in more detail in table 4.1 the network analyzer was asked to ex-
tract the time at which the frame was captured in ISO format, the frame volume, some
fields from the IP header (upper layer protocol, time to live, protocol version, packet
length, source and destination addresses anonymized), either TCP or UDP source and
destination ports, and, if the transport layer protocol is TCP, the flag values, the seg-
ment length and the window size. Each of those files is then uploaded to the distributed

26

4.1. WIDE/MAWI Input data traces

filesystem and finally imported in the Hive database mawi traces as a single table.
Each table is named in the format ”a+splitNumber+a”.

Layer Feature Description

Data Link
frame.time Time of packet capture
frame.len Total length of the frame

IP

ip.proto Upper layer protocol
ip.len Length of IP packet
ip.ttl Packet Time To Live
ip.version IPv4 or IPv6
ip.src Source IP address
ip.dst Destination IP address

UDP
udp.srcport UDP source port
udp.dstport UDP destination port

TCP

tcp.flags Number of flags in packet
tcp.flags ack Presence of ACK flag
tcp.flags cwr Presence of CWR flag
tcp.flags fin Presence of FIN flag
tcp.flags ecn Presence of ECN flag
tcp.flags ns Presence of NS flag
tcp.flags push Presence of PUSH flag
tcp.flags syn Presence of SYN flag
tcp.flags urg Presence of URG flag
tcp.len Length of TCP packet
tcp.window size Size of receiver window
tcp.srcport TCP source port
tcp.dstport TCP destination port

Table 4.1: Preliminary features extracted with tshark

4.1.2 Feature extraction

Each table belonging to the above mentioned database is then further processed to ex-
tract the final set of features employed to feed the machine learning algorithm; the
content of each mawi traces table, corresponding, as we said, to one second of cap-
ture, will result in one row of the final input table: each table will represent one day
of data with a total of 900 rows. Before proceeding with the feature extraction, the
mawi features database schema is defined and initialized to contain the final features

27

4.1. WIDE/MAWI Input data traces

that we summarize in table 4.2. It should be noted that besides using traditional fea-
tures such as min/avg/max values of some of the input measurements, we also consider
the empirical distribution of some of them, sampling it at many different percentiles.
This provides as input much richer information, as the complete distribution is taken
into account. We also compute the empirical entropy of these distributions, reflect-
ing the dispersion of the samples in the corresponding time slot. Each table in the

Field Feature Description

Tot. volume
pkts Number of packets
bytes Number of bytes

PKT size
pkt h Packet size entropy
pkt {min,avg,max,std} min, max, average, standard deviation on pkt size
pkt p{1, 2, 5, ..., 95, 97, 99} Percentiles

IP proto

ip proto Number of different upper layer protocols
ip proto h Protocols entropy
ip proto {min,avg,max,std} min, max, average, standard deviation on protocols
ip proto p{1, 2, 5, ..., 95, 97, 99} Percentiles
%ICMP/TCP/UDP Share of upper layer protocols

IP TTL
ttl h Time To Live entropy
ttl {min,avg,max,std} min, max, average, standard deviation on TTL
ttl p{1, 2, 5, ..., 95, 97, 99} Percentiles

IPv4 - IPv6
% IP v4/v6 Share of IPv4/v6 packets
ip src/dst Number of unique IPs
top ip src/dst Most used IPs

TCP/UDP port

port src/dst Number of unique ports
top port src/dst Most used ports
port h Port entropy
port {min,avg,max,std} min, max, average, standard deviation on ports
port p{1, 2, 5, ..., 95, 97, 99} Percentiles

TCP flags

flags h Flags entropy
flags {min,avg,max,std} min, max, average, standard deviation on TCP flags
flags p{1, 2, 5, ..., 95, 97, 99} Percentiles
% SYN/ACK/FIN... Share of TCP flags

TCP WND
wnd h TCP window entropy
wnd {min,avg,max,std} min, max, average, standard deviation on TCP WND
wnd p{1, 2, 5, ..., 95, 97, 99} Percentiles

Table 4.2: Input features for classification algorithms

28

4.1. WIDE/MAWI Input data traces

mawi features database was named in the format a+YYYYMMDD+a, it consists of
900 rows, one per split of the original daily traffic file, and 117 columns (the percentiles
data are stored in vectorial form as a single entry, when considering each percentile
separately we get a total of 249 columns). The header schema was previously defined
in an empty table called schema ex, to ease the initialization process. Due to the mas-
sive amount of data exploited and to the large number of features to be extracted and
written in the final database, several alternatives were tested to speed up the traces pro-
cessing. A first version of the feature extraction procedure, implemented in numpy on
a single machine of the cluster, took in average 2’ 30” to process a single table; with
a second implementation of the process, that exploited the distributed computing ca-
pabilities of the cluster by using RDD-related methods, almost 1’ minute per table was
gained. For the final implementation of the code, threading was used together with
Spark SQL. To implement threading on the cluster, the first operation to be done is to
set the scheduler mode to FAIR by inserting the following line in the code:

conf.set(’spark.scheduler.mode’, ’FAIR’)

by default, the Spark job scheduler runs in FIFO fashion, hence the first job gets
priority on all available resources. By changing this setting, the scheduler assigns
tasks in a Round Robin fashion, so all jobs get a roughly even share of resources
on the cluster during the execution. This operation allows the preprocessing to last
in average about 1’ per table. It should not be excluded that an enahncement in the
cluster hardware may lead to a further improvement of the performances of the code in
terms of time gain. The IDs of all the already processed traces tables are stored in the
copied tables database in the keep track table. When launching the feature extraction
script, we filter the IDs of the already processed tables from complete list of table IDs
(in the mawi traces database), so that, even if the process gets stopped, the extraction
will be resumed from the last table processed. This operation generates an overhead
of about 20 minutes before the actual start of the computation, overhead which will
potentially increase in proportion to the further extension of the keep track table. The
result of each threading task is appended to a globally defined Python dictionary whose
keys are named after the columns in the mawi features tables. This detail will ease
the construction the final INSERT query by iterating on the dictionary itself, because,
as we stated when dealing with the Hive service in chapter 2, HiveQL requires the
INSERT query to provide all fields in the correct order.

29

4.1. WIDE/MAWI Input data traces

4.1.3 Labels extraction

As mentioned at the beginning of this section, MAWILab provides, together with the
traffic traces, a database of labels locating traffic anomalies [9]. The project associates
to each day of traffic an .xml file named YYYYMMDD anomalous suspicious.xml, in
which every anomaly is represented in the following structure:

<anomaly type="T" value="Dn,Da,C0,V,C1">

<description >

"Structure of the community reporting

the anomaly (in dot language)"

</description >

<slice>

<filter "Traffic features describing the anomaly:

destination IP

and/or source IP

and/or destination port

and/or source port">

</slice>

<from "timestamp of the start of the anomaly">

<to "timestamp of the end of the anomaly">

</anomaly>

The anomaly tag includes a type ”T”, expressed either as anomalous, suspicious or
notice, and several pieces of information for the field value, among which we consider
in particular ”V”, the parameter showing which detector with which parameters
found the anomaly. It is a vector of binary values, 0 means the detector did not report
the traffic whereas 1 means that the detector reported an alarm for the anomaly. There
is four detectors (Hough, Gamma, KL, PCA) each using 3 different parameter tuning
(sensitive, optimal, conservative), for a total of 12 cells in the resulting vector. For
our label extraction also the fields ”from” and ”to” indicating the anomaly timestamp
are crucial to associate each anomaly to the correct time bin. The anomaly taxonomy
provided by MAWILab is really wide and diverse, but for our use case we focused only
on 5 types of anomalies:

30

4.1. WIDE/MAWI Input data traces

• Netscan-TCP-ACK;

• Netscan-UDP ;

• Distributed Denial of Service (DDoS);

• MultiPoint To Point (mptp or HTTP flashcrowds);

• Ping-flood.

The processing of each .xml file lead to the creation of a new table named with the for-
mat a+YYYYMMDD+a in the mawi anomalies database. Each table has 900 rows,
each one coinciding with a row in the feature table, and 5 columns, one per anomaly;
the input values are binary: 1 if the split is affected by the specific anomaly, 0 viceversa.
The label extraction script (see A.1.3 and A.1.4) is strongly based on the correct defini-
tion of time indexes; that is the reason why, before starting the proper file processing,
the timestamp of the very first daily capture is extracted and stored to be used as a
reference index. After filtering the anomalies according to the timestamp (all anoma-
lies having length 0, starting at timestamp 0 and/or ending at timestamp 2147483645
are rejected), the script extracts the binary vector V, showing which detector found the
anomaly. As we said before, V has 12 entries, corresponding to 4 detectors tuned with
3 different parameters. The final binary label is assigned through a majority voting
technique: we exploit an auxiliary array having 900 entries, each of them storing the
corresponding sum of V; the anomaly is marked as present (value 1) for all entries in
the list being detected by the maximum number of detectors (i.e. by the highest value
of sum of V in the currently examined array). The same operation is performed for all
the anomaly types, which are then filtered to keep only the ones specified above. A
query is then built to insert the final output in the correct table together with a numer-
ical ID identifying each row, useful to join the labels to the correct feature row in the
following steps.
Such process marked as anomalous, over a total of 37800 samples (42 days), a per-
centage of entries which is: 7.473% for the DDoS attack, 3.669% for ping flooding,
26.746% for netscan-ACK, 25.373% for netscan-UDP, and 35.986% for MPTP.

31

4.2. Modelling and analysis

4.2 Modelling and analysis

4.2.1 Basic classifiers

The first phase of the case study involves the use of five different fully supervised ML
models: Decision Tree, Random Forest, Naive Bayes and Neural Networks, Sup-
port Vector Machine, implemented by using the spark.ml package. Each classifier
receives as input two columns, one containing the labels, and one containings the fea-
tures to be used for training and testing. For this reason, the traffic features inserted
in the database in separated cells need to be gathered together, each row in a single
vector. A VectorAssembler object is used for this purpose. Such object is defined in
the pyspark ML documentation as a feature transformer that merges multiple columns
into a vector column; it receives as input parameters the list of columns to merge and
the name of the output column, and yields as a result a single vector containing the
whole set of features in each row. After this step, the transformed dataset is joined to
the corresponding label table, and the final dataset is eventually split into two random
non-overlapping training and testing sets with a ratio 80%-20%. In order to reduce
overfitting, 10-fold Cross-Validation was applied to all models. The CrossValidator
object provided by the pyspark.ml.tuning package depends on the paramGridBuilder,
an entity which takes as input a set of different configurations to test on the basic clas-
sifier object. The grid builder is provided as input to the cross validator together with
an evaluator for the current model, the model itself and the number of folds to be per-
formed. The output of the fitting phase is the best model among the ones obtained by
the various settings, and is then applied to the testing dataset for the final classification.
All problems are threated separately as binary classification problems.
The following paragraphs will proceed with a description of the underlying idea of the
implemented models, as reported in [78].

Decision Tree

Decision trees are widely used since they are easy to interpret, handle both categor-
ical and continuous features, do not require feature scaling, and are able to capture
non-linearities and feature interactions. The decision tree is a greedy algorithm that
performs a recursive binary partitioning of the feature space. The tree predicts the
same label for each leaf partition. Each partition is chosen greedily by selecting the

32

4.2. Modelling and analysis

best split from a set of possible splits, in order to maximize the information gain at
a tree node. The information gain is the difference between the parent node impurity
and the weighted sum of the two child node impurities, where the node impurity can
be calculated as:

Gini =

CX
i=1

fi(1 − fi)

or as:

Entropy =

CX
i=1

− filog(fi)

Where C is the total number of labels, and fi is the frequency of label i at the node.
And the information gain is calculated as:

IG(D) = Impurity(D) −
Nle f t

N
Impurity(Dle f t) −

Nright

N
Impurity(Dright)

Where D is the parent dataset, and N its size, while Dle f t and Dright are the child
datasets, with Nle f t and Nright their respective sizes.
While instantiating the classifier, together with the above mentioned input columns,
the parameter maxDepth is required; such specification is used as stopping condition
for the algorithm.

Random Forest

Random Forests are ensambles of Decision Trees. They share their same basic prop-
erties and capabilities, and, moreover, the trees combination is helpful to reduce over-
fitting. The training of the set of used decision trees is done separately so that it can
be executed in parallel with the others, but some randomness is injected in the training
process to reduce the variance of the predictions. Randomness is injected by subsam-
pling the original dataset on each iteration to get a different training set or considering
different random subsets of features to split on at each tree node. To make a prediction
on a new instance, a random forest must aggregate the predictions from its set of deci-
sion trees. In the case of classification, the aggregation is done by majority vote. Each
trees prediction is counted as a vote for one class. The label is predicted to be the class
which receives the most votes.

33

4.2. Modelling and analysis

Naive Bayes

Naive Bayes is a simple multiclass classification algorithm with the assumption of in-
dependence between every pair of features. Naive Bayes can be trained very efficiently.
Within a single pass to the training data, it computes the conditional probability distri-
bution of each feature given label, and then it applies Bayes theorem to compute the
conditional probability distribution of label given an observation and use it for predic-
tion. The algorithm is suitable to perform both multiclass (multinomial Naive Bayes)
and binary classification (Bernoulli Naive Bayes), provided that the features in input
are non-negative.

Neural Networks

The Multilayer Perceptron Classifier (MLPC) provided by the Spark ML framework
is a classifier based on the feedforward artificial neural network. MLPC consists
of multiple layers of nodes. Each layer is fully connected to the next layer in the
network. Nodes in the input layer represent the input data. All other nodes map inputs
to outputs by a linear combination of the inputs with the nodes weights w and bias
textitb and applying an activation function. This can be written in matrix form for
MLPC with K+1 layers as follows:

y(x) = fK(... f2(wT
2 f 1(wT

1 x + b1) + b2)... + bK)

Nodes in intermediate layers use sigmoid function:

f (zi) =
1

1 + e−zi

Nodes in the output layer use softmax function:

f (zi) =
eziPN

k=1 ezk

The number of nodes N in the output layer corresponds to the number of classes.
MLPC employs backpropagation for learning the model. When instantiating the MLPC
classifier, we need to specify the dimensions of input (245 features), intermediate and
output (2 classes) layers.

34

4.2. Modelling and analysis

Support Vector Machine

A support vector machine constructs a hyperplane or set of hyperplanes in a high- or
infinite-dimensional space, which can be used for classification, regression, or other
tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest
distance to the nearest training-data points of any class (so-called functional margin),
since in general the larger the margin the lower the generalization error of the classifier.
LinearSVC in Spark ML supports binary classification with linear SVM.

4.2.2 Super Learner classifier

Each of the described basic classifiers is known to perform particularly well if ap-
plied to specific problems and datasets; by developing an ensamble learning model
we want to combine the strengths of each classifier to overcome each one’s limitations
and increase their predictive force while reducing their overfitting tendencies. The
theory behind the model is described in detail in [1], but in this section we want to de-
scribe the basic idea behind the algorithm to ease the comprehension of the folllowing
implementstion steps.
The so-called Super Learner is based on the concept of cross-validation: given the
usual labeled dataset of size N, we split it into K sub-sets of N

K samples each, and we
use at each iteration K-1 sub-sets as a training set and the remaining one as a valida-
tion set, so that at the end of the process each split is used once for the testing phase.
At each iteration we train and test on J first level learners, and we append the predic-
tion output to a new dataset called Z, having final size N x J. This new dataset is used
as input for the second level training phase of the so-called meta-learners, from which
the final predictions will be obtained. According to the different implementation of the
meta-learners, the Super Learner can be adapted to perform regression or classifica-
tion, and it is proved to be optimal, in the sense that it performs at least asymptotically
as well as the best first level learners available.
In the binary classification example taken into account, the meta-learners implement a
weighted-majority-voting-classifier where, being hh(X) the first level prediction for
each learner, we compute:

H(X) =

JX
j=1

w jh j(X)

35

4.2. Modelling and analysis

And we define a threshold β such that, if H(X) > β the sample is assigned to the
positive class, or, if not, to the negative class. In this implementation, a special attention
must be payed to the computation of the weigths w j, which is done in three different
ways:

• Uniform: w j = 1
J , all basic learners have the same weight;

• Accuracy: w j =
α jPJ
i=1 αi

, where αi is the accuracy of the i-th learner, i.e. the
fraction of true classification on the whole training dataset;

• Exponential: w j = eλα jPJ
i=1 eλαi

, being λ a coefficient used to reduce the impact of
predictors having low accuracy.

The practical implementation involves the code porting and testing of such model from
a scikit-learn version running on a single node, whose performance and implementa-
tion are explained in detail in [98], to a distributed pyspark.ml version. This latter
version exploits only three out of the five basic classifiers included in the centralized
one and mentioned above, since the Support Vector Machine model is not available
on Spark 2.0.0, and the output provided by the Multilayer Perceptron Classifier is not
resembling the ones of the other classifiers, given that it is lacking of the ”probability”
column to be appended to the Z matrix.
Particular relevance should be given to the differences between the cross-validation
implementations: while the scikit-learn cross validator (train test split object) only
outputs the starting and ending indexes of the training and testing sets at each iteration,
the pyspark cross validator directly tests all possible models and yields the best one.
Thus, a manual implementation of the cross validation resembling the scikit-learn one
is necessary: the matrix X, the normalized input dataset, is splitted into k subsets (the
randomSplit method does not provide splits of exactly equal size, but it guarantees that
they are not overlapping), and they are manually combined (k-1 splits for training and
1 for testing) to iteratively undergo the .fit() and the .transform() method on the first
level learners, and append to the matrix Z the prediction probability output.
To maintain compatibility with the basic learners, also the MajorityVoting class im-
plements a fit() and a transform() method. The parameters required by the fitting oper-
ation vary according to the weight computation technique selected (uniform, accuracy
or exponential, provided in string form by the user when instantiating the object). The

36

4.3. Classification results

weights are computed and returned in form of a K x 1 array. The transform opera-
tion multiplies every column of the Z matrix times the corresponding weight, and then
rounds the obtained values to map the weighted probabilities either to class 0 or to
class 1 (hence the β threshold is implicitly fixed to 0.5).

4.3 Classification results

4.3.1 Basic classifiers with full features set

The traffic processed for this case study (see also [99]) spans two months of packet
traces collected in late 2015. The following graphs report the detection performance of
each classifier using the full set of input features, depicted in terms of Receiver Op-
erating Characteristic curve. The ROC curve depicts on the y-axis the True Positive
Rate (or sensitivity) versus the False Positive Rate (1 − speci f icity). The performance
of each model is tested against the ideal classifier, depicted in the upper-left corner of
the graph, representing a TPR of 100%, against an FPR of 0%, and, on the other hand,
the random classifier, identified by a line cutting the graph at 45 degrees. The points
on the graphs are obtained by varying the false positive threshold (i.e. the probability
of false positive the algorithm is not allowed to exceed), hence by defining a set of
prior reasonable values for the specificity.
The scikit-learn.metrics.roc curve method was used to extract the graphs. It takes
as inputs the true labels (y true), the probability of beign marked as anomalous, as
extracted by the classification algorithm (y score), and it returns the arrays containing
the points for x and y-axis, together with the tested thresholds. Such thresholds are
computed by the method binary clf curve taking all the distinct values of the given
y score in decreasing order.
The results are also reported in terms of Area Under Curve (AUC) and execution
time (relative with respect to the smallest execution time in the model benchmarking,
SVM with CFS feature selection technique, lasting 110ms, and including also the time
spent to perform 10-folds cross-validation).
In general, we can say that the results are really satisfying in terms of accuracy, with
Random Forest and Multilayer Perceptron classifiers yielding the best performance

37

4.3. Classification results

with the detection of almost the 80% of the attacks without false alarms (AUC in green
in tables 4.4 and 4.6). Despite the very similar results, when choosing between the two
a consideration on the execution time should be made: the execution time of the MLP
(table 4.6) model turned out to be 3 orders of magnitude longer than the RF one, with
a large impact on the total generated by the training of the neural network. This result
makes the RF classifier particularly appealing when it comes to NTMA applications.
Furthermore, we should notice a general lower performance in the classification of the
Distributed Denial of Service attack (blue dotted line in all graphs), with the Naive
Bayes model yielding the lowest AUC value; on the other hand, the best classifica-
tion performance is obtained when classifying Multipoint To Point or Netscan-UDP
anomalies.
The next section will deal with the impact of several feature selection techniques on
the classifiers results.

Decision Tree

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

FPR (%)

TP
R

 (%
)

DDoS
mptp−la
ping flood
netscan−UDP
netscan−ACK

Figure 4.2: ROC for Decision Tree algorithm.

Anomaly AUC Relative ET
DDoS 0.922 27.8
MPTP 0.972 12.3
Ping-flood 0.952 20.8
Netscan-UDP 0.972 14.4
Netscan-ACK 0.918 22.3

Table 4.3: AUC and ET of Decision Tree.

38

4.3. Classification results

Random Forest

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

FPR (%)

TP
R

 (%
)

DDoS
mptp−la
ping flood
netscan−UDP
netscan−ACK

Figure 4.3: ROC for Random Forest algorithm.

Anomaly AUC Relative ET
DDoS 0.979 10.5
MPTP 0.998 4.6
Ping-flood 0.996 7.5
Netscan-UDP 0.995 7.2
Netscan-ACK 0.989 7.5

Table 4.4: AUC and ET of Random Forest.

Naive Bayes

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

FPR (%)

TP
R

 (%
)

DDoS
mptp−la
ping flood
netscan−UDP
netscan−ACK

Figure 4.4: ROC for Naive Bayes algorithm.

Anomaly AUC Relative ET
DDoS 0.828 29.3
MPTP 0.952 27.4
Ping-flood 0.963 26.5
Netscan-UDP 0.944 26.4
Netscan-ACK 0.929 26.1

Table 4.5: AUC and ET of Naive Bayes.

39

4.3. Classification results

Neural Networks

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

FPR (%)

TP
R

 (%
)

DDoS
mptp−la
ping flood
netscan−UDP
netscan−ACK

Figure 4.5: ROC for MLP algorithm.

Anomaly AUC Relative ET
DDoS 0.995 27.4 ∗ 103

MPTP 0.998 27.3 ∗ 103

Ping-flood 0.996 27.3 ∗ 103

Netscan-UDP 0.997 27.3 ∗ 103

Netscan-ACK 0.997 27.4 ∗ 103

Table 4.6: AUC and ET for MLP.

Support Vector Machine

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

FPR (%)

TP
R

 (%
)

DDoS
mptp−la
ping flood
netscan−UDP
netscan−ACK

Figure 4.6: ROC for SVM algorithm.

Anomaly AUC Relative ET
DDoS 0.935 37.6
MPTP 0.982 5.5
Ping-flood 0.980 13.5
Netscan-UDP 0.982 11.2
Netscan-ACK 0.968 18.3

Table 4.7: AUC and ET for SVM.

40

4.4. Basic classifiers with feature selection

4.4 Basic classifiers with feature selection

Despite being beneficial for some supervised learning techniques, having a large set of
input features may lead to some drawbacks like over-fitting and, as we noticed from
the results in the previuos section, an increase in the training time of the models. For
these reasons, filtering the initial input to remove redundant or irrelevant features can
be really helpful for the overall model performance. In [102], the problem is addressed
by saying that ”in the feature subset selection problem, a learning algorithm is faced
with the problem of selecting a relevant subset of features upon which to focus its
attention, while ignoring the rest. To achieve the best possible performance with a
particular learning algorithm on a particular domain, a feature subset selection method
should consider how the algorithm and the training data interact”. The same work
reports several definition of what relevance in a statistics concept is, stating that a
feature Vi is relevant if and only if there exists some vi and c for which p(Vi = vi) > 0
such that:

p(C = c|Vi = vi) , p(C = c).

We should keep in mind that feature selection does not involve the creation of new
features by combining the already existing ones, but it only aims at selecting the best
sub-set of input features. Such sub-set can be built by choosing different criteria. We
consider correlation-based selection, following two different approaches: the plain-
top and the sub-set search selection.

4.4.1 Plain-top feature selection

Such approach is also referred to as top-PLCC where PLCC stands for Pearson’s Linear
Correlation Coefficient. This procedure only takes into account the features which are
mostly linearly correlated with the target, for each attack type. The linear coefficient r
is computed as:

r =

Pn
i=1(xi − x̄)(yi − ȳ)pPn

i=1(xi − x̄)2
pPn

i=1(yi − ȳ)2

Where:

• n is the number of samples;

• xi is a specific feature on the i-th sample;

41

4.4. Basic classifiers with feature selection

• x̄ is the average value of the specific feature;

• yi is the label for the i-th sample;

• ȳ is the average value of the label;

Figure 4.7 shows the absolute values of the linear correlation coefficients between fea-
tures and attacks, separated by attack type. Features are sorted by decreasing corre-

0

0.2

0.4
DDoS

0

0.25

0.5 HTTP Flashcrowd

0

0.25

0.5

P
LC

C
 c

oe
ffi

ci
en

ts

Ping Flood

0

0.3

0.6 UDP net-scan

0 50 100 150 200 245
Feature index (sorted)

0

0.25

0.5 TCP net-scan

Figure 4.7: Linear correlation between features and attacks (absolute values).

lation coefficient magnitude. A first observation is that features are in general poorly
correlated to the attacks, with PLCC values generally below 0.5. Note that less input
features are highly correlated to the DDoS class, which justifies the poorer perfor-
mance obtained for this attack type. For the sake of top-PLCC feature selection, we
keep features with a PLCC coefficient value above 0.2, resulting in 11, 29, 51, 45
and 47 features for the DDoS, HTTP flashcrowd, ping flood, UDP and TCP netscans
attacks respectively.

42

4.4. Basic classifiers with feature selection

Model DDos MPTP Ping-flood Netscan-UDP Netscan-ACK
Decision Tree 0.874 0.965 0.956 0.970 0.920
Random Forest 0.942 0.988 0.991 0.996 0.988
Naive Bayes 0.824 0.982 0.981 0.925 0.959
Multilayer Perceptron 0.869 0.993 0.997 0.994 0.993
Support Vector Machine 0.755 0.982 0.948 0.938 0.900

Table 4.8: Detection performances of basic learners with top-PLCC feature selection in terms
of AUC.

Model DDos MPTP Ping-flood Netscan-UDP Netscan-ACK
Decision Tree 1.6 1.9 6.1 4.9 6.0
Random Forest 4.4 2.4 5.3 5.8 5.7
Naive Bayes 1.1 3.2 4.9 4.3 4.6
Multilayer Perceptron 25.6 21.6 1.4 ∗ 103 1.1 ∗ 103 1.2 ∗ 103

Support Vector Machine 2.2 1.1 3.4 3.9 4

Table 4.9: Detection performances of basic learners with top-PLCC feature selection in terms
of relative execution time.

4.4.2 Sub-set search selection

This methodology is presented in [103] as CFS, Correlation Feature Selection. Also
in this work, the selected features are poorly correlated among each other, but highly
correlated to the targets. The difference with respect to the previous case lays in the
fact that the features are directly evaluated as a subset for the result they yield in term
of Merit for the single subset S. This quantity is calculated as:

MS =
k ¯rc fp

k + k(k − 1) ¯r f f

Where:

• k is the number of features in the considered subset;

• ¯rc f is the average feature-label correlation (f ∈ S);

43

4.4. Basic classifiers with feature selection

• ¯r f f is the average feature-feature intercorrelation.

The above mentioned quantity is used as input for three different kinds of heuristics:
the forward selection, the backward elimination, and the best first. The first starts with
an empty sub-space, adding new features greedily, no new addition of features results
in a better result; the second algorithm, on the other hand, starts from the full features
set and removes one feature at a time until the model does not degrade; the third one
can either start from no-features or from a full-features set, and it starts either adding
or removing features until a stopping condition is met. In this case, we use best first
search as search strategy, with the same stopping condition illustrated in [103]: the
algorithm stops if five newly examonated subsets in a row give no better results with
respect to the current best one. In the case of FS feature selection, the procedure selects
13, 19, 19, 21 and 19 features for the DDoS, HTTP flashcrowd, ping flood, UDP and
TCP netscans attacks respectively.

Model DDos MPTP Ping-flood Netscan-UDP Netscan-ACK
Decision Tree 0.924 0.944 0.972 0.958 0.938
Random Forest 0.984 0.987 0.995 0.995 0.990
Naive Bayes 0.863 0.993 0.969 0.969 0.950
Multilayer Perceptron 0.947 0.979 0.993 0.994 0.989
Support Vector Machine 0.803 0.916 0.932 0.933 0.877

Table 4.10: Detection performances of basic learners with CFS in terms of AUC.

Model DDos MPTP Ping-flood Netscan-UDP Netscan-ACK
Decision Tree 1.9 1.4 1.7 1.8 2.2
Random Forest 5 2.6 3.8 4 4.5
Naive Bayes 1.36 2 2 2.1 2
Multilayer Perceptron 59.5 76.1 74.6 13.8 72.8
Support Vector Machine 3 1 2.8 2 2.2

Table 4.11: Detection performances of basic learners with CFS in terms of relative execution
time.

44

4.4. Basic classifiers with feature selection

4.4.3 Results

Both tables 4.9 and 4.11 show a significant reduction on the execution time for each
model. Among the other results should be particularly highlighted the reduction on
the training time of the Multilayer Perceptron in the top-PLCC scenario when dealing
with the DDoS and mptp-la attacks. From tables 4.8 and 4.10 we can see that feature
selection does not impact on the quality of the models, which are still highly accurate,
with Random Forest and MLP yielding again the best results. Particularly interesting
is the case of the Decision Tree model, for which performance even slightly increases
for some types of attacks, with a relevant reduction on the execution times.
To get a better understanding on which are the best features to detect the studied at-
tacks, table 4.12 reports the top-10 correlated features per attack type, and figure 4.8
shows the inter-feature correlations among each set of 10 features, in the form of a
circular graph. Features are coherent with the characteristics of each attack type, e.g.,
having a large number of packets towards a top targeted destination IP and destination
port in the case of a DDoS attack, or taking into consideration the percentage of ICMP
packets in the case of ping-flood. Note that in all cases, features derived from the em-
pirical distributions are present in the top-10 features, suggesting that such types of
features, are highly relevant for the sake of detection of network attacks.

Figure 4.8: Top-10 feature correlation graphs for the different types of attack.

45

4.4. Basic classifiers with feature selection

DDoS MPTP-LA Ping-flood
f 1 # pkts % pkts→ +TCPdst-port % IPv4 pkts
f 2 % pkts→ +IP p(TCPdst−port) % IPv6 pkts
f 3 tail p(TCPsrc−port) head p(TCPdst−port) p̄(IPlen)
f 4 tail p(UDPdst−port) head p(TCPdst−port) % ICMP pkts
f 5 tail p(TCPdst−port) tail p(TCPdst−port) % pkts→ +IP
f 6 head p(UDPsrc−port) tail p(TCPdst−port) # dst IPs
f 7 # TCPdst-ports head p(TCPwin−size) head p(IPlen)
f 8 head p(IPTT L) % pkts→ +IP head p(IPTT L)
f 9 # src IPs H(p(TCPdst−port)) head p(IPTT L)
f 10 head p(IPTT L) tail p(TCPsrc−port) # src IPs

UDP netscan TCP-ACK netscan
f 1 head p(IPTT L) % IPv4 pkts
f 2 head p(IPTT L) % IPv6 pkts
f 3 head p(UDPdst−port) tail p(TCPsrc−port)
f 4 % pkts→ +IP head p(TCPwin−size)
f 5 tail p(UDPsrc−port) head p(TCPwin−size)
f 6 p̄(IPlen) # TCPdst-ports
f 7 % UDP pkts p̄(TCPdst-port)
f 8 tail p(UDPdst−port) tail p(TCPdst−port)
f 9 # dst IPs head p(TCPdst−port)
f 10 # UDPdst-ports p̂(TCPdst-port)

Table 4.12: Top-10 correlated features per attack type.

To allow a better visualization of each algorithm performance, we have depicted in histogram
form all the AUC and relative execution time data previously enumerated in tabular form. For
the sake of readability, the relative execution times of the Multilayer Perceptron algorithm have
been removed and substituted with a 0 when too high with respect to the other data.

46

4.4. Basic classifiers with feature selection

Figure 4.9: AUC results for DDoS attack in different configurations.

Figure 4.10: AUC results for MPTP attack in different configurations.

Figure 4.11: AUC results for ping flooding attack in different configurations.

47

4.4. Basic classifiers with feature selection

Figure 4.12: AUC results for netscan-UDP attack in different configurations.

Figure 4.13: AUC results for netscan-ACK attack in different configurations.

Figure 4.14: Relative execution time results for DDoS attack in different configurations.

48

4.4. Basic classifiers with feature selection

Figure 4.15: Relative execution time results for MPTP attack in different configurations.

Figure 4.16: Relative execution time results for ping flooding attack in different configurations.

49

4.4. Basic classifiers with feature selection

Figure 4.17: Relative execution time results for netscan-UDP attack in different configurations.

Figure 4.18: Relative execution time results for netscan-ACK attack in different configurations.

50

4.5. Super Learner classifier

4.5 Super Learner classifier
Testing this ensamble learning implementation on the previously described environment high-
lighted the importance of a correct dimensioning of the YARN containers to fully exploit the
available cluster resources. Both the Cross-Validator object and the manual implementation
of the cross-validation phase required, in fact, a particularly high amount of memory, which
was impossible to obtain due to limited hardware resources on the Big-DAMA cluster. Even
if tested on the smallest possible portion of data, i.e. a single table spanning 900 rows, the
executed code lead to errors like:

ERROR cluster.YarnScheduler: Lost executor 9 on

bigdama-vworker4-phy1.bigdama.local: Container killed by YARN

for exceeding memory limits. 1.5 GB of 1.5 GB physical memory

used. Consider boosting spark.yarn.executor.memoryOverhead.

The attempt to specify an higher value (’6G’) for the suggested setting parameter
’spark.yarn.executor.memoryOverhead’ generated another error:

Required executor memory (1024+6144 MB) is above the max

threshold (2933 MB) of this cluster!

Please check the values of ’yarn.scheduler.maximum-allocation -mb’

and/or ’yarn.nodemanager.resource.memory-mb’.

The settings above can be modified through the YARN panel on the Cloudera Manager inter-
face (YARN > Configuration > Resource Management), and will become active after having
restarted all the services on the cluster. Unfortunately, in the specific case, the changes in set-
ting were not supported by the scheduler, so, up to now, since the cross validation process is a
fundamental phase for the development of this algorithm, we are not able to discuss any result.

51

Chapter 5

Conclusions and future work

5.1 Concluding remarks
We have presented Big-DAMA, a big data analytics framework specially tailored for network
monitoring applications. Using off-the-shelf big data storage and processing engines, Big-
DAMA is capable of analyzing and storing big amounts of both structured and unstructured
heterogeneous data sources, with batch processing capabilities. We have shown the types of
ML-based algorithms implemented in Big-DAMA for network security, using off-the-shelf ML
libraries.
By applying Big-DAMA to the detection of different types of network attacks on top of real
network measurements collected at the WIDE backbone network, we have also explored novel
features to better and faster detecting common network attacks. The analysis of feature selec-
tion techniques also showed that it is possible to further reduce execution times by keeping
only the most relevant and correlated-to-the-target features. As remarked by our case study
analysis, the Random Forest algorithm turned out to be the most suited for NTMA purposes,
yielding very good results both with a full features configuration and in the feature selection
case.
Despite the promising results coming from the application of the described classification algo-
rithms, the main weakness of such models should be pointed out: the need of a ground truth.
When dealing with real-time network traffic, in fact, obtaining the true labels for training the
model may result particularly difficult, and may impact on the speed at which the stream is
classified. One of the most common objections moved to our case study concerns exactly this
aspect: the labels use to train the models, even if particularly reliable, come from the appli-
cation of another kind of classification algorithm, that may in some cases fail. One of the

52

5.2. Future work and improvements

suggested solutions to overcome this problem may be to investigate the results yielded by the
application of some clustering techniques on the platform, to avoid the need for a ground
truth.
Another important conclusion to be kept in mind is that the model development and application
must go together with an adequate knowledge of the underlying environment (i.e. distributed
file system, scheduler and other frameworks), in order to efficiently exploit all the tools and
computational capabilities at one’s disposal and give a correct dimensioning to the problem.

5.2 Future work and improvements
As future work, we plan to focus our research on the development of the streaming platform
by adding Kafka as a resilient, distributed topic-based service [100] to the cluster. Such mes-
saging system has already been tested on the as a standalone message broker supporting the
publisher-subscriber paradigm (called respectively producers and consumers in the Kafka en-
vironment), but it must be further integrated with the Spark Streaming framework [101] to
complete the development of the platform lambda architecture.
Once the data stream warehouse platform is completed, another interesting insight is repre-
sented by performing a periodic model evaluation aimed at detecting the model decay as time
goes by, to properly understand the frequency at which the implemented models should be re-
trained.
Futhermore, an improvement in the cluster hardware will for sure make the test of the imple-
mented ensamble learner possible on a wider dataset without any issue.

53

Appendices

54

Appendix A

Case study code and flow charts

A.1 Data preprocessing

A.1.1 Mawi traces upload

from pyspark import SparkConf

from pyspark import SparkContext

conf = SparkConf()

conf.setMaster(’yarn-client ’)

conf.setAppName(’anaconda -pyspark ’)

sc = SparkContext(conf=conf)

print("done with startup")

from __future__ import print_function

from pyspark import SparkContext

from pyspark.sql import Row

from pyspark.sql import SQLContext , HiveContext

from pyspark.sql.types import *

from pyspark.sql import SparkSession

import math

from datetime import datetime

import time

55

A.1. Data preprocessing

import subprocess

file_dir = subprocess.Popen(["hadoop", "fs",

"-ls", "/user/big-dama/mawi_traces/extracted"], stdout=subprocess.PIPE)

file_list = []

i = 0

for file_name in file_dir.stdout:

#print(file_name)

if i != 0:

splits = file_name.split("/")

file_list.append(splits[5].lstrip(’\n’).strip())

#print(splits[5].lstrip(’\n’))

i = i+1

def get_table_name(x):

split = x.tableName.split("a")

return split[1]

import os

if __name__ == "__main__":

spark = SparkSession\

.builder\

.appName("HiveDBCreation")\

.getOrCreate()

#iteration on all the content of the folder!

sqlContext = SQLContext(sc)

dblist = sqlContext.sql("show tables from mawi_traces")

dblist = dblist.select("tableName")

.rdd.map(lambda x: get_table_name(x)).collect()

56

A.1. Data preprocessing

#print(dblist.rdd.count())

file_list = list(set(file_list) - set(dblist))

for file_name in file_list:

#file_name=file_name.lstrip(’\n’).strip()

tablename = "mawi_traces.a"+str(file_name.strip())+"a"

if file_name not in dblist:

try:

path = os.path

.join("<path to HDFS>"

, file_name.strip())

packetdata_rdd = sc.textFile(path)

df = packetdata_rdd

.map(lambda l: l.split(’\t’))

.toDF(["timestamp", "frame_len",

"ip_proto", "ip_len", "ip_ttl", "ip_version",

"tcp_dstport", "tcp_srcport", "tcp_flags",

"tcp_flags_ack", "tcp_flags_cwr",

"tcp_flags_fin", "tcp_flags_ecn",

"tcp_flags_ns", "tcp_flags_push",

"tcp_flags_syn", "tcp_flags_urg",

"tcp_len", "tcp_winsize",

"udp_srcport", "udp_dstport",

"ip_src", "ip_dst"])

print(tablename)

df.write.saveAsTable(tablename)

except:

print(tablename +" not correctly copied!")

57

A.1. Data preprocessing

A.1.2 Mawi features extraction

from pyspark import SparkConf

from pyspark import SparkContext

conf = SparkConf()

conf.setMaster(’yarn-client ’)

conf.setAppName(’process-matrices ’)

conf.set(’spark.scheduler.mode’, ’FAIR’)

#conf.set("spark.executor.heartbeatInterval","3600s")

sc = SparkContext(conf=conf)

print("done with startup")

from pyspark import SparkContext

from pyspark.sql import Row

from pyspark.sql import SQLContext , HiveContext , DataFrameWriter

from pyspark.sql.types import *

from pyspark.sql import SparkSession

import math

import Queue

import subprocess

import threading

from datetime import datetime

from pyspark.sql import functions as F

from operator import add

def entropy(assoc, data_size):

data_size = float(data_size)

Reduce the association information to (value, count) pairs

assign = assoc.map(lambda parti: (parti, 1)).reduceByKey(add)

Compute the distribution

dist = assign.map(lambda (x, y): y/data_size)

Compute the entropy of the distribution

entropy = dist.map(lambda u: -u*math.log(u,2)).reduce(add)

58

A.1. Data preprocessing

entropy = entropy/math.log(assign.count(),2)

return entropy

def most_used(assoc, data_size):

data_size = float(data_size)

Reduce the association information to (value, count) pairs

assign = assoc.map(lambda parti: (parti, 1)).reduceByKey(add)

Compute the distribution

dist = assign.map(lambda (x, y): (y/data_size , x)).max()

return dist

def get_total(assoc, data_size):

data_size = float(data_size)

Reduce the association information to (value, count) pairs

assign = assoc.map(lambda parti: (parti.ip_proto , 1)).reduceByKey(add)

return assign.collect()

def get_fraction(assoc, num_TCP, column):

Reduce the association information to (value, count) pairs

assign = assoc.map(lambda parti : parti[column])

.filter(lambda x: x == 1)

#print(assign.collect(), column)

return assign.sum()/num_TCP

def map_IPs_to_index(x):

print(x)

splits = x.split(’.’) #split IP address in its components

res = float(splits[0])*math.pow(256,3)+float(splits[1])

59

A.1. Data preprocessing

*math.pow(256,2)+float(splits[2])*256+float(splits[3])

#print(res)

return res

def get_fraction_ips(assoc, data_size):

data_size = float(data_size)

Reduce the association information to

#(value, count) pairs

assign = assoc.map(lambda parti: (parti, 1))

.reduceByKey(add)

Compute the distribution

dist = assign

.map(lambda (x, y): (x.ip_version ,y/data_size))

return dist.collectAsMap()

def task_sum(col, col_name):

start = datetime.now()

res = col.rdd.map(lambda x: x[col_name]).sum()

key = "vol"

dict_to_append[key] = res

end = datetime.now()

def task_get_min(col, col_name):

start = datetime.now()

key = "min_"+col_name

dict_to_append[key] = col.rdd

.map(lambda x: x[col_name]).min()

end = datetime.now()

def task_get_max(col, col_name):

start = datetime.now()

key = "max_"+col_name

60

A.1. Data preprocessing

dict_to_append[key] = col.rdd

.map(lambda x: x[col_name]).max()

end = datetime.now()

def task_get_avg(col, col_name):

start = datetime.now()

key = "avg_"+col_name

dict_to_append[key] = col.rdd

.map(lambda x: x[col_name]).mean()

end = datetime.now()

def task_get_var(col, col_name):

start = datetime.now()

key = "var_"+col_name

dict_to_append[key] = col.rdd.map(lambda x: x[col_name]).variance()

end = datetime.now()

def task_get_stdev(col, col_name):

start = datetime.now()

key = "stdev_"+col_name

dict_to_append[key] = col.rdd.map(lambda x: x[col_name]).stdev()

end = datetime.now()

def task_get_percentiles(col, col_name):

start = datetime.now()

key = "percentiles_"+col_name

percentiles = [0.01, 0.02, 0.05, 0.10, 0.15,

0.20, 0.25, 0.50, 0.75, 0.90, 0.95, 0.97, 0.99]

res = col.approxQuantile(col_name, percentiles , 0)

res = map(str, res)

res = ", ".join(res)

dict_to_append[key] = "array("+res+")"

end = datetime.now()

61

A.1. Data preprocessing

def task_get_entropy(colrdd, count, name):

start = datetime.now()

key = "entropy_"+name

res = entropy(col.rdd, col.count())

dict_to_append[key] = res

end = datetime.now()

def task_countunique(col, column_name):

start = datetime.now()

key = "num_"+column_name

result = col.distinct().count()

dict_to_append[key] = result

end = datetime.now()

def task_mu(col, column_name):

start = datetime.now()

mu = most_used(col.rdd, col.count())

end = datetime.now()

key = "most_used_"+column_name

key1 = "frac_most_used_"+column_name

dict_to_append[key] = mu[1][column_name]

dict_to_append[key1] = mu[0]

def task_fraction(df, column, tcptot):

start = datetime.now()

frac = get_fraction(df.rdd, tcptot, column)

key = "frac_"+column

dict_to_append[key] = frac

end = datetime.now()

def task_fraction_ip(datadf):

start = datetime.now()

frac = datadf.select("ip_version")

62

A.1. Data preprocessing

frac = frac.withColumn("ip_version",F

.explode(F.split(’ip_version ’,’,’)))

resfr = get_fraction_ips(frac.rdd, frac.count())

end = datetime.now()

dict_to_append["frac_ipv4"] = resfr[str(4)]

dict_to_append["frac_ipv6"] = resfr[str(6)]

import json

import time

if __name__ == "__main__":

spark = SparkSession\

.builder\

.appName("ThreadingFeatureExtraction")\

.getOrCreate()

sqlContext = HiveContext(sc)

kt = sqlContext

.sql("select * from copied_tables.keep_track")

.rdd.map(lambda x: x["tablename"]).collect()

df_list = sqlContext.sql("show tables from mawi_traces")

.rdd.map(lambda x: x.tableName).sortBy(lambda x: x)

.filter(lambda x: x not in kt).collect()

schema_df = sqlContext

.sql("select * from mawi_schema.schema_ex").schema

names = []

for namedf in schema_df:

names.append(namedf.name)

get_dist = ["frame_len","ip_proto","ip_len", "ip_ttl",

63

A.1. Data preprocessing

"tcp_dstport", "tcp_srcport", "tcp_len","tcp_winsize",

"udp_dstport","udp_srcport", "tcp_flags"]

countunique = ["ip_proto", "tcp_dstport",

"tcp_srcport", "udp_dstport", "udp_srcport"]

mostused = ["tcp_dstport", "tcp_srcport",

"udp_dstport", "udp_srcport"]

tcpfraction = ["tcp_flags_ack", "tcp_flags_cwr",

"tcp_flags_fin", "tcp_flags_ecn", "tcp_flags_ns",

"tcp_flags_push", "tcp_flags_syn", "tcp_flags_urg"]

for table_name in df_list:

start = datetime.now()

datadf = sqlContext.sql("select * from mawi_traces."

+table_name)

end = datetime.now()

dict_to_append = {}

#print("dbaccess ", str(end-start))

for name in get_dist:

col = datadf.select(name)

col = col.withColumn(name,F.explode(F.split(name,’,’)))

if name == "tcp_flags":

col = col.rdd.filter(lambda x: x.tcp_flags != "")

.map(lambda x: int(x.tcp_flags , 16))

dict_to_append["num_tcp_flags"]

= col.distinct().count()

row = Row("tcp_flags")

col = col.map(row).toDF()

else:

col = col.withColumn(name, col[name]

.cast(DoubleType())).dropna(how="any")

if name == "frame_len":

t1a = threading

.Thread(target=task_sum, args=(col, name,))

64

A.1. Data preprocessing

t1a.start()

t = threading

.Thread(target=task_get_min , args=(col, name,))

t.start()

t1 = threading

.Thread(target=task_get_max , args=(col, name,))

t1.start()

t2 = threading

.Thread(target=task_get_avg , args=(col, name,))

t2.start()

t3 = threading

.Thread(target=task_get_var , args=(col, name,))

t3.start()

t4 = threading

.Thread(target=task_get_stdev , args=(col, name,))

t4.start()

t5 = threading

.Thread(target=task_get_percentiles , args=(col, name,))

t5.start()

t6 = threading

.Thread(target=task_get_entropy ,

args=(col.rdd, col.count(), name,))

t6.start()

for name in countunique:

col = datadf.select(name)

col = col.withColumn(name,F

.explode(F.split(name,’,’)))

col = col.withColumn(name,

col[name].cast(DoubleType())).dropna(how="any")

t = threading.Thread(target=task_countunique ,

args=(col, name,))

t.start()

65

A.1. Data preprocessing

if name != "ip_proto":

t1 = threading.Thread(target=task_mu,

args=(col, name,))

t1.start()

t3a = threading.Thread(target=task_fraction_ip , args=(datadf,))

t3a.start()

start_nt = datetime.now()

ipproto = datadf.select(’ip_proto ’)

ipproto = ipproto.withColumn(’ip_proto’,

F.explode(F.split(’ip_proto ’,’,’)))

ipproto = ipproto

.withColumn("ip_proto", ipproto["ip_proto"]

.cast(DoubleType())).dropna(how="any")

flen = datadf.select(’frame_len ’)

flen = flen

.withColumn("frame_len", flen["frame_len"]

.cast(DoubleType())).dropna(how="any")

num_pkts = flen.count()

dict_to_append["num_pkts"] = num_pkts

#res = dict(get_total(ipproto.rdd, num_pkts))

rddip = ipproto.rdd.map(lambda x: (x.ip_proto ,1)).reduceByKey(add)

rddipfr = rddip.map(lambda (x, y): (x, float(y)/num_pkts))

res = rddip.collectAsMap()

#print(res)

resfr = rddipfr.collectAsMap()

num_TCP_pkts = res[6.0]

dict_to_append["num_icmp_pkts"] = res[1.0]

dict_to_append["num_tcp_pkts"] = res[6.0]

dict_to_append["num_udp_pkts"] = res[17.0]

66

A.1. Data preprocessing

dict_to_append["num_gre_pkts"] = res[47.0]

dict_to_append["frac_icmp_pkts"] = resfr[1.0]

dict_to_append["frac_tcp_pkts"] = resfr[6.0]

dict_to_append["frac_udp_pkts"] = resfr[17.0]

dict_to_append["frac_gre_pkts"] = resfr[47.0]

for name in tcpfraction:

col = datadf.select(name)

col = col.withColumn(name,F.explode(F.split(name,’,’)))

col = col.withColumn(name, col[name]

.cast(DoubleType())).dropna(how="any")

t = threading.Thread(target=task_fraction ,

args=(col, name, num_TCP_pkts))

t.start()

start_ipsrc = datetime.now()

ipproto = datadf.select(’ip_src ’)

ipproto = ipproto.withColumn(’ip_src’,

F.explode(F.split(’ip_src ’,’,’))).dropna(how="any")

dict_to_append["num_ip_src"] = ipproto.distinct().count()

indexed = ipproto.rdd.filter(lambda x: x.ip_src != "")

.map(lambda x: map_IPs_to_index(x.ip_src))

most_used_src = most_used(indexed, ipproto.count())

dict_to_append["most_used_ip_src"] = most_used_src[1]

dict_to_append["frac_most_used_ip_src"] = most_used_src[0]

end_ipsrc = datetime.now()

start_ipdst = datetime.now()

ipproto = datadf.select(’ip_dst ’)

ipproto = ipproto.withColumn(’ip_dst’,

F.explode(F.split(’ip_dst ’,’,’))).dropna(how="any")

67

A.1. Data preprocessing

dict_to_append["num_ip_dst"]

= ipproto.distinct().count() #stampa

indexed = ipproto.rdd.filter(lambda x: x.ip_dst != "")

.map(lambda x: map_IPs_to_index(x.ip_dst))

most_used_dst = most_used(indexed, indexed.count())

dict_to_append["most_used_ip_dst"] = most_used_dst[1]

dict_to_append["frac_most_used_ip_dst"]

= most_used_dst[0]

split = table_name.split("a")

res = split[1]

tablenamef = res[:8]

query = "insert into table mawi_features.a"

+tablenamef+"a values ("

first = True

for n in names:

if first:

query = query+" "+str(dict_to_append[n])

first = False

else:

query = query+", "+str(dict_to_append[n])

query = query+")"

query_track = "insert into table copied_tables.keep_track

values (’"+str(table_name)+"’)"

try:

sqlContext.sql(query)

sqlContext.sql(query_track)

print(table_name)

68

A.1. Data preprocessing

except:

sqlContext.sql("insert into table

copied_tables.keep_track_wrong

values (’"+str(table_name)+"’)")

print(table_name+" not correctly copied\n")

A.1.3 Flow chart for anomaly processing - outer cycle

69

A.1. Data preprocessing

A.1.4 Flow chart for anomaly processing - inner cycle

A.1.5 Mawi anomalies processing

from pyspark import SparkConf

from pyspark import SparkContext

conf = SparkConf()

conf.setMaster(’yarn-client ’)

conf.setAppName(’anaconda -pyspark ’)

sc = SparkContext(conf=conf)

70

A.1. Data preprocessing

print("done with startup")

import os

import xml.etree.ElementTree as ET

from datetime import datetime

import time

import numpy as np

directory = "./"

date_dict = {}

for filename in os.listdir(directory):

if filename.endswith(".xml"):

splits = filename.split("_")

datestr = splits[0]

try:

tree = ET.parse(filename)

except:

print(filename+" file not correctly processable")

root = tree.getroot()

for anomaly in root.iter(’anomaly ’):

t_start = anomaly.find(’from’).attrib

t_start = datetime.fromtimestamp(int(t_start["sec"]))

if t_start > datetime.fromtimestamp(0):

date_dict[datestr] = t_start.strftime("\%H")

break

print(date_dict)

from pyspark.sql import Row

from collections import OrderedDict

from pyspark.sql import SparkSession , DataFrameWriter

import json

71

A.1. Data preprocessing

def convert_to_row(d):

return Row(**OrderedDict(sorted(d.items())))

#Table schema initialization - Data insertion should follow the same schema!

from pyspark.sql import SQLContext , HiveContext

spark = SparkSession(sc)

sqlContext = SQLContext(sc)

hiveCtx = HiveContext(sc)

directory = "./"

for filename in os.listdir(directory):

if filename.endswith(".xml"):

splits = filename.split("_")

datestr = splits[0]

statement = "CREATE TABLE IF NOT EXISTS mawi_anomalies.

a"+splits[0]+"a like mawi_anomalies.a20160103a"

spark.sql(statement)

copied= sqlContext.sql("select * from mawi_anomalies.copied")

copied = copied.rdd.map(lambda x: x.copied).collect()

print(copied)

from operator import add

directory = "./"

for filename in os.listdir(directory):

if filename.endswith(".xml"):

splits = filename.split("_")

datestr = splits[0]

if datestr not in copied:

datestr = datestr+str(date_dict[datestr])

72

A.1. Data preprocessing

today = time.mktime(datetime.

strptime(datestr, "\%Y\%m\%d\%H").timetuple())

print(filename, datestr, today)

try:

tree = ET.parse(filename)

except:

print(filename+" file not correctly processable")

root = tree.getroot()

labels = np.zeros(900)

#name = {}

#tax = {}

#nd = {}

num_detectors_full = {}

for anomaly in root.iter(’anomaly ’):

vals = anomaly.attrib

label_name = vals["type"]

info = vals["value"].split(",")

dn = float(info[0])

da = float(info[1])

tax_1 = float(info[2])

tax_2 = info[4]

detectors = info[3].split(" ")

detectors = map(int, detectors)

t_start = anomaly.find(’from’).attrib

t_end = anomaly.find(’to’).attrib

t_start = float(t_start["sec"])

t_end = float(t_end["sec"])

index_aux_start = t_start - today

index_aux_end = t_end - today

73

A.1. Data preprocessing

index_aux_start = int(max(index_aux_start , 1))

index_aux_end = int(min(index_aux_end , 900))

anomaly_length = t_end-t_start

if t_start > 0:

labels[index_aux_start: index_aux_end] = 1

s = sum(detectors)

if t_start > 0 and anomaly_length > 0:

if tax_2 not in num_detectors_full:

num_detectors_full[tax_2] = [0]*900

d_full = [0]*4

for k in range(4):

ind1 = k*3

ind2 = (k+1)*3-1

aux = sum(detectors[ind1:ind2])

if aux > 0:

d_full[k] = 1

for jj in range(index_aux_start , index_aux_end):

#name[i][jj] = tax_2

#tax[i][jj] = tax_1

num_detectors_full[tax_2][jj] = sum(d_full)

#nd[tax_2][jj] = s

final_labels = {}

keyset_detfull = num_detectors_full.keys()

print(keyset_detfull)

74

A.1. Data preprocessing

#EASY CASE - AGGREGATION OF MULTIPLE ROWS IS NOT REQUIRED

- catch exception for key not present

find_anomalies =

[item for item in keyset_detfull if (item == ("ntscACK"))]

final_labels["ntscACK"] = [0]*900

for key in find_anomalies:

maxval = max(num_detectors_full[key])

final_labels[key]

= [1 if x == maxval else 0 for x in num_detectors_full[key]]

#Possible entries for mptp - flashcrowd

#(the prefixes related to the anomaly are

#reported on the MAWILab doc page)

keyset_mptp = [item for item in keyset_detfull

if (item.find("mptp") != -1)]

final_labels["mptp"] = [0]*900

for key in keyset_mptp:

final_labels["mptp"] = map(add,

final_labels["mptp"], num_detectors_full[key])

#all related anomalies are aggregated into

a single row for which we search the maximum

maxval = max(final_labels["mptp"])

final_labels["mptp"] = [1 if (x == maxval

and maxval != 0)

else 0 for x in final_labels["mptp"]]

#Possible entries for netscan_UDP

#(the prefixes related to the anomaly

#are reported on the MAWILab doc page)

keyset_udpscan = [item for item in

num_detectors_full.keys()

if (item.find("ntscUDP") != -1 or

item.find("ptpposcaUDP") != -1)]

75

A.1. Data preprocessing

final_labels["netscan_UDP"] = [0]*900

for key in keyset_udpscan:

final_labels["netscan_UDP"] =

map(add, final_labels["netscan_UDP"],

num_detectors_full[key])

maxval = max(final_labels["netscan_UDP"])

final_labels["netscan_UDP"] =

[1 if (x == maxval and maxval != 0)

else 0 for x in final_labels["netscan_UDP"]]

#Possible entries for DDoS

keyset_DDoS = [item for item

in num_detectors_full.keys()

if (item.find("distributed_dos") != -1 or

item.find("DDoS") != -1

and item.find("DDosIC") == -1)]

final_labels["DDoS"] = [0]*900

for key in keyset_DDoS:

final_labels["DDoS"] = map(add, final_labels["DDoS"],

num_detectors_full[key])

maxval = max(final_labels["DDoS"])

final_labels["DDoS"] = [1 if (x == maxval and maxval != 0)

else 0 for x in final_labels["DDoS"]]

#Possible entries for ping flooding

keyset_pingfl = [item for item in num_detectors_full.keys()

if (item.find("DDoSIC") != -1)]

final_labels["ping_flood"] = [0]*900

for key in keyset_pingfl:

final_labels["ping_flood"] = map(add,

final_labels["ping_flood"],

76

A.1. Data preprocessing

num_detectors_full[key])

maxval = max(final_labels["ping_flood"])

final_labels["ping_flood"] =

[1 if (x == maxval and maxval != 0)

else 0 for x in final_labels["ping_flood"]]

tosort = final_labels.keys()

for iii in range(900):

first = True

query = "insert into table

mawi_anomalies.a"+splits[0]+"a values ("

for key in sorted(tosort):

if first:

query = query+" "+str(iii)+",

"+str(final_labels[key][iii])

first = False

else:

query = query+", "+str(final_labels[key][iii])

query = query+")"

sqlContext.sql(query)

print(query)

query_track = "insert into table

mawi_anomalies.copied values ("+splits[0]+")"

sqlContext.sql(query_track)

copied.append(splits[0])

77

A.2. Modelling and Analysis

A.2 Modelling and Analysis

A.2.1 Decision Tree

dt = DecisionTreeClassifier(labelCol="label",

featuresCol="features", maxDepth=3)

Train model with Training Data

dtModel = dt.fit(trainingData)

print "numNodes = ", dtModel.numNodes

print "depth = ", dtModel.depth

predictions = dtModel.transform(testData)

#predictions.printSchema()

selected = predictions.select("label",

"prediction", "probability")

selected.show()

A.2.2 Random Forest

Create an initial RandomForest model.

rf = RandomForestClassifier(labelCol="label",

featuresCol="features")

Train model with Training Data

rfModel = rf.fit(trainingData)

predictions = rfModel.transform(testData)

selected = predictions.select("label", "prediction",

"probability")

78

A.2. Modelling and Analysis

A.2.3 Naive Bayes

nb = NaiveBayes(labelCol="label", featuresCol="features")

Train model with Training Data

nbModel = nb.fit(trainingData)

predictions = nbModel.transform(testData)

#predictions.printSchema()

selected = predictions.select("label", "prediction",

"probability")

#selected.show()

A.2.4 Multilayer Perceptron

mlp = MultilayerPerceptronClassifier(labelCol="label",

featuresCol="features", layers=[2, 2, 2])

Train model with Training Data

mlpModel = mlp.fit(trainingData)

#mlpModel.explainParams()

predictions = mlpModel.transform(testData)

predictions.printSchema()

A.2.5 Cross Validation

from pyspark.ml.evaluation import BinaryClassificationEvaluator

Evaluate model

evaluator = BinaryClassificationEvaluator()

79

A.2. Modelling and Analysis

evaluator.evaluate(predictions)

Create ParamGrid for Cross Validation

from pyspark.ml.tuning import ParamGridBuilder , CrossValidator

paramGrid = (ParamGridBuilder()

.addGrid(dt.maxDepth, [1,2])

.build())

Create 10-fold CrossValidator

cv = CrossValidator(estimator=dt,

estimatorParamMaps=paramGrid ,

evaluator=evaluator , numFolds=10)

Run cross validations

cvModel = cv.fit(trainingData)

Takes ˜5 minutes

predictions = cvModel.transform(testData)

80

A.2. Modelling and Analysis

A.2.6 Ensemble Learning (from [1])

Data

1
2

lm D/S/A . . . RF

V

1
2

V

lm D/S/A . . . RF
.
.
.

.

.

.

.

.

.

lm D/S/A . . . RF

lm D/S/A . . . RF

1
2

V

.

.

.

1
2

V

.

.

.

lm D/S/A . . . RF
1
2

V

.

.

.

1
2

V

.

.

.

Super Learner

2. Train each
candidate learner

3. Predict the outcomes in the
validation block based on the
corresponding training block

candidate learner

1. Split data
 into V blocks

4. Model selection and
fitting for the regression

 of the observed
 outcome onto the

predicted outcomes
from the candidate

learners

0. Train each
candidate learner on

entire dataset

Y
1
2

V

.

.

. E(Y |Z) = m(z;β)

Z obs.

5. Evaluate super learner
by combining predictions from

each candidate learner (step 0)
with m(z;β) (steps 1-4)

81

Bibliography

[1] M. Van der Laan, et al., “Super learner”, in Statistical applications in genetics and molec-
ular biology, vol. 6, no. 1, 2007.

[2] P. Casas, et al., “Big-DAMA: Big Data Analytics for Network Traffic Monitoring and
Analysis”, in ACM SIGCOMM LANCOMM Workshop, 2016.

[3] P. Casas, et al., “POSTER:(Semi)-Supervised Machine Learning Approaches for Network
Security in High-Dimensional Network Data”, in ACM CCS, 2016.

[4] P. Casas, et al., “Machine-learning based approaches for anomaly detection and classifi-
cation in cellular networks”, in TMA, 2016.

[5] Y. Freund, et al., “Using and combining predictors that specialize”, in ACM STOC, 1997.

[6] J. Hansen, “Combining predictors: Some old methods and a new method”, available
online at Citeseer, 1998.

[7] T. Dietterich, “Ensemble learning”, The handbook of brain theory and neural networks,
vol. 2, pp. 110–125, MIT Press: Cambridge, MA, 2002.

[8] P. Sollich, A. Krogh, “Learning with ensembles: How overfitting can be useful”, Ad-
vances in neural information processing systems, pp. 190–196, MORGAN KAUFMANN
PUBLISHERS, 1996.

[9] R. Fontugne, et al., “MAWILab: Combining Diverse Anomaly Detectors for Automated
Anomaly Labeling and Performance Benchmarking”, in ACM CoNEXT, 2010

[10] T. Nguyen, G. Armitage, “A survey of techniques for Internet Traffic Classification using
Machine Learning”, in IEEE Comm. Surv. & Tut., vol. 10, no. 4, pp. 56–76, 2008.

[11] A. Ghosh, A. Schwartzbard, “A Study in Using Neural Networks for Anomaly and Misuse
Detection”, in USENIX Security Symposium, 1999.

82

Bibliography

[12] A. Mitrokotsa et al., “Detecting denial of service attacks using emergent self-organizing
maps”, in IEEE ISSPIT, 2005.

[13] M. Ostaszewski et al., “A non-self space approach to network anomaly detection”, in
IEEE IPDPS, 2006.

[14] W. Chimphlee, et al., “Integrating genetic algorithms and fuzzy C-means for anomaly
detection”, in IEEE Indicon, 2005.

[15] G.Prashanth, et al., “Using random forests for network-based anomaly detection”, in
IEEE ICSCN, 2008.

[16] Y. Li et al., “An efficient network anomaly detection scheme based on TCM-KNN algo-
rithm and data reduction mechanism”, in IAW, 2007.

[17] P. Casas et al., “Unsupervised Network Intrusion Detection Systems: Detecting the Un-
known without Knowledge”, in Computer Communications, vol. 35 (7), pp. 772-783,
2011.

[18] T. Ahmed, et al., “Machine Learning Approaches to Network Anomaly Detection”, in
USENIX SYSML Workshop, 2007.

[19] V. Chandola, et al., “Anomaly detection: A survey”, ACM Comput. Surv., vol. 41, no. 3,
pp. 1–58, 2009.

[20] M. Ahmed, et al., “A Survey of Network Anomaly Detection Techniques”, J. Netw. Com-
put. Appl., vol. 60, pp. 19–31, 2016.

[21] W. Zhang, et al., “A Survey of Anomaly Detection Methods in Networks”, in CNMT
Symposium, 2009.

[22] A. Moore et al., “Internet Traffic Classification using Bayesian Analysis Techniques”, in
Proc. ACM SIGMETICS, 2005.

[23] M. Roughan et al., “Class-of-Service Mapping for QoS: a Statistical Signature-Based
Approach to IP Traffic Classification”, in IMW, 2004.

[24] N. Williams el al., “A Preliminary Performance Comparison of Five Machine Learning
Algorithms for Practical IP Traffic Flow Classification”, in ACM CCR, vol. 36 (5), pp.
5-16, 2006.

83

Bibliography

[25] S. Valenti et al., “Accurate, Fine-Grained Classification of P2P-TV Applications by Sim-
ply Counting Packets”, in TMA, 2009.

[26] J. Erman et al., “Traffic Classification using Clustering Algorithms”, in MineNet, 2006.

[27] P. Casas et al., “MINETRAC: Mining Flows for Unsupervised Analysis & Semi-
Supervised Classification”, in ITC, 2011.

[28] J. Erman et al., “Semi-Supervised Network Traffic Classification”, in ACM SIGMET-
RICS, 2007.

[29] T. Nguyen et al., “A Survey of Techniques for Internet Traffic Classification using Ma-
chine Learning”, in IEEE Comm, Surv. & Tut., vol. 10 (4), pp. 56-76, 2008.

[30] R. Ravinder, et al., “Real Time Anomaly Detection Using Ensembles”, in ICISA Interna-
tional Conference, 2014.

[31] M. Ozdemir, I. Sogukpinar, “An Android Malware Detection Architecture based on En-
semble Learning”, in Transactions on Machine Learning and Artificial Intelligence, vol.
2, no. 3, pp. 90–106, 2014.

[32] A. Baer, A. Finamore, P. Casas, L. Golab, M. Mellia, “Large-Scale Network Traffic Mon-
itoring with DBStream, a System for Rolling Big Data Analysis,” in Proc. IEEE Interna-
tional Conference on Big Data, 2014.

[33] M. Stonebraker, “SQL Databases vs. noSQL Databases,” in Communications of the ACM,
vol. 53(4), pp. 10-11, 2010.

[34] C. Cranor, T. Johnson, O. Spataschek, V. Shkapenyuk, “Gigascope: A Stream Database
for Network Applications,” in Proc. of the ACM SIGMOD International Conference on
Management of Data, pp. 647-651, 2003.

[35] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, S. Zdonik, “Aurora: A New Model and Architecture for Data Stream Manage-
ment,” in The VLDB Journal, vol. 12(2), pp. 1020-1039, 2003.

[36] L. Golab, T. Johnson, J. Seidel, V. Shkapenyuk, “Stream Warehousing with DataDepot,”
in Proc. of the ACM SIGMOD International Conference on Management of Data, pp.
847-854, 2009.

[37] P. Bhatotia et al., “Indoop: Mapreduce for Incremental Computations,” in Proc. of the
ACM Symposium on Cloud Computing, pp. 7-14, 2011.

84

Bibliography

[38] , W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, A. Doan, “Muppet: Mapreduce-
style processing of fast data,” in Proc. VLDB Endow., vol. 5(12), pp.1814-1825, 2012.

[39] B. Li, E. Mazur, Y. Diao, A. McGregor, P. Shenoy, “Scalla: A platform for scalable one-
pass analytics using mapreduce,” in ACM Trans. Database Syst. 37(4), pp. 27-43, 2012.

[40] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”
in Communications of the ACM, vol. 51(1), pp. 107-113, 2008.

[41] T. White, “Hadoop: the Definitive Guide,” O’Reilly Media, Inc., ISBN:0596521979
9780596521974, 2009.

[42] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica, “Spark: Cluster Comput-
ing with Working Sets,” in Proc. of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, pp. 10-16, 2010.

[43] M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica, “Discretized Streams: An Efficient
and Fault-tolerant Model for Stream Processing on Large Clusters,” in Proc. of the 4th
USENIX Conference on Hot Topics in Cloud Computing, pp. 10-16, 2012.

[44] P. Casas, J. Mazel, P. Owezarski, “Knowledge-Independent Traffic Monitoring: Unsuper-
vised Detection of Network Attacks,” in IEEE Network Magazine, vol. 26(1), pp. 13-21,
2012.

[45] Berkeley AMPLab. Big Data Benchmark. https://amplab.cs.berkeley.edu/
benchmark/, 2014.

[46] C. Bishop, “Pattern Recognition and Machine Learning”, 2007.

[47] Z. Cai, Z. Gao, S. Luo, L. Perez, Z. Vagena, C. Jermaine, “A Comparison of Platforms for
Implementing and Running Very Large Scale Machine Learning Algorithms,” in Proc. of
the ACM SIGMOD International Conference on Management of Data, pp. 1371-1382,
2014.

[48] F. Huici, A. di Pietro, B. Trammell, J. Gomez Hidalgo, D. Martinez Ruiz, N. d’Heureuse,
“Blockmon: A High-Performance Composable Network Traffic Measurement System,”
in Proc. of the ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pp. 79-80, 2012.

[49] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, B. Stiller, “An Overview of IP
Flow-Based Intrusion Detection,” in IEEE Communications Surveys Tutorials, vol. 12(3),
pp. 343-356, 2010.

85

https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/

Bibliography

[50] M. Panda, A. Abraham, S. Das, M.R. Patra, “Network Intrusion Detection Systems: A
Machine Learning Approach,” in Int. Decision Technologies, vol. 5 (4), pp. 347-356,
2011.

[51] I. Syarif, A. Prugel-Bennett, G. Wills, “Data Mining Approaches for Network Intrusion
Detection: from Dimensionality Reduction to Misuse and Anomaly Detection,” in Jour-
nal of Information Technology Review, vol. 3(2), pp. 70-83, 2012.

[52] L. Khan, M. Awad, B. Thuraisingham, “A New Intrusion Detection System Using Support
Vector Machines and Hierarchical Clustering,” in The VLDB Journal, vol. 16(4), pp. 507-
521, 2007.

[53] A. Marnerides, A. Schaeffer-Filho, A. Mauthe, “Traffic Anomaly Diagnosis in Internet
Backbone Networks: A Survey,” in Computer Networks, vol. 73, pp. 224-243, 2014.

[54] R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine Learning for
Network Intrusion Detection,” in Proc. IEEE Symposium on Security and Privacy, pp.
305-316, 2010.

[55] M. Tavallaee, N. Stakhanova, A.A. Ghorbani, “Toward Credible Evaluation of Anomaly-
Based Intrusion-Detection Methods,” in IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, vol. 40(5), pp. 516-524, 2010.

[56] F. Iglesias and T. Zseby, “Analysis of Network Traffic Features for Anomaly Detection,”
in Machine Learning, pp. 1-26, 2014.

[57] S. Sagiroglu and D. Sinanc, “Big Data: A Review,” in Proc. Int. Conf. on Collaboration
Technologies and Systems, pp. 42-47, 2013.

[58] H. Kriegel, P. Kroger, A. Zimek, “Clustering high-dimensional data: A survey on sub-
space clustering, pattern-based clustering, and correlation clustering,” in ACM Transac-
tions on Knowledge Discovery from Data, 2009.

[59] L. Parsons, E. Haque, H. Liu, “Subspace Clustering for High Dimensional data: a Re-
view,”, in SIGKDD Explor. Newsl., 2004.

[60] W. Chen et al., “Parallel Spectral Clustering in Distributed Systems Pattern Analysis and
Machine Intelligence,” in IEEE Transactions, vol 33(3), pp. 568-586, 2011.

[61] P. Domingos et al., “Mining High-Speed Data Streams,” in Proc. of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 71-80, 2000.

86

Bibliography

[62] P. Biswanath, J. Herbach , S. Basu , R. Bayardo, “PLANET: Massively Parallel Learning
of Tree Ensembles with MapReduce”, in Proc. VLDB Endow., pp. 1426-1437, 2009.

[63] C. Aggarwal et al., “A Framework for Clustering Evolving Data Streams,” in Proc. of the
International Conference on Very Large Data Bases, pp. 81-92, 2003.

[64] P. Costa, A. Donnelly, A. Rowstron, G. O’Shea, “Camdoop: Exploiting In-network Ag-
gregation for Big Data Applications,” in Proc. of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation, pp. 29-42, 2012.

[65] R. Fontugne, J. Mazel, K. Fukuda, “Hashdoop: A MapReduce Framework for Network
Anomaly Detection,” in Proc. of the IEEE Conference on Computer Communications
Workshops, pp. 494-499, 2014.

[66] Y. Lee et al., “Toward scalable internet traffic measurement and analysis with Hadoop,”
in SIGCOMM Comput. Commun. Rev., 43(1), pp. 5-13, 2012.

[67] J. Liu, F. Liu, N. Ansari, “Monitoring and analyzing big traffic data of a large-scale cel-
lular network with Hadoop,” in IEEE Network, 28(4), pp. 32-39, 2014.

[68] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. Dewitt, S. Madden, M. Stonebraker, “A
Comparison of Approaches to Large-Scale Data Analysis,” in Proc. of the ACM SIGMOD
International Conference on Management of Data, pp. 165-178, 2009.

[69] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, “The HiBench Benchmark Suite: Char-
acterization of the MapReduce-based Data Analysis,” in Proc. of the IEEE SIGMOD
International Conference on Data Engineering Workshops, pp. 41-51, 2010.

[70] Y. Chen, A. Ganapathi, R. Griffith, R. Katz, “The Case for Evaluating MapReduce Perfor-
mance Using Workload Suites,” in Proc. of the IEEE Symposium on Modeling, Analysis
& Simulation of Computer and Telecommunication Systems, pp. 25-27, 2011.

[71] Y. Jia, “A Benchmark for Hive, PIG and Hadoop,” available at https://issues.
apache.org/jira/browse/hive-396

[72] C. Douglas, H. Tang, “Gridmix3 – Emulating Production Workload for Apache
Hadoop,” available at https://developer.yahoo.com/blogs/hadoop/

gridmix3-emulating-production-workload-apache-hadoop-450.html

[73] H. Karloff, S. Suri, S. Vassilvitskii, “A Model of Computation for MapReduce,” in Proc.
ACM SODA, 2010.

87

https://issues.apache.org/jira/browse/hive-396
https://issues.apache.org/jira/browse/hive-396
https://developer.yahoo.com/blogs/hadoop/gridmix3-emulating-production-workload-apache-hadoop-450.html
https://developer.yahoo.com/blogs/hadoop/gridmix3-emulating-production-workload-apache-hadoop-450.html

Bibliography

[74] Apache Mahout, http://mahout.apache.org.

[75] MLlib: https://spark.apache.org/mllib/

[76] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, “Models and Issues in Data
Stream Systems,” in Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 1-16, 2002.

[77] L. Golab, T. Johnson “Consistency in Stream Warehouse,” in CIDR Vol.11, pp. 114-122,
2011.

[78] Apache Spark ML, http://spark.apache.org/docs/latest/api/python/

pyspark.ml.html.

[79] Scikitlearn Ensemble methods, http://scikit-learn.org/stable/modules/

ensemble.html.

[80] J. Gantz, D. Reinsel, ”Extracting value from chaos.” IDC iview 1142.2011 (2011): 1-12.

[81] B. Brown, et al., ”Big data: the next frontier for innovation, competition, and productiv-
ity.” McKinsey Global Institute (2011).

[82] M. Cooper, P. Mell, ”Tackling big data.” Websitehttp://csrc.nist.gov/groups/
SMA/forum/documents/june2012presentations/csm_june2012_cooper_mell.

pdf, 2012.

[83] Council, Transaction Processing Performance. ”Transaction processing performance
council.” Web Site, http://www. tpc. org (2005).

[84] Y. Chen, ”We dont know enough to make a big data benchmark suite-an academia-
industry view.” Proc. of WBDB (2012).

[85] J. G. Gantz and D. R. Reinsel. ”Extracting value from chaos”.

[86] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers.
”Big data: The next frontier for innovation, competition, and productivity”, May 2011.

[87] Cloud Security Alliance. ”Big Data Taxonomy”, September 2014.

[88] Cloudera Manager, https://www.cloudera.com/products/

product-components/cloudera-manager.html.

[89] D. Borthakur. ”HDFS architecture guide. Hadoop Apache Project, 53”, 2008.

88

http://mahout.apache.org
https://spark.apache.org/mllib/
http://spark.apache.org/docs/latest/api/python/pyspark.ml.html
http://spark.apache.org/docs/latest/api/python/pyspark.ml.html
http://scikit-learn.org/stable/modules/ensemble.html
http://scikit-learn.org/stable/modules/ensemble.html
Website http://csrc. nist. gov/groups/SMA/forum/documents/june2012presentations/csm_june2012_cooper_mell.pdf
Website http://csrc. nist. gov/groups/SMA/forum/documents/june2012presentations/csm_june2012_cooper_mell.pdf
Website http://csrc. nist. gov/groups/SMA/forum/documents/june2012presentations/csm_june2012_cooper_mell.pdf
https://www.cloudera.com/products/product-components/cloudera-manager.html
https://www.cloudera.com/products/product-components/cloudera-manager.html

Bibliography

[90] Apache Hadoop YARN, https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html.

[91] Cloudera YARN Container tuning guide https://www.cloudera.com/

documentation/enterprise/5-3-x/images/yarn_mapreduce_tasks.jpg.

[92] Hortonworks, Inc. Hortonworks Data Platform: Apache Spark Component Guide, 2012-
2017

[93] Apache Spark 2 API, https://spark.apache.org/docs/2.2.0/ml-pipeline.
html.

[94] Apache Hive, https://hive.apache.org/.

[95] Zookeeper, https://cwiki.apache.org/confluence/display/ZOOKEEPER/

Index.

[96] Oozie, http://oozie.apache.org/.

[97] MAWI MIDE, http://mawi.wide.ad.jp/mawi/.

[98] J. Vanerio, P. Casas, ”Ensemble-learning Approaches for Network Security and Anomaly
Detection”, 2017.

[99] P. Casas et al., ”Network Security and Anomaly Detection with Big-DAMA, a Big Data
Analytics Framework”, in IEEE Cloudnet 2017.

[100] Kafka, https://kafka.apache.org/documentation/.

[101] Spark Streaming, https://spark.apache.org/streaming/.

[102] R. Kohavi, H. J. George H. John, ”Wrappers for feature subset selection.” Artificial
intelligence 97.1-2 (1997): 273-324.

[103] M. A. Hall. ”Correlation-based feature selection for machine learning.” (1999).

89

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://www.cloudera.com/documentation/enterprise/5-3-x/images/yarn_mapreduce_tasks.jpg
https://www.cloudera.com/documentation/enterprise/5-3-x/images/yarn_mapreduce_tasks.jpg
https://spark.apache.org/docs/2.2.0/ml-pipeline.html
https://spark.apache.org/docs/2.2.0/ml-pipeline.html
https://hive.apache.org/
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index
http://oozie.apache.org/
http://mawi.wide.ad.jp/mawi/
https://kafka.apache.org/documentation/
https://spark.apache.org/streaming/

	Introduction and problem description
	Overview
	Goal of the thesis
	Thesis organization

	State of the art and contributions
	Machine Learning, Data Mining and Big Data Analytics
	Network Anomaly Detection and Security
	Benchmarks for Big Data Analysis Solutions

	The Big-DAMA project
	Big Data Analysis Frameworks
	Scientific Challenge
	Project objectives
	Big-DAMA cluster
	HDFS
	YARN
	Spark 2.0
	Hive, Zookeeper and Oozie
	Spark MLlib
	Future improvements

	Case study
	WIDE/MAWI Input data traces
	Data preprocessing
	Feature extraction
	Labels extraction

	Modelling and analysis
	Basic classifiers
	Super Learner classifier

	Classification results
	Basic classifiers with full features set

	Basic classifiers with feature selection
	Plain-top feature selection
	Sub-set search selection
	Results

	Super Learner classifier

	Conclusions and future work
	Concluding remarks
	Future work and improvements

	Appendices
	Case study code and flow charts
	Data preprocessing
	Mawi traces upload
	Mawi features extraction
	Flow chart for anomaly processing - outer cycle
	Flow chart for anomaly processing - inner cycle
	Mawi anomalies processing

	Modelling and Analysis
	Decision Tree
	Random Forest
	Naive Bayes
	Multilayer Perceptron
	Cross Validation
	Ensemble Learning (from van2007super)

	Bibliography

		Politecnico di Torino
	2018-03-22T18:00:01+0000
	Politecnico di Torino
	Marco Mellia
	S

